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Abstract: We aimed to analyse whether patients with ischaemic stroke (IS) occurring within eight
days after the onset of COVID-19 (IS-COV) are associated with a specific aetiology of IS. We used
SUPERGNOVA to identify genome regions that correlate between the IS-COV cohort (73 IS-COV
cases vs. 701 population controls) and different aetiological subtypes. Polygenic risk scores (PRSs)
for each subtype were generated and tested in the IS-COV cohort using PRSice-2 and PLINK to
find genetic associations. Both analyses used the IS-COV cohort and GWAS from MEGASTROKE
(67,162 stroke patients vs. 454,450 population controls), GIGASTROKE (110,182 vs. 1,503,898), and
the NINDS Stroke Genetics Network (16,851 vs. 32,473). Three genomic regions were associated
(p-value < 0.05) with large artery atherosclerosis (LAA) and cardioembolic stroke (CES). We found
four loci targeting the genes PITX2 (rs10033464, IS-COV beta = 0.04, p-value = 2.3 × 10−2, se = 0.02),
previously associated with CES, HS6ST1 (rs4662630, IS-COV beta = −0.04, p-value = 1.3 × 10−3,
se = 0.01), TMEM132E (rs12941838 IS-COV beta = 0.05, p-value = 3.6 × 10−4, se = 0.01), and RFFL
(rs797989 IS-COV beta = 0.03, p-value = 1.0 × 10−2, se = 0.01). A statistically significant PRS was
observed for LAA. Our results suggest that IS-COV cases are genetically similar to LAA and CES
subtypes. Larger cohorts are needed to assess if the genetic factors in IS-COV cases are shared with
the general population or specific to viral infection.

Keywords: COVID-19; ischaemic stroke; GWAS; local genetic correlation; PRS

1. Introduction

Coronavirus disease (COVID-19) is a worldwide contagious and infectious disease
caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the
pandemic progressed, increased rates of thrombotic events were reported in patients
with COVID-19 [1], especially ischaemic stroke (IS) [2,3]. During 2020, the incidence
rate varied between 0.9% and 2.5% in different cohorts of European and Asian ancestry
populations [1–5], whereas the incidence in the general population is 0.095% [6]. This
incidence variation in COVID-19 cases is probably due to differences in the severity of
COVID-19, the prevalence of vascular risk factors, including age, male gender, hypertension,
hyperlipidaemia, ischaemic heart disease, diabetes mellitus type 1, the ability to accurately
diagnose all strokes in a situation of saturation of medical services, and methodological
differences in the studies [7,8]. However, COVID-19 patients have an approximately
sevenfold higher risk of stroke compared to influenza patients [9]. Furthermore, strokes
tend to be more severe and have a higher mortality in SARS-CoV-2 patients compared
to those without this condition [8,10]. Moreover, in a study of 1,595,984 patients, it was
concluded that those who had recovered from COVID-19 had a higher risk of suffering
a stroke than the general population during the subsequent 9 months, with 4.40 per
1000 patients experiencing a stroke compared to 3.23 per 1000 patients in the control
group [11].

With regards to the TOAST (Trial of ORG 10172 in acute stroke treatment) classifi-
cation [12], it appears that patients with COVID-19 are predisposed to have large artery
atherosclerosis (LAA) strokes [13,14], although some studies suggest that undetermined
(UND) [15], cryptogenic [5,16], and cardioembolic (CES) aetiologies [15] may comprise the
highest proportion. In a cohort of 32 stroke cases due to COVID-19, 65% were classified
as cryptogenic [5]. Similarly, in another study of 129 cases, the percentage of cryptogenic
strokes was 42% [16]. In another cohort of 91 cases, 33% were classified as CES and 34% as
UND [15].

The pro-inflammatory response caused by the cytokine and chemokine storm during
infection may lead to various complications, including hypercoagulability, endothelial
damage, vasculitis, and thrombosis, thus leading to strokes [17]. In severe COVID-19
cases, patients often exhibit thrombocytopenia and elevated D-dimer, which in turn are
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associated with high levels of fibrin degradation products and low antithrombin activity,
indicating changes in blood coagulation [18]. There is also evidence suggesting that COVID-
19 triggers the release of matrix metalloproteinases, which cleave tight junction proteins,
promoting damage to the endothelium and increasing the permeability of the blood–
brain barrier. This leads to astrocyte dysfunction and activation of the inflammasome,
which may contribute to an imbalance in the coagulation system [19]. Likewise, reduced
functioning of the virus’s cellular entry receptor, the angiotensin-converting enzyme-2
(ACE-2) receptor, would increase angiotensin II formation, resulting in a prothrombotic
state and vasoconstriction and increasing the risk of IS [20]. Additionally, COVID-19-related
cardiac complications, such as tachyarrhythmia, myocardial infarction, cardiomyopathy,
or changes in the intravascular volume due to infection, might alter cerebral perfusion
pressures or increase atrial fibrillation, a major cause of cardioembolic strokes [7]. Therefore,
the intense inflammatory response combined with a haemostatic disorder, characterized
by hypercoagulable states and cardiac complications, may act as triggers for blood clot
formation [19]. Nevertheless, it is essential to consider other intrinsic mechanisms related to
viral infection rather than only a generalized response to severe diseases [13]. For example,
the damage to the endothelial cells is directly exacerbated by the SARS-CoV-2 virus [19].

An incomplete aetiological evaluation of stroke patients with COVID-19 may be a
significant confounding factor in treatment. As such, genetics may be informative in
classifying IS-COV. Indeed, genetic liability for COVID-19 severity and susceptibility are
associated with risk for IS [13,14]. As genetic factors depend on stroke aetiology [21–23],
we aimed to determine whether IS due to COVID-19 (IS-COV) genetically resembles a
particular subtype of IS. This investigation would offer valuable insights into whether
these ischaemic strokes are attributed to underlying risk factors or directly caused by the
viral infection. It would also provide a comprehensive understanding of the biological
mechanisms underlying stroke and its pathogenesis.

2. Results
2.1. Local Genetic Covariance Estimation

We used SUPERGNOVA to estimate local and global genetic correlations between
IS-COV and different subtypes of ischaemic stroke. We utilized GWAS data from the
MEGASTROKE, GIGASTROKE, and SiGN datasets, including all ischaemic stroke (AIS),
small vessel occlusion (SVO) stroke LAA, and CES. Additionally, we incorporated GWAS
data for UND from the SiGN study. We partitioned the genome into 2186 independent
regions using LDetect [24], with LD estimated from the 1000 Genomes Project phase III
samples of European ancestry [25].

We identified thirty-one statistically significant regions (p-value < 0.05) that correlated
between IS-COV and the different types of ischaemic stroke: five for AIS, eight for LAA,
four for CES, seven for SVO, four for AIS and CES, two for AIS and LAA, and one for UND
and SVO (Supplementary Table S3).

None of these regions reached the Bonferroni threshold (p-value < 0.05/(2186 × 13)
= 1.4 × 10−5), where 2186 represents the number of independent regions into which the
genome is divided, and 13 is the number of comparisons made. However, we prioritized
two genomic regions on chromosomes two and seventeen associated with LAA and one on
chromosome four associated with CES that were consistent (p-value < 0.05 and correlation
in the same direction) in all MEGASTROKE [26], GIGASTROKE [23], and SiGN [21] studies
(Table 1). To prioritise genes in these three associated regions, we examined them using
LocusZoom [27] and using V2G score [28]. For chromosome 17, LocusZoom highlighted
the genes TMEM132E, RFFL, CCT6B, ZNF830, LIG3, and AC004223.3 (Figure 1). We also
selected SNVs with a p-value < 0.05 in each GWAS pair tested. Next, we focused on
studying the most significant SNV in the IS-COV cohort for each locus. These SNVs are
rs10033464 (beta 0.04, p-value 2.3 × 10−2, se 0.02), rs4662630 (beta −0.04, p-value 1.3 × 10−3,
se 0.01), rs12941838 (beta 0.05, p-value 3.6 × 10−4, se 0.01), and rs797989 (beta 0.03, p-value
1.0 × 10−2, se 0.01; see Table 2). According to the V2G score, the score-annotated genes are
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PITX2 (rs10033464), HS6ST1 (rs4662630), TMEM132E (rs12941838), and RFFL (rs797989; see
Supplementary Table S4).

Table 1. Regions that are consistent in all analyses (p-value < 0.05 and correlate in the same direction).

Phenotype Chr Start End Corr p-Value SNVs

GIGA-LAA 0.65 1.4 × 10−2 198
MEGA-LAA 0.63 3.1 × 10−2 200
SiGN-LAA

2 129,312,188 129,864,416
0.99 6.0 × 10−4 200

GIGA-LAA
17 32,677,947 33,614,452

0.92 9.4 × 10−3 442
MEGA-LAA 0.91 4.6 × 10−3 442
SiGN-LAA 0.88 3.6 × 10−2 442
GIGA-CES −0.87 2.1 × 10−3 697
MEGA-CES −0.87 4.0 × 10−3 697
SiGN-CES

4 109,980,374 112,204,254
−0.86 6.8 × 10−3 697

Chr: chromosome; start: start position of the genomic region from the input genome partition file; end: end
position of the genomic region from the input genome partition file; corr: estimation of local genetic correlation;
p-value: p-value of local genetic covariance; SNVs: number of single-nucleotide variants involved in the estimation
of local genetic covariance in the genomic region; GIGA: GIGASTROKE; MEGA: MEGASTROKE.

Figure 1. LocusZoom image of the shared region between IS-COV and the study phenotype: (a) CES;
(b,c) LAA. The single-nucleotide variants with the most significant p-value in the IS-COV GWAS, as
well as the most significant SNV in the IS-COV GWAS but shared in MEGASTROKE, GIGASTROKE,
or SIGN.



Int. J. Mol. Sci. 2023, 24, 13452 5 of 14

Table 2. Most significant single-nucleotide variant (SNV) in the IS-COV GWAS for each region
consistent in all analyses (p-value < 0.05 and correlate in the same direction).

rsID Chr BP A1 A2 Trait1 Trait2 p-Value. Trait1 B.Trait1 SE.Trait1 p-value. Trait2 B.Trait2 SE.Trait2

rs10033464 4 111,720,761 T G GIGA_CES IS-COV 1.4 × 10−2 0.12 0.03 2.3 × 10−2 0.04 0.02
rs4662630 2 129,773,352 C T SiGN_LAA IS-COV 2.7 × 10−2 −0.08 0.04 1.3 × 10−3 −0.04 0.01
rs12941838 17 32,819,326 A G GIGA_LAA IS-COV 1.8 × 10−2 0.07 0.03 3.6 × 10−4 0.05 0.01
rs797989 17 33,414,758 A C MEGA_LAA IS-COV 3.8 × 10−2 0.05 0.03 1.0 × 10−2 0.03 0.01

Chr: chromosome; BP: base pair position; A1: effect allele; A2: alternative allele; p-value.Trait: the p-value of the
single-nucleotide variant in the GWAS; B.Trait: the effect calculated with the effect allele in the GWAS. SE.Trait:
standard error; GIGA: GIGASTROKE; MEGA: MEGASTROKE.

2.2. Polygenic Risk Score

For each phenotype associated with the different types of IS (AIS, CES, SVO, LAA,
UND), we found at least one statistically significant PRS (p-value < 0.05) for the IS-COV
cohort (Figure 2).

Figure 2. Best R2 bar plot for each phenotype. The p-value threshold used to select single-nucleotide
variants (SNVs) for each PRS is shown above each bar. GIGA: GIGASTROKE; MEGA: MEGASTROKE.
* PRSs that are statistically significant (p-value < 0.05).

However, only two PRSs remain statistically significant after applying the Bonferroni
correction (p-value < 0.05/13 = 3.8 × 10−3). The PRS that explains the largest proportion
of the variance (r2 = 2.1 × 10−2) is MEGASTROKE -LAA, with a p-value threshold of
6.0 × 10−3 and PRS p-value of 1.5 × 10−3, comprising a total of 4004 SNVs (Table 3).
The second significant PRS is SiGN-LAA, with a p-value threshold of 2.4 × 10−3, an r2

value of 1.8 × 10−2, a p-value for the PRS of 3.2 × 10−3, and a total of 1305 SNVs. Both
MEGASTROKE-LAA (p-value threshold = 6.0 × 10−3; r2= 3.4 × 10−3; p-value of the
PRS = 2.2 × 10−2) and SiGN-LAA (p-value threshold = 2.4 × 10−3; r2 = 4.7 × 10−3; p-value
of the PRS = 7.1 × 10−3) PRSs were also statically significant (p-value < 0.05) with PLINK
2.0 (Table 3).
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Table 3. Statistically significant PRSs.

PRSice-2 PLINK 2.0

PRS Threshold Num_SNV R2 p-Value R2 p-Value

MEGA_LAA * 6.0 × 10−3 4004 2.1 × 10−2 1.5 × 10−3 3.4 × 10−3 2.2 × 10−2

SiGN_LAA * 2.4 × 10−3 1305 1.8 × 10−2 3.2 × 10−3 4.7 × 10−3 7.1 × 10−3

GIGA_CES 4.5 × 10−4 582 1.6 × 10−2 5.0 × 10−3 1.3 × 10−3 1.6 × 10−1

SiGN_SVO * 2.4 × 10−2 9276 1.5 × 10−2 6.3 × 10−3 3.0 × 10−3 3.4 × 10−2

MEGA_SVO 8.1 × 10−3 5068 1.0 × 10−2 2.7 × 10−2 1.9 × 10−3 8.9 × 10−2

MEGA_CES 1.1 × 10−3 1089 9.9 × 10−3 2.5 × 10−2 9.7 × 10−4 2.2 × 10−1

SiGN_UND 2.7 × 10−3 1453 9.7 × 10−3 2.6 × 10−2 2.5 × 10−3 5.2 × 10−2

MEGA_AIS 5.1 × 10−2 19,869 8.3 × 10−3 4.0 × 10−2 1.9 × 10−3 9.1 × 10−2

GIGA_LAA 5.2 × 10−2 21,350 6.7 × 10−3 6.2 × 10−2 5.4 × 10−4 3.6 × 10−1

GIGA_SVO 2.5 × 10−2 12,262 6.0 × 10−3 8.2 × 10−2 2.1 × 10−3 7.4 × 10−2

GIGA_AIS 5.0 × 10−5 267 3.9 × 10−3 1.6 × 10−1 4.9 × 10−4 3.9 × 10−1

SiGN_CES 3.9 × 10−3 2067 3.5 × 10−3 1.8 × 10−1 3.1 × 10−6 9.5 × 10−1

SiGN_AIS 1.6 × 10−1 39,071 2.6 × 10−3 2.4 × 10−1 4.8 × 10−4 3.9 × 10−1

Threshold: p-value threshold used to select SNVs; R2: variance explained by the PRS; p-value: the p-value of
the PRS; SNVs: number of single-nucleotide variants included; GIGA: GIGASTROKE; MEGA: MEGASTROKE.
* p-value < 0.05 in both PRSice-2 and PLINK; in green are those significant after Bonferroni correction.

3. Discussion

The reason for a higher frequency of strokes after COVID-19 and the aetiology of
these strokes is controversial. Determining the ischaemic stroke subtype is important for
secondary prevention in order to use the most appropriate treatment for each subtype. For
example, for LAA, antiplatelet medications or statins may be prescribed to reduce the risk of
recurrence, while for CES, anticoagulants may be considered. Furthermore, understanding
the subtype of ischaemic stroke can assist in identifying risk factors that require attention
to prevent future occurrences, such as atrial fibrillation in cardioembolic strokes. Moreover,
the subtype of ischaemic stroke offers insights into the long-term prognosis and potential
associated complications. Certain subtypes, notably cardioembolic strokes, may present a
higher risk of recurrence, which can significantly impact treatment strategies and follow-up
care [29].

In our multicentre study, we used genetics to find which subtype of ischaemic stroke
is most similar to those which occurred during COVID-19 disease. Moreover, knowing the
type of aetiology will contribute to a better understanding of the mechanisms underlying
IS-COV to prevent stroke occurrence after COVID-19. There is increasing evidence that
acute bacterial and viral infections, or chronic exposure to common infections such as
influenza viruses, are risk factors for ischaemic stroke [9]. Previous genetic studies have
already associated the severity of COVID-19 with the risk of ischaemic stroke [14,30] and
the susceptibility to SARS-CoV-2 infection with LAA [13]. However, those studies were
conducted using genetic data from patients who had suffered from either COVID-19 or
ischaemic stroke but not in a specific cohort of patients who have suffered a stroke during
SARS-CoV-2 infection.

After local genetic correlations, we found three consistent regions associated with LAA
and CES (Table 1). In these three regions, we found four loci targeting the genes PITX2,
HS6ST1, TMEM132E, and RFFL (Table 2). PITX2 regulates the formation of blood vessels
and the development of heart tissues [31]. Interestingly, PITX2 and ZFHX3 are the principal
genes associated with CES [32] and atrial fibrillation [33], the most important risk factor for
CES [34]. Cardiac arrhythmias and atrial fibrillation were associated with ICU admission
in COVID-19 patients [35,36]. As our IS-COV patients seem to present a shared genetic
susceptibility to atrial fibrillation, our hypothesis is that these patients present genetic risk
factors for atrial fibrillation and CES and that this might be one of the reasons they suffer a
stroke during COVID-19.

The association between HS6ST1, TMEM132E, RFFL, and atherothrombotic stroke
is less clear. HS6ST1 may contribute to coagulation disorders and increase the risk of
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thrombotic events. The enzyme HS6ST1 catalyses the addition of a sulfate group to a
specific residue of heparan sulfate (HS) molecules. HS plays an important role in regulat-
ing numerous functions, including blood coagulation and cell differentiation. Moreover,
HS has anticoagulant activity by interacting with antithrombin (AT), which becomes ac-
tivated and inhibits blood coagulation factors Xa and thrombin (IIa) [37]. In an ex vivo
model of developing mouse neural tissue, with HS enzymatically removed by HS6ST1
deficiency, significant suppression of Fgf8 levels was observed in murine models. Fgf8 is
synthesised in the developing brain, thus suggesting its functional importance in neural
development [38]. TMEM132E is linked to the nervous system and cellular adhesion func-
tions. Mutations such as heterozygous variants c.382G > T: p.(Ala128Ser) and c.2204C > T:
p.(Pro735Leu) [39], or the homozygous nonsense mutation Arg420Gln [40] in TMEM132E,
have been found in patients with autosomal recessive nonsyndromic hearing loss [41]. The
expression of TMEM132E was detected in the spiral ganglia of the inner ear, as well as in
cranial and spinal ganglia, indicating its potential involvement in other nervous system
functions beyond hearing [41]. Genetic studies have linked TMEM132E (rs10491113) to
insomnia (rs145258459) associated with cardiometabolic diseases [42], bipolar disorder
(rs10491113) [43], and panic disorder (rs887231, rs887230, and rs4795942) [44]. An in-depth
structural and sequence analysis of TMEM132 strongly predicted a cell adhesion function
for the TMEM132 family [45], and some studies have linked the role of adhesion molecules
to ischaemic stroke. Finally, RFFL encodes for a protein that enables enzyme binding activity.
RFFL is an important regulator of voltage-dependent hERG (human ether-a-go-go-related
gene) potassium channel activity and thus cardiac repolarization [46].

Interestingly, HS6ST1 and RFFL have been associated with lung diseases, namely
idiopathic pulmonary fibrosis [47] and cystic fibrosis [48], respectively. HS6T1 has also been
linked to COVID-19 [49]. A cell study suggested that HS is a necessary host binding factor
that promotes angiotensin-converting enzyme 2 (ACE2) binding and thus SARS-CoV-2
infection in various human cell types. The SARS-CoV-2 spike protein interacts with both
cellular HS and ACE2 via its receptor-binding domain (RBD). Electron micrographs of spike
protein suggest that HS enhances the open conformation of the RBD that binds ACE2. In a
viral plaque assay, the inactivation of HS6ST1/2 reduced infection threefold in Hep3B cells.
Accordingly, focusing drug development to treat COVID-19 on degrading, mimicking, or
inhibiting HS synthesis was proposed [50].

A genetic study postulated that the genetic liability of LAA cases reported in COVID-19
patients is more likely to be intrinsic to SARS-CoV-2 infection, rather than a response asso-
ciated with disease severity [13]. In this study, a PRS generated from a COVID-19 Host Ge-
netics Initiative GWAS (36,590 COVID-19-positive cases and 1,668,938 population controls)
was significantly associated with LAA from the SiGN study and MEGASTROKE GWAS
using a Mendelian Randomization. Sets of co-expressed genes involved in COVID-19
susceptibility (ISLR2 and ACE2) were found to be significantly enriched in LAA GWAS.
These findings suggest a shared genetic background between COVID-19 susceptibility and
LAA and support the hypothesis that the increased risk for LAA in COVID-19 is more
closely related to the risk of SARS-CoV-2 infection than to the risk of suffering critical
illness after infection [13]. These results are consistent with our findings for the HS6ST1
gene, which has also been linked to COVID-19 susceptibility rather than COVID-19 severity.
However, given that some patients with LAA already had a pre-existing atherosclerotic
plaque before the SARS-CoV-2 infection, COVID-19 should be considered to often be a
trigger for stroke rather than an aetiology.

Finally, we also found two PRSs associated with LAA (Table 3, Figure 2). The PRS
MEGASTAROKE-LAA explains the highest proportion of phenotypic variation in our IS-
COV cases. These results are consistent with the local correlations we performed. Although
clinically UND is the most represented stroke subtype in IS-COV (29 cases), it is not the
phenotype most genetically correlated with IS-COV. This may be due to UND GWAS
having fewer cases and, therefore, less statistical power. Another possibility is that many
UNDs had not completed the studies to determine the aetiology behind the stroke due to
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COVID-19 severity or that most of them are LAA or CES cases that could not be identified
despite a complete clinical study.

One of the most important limitations of our study is the small sample size in the
IS-COV cohort, even though it is the first used in this topic. This is the most probable
reason for not finding any significant association with the GWAS analysis. In addition,
the small sample size did not allow us to perform a stratified analysis by COVID-19
severity to determine if there are differences between COVID-19 severity and susceptibility.
However, we do not have access to the TOAST classification and severity data for all
IS-COV cases, as well as other clinically relevant variables necessary for characterizing
the patients included in this study. Another limitation is the absence of replication for
all GWAS, genetic correlation, and PRS analysis in an independent cohort of IS-COV.
However, the results are consistent with the MEGASTROKE [26], GIGASTROKE [23], and
SiGN [22] cohorts. Furthermore, this study does not provide sufficient evidence to establish
a cause-and-effect relationship between COVID-19 and the specific aetiology of ischaemic
stroke. Nevertheless, studies with a larger sample size will be necessary to establish more
robust conclusions.

4. Materials and Methods

In this multicentre and retrospective study based on a European ancestry population,
we carried out a genome-wide association study (GWAS) on COVID-19 patients who
suffered an IS during the first eight days from the onset of COVID-19 symptoms vs.
population controls (IS-COV cohort), as well as previously published GWASs for different
phenotypes associated with IS. The data used in this study are available in the respective
articles (see below) or from the corresponding author upon reasonable request. Detailed
descriptions of the methods and cohorts can be found in the Supplementary Materials.

4.1. Cohorts’ Description

The summary statistics for AIS and four aetiology subtypes following TOAST classifica-
tion (LAA, CES, SVO, UND) were obtained using the Cerebrovascular Disease Knowledge
Portal (http://cerebrovascularportal.org; accessed on 22 September 2022). They were
obtained from three different studies: (1) MEGASTROKE GWAS (a meta-analysis with
67,162 stroke cases and 454,450 controls) [26]; (2) GIGASTROKE (a cohort comprising
110,182 stroke patients and 1,503,898 controls) [23]; and (3) NINDS Stroke Genetics Net-
work (SiGN with 16,851 cases and 32,473 controls) [21]. These three studies were used for
all the IS (AIS), LAA, CES, and SVO data, whereas UND data were only available from
the SiGN study. The number of individuals included in each GWAS used can be found in
Supplementary Table S1.

The IS-COV cohort comprised 73 COVID-19 patients who suffered an IS during the
first eight days since the onset of COVID-19 symptoms and 701 population controls. IS-
COV controls were participants > 18 years who had not suffered from stroke or COVID-19.
IS-COV cases were PCR-positive for SARS-CoV-2, aged > 18 years, and had suffered an
IS during the first eight days of the infection. Detailed clinical/epidemiological data for
the IS-COV cohort including age, sex, TOAST classification, and COVID-19 severity are
presented in Table 4.

Most of the population controls were collected between 2003 and 2020 as a part of
The CONtrol ICtus (CONIC) [51], Investigating Silent Stroke in hYpertensives: A magnetic
resonance imaging Study (ISSYS) [52], and the Genotyping Recurrence Risk of Stroke
(GRECOS) [53] study. In addition, IS-COV cases and additional population controls were
collected between 2020 and 2021 in the Variability in immune response genes and prediction
of severe SARS-CoV-2 infection (INMUNGEN-Cov2) project [54], UK Biobank [55], and
the following cohorts belonging to the COVID-19 host genetics initiative [54]: Determining
the Molecular Pathways and Genetic Predisposition of the COVID-19 Cohort Study of the
University Medical Center of the Technical University Munich (COMRI) [56], Host genetics
and immune response in SARS-CoV-2 infection/ Genetic modifiers for COVID-19 related

http://cerebrovascularportal.org
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illness (BelCovid), and Determining the Molecular Pathways and Genetic Predisposition
of the Acute Inflammatory Process Caused by SARS-CoV-2 (SPGRX; see Supplementary
Table S2).

Table 4. Descriptive table for the patients included in this study.

Cases (N = 73) Controls (N = 701) Overall (N = 774)
Age

Mean (SD) 70.6 (13.0) 65.6 (9.34) 66.1 (9.84)
Median [Min, Max] 73.0 [36.0, 90.0] 67.0 [23.0, 90.0] 67.0 [23.0, 90.0]

Sex
Female 24 (32.9%) 352 (50.2%) 376 (48.6%)
Male 49 (67.1%) 349 (49.8%) 398 (51.4%)

Cases (N = 73)
Severity of COVID-19

Hospitalized ICU 34 (46.6%)
Hospitalized not ICU 13 (17.8%)

Not hospitalized 14 (19.2%)
Missing 12 (16.4%)
TOAST

CES 13 (17.8%)
INF 4 (5.5%)
LAA 10 (13.7%)
SVO 5 (6.8%)
UND 29 (39.7%)

Missing 12 (16.4%)

ICU: intensive care unit; CES: cardioembolic stroke; INF: infrequent aetiology; LAA: large artery atherosclerosis;
SVO: small vessel occlusion; UND: undetermined aetiology.

4.2. Genotyping

DNA samples were obtained from whole blood using standard methods. Genotyping
was performed using different genotyping arrays (Table 5).

Table 5. Participants from each cohort were included in this study, and different genotyping arrays
were used.

Project Array Controls Cases

CONIC Illumina® Human
Core Exome chip

189

ISSYS Illumina® Human
Core Exome chip

274

GRECOS Illumina® Human
Core Exome chip

189

INMUNGEN-CoV2 Axiom Spain Biobank
Array 49 45

UK Biobank Applied Biosystems UK BiLEVE Axiom and
Applied Biosystems UK Biobank Axiom Array 12

BelCovid Illumina’s Human OmniExpress BeadChips 12
SPGRX Infinium Global Screening Array-24 2
COMRI Infinium Global Screening Array-24 v3.0 Kit 2

4.3. Genotyped Data Quality Controls

Briefly, single-nucleotide variants (SNVs) that were missing in a large proportion of the
subjects, non-autosomal, non-biallelic, strand ambiguous, monomorphic, or deviated from
the Hardy–Weinberg equilibrium were deleted. Individuals with high rates of genotype
missingness, sex discrepancy or unknown sex, family members or duplicated samples,
non-European individuals, and patients with outlier heterozygosity rates were removed.
Imputation was performed in the Michigan Imputation Server Pipeline [57] using the Mini-
mac4 and HRC r1.1 2016 panel. After imputation, SNVs with an imputation score < 0.6 or
minor allele frequency (MAF) < 0.01 were removed. For detailed quality controls, see the
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description in the Supplementary Materials. The number of patients that passed quality
controls were 73 cases and 701 controls.

4.4. Genome-Wide Association Analysis

We performed a logistic-regression-based association analysis on the IS-COV cohort
(73 cases and 701 controls) using fastGWA from GCTA [58] (Supplementary Figure S1). Age,
sex, and the five principal components were used as covariates. The principal components
were obtained from the imputed dosage using the gdsfmt v1.26 library. We included
only independent SNVs with a genotyping rate of 0% and MAF > 10%. All SNVs with a
p-value < 5 × 10−8 were considered genome-wide statistically significant.

4.5. Local Genetic Covariance Estimation

SUPERGNOVA (SUPER GeNetic cOVariance Analyzer) [59] is a statistical framework
designed to assess the genetic correlation between two complex traits within specific regions
of the genome. It utilizes summary data from the GWAS for each trait, along with the
1000 Genomes Project [25] as a reference panel, to segment the genome into independent
regions by the linkage disequilibrium [36]. In our analysis, we employed GWAS data from
three distinct studies (MEGASTROKE [26], GIGASTROKE [23], and SiGN [21]) to explore
local genetic correlation between five phenotypes associated with the different types of IS
(AIS, CES, SVO, LAA, UND) and the IS-COV phenotype.

The regions with a p-value < 0.05 and whose correlation goes in the same direction,
and which were significant for the three data sources analysed (MEGASTROKE, GIGAS-
TROKE, and SiGN), were considered consistent. For each locus of consistent regions, the
most significant SNV in the IS-COV GWAS shared in MEGASTROKE, GIGASTROKE,
or SIGN was selected using LDlink [24]. All SNVs were annotated to a gene using the
Variant-to-Gene (V2G) score, which integrates experimental data from molecular pheno-
type quantitative trait loci, chromatin interaction, in silico functional predictions, and the
distance between the variant and each gene’s canonical transcription start site [28]. In
addition, we graphically evaluated the regions using LocusZoom [27].

4.6. Polygenic Risk Score

We utilized summary statistics for AIS, CES, SVO, LAA, and UND from MEGAS-
TROKE [26], GIGASTROKE [23], and SiGN [21] to generate polygenic risk scores (PRSs)
using the PRSice-2 [60] software and PLINK 2.0 package (https://choishingwan.github.
io/PRS-Tutorial/ accessed on 18 September 2022 and 1 July 2023). PRSice-2 combines
the effects of independent genetic variants identified in the GWAS and tests them in an
independent cohort, in this case, the IS-COV cohort. Our aim was to determine if these
single-nucleotide variants (SNVs) could significantly (p-value < 0.05) account for the genetic
component of IS-COV.

For each GWAS summary statistic PRSice-2 generated multiple PRSs using different
p-value thresholds of the GWAS, all adjusted for age, sex, and six principal components.
These PRSs were then evaluated within the IS-COV cohort, and the optimal score threshold
was selected based on the highest explained variance by the PRS (PRS r2). Each optimal
score threshold was re-evaluated using PLINK 2.0.

5. Conclusions

Our results suggest that IS-COV cases do not resemble just one subtype of ischaemic
stroke. We found that IS events due to COVID-19 genetically resemble CES and LAA
subtypes. It is therefore probable that the genetic factors involved in IS-COV cases are
common to genetic factors for IS in the general population. Nevertheless, the correlations
we observed between LAA and IS-COV could also be intrinsic to viral infection. However,
further studies with larger cohorts are needed to replicate the results, establish causality
between COVID-19 and a specific subtype of ischaemic stroke, and extrapolate the results
to the population.

https://choishingwan.github.io/PRS-Tutorial/
https://choishingwan.github.io/PRS-Tutorial/
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