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Abstract: In this work, we introduce a novel approach to model the rain and fog effect on the
light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR
systems. The proposed methodology allows for the simulation of the rain and fog effect using the
rigorous applications of the Mie scattering theory on the time domain for transient and point cloud
levels for spatial analyses. The time domain analysis permits us to benchmark the virtual LiDAR
signal attenuation and signal-to-noise ratio (SNR) caused by rain and fog droplets. In addition, the
detection rate (DR), false detection rate (FDR), and distance error derror of the virtual LiDAR sensor
due to rain and fog droplets are evaluated on the point cloud level. The mean absolute percentage
error (MAPE) is used to quantify the simulation and real measurement results on the time domain and
point cloud levels for the rain and fog droplets. The results of the simulation and real measurements
match well on the time domain and point cloud levels if the simulated and real rain distributions are
the same. The real and virtual LiDAR sensor performance degrades more under the influence of fog
droplets than in rain.

Keywords: LiDAR sensor; rain; fog; sunlight; advanced driver-assistance system; backscattering;
Mie theory; open simulation interface; functional mock-up interface; functional mock-up unit

1. Introduction

Highly automated vehicles perceive their surroundings using environmental percep-
tion sensors, such as light detection and ranging (LiDAR), radio detection and ranging
(RADAR), cameras, and ultrasonic sensors. LiDAR sensors have gained significant atten-
tion over the past few years for their use in advanced driver-assistance system (ADAS)
applications because they provide outstanding angular resolution and higher-ranging
accuracy [1]. As a result, the automotive LiDAR sensor market is predicted to be worth
around 2 billion USD in 2027, up from 26 million USD in 2020 [2]. However, it is common
knowledge that the LiDAR sensor performance degrades significantly under the influence
of certain environmental conditions, such as rain, fog, snow, and sunlight. The effects of
these weather phenomena must therefore be taken into account when designing LiDAR
sensors, and the measurement performance of the sensors must be validated before using
them in highly-automated driving settings. Furthermore, billions of miles of test driving
are required for automated vehicles to demonstrate that they reliably prevent fatalities
and injuries, which is not feasible in the real world due to cost and time constraints [3].
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Simulation-based testing can be an alternative to tackle this challenge, but it requires that
the effects of rain and fog are modeled with a high degree of realism in the LiDAR sensor
models so they can exhibit the complexity and the behavior of real-life sensors.

In this work, we have modeled the rain and fog effect using the Mie scattering theory in
the virtual LiDAR sensor developed by the authors in their previous work [4]. It should be
noted that the sensor model considers scan pattern modeling and the real sensor’s complete
signal processing. Moreover, it also considers the optical losses, inherent detector effects,
effects generated by the electrical amplification, and noise produced by sunlight to generate
a realistic output. The sensor model is developed using the standardized open simulation
interface (OSI) and functional mock-up interfaces (FMI) to make it tool-independent [4].
We have conducted the rain measurements at the large-scale rain area of the National
Research Institute for Earth Science and Disaster Prevention (NIED) in Japan [5] and the
fog measurements at CARISSMA (Technische Hochschule Ingolstadt, Germany) [6]. The
real measurements and the simulation results are compared to validate the modeling of
the rain and fog effects on the time domain and point cloud levels. Furthermore, key
performance indicators (KPIs) are defined to validate the rain and fog effects modeling at
the time domain and point cloud levels.

The paper is structured as follows. Section 2 describes the LiDAR sensor background,
followed by an overview of the related work in Section 3. The modeling of rain and
fog effects is described in Section 4, and the results are discussed in Section 5. Finally,
Sections 6 and 7 provide the conclusion and outlook.

2. Working Principle

LiDAR is an optical technology that obtains distance information by bouncing light off
an object. LiDAR sensors measure the round-trip delay time (RTDT) that laser light takes
to hit an object and bounce back to the receiver to calculate the range, as shown in Figure 1.

Figure 1. LiDAR working principle. The LiDAR sensor mounted on the ego vehicle simultaneously
sends and receives laser light, which is partly reflected off the surface of the target, in order to measure
the distance [4].

Mathematically, the measured range R can be written as:

R =
c · τ

2
, (1)

where c is the speed of light and RTDT is denoted by τ.
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3. Related Work and Introduction of a Novel Approach

The influence of rain and fog on the LiDAR signal is well-described in the literature.
For example, Goodin et al. [7] proposed a mathematical model to predict the influence of
rain on the received power and range reduction. Afterward, they investigated the impact
of the LiDAR performance degradation caused by rain on an obstacle-detection algorithm.
Wojtanowski et al. [8] described the signal attenuation and decrease in the maximum
detection range of LiDAR sensors operating both at 905 nm and 1500 nm due to the effects
of rain and fog. In addition, they have shown that the LiDAR sensors at 905 nm are less
sensitive to environmental conditions than the ones at 1500 nm. Rasshofer et al. [9] used
the Mie scattering theory to model the influence of the effect of rain, fog, and snow on
the performance of LiDAR sensors. Their signal attenuation model results show good
agreement with the real measurements, but they do not quantify the attenuation of the
LiDAR signals. Furthermore, they show a reduction in the maximum detection range of
LiDAR sensors once the rain rate increases up to 18 mm/h. Byeon et al. [10] also modeled
the LiDAR signal attenuation caused by raindrops using the Mie scattering theory. They
used the rain distribution of three regions to show that the LiDAR signal attenuation varies
according to rain distribution characteristics. The LiDAR sensor model by Li et al. [11]
considers the LiDAR signal attenuation caused by rain, fog, snow, and haze. Zhao et al. [12]
extended the work of [11] and modeled the unwanted raw detections (false positives) due
to raindrops. They verified their model intuitively by comparing it with the data obtained
during uncontrolled outdoor measurements. In Ref. [13], the authors have developed
a model to predict and quantify the LiDAR signal attenuation due to raindrops. The
simulation results matched well with the real measurements, with a deviation of less
than 7.5%. Hasirlioglu et al. [14,15] introduced a noise model that adds unwanted raw
detections (false positives) to the real LiDAR data based on the hit ratio. The hit ratio
determines whether the laser beam hits the raindrop or not. If the hit ratio value exceeds
the selected threshold, a false positive scan point will be added to the real point clouds.
One drawback, however, of this approach is that it is computationally expensive. They
verified their modeling approach by comparing real point clouds modified by the noise
models with the points obtained under rainy conditions. The intensity values of the false
positive scan points are set empirically because no internal information about the LiDAR
hardware is available. Berk et al. [16] proposed a probabilistic extension of the LiDAR
equation to quantify the unwanted raw detection by LiDAR sensors due to raindrops.
They combined the probabilistic models’ parameters for rain distribution with the Mie
scattering theory and the LiDAR detection theory in the Monte Carlo Simulation. However,
they did not verify their model by comparing it with real measurements. In Ref. [17], the
authors proposed a real-time LiDAR sensor model that considers the beam propagation
characteristics and rain noise based on a probabilistic rain model developed in [16]. Their
sensor model uses an unreal engine’s ray casting module, providing the LiDAR point
clouds. The sensor model is not validated by the measurements of the real LiDAR sensor.
Kilic et al. [18] introduced a physics-based simulation approach to add the effect of rain,
fog, and snow on the real point clouds obtained under normal weather conditions. Their
results show that the LiDAR-based detector performance improved once they trained with
the LiDAR data obtained under normal and adverse weather conditions. Hahner et al. [19]
simulated the effect of fog on the real LiDAR sensor point clouds and used the obtained
foggy data to train the LiDAR-based detector to improve its detection accuracy.

All the state-of-the-art works mentioned above primarily focus on modeling the LiDAR
signal attenuation and stochastic simulation of backscattering (false positives) caused by
rain and fog droplets. However, most authors did not quantify these errors or validate
their modeling approach by comparing the simulations with the real measurements. Some
authors obtained the real LiDAR point clouds under normal environmental conditions and
stochastically implemented a false positive effect caused by rain, fog, and snow. These
approaches are helpful for use cases where the data from rain and fog are required for
ADAS testing, regardless of their accuracy; however, they do not fit very well in the use
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cases where a high-fidelity virtual LiDAR sensor output is needed under adverse rain
and fog conditions because the actual LiDAR sensor’s inherent optical detector and peak
detection algorithm behavior significantly change depending on the rain intensity and fog
visibility distance V. For instance, the LiDAR rays that are backscattered from the rain
or fog droplets also increase the background noise of the detector, and the low-reflective
targets close to the LiDAR sensor may be masked under the noise. This effect produces a
false negative result, significantly decreasing the LiDAR sensor detection rate. Therefore, it
is not the case that every backscattered LiDAR ray from the rain or fog droplets appears as
a false positive scan point in the point cloud. Moreover, the scattering from the rain and fog
droplets misaligns the LiDAR rays, shifts the target peak location, and ultimately results in
the ranging error derror. An overview of the features, output, and validation approaches of
the state-of-the-art works mentioned above are tabulated in Table 1.

Table 1. Overview of the state-of-the-art LiDAR sensor model working principles and validation ap-
proaches.

Authors Covered Weather
Phenomena

Covered Effects Validation Approach

Goodin et al. [7] Rain
Signal attenuation, false negative, rang-
ing error derror, decrease in maximum
detection range

Simulation results

Wojtanowski et al. [8] Rain, fog, aerosols Signal attenuation, target reflectivity,
range degradation Simulation results

Rasshofer et al. [9] Rain, fog, snow Signal attenuation, range degradation
Simulation results, qualitative com-
parison with real measurements for
fog attenuation

Byeon et al. [10] Rain Signal attenuation Simulation results

Li et al. [11] Rain, fog, snow, haze Signal attenuation Simulation results

Zhao et al. [12] Rain, fog, snow, haze Signal attenuation, false positive Quantitative comparison with mea-
surements for rain

Guo et al. [13] Rain Signal attenuation Qualitative comparison with mea-
surements

Hasirlioglu et al. [14,15] Rain Signal attenuation, false positive Quantitative comparison with mea-
surements

Berk et al. [16] Rain Signal attenuation, false positive Simulation results

Espineira et al. [17] Rain Signal attenuation, false positive Simulation results

Kilic et al. [18] Rain, fog, snow Signal attenuation, false positive Quantitative comparison with mea-
surements

Hahner et al. [19] Fog Signal attenuation, false positive Quantitative comparison with mea-
surements

Haider et al.
(proposed approach)

Rain, fog Signal attenuation, SNR, false positive,
false negative, ranging error derror

Qualitative comparison with mea-
surements for all covered effects

In this work, we introduce a novel approach to model the effect of rain and fog
on the performance of the LiDAR sensor. The proposed methodology allows for the
simulation of the rain and fog effect using the rigorous applications of the Mie scattering
theory on the time domain for transient and point cloud levels for spatial analyses. This
methodology can be used to analyze the behavior of LiDAR detectors and peak detection
algorithms under adverse rain and fog conditions. We have compared the simulation
and real measurements on the time domain to quantify LiDAR signal attenuation and
signal-to-noise ratio (SNR) caused by rain and fog droplets. The detection rate (DR), false
detection rate (FDR), and ranging error derror due to rain and fog droplets are evaluated
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on the point cloud level. In addition, we have generated a virtual rain and fog model that
considers the drop size distribution (DSD), falling velocity, gravity, drag forces, turbulent
flow, and droplet deformation.

4. Modeling of the Rain and Fog Effect in the Virtual LiDAR Sensor

Figure 2 depicts the toolchain of the proposed approach and the signal processing
steps to model the rain and fog effect in the virtual LiDAR sensor. As mentioned earlier in
Section 1, the model is built using the standardized interfaces OSI and FMI and integrated
into the virtual environment of CarMaker. This provides the ray tracing framework with a
bidirectional reflectance distribution function (BRDF) that considers the direction of the
incident ray θ, material surface, and color properties [20]. The LiDAR model uses the
ray tracing module of CarMaker. The material properties of the simulated objects, the
angle-dependent spectral reflectance Rλ(θ), and the reflection types (including diffuse,
specular, retroreflective, and transmissive) are specified in the material library of CarMaker.

Figure 2. Co-simulation framework of the proposed approach to model the rain and fog effect in a
virtual LiDAR sensor.

The FMU controller passes the required input configuration to the simulation frame-
work via osi3::LidarSensorViewConfiguration. The simulation tool verifies the input configu-
ration and provides the ray tracing detections via osi3::LidarSensorView::reflection, interface
time delay τ, and relative power Prel(t) [4].

The FMU controller then calls the LiDAR model and passes the time delay τ, rela-
tive power Prel(t), azimuth θaz, and elevation ϕel angles of the detected ray for further
processing. In the next step, the FMU controller calls the environmental condition mod-
ule and passes the user-selected rain rate (rrate) or visibility distance V to the rain or fog
modules. In the rain/fog module, virtual rain and fog are created, through which the
scan module casts the LiDAR rays according to its scan pattern (θaz, ϕel), and a collision
detection algorithm is applied to determine whether the transmitted ray of each scan point
hits the rain or fog droplet; if the beam hits the droplet, the backscattered coefficient βback
and the extinction coefficient σext based on the DSD are calculated. Furthermore, it also
provides the spherical coordinates (Rd, θaz, ϕel) of the rain or fog droplets (Rcell , θaz, ϕel)
that collided with the LiDAR ray. Next, the rain/fog module calls the LiDAR model and
passes the rain or fog droplets data for further processing. The central component of the
LiDAR model is the simulation controller. It is used as the primary interface component to
provide interactions with the different components of the model, for instance, configuring
the simulation pipeline, inserting ray tracing and the rain/fog module data, executing each
step of simulation, and retrieving the results.
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The link budget module calculates the arrival of photons over time. The detector
module’s task is to capture these photons’ arrivals n[i] and convert them into a photocurrent
signal Id[i]. In this work, we have implemented silicon photomultipliers (SiPM) as a detector.
Next, the circuit module amplifies and converts the detector’s photocurrent signal id[i] to a
voltage signal vc[i] processed by the ranging module. The last part of the toolchain is the
ranging module, which determines the range R and intensity I of the target based on the
vc[i] received from the analog circuit for every reflected scan point. The LiDAR point cloud
Npoints is exported in Cartesian coordinates.

4.1. Scan Module

The scan module uses the scan pattern of the Blickfeld Cube 1, as shown in Figure 3.
A detailed description of the Blickfeld Cube 1 scan pattern can be found in [21].

Azimuth Angle  (deg)
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n 
A
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le

 
 (

de
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Figure 3. Exemplary scan pattern of Cube 1. ±36° horizontal and ±15° vertical FoV, 50 scan lines,
0.4° horizontal angle spacing, frame rate 5.4 Hz, maximum detection range 250 m, and minimum
detection range 1.5 m.

4.2. Rain Module

The rain module generates virtual rain and calculates the extinction coefficient σext,rain
and backscattered coefficient βback,rain.

Virtual Rain Generation

Virtual rain is generated using the Monte Carlo Simulation. Monte Carlo Simulation
uses a Mersenne Twister 19937 pseudo-random generator [22] to sample the given DSD
using the inverse transform sampling method [23]. Each raindrop is generated individually
based on an underlying DSD and terminal velocity. A similar approach was introduced
by Zhao et al. [12] to generate unwanted raw data within the sensor models. DSD is the
distribution of the number of raindrops by their diameter. Many types of DSD are described
in the literature, including the Marshall–Palmer distribution, Gamma distribution, and
Lognormal distribution [24–26]. In this work, we have used the Marshall–Palmer rain dis-
tribution and the large-scale rainfall simulator distribution recorded by a real disdrometer.

4.3. Marshall–Palmer Distribution

The Marshall–Palmer DSD is commonly used in the literature for characterizing rain,
and it can be written as:

N(D) = N0 · e−ΛD, (2)

where N0 = 8000 m−3 mm−1, Λ = 4.1 rrate
−0.21mm−1, rrate is the rain rate in mm/h, and D

is the drop diameter in mm [24].
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We use the inverse transform sampling method [23] to randomly generate raindrops
based on the Marshall–Palmer distribution. Equation (2) becomes:

D = − 1
Λ
· ln(1− u), (3)

where u is a random variable with the uniform distribution U (0, 1) [23]. The terminal
velocity vt of the raindrops in m/s can be written as:

vt(D) = 3.78 D0.67, (4)

where D is the raindrop diameter in mm [27].

4.4. Physical Rain Model

The physical rain model aims to simulate the characteristics of a rain simulator inside
the virtual simulation environment. In this work, we have generated the virtual rain
according to the rain distribution of the NIED rain facility recorded by the real disdrometer.
Rather than evenly distributing the droplets in the environment, they are “spawned” from
rain sources, such as sprinklers or a homogenous planar rain source. Once the droplets are
spawned, their movement is determined by physical equations concerning gravity, drag
forces, turbulent flow, and droplet deformation according to the base concept published
by John H. Van Boxel [28]. Figure 4 shows an exemplary visualization of the rain field
generated with the physical rain model.

Figure 4. Exemplary visualization of a rain field generated by sprinklers resembling a real-world
rain simulator.

It is not within the scope of this paper to explain the detailed working principle of
the physical rain model, nor will its mathematical model be discussed here. The physical
rain model provides access to all the properties of the droplets, including position, speed,
and diameter. Based on these properties and the characteristics of the sensors’ beam,
the backscattered βback,rain and extinction σext,rain effects can be applied to the virtual
LiDAR signal.

4.5. Interaction Between the Electromagnetic Waves and Hydrometeors

There are three scattering theories (Rayleigh, Mie, and geometric/ray optics) that can
explain the interaction between the electromagnetic wave and hydrometeors depending
on the size parameter x = π D

λ . When the particle size x is very small compared to the
incident wavelength (x << 1), the Rayleigh scattering theory is used. Mie scattering theory
is used when the incident wavelength and particle size are comparable or equal (x ≈ 1).
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Geometric/ray optics is used when the incident wavelength is very small compared to
particles (x >> 1). The average raindrop diameter D is 1 mm, while the average fog droplet
diameter D is 10 µm. The size parameter of the LiDAR sensor operating at a wavelength of
905 nm is x = 3471 for raindrops and x = 35 for fog droplets [29].

In conclusion, the interaction between LiDAR waves and raindrops can be explained
using geometric/ray optics and the Mie scattering theory in the case of fog droplets. In
Ref. [30], the authors have found that the results from the Mie scattering theory and
geometric/ray optics agree well with each other for x ≥ 400. We, therefore, use the Mie
scattering theory to model the rain and fog effect on the LiDAR sensor performance.

Mie Scattering Theory

Scattering is the process where a particle changes the direction of the incident wave,
while absorption is the process where heat energy is produced. Both scattering and absorp-
tion extract energy from the incident wave and are called extinction [31]. Mathematically, it
can be written as:

Qext = Qsca + Qabs, (5)

where Qext is the extinction efficiency, Qsca denotes the scattering efficiency, and Qabs shows
the absorption efficiency [31]. In addition, the raindrops backscattered the incident LiDAR
ray, and this phenomenon is known as backscattered efficiency Qback [31].

The Mie scattering theory can be used to calculate the extinction efficiency Qext, the
scattering efficiency Qsca, and the backscattered efficiency Qback for LiDAR sensors. They
can be calculated as:

Qext =
2
x2

Nmax

∑
n=1

(2n + 1) · <(an + bn), (6)

Qsca =
2
x2

Nmax

∑
n=1

(2n + 1) ·
(
|an|2 + |bn|2

)
, (7)

Qback =
1
x2

∣∣∣∣∣Nmax

∑
n=1

(2n + 1)(−1)n · (an − bn)

∣∣∣∣∣
2

, (8)

where x is the size parameter, < denotes the real part, Nmax = x + 4x
1
3 + 10, and an and

bn are the complex Mie coefficients [31]. The Mie coefficients can be calculated using the
spherical Bessel functions [32] and the method introduced by Hong Du [33]. The Hong Du
method is computationally less expensive, so we have used it in this work. According to
this algorithm, the Mie coefficients can be written as:

an =
[rn(mx)/m + n(1− 1/m2)/x]Ψn(x)−Ψn−1(x)
[rn(mx)/m + n(1− 1/m2)/x]ζn(x)− ζn−1(x)

, (9)

and:

bn =
rn(mx)mΨn(x)−Ψn−1(x)
rn(mx)mζn(x)− ζn−1(x)

, (10)

where m is the complex refractive index of water, the size parameter is denoted by x,
rn(mx) = Ψn−1(mx)

Ψn(mx) presents the complex ratio of the Riccati–Bessel functions, and Ψn(x)
and ζn(x) are Riccati–Bessel functions. The complex ratio rn(mx) can be calculated using
the upward and downward recurrences, and it can be written as:

rn+1(mx) =
[

2n + 1
mx

− rn(mx)
]−1

. (11)

The downwards recurrence of rn(mx) is initialized by:

rN∗(mx) = (2N∗ + 1)/(mx), (12)
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and the values are iteratively calculated until n = 1. N∗ controls the precision of the Mie
scattering coefficients, and it should be greater than N∗ > 11,010 if six significant digits or
higher precision are required [33]; in this work, we have used N∗ > 30,000 to obtain seven
significant digits precision. The Riccati–Bessel functions Ψn(x) and ζn(x) of Equation (9) can
also be calculated by using the upward and downward recurrences and can be written as:

Ψn+1(x) = (2n + 1)Ψn(x)/x−Ψn−1(x). (13)

The complex function ζn(x) can be defined as:

ζn(x) = Ψn(x) + iχn(x). (14)

The same Formula (13) applies to χn(x). The upward recurrence of Ψn(x) is initialized
with Ψ−1(x) = cos(x) and Ψ0(x) = sin(x), and vice versa for the downward recurrence,
while the upward recurrence of χn(x) starts with χ−1(x) = sin(x) and χ0(x) = cos(x), and
vice versa for the downward recurrence [33].

4.6. Calculation of Extinction Coefficients

The extinction efficiencies Qext and the drop-size distribution calculated in the previ-
ous section are used to calculate the extinction coefficients σext,rain and the backscattered
coefficients βback,rain. The extinction coefficients σext,rain can be written as:

σext,rain =
π

4

∫ ∞

0
N(D)QextD2 dD, (15)

where N(D) is the rain distribution and D is the drop size diameter [29]. As mentioned earlier,
we have used the rain distribution of Marshall–Palmer [24] and the NIED rain simulator [5].

4.7. Calculation of Backscattered Coefficients

A novel approach has been introduced to model the backscattering effect of rain
droplets for the LiDAR sensor. First, the Monte Carlo Simulation generates all the rain
droplets based on the DSD; then, a collision detection algorithm is applied between the
transmitted ray of each scan point and the droplets. The collision detection algorithm
determines the particles that collide with the virtual LiDAR ray by knowing the beam
characteristics, such as beam volume, origin, and direction. These particles are described as
a set of tuples:

CP = {(Rd, θaz, ϕel , D)}, (16)

where Rd is the distance of the particle from the sensor, the azimuth angle of the raindrop
is denoted by θaz, and the elevation angle by ϕel , while D is the droplet diameter. The
backscattered coefficient βback,rain is calculated for every droplet at the distance Rd.

βback,rain =
π

4
Qback ND2Rd, (17)

where Qback is the backscattered efficiency of the particle and N is the number of drops
in 1/m3 [31].

4.8. Beam Characteristics

This work assumes a rectangular beam shape because the real LiDAR sensor used
in this work has a rectangular beam shape; its near-field size can be described by the
horizontal beam width who and the vertical beam width wvo. With increasing range, the
size of the beam also becomes larger in both directions. The divergence angles give this
property with θdiv as the horizontal and ϕdiv as the vertical divergence angle. For a given
distance r > 0 distance from the sensor, the size of the beam is [12]:

wh(r) = who + r · 2tan(
θdiv

2
) (18)
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and:
wv(r) = wvo + r · 2tan(

ϕdiv
2

). (19)

For the simulation of the effects of rain and fog, the volume of the beam between two
given ranges, r0 and r1, is required (for instance, beam volume for range cells). As shown
in Figure 5, it is trivial that the shape of the beam between r0 and r1 is a pyramidal frustum,
the volume of which is given by:

V =
1
3

h · (A +
√
(AB) + B), (20)

where A is the area of the top of the frustum marked in yellow, B is the base of the frustum
shown in green, and h is the height of the frustum. Applying this formula to the beam itself
results in:

Vr0,r1 =
1
3
(r1 − r0)

(
wh(r0)wv(r0) +

√
wh(r0)wv(r0)wh(r1)wv(r1) + wh(r1)wv(r1)

)
. (21)

This equation can be used to determine the volume of a beam in the field of view (FoV)
or calculate the beam volume for each range cell depending on the range resolution.

Figure 5. The geometry of a LiDAR ray from near-field to range r1 considering beam divergence.

4.9. Fog Module

There are two main approaches to model the effects of fog on the LiDAR signals:
modeling via empirical formulas or modeling based on statistical distributions, as given
in Section 4.2. All of these approaches have advantages and disadvantages. For instance,
the LiDAR signal attenuation due to fog droplets can be modeled using empirical for-
mulas introduced in [34–36], but it is not possible to model the backscattering from fog
droplets. These approaches are easy to implement and computationally less expensive,
while the statistical distributions that can be used to model the LiDAR signal attenuation
and backscattering from the fog droplets are computationally expensive. In this work,
we have therefore calculated the extinction coefficient σext, f og as a function of visibility
distance V using the empirical formula recommended by the International Commission on
Illumination (CIE) given in [9], which can be written as:

σext, f og =
3
V

. (22)
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The backscattering coefficient βback, f og is calculated using the Mie scattering theory
and the Deirmendjian gamma distribution, and it can be written as:

N(D) =
γρb

α+1
γ

Γ
(

α+1
γ

)(D
2

)α

e
(
−b( D

2 )
γ
)

, (23)

where Γ(•) is the gamma function and α, γ, b, ρ, and D are the parameters of N(D),

b =
α

γ(DC/2)γ
, (24)

where Dc denotes the mode diameter of maximum frequency droplets [9,12,37]. The
distribution parameters for typical environmental conditions are given in Table 2.

Table 2. Parameters of droplet size distribution in fog using a gamma-function model [9].

Weather Condition ρ (cm−3) α γ DC (µm)

Haze (coast) 100 1 0.5 0.1
Haze (continental) 100 2 0.5 0.14
Strong advection fog 20 3 1.0 20.0
Moderate advection fog 20 3 1.0 16.0
Strong spray 100 6 1.0 8.00
Moderate spray 100 6 1.0 4.00
Fog of type “Chu/Hogg” 20 2 0.5 2.00

The concentration of fog particles in the atmosphere is significantly higher than the
number of rain particles, and their size D ranges from 0.1 µm to 20 µm [9,31]. The Monte
Carlo Simulation approach adopted in Section 4.2 would be computationally highly expen-
sive if used to generate virtual fog. Unlike the rain, we have therefore used an analytical
method based on the Deirmendjian gamma distribution to generate homogenously dis-
tributed fog particles. We have used Equation (8) to calculate the backscattered efficiency
Qback. First, the virtual fog field is divided into range cells Rcells based on the LiDAR range
resolution ∆R to determine the backscattered coefficient βback, f og. In the next step, we will
consider all of the fog droplets within the beam volume of LiDAR as given in Equation (21)
at any range cell Rcell to determine the backscattered coefficient βback, f og from fog droplets.
This can be written as:

βback, f og = Rcell
π

4

∫ ∞

D=0
D2N(D)Qback dD, (25)

where N(D) is the fog distribution, D denotes the drop diameter, and Qback is the backscat-
tered efficiency [38].

4.10. Link Budget Module

The received power Prx(t) obtained from the ray tracing module does not consider the
rain or fog effect and the receiver optics losses Topt. The link budget considers the optical
receiver losses Topt and attenuates the received power Prx(t) according to Beer–Lambert’s
law using the rain or fog extinction coefficient σext,rain/ f og obtained from the rain/fog
module. This can be written as:

Prx(t) = Ptx(t)ρ
d2

aperture

4R2
trg

cos(θ)︸ ︷︷ ︸
Prx(t)

Topt · exp(−2Rtrgσext,rain/ f og), (26)

where ρ is the target reflectivity, daperture denotes the diameter of the optical aperture, Rtrg is
the target range, the direction of the incident ray is given by θ, the receiver optics loss factor
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is given by Topt, and the transmitted power is denoted by Ptx(t) [4,12]. The backscattered
coefficient βback is used to calculate the received power Prx of backscattered rain or fog
droplets. The received power Prx from the raindrops can be written as:

Prx, back rain(t) = Ptx(t)
d2

aperture

4R2
d

cos(θ)Topt βback, rain · exp(−2Rdσext,rain), (27)

where βback, rain is the backscattered coefficient from raindrops and Rd is the raindrop
range [4,12]. The received power Prx, back f og(t) from the fog droplets in a range cell can be
written as:

Prx, back f og(t) = Ptx(t)
d2

aperture

4R2
cell

cos(θ)Topt βback, f og · exp(−2Rcellσext, f og), (28)

where βback, f og is the backscattered coefficient from the fog droplets in any range cell and
Rcell is the distance of the range cell.

The total Ptot(t) received power by the detector over time can originate from different
sources, including internal reflection Pint(t), target received power Prx(t), and backscattered
power from rain and fog drops Prx, rain/ f og. That is why Ptot(t) can be given as:

Ptot(t) = Pint(t) + Prx(t) + Prx, rain/ f og(t). (29)

The power signal must be sampled with a ∆t time interval to accurately model the
optics at the photon level [39]. The sampled power equation takes the form of:

Ptot[i] = Pint[i] + Prx[i] + Prx, rain/ f og[i], (30)

with t = i · ∆t. The mean of incident photons n[i] on the SiPM detector within a one-time
bin can be written as:

n[i] =
Ptot[i] · ∆t

Eph
, (31)

where Eph = hν is the energy of a single laser photon at the laser’s wavelength, h is the
Planck constant, and ν is the photon frequency [40]. The SiPM detector generates Poisson-
distributed shot noise due to the statistical arrival of photons. That is why the arrival of
photons can be modeled as a Poisson process P [41]:

n[i] = P(n[i]). (32)

4.11. Detector Module

We have implemented the SiPM (silicon photomultiplier) detector module that pro-
vides an output current proportional to the number of photons [39]. In contrast to the
single-photon avalanche diode (SPAD), the SiPM detector yields better multi-photon detec-
tion sensitivity, photon number resolution, and extended dynamic range [42,43]. The SiPM
detector response for a given photon signal can be calculated as:

id[i] = Si · (hSiPM[i] ∗ n[i]), (33)

where Si is the SiPM detector sensitivity and the impulse response of the detector, written
as hSiPM. Si, is given as:

Si = 1− e(−t/τdelay), (34)

where τdelay is the SiPM recovery time [39,42,43].
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4.12. Circuit Module

We use the small-signal transfer function H( f ) of the analog circuit model to obtain
the voltage signal vc[i],

vc[i] = vc0 + ∆vc[i] = vc0 +F−1{H( f ) · Id( f )︸ ︷︷ ︸
F{id [i]}

}, (35)

where vc0 is the operating voltage of the circuit model, F−1 is the inverse discrete Fourier
transform (IDFT), F shows the discrete Fourier transform (DFT), and ∆vc[i] denotes the
small-signal voltage of the circuit model [39].

4.13. Ranging Module

The ranging algorithm inputs the circuit module’s voltage signal vc[i]. It then calculates
each scan point’s target range R and signal intensity I. The range R is given in meters while
the intensity I is mapped linearly to an arbitrary integer scale from 0 to 4096 as used in the
Cube 1 products. The algorithm is applied to several threshold levels to distinguish between
internal reflection, noise, and target peaks. The target range is determined based on the
relative position of the target peaks to the internal reflection, while the signal intensity is
calculated from the peak voltage levels [4].

5. Results

The rain and fog effect modeling is validated on the time domain and point cloud
levels. As shown in the following, we have used a single-point scatter to validate the model
on the time domain.

5.1. Validation of the Rain Effect Modeling on the Time Domain Level

The primary reason for verifying the LiDAR model on the time domain is to ensure that
the link budget, detector, and circuit modules work as intended. Furthermore, comparing
the time domain signals (TDS) establishes the association between measured and modeled
noise and the amplitude levels because it is difficult to compare the simulated and measured
noise at the point cloud level. It is, therefore, convenient to quantify the LiDAR signal
attenuation σext and the decrease in the SNR due to the rain and fog droplets on the time
domain level. A 3%- and a 10%-reflective Lambertian plate were placed in front of the
sensor at 20 m in the rain rate rrate of 16 mm/h, 32 mm/h, 66 mm/h, and 98 mm/h. An
exemplary scenario for a 3% Lambertian plate is shown in Figure 6.

Figure 6. (a) Real setup to validate the time domain and point cloud data. (b) Static simulation
scene to validate the time domain and point cloud data. The 3%-reflective target with an area of
1.3 m × 1.3 m was placed in front of the sensor at different distances. The actual and the simulated
sensor and target coordinates are the same. The ground truth distance dGT is calculated from the
sensor’s origin to the target’s center.
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Both the simulated and the real measured TDS obtained from the 10%-reflective plate
are shown in Figure 7, both with and without rain at 16 mm/h. There is a good match
between the target peaks and the amplitude level of the backscattered raindrops, but still
there is a slight difference in the amplitude level of the backscattered raindrops because
real-world rainfall is a random process, and it is impossible to replicate the exact behavior
of real-world rain in the simulation, yet the simulation and the real measurements agree
well with each other.

Figure 7. (a) LiDAR FMU and real measured TDS comparison obtained from the surface of a 10%-
reflective Lambertian plate at 20 m without rain. The target peaks and noise levels match well.
(b) LiDAR FMU and real measured TDS comparison obtained from the surface of a 10%-reflective
Lambertian plate placed at 20 m with 16 mm/h rain rate rrate. The target peaks and the amplitude
level of the backscattered raindrops match well. It should be noted that the relative distance is
calculated from the internal reflection to the target peaks.

Figure 8 shows the LiDAR signal attenuation σext,rain at different rain rates rrates.
The results show that the LiDAR signal attenuation significantly depends on the rain
distribution. Therefore, the simulation and real measurements will match well if the
simulated rain distribution is close to the real distribution. Figure 9 shows the SNR
of the simulated and real measured signals in different rain rates rrate. The SNR can
be calculated as:

SNR = 20 log10

(µ

σ

)
, (36)

where µ is the mean or expected signal value and σ is the standard deviation of noise [44].
The result shows that at the lower rain rates rrate, the SNR of the simulated and measured
signals match well, but just as the rain rate rrate increases, the SNR mismatch also increases,
especially for the simulation results with the Marshall–Palmer rain distribution. Therefore,
the simulation and real measurements for SNR will also match well if the simulated rain
distribution is close to the real distribution. The backscattering from the raindrops is a
random process, and it is not always possible to generate the same backscattering amplitude
from the virtual raindrops as from real-world raindrops, and this is also a reason for the
mismatch between the real and simulated LiDAR signals’ SNR.

To quantify the difference between the simulated and real measured signals’ attenua-
tion σext,rain and SNR, we use the mean absolute percentage error (MAPE) metric:

MAPE =
1
n

n

∑
i=1
| yi − xi

yi
|, (37)

where yi is the measured value, the simulated value is denoted by xi, and n shows the total
number of data points [45]. The MAPE of the signal attenuation σext for the NIED rain
distribution is 16.2% and 31.6% for the Marshall–Palmer rain distribution model. Moreover,
the MAPE of the SNR for the NIED rain distribution is 4.3% and 9.1% for the Marshall–
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Palmer rain distribution model. The results show that the LiDAR sensor’s behavior will
vary significantly depending on the rain distribution.
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0.06

0.08

0.1

Figure 8. Simulated and real LiDAR signals attenuation σext,rain due to different rain rates rrate. The
simulation results with Marshall–Palmer, NIED rain distribution, and real measurements match very
well at lower rain rates. However, as the rain rate increases, the simulation and real measurement
signal attenuation mismatch also increases, especially for the simulation results with the Marshall–
Palmer rain distribution.
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Figure 9. The SNR of the simulated and real measured signals in different rain rates rrate. The
simulation and real measurement results match very well at lower rain rates, but the mismatch
between the simulated and real SNR increases as the rain rate increases, especially for the simulation
results with the Marshall–Palmer rain distribution.

5.2. Validation of the Rain Effect Modeling on the Point Cloud Level

We have introduced three KPIs to validate the rain effect modeling on the point cloud
level: the LiDAR detecting rate (DR), the false detection rate (FDR), and the distance
error derror.

1. The DR is defined as the ratio between the number of returns obtained from both real
and simulated objects of interest (OOI) in rainy (# returns OOIrain, sim/real) and dry
(# returns OOIdry, sim/real) conditions. It can be written as:

DR =
# returns OOIrain, sim/real

# returns OOIdry, sim/real
. (38)

It should be noted that the number of points obtained from OOI in rainy and dry
conditions are the mean over all measurements of the same scenario.
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2. The FDR of the LiDAR sensor in rainy conditions can be written as:

FDR =
# returnsrain, sim/real − # returns OOIrain, sim/real

# returns OOIdry, sim/real
, (39)

where # returnsrain, sim/real is the total number of reflections from the sensor minimum
detection range to the simulated and real OOI, and it does not contain any reflection
from the OOI’s surroundings. # returns OOIrain, sim/real and # returns OOIdry, sim/real
depict the LiDAR returns from the surface of the simulated and real OOI in rainy
and dry conditions. It should be noted that the number of LiDAR reflections ob-
tained under rainy and dry conditions are the mean over all measurements of the
same scenario.

3. The distance error derror of the point cloud received from OOI in rainy and dry
conditions, both simulated and real, can be written as:

derror = dGT − dmean, dry/rain, sim/real , (40)

where the ground truth distance is denoted by dGT and dmean, dry/rain, sim/real is the
mean distance of reflections received from the surface of the simulated and the real
OOI in rainy and dry conditions. The ground truth distance dGT is calculated from
the sensor’s origin to the target’s center, and it can be written as:

dGT =
√
(xt − xs)2 + (yt − ys)2 + (zt − zs)2, (41)

where the target’s x, y, and z coordinates are denoted by subscript t and the sensors by
s [46]. The OSI ground truth interface osi3::GroundTruth is used to retrieve the sensor
origin and target center position in 3D coordinates.

Table 3 gives the DR of the real and virtual LiDAR sensor in different rain conditions
for a 3%-reflective Lambertian plate. The results show that up to 20 m, the LiDAR sensor can
reliably detect a very low-reflective target with a rain rate of 98 mm/h. It should be noted
that these results were obtained in a rain facility area where the rain was homogenously
distributed. For the benchmarking of the DR, we have filtered the point clouds from
the edges of the Lambertian plate, meaning that the effective area of the plate becomes
1.1 m × 1.1 m. The simulation and the real measurements show a good correlation with
each other. The MAPE for the DR is 2.1%.

Table 3. The DR of the LiDAR sensor, both for a real and a virtual 3%-reflective Lambertian plate,
without rain and with different rain rates rrate. The simulation and real measurements show a good
correlation. The table presents the mean over 154 measurements of the same scenario. The real LiDAR
sensor DR is denoted by DRreal , DRsim is the virtual LiDAR sensor DR, and ∆DR = |DRreal −DRsim|.

Target Distance R
5 m 10 m 15 m 20 m

rrate
(mm/h) DRreal

(%)
DRsim

(%)
∆DR
(%)

DRreal
(%)

DRsim
(%)

∆DR
(%)

DRreal
(%)

DRsim
(%)

∆DR
(%)

DRreal
(%)

DRsim
(%)

∆DR
(%)

0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0

16 100.0 100.0 0.0 100.0 100.0 0.0 89.3 96.7 7.4 88.1 93.9 5.8

32 100.0 100.0 0.0 100.0 100.0 0.0 87.5 93.2 5.7 85.3 88.4 3.1

66 100.0 100.0 0.0 99.8 100.0 0.2 86.2 91.6 5.4 84.4 89.2 4.8

98 100.0 100.0 0.0 96.5 100.0 3.5 85.2 88.2 3.0 82.3 85.9 3.6
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Table 4 shows the FDR of the real and the virtual LiDAR sensor in different rain
conditions for a 3%-reflective Lambertian plate. It should be noted that the FDR are the
false positive detections from the raindrops. The results show that while the rain rate and
the relative distance between the sensor and the target increase, the FDR also increases
because as the rain rate increases, the size of the raindrops also increases, leading to a
higher backscattering of LiDAR rays from the raindrops, which ultimately results in more
FDR. It should be noted that the FDR also depends on the rain distribution and sensor
mounting position. Furthermore, the simulation and the real measurements show good
agreement. The MAPE for the FDR is about 14.7%. The exemplary point clouds obtained
from the surface of the real and the simulated 3%-reflective Lambertian plate at a rain rate
of 32 mm/h are shown in Figure 10.

Table 4. The FDR of the LiDAR sensor, both for a real and a virtual 3%-reflective Lambertian plate,
for different rain rates rrate. The simulation and real measurements show a good correlation. The
graph presents the mean over 154 measurements of the same scenario. The real LiDAR sensor FDR is
denoted by FDRreal , FDRsim is the virtual LiDAR sensor FDR, and ∆FDR = |FDRreal − FDRsim|.

Target Distance R
5 m 10 m 15 m 20 m

rrate
(mm/h) FDRreal

(%)
FDRsim

(%)
∆FDR

(%)
FDRreal

(%)
FDRsim

(%)
∆FDR

(%)
FDRreal

(%)
FDRsim

(%)
∆FDR

(%)
FDRreal

(%)
FDRsim

(%)
∆FDR

(%)

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

16 0.8 0.3 0.5 1.8 1.4 0.4 3.2 2.9 0.3 5.5 4.1 1.4

32 1.6 1.0 1.6 4.8 3.1 1.7 7.1 5.8 1.4 7.3 7.6 0.3

66 1.7 1.2 0.5 7.0 5.7 1.3 18.9 14.6 4.3 19.6 18.2 1.4

98 2.4 1.9 0.5 9.1 6.9 2.2 20.4 17.2 3.2 22.7 20.2 2.5

Table 5 gives the distance error derror of both real and virtual LiDAR sensors in different
rain conditions. It shows that the distance error derror increases with the increase in the rain
rate rrate because as the rain rate increases, the size of the raindrops also grows. Once the
LiDAR rays collide with them, the drops cause the LiDAR rays to misalign; that is why the
distance error increases for higher rain rates.

Table 5. The distance error derror of the LiDAR sensor, both for a real and a virtual 3%-reflective
Lambertian plate, in different rain rates rrate. The simulation and real measurements show a good
correlation. The graph presents the mean over 154 measurements of the same scenario. The real
LiDAR sensor distance error is denoted by derror,real , the virtual LiDAR sensor distance error is given
by derror,sim, and ∆derror = |derror,real − derror,sim|.

Target Distance R
5 m 10 m 15 m 20 m

rrate
(mm/h) derror,real

(cm)
derror,sim

(cm)
∆derror

(cm)
derror,real

(cm)
derror,sim

(cm)
∆derror

(cm)
derror,real

(cm)
derror,sim

(cm)
∆derror

(cm)
derror,real

(cm)
derror,sim

(cm)
∆derror

(cm)

0 0.2 0.1 0.1 0.5 0.1 0.4 0.7 0.2 0.5 1.4 0.2 1.2

16 1.1 0.9 0.2 1.3 1.1 0.2 1.7 1.4 0.3 2.3 1.5 0.8

32 1.2 1.0 0.2 1.8 1.2 0.6 2.9 2.0 0.9 3.3 2.2 1.1

66 1.4 1.1 0.3 2.6 1.9 0.7 3.0 2.2 0.8 4.8 2.4 2.4

98 1.6 1.2 0.4 2.9 1.6 1.3 3.1 2.3 0.9 4.9 2.8 2.1
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Figure 10. The exemplary visualization of simulated and real point clouds obtained in 32 mm/h rain
rate rrate.

5.3. Validation of the Fog Effect Modeling on the Time Domain Level

To verify the modeling of the fog effect, we have placed the 3%-reflective Lambertian
plate at 15.3 m in front of the sensor, as shown in Figure 11. Both the simulated and the real
measured signals that reflect from the surface of the 3%-reflective Lambertian plate, with
and without fog, are shown in Figure 12.

Figure 11. (a) The real setup for the fog measurement. (b) The static simulation scene for the
validation of the fog effect. The 3%-reflective Lambertian plate was placed at a 15.3 m distance. The
real and virtual LiDAR sensor and targets coordinates are the same.

The results show that the simulated and the real measured target peaks and noise
levels match well without and with fog. The peak location of backscattering from the
fog droplets in the simulation and the real measurement varies because it is a random
process, and replicating the exact real-world fog behavior in the simulation is challenging.
For instance, the fog drop size changes during the fog life cycle [47,48], affecting the
LiDAR sensor performance. Measuring and replicating the change in the fog droplet size
during the fog life cycle in the virtual environment is quite challenging. Moreover, in a
virtual environment, it is easy to maintain constant visibility to a certain distance. It was
a challenge, however, to retain constant visibility to a certain distance, both in the real
world and in laboratory-controlled conditions, due to the limitations of the measurement
instruments and the fog generation setup. Figures 13 and 14 show the simulated and the real
LiDAR signal attenuation σext, f og and SNR with different visibility distances V. The result
shows that the LiDAR signal attenuation σext, f og caused by fog droplets increases while
the visibility distances V decreases; for instance, the LiDAR signal attenuation increases to
9.2 dB with a visibility distance of 50 m. The result also shows that the dense fog increases
the mismatch of the simulated and the real measured signals for the attenuation and
SNR. As mentioned above, the possible reason behind these deviations is the non-constant
distribution of fog in the measurement area and the random backscattering process from
fog droplets.
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Figure 12. (a) LiDAR FMU and real measured TDS obtained from the surface of a 3%-reflective plate
placed at 15.3 m without fog. The target peaks and noise levels match well. (b) LiDAR FMU and real
measured TDS obtained from the surface of a 3%-reflective plate at 15.3 m with a fog visibility V of
140 m. It should be noted that the relative distance is calculated from the internal reflection to the
target peaks.
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Figure 13. The real and virtual LiDAR signals attenuation σext, f og due to the different visibility
distances V. The simulation and real measurement results match well at the higher visibility distances.
However, as the visibility distance decreases due to fog, the simulated and real measured signal
attenuation mismatch increases.
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Figure 14. The SNR of the simulated and real measured signals with different visibility distances V.
The simulation and real measurement results match well at the higher visibility distances, but the
mismatch between the simulated and real measured SNR increases as the visibility distance decreases.
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We use the MAPE metric as given in Equation (37) to quantify the difference between
the simulated and the real measured results for fog. The MAPE for the signal attenuation
due to fog σext, f og is 13.9% and 15.7% for SNR.

5.4. Validation of the Fog Effect Modeling on the Point Cloud Level

To validate the fog effect modeling on the point cloud level, we consider the same
KPIs as given in Section 5.2. Figure 15 shows the DR of the real and the virtual LiDAR
sensor for different visibility distances V.
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Figure 15. The DR of the LiDAR sensor for the real and virtual 3%-reflective Lambertian plate with
different visibility distances V. The simulation and real measurements show good correlations.

It shows that as the visibility distances decreases, the DR of the real and the virtual
LiDAR sensors also decreases. The size of the fog droplets ranges from 5 to 20 µm, and
1 m3 of air contains 106 fog droplets, which is 103 times more than the number of raindrops
in 1 m3 of air [31]. Therefore, it is easier for LiDAR rays to penetrate through raindrops
suspended in the air than fog droplets. That is why the LiDAR signal attenuation is higher
in dense fog than in heavy rain. Furthermore, the simulation and the real measurements
show a good correlation. The MAPE for the DR is 7.5%. Figure 16 shows the FDR of the
real and the virtual LiDAR sensor due to fog.
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Figure 16. The FDR of the LiDAR sensor for a real and virtual 3%-reflective Lambertian plate with
different visibility distances V. The FDR increases with a decrease in the visibility distances. It should
be noted that FDR 300% or 500% shows that the LiDAR reflections received from the fog droplets are
3 or 5 times more than those obtained from the OOI (see Equation (39)).
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The results show that as the visibility distance V decreases, the FDR of the real and
virtual LiDAR sensors increases. The results also show that the mismatch between the
simulation and the real measurements for the FDR increases at low visibility distances. It
should be noted that the backscattering from the fog droplets is a random process, and it
is, therefore, impossible to model the exact behavior of real-world fog in the simulation.
Furthermore, we have not measured nor modeled the real fog distribution due to limited
resources. This could be another reason for the mismatch between the simulation and the
real measurements. The MAPE for the FDR is 48.2%.

Figure 17 shows the distance error derror due to fog droplets. The results show that the
distance error also increases as the visibility distance V decreases, but still, the distance
error does not exceed the maximum permissible error (MPE) specified by the manufacturer,
which is 2 cm in this case. Because the size of fog droplets is several magnitudes smaller
than the size of raindrops, LiDAR rays are less misaligned by the scattering from the fog
droplets than raindrops. That is why the distance error due to the fog droplets is smaller
than the one caused by raindrops.
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Figure 17. The distance error derror of the LiDAR sensor for the real and virtual 3%-reflective
Lambertian plate with different visibility distances V. The distance error derror increases with the
decrease in visibility distances. The simulation and real measurements show a good correlation.

6. Conclusions

In this work, we introduce a novel approach to model the rain and fog effect in the
virtual LiDAR sensor with high fidelity. The presented approach allows for the rain and fog
effect simulation in the LiDAR model on the time domain and point cloud level. Further-
more, validating the LiDAR sensor model on the time domain enabled us to benchmark
the LiDAR signal attenuation σext and SNR. The results show that the virtual and real
LiDAR sensor signal attenuation σext,rain and SNR match well if both simulated and real
rain distributions are the same; for instance, the MAPE of the signal attenuation for the
NIED rain distribution is 16.2%, while the MAPE for the Marshall–Palmer rain distribution
is 31.6%. In addition, the MAPE of the SNR for the NIED rain distribution is 4.3% and
9.1% for the Marshall–Palmer rain distribution model. Therefore, the simulation and real
measurement results will show a good correlation if the simulated and real rain distribution
are the same.

The results also show an increase in the LiDAR signal attenuation σext, f og caused by
fog droplets, while the visibility distance V decreases; for instance, the LiDAR signal atten-
uation increases to 9.2 dB with a visibility distance of 50 m. Furthermore, the simulation
and the real measurements show good agreement for the signal attenuation and SNR due
to fog droplets. The MAPE for the signal attenuation is about 13.9% and 15.7% for SNR
due to fog droplets.
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To validate the modeling of the effect of rain and fog at the point cloud level, we have
introduced three KPIs: DR, FDR, and distance error derror. The results show that with the
increasing rain rate rrate, DR decreases, while both the real and virtual LiDAR sensors could
detect the 3%-reflective target at 20 m with a rain rate of 98 mm/h. On the other hand, both
FDR and distance error increase with an increase in the rain rate. Moreover, the simulation
and the real measurements show a good correlation; for instance, the MAPE for DR is 2.1%,
and the MAPE for FDR is 14.7%.

DR significantly decreases in fog with a decrease in the visibility distance because
the density of fog droplets is 103 times higher than the density of raindrops in 1 m3 of air.
As a consequence, LiDAR rays cannot easily penetrate through fog. FDR also increases
with the decrease in visibility distances V, but the distance error is less than 2 cm. As a fog
droplet is several magnitudes smaller than a raindrop, LiDAR rays become less misaligned
by the scattering from fog droplets as opposed to the scattering from raindrops. However,
the simulation and the real measurements correlate well for these KPIs. For example,
the MAPE for DR is 7.5%, while MAPE for FDR is 48.2%. It should be noted that the
backscattering from the fog droplets is a random process, and it is, therefore, impossible to
model the exact behavior of real-world fog in the simulation. Furthermore, we have not
measured nor modeled the real fog distribution due to limited resources. This could be
another reason for the mismatch between the simulation and the real measurements. For
the LiDAR sensor, it is easier to detect the low-reflective target easily in heavy rain, but
it is very challenging for the LiDAR sensor to detect the target reliably once the visibility
distance drops below 100 m.

7. Outlook

In the next step, we will train the deep learning network-based LiDAR detector with
the data from the simulated rain and fog effect to improve object recognition in rainy and
foggy situations.
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Abbreviations
The following abbreviations are used in this manuscript:

ADAS Advanced driver-assistance system
BRDF Bidirectional reflectance distribution function
CIE International Commission on Illumination
DFT Discrete Fourier transform
DR Detection rate
DSD Drop size distribution
FDR False detection rate
FMU Functional mock-up unit
FMI Functional mock-up interface
FoV Field of view
IDFT Inverse discrete Fourier transform
KPIs Key performance indicators
MAPE Mean absolute percentage error
MPE Maximum permissible error
NIED National Research Institute for Earth Science and Disaster Prevention
OSI Open simulation interface
OOI Object of interest
RADAR Radio detection and ranging
RTDT Round-trip delay time
SNR Signal-to-noise ratio
TDS Time domain signals
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