
Citation: Thomik, M.; Faber, F.;

Gruber, S.; Foerst, P.; Tsotsas, E.;

Vorhauer-Huget, N. A

Non-Isothermal Pore Network

Model of Primary Freeze Drying.

Pharmaceutics 2023, 15, 2131.

https://doi.org/10.3390/

pharmaceutics15082131

Academic Editor: Antonello

A. Barresi

Received: 30 June 2023

Revised: 28 July 2023

Accepted: 2 August 2023

Published: 14 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

A Non-Isothermal Pore Network Model of Primary
Freeze Drying
Maximilian Thomik 1,*, Felix Faber 1, Sebastian Gruber 2 , Petra Foerst 2 , Evangelos Tsotsas 1

and Nicole Vorhauer-Huget 1

1 Thermal Process Engineering, Institute of Process Engineering, Otto-von-Guericke University Magdeburg,
Universitaetsplatz 2, 39106 Magdeburg, Germany; felix.faber@ovgu.de (F.F.);
nicole.vorhauer-huget@ovgu.de (N.V.-H.)

2 Food Process Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner
Berg 1, 85354 Freising, Germany

* Correspondence: maximilian.thomik@ovgu.de

Abstract: In this work, a non-isothermal pore network (PN) model with quasi-steady vapor transport
and transient heat transfer is presented for the first time for the application of primary freeze drying.
The pore-scale resolved model is physically based and allows for the investigation of correlations
between spatially distributed structure and transport conditions. The studied examples were regular
PN lattices with a significantly different structure, namely a spatially homogeneous PN, also denoted
as monomodal PN, and a PN with significant structure variation, referred to as bimodal PN because of
its bimodal pore size distribution. The material properties selected for the solid skeleton in this study
are equivalent to those of maltodextrin. The temperature ranges applied here were −28 ◦C to −18 ◦C
in the PN and −42 ◦C in the surrounding environment. The environmental vapor pressure was 10 Pa.
The PNs were dried with constant temperature boundary conditions, and heat was transferred at the
top side by the vapor leaving the PN. It is shown how the structural peculiarities affect the local heat
and mass transfer conditions and result in a significant widening of the sublimation front in the case
of the bimodal PN. The possibility of spatially and temporally resolved front structures is a unique
feature of the PN model and allows the study of situations that are not yet described by classical
continuum approaches, namely heterogeneous frozen porous materials. As demonstrated by the thin
layers studied here, the pore-scale simulations are of particular interest for such situations, such as in
lyomicroscopes or collagen scaffolds, where a length-scale separation between dry and ice-saturated
regions is not possible.

Keywords: primary freeze drying; pore-scale resolved simulation; coupled heat and mass transfer; 3D
domain; regular square lattice; sublimation front position; time- and space-dependent temperature;
pressure and flow rates

1. Introduction

Freeze drying or lyophilization is an essential process for the preservation of pharma-
ceutical and biological products. It is carried out at temperatures and pressures well below
the triple point of water.

Typical mathematical models of freeze drying have been developed for different scales:
single particles, aggregates and biological products such as fruits and frozen suspensions
in vials or syringes on the small scale, as well as particle beds or complete drying chambers
on the large scale. While, on the small scale, the impact of freeze drying conditions on
the drying time, temperature of the material and pressure are most often of interest, the
large-scale approaches focus on the impact of the spatially and temporally varying process
conditions. The latter usually require complex three-dimensional (3D) models that are
often implemented in COMSOL [1], while in the first case, in most situations, 1D models
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are sufficient due to the anticipation of product homogeneity [2]. In such models, effective
parameters are used and no spatial variation in the pore structure is considered.

In the literature, a wide range of model assumptions can be found, which differ
not only in terms of postulated steady-state or transient conditions, but also in terms
of the incorporated physical phenomena. The accuracy of the proposed models surely
increases with higher complexity, provided that the used parameters are reliably deter-
mined, e.g., by experiments. However, the computational efficiency usually suffers from
the number of physical mechanisms that are included or increasing size and dimension
of the computational domain. Secondly, the accurate prediction of model parameters is
challenging in most cases. This can be disadvantageous, especially in cases of model
predictive control, e.g., [3]. The choice of the model is therefore most often a compromise
between accuracy and computation time.

Here, we want to provide a brief literature overview in which we focus on the models
that have been proposed for the primary freeze drying of frozen bulk solutions, such as
suspensions that are frozen as blocks inside vials and syringes. The focus is thereby on the
studies of single vials (sample scale), without excluding the work of, e.g., [4], where the
outcomes from simulations of single vials are extrapolated to the drying chamber scale.
Secondary drying (occurring before primary drying is finished, i.e., taking place in parallel)
is often neglected in these models.

Primary freeze drying is generally constrained by the process conditions, namely
pressure and temperature, which dictate the limits of product integrity and therefore
restrict drying time and energy efficiency [5,6]. Temperature, pressure and drying time are
thus the essential parameters that are usually predicted, e.g., for process control, e.g., [3].
The most critical parameter is thereby clearly the product temperature, which needs to be
low enough to avoid material denaturation, melting or product collapse throughout the
vial and during the whole drying process [6]. It depends on the temperature of the shelf
and the pressure of the chamber, which both also control the drying rate.

In the 2D dusty gas model presented in [7], transient heat transfer and coupled mass
transfer are solved. In this, the dried region is considered as a porous medium with constant
porosity; thermal conductivity, density and heat capacity are averaged for the mixture of
solid and empty pores. In the frozen region, these parameters are averaged for water ice
and solids. Here, only the top surface is assumed permeable for vapor transfer, whereas all
other sides are impermeable. Mass transfer is in most cases computed either as a diffusion
problem or as viscous flow, the latter often in presence of an inert gas. For example, [7,8]
proposed to use the Darcy equation with the permeability of the porous dried region for
vapor transfer simulation.

The heat transfer equations, including the transient situation of the warming-up or
cooling-down of the material (i.e., the sensible heat), are set up and solved for both dried
and frozen regions. In most cases, a moving boundary condition (Stefan problem [4,7]) is
postulated based on the temporal variation in the sublimation interface, where thermo-
dynamic equilibrium between ice and vapor phase is assumed. The equilibrium vapor
pressure is mostly calculated with the Clausius–Clapeyron equation or with the equation
from Goff and Gratch (1951) [9]. The heat supply is usually realized by conduction through
the vial bottom, while at the top, surface heat transfer by radiation from the environment
can be assumed, e.g., [10]. Several proposals have been made for the heat exchange with
the environment along the side walls, which include radiation and conduction, e.g., [3].
Heat transfer inside the frozen region is based on conduction through the ice–solid mixture;
in the dried region, heat transfer through the interconnected solid walls as well as heat
convection are assumed [11]. At very low chamber pressure (below 10 Pa and in the absence
of inert gases), the problem is simplified and heat convection is disregarded, e.g., [1].

The assumption of homogeneous domains that are assigned with effective, i.e., av-
eraged properties, usually form the basis for further simplification of the problem to 1D,
i.e., along the vertical height of the blocks [11]. This is surely accurate enough, when it can
be expected that the sublimation of ice results in the formation of a flat (infinitesimally thin)
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phase boundary at the top side of the frozen block which moves downwards during the
drying process. In other cases, i.e., when either structural heterogeneity or heat transfer in
the lateral direction cannot be disregarded, the sublimation front can be convex (curved
downwards along the side walls of the vial) [2], or concave [12].

Even if the dimension of the domain is reduced to the space coordinate in the vertical
direction, the computational effort is still high, making this approach uncomfortable for
online process control [3]. As a consequence, less-complicated model approaches with
simplified assumptions for both heat and mass transfer were developed [4]. Often in these
models, a fitting function for the mass transfer, depending on a priori conducted exper-
iments, is used [3,4,13]. Assuming quasi-stationary heat transfer, the partial differential
equation (from the transient case with a first order derivative over time and second order
derivative over space) is transferred into an ordinary differential equation. This reduces
the computational effort significantly without altering the simulation results too much.
Alternatively, the analytical solution of the transient heat transfer problem is used [4]. It
was shown in the same study that the simulation results fit well with the experimental
results. The overall agreement with other studies, e.g., [14], is good. The simplified model
proposed in [3] is furthermore used with the model-based determination of mass and heat
transfer coefficients with the purpose of determining the limits of primary freeze drying in
terms of maximum temperature and chamber pressure [6]. The in silico determination of
model parameters is an alternative option to experimental measurements, which are often
elaborate, time consuming and less accurate [6]. As an important feature, these coefficients
can be randomly distributed for the simulations, thus allowing us to predict a wide range
of drying behavior in single vials under different conditions, as it can be expected for the
vials on the shelf in a drying chamber [13].

This brief literature overview shows that the mathematical models that describe
primary freeze drying of frozen bulk solutions consider the vial contents as a continuum
with averaged effective parameters, such as effective porosity, thermal conductivity, heat
capacity and transport coefficients. As an example, heat transfer coefficients can incorporate
several different effects, including heat transfer by conduction through the solid and ice
phase, heat transferred by vapor or heat exchange with the vial and the surroundings.
The available approaches are intended to predict the global variation of, e.g., drying time
in dependence of the process conditions, i.e., temperature and pressure, which can vary
along the position of the vials on the shelf. Thus, they provide data about the inter-vial
heterogeneity of freeze drying, which is important for process and apparatus design and
process control. However, these models are not suitable for the investigation of intra-vial
heterogeneity which is linked to the local, and sometimes even temporal, variation in
material properties. The authors of [15] studied the permeability of the pore structure in
dependence of cooling rate based on Darcy’s flow equation. They found that smaller pores
and thus smaller permeabilities of the vapor phase are obtained at higher cooling rates,
where the nucleation temperature is smaller. A similar finding was recently reported in [16]
where higher nucleation temperatures were associated with larger ice crystals. This shows
the need for the development of models for heterogeneous and composite materials [17].

To the best of our knowledge, this is the first time that a non-isothermal pore network
model (PNM) is presented for the mathematical modeling of primary freeze drying. In
contrast to the averaging approaches, the PNM resolves the structure of the material on
the pore scale. It can therefore consider local effects, such as the variation in pore sizes,
which have a direct impact on the local heat and mass transfer conditions. PNMs thus serve
for the study of structure–transport correlations, which is already widely established for
conventional drying methods [18]. There, the capillarity of porous media yields strongly
structured drying fronts which again affect the drying kinetics. Although capillary transport
does not play a role in freeze drying, the heat and mass transfer conditions can alter the
sublimation front structure. The use of PNMs can thus be useful to understand and predict
the drying kinetics of heterogeneous materials, such as graded or foamed structures, or
to study freeze drying at the limits of material collapse. In cases where a length-scale
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separation is not possible, e.g., in thin porous layers, the use of PNMs may even be
mandatory [19].

With the proposed simulation tool, freeze drying can be studied on a physical base.
Temperature, pressure and ice content are locally resolved. Besides this, it yields effective
parameters as a function of ice content, which could be used for the improved parame-
terization of the above-described approaches [13]. In particular, the local heat and mass
transfer coefficients of heterogeneous porous media could be adjusted based on PNM
studies. Only a few parameters are involved that need to be a priori defined, and these
parameters concern the boundary conditions of heat and mass transfer as well as the mate-
rial’s morphology. The PNM can be realized with regular lattices, e.g., as proposed in [20],
or reconstructed porous domains can be implemented, e.g., [21]. The size of the domain
and the incorporated physical mechanisms thereby dictate the computational effort.

One major advantage of PNM is its ability to study the impact of structure on heat and
mass transfer conditions independently of each other. This makes fundamental physical
mechanisms much more accessible.

The approach described here can be used to study structure–transport relationships
that can be helpful to optimize freeze drying in terms of drying time and energy consump-
tion [5,13]. More clearly, it can be studied if heat and/or mass transfer can be improved by
a change in geometry, e.g., height or width, as well as by an increase in pore sizes and/or
porosity, which might be adjusted according to the freezing conditions or the composition
of the mixture.

2. Materials and Methods

The non-isothermal PNM of primary freeze drying is a further development of the
model in [22]. In contrast to the previous model, the computation of mass transfer is only
considered for the vapor phase and in the transition regime between molecular (Knudsen)
diffusion and viscous flow. The water is contained inside the void space in the frozen
state, for which capillary liquid pumping is not computed. Transient heat transfer based
on conduction through the solid and ice phases is solved using the Krischer Model [23].
In addition to that, heat transfer by vapor flow through empty pores, i.e., advection, is
implemented in the new model.

2.1. Pore Network Model

The simulations are conducted using regular 3D square lattices. The network is
realized as a bond network, which means that the void space is completely assigned to
cylindrical pores that are connected by computational nodes without volume (Figure 1).
While the structural and physical properties, such as length, width, cross-section and mass
transfer resistance are allocated to the pores, the computational nodes are used to solve the
enthalpy and mass balances and to store the pressure data (mass balances) as well as the
temperature data (enthalpy balances).

As shown in Figure 1, each computational node is surrounded by a control volume
(CV). It is cubic in the case of the regular PN studied here. The edge length is constant and
identical with the pore length, i.e., LCV = Lij, the volume is VCV = LCV

3 and the contact
area between two neighboring CVs is ACV = LCV

2 in this case. The ice phase is equally
distributed in partially saturated pores.

The CVs are assigned with thermo-physical properties (thermal conductivity and heat
capacity) as well as volume, porosity and density. Thermal conductivity, heat capacity
and density depend on local saturation as well as porosity, and are updated during the
simulation.
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i-n, contain no volume.

An overview of the geometric parameters of the PNs considered in this work is
provided in Table 1. The pore sizes are normally distributed (Figure 2) based on structural
analysis carried out in [21,24]. In addition to a PN with monomodal pore size distribution
(PSD), representing a homogeneous material, we consider the case of local variation in the
PSD here. The second PN is therefore realized with a bimodal PSD. It has larger pores
in the center and smaller pores along the sides. The ratio of small to large pores is 2.59.
This means that the PN contains a much higher number of smaller pores. This mimics
the situation of structural heterogeneity that could be expected from the freezing step [25].
Here, we assume that the lateral sides could be frozen faster with the result of smaller ice
crystals than in the center, where we suppose larger ice crystals and pores exist.

Table 1. Geometric properties of the PNs used in this study.

Parameter Monomodal Bimodal

Pore number [−] 1100 1100
Computational nodes [−] 375 375
Size of the domain [µm] 50 × 50 × 150 50 × 50 × 150

Total initial ice volume [µm3] 21.70 × 104 6.53 × 104

Porosity [−] 0.58 0.17
Pore diameter [µm] 5 ± 0.2 5 ± 0.2/1 ± 0.2

Pore length [µm] 10 10
Length of CVs [µm] 10 10

Cross sectional area of PN [µm2] 2.5 × 103 2.5 × 103

Volume of a CV [µm3] 1 × 103 1 × 103

Note that, in the bimodal PN, different CVs occur: (i) CVs in the very center which
contain only pores with larger diameters, (ii) CVs at the very periphery which contain only
pores with small diameters and (iii) CVs at the boundary of both regions which contain a
mixture of larger and smaller pores.

The PNs are shown in Figure 3. The image in Figure 3a represents the PN with
monomodal PSD, while in Figure 3b, the PN with bimodal PSD is shown. The color code
of the pores refers to their diameter. Brighter colors represent larger pores.
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2.2. Model Assumptions and Parameter Settings

The PNM was developed for the simulation of primary freeze drying. The desorption
of bound water, which is usually associated with secondary freeze drying, was not consid-
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ered. The structural properties of the PN were kept constant, i.e., the void space and solid
bridges were not altered, e.g., as a consequence of material shrinkage or collapse.

The void space of the PN is initially completely saturated with frozen water. Sublima-
tion is then initiated at the top side of the PN. The bottom side is made impermeable for
mass transfer and periodic boundary conditions are applied at the sides. Heat is supplied
by contact of the PNs to a virtual heating shelf at the bottom side, following the set-up
in [26]. A constant temperature boundary condition is applied at this side. Radiative heat
transfer is neglected in the simulations. The top side of the PN is virtually connected to the
bulk of the freeze drying chamber, which is assigned with constant temperature (T∞) and
pressure (P∞) (Figure 4). The process parameters are summarized in Table 2.
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Table 2. Overview of process parameters. The chamber temperature was calculated from Equation
(18) for P∞.

Parameter Symbol Value Unit

Boundary
conditions

Chamber pressure P∞ 10 Pa
Chamber

temperature T∞(P∞) −42 ◦C

Bottom temperature TBot −18 ◦C

Initial
conditions

Temperature in PN TPN −28 ◦C
Pressure in PN PPN 10 Pa
Ice saturation S 1 -

Table 3 summarizes the material properties. In this study, the solid is represented by
maltodextrin with the material properties given in Table 3. As can be seen, the physical
properties are assumed to be constant, i.e., independent of temperature and pressure.
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Table 3. Overview of material parameters as mean values for the given temperature ranges. Heat
capacity of maltodextrin was measured with differential scanning calorimetry (Setaram DSC 92).
Density of maltodextrin was measured with helium pycnometry (Micromeritics AccuPyc 1330).

Parameter Symbol Value Unit

Ice density ρice(−15 to −30 ◦C) 919 [27] kg/m3

Solid density ρs(20 ◦C) 1565 kg/m3

Thermal conductivity of ice λice(−15 to −30 ◦C) 2.42 [28] W/m/K
Thermal conductivity of

solid λs(0 ◦C) 0.5 [29] W/m/K

Heat capacity of ice cp,ice(−10 to−40 ◦C) 1930 [30] J/kg/K
Heat capacity of solid cp,s(0 to −30 ◦C) 1250 J/kg/K
Heat capacity of vapor cp,v(−10 to −40 ◦C) 1617 [30] J/kg/K

Molecular weight of vapor M̃v 18.02 kg/kmol
Viscosity of vapor η (T) 18.4558·10−7

(
T1.5

(T+650)

)
[30] Pa·s

Sublimation enthalpy of ice ∆hsub(−15 to−35
◦C) 2838 [31] kJ/kg

2.3. Determination of the Properties of the Control Volumes

The geometry of the control volumes (CVs) is schematically illustrated in Figure 1. De-
pending on the local variation in the pore sizes, different values of porosity εCV (Figure 2b),

εCV =

io
∑
ij

Vij/2

LCV
3 (1)

effective density ρCV ,
ρCV = SCV ·εCV ·ρice + (1 − εCV)·ρs, (2)

effective heat capacity,

cp ,CV = SCV ·εCV ·cp ,ice + (1 − εCV)·cp ,s, (3)

as well as effective thermal conductivity,

λCV =
1

a
λser,CV

+ 1−a
λpar,CV

, (4)

are computed. In Equation (4), the thermal conductivity in series is given by

λser,CV =
1

SCV
εCV
λice

+ 1−εCV
λs

, (5)

and the thermal conductivity in parallel is given by

λpar,CV = SCV ·εCV ·λice + (1 − εCV)·λs. (6)

The final equation is different to previous works [22], where the orientation of pores
was not considered. The factor a is assumed as a = 0.5 in this study. The saturation of the
CVs is calculated from the sum of the ice volume divided by the overall void space of pores
contained inside it:

SCV =
Vice,CV

Vvoid,CV
. (7)

Additionally, the saturation of single pores is calculated analogously.
The effective parameters thus depend both, on the porosity εCV as well as on the

saturation SCV of CVs with water ice.
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2.4. Mass Transfer

The transfer of water vapor is computed based on the pressure gradients between
computational nodes i and j that have at least one empty pore neighbor ij assuming quasi-
steady conditions. The mass transfer resistance is thereby determined by the properties of
the empty pores surrounding the nodes:

.
Mv,ij = gij·

(
Pi − Pj

)
, (8)

with gij =
Aij ·M̃v

R̃·Tij ·Lij
·Kij and temperature Tij =

Ti+Tj
2 computed as the arithmetic mean value

of the temperatures stored in the adjacent computational nodes, Ti and Tj. The length Lij is
the length of the pore, which can be either empty or partially saturated. Thus, the distance
between the ice interface and the surface of the pore is not tracked in the current version of
the model. Cylindrical cross sections,

Aij = πrij
2, (9)

are assumed.
In Equation (8), Kij is computed from the correlation [32],

Kij =
d2

ij·Pij

32·ηv

(
1 + 8.88·Knij + 4.96·Knij

2
)

, (10)

with Pij =
Pi+Pj

2 and Knudsen number

Knij =
Λij

dij
. (11)

In Equation (10), Kij·ηv/Pij denotes the permeability of the dry cake [32] and in
Equation (11), the mean free path of the vapor in empty pores is computed under usage of
the ideal gas constant R̃ = 8.3145 J/mol/K from

Λij =
ηv

Pij

√
π·R̃·Tij

2·M̃v
, (12)

with the arithmetic mean values again used for temperature and pressure.
Applying the law of conservation of mass to each computational node,

n

∑
i=1

.
Mv,ij = 0, (13)

the pressure is available from the set of linear equations, with the number of equations
identical to the number of computational nodes,

Av·Pi = bv, (14)

with the matrix of conductances,

Av =



...
...

· · · ∑ gij · · · −gik · · ·
...

...
· · · −gik · · · ∑ gki · · ·

...
...


, (15)
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and the vector of boundary conditions,

bv = ∑ gij·Pi. (16)

Equation (14) is solved numerically in MATLAB (R2022a) using the following bound-
ary conditions. At the top side, a constant pressure P∞ is applied, which represents the
pressure in the environment of the freeze drying PN. The connection between the surface
pores with pressure Pi to virtual nodes with P∞ (Figure 4) is implemented with a constant
mass transfer coefficient g∞:

.
Mv,i∞ = g∞·(Pi − P∞). (17)

The value of g∞ = const. is assumed as g∞ = 1·10−12 m·s = const. for both PNs in
this study. This value was chosen based on preliminary studies of both networks with the
condition to not impede the mass transfer at the top side of the PN.

At the sublimation front, thermodynamic equilibrium is assumed and the pressure is
calculated based on [9]:

log10(Peq) = −9.09718
(

T∗

T
− 1
)
− 3.56654· log10

(
T∗

T

)
+ 0.876793

(
1 − T

T∗

)
+ log10(P∗). (18)

In this, T* = 273.16 K and P* = 6.1071 hPa are the temperature and pressure at the triple
point of water, respectively. The temperature T is the regarding equilibrium temperature at
the sublimation front. This links the mass transfer to the heat transfer problem.

2.5. Sublimation Rate

The local phase change or sublimation rate of each ice-filled pore along the gas–solid
phase boundary is computed from the mass balances of the computational nodes that
are located at the endings of sublimating pores. Because each pore lays between exactly
two nodes, it is possible (especially for horizontal pores), but not necessarily a given, that
sublimation occurs concurrently at both endings.

.
Msub,ij =

Ai

∑
i

Asub,i
∑

i

.
Mv,i +

Aj

∑
j

Asub,j
∑

j

.
Mv,j. (19)

Here, only positive vapor flow rates are regarded to accumulate the sublimation rate.
Any negative flow rates that might occur due to the flow of vapor from a warmer towards
a colder pore are disregarded and thus the condensation of vapor is not computed in this
study.

The sublimation rate of single pores determines the amount of heat consumed inside
the CV to which this pore belongs to:

.
Hsub,CV = ∑

ij

.
Msub,ij

2
·∆hsub. (20)

Equation (20) couples the mass transfer balance with the enthalpy balance. The
ice phase is equally distributed in partially saturated pores. Thus, in a regular PN, the
subliming pore contributes to the energy balance of both adjacent CVs, and the sublimation
rate is therefore multiplied by a factor of 1/2 in Equation (20).

2.6. Transient Heat Transfer

The transient heat transfer problem is solved for the temperature field associated
with the computational nodes and the according CVs with their distributed properties, as
already discussed above. Local thermodynamic equilibrium is assumed in each CV, with
TCV = Ti = const.



Pharmaceutics 2023, 15, 2131 11 of 25

The transient energy balance of each CV reads as

VCV
(
ρ·cp

)
CV

dTi
dt

= −
n

∑
i=1

ACV ·λCV ·
Ti − Tj

LCV
− cp,v·

.
Mij·

(
Ti − Tj

)
− ∆hsub·

n

∑
i=1

.
Msub,ij

2
. (21)

The term on the LHS denotes the change of enthalpy inside the CV that further results
in the change in its temperature. The first term on the RHS denotes heat conduction
based on Fourier’s law, the second term the heat transferred by the flow of vapor (thermal
convection) and the third term the heat consumed by the sublimation of ice. The numerical
solution is computed by using the implicit Euler scheme [33].

The resulting set of linear equations is solved applying the above given boundary and
initial conditions analog to the mass transfer problem in Equation (14). The surface pores
at the top side of the PN are treated similarly as in Equation (21). The connection to the
environment is given by the following condition:

.
Qi∞ =

.
Mi∞·

(
∆hs + cp ,v·Ti

)
. (22)

As the bottom CVs are in direct contact with the heating plate with constant tempera-
ture, it is realized in the same way, but anticipating solely heat conduction to the boundary
pores:

.
Qi,bot = ACV ·λCV ·

Tbot − Ti
1/2·LCV

. (23)

2.7. Coupling of Heat and Mass Transfer

The coupling of heat and mass transfer plays a critical role in the drying algorithm. The
heat is consumed for the increase in temperature of the CVs (heating up) as well as for the
sublimation of ice along the phase boundary (local cooling). The coupling is considered in
the heat and mass balances. A flow chart of the algorithm is provided in Figure 5. As can be
seen, the saturation vapor pressure, the mass transfer conditions and the thermo-physical
properties are constantly updated depending on the computed temperature and pressure
changes.
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Figure 5. Flow chart of the primary freeze drying simulation.

It is important to note that the time-constants of the kinetics of heat transfer are very
different compared to the mass transfer kinetics in the regarded situation of primary freeze
drying. The update of the temperature field can therefore not be coupled to the emptying
of a pore, but needs to be realized more frequently. For the stability of the transient heat
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transfer equations it is necessary to consider the minimum time step ∆t = min(∆tm, ∆th),
calculated from the following equations:

∆th =
Vcv·

(
ρ·cp

)
cv·Lcv

∑ λcv·Acv
(24)

and

∆tm =
Vice,ij·ρice,ij

∑
.

Msub,ij
(25)

All symbols and indices used in this study are summarized in Table 4 below.

Table 4. Symbols and indices used in this study.

Symbol Name Unit Index Name

a Krischer fitting factor - Bot Bottom
A Area m2 bi Bimodal
b Vector of boundary conditions - CV Control volume
cp Heat Capacity J/K Da Darcy
d Diameter m eff Effective
ε Porosity - eq Equilibrium
g Vapor conductivity m·s front Front
.

H Enthalpy flow J/s h Heat
∆h Enthalpie J/kg HTL Heat transfer limited
K Mass transfer coefficient m/s2 i,j,m,n,k Computational nodes

Kn Knudsen Number - ∞ Infinity
L Length m ice Ice
λ Thermal conductivity W/m·K m Mass
M̃ Molecular weight mol/kg mono Monomodal
.

M Mass flow kg/s MTL Mass transfer limited
η Viscosity Pa·s PN Pore Network
P Pressure Pa par Parallel
.

Q Heat flow J/s s Solid
r Radius m sub Sublimation
R̃ Gas constant J/kg·K ser Series
ρ Density kg/m3 * Saturated
S Saturation - trans Transition
t Time s v Vapor
T Temperature ◦C/K void Void
V Volume m3

z Length m

3. Results
3.1. Pore Network Saturation

Freeze drying of the two investigated PNs is shown in Figures 6–8. Unsurprisingly,
the front of the monomodal PN is rather flat and spans only one pore layer of 10 µm
width (Figures 6 and 9a), which is an inherent characteristic resulting from the simplifying
assumptions of the PNM. The small variation in pore sizes, as illustrated in Figure 2 above,
is therefore obviously not large enough to structure the sublimation front significantly.
The front width would become even smaller if the sublimation interface would be tracked
within the pores. This finding supports the assumption of flat sublimation fronts usually
postulated in the freeze drying literature [34].

In distinct contrast to that, the bimodal PN shows a significant widening of the
sublimation front in Figures 7 and 8. It reaches a maximum width of 30 µm, i.e., three pore
layers when the most advanced point (MAP) of the sublimation front reaches the bottom
side of the PNM (Figure 9b).
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The widening occurs in two different periods. At the start of sublimation, the smaller
surface pores dry out faster than the larger ones inside the surface pore row. This is
explained by the significantly smaller ice content of the small pores and almost identical
sublimation rates resulting from the neglection of the exact front position inside the pores.
This is illustrated in Figure 7. The initial widening disappears after emptying of the top
row because of the high vapor diffusion resistances inside the empty small pores that slows
down the sublimation along the sides of the PNM after the first layer has dried.

After drying of the surface, the pores in the center dry faster because of the overall
larger cross sections and accordingly lower mass transfer resistances. Additionally, the
thermal conductivity is generally higher in the center region with larger pores. The faster
drying of the large pores in the center results in the advancing of the sublimation front,
whereas the slower drying of the smaller peripheral pores results in temporal front pinning.
This finding is supported by experimental studies, e.g., [35], and it will be further studied
in more detail in the following sections.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 13 of 25 
 

   
S = 0.85 S = 0.7 S = 0.55 

   
S = 0.4 S = 0.25 S = 0.1 

Figure 6. Visualization of the receding front in the monomodal PN. The colored pores follow the 
color code from Figure 3. The orange pores depict partially saturated pores at the sublimation front. 
The empty pores are not shown. 

   
(a) (b) (c) 

Figure 7. Visualization of the surface drying of the bimodal PN: (a) S = 0.97, (b) 0.94, (c) 0.85. The 
small surface pores are already dry in (a) and therefore not shown in this image. The large pores in 
the center dry slower. The front remains pinned inside the peripheral small pores (a–c) until an 
intermediate planar front is achieved in (c). 
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color code from Figure 3. The orange pores depict partially saturated pores at the sublimation front.
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3.2. Temperature and Pressure Variation
3.2.1. Spatially and Temporally Resolved Temperature Variation

The heat transfer rates at the start of drying are 5.14 mW (S = 0.996) in the monomodal
PN and 2.95 mW (S = 0.965) in the bimodal PN. These values are in good agreement
with the values that can be computed from the effective heat transfer coefficients,
i.e.,

.
Qe f f = APN·λeff·(Tbot − T∞)/LPN with λeff = 1.1731 W/m/K (monomodal) and
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λeff = 0.6844 W/m/K (bimodal) from Equations (4)–(6) and S = 1 (
.

Qe f f ,mono = 5.02 mW;
.

Qe f f ,bi = 2.93 mW).
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Figure 7. Visualization of the surface drying of the bimodal PN: (a) S = 0.97, (b) 0.94, (c) 0.85. The
small surface pores are already dry in (a) and therefore not shown in this image. The large pores
in the center dry slower. The front remains pinned inside the peripheral small pores (a–c) until an
intermediate planar front is achieved in (c).
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The temperature variation of both PNs is illustrated in Figure 10 for the phase distri-
butions shown in Figures 6 and 8. The plots in Figure 10a show the spatial variation in
temperature at given overall PN saturations, and the plots in Figure 10b show the variation
with PN saturation at given vertical positions. In the latter case, discrete temperature jumps
are clearly observed in the top slice for the case of the planar sublimation front, whereas the
transition is much smoother in the case of the bimodal PN where the front widens during
drying.

The temperature value at a given product height is determined as the mean tempera-
ture of every pore at this vertical position. The temperature variation inside a slice is very
low in the case of the monomodal PN. In the bimodal PN, the temperature is higher inside
larger pores compared to in smaller pores. This is a result of the sublimation cooling inside
the smaller pores. The temperature gradients in the horizontal direction, i.e., within a slice,
are much smaller than the average temperature gradient in the vertical direction. This is
illustrated in Figures 10 and 11, where the local temperatures of individual pores and pore
nodes are depicted for different cases of the monomodal and the bimodal PNs. The color
code is associated with the temperature in this illustration.

As illustrated in Figure 10, the transition situation can be described as follows. At the
beginning of freeze drying (S = 1), the temperature is set to −28 ◦C in both PNs (initial
condition). The pores at the bottom are in contact with the heating plate and therefore
initially warm up to −18 ◦C, whereas the pores at the top side are cooled by sublimation
cooling. The achieved temperatures are −38 ◦C for the monomodal PN and −36 ◦C for the
bimodal PN. Interestingly, the temperature difference between the monomodal and the
bimodal PN is roughly sustained until the end of drying, where the temperatures become
similar (Figure 11). This finding is surprising, since the monomodal PN has a higher
effective thermal conductivity. The small difference might be explained by the slightly
higher sublimation rates and the resulting higher cooling effect. Since the conditions
are otherwise very similar in both cases, the comparison reflects the impact of structural
variations on the freeze drying conditions.
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The temperature difference between the top and bottom sides results in a similar
and linear temperature gradient, which is approximately 0.1 K/µm, at the start of drying
in both cases. The temperature gradient decreases due to the heating up of the solid
and ice phase. More clearly, the average sublimation front temperature increases during
freeze drying from the aforementioned −38 ◦C and −36 ◦C to −18 ◦C at the end of the
process. The increase in the mean slice temperature is almost linear, as presented in
Figure 12. This finding is in good agreement with [4], where an increasing sublimation
front temperature was also predicted for the assumption of mass-transfer-controlled freeze
drying. In contrast to that, [10] predicted almost constant temperature at the sublimation
interface in the case of heat-transfer-controlled primary freeze drying with purely radiative
heating. Additionally, in [36], the predicted temperature at the top side was constant,
whereas the bottom temperature was constantly increasing, as in our study.
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Figure 12. Change in the sublimation front temperatures as a function of overall PN saturation. The
temperatures are computed as the mean temperature of all active pores with a sublimation interface
at the given overall PN saturation. The bars represent the variation in minimum and maximum
temperature along the sublimation front.

At the end of drying, the PNs reach an almost isothermal state at −18 ◦C.
As clearly depicted in Figure 10, the linear temperature gradient is a specific property

of the frozen region in this study. With the propagation of the sublimation front, the
linear profile (between bottom and sublimation front, Figure 10) covers a decreasing
height, because the frozen region shrinks and the dry region grows. This dry region has a
constant temperature, which is equal to the temperature of the sublimation front. This is a
consequence of the very small heat flow rates at the top side of both PNs. These small heat
flow rates across the top surface yield almost adiabatic conditions.
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3.2.2. Spatially and Temporally Resolved Pressure Variations

Figures 13 and 14 show the vapor pressure gradients inside the PNs. Similarly, as
for the temperature profiles in Figures 10 and 11, the given values are slice-averaged at
the specified positions. As the temperature increases during drying, the saturation vapor
pressure at the sublimation front increases accordingly, as shown in Figure 13. Almost
linear profiles develop between the sublimation interface and the open top side, which is
assigned with a constant pressure of 10 Pa in both cases. As a consequence of the overall
higher temperatures in the bimodal PN, the vapor pressures are also overall higher in this
situation. This results in higher vapor pressure gradients in the case of the bimodal PN.
However, as will be discussed in the following section, the freeze drying rates are smaller
in this case.

3.3. Interaction between PN Saturation, Pressure and Temperature with Thermal Properties and
Mass Transfer Coefficient
3.3.1. Thermal Properties

The thermal properties depend strongly on the local saturation of the PNs with water
ice. This is represented by Figure 15 where the mean values of VCV·(ρ·cp)cv and thermal
conductivity are provided together with the maximum and minimum values (vertical
lines) as functions of the overall ice saturation. The graphs illustrate the change of these
parameters in the course of drying. This is especially of interest along the sublimation front,
where the thermal properties can change drastically between ice-saturated and empty pores
in the case of heterogeneous material structures (pore size distribution, wall thickness), as
illustrated by the bars in Figure 15a,b for the bimodal PN.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 18 of 25 
 

  
Monomodal bimodal 

Figure 13. Vapor pressure gradients through the dry layers. The values are computed as slice-aver-
age values. The bars indicate the maximum and minimum values of a slice. With decreasing PN 
saturation, the sublimation front travels in the direction of decreasing product height, i.e., to the left 
in these diagrams, and is therefore found at the left end of each curve. 

  
(a) (b) 

Figure 14. Local pressure variation at the sublimation front: (a) monomodal PN at S = 06; (b) bimodal 
PN at S = 0.5, i.e., when the front has its greatest extension. 

3.3. Interaction between PN Saturation, Pressure and Temperature with Thermal Properties and 
Mass Transfer Coefficient 
3.3.1. Thermal Properties 

The thermal properties depend strongly on the local saturation of the PNs with water 
ice. This is represented by Figure 15 where the mean values of VCV·(ρ·cp)cv and thermal 
conductivity are provided together with the maximum and minimum values (vertical 
lines) as functions of the overall ice saturation. The graphs illustrate the change of these 
parameters in the course of drying. This is especially of interest along the sublimation 
front, where the thermal properties can change drastically between ice-saturated and 
empty pores in the case of heterogeneous material structures (pore size distribution, wall 
thickness), as illustrated by the bars in Figure 15a,b for the bimodal PN. 

Figure 13. Vapor pressure gradients through the dry layers. The values are computed as slice-
average values. The bars indicate the maximum and minimum values of a slice. With decreasing PN
saturation, the sublimation front travels in the direction of decreasing product height, i.e., to the left
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Figure 15a reveals that both PNs have very similar mean values of VCV
(
ρcp
)

CV as
long as they are ice-saturated, i.e., a similar accumulation of heat can be anticipated in both
cases. This changes when the CVs dry out. Then, the monomodal PNs have significantly
smaller values in the dry region.

The monomodal PN has overall higher heat transfer coefficients inside the ice-saturated
region (Figure 15b) and the dry layers conduct the heat slightly worse than in the case of
the bimodal PN. This seems to be in contradiction to the comparison illustrated in Figure 12
but might be explained by the higher cooling effect associated with the higher sublimation
rates resulting from the overall higher mass transfer rates in the monomodal PN, as will be
discussed in the following.
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3.3.2. Mass Transfer Properties

The values of K vary between K = 2.1 × 10−5 m2/s and K = 4.5 × 10−5 m2/s
(monomodal), and K = 0.6 × 10−5 m2/s and K = 4.3 × 10−5 m2/s (bimodal) (Figure 16). This
shows that, on average, the mass transfer conditions of dry pores do not vary significantly
with saturation in the monomodal PN. This is different in the bimodal PN, where, at first,
the small pores dry out, thereby lowering the values at the start of drying. Later on, the
larger pores contribute with overall higher values. Figure 16b shows that, in the bimodal
PN, three different kind of CVs exist. Control volumes that contain only large pores (in
the very center of the PN) have similar mass transfer conditions as the monomodal PN.
On the other hand, CVs with only small pores at the periphery of the PN show the lowest
K-values; and CVs with a mixture of small and large pores have intermediate values.

For comparison, in [37], a value of K [m2/s] = 1.349 × 10−4 (ε/τ) d (µm) was given,
assuming pressure independence of the transport coefficient and solely slip flow, which
yields a value of K = 1.15 × 10−4 assuming τ = 1. This value is almost one order of
magnitude larger than our values, which could be explained by the dominance of viscous
flow in our model.

In summary, Figure 16 reveals higher coefficients of K for the monomodal PN, which
allow generally higher freeze drying rates, as will be shown and discussed in what follows.

3.4. Drying Curve and Drying Rate Curve
3.4.1. Drying Curves

The change in the overall saturation is shown in Figure 17 as a function of dimension-
less time. The bimodal PN dries faster than the monomodal PN because of the significantly
lower porosity and the related significantly lower overall ice content (Table 1).

3.4.2. Drying Rate Curves

The drying rates of both cases are plotted together with heat- and mass-transfer-limited
freeze drying from [37] in Figure 17. As already expected from the discussions related
to Figure 16, the monomodal PN has a higher drying rate. It is approximately two times
higher over the whole drying process. As shown in Figure 16, the coefficients of the
monomodal PN can be almost twice as high as in the bimodal PN, which is, according to
Equation (10) and Figure 2a, the result of the very small cross-sections of peripheral pores
in the latter case.
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values. The dashed lines indicate the average values of the completely dry or saturated PNs.
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The referenced cases in Figure 18 are computed from [37]:

.
mv,MTL

[
kg/s/m2

]
=

Ke f f ·M̃V
(

Peq,v(Tbot)− P∞
)

R̃TbotLPN

1
1 − S

, (26)

with Peq,v(Tbot = −18 ◦C) = 124.69 Pa and P∞ = 10 Pa. In Equation (26), S denotes the PN
saturation; it is varied between 1 (start of drying) and 0 (end of drying); LPN = 150 µm is
the length of the PN according to Table 1. The coefficient Keff = K·(ε/τ) is fitted so as to
achieve an agreement with the PN simulations. It is Keff = 5.63·10−6 m2/s = const. in the
monomodal PN and Keff = 2.06·10−6 m2/s = const. in the bimodal PN.

Furthermore,
.

mv,HTL =
λe f f (Tbot − T∞)

∆hsubLPN

1
S

, (27)

with λeff = 1.1731 W/m/K = const., estimated for the monomodal PN with the above
described approach (Equations (4)–(6)) and a = 0.5, and λeff = 0.6844 W/m/K = const.
estimated for the bimodal PN with the same approach; T∞ = −42 ◦C and ∆hsub = 2838
kJ/kg according to Table 3. Figure 18 reveals that the agreement with the HTL situation is
very good with the estimated heat transfer coefficients.

The transition situation is then computed from [37]:

.
mv,trans =

[
1

.
mv,MTL

+
1

.
mv,HTL

]−1
. (28)

In addition to that, the vapor flow rates are computed from the Darcy equation:

.
mv,Da

[
kg/sm2

]
=

Ke f f ·M̃V

(
Peq,v

(
Tf ront

)
− P

)
R̃Tf ront

(
LPN − z f ront

) . (29)
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In this equation, the following parameters are used: Tfront according to Figure 12 and
Peq,v computed from Equation (18) with Tfront; P = 10 Pa, LPN = 150 µm and zfront = [150:0]
µm. In this computation, Keff = 4.7 · 10−12 m2/s. As shown in Figure 18, the agreement
is very good except for at the start of drying, where the Darcy equation yields generally
lower values due to the transient temperature changes at the start of the simulation. The
high temperature gradients inside the PN cannot be realized by the Darcy equation. The
otherwise good agreement between the curve from Equation [30] and the Darcy equation
reflects the fact that the mass flow regime can be expected in the Darcy regime rather than
in Knudsen or transition regimes in the studied cases.

Figure 18 shows that the drying rates in both PNs drop until approximately S ≈ 0.99
in both situations. This is explained with the initial PN temperature, which is much higher
than in the environment, namely T = −28 ◦C, and the relatively high vapor conductivity of
the surrounding bulk of g∞ = 1·10−12 m·s = const. This yields a relatively high pressure
difference of ∆Pv = Pv(−28 ◦C) − Pv(−42 ◦C) = 36.5 Pa at the start of drying. This, together
with the sublimation front being located at the very top side of the PNs, results in very high
initial drying rates. The drying rates drop when the surface pores begin to dry out and
when the sublimation front recedes from the top side accordingly. The initial conditions
could be adjusted in the future to achieve a better agreement with the transition case by
reducing the vapor pressure difference between the relatively warm PN surface (at −28 ◦C)
and the surroundings (at −42 ◦C), as well as by adjusting the vapor transport coefficient g∞.

Apart from the initial differences, the agreement with Equation (28) is very good.
The deviation is lower in the case of the monomodal PN because of the lower spread of
transport coefficients, whereas the drying rate varies more in the case of the bimodal PN,
resulting in higher deviations from cases in the literature. A similar observation can be
found for the comparison with the Darcy equation. Apart from the initial deviation, the
agreement is very good for the monomodal PN because Keff is almost constant in this case
(Figure 16). However, in the bimodal PN, the mixed population of large and small pores
results in a significant variation in Keff wherefore the situation cannot be captured with the
same satisfaction by the Darcy equation in the bimodal case. Secondly, the position of the
sublimation front is determined as an average value in this case, which can result in further
deviations.

In summary, Figure 18 illustrates that the overall agreement with the transition situa-
tion in [37] and the Darcy equation is very good in the case of a monomodal PN. However,
in the case of heterogeneous pore space, with distributed transport coefficients, the curves
cannot be fitted to the PN simulation results with the same agreement. This reflects the
impact of the structural material properties on the computable freeze drying regimes as
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well as the relevance of the pore-scale modeling approach for such situations. An even
stronger impact is expected if the PN simulation were conducted with reconstructed image
data [21].

4. Conclusions

In this paper, a non-isothermal pore network (PN) model of primary freeze drying
with quasi-steady vapor transport and transient heat transfer was presented. To the best of
our knowledge, this is the first PN model of freeze drying. It was realized with constant
temperature boundary conditions at the top and bottom sides and periodic boundary
conditions along the vertical interfaces. The advantage of the PN model is the representation
of the continuous void space by discrete pores, which allows one to set-up and solve the
mass and enthalpy balances in a discrete way with relatively low computational effort.
This makes it possible to study the impact of the porous structure on transport conditions,
as well as the evolution and progress of the sublimation front.

Simulation results were therefore presented for two significantly different situations.
In the first case, a homogeneous PN with monomodal PSD was considered, and in the
second case, a PN with local variation in pore structure was studied. In the latter case,
pores along the vertical sides of the PN were smaller by a factor of 5 than the pores in the
center. The first scenario revealed a roughly planar sublimation front, in good agreement
with literature references, e.g., [34]. The second situation instead showed the formation
of distinct structures of the sublimation front, similar to what has already been observed
in experiments. At first, the smaller pores dried faster and yielded a sublimation front
which was slightly curved downwards at the sides, i.e., it had a convex shape. This
was explained by the high initial mass transfer rates, which were achieved by the high
vapor pressure gradients between the PN and the surroundings, as well as the high vapor
transport coefficients at the top side of the PN, and the low ice content in the small pores.
Once the first row of pores was dried and higher mass transfer resistances occurred inside
these pores, the progress of the sublimation front slowed down in this region of the PN.
In contrast, the faster drying of the larger pores in the center finally resulted in a concave
shape of the sublimation front. The distance between the LAP and the MAP continuously
increased until the first pore in the bottom layer dried out. The maximum width of the
sublimation front was limited by the small PN height in this study. It is expected that it
depends on the spatial variation in the PSD, which could prospectively be studied in larger
PNs, where the extension of the sublimation front width would not be limited by the small
height of the PN.

In summary, the influence of the pore structure on the shape of the sublimation front
could be nicely demonstrated in this study, although the mass transfer was found to be in
the Darcy regime. It could be shown that the increase in mass transfer resistances due to
the presence of smaller pores can reduce the overall drying rates in the case of the bimodal
PN. This was a major effect in this study. The variation in the thermal properties did indeed
change the PN temperatures slightly in the studied cases, but this seemed to not impact
strongly on the drying behavior.

The comparison of the sublimation rates with references from the literature showed
an overall good agreement, especially for the monomodal PN. However, it also revealed
that the pore-scale structure variations and the associated spread of transport parameters
(heat and mass) results in stronger deviations. These deviations are expected to become
even stronger when the structure is more distributed, e.g., in PNs reconstructed from
real porous structures [21]. Consequently, after the successful demonstration of the new
mathematical approach on regular PN lattices in this paper, the algorithm shall be adopted
for the simulation of reconstructed porous materials [21] in the next step.
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