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Abstract: This article presents a mathematical model of the Michelson interferometer (MI)-based
membrane-less optical microphone (MeoM)–photoacoustic spectroscopy (MeoM–PAS) method,
which is also referred to as MI-based photoacoustic interferometry (PAI), for gas-sensing appli-
cations in complex and adverse environments, as it offers a completely static measurement system
and the separation of a photoacoustic (PA) gas cell from the measuring system. It also investigates
the dependence of this method on the fundamental parameters of a cubical PA gas cell using axial PA
signals. The results indicate that the phase of the method is a sine function of the distance between the
two light beams and a power exponent of the cell length, the cell height, and the distance between the
excitation source and the nearest light beam, under the condition that the PA gas cell is resonant and
that the excitation source is at the position of the peak or valley of the PA signals. It is at its maximum
when the distance between the two light beams is approximately half the wavelength of the PA
signals under the same conditions. In addition, the dependence of a PA gas cell using non-axial PA
signals is described under the conditions that the PA gas cell is resonant, which is consistent with the
changing aforementioned parameters for the distance between the two light beams, the cell length
and height, and the distance between the excitation source and the nearest light beam. Furthermore,
the selection of five common materials (aluminum, brass, glass, quartz, and stainless steel) for the PA
gas cell is discussed under the influence of temperature fluctuations outside the PA gas cell, noise
inside and outside the PA gas cell, as well as thermal and viscous losses inside the PA gas cell. The
results indicate that quartz and stainless steel are promising options. Finally, the parameters related
to the sensitivity enhancement of the method are analyzed using mathematical models, where the
sensitivity of the method can be theoretically enhanced by reducing the dimensions of the PA gas cell.

Keywords: Michelson interferometer; membrane-less optical microphone (MeoM)–photoacoustic
spectroscopy (MeoM–PAS); photoacoustic interferometry (PAI); gas sensing; photoacoustic gas cell

1. Introduction

Optical sensing technologies are widely used to detect gas concentrations in harsh
environments that involve high temperatures, high pressure, strong electromagnetic in-
terference, and corrosive chemicals due to their non-magnetic saturation and immunity
to electromagnetic interference [1]. Among all types of optical sensing methods, photoa-
coustic spectroscopy (PAS)-based sensing methods are the preferred approach because they
have no significant drawbacks compared to other optical sensing technologies [2,3]. This
technology allows for the detection of homo-nuclear diatomic gases and results in smaller
and more sensitive sensors, as the limit of detection (LOD) of PAS is not fully determined
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by the length of the light-gas interaction [2]. These properties enable PAS-based gas sensing
methods to seamlessly function in harsh environments [4].

The optical interferometer-based technology is one of the most mainstream PAS-based
gas sensing methods [2,5] due to its high sensitivity and simple structure and principle [6].
However, this method is not suitable for some harsh environments [2–5] because many
current mainstream gas sensors based on the technology have movable components, such
as diaphragms [7–10] and cantilever beams [11–14]. Hence, they are unsuitable for high-
temperature and high-pressure applications [1–5]. Therefore, it is essential to develop optical
interferometer-based gas sensing methods based on PAS without any movable components.

In this work, a mathematical model of the Michelson interferometer (MI)-based
membrane-less optical microphone (MeoM)–photoacoustic spectroscopy (MeoM–PAS) gas-
sensing method, also known as MI-based Photoacoustic Interferometry (PAI), is presented.
It provides a completely static measurement system and the separation of a photoacoustic
(PA) gas cell from the measuring system for applications in harsh environments. The
dependence of this method on the fundamental parameters of a PA gas cell, including
the distance between the two light beams, the cell length, the cell height, and the distance
between the excitation source and the nearest light beam, is investigated using axial PA
signals, under the condition that the PA gas cell is resonant and that the excitation source
is at the position of the peak or valley of the PA signals. The dependence of a PA gas
cell is described using non-axial PA signals, under the condition that the PA gas cell is
resonant. Furthermore, the selection of five common materials used to produce PA gas
cells is discussed, including aluminum, brass, glass, quartz, and stainless steel, under the
influence of temperature fluctuations outside the PA gas cell, and noise inside and outside
the PA gas cell, as well as thermal and viscous losses inside the PA gas cell. Finally, the
parameters that influence the sensitivity of the gas-sensing method are outlined using
mathematical models.

2. Mathematical Model and Theory

In Figure 1a, Schematic (1) shows the working principle [2,15] of the Michelson
interferometer (MI). A light source emits a light beam, which is split into two beams, 1 and
2, by a beam splitter. When the refractive index of the medium at the position of one beam
varies, a difference in the optical path can be formed between the two beams. Interference
occurs when these two beams of light are reflected by two flat mirrors and then meet again.
The relationship [15,16] between phase ΦMI(t) and the output light intensity IMI(ΦMI(t))
(unit: W/m2) in the MI is shown in Equation (1).

IMI(ΦMI(t)) = I1 + I2 + 2
√

I1I2 cos(ΦMI(t)). (1)

In Equation (1), I1 represents the light intensity of light beam 1 in the MI (unit: W/m2);
I2 shows the light intensity of light beam 2 in the MI (unit: W/m2), and t indicates time
(unit: s).

Assuming that the lengths of the two beam paths in the MI are equal, the intensities of
the two beams are equal: I1 = I2 = I0. Therefore,

IMI(ΦMI(t)) = 2I0 (1 + cos(ΦMI(t))). (2)

The relationship [16,17] between phase ΦMI(t) and the refractive indices, n1(t) and
n2(t), at the two beam positions in the MI is shown in Equation (3).

ΦMI(t) =
4πLLB

λ
(n1(t) − n2(t)). (3)

In Equation (3), LLB represents the length of the two light beams in the MI (unit: m)
and λ is the wavelength of the incident light (unit: m).
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Figure 1. (a) Schematic of the working principles of the MI and the MI-based MeoM in sensing sound
waves and gas concentrations: (1) the MI; (2) the MI-based MeoM in sensing sound waves; and
(3) the MI-based MeoM in sensing gas concentrations. (b) Schematic of the sensing principle for the
MI-based MeoM–PAS gas-sensing method. (c) Dependency exploration of the MI-based MeoM–PAS
gas-sensing method on the fundamental parameters of a PA gas cell.

Sound waves are variations in gas pressure that oscillate around a static ambient
pressure [18,19]. Therefore, the total pressure caused by the sound waves Ptotal(r, t) (unit:
Pa) is the sum of the gas pressure generated by the sound waves P(r, t) (unit: Pa) and the
ambient pressure Pambient (unit: Pa):

Ptotal(r, t) = Pambient + P(r, t). (4)

In Equation (4), r represents the position and t is the time (unit: s).
The MI can be used as a MeoM to sense sound waves [2]. Therefore, when sound

waves pass vertically through the two beam paths in the MI (Schematic (2) in Figure 1a), it
is assumed that the ambient pressure Pambient, the Celsius temperature T (unit: ◦C), and the
relative humidity in percent RH [20] are the same for the two beam paths in the MI. Then,
the difference in refractive indices in the MI, n1(t) − n2(t), can be directly obtained from
the Edlen Formula [21,22] and the simplified correction formula provided by the National
Institute of Standards and Technology (NIST) based on the Edlen Formula [23,24].

n1(t) − n2(t) =
[

1 + 7.86 × 10−4 Ptotal(r1, t)
273 + T

− 1.5 × 10−11 RH
(

T2 + 160
)]

,

−
[

1 + 7.86 × 10−4 Ptotal(r2, t)
273 + T

− 1.5 × 10−11 RH
(

T2 + 160
)]

,
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=

[
1 + 7.86 × 10−4 (Pambient + P(r1, t))

273 + T
− 1.5 × 10−11 RH

(
T2 + 160

)]
,

−
[

1 + 7.86 × 10−4 (Pambient + P(r2, t))
273 + T

− 1.5 × 10−11 RH
(

T2 + 160
)]

. (5)

In Equation (5), Ptotal(r1, t) represents the total pressure caused by the sound waves at
the position of the light beam 1 in the MI (unit: Pa); Ptotal(r2, t) shows the total pressure
caused by the sound waves at the position of the light beam 2 in the MI (unit: Pa); P(r1, t)
indicates the gas pressure generated by the sound waves at the position of the light beam 1
in the MI (unit: Pa); and P(r2, t) is the gas pressure generated by the sound waves at the
position of the light beam 2 in the MI (unit: Pa).

Therefore, the difference in refractive indices at the positions of the two light beams in
the MI, n1(t)− n2(t), can be expressed as:

n1(t) − n2(t) =
δ

Tat
(P(r1, t) − P(r2, t)). (6)

In Equation (6), the value of δ is 7.86× 10−4 K/Pa and Tat represents the absolute
temperature (unit: K), where Tat = 273 + T.

The relationship [25,26] between the density of a gas ρ (unit: kg/m3) and the gas
pressure P (unit: Pa) is shown in Equation (7).

ρ =
PM
RTat

. (7)

In Equation (7), R represents the molar gas constant, about 8.3145 J · K−1 · mol−1 [26];
and M indicates the gas molar mass (unit: kg/mol).

Therefore, the difference in refractive indices at the positions of the two light beams in
the MI, n1(t) − n2(t), can be expressed as follows:

n1(t) − n2(t) =
Rδ
M

(ρ(r1, t) − ρ(r2, t)). (8)

In Equation (8), ρ(r1, t) indicates the density of a gas at the position of the light beam 1
in the MI (unit: kg/m3); ρ(r2, t) represents the density of such a gas at the position of the
light beam 2 in the MI (unit: kg/m3).

Thus, according to Equations (6) and (8), the phase of the MI-based MeoM can be
determined, as shown in Equations (9) and (10).

ΦMI-based MeoM(t) = ΦMI(t) =
4πLLB

λ

(
δ

Tat
(P(r1, t) − P(r2, t))

)
, (9)

ΦMI-based MeoM(t) = ΦMI(t) =
4πLLB

λ

(
Rδ
M

(ρ(r1, t) − ρ(r2, t))
)

. (10)

Therefore, the relationship between the output light intensity of MI-based MeoM
IMI-based MeoM(P(r1, t) − P(r2, t)) (unit: W/m2) and the difference between the gas pres-
sures at the positions of the two light beams P(r1, t) − P(r2, t) is shown in Equation (11).

IMI-based MeoM(P(r1, t) − P(r2, t)) = 2I0

(
1 + cos

(
4πLLB

λ

(
δ

Tat
(P(r1, t) − P(r2, t))

)))
. (11)

The relationship between the output light intensity of MI-based MeoM IMI-based MeoM(ρ
(r1, t) − ρ(r2, t)) (unit: W/m2) and the difference between the gas densities at the positions
of the two light beams ρ(r1, t) − ρ(r2, t) is shown in Equation (12).

IMI-based MeoM(ρ(r1, t) − ρ(r2, t)) = 2I0

(
1 + cos

(
4πLLB

λ

(
Rδ
M

(ρ(r1, t) − ρ(r2, t))
)))

. (12)
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It can be seen from Equations (11) and (12) that the difference in the gas pressures
and densities at the positions of the two light beams in the MI results in a change in the
output light intensity of MI-based MeoM (Schematic (3) in Figure 1a). The mathematical
models have enabled gas concentration sensing based on the PA effect [27]. PA signals can
be measured based on the PA effect by placing a PA gas cell on the two beam paths in the
MI-based MeoM (Figure 1b). Figure 1b shows that the sensing system consists of a MeoM
(a MI system) and a PA gas cell. A collimated light beam from a laser is propagated on a
beam splitter through fiber port 1, and the incident light is split by the beam splitter into
two parallel beams of equal intensity to pass through the PA gas cell. After the light beam
is reflected by a reflector on the other side of the PA gas cell, it is recombined by the beam
splitter and output to a photodetector through fiber port 2. On the side of the PA gas cell
away from the two light beams, a light beam emitted by an excitation light source outside
the PA gas cell is directed at a mirror. The gas in the PA gas cell generated sound waves (PA
signals) with the same frequency as the excitation light output by the excitation light source
due to the PA effect [24,27]. The design of the PA gas cell is based on the use of sound
resonance [24]. According to Equations (11) and (12), the gas pressures and gas densities in
the PA gas cell are different at the positions of the two light beams of the MeoM, resulting
in a phase change of the interference light formed by the two reflected beams coming across
the photodetector. This oscilloscope in Figure 1b can show its changes. Therefore, detecting
different PA signals caused by different gas concentrations can be performed by measuring
the phase or intensity change of the interference light, thereby detecting gas concentrations.
This method offers a completely static measurement system (MI-based MeoM) and allows
for the separation of the PA gas cell from the measurement system for application in harsh
environments [24,27]. The gas-sensing method is called the MI-based MeoM–PAS method
due to the combination of MI-based MeoM and PAS [24,27]. In addition, this method is also
referred to as MI-based PAI because it combines the PA effect with an interferometer [24].
Our group used this gas-sensing method with a long-term stable and power-controlled
fiber-coupled laser diode, while maintaining the length of the PA gas cell at 84 mm, the
height at 14 mm, the width at 34 mm, the distance between the two light beams at 14 mm,
the distance between the light beam nearest to the excitation source and the PA gas cell’s
wall closest to the other light beam at 28 mm, and the distance between the excitation
source and the nearest light beam at 42 mm, to generate an excitation light with a power
of 3500 mW and a modulation frequency of approximately 12.25 kHz, resulting in a PA
signal with a frequency of about 12.25 kHz, thereby achieving a high sensitivity of gas
concentration measurements with a low LOD [24,27]. Enhancing the excitation light power
(e.g., more than 3500 mW) can increase the intensity of the PA signals [3,5]. However,
the excitation light frequency and all the dimensional parameters of the PA gas cell are
chosen to meet the conditions for the formation of standing sound waves and maximize
the gas pressure difference at the positions of the two light beams [27]. In summary, our
group’s previous research has experimentally proven the workability of this gas-sensing
method [24,27].

Similar to our group’s previous research [24,27], aluminum, which is a common and
frequently used material for manufacturing the PA gas cell [2–14], is a first choice as a
material for the PA gas cell to conduct initial research quite easily and flexibly and later
consider other materials. The density of aluminum is 2700 kg/m3 at 1 atm and 20 ◦C [28],
and the sound velocity in aluminum is 6420 m/s at 1 atm and 20 ◦C [29]. Additionally, the
air density is 1.204 g/L at 1 atm and 20 ◦C [30], and the sound velocity in air is 343 m/s at
1 atm and 20 ◦C [31]. Because PA signals are sound signals in essence [1–3], the K-space
pseudo-spectral method [32] (precision: res = 2) based on an identical sound source, which
has the advantages of requiring fewer nodes, allowing larger time steps, easy coding, and
high computational efficiency compared to the conventional finite element method (FEM)
and boundary element method (BEM) [32,33], is utilized to investigate the dependence
of this method on the fundamental parameters of a PA gas cell at the PA signal (sound
wave) frequencies of approximately 12.25 kHz, 8.17 kHz, and 14.29 kHz by constructing
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the above mathematical models, including the distance between the two light beams d, the
PA gas cell’s length L, the PA gas cell’s height H, and the distance between the excitation
source and the nearest light beam D (Figure 1c). These three frequencies are selected
because the PA gas cell length is an integer multiple of the half wavelengths of these three
PA signals. Furthermore, the cell length and design variations must maintain a sound
resonance condition to ensure that the PA gas cell functions as a resonant cell [34]. Due
to the shape of the PA gas cell in this paper being a cuboid, the cell length must be an
integer multiple of half the wavelength of sound waves (PA signals), and any design
variations must also be integer multiples of half the wavelength of sound waves [24,34].
In addition, the excitation light source needs to be placed at the peak or valley of the PA
signals to maximize the pressures at the positions of the two light beams under equivalent
conditions [24,27]. It’s worth noting that the length of the PA gas cell L must be an integer
multiple ξ of the half-wavelength of the PA signals λPA

2 to form the standing sound waves
under the condition that the PA gas cell is resonant and the light beam nearest to the
excitation source is always kept at a constant position of λPA from the PA gas cell’s wall
closest to the other light beam. Therefore, the distance between the excitation source and the
nearest light beam can be calculated by the expression D = ξ λPA

2 (1 ≤ ξ ≤
(

2L
λPA
− 3

)
and ξ is a positive integer) when the excitation source is at the position of the peak or valley
of the PA signals.

3. Analyses and Discussions
3.1. Fundamental Parametric Dependence of a PA Gas Cell

Figure 2a–c shows the pressure results in the time domain at the positions of the two
light beams for PA signal frequencies of approximately 12.25 kHz, 8.17 kHz, and 14.29 kHz,
at a signal-to-noise ratio (SNR) of 10 dB, and their corresponding differences, where the
SNR value provides a good influence on behavior; however, other values could also be
selected. The distance of the two light beams (14 mm for approximately 12.25 kHz, 21 mm
for about 8.17 kHz, and 12 mm for approximately 14.29 kHz), the PA gas cell’s length
(84 mm), the PA gas cell’s height (14 mm), the distance between the light beam nearest
to the excitation source and the PA gas cell’s wall closest to the other light beam (28 mm
for approximately 12.25 kHz, 42 mm for about 8.17 kHz, and 24 mm for approximately
14.29 kHz), and the distance of the excitation source from the nearest light beam (42 mm for
approximately 12.25 kHz, 21 mm for about 8.17 kHz, and 36 mm for about 14.29 kHz) are
kept constant. These dimensions, except for the height value, are chosen because they are
integer multiples of the half-wavelength of the three corresponding PA signals, respectively.
The frequency responses of their pressure differences are shown in Figure 2d–f, with values
of 1.0155 Pa for approximately 12.25 kHz, 0.73205 Pa for about 8.17 kHz, and 1.1364 Pa for
approximately 14.29 kHz, respectively.

The frequency responses are used to investigate the dependence of the MI-based
MeoM–PAS gas-sensing method on the distance between the two light beams in the PA
gas cell while keeping the PA gas cell’s length (84 mm), the PA gas cell’s height (14 mm),
the distance between the light beam nearest to the excitation source and the PA gas cell’s
wall closest to the other light beam (28 mm for approximately 12.25 kHz, 42 mm for about
8.17 kHz, and 24 mm for about 14.29 kHz), and the distance of the excitation source from
the nearest light beam (42 mm for approximately 12.25 kHz, 21 mm for about 8.17 kHz, and
36 mm for about 14.29 kHz) constant. In this method, the effect of the distance between the
two light beams is investigated by changing the position of the light beam away from the
excitation source. The PA gas cell used here is resonant, and the excitation source is located
at the peak or valley position of the PA signals.

Figure 3a–c illustrates the relationship between the distance of the two light beams d
(unit: mm) and the pressure difference P1 (unit: Pa) at a PA signal frequency of approxi-
mately 12.25 kHz, 8.17 kHz, and 14.29 kHz, respectively:

P1 = A sin(αd + B). (13)
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The relevant parameters and R2 coefficients of Equation (13) at different PA signal
frequencies are shown in Table 1.

Table 1. Relevant parameters and R2 coefficients of Equation (13) at different PA signal frequencies.

Frequency (kHz) A α B R2

12.25 0.9336 0.1242 −0.3379 0.968
8.17 0.6755 0.07871 −0.2187 0.9501

14.29 1.075 0.1501 −0.4309 0.9659

Figure 3a–c shows that the pressure difference is a sine function of the distance between
the two light beams. This indicates that the phase of the MI-based MeoM–PAS gas-sensing
method also follows a sine function of the distance between the two light beams in the
PA gas cell, provided that the PA gas cell is a resonant cell and the excitation source is
positioned at the peak or valley of the PA signals.

The frequency responses are used to investigate the dependence of the MI-based
MeoM–PAS gas-sensing method on the length of the PA gas cell while keeping the distance
between the two light beams (14 mm for approximately 12.25 kHz, 21 mm for about
8.17 kHz, and 12 mm for approximately 14.29 kHz), the PA gas cell’s height (14 mm), the
distance between the light beam nearest to the excitation source and the PA gas cell’s wall
closest to the other light beam (28 mm for approximately 12.25 kHz, 42 mm for about
8.17 kHz, and 24 mm for about 14.29 kHz), and the distance of the excitation source from
the nearest light beam (42 mm for approximately 12.25 kHz, 21 mm for about 8.17 kHz, and
36 mm for approximately 14.29 kHz) constant. In this case, the length of the PA gas cell is
adjusted in increments of half the wavelength of the PA signals to satisfy the requirement



Photonics 2023, 10, 888 8 of 25

that the PA gas cell function as a resonant cell. Furthermore, the excitation source is located
at the peak or valley position of the PA signals.

Photonics 2023, 10, x FOR PEER REVIEW 10 of 27 
 

 

 

 

 
Figure 3. The relationship between the distance of the two light beams and the pressure difference 
at (a) approximately 12.25 kHz, (b) about 8.17 kHz, and (c) approximately 14.29 kHz. The relation-
ship between the length of the PA gas cell and the pressure difference at (d) approximately 12.25 
kHz, (e) about 8.17 kHz, and (f) approximately 14.29 kHz. The relationship between the height of 
the PA gas cell and the pressure difference at (g) approximately 12.25 kHz, (h) about 8.17 kHz, and 
(i) approximately 14.29 kHz. 

The frequency responses are used to study the dependence of the MI-based MeoM–
PAS gas-sensing method on the distance of the excitation source from the nearest light 
beam while keeping the distance between the two light beams (14 mm for approximately 
12.25 kHz, 21 mm for about 8.17 kHz, and 12 mm for approximately 14.29 kHz), the PA 
gas cell’s length (168 mm), the PA gas cell’s height (14 mm), and the distance between the 
light beam nearest to the excitation source and the PA gas cell’s wall closest to the other 
light beam (28 mm for approximately 12.25 kHz, 42 mm for about 8.17 kHz, and 24 mm 
for about 14.29 kHz) constant. In this case, the distance of the excitation source from the 
nearest light beam is adjusted in increments of half a wavelength of the PA signals to en-
sure that the excitation source is situated at the peak or valley position of the PA signals. 
Additionally, the PA gas cell employed here operates as a resonant cell. 

Figure 3. The relationship between the distance of the two light beams and the pressure difference at
(a) approximately 12.25 kHz, (b) about 8.17 kHz, and (c) approximately 14.29 kHz. The relationship
between the length of the PA gas cell and the pressure difference at (d) approximately 12.25 kHz,
(e) about 8.17 kHz, and (f) approximately 14.29 kHz. The relationship between the height of the
PA gas cell and the pressure difference at (g) approximately 12.25 kHz, (h) about 8.17 kHz, and
(i) approximately 14.29 kHz.

Figure 3d–f shows the relationship between the length of the PA gas cell L (unit: mm)
and the pressure difference P2 (unit: Pa) at a PA signal frequency of about 12.25 kHz,
8.17 kHz, and 14.29 kHz, respectively:

P2 = ηLβ + C. (14)

The relevant parameters and R2 coefficients of Equation (14) at different PA signal
frequencies are shown in Table 2.
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Table 2. Relevant parameters and R2 coefficients of Equation (14) at different PA signal frequencies.

Frequency (kHz) η β C R2

12.25 2.125 × 106 −3.445 0.5298 0.9826
8.17 1.488 × 1013 −6.708 0.2511 0.9848

14.29 7553 −2.166 0.5793 0.9814

Figure 3d–f demonstrates that the pressure difference follows a power exponent
function of the cell length. This suggests that the phase of the MI-based MeoM–PAS
gas-sensing method follows a power exponent function of the length of the PA gas cell,
provided that the PA gas cell functions as a resonant cell and the excitation source is located
at the peak or valley position of the PA signals.

The frequency responses are used to investigate the dependence of the MI-based
MeoM–PAS gas-sensing method on the height of the PA gas cell while keeping the distance
between the two light beams (14 mm for approximately 12.25 kHz, 21 mm for about
8.17 kHz, and 12 mm for approximately 14.29 kHz), the PA gas cell’s length (84 mm), the
distance between the light beam nearest to the excitation source and the PA gas cell’s wall
closest to the other light beam (28 mm for approximately 12.25 kHz, 42 mm for about
8.17 kHz, and 24 mm for about 14.29 kHz), and the distance of the excitation source from
the nearest light beam (42 mm for approximately 12.25 kHz, 21 mm for about 8.17 kHz,
and 36 mm for approximately 14.29 kHz) constant. The PA gas cell used here functions as a
resonant cell, and the excitation source is positioned at the peak or valley of the PA signals.

Figure 3g–i shows the relationship between the height of the PA gas cell H (unit:
mm) and the pressure difference P3 (unit: Pa) at a PA signal frequency of approximately
12.25 kHz, 8.17 kHz, and 14.29 kHz, respectively:

P3 = µHε. (15)

The relevant parameters and R2 coefficients of Equation (15) at different PA signal
frequencies are shown in Table 3.

Table 3. Relevant parameters and R2 coefficients of Equation (15) at different PA signal frequencies.

Frequency (kHz) µ ε R2

12.25 25.44 −1.23 0.9991
8.17 19.93 −1.252 0.9989
14.29 29.06 −1.231 0.9986

Figure 3g–i demonstrates that the pressure difference varies as a power exponent
of the cell height. This suggests that the phase of the MI-based MeoM–PAS gas-sensing
method also varies as a power exponent of the height of the PA gas cell, provided that the
PA gas cell functions as a resonant cell and the excitation source is located at the peak or
valley position of the PA signals.

The frequency responses are used to study the dependence of the MI-based MeoM–
PAS gas-sensing method on the distance of the excitation source from the nearest light
beam while keeping the distance between the two light beams (14 mm for approximately
12.25 kHz, 21 mm for about 8.17 kHz, and 12 mm for approximately 14.29 kHz), the PA gas
cell’s length (168 mm), the PA gas cell’s height (14 mm), and the distance between the light
beam nearest to the excitation source and the PA gas cell’s wall closest to the other light
beam (28 mm for approximately 12.25 kHz, 42 mm for about 8.17 kHz, and 24 mm for about
14.29 kHz) constant. In this case, the distance of the excitation source from the nearest light
beam is adjusted in increments of half a wavelength of the PA signals to ensure that the
excitation source is situated at the peak or valley position of the PA signals. Additionally,
the PA gas cell employed here operates as a resonant cell.
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Figure 4a–c shows the relationship between the distance of the excitation source from
the nearest light beam D (unit: mm) and the pressure difference P4 (unit: Pa) at a PA signal
frequency of about 12.25 kHz, 8.17 kHz, and 14.29 kHz, respectively:

P4 = σDτ + E. (16)
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Figure 4. The relationship between the distance of the excitation source from the nearest light beam
and the pressure difference at (a) approximately 12.25 kHz, (b) about 8.17 kHz, and (c) approximately
14.29 kHz. The relationship between the multiple of the distance of the excitation source from
the nearest light beam and the half wavelength of the PA signals and the pressure difference at
(d) approximately 12.25 kHz, (e) about 8.17 kHz, and (f) approximately 14.29 kHz.

The relevant parameters and R2 coefficients of Equation (16) at different PA signal
frequencies are shown in Table 4.

Table 4. Relevant parameters and R2 coefficients of Equation (16) at different PA signal frequencies.

Frequency (kHz) σ τ E R2

12.25 −0.01275 0.8037 0.8052 0.9941
8.17 −0.09855 0.4067 0.794 0.9976

14.29 −0.01827 0.7605 0.9742 0.9962

Figure 4a–c demonstrates that the pressure difference follows a power exponent
function of the distance of the excitation source from the nearest light beam. This occurs
when the length of the PA gas cell is identical at three different PA signal frequencies,
provided that the PA gas cell functions as a resonant cell and the excitation source is
positioned at the peak or valley of the PA signals.

The frequency responses are used to investigate the dependence of the MI-based
MeoM–PAS gas-sensing method on the positive integer multiple, which is the multiple of
the distance of the excitation source from the nearest light beam and the half wavelength of
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the PA signals, while keeping the distance between the two light beams (14 mm for approx-
imately 12.25 kHz, 21 mm for about 8.17 kHz, and 12 mm for approximately 14.29 kHz), the
PA gas cell’s length (168 mm for approximately 12.25 kHz, 252 mm for about 8.17 kHz, and
144 mm for approximately 14.29 kHz), the PA gas cell’s height (14 mm), and the distance
between the light beam nearest to the excitation source and the PA gas cell’s wall closest to
the other light beam (28 mm for approximately 12.25 kHz, 42 mm for about 8.17 kHz, and
24 mm for about 14.29 kHz) constant. The PA gas cell used here functions as a resonant cell.

Figure 4d–f illustrates the relationship between the positive integer multiple N, which
is the multiple of the distance of the excitation source from the nearest light beam and the
half wavelength of the PA signals, and the pressure difference P5 (unit: Pa) at a PA signal
frequency of approximately 12.25 kHz, 8.17 kHz, and 14.29 kHz, respectively:

P5 = κNθ + F. (17)

The relevant parameters and R2 coefficients of Equation (17) at different PA signal
frequencies are shown in Table 5.

Table 5. Relevant parameters and R2 coefficients of Equation (17) at different PA signal frequencies.

Frequency (kHz) κ θ F R2

12.25 −0.1069 0.8011 0.8063 0.9938
8.17 −1.443 0.1316 1.908 0.99

14.29 −0.2206 0.4803 1.077 0.9959

Figure 4d–f shows that the pressure difference is a power exponent of the positive
integer multiple, which corresponds to the multiple of the distance of the excitation source
from the nearest light beam and the half wavelength of the PA signals. This occurs when
the length of the PA gas cells differs at three distinct PA signal frequencies while the PA gas
cell functions as a resonant cell.

Figure 4a–f indicates that the phase of the MI-based MeoM–PAS gas-sensing method
follows a power exponent of the distance of the excitation source from the nearest light
beam, given that the PA gas cell functions as a resonant cell and the excitation source is
located at the peak or valley of the PA signals.

Figure 5a shows the frequency responses of the pressure differences between the two
light beams at an SNR of 10 dB for PA signal frequencies of about 4.08 kHz, 6.125 kHz,
8.17 kHz, 10.21 kHz, 12.25 kHz, 14.29 kHz, 16.33 kHz, and 18.38 kHz, respectively, while
maintaining the distance of the two light beams (14 mm), the PA gas cell’s length (84 mm),
the PA gas cell’s height (14 mm), the distance between the light beam nearest to the
excitation source and the PA gas cell’s wall closest to the other light beam (28 mm), and the
distance of the excitation source from the nearest light beam (42 mm) constant. Figure 5b
illustrates their variation. These frequencies are selected because the PA gas cell length is
an integer multiple of the half wavelengths of these PA signals. As shown in Figure 5b,
the frequency response is maximal when the PA signal frequency is about 12.25 kHz,
where half the wavelength of the PA signal is approximately equal to the distance between
the two light beams. Moreover, Figure 3a shows the changes in pressure differences at
a PA signal frequency of approximately 12.25 kHz while varying the distance between
the two light beams. The pressure difference is highest when the distance between the
two light beams is 14 mm (equivalent to half the wavelength of the PA signal). Hence,
the phase of this MI-based MeoM–PAS gas-sensing method is at its maximum when the
distance between the two light beams is roughly half the wavelength of the PA signal.
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3.2. Dependence of a PA Gas Cell Using Non-Axial PA Signals

The PA gas cell dependence is investigated above by propagating PA signals vertically
through the two light beams (axial PA signals). The dependence of a PA gas cell using non-
axial PA signals is described in this section. The dimensions of the PA gas cell, including its
length L = 84 mm, width W = 34 mm, and height H = 14 mm, and the distance between
the two light beams d = 14 mm, as well as the distance between the light beam nearest to
the excitation source and the PA gas cell’s wall closest to the other light beam 2d = 28 mm,
as well as the distance of the excitation source from the nearest light beam D = 42 mm,
remain unchanged as the PA signals propagate from perpendicular to the two light beams to
propagating along the diagonal axis of the PA gas cell, as shown in Schematic (1) in Figure 6a.
A comparison is then made between a 3D model of the PA signals propagating through
a 3D gas cell (Schematic (2) in Figure 6a) and a 2D model of the PA signals propagating
through a 2D plane along the diagonal axis (Schematic (3) in Figure 6a). The sound wave’s
frequency is approximately 11.36 kHz to meet the resonant cell condition [24,34]. The sound
waves (PA signals) are fed directly into the 3D model along the diagonal axis (Schematic (4)
in Figure 6a). As shown in Schematic (5) in Figure 6a, the sound waves (PA signals) are fed
into the 2D model when the length is

√
W 2 + L 2 ≈ 90.62 mm, the height is H = 14 mm,

the distance between the two light beams is d
L

√
W 2 + L 2 ≈ 15.10 mm, and the distance

between the light beam nearest to the excitation source and the PA gas cell’s wall closest to
the other light beam is 2d

L

√
W 2 + L 2 ≈ 30.20 mm, as well as the distance of the excitation

source from the nearest light beam is D
L

√
W 2 + L 2 ≈ 45.31 mm.

Figure 6b,c shows the pressure results in the time domain at the positions of the two
light beams for the 3D and 2D models and their differences, respectively, with an SNR of
10 dB, where the SNR value provides a good influence on behavior; however, other values
could also be selected. The frequency responses of the pressure differences (0.3902 Pa
for the 3D model and 0.3942 Pa for the 2D model) are shown in Figure 6d,e, respectively.
Therefore, the difference between the results of the 3D and 2D models is negligible, and the
dependence of a PA gas cell using non-axial PA signals can be described using a 2D model.
This is consistent with the dependence principle of axial PA signals on the PA gas cell,
including the changing rules for the distance between the two light beams, the cell length,
the cell height, and the distance between the excitation source and the nearest light beam.
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Figure 6. (a) Dependency exploration of a PA gas cell using non-axial PA signals: (1) the axial and
non-axial PA signals in the 2D and 3D models; (2) the non-axial PA signals in the 3D model; (3) the
non-axial PA signals in the 2D model; (4) the sound waves in the 3D model; and (5) the sound waves
in the 2D model. Pressure results in the time domain at the positions of the two light beams and their
differences for (b) the 3D model and (c) the 2D model at an SNR of 10 dB. Frequency responses of the
pressure differences for (d) the 3D model and (e) the 2D model.

The pressure results for the 2D and 3D models are compared to further validate this
conclusion by keeping the PA signals parallel to the two light beams. When the PA signals
are parallel to the two light beams, the plane in which the signals are located is also parallel
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to the two light beams. Thus, the pressure result for the 2D model should be 0 Pa. According
to the above conclusion, the pressure result for the 3D model (Schematic (1) in Figure 7a)
should also be 0 Pa when the sound waves (PA signals) are parallel to the two light beams
(Schematic (2) in Figure 7a). Figure 7b shows the pressure results in the time domain at the
positions of the two light beams for the 3D model, at an SNR of 10 dB, and their difference.
The frequency responses of the pressure results at the positions of the two light beams for
the 3D model (0.0417 Pa for light beam one and 0.0416 Pa for light beam two) are shown in
Figure 7c. It can be seen from Figure 7b,c that the difference in pressure at the positions of
the two light beams for the 3D models is approximately 0 Pa. Therefore, this confirms the
validity of the conclusion presented in this section.
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and their differences while keeping the PA signals parallel to the two light beams in the 3D model.
(c) Frequency responses of the pressure results at the positions of the two light beams while keeping
the PA signals parallel to the two light beams in the 3D model.

3.3. Selection of PA Gas Cell Materials

The relationship [35] between the absolute temperature Tat (unit: K) and the air density
ρ (unit: kg/m3) is shown in Equation (18).

ρ =
pm

kBTat
. (18)

In Equation (18), p is the absolute pressure at 1 atm, around 101.325 × 10 3 Pa [35];
m shows the molecular mass of the dry air, approximately 4.81 × 10−26 kg [35]; and kB
represents the Boltzmann constant, about 1.380649 × 10−23 J · K−1 [35].

The relationship [36] between the sound velocity in the air cs (unit: m/s) and the
absolute temperature Tat (unit: K) is shown in Equation (19).

cs =
√
γRgTat (19)

In Equation (19), γ represents the adiabatic index, generally given as 1.4 for air [36],
and Rg is the gas constant, approximately 286.9 J · kg−1 · K−1 [36].

Equations (18) and (19) demonstrate that the fluctuations in temperature outside the
PA gas cell can significantly affect the air density and propagation speed of PA signals
inside the PA gas cell. This, in turn, may cause measurement errors due to the resulting
fluctuations in the PA signals. Therefore, it is crucial to carefully select the material for the
PA gas cell, with particular attention given to materials with low thermal conductivity that
transmit heat slowly [37]. Using a low thermal conductivity material for the PA gas cell
effectively resists the fluctuations in the temperature outside the PA gas cell.
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In addition to aluminum, four additional common materials have been explored for
producing the PA gas cell, which is often utilized as the material for constructing PA gas
cells in the PAS research area. These materials include brass, glass, quartz, and stainless
steel [2–14]. Table 6 shows the densities of these materials at 1 atm and 20 ◦C, while Table 7
indicates their sound velocities under the same conditions. We have also utilized the K-
space pseudo-spectral method with a precision of 2 [32,33] to further discuss the selection
of PA gas cell materials.

Table 6. Densities of four materials at 1 atm and 20 ◦C.

Material Density (kg/m3) Ref.

Brass 8600 [28]
Glass 2320 [28]

Quartz 2650 [38]
Stainless steel 7740 [39]

Table 7. Sound velocities of four materials at 1 atm and 20 ◦C.

Material Sound Velocity (m/s) Ref.

Brass 4700 [29]
Glass 5640 [29]

Quartz 5570 [40]
Stainless steel 5790 [29]

It is assumed that the aluminum-produced PA gas cell is affected by a drastic change
in the external temperature, which fluctuates between 0 and 100 ◦C in steps of 10 ◦C. Table 8
shows the thermal conductivities of the five materials considered, with aluminum having
the highest thermal conductivity (237 W/(m ·K)) among them. It is used as a benchmark,
and no delay is assumed in the temperature change of the aluminum-produced PA gas
cell. On a 20 ◦C basis, the temperature outside the PA gas cell changes from 20 to 100 ◦C
and from 20 to 0 ◦C in steps of 10 ◦C, and the temperature inside the PA gas cell changes
accordingly. Air densities and sound velocities in air at 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100 ◦C, which are converted to the corresponding absolute temperature values, are then
calculated using Equations (18) and (19). These values are used to determine the pressure
results of the aluminum-produced PA gas cell at the positions of the two light beams.
Figure 8a–c illustrates the frequency responses of the differences in pressure results of the
aluminum-produced PA gas cell at the positions of the two light beams when SNR = 5 dB,
8 dB, and 10 dB, respectively. These SNR values provide a good impact on behavior;
however, other values could also be chosen. The PA signal frequency is 12.25 kHz, the
distance between the two light beams is 14 mm, the PA gas cell’s length is 84 mm, the PA
gas cell’s height is 14 mm, the distance between the light beam nearest to the excitation
source and the PA gas cell’s wall closest to the other light beam is 28 mm, and the distance
of the excitation source from the nearest light beam is 42 mm. The relationship between the
frequency responses of the aluminum-produced PA gas cell and the temperature outside
the PA gas cell is shown in Figure 8d.

Table 8. Thermal conductivities of five materials.

Material Thermal Conductivity
(W/(m·K)) Ref.

Aluminum 237 [41]
Brass 146.87 [42]
Glass 1.143 [43]

Quartz 3 [38]
Stainless steel 15.03 [42]
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Figure 8. Frequency response of the difference in the pressure results at the positions of the two light
beams in the aluminum-produced PA gas cell at (a) SNR = 5 dB, (b) SNR = 8 dB, and (c) SNR = 10 dB.
The relationship between the frequency response of (d) the aluminum-produced PA gas cell, (e) the
brass-produced PA gas cell, (f) the glass-produced PA gas cell, (g) the quartz-produced PA gas cell,
and (h) the stainless steel-produced PA gas cell and the external temperature.

It is assumed that the walls of the PA gas cells produced by five different materials have
the same thickness, and the initial internal and external temperatures of the PA gas cells
produced by five materials is 20 ◦C. The external temperature of the aluminum-produced PA
gas cell changes from 20 ◦C to ϕ, which means that the internal temperature of the PA gas
cell also changes from 20 ◦C toϕ, and the temperature difference is ∆Taluminum = |20 − ϕ|
(unit: ◦C). Then the same external temperature variation is configured for the PA gas cells
produced by other materials, and the temperature variation inside the PA gas cells produced
by other materials ∆Tother materials (unit: ◦C) can be calculated by Equation (20).

∆Tother materials =
kother materials

kaluminum
∆Taluminum. (20)
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In Equation (20), kother materials represents the thermal conductivities of other materials
(unit: W/(m ·K)); and kaluminum is the thermal conductivity of the aluminum material
(unit: W/(m ·K)).

According to Equation (20), the internal temperature of the PA gas cells, manufactured
by brass, glass, quartz, and stainless steel, respectively, can be obtained by changing the
external temperature from 20 to 100 ◦C and from 20 to 0 ◦C. They are converted to the cor-
responding absolute temperature values and then substituted into Equations (18) and (19)
to obtain the air density and sound velocity of air values at different temperatures. There-
fore, the frequency responses of the differences in the pressure results at the positions of
the two light beams in the PA gas cells produced by brass, glass, quartz, and stainless
steel, respectively, can be obtained by using these values and the K-space pseudo-spectral
method [32,33] at SNR = 5 dB, 8 dB, and 10 dB, when the external temperature is var-
ied. These results are shown in Figure 8e–h, assuming a distance of 14 mm between the
two light beams, a PA gas cell length of 84 mm, a PA gas cell height of 14 mm, a distance of
28 mm between the light beam nearest to the excitation source and the PA gas cell’s wall
closest to the other light beam, a distance of 42 mm between the excitation source and the
nearest light beam, and a PA signal frequency of 12.25 kHz.

Figure 9a–e illustrates the differences between the maximum and minimum values
of five tests for the frequency responses of the PA gas cells that are produced by alu-
minum, brass, glass, quartz, and stainless steel, respectively, at an SNR of 5 dB, 8 dB,
and 10 dB. Figure 9f shows the mean values of these tests at an SNR of 5 dB, 8 dB, and
10 dB, respectively.
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Figure 9. The differences between the maximum and minimum values of five tests for the frequency
responses of (a) the aluminum-produced PA gas cell, (b) the brass-produced PA gas cell, (c) the
glass-produced PA gas cell, (d) the quartz-produced PA gas cell, and (e) the stainless steel-produced
PA gas cell, at SNR = 5 dB, 8 dB, and 10 dB. (f) Mean values of five test differences for the PA gas cells
produced by five common materials under the influence of external temperatures.
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Figure 9f indicates that the glass-produced PA gas cell demonstrates the best perfor-
mance against fluctuations in external temperature. However, the quartz- and stainless
steel-produced gas cells have exhibited similar resistance to these changes.

Choosing suitable materials for a PA gas cell can appropriately prevent noise influ-
ence [44]. The sound absorption coefficient (SAC) is typically used to describe the sound
absorption performance of a material [44,45]. SAC is the ratio between the sum of the
absorbed and transmitted sound energy of a material and the input sound energy [45],
and its value ranges from 0 to 1 [44]. When SAC = 0, the material cannot absorb sound
energy, any sound energy input to the material can be reflected [44,45]. When SAC = 1,
the material fully absorbs and transmits all input sound energy, meaning that any sound
energy input to the material cannot be reflected [44,45]. The higher the SAC value of a
material, the better its ability to absorb and transmit sound energy [44]. However, SAC is
frequency-dependent [44,45], making it inconvenient for quantitative assessment. There-
fore, the noise reduction coefficient (NRC), an average absorption coefficient, is generally
used to assess the sound absorption performance of a material [46].

The NRC is the average of the SAC values at 250 Hz, 500 Hz, 1000 Hz, and 2000 Hz [46,47].
A lower NRC value indicates a stronger ability of the material to reflect sound energy [47].
Table 9 shows the NRC values of five common materials—aluminum, brass, glass, quartz,
and stainless steel—considered for the PA gas cell, and it is used to discuss the selection
of these five materials while keeping the same thickness of the PA gas cells' walls. Table 9
indicates that glass has the lowest NRC value (0.15) and aluminum has the highest NRC
value (0.53) of the five materials. Therefore, if the goal is to resist the noise influence
outside the PA gas cell, the material used to manufacture the gas cell should be glass, but
if the goal is to decrease the noise influence inside the PA gas cell, the material used to
manufacture the gas cell should be aluminum. Figure 9f shows that aluminum is less
resistant to temperature fluctuations outside the PA gas cell than the other four materials.
In addition, materials with an NRC value of less than 0.2 are generally considered sound-
reflecting materials, and those with an NRC greater than or equal to 0.2 are considered
sound-absorbing materials [46,47]. It can be seen from Table 9 that glass is the only one
of the five materials with an NRC value of less than 0.2 and is therefore not conducive to
reducing the noise influence inside the PA gas cell. Neither aluminum nor glass is the best
option for the PA gas cell. Figure 9f shows that quartz and stainless steel, in addition to
glass, also exhibit great performance in resisting the fluctuations in temperature outside the
PA gas cell. Furthermore, Table 9 shows that the NRC values for both quartz and stainless
steel are greater than 0.2, indicating that they can help to reduce the noise influence inside
the PA gas cell. In addition, both quartz and stainless steel have much smaller NRC values
than the initial material, aluminum, so they are more resistant to the influence of external
noise from the PA gas cell than aluminum.

Table 9. Noise reduction coefficients (NRC) of five materials.

Material Noise Reduction Coefficient (NRC) Ref.

Aluminum 0.53 (median of 0.44–0.62 in Ref. [48]) [48]
Brass 0.25 (NRC calculated by SAC in Ref. [49]) [49]
Glass 0.15 (median of 0.1–0.2 in Ref. [50]) [50]

Quartz 0.35 (mean of 0.21, 0.33, 0.37, 0.42, and 0.44 in Ref. [51]) [51]
Stainless steel 0.23 (mean of 0.34, 0.25, 0.19, and 0.15 in Ref. [52]) [52]

Therefore, considering both resistance to temperature fluctuations outside the PA gas
cell and the influence of noise inside and outside the PA gas cell, the PA gas cells produced
with quartz and stainless steel are the better options.

It is not sufficient to select the materials used to manufacture the PA gas cell to reduce
the noise influence inside or outside the PA gas cell [3,53]. To reduce the influence of
external noise, the PA gas cell should have good airtightness and a relatively wide wall
thickness in addition to the selection of the manufacturing materials, and the resonant
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frequency of the PA gas cell should not be below 1000 Hz [1,53]. The noise influence of the
gas flow inside the PA gas cell can be reduced by controlling the gas flow, modifying the PA
gas cell shape, and optimizing the PA gas cell design and manufacturing techniques [54].
The electrical noise is generally non-coherent, and its influence can be reduced by phase-
sensitive detection techniques [53]. In addition, the PA gas sensing system should be
considered for an electromagnetic shielding design to prevent mutual interference between
external electromagnetic interference and internal electromagnetism in the system [2,53].
For a resonant PA gas cell, the effect of Brownian motion noise, which is noise caused by
Brownian motion, can be reduced by causing the PA signal to form a standing wave [53,54].
In addition, the background signal noise is a coherent noise generated by the solid PA effect
of the modulated light on the window glass and inner wall of the PA gas cell [53]. The noise
cannot be reduced by phase-sensitive detection techniques [54]. If only the reduction of the
background signal noise influence is considered, the materials used to manufacture the PA
gas cell should be those with a high thermal conductivity [53,54]. Aluminum is the best
option based on the five common materials considered in this article (Table 8). However,
according to the above research results, the ability of the PA gas cell to resist external
temperature fluctuations is not optimized if aluminum continues to be used as the material
for manufacturing the PA gas cell. In fact, in addition to the material selection of the PA
gas cell, some other methods can also reduce the background signal noise influence, such
as keeping the window glass of the PA gas cell clean and contamination-free, making the
inner wall of the PA gas cell smooth enough, avoiding the contact of the light source with
the inner wall of the PA gas cell, and keeping the diameter of the inlet hole of the PA gas cell
large enough [53,54]. Therefore, the materials used to manufacture the PA gas cell are not
the only factor determining the background signal noise influence. Therefore, considering
these factors, quartz and stainless steel are still the better options for manufacturing the PA
gas cell. Finally, reducing acoustic noise caused by the transmission of sound waves inside
the PA gas cell also needs to be considered, which can be achieved by installing buffer
chambers on the PA gas cell [53].

Thermal and viscous losses are also two key parameters in the selection of materials
for manufacturing the PA gas cell [55]. Materials with high thermal conductivity and spe-
cific heat capacity should be considered to reduce thermal losses in the PA gas cell [53,55].
Therefore, aluminum should be used to produce the PA gas cell because it has the high-
est thermal conductivity (237 W/(m ·K)) and specific heat capacity (0.22 cal/g · ◦C), as
shown in Tables 8 and 10. However, the aluminum-produced PA gas cell is less resistant
to drastic changes in external temperature when it is used in a practical environment.
Therefore, aluminum is probably not the best option for manufacturing the PA gas cell.
Glass has the lowest thermal conductivity (1.143 W/(m ·K)), and its specific heat capacity
(0.16 cal/g · ◦C) is not the highest of the five materials, as shown in Tables 8 and 10. More-
over, the glass-produced PA gas cell has a weak absorption effect on the noise inside the
gas cell. Therefore, perhaps glass is not an ideal option for producing the PA gas cell either.
The thermal conductivity of quartz (3 W/(m ·K)) and stainless steel (15.03 W/(m ·K)) is
greater than that of glass, and stainless steel is better in comparison between them, but
the specific heat capacity of quartz (0.174 cal/g · ◦C) is greater than that of stainless steel
(0.117 cal/g · ◦C). In addition, viscous losses can be reduced by polishing and gold-plating
the inner walls of the PA gas cell [54,55]. So, the selection of these five materials is mainly
determined by the reduction of thermal losses. Therefore, considering the reduction in
thermal and viscous losses, quartz and stainless steel are still the better options among the
five common materials.
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Table 10. Specific heat capacities of five materials.

Material Specific Heat Capacity
(cal/g · ◦C) Ref.

Aluminum 0.22 [55]
Brass 0.092 [55]
Glass 0.16 [55]

Quartz 0.174 [56]
Stainless steel 0.117 [55]

In summary, this section discusses the selection of five common materials for the
PA gas cell—aluminum, brass, glass, quartz, and stainless steel—under the influence of
temperature fluctuations outside the PA gas cell and noise inside and outside the PA gas
cell, as well as thermal and viscous losses inside the PA gas cell. Considering these factors,
it can be concluded that the PA gas cells produced with quartz and stainless steel are
the better options. In addition, a temperature and humidity compensation system could
be attached to the interior of the PA gas cell to counteract the influence of temperature
fluctuations and humidity variations inside the PA gas cell [57,58].

3.4. Sensitivity Enhancement

According to Equation (11), the sensitivity |S(∆P(t))| = |S(P(r1, t) − P(r2, t))| (unit:
W · m−2 · Pa−1) of the MI-based MeoM–PAS gas-sensing method can be expressed as
Equation (21).

|S(∆P(t))| =
∣∣∣∣dIMI-based MeoM(∆P(t))

d∆P(t)

∣∣∣∣ = ∣∣∣∣− 8I0πLLBδ

λTat
sin
(

4πLLBδ

λTat
∆P(t)

)∣∣∣∣. (21)

According to Equation (12), the sensitivity |S(∆ρ(t))| = |S(ρ(r1, t) − ρ(r2, t))| (unit:
W · m · kg−1) of the gas-sensing method can be expressed in Equation (22).

|S(∆ρ(t))| =
∣∣∣∣dIMI-based MeoM(∆ρ(t))

d∆ρ(t)

∣∣∣∣ = ∣∣∣∣− 8I0πLLBRδ
λM

sin
(

4πLLBRδ
λM

∆ρ(t)
)∣∣∣∣. (22)

The relationship [59] between the light wavelength λ (unit: m) and the light frequency
f (unit: Hz) is shown in Equation (23).

λ =
cL

n0f
. (23)

In Equation (23), cL represents the light velocity in the air (unit: m/s); and n0 represents
the refractive index of the air, generally considered to be 1.0 [60].

Thus, Equations (21) and (22) can be transformed into Equations (24) and (25) accord-
ing to Equation (23).

|S(∆P(t))| =
∣∣∣∣− 8I0πLLBδf

cLTat
sin
(

4πLLBδf
cLTat

∆P(t)
)∣∣∣∣. (24)

|S(∆ρ(t))| =
∣∣∣∣− 8I0πLLBRδf

cLM
sin
(

4πLLBRδf
cLM

∆ρ(t)
)∣∣∣∣. (25)

Equations (24) and (25) show that the sensitivity of the MI-based MeoM–PAS gas-
sensing method is related to the length of the two light beams in the MI LLB, the frequency
of the incident light in the MI f, the intensity of the two light beams in the MI I0, the gas
molar mass M, the absolute temperature Tat, and the pressure difference ∆P(t) or gas
density difference ∆ρ(t) between the positions of the two beams. Therefore, the sensitivity
enhancement of this method is not fully determined by the pressure difference ∆P(t) or
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gas density difference ∆ρ(t) between the positions of the two light beams. They can only
guarantee the lower limit of the method’s sensitivity.

Theoretically, when only the dimensions of the PA gas cell are changed in the whole
sensing system, the pressure difference between the positions of the two light beams for
a PA gas cell with a fixed size at a specific PA signal frequency is ∆P1. According to the
regulations presented in this article, the pressure difference between the positions of the
two light beams for a PA gas cell with a smaller size at the same PA signal frequency is
n∆P1 (n is a multiple). Then, by deriving Equation (11), the sensitivity of the sensing system
with a smaller gas cell is n times greater than that of the sensing system with a larger gas
cell. Figure 10a,b show the pressure results in the time domain at the positions of the
two light beams for PA signal frequencies of approximately 12.25 kHz and 14.29 kHz, at an
SNR of 10 dB, and their corresponding differences. The distance of the two light beams
(14 mm for approximately 12.25 kHz and 12 mm for approximately 14.29 kHz) is kept at
one-half of the PA signal wavelength, the PA gas cell’s length (56 mm for approximately
12.25 kHz and 48 mm for approximately 14.29 kHz) is kept at 4 times the half wavelength
of the PA signal, the PA gas cell’s height is kept at 14 mm, the distance between the light
beam nearest to the excitation source and the PA gas cell’s wall closest to the other light
beam (28 mm for approximately 12.25 kHz and 24 mm for approximately 14.29 kHz) is
kept at 1 times the wavelength of the PA signal, and the distance of the excitation source
from the nearest light beam (14 mm for approximately 12.25 kHz and 12 mm for about
14.29 kHz) is kept at one-half of the PA signal wavelength. The frequency responses of their
pressure differences are shown in Figure 10c,d, with values of 1.5318 Pa for approximately
12.25 kHz and 1.8402 Pa for approximately 14.29 kHz, respectively.
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Figures 2d and 10c demonstrate that reducing the length of the PA gas cell from
84 mm to 56 mm and decreasing the distance between the excitation source and the nearest
light beam from 42 mm to 14 mm, for a PA signal frequency of about 12.25 kHz, results
in a pressure difference between the two light beams that is approximately 1.51 times
greater. Similarly, Figures 2f and 10d indicate that reducing the length of the PA gas cell
from 84 mm to 48 mm and decreasing the distance between the excitation source and
the nearest light beam from 36 mm to 12 mm, for a PA signal frequency of approximately
14.29 kHz, results in a pressure difference between the two light beams that is approximately
1.62 times greater.

The derivation of Equation (11) shows that changing the dimensions of the PA gas
cell alone can only marginally increase the method’s sensitivity. However, in experiments,
changing the dimensions of the PA gas cell can lead to a significant increase in sensitivity,
which can reach tens or hundreds of times greater than the theoretical increase predicted
by Equation (11) [61,62]. This is because the PA gas cell can only determine the lower
sensitivity limit for this gas-sensing method [53,54]. In addition, if the width of the PA
gas cell is also reduced, e.g., from 34 mm to 20 mm, the volume of the PA gas cell will
also be smaller (from 39,984 mm3 to 15,680 mm3 for approximately 12.25 kHz and from
39,984 mm3 to 13,440 mm3 for about 14.29 kHz). Because the PA cell constant of the PA gas
cell, which describes the ability of the gas in a PA cell to absorb light energy and convert
it into sound waves, is inversely proportional to the volume of the PA gas cell, a new PA
gas cell with a smaller volume, compared to the original PA gas cell, can lead to a stronger
PA signal [54,63]. This can also lead to an increase in the method’s sensitivity. In addition,
many factors in experiments cannot be simulated, such as the interaction degree between
the excitation light and the detected gas, etc. [53,54]. Therefore, it is not unexpected that
the increase in sensitivity by tens or hundreds of times can be achieved by reducing the
dimensions of a PA gas cell in the experiment [3,54]. Therefore, the arithmetic results
presented in this article can only serve as a guide. When the dimensions of the PA gas cell
are reduced, the actual enhancement in sensitivity of this method can only be obtained
by experimentation.

4. Conclusions

In conclusion, this paper illustrates a mathematical model of the MI-based MeoM–PAS
method, which is also referred to as MI-based PAI, for gas-sensing applications in complex
and adverse environments because this method offers a completely static measurement sys-
tem and separates the PA gas cell from the measuring system. This article also investigates
the dependence of this method on the fundamental parameters of a cubical PA gas cell
using axial PA signals. The results indicate that the phase of the method is a sine function of
the distance between the two light beams and a power exponent of the PA gas cell’s length,
the PA gas cell’s height, and the distance between the excitation source and the nearest light
beam, under the condition that the PA gas cell is resonant and that the excitation source
is at the position of the peak or valley of the PA signals. Additionally, the phase of the
method is maximal when the distance between the two light beams is approximately half
the wavelength of the PA signals under the same conditions that the PA gas cell is resonant
and that the excitation source is at the position of the peak or valley of the PA signals. The
dependence of a PA gas cell using non-axial PA signals is described under the condition that
the PA gas cell is resonant, which follows the PA gas cell dependence principle of axial PA
signals. This is consistent with the changing aforementioned parameters for the distance be-
tween the two light beams, the PA gas cell’s length, the PA gas cell’s height, and the distance
between the excitation source and the nearest light beam. Furthermore, the selection of five
common materials for the PA gas cell (aluminum, brass, glass, quartz, and stainless steel) is
discussed under the influence of temperature fluctuations outside the PA gas cell, noise
inside and outside the PA gas cell, as well as thermal and viscous losses inside the PA gas
cell. The results indicate that quartz and stainless steel are promising options. Finally, the
parameters related to the sensitivity enhancement of the gas-sensing method are analyzed
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using mathematical models. The results demonstrate that reducing the dimensions of the
PA gas cell can theoretically enhance the sensitivity of the gas-sensing method.
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