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Global transcriptome profiling
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Food Systems Biology at the Technical University of Munich, Freising, Germany, 3Institute of
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In cereal crops, such as barley (Hordeum vulgare L.), the ability to appropriately

respond to environmental cues is an important factor for yield stability and thus

for agricultural production. Reactive oxygen species (ROS), such as hydrogen

peroxide (H2O2), are key components of signal transduction cascades involved in

plant adaptation to changing environmental conditions. H2O2-mediated stress

responses include the modulation of expression of stress-responsive genes

required to cope with different abiotic and biotic stresses. Despite its

importance, knowledge of the effects of H2O2 on the barley transcriptome is

still scarce. In this study, we identified global transcriptomic changes induced

after application of 10 mM H2O2 to five-day-old barley plants. In total, 1883 and

1001 differentially expressed genes (DEGs) were identified in roots and leaves,

respectively. Most of these DEGs were organ-specific, with only 209 DEGs

commonly regulated and 37 counter-regulated between both plant parts. A

GO term analysis further confirmed that different processes were affected in

roots and leaves. It revealed that DEGs in leaves mostly comprised genes

associated with hormone signaling, response to H2O2 and abiotic stresses. This

includesmany transcriptions factors and small heat shock proteins. DEGs in roots

mostly comprised genes linked to crucial aspects of H2O2 catabolism and

oxidant detoxification, glutathione metabolism, as well as cell wall modulation.

These categories include many peroxidases and glutathione transferases. As with

leaves, the H2O2 response category in roots contains small heat shock proteins,

however, mostly different members of this family were affected and they were all

regulated in the opposite direction in the two plant parts. Validation of the

expression of the selected commonly regulated DEGs by qRT-PCR was

consistent with the RNA-seq data. The data obtained in this study provide an

insight into the molecular mechanisms of oxidative stress responses in barley,

which might also play a role upon other stresses that induce oxidative bursts.
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1 Introduction

In aerobic organisms, reactive oxygen species (ROS) are

generated as by-products of certain metabolic pathways in plant

organelles such as chloroplasts, mitochondria, and peroxisomes

(Huang et al., 2019; Smirnoff and Arnaud, 2019). Because of their

high reactivity with cellular components, aerobic organisms have

developed systems for enzymatic ROS removal based on the activity

of ascorbate peroxidase (APX), superoxide dismutase (SOD), and

catalase (CAT) as well as non-enzymatic antioxidative systems such

as ascorbic acid, proline, and glutathione (GSH) (Foyer and Noctor,

2003; Ahmad et al., 2010). Plants also actively produce ROS as part

of signaling cascades that coordinate the appropriate responses to

environmental stimuli and contribute to stress tolerance (Pei et al.,

2000; Zhu, 2016; Mohanta et al., 2018). It is proposed that systemic

communication via redox systems is very fundamental to all

photosynthetic organisms.

The ROS species hydrogen peroxide (H2O2) has been shown to

play a role in various processes such as cell differentiation,

senescence, and cell wall formation (Kärkönen and Kuchitsu,

2015; Ribeiro et al., 2017; Zeng et al., 2017). It is generated from

superoxide in various cellular compartments as well as the apoplast

as a result of a highly conserved superoxide dismutation reaction

(Smirnoff and Arnaud, 2019). H2O2 is also known to be transported

across the cell membrane by specific aquaporins (Bienert et al.,

2007) and to participate in long distance cell signaling (Mittler et al.,

2011). Exogenous treatment with H2O2 has been shown to increase

the tolerance of plants to abiotic stress by regulating multiple stress-

responsive pathways and expression of genes including heat shock

proteins and genes involved in abscisic acid (ABA) biosynthesis

(Wahid et al., 2007; Terzi et al., 2014). An activation of ROS-

dependent signaling by H2O2 causes the accumulation of defense

proteins such as ROS-scavenging enzymes, transcription factors

(TFs), and other response factors (Hossain et al., 2015), and it thus

increases the tolerance of plants to abiotic stress. For example,

certain HEAT SHOCK TRANSCRIPTION FACTORS (HSFs) have

been suggested to serve as sensors that perceive H2O2 and regulate

the expression of oxidative stress response genes (Miller and

Mittler, 2006).

An early transcriptomic approach pursued to elucidate the

effect of H2O2 was performed in Arabidopsis thaliana cell

suspension cultures and showed that various TFs, hormone-

associated pathways, and genes associated with other vital

metabolic pathways like photosynthesis and fatty acid

biosynthesis were affected (Desikan et al., 2001). Other studies

revealed the role of H2O2 as a signaling molecule in a variety of

plant species and under various conditions. For instance, H2O2 is

involved in the response of plants to a variety of environmental

cues, such as salt stress in tomato (Li et al., 2019), heat stress in rice

(Wang et al., 2014), chilling stress in mung beans and manila grass

(Yu et al., 2003; Wang et al., 2010), copper stress in maize and mung

bean (Guzel and Terzi, 2013; Fariduddin et al., 2014), and many

more (Khan et al., 2018).

Barley is one of the oldest cultivated cereal crops and has a high

tolerance to stresses like salt, drought, and heat (Munns et al., 2006;

Rollins et al., 2013; Gürel et al., 2016). Whereas changes in the
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barley transcriptome upon those stresses have been analyzed

(Janiak et al., 2018; Osthoff et al., 2019; Nefissi Ouertani et al.,

2021), a global transcriptome analysis in response to H2O2 has not

been performed yet.

In the present study, we used RNA sequencing (RNA-Seq) to

analyze changes in the transcriptome of barley roots and leaves

upon application of H2O2. This analysis identified a total of 1001

and 1883 differentially expressed genes (DEGs) in response to H2O2

in leaves and roots, respectively. Comparative and quantitative

analyses of gene expression patterns revealed commonly regulated

key genes related to H2O2 stress between both tissues, nine of which

were further confirmed by qRT-PCR analysis. The data obtained in

this study contribute to the understanding of molecular

mechanisms of oxidative stress response in barley, which might

also play a role upon other stresses that induce oxidative bursts.
2 Materials and methods

2.1 Plant material and growth conditions

Barley plants (Hordeum vulgare cultivar Golden Promise) were

grown in pots filled with water-soaked vermiculite in a climate-

controlled growth chamber under long-day conditions with 16 h

light at 20°C and a light intensity of 120 µmol photons m-2 s-1

(Philips TLD 18W of alternating 830/840 light color temperature)

and 8 h darkness at 18°C for five days.
2.2 H2O2 application and RNA isolation

Five-day-old seedlings were harvested and washed carefully to

remove any remaining vermiculite prior to submersion in 10 mM

H2O2 (Carl Roth, Germany) or ddH2O (control) for three hours.

The duration of H2O2 treatment was selected based on previous

studies, which showed that at this time point H2O2 induced the

strongest changes in the expression of most of the H2O2-responsive

genes (Desikan et al., 2001; Stanley Kim et al., 2005; Hieno et al.,

2019). Subsequently, seedlings were carefully rinsed with ddH2O

and dissected into roots and leaves. Samples were shock-frozen in

liquid nitrogen and homogenized using a sterile, ice-cold mortar

and pestle. Total RNA was extracted using the Quick-RNA

miniprep Kit (Zymo Research, USA) according to the

manufacturer’s instructions. The yield and purity of extracted

RNA was determined with a NABI Nanodrop UV/Vis

Spectrophotometer (MicroDigital, South Korea). The integrity of

the extracted RNA was verified by separation of the 28S and 18S

rRNA bands on a 1% agarose gel.
2.3 RNA-sequencing and data analyses

RNA sequencing was performed on three biological replicates

for each treatment. Each replicate furthermore consisted of pooled

material from three plants. Library preparation and transcriptome

sequencing (3’ mRNA sequencing) were carried out at the NGS
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Core Facility (Medical Faculty at the University of Bonn, Germany)

using a NOVASEQ 6000 (Illumina, USA) with a read length of

1x100 bases and an average sequencing depth of >10 million raw

reads per sample (Table 1). 3’ end sequencing libraries were

prepared using the QuantSeq protocol (Moll et al., 2014). Briefly,

oligo dT priming were followed by synthesis of the complementary

first strand without any prior removal of ribosomal RNA. After

successful introduction of Illumina specific adapter sequences, the

resulting cDNA was further purified with magnetic beads. The

unpaired reads were processed for quality control using fastQC and

cutAdapt (Martin, 2011) in order to trim any remaining adapter

sequences. They were then aligned using Tophat2 software

(Trapnell et al., 2012) against a H. vulgare IBSC v2 reference

genome obtained from Ensembl (http://plants.ensembl.org/info/

data/ftp/index.html) using a Bowtie index (Langmead and

Salzberg, 2012) created with the help of the reference genome (in

FASTA format; the individual FASTA files of the chromosomes

were concatenated using the “cat” command in UNIX shell). The

alignment with Tophat2 was performed on an Ubuntu 18.04 LTS

operating system, in a UNIX shell environment. Every step after

alignment was performed using R 4.0.0 (R Core Team, 2020). Gene

counts from the aligned BAM files were generated using

featureCounts function in RStudio (Liao et al., 2014). Differential

gene expression analyses was carried out using DESeq2 (Love et al.,

2014). The p-values were corrected using the False Discovery Rate

(FDR) method (Benjamini and Hochberg, 1995) and subsequently

the FDR and the log2FC cutoffs were set to 0.01 and 1, respectively.

Principal Component Analyses (PCA) plots were prepared with the

raw gene counts for all samples and replicates using the tidyverse

and ggplot2 packages. The volcano plots and heatmaps were

generated using the EnhancedVolcano and Pheatmap packages,

respectively. In addition, transcript per million (TPM) values of

each gene were calculated using a separate function designed in the
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R environment (Supplementary Table S1). With common regulated

DEGs, a clustering was performed with four predefined clusters

based on FDR and log2FC cutoffs of 0.01 and 0.5, respectively. The

first and second cluster consisted of commonly down- and up-

regulated genes, respectively, while the third and fourth cluster

contained counter-regulated genes between leaves and roots of

barley. The clusters were then represented as heatmaps using the

pheatmap package and line plots using the ggpubr package.

Gene ontology (GO) and enrichment analyses were carried out

using shinyGO (Ge et al., 2020). Categories were chosen as

significant if the FDR was less than 0.05 (Benjamini and

Hochberg, 1995). Homology searches against the A. thaliana

genome were carried out using the BaRT (Barley Reference

Transcript) tool available on www.ics.hutton.ac.uk (Mascher

et al., 2017) based on a E-value cutoff of 1e-30.
2.4 Quantification of transcript
levels by qRT-PCR

qRT-PCR was performed with three replicates for each sample.

Each replicate consisted of the pooled RNA material from three

different plants. Synthesis of first strand cDNA for qRT-PCR was

carried out from at least 1 µg of total RNA using the RevertAid first

strand cDNA synthesis kit (Thermo Fisher Scientific, USA) with

oligo-dT18 primers following the manufacturer’s instructions. The

quality of cDNA was assessed using a NABI UV/Vis Nanodrop

Spectrophotometer. Gene expression was quantified in 48-well

plates using a BioRad CFX 96 real-time PCR detection system

(BioRad, Germany) and a SYBR Green PCR master mix (Thermo

Fisher Scientific, USA). All forward and reverse primers used for

qRT-PCR are listed in Supplementary Table S2. Data were

quantified using the BioRad CFX Maestro software, and the
TABLE 1 Summary of total reads and aligned reads in the RNA-seq samples from barley roots and leaves obtained under H2O2 treatment and control
conditions.

Sample Replicate Total Reads Aligned Reads % Aligned Reads

root control RC1 15222810 12333400 81.02

RC2 13555021 10223311 75.42

RC3 12544002 9988003 79.62

leaf control LC1 12392862 9242908 74.58

LC2 14067426 10125991 71.98

LC3 12314839 9224084 74.90

root + H2O2 RT1 12123370 8559783 70.61

RT2 13079745 9303393 71.13

RT3 12698432 10154310 79.97

leaf + H2O2 LT1 13222658 11555866 87.39

LT2 14555200 12333012 84.73

LT3 12220331 10214419 83.59
For each treatment three biological replicates were performed, each containing the combined RNA from three plants. LC-Leaf control, LT-Leaf H2O2 treated, RC-Root control, and RT-Root
H2O2 treated.
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expression was estimated using the 2–ddCt method (Livak and

Schmittgen, 2001) after normalization against the two reference

genes HvACTIN and HvGAPDH, as the Cq values of both genes

were unchanged upon H2O2 treatment. Data were analyzed

statistically with one-way analysis of variance (ANOVA) and

Tukey’ Post-Hoc HSD test using the agricolae and tidyverse

packages, respectively. Graphs were prepared using the

ggpubr package.
2.5 H2O2 staining and microscopic analyses

Staining of hydrogen peroxide in barley leaves and roots was

performed with 2’,7’-dichlorodihydrofluorescein diacetate (H2-

DCFDA; Thermo Fisher Scientific, USA) based on a modified

protocol (Kaur et al., 2016). Briefly, five-day-old barley seedlings

were treated with either 10 mM H2O2 or ddH2O (control) for 3

hours. Afterwards, the seedlings were briefly rinsed and treated with

10 µM H2-DCFDA prepared from a 4 mM stock dissolved in DMSO

for 1 hour in the dark. After staining, seedlings were washed, and

roots and leaves weremounted separately on a microscopy slide. 2’,7’-

Dichlorfluorescein (DCF) fluorescence was analyzed using a Leica

SP8 Lightning confocal laser scanning microscope (Leica
Frontiers in Plant Science 04
Microsystems, Germany). For excitation, an argon laser with a

wavelength of 488 nm was used, and emission of 517-527 nm was

detected using a HyD Detector. Fluorescence intensity was quantified

in regions of interest (ROI) using the integrated LASX software.
3 Results

3.1 Differential gene expression in leaves
and roots of barley in response to
application of H2O2

To investigate the transcriptomic modulation in barley

(Hordeum vulgare cv. Golden Promise) in response to oxidative

stress, five-day-old plants were exposed for three hours to 10 mM

H2O2 or to ddH2O as control (Figure 1A). H2-DCFDA staining

confirmed that H2O2 penetrated both roots and leaves (Figures 1B,

C and Supplementary Figure 1). RNA was then extracted separately

from roots and leaves, and RNA-seq analysis was carried out on

three biological replicates per tissue and treatment, each comprising

the pooled RNA from three different plants (Supplementary Table

S1). On average approximately 13 million total reads were obtained

per sample. About 75-85% of these reads could be aligned to the
A B

C

FIGURE 1

Experimental design to analyze the transcriptional changes of barley plants to oxidative stress. (A) Schematic representation of the study design.
Five-day-old barley plants were treated with either 10 mM H2O2 or water (control) for three hours. After the treatment, leaves and roots were
separated, RNA was extracted, and three independent biological replicates, each containing the pooled RNA from three plants, were submitted to
RNA-Seq analyses. The raw reads obtained were subjected to quality control and aligned against the barley reference genome. Based on raw gene
counts, a differential expression analysis was carried out using DESeq2. (B) Uptake of H2O2 in roots (upper panel) and leaves (lower panel) visualized
by H2-DCFDA. Green fluorescence of the 2’,7’-Dichlorfluorescein (DCF) was observed using a Leica SP8 lightning confocal laser scanning
microscope. BF: bright field; bar: 100 µm. (C) Quantification of fluorescence intensity of H2-DCFDA relative to untreated control tissues. Each dot
represents the average of five regions of interests (ROIs). ROIs were taken from two independent images from three biological replicates (n=6).
Statistical analysis was carried out using the two-tailed t-test (*** = P<0.001).
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barley reference genome (Table 1). To assess the main variances

within the dataset, a principal component analysis (PCA) was

performed. The result showed that PC1 (X-axis), which separates

the samples by tissue, represents the largest variation in our dataset

compared to PC2 (Y-axis), which separates the samples by

treatment (Figure 2A). Consequently, the differential gene

expression analysis was separately performed for the leaf and

root samples.

Differentially expressed genes (DEGs) between H2O2-treated

and control samples were identified based on fold change (FC)

│Log2FC ≥ 1│ and FDR < 0.01 (Supplementary Table S3). A total

number of 2884 DEGs were detected across both tissues. H2O2

application clearly resulted in stronger transcriptional changes in

roots compared to leaves (Figure 2B). Of the 1883 DEGs detected in

roots, 701 were up- and 1182 were down-regulated, while in leaves

1001 DEGs were identified with 546 up- and 455 down-regulated

(Figure 2C). Among all DEGs only 75 and 134 were commonly up-

and down-regulated, respectively, in both tissues, while 37 were

counter-regulated.
3.2 Gene ontology analyses

GO classification was used to identify the 20 most significant

biological process categories within the DEGs. The results show that
Frontiers in Plant Science 05
not only the number of genes, but also the biological processes

affected by H2O2 were clearly different between leaves and roots

(Figure 3). In leaves, GO terms associated with genes that showed

the highest fold change were related to protein complex

oligomerization, response to H2O2 and jasmonate. Further

categories with lower fold change but often higher number of

genes comprised quite global stress effects associated with

different, mostly abiotic stimuli, but also wounding (Figure 3A).

In roots, many of the enriched GOs were associated with response

to oxygenic stress including H2O2 catabolism, glutathione and ROS

metabolism, or cellular oxidant detoxification as well as with cell

wall modulation (Figure 3B).

3.2.1 Differentially expressed genes in barley
leaves in response to H2O2

In barley leaves, the most highly enriched GO term category

upon exposure to H2O2 was the response to H2O2 and protein

complex oligomerization (Figure 3A). Both categories consist of the

same SMALL HEAT SHOCK PROTEINS (SHSP domain-

containing proteins) (Table 2). SHSPs are ubiquitous in

prokaryotic and eukaryotic organisms and function as chaperone

proteins involved in the response to many abiotic stresses (Basha

et al., 2012; Waters, 2013). Their expression levels were shown in

different plant species to increase upon stress and to enhance stress

tolerance. Here, barley leaves exposed to H2O2 showed an increased
A B

C

FIGURE 2

Differentially expressed genes (DEGs) in H2O2-treated and untreated barley plants. (A) Principal component analysis of the RNAseq data showing the
homogeneity of the different samples. PC1 (X axis) separates the samples by tissue while PC2 (Y axis) separates the samples by treatment. (B)
Volcano plots of the DEGs in leaves (upper panel) and roots (lower panel). The X axis represents the fold change (Log2FC) of the DEGs (H2O2 vs.
control), whereas the Y axis represents the statistical significance (log10FDR). Pink dots indicate genes that fit the DESeq criteria of FDRand
│Log2FCin│, while beige dots represent DEGs that fit only Log2FC. N.S.: not significant (C) Venn diagram representing DEGs (DESeq, adjusted to
FDR<0.01 and │Log2FC│≥1) between H2O2-treated and untreated samples in leaves and roots. Arrows indicate up- and down-regulation. ‘O’

indicates counter-regulated genes.
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expression of SHSPs, except for the 18.8 kDa class V heat shock

protein (HORVU2Hr1G046370), which was down-regulated. All of

the differentially regulated SHSPs have close orthologs in

Arabidopsis (Li and Liu, 2019) with the majority being

orthologous to AtHSP17.6II (At5g12020).

An enrichment was also found for genes involved in hormone

biosynthesis and signaling, especially jasmonate, auxin, and abscisic

acid (ABA). Jasmonate-related DEGs were represented by the

specific GO-term category ‘response to jasmonic acid’. This

category comprised two up-regulated TIFY domain-containing

proteins with no direct homologs in Arabidopsis (Table 2). The

TIFY domain is also known as ZIM domain which is present in

members of the transcriptional repressor JASMONATE ZIM-

domain (JAZ) family, key elements in the jasmonate signaling

pathway (Chung and Howe, 2009; Pauwels and Goossens, 2011).

This category also includes genes that encode for enzymes involved

in jasmonate biosynthesis (Schaller and Stintzi, 2009; Bittner et al.,

2022) such as ALLENE OXIDE CYCLASE (AOC), and

OXOPHYTODIENOATE-REDUCTASE (OPR) as well as

ALLENE OXIDE SYNTHASE (AOS) but with a FC less than 2

(FC 1.69, Log2FC=0.76). By contrast, genes related to other

hormone signaling pathways were found redundantly interspersed

in the two GO terms ‘response to abiotic stimulus’ and ‘response to

salt stress’ (Figure 3A). With regard to auxin, a number of orthologs

to auxin-responsive genes from Arabidopsis, especially IAA-type

TFs, were found. Similar to the jasmonate signaling pathway, H2O2
Frontiers in Plant Science 06
seems to affect the auxin pathway differentially since both, up- and

down-regulated DEGs, were identified. All components related to

the phytohormone ABA were up-regulated and those related to

APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF)

domain-containing proteins, known to be involved in abiotic

stress responses and associated with various hormones, were

down-regulated. Similar to the GO term categories related to

auxin, both sets comprise mostly orthologs to TFs or co-

regulators known in Arabidopsis (Table 2).

In leaves, genes associated with photosynthesis light harvesting

in photosystem I, were also affected, however, the category did not

appear in the top GOs since for several of the genes the FC was less

than 2 but mostly higher than 1.5 (Table 2; Log2FC between 0.5 and

1). This category contained mostly down-regulated DEGs,

including several orthologs of Arabidopsis LHCII trimer

components, i.e., genes encoding for LHCb1 and LHCb3, and the

LHCa1 protein. It furthermore comprised orthologs to the

photosystem I subunits PSAF and PSAL but also the oxygen

evolving complex subunit PSBP-1 and the large subunit of

RIBULOSE-1,4-BISPHOSPHATE-CARBOXYLASE/OXYGENASE

(Rubisco) (Table 2).

3.2.2 Differentially expressed genes in barley
roots in response to H2O2

In barley roots, the most enriched GO terms are associated with

response to oxidative stress and detoxification (Figure 3B). This is
A

B

FIGURE 3

Gene ontology (GO) enrichment analysis to identify biological processes associated with the DEGs (FDR<0.01) of H2O2-treated vs. control samples in
(A) leaves and (B) roots of barley.
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TABLE 2 Selected DEGs associated with top GO terms in leaves of barley in response to H2O2.

Category Gene ID log2FC Functional protein
Predicted ortholog in

A. thaliana

Response to H2O2/ protein complex
oligomerization

HORVU2Hr1G046370 -3.74 SHSP domain-containing protein
AT4G21870
(AtHSP15.4)

HORVU3Hr1G020500 2.24 SHSP domain-containing protein AT5G12020/AT5g12030 (AtHSP17.6)

HORVU3Hr1G020490 3.03 SHSP domain-containing protein AT5G12020/AT5g12030 (AtHSP17.6)

HORVU3Hr1G020390 1.267 SHSP domain-containing protein
AT5G12020/AT5g12030

(AtHSP17.6)

HORVU0Hr1G020420 1.54 SHSP domain-containing protein
AT5G37670
(AtHSP15.7)

HORVU3Hr1G020520 1.84 SHSP domain-containing protein
AT5G12020/AT5g12030

(AtHSP17.6)

HORVU6Hr1G082360 2.98 SHSP domain-containing protein
At1G54050
(AtHSP17.4)

Response to jasmonic acid

HORVU5Hr1G062290 2.34 TIFY domain-containing protein
AT1G74950
(AtJAZ12)

HORVU4Hr1G076850 1.80 TIFY domain-containing protein no homolog

HORVU5Hr1G098090 1.21 Uncharacterized protein
AT1G13280
(AtAOC4)

HORVU7Hr1G118010 -1.44 Oxidored FMN domain-containing
AT1G76680
(AtOPR1)

HORVU2Hr1G004230 -1.55 Oxidored FMN domain- containing
AT1G76690
(AtOPR2)

HORVU6Hr1G081000 0.76 Allene oxide synthase
AT5G42650

(AtCYP74A/AtAOS)

Response to abiotic stimulus/ osmotic stress/
hormones

Auxin HORVU7Hr1G084940 1.81 Auxin responsive protein
AT4G14550

(AtIAA14/AtSLR)

HORVU5Hr1G087880 1.48 Auxin responsive protein
AT5G65980
(AtPILS7)

HORVU7Hr1G033820 1.22 Auxin responsive protein
AT1G19220
(AtARF19)

HORVU1Hr1G086070 1.00 Auxin responsive protein no homolog

HORVU1Hr1G086070 1.00 Auxin responsive protein no homolog

HORVU6Hr1G058890 -1.52 Auxin response factor
AT4G30080
(AtARF16)

HORVU7Hr1G077110 -1.62 Auxin responsive protein no homolog

HORVU5Hr1G093580 -2.40 Auxin responsive protein
AT3G04730
(AtIAA16)

Abcisic acid HORVU7Hr1G085130 2.34 Multiple protein bridging factor
AT3G24500
(AtMBF1c)

HORVU7Hr1G035500 1.58 bZIP domain-containing protein
AT4G34000

(AtABF3/AtbZIP37)

HORVU3Hr1G069590 1.37 HSF_domain-containing protein
AT3G24520
(AtHsfC1)

(Continued)
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also evident by the fact that many DEGs within those GO terms are

class-III peroxidases, catalases, or genes related to glutathione

metabolism, which were grouped together as a category named

‘Detoxification of H2O2’ (Table 3). In plants, class-III peroxidases

have been described in association with a wide variety of biotic and

abiotic stresses along with plant defense mechanisms (Almagro

et al., 2009; Shigeto and Tsutsumi, 2016). While most peroxidases
Frontiers in Plant Science 08
were up-regulated, some were down-regulated along with a number

of glutathione transferases, an ascorbate peroxidase (APX), and

CATALASE 1. We also found strong up-regulation of the genes for

two putative detoxification efflux carriers/multidrug and toxic

compound extrusion (DTX/MATE) transporters. These metabolite

transporters have been described to be associated with plant stress

responses and overexpression of a gene encoding a cotton DXT
TABLE 2 Continued

Category Gene ID log2FC Functional protein
Predicted ortholog in

A. thaliana

HORVU6Hr1G028790 1.30 WRKY domain-containing protein
AT4G31800
(AtWRKY18)

HORVU5Hr1G115100 1.03 GRAM domain-containing protein
At5G13200

(AtGEML5/AtGER5/AtGRE5)

other HORVU5Hr1G097560 1.62
HTH MYB domain-containing

protein
AT2G38090

HORVU3Hr1G085180 1.26 MYB domain-containing protein no homolog

HORVU6Hr1G091700 -1.13
Ethylene receptor domain-

containing protein
AT3G04580
(AtEIN4)

HORVU4Hr1G077310 -1.31 AP2/ERF domain-containing protein no homolog

HORVU4Hr1G000700 -1.92 AP2/ERF domain-containing protein
AT3G23240

(AtERF092/AtERF1b)

HORVU3Hr1G010190 -3.31 AP2/ERF domain-containing protein
AT1G68840

(AtEDF2/AtRAV2/AtTEM2)

Photosynthesis

HORVU6Hr1G091660 -1.67 Chlorophyll a-b binding protein
AT2G34420
(AtLHCb1.5)

HORVU1Hr1G088920 -1.37 Chlorophyll a-b binding protein
AT2G34420
(AtLHCb1.5)

HORVU7Hr1G040370 -1.16 Chlorophyll a-b binding protein
AT2G34420
(AtLHCb1.5)

HORVU6Hr1G047870 -1.11
Ribulose bisphosphate carboxylase

LSU
ATCG00490

(RubisCo LSU)

HORVU5Hr1G109250 -1.07 Chlorophyll a-b binding protein
AT1G29930
(AtLHCb1.3)

HORVU5Hr1G109260 -0.93 Chlorophyll a-b binding protein
AT2G34420
(AtLHCb1.5)

HORVU2Hr1G040780 -0.92 Chlorophyll a-b binding protein
AT5G54270
(AtLHCb3)

HORVU1Hr1G078380 -0.91 Chlorophyll a-b binding protein
AT2G34420
(AtLHCb1.5)

HORVU2Hr1G060880 -0.87 PsbP domain-containing protein
AT1G06680
(AtPsP1)

HORVU5Hr1G100140 -0.81 PSI-F
AT1G31330
(AtPsaF)

HORVU7Hr1G046320 -0.72 Chlorophyll a-b binding protein
AT3G54890
(AtLHCa1)

HORVU3Hr1G009210 -0.71 PSI subunit V
AT4G12800
(AtPsaL)

HORVU1Hr1G088870 -0.68 Chlorophyll a-b binding protein
AT2G34430
(AtLHCb1.4)
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TABLE 3 Selected DEGs associated with top GO terms in roots of barley in response to H2O2.

Category Gene ID log2FC Functional annotation Predicted ortholog in A. thaliana

Response to H2O2

HORVU0Hr1G020420 -1.21 SHSP domain containing protein
AT5G37670
(AtHSP15.7)

HORVU2Hr1G077710 -1.59 SHSP domain containing protein
AT4G10250
(AtHSP22)

HORVU3Hr1G006940 -2.24 SHSP domain containing protein No ortholog

HORVU3Hr1G020390 -1.92 SHSP domain containing protein
AT5G12020
(AtHSP17.6II)

HORVU3Hr1G020490 -2.79 SHSP domain containing protein
AT5G12020
(AtHSP17.6II)

HORVU3Hr1G020520 -2.96 SHSP domain containing protein
AT5G12020
(AtHSP17.6II)

HORVU4Hr1G015170 -3.2 SHSP domain containing protein
AT4G10250
(AtHSP22)

HORVU4Hr1G060720 -1.34 SHSP domain containing protein
AT3G46230
(AtHSP17.4)

HORVU4Hr1G060760 -2.88 SHSP domain containing protein
AT1G53540
(AtHSP17.6C)

HORVU6Hr1G008640 -2.55 Catalase
AT1G20630
(AtCAT1)

HORVU7Hr1G014870 -1.54
ABC transporter domain containing

protein
AT1G31770
(AtABCG14)

Detoxification of H2O2

H2O2 catabolism HORVU7Hr1G039550 3.97 Peroxidase
AT1G05260
(AtPRX3)

HORVU2Hr1G026640 3.65 Peroxidase
AT1G05260
(AtPRX3)

HORVU7Hr1G010280 3.598 Peroxidase
AT4G11290
(AtPRX39)

HORVU1Hr1G016730 2.96 Peroxidase
AT2G18140
(AtPRX14)

HORVU2Hr1G018550 2.91 Peroxidase
AT5G05340
(AtPRX52)

HORVU7Hr1G039590 2.74 Peroxidase
AT1G05260
(AtPRX3)

HORVU2Hr1G018530 2.60 Peroxidase
AT5G05340
(AtPRX52)

HORVU7Hr1G039570 2.21 Peroxidase
AT1G05260
(AtPRX3)

HORVU0Hr1G002840 2.17 Peroxidase
AT4G11290
(AtPRX39)

HORVU2Hr1G100610 2.07 Peroxidase
AT5G17820

(AtPRX57/AtPRXR10)

HORVU1Hr1G016770 2.01 Peroxidase
AT4G11290
(AtPRX39)

HORVU2Hr1G026590 1.93 Peroxidase
AT4G11290
(AtPRX39)

HORVU2Hr1G026520 1.84 Peroxidase
AT4G11290
(AtPRX39)

(Continued)
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TABLE 3 Continued

Category Gene ID log2FC Functional annotation Predicted ortholog in A. thaliana

HORVU2Hr1G026540 1.83 Peroxidase
AT4G11290
(AtPRX39)

HORVU6Hr1G026600 1.67 Peroxidase
AT5G05340
(AtPRX52)

HORVU7Hr1G039560 1.52 Peroxidase
AT1G05260
(AtPRX3)

HORVU1Hr1G016870 -1.84 Peroxidase
AT5G66390

(AtPRX72/AtPRXR8)

HORVU2Hr1G124930 -1.99 Peroxidase
AT1G71695

(AtPRX12/AtPRXR6)

HORVU4Hr1G022280 -2.15 Peroxidase
AT5G05340
(AtPRX52)

Glutathione metabolism HORVU6Hr1G063830 -1.47 Glutathione peroxidase
AT4G11600

(AtGPX6/AtGPXL6)

HORVU5Hr1G006330 -1.17 Glutathione transferase no homolog

HORVU1Hr1G049230 -1.28 Glutathione transferase
AT2G29470
(AtGSTU3)

HORVU1Hr1G021140 -1.36 Glutathione transferase
AT3G62760
(AtGSTF13)

HORVU6Hr1G011120 -2.16
GST_C terminal domain-containing

protein
AT4G19880

HORVU5Hr1G006330 -1.17 Glutathione transferase no homolog

HORVU1Hr1G049070 -2.86
GST_N terminal domain-containing

protein
AT1G10370
(AtGSTU17)

Response to ROS /
Detoxification

HORVU4Hr1G057170 -1.31 APX domain-containing protein
AT1G07890

(AtAPX1/AtC3H)

HORVU6Hr1G008640 -2.55 Catalase
AT1G20630
(AtCAT1)

HORVU4Hr1G011690 2.26 DTX/MATE metabolite transporter
AT3G26590
(AtDTX29)

HORVU0Hr1G022350 -4.09 DTX/MATE metabolite transporter
AT5G52450
(AtDTX16)

Cell wall

HORVU4Hr1G028720 2.70
Xyloglucan endotransglucosylase/

hydrolase
AT5G13870

(AtXTH5/AtXTR12)

HORVU2Hr1G010800 2.37 ExpansinA11
AT1G20190
(AtEXPA11)

HORVU3Hr1G116470 2.07 Pectin acetylesterase no homolog

HORVU3Hr1G016820 2.04
Xyloglucan endotransglucosylase/

hydrolase
AT5G57550
(AtXTH25)

HORVU2Hr1G120100 1.47 Endoglucanase
AT1G48930

(AtGH9C1/AtCEL6)

HORVU3Hr1G016800 1.44
Xyloglucan endotransglucosylase/

hydrolase
AT5G57550
(AtXTH25)

HORVU5Hr1G118270 1.43 Cellulose synthase
AT5G64740

(AtCESA6/AtIRX2)

HORVU7Hr1G093680 1.27 Expansin
AT4G38210
(AtEXPA20)
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protein in Arabidopsis reduced stress-induced levels of H2O2 (Lu

et al., 2019).

As in leaves, the most highly enriched GO term category in

roots upon exposure to H2O2 was the response to H2O2, albeit with

very few genes (Figure 3B). Similar to leaves, this category includes

several SHSP domain-containing proteins, but in contrast to leaves,

they were down-regulated (Table 3). All of the differentially

regulated SHSPs have close orthologs in Arabidopsis, with several

of them being orthologous to AtHSP17.6. This category contains

also down-regulated catalase and ABC transporter containing

domain proteins.

H2O2 treatment also induced up-regulation of components of

cell wall biogenesis and modulation, such as xyloglucan

endotransglucosylase/hydrolase, expansin, endo-1,4-beta

glucanase, pectin acetyl esterase, and cellulose synthase (Table 3)

that were found interspersed in several GO term categories. Indeed,

H2O2 and peroxidases were shown to be involved in cell wall

remodeling upon environmental stress (Tenhaken, 2015).
3.3 Common DEGs of leaves and roots in
response to H2O2

As described above, we identified a total of 246 common DEGs

between leaves and roots of barley when using a │log2FC ≥ 1│cutoff
(Supplementary Table S3, Figure 2C). For several genes, we noticed

that they were differentially regulated in both tissues, however, in one

tissue they showed an expression with a FC>2 (│log2FC ≥ 1│) while
in the other tissue a FC less than 2 but higher as 1.5 Thus, for

(│log2FC between 1 and 0.5│) was detected. determination of

commonly regulated genes in leaves and roots we used a cutoff of

Log2FC≥0.5 and listed these genes separately in Supplementary Table

S3. Using this cut-off, a total 349 common DEGs were identified

between roots and leaves of barley (Supplementary Figure S2;

Supplementary Table S3). Of these, 116 and 176 genes were up-

and down-regulated, respectively, while 58 genes showed counter-

regulation. These common DEGs were organized in four clearly

distinguishable clusters (Figure 4A), with either commonly down-

(cluster 1) and up-regulated (cluster 2) genes or genes up-regulated in

leaves but down-regulated in roots (cluster 3) and vice versa (cluster

4). Heat maps and line plots were constructed to visualize the changes

in gene expression pattern for each cluster (Figures 4A, B).

3.3.1 Commonly up- and down-regulated genes
Cluster 1 contains DEGs commonly down-regulated in leaves

and roots upon H2O2 treatment (Supplementary Table S3), among

them members of important transcription factors such as AP2/ERF,
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WRKY, CBF1, NAC, and HD-ZIP HOMEOBOX (Supplementary

Table S4, Figure 5A). Cluster 1 also comprises orthologs to the

Arabidopsis sugar transporters SWEET10 and SWEET5. Other

transporters were orthologs to the phosphate transporter PHT1;7

and the aquaporin TIP4;1. TIP aquaporins in plants had been

shown to not only transport water molecules but also other

molecules like H2O2 (Kurowska et al., 2020). In addition to

components of oxidative stress, detoxification or cell wall

biogenesis and modification that were already discussed in

chapter 3.2.2, cluster 1 also contained several kinases including

orthologs to the CYSTEINE-RICH RECEPTOR-LIKE PROTEIN

KINASES (CRKs), CRK29 and CRK25. CRKs are presented in

Arabidopsis by a large gene family with over 40 members and

have been associated with various abiotic and biotic stresses

(Bourdais et al., 2015).

Cluster 2 contains DEGs commonly up-regulated in leaves and

roots (Supplementary Table S3). Interestingly, it contains TFs of

similar families as cluster 1, like WRKY and AP2/ERF but also

orthologs of the LOB DOMAIN CONTAINING PROTEIN 41

(LBD41) from Arabidopsis (Supplementary Table S4; Figure 5B).

DEGs associated with primary metabolism like amino acid and

nucleic acid metabolism were also found in cluster 2. Genes

associated with primary metabolism were also shown to be up-

regulated in other transcriptome studies associated with abiotic

stress (Hirai et al., 2004; Wang et al., 2014) and DEGs found in

cluster 2 do not seem to be related to any specific metabolic

pathway. Two MITOGEN-ACTIVATED PROTEIN KINASEs

(MAPKs) identified in cluster 2 are orthologs to AtMAPKKK16

and AtMAPKKK17, both of which were shown to be regulated by

ABA (Wang et al., 2011).

3.3.2 Counter-regulated genes
Cluster 3 consists of 42 DEGs up-regulated in leaves and down-

regulated in roots of barley upon H2O2 treatment (Supplementary

Table S3). Nine of these DEGs are orthologs to different small heat

shock proteins from Arabidopsis (Supplementary Table S4;

Figure 6). The cluster furthermore comprises an assorted set of

genes whose orthologs in Arabidopsis are connected with various

metabolic pathways and hormone signaling.

Cluster 4 consists of only 15 genes and no common functional

categories were found (Supplementary Table S4). However, they

include genes, whose Arabidopsis orthologs have been associated

with hormones, or cell wall modification, i.e. the COPPER-

CONTAINING AMINE OXIDASE 3 (CUAO3) that was suggested

to be involved in stress response since it was up-regulated upon

treatment with several hormones or flagellin (Planas-Portell

et al., 2013).
TABLE 3 Continued

Category Gene ID log2FC Functional annotation Predicted ortholog in A. thaliana

HORVU7Hr1G098370 1.55 Xyloglucan endotransglycosylase
AT4G25810

(AtXTH23/AtXTR6)

HORVU3Hr1G091360 257 Pectin esterase
AT5G09760
(AtPME51)
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Overall, clusters 3 and 4 show very few genes previously

described to be associated with oxidative stress.
3.4 qRT-PCR confirmation of
selected DEGs

In order to confirm the results obtained from RNA-seq

analyses, we performed quantitative RT-PCRs (qRT-PCR) on

some of the identified DEGs. For these, we selected several DEGs

that showed common regulation in leaves and roots in our dataset

and which, based on their functional annotation, could be related to

oxidative stress (Supplementary Table S5). Orthologs to some of

them had already been shown to play an important role in H2O2

and ROS-related signaling not only in Arabidopsis but also in

important crops like wheat, maize, and rice (Polidoros et al., 2005;

Mylona et al., 2007; Steffens, 2014; Dudziak et al., 2019). They also

represent different levels of regulation, some being among the most

highly up- or down-regulated genes and other showing a much

more subtle response. These genes represent different gene

ontologies, and encode for a catalase, a peroxidase, a glutathione

S-transferase, several TFs, a MAPKKK, and a xyloglucan

endotransglucosyalase, a protein involved in cell wall

modification. As shown in Figure 7 and in Supplementary Table
Frontiers in Plant Science 12
S5, the log2FC changes observed with the different techniques were

often quite close and, in all cases, the results of the qRT-PCR

matched the trend observed in the RNA-seq data.
4 Discussion

In plants, H2O2 is a crucial ROS which plays a dual role as a

harmful by-product of cell metabolism and as a secondary

messenger that affects development and growth. Complex cross-

talk between H2O2 and other signaling molecules, such as Ca2+ ions

and hormones, plays a key role in regulating different biological

processes that contribute to the response to various biotic and

abiotic stresses (Peiter, 2016; Saxena et al., 2016). Despite its

importance, very little is known about H2O2-induced changes of

the transcriptome in barley. In this study, an analysis of the barley

transcriptome in response to H2O2 was performed using next

generation sequencing. First, a suitable concentration of H2O2

that was shown to initiate a stress response in barley was selected

on basis of previously performed experiments (Dodd et al., 2010;

Giridhar et al., 2022). An increase in cytosolic Ca2+ ([Ca2+]cyt) is

one of the first responses of plants to most biotic and abiotic stresses

(Dodd et al., 2010) that in turn leads to downstream stimulus-

specific cellular responses. H2O2 was shown to induce such
A B

FIGURE 4

Clustering of DEGs commonly regulated or counter-regulated in leaves and roots of barley upon H2O2 treatment (|Log2FC|≥0.5 and FDR<0.01). (A)
Heat map showing the Log2FC associated with each gene in leaves and roots. (B) Line plot showing the mean ± SE of the |Log2FC| associated with
each cluster in leaves and roots.
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transient changes of [Ca2+]cyt with 10 mM eliciting the highest

response in barley roots and leaves (Giridhar et al., 2022). Staining

of intact plants with the ROS indicator H2-DCFDA confirmed that

the exogenously applied H2O2 penetrated into both organs

(Figures 1B, C, Supplementary Figure 1). To exclude natural

degradation of RNA and changes of the transcriptome driven by

processes such as senescence or tillering, five-day-old barley plants

were used. Growth of monocotyledonous leaves is initiated from the

base and the leaf blade shows developmental gradients, i.e.,

disappearance of poly (A+) RNA levels along the developing

blade (Hellmann et al., 1995). Moreover, plant senescence is a

natural process known to be initiated by ROS that in turn activates

transcription factors interacting with senescence associated genes

(Bieker et al., 2012; Shimakawa et al., 2020). Thus, the growth

conditions and plant age used in the analysis ensure as much as

possible a solely treatment-dependent change of the transcriptome.

Overall, the RNA-seq analysis showed that under the chosen

conditions H2O2 caused more transcriptional changes in roots

compared to leaves (Figure 2). Most of the identified DEGs were

found exclusively in one of the two plant parts, further confirming

organ-specific responses. While this difference may be in part due to

a difference in H2O2 penetration into roots and leaves, it is more

likely caused by differential response of the two tissues to H2O2

signals and/or oxidative stress. Only about 10% of the DEGs were
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found to be up- and down-regulated in leaves as well as in roots,

some of which showed counter-regulation. This difference in

response is also mirrored by the GO terms associated with the

identified DEGs that only showed a minor overlap (Figure 3).
4.1 Leaf-specific transcriptomic changes in
response to H2O2

Our data showed that several genes encoding for small heat

shock proteins (SHSPs) were up-regulated by H2O2 in barley leaves

(Table 2). In barley, the roles of several HSPs in response to a

diverse range of abiotic stimuli have been characterized

(Hlaváčková et al., 2013; Chaudhary et al., 2019; Landi et al.,

2019). HSPs have also been shown to play crucial roles during

abiotic stresses such as cold and heat in other important crop

genera, like rice, maize, and wheat (ul Haq et al., 2019). SHSPs are a

subgroup of HSPs defined by their size and a conserved a-
crystalline C-terminal domain. They are known to form

oligomeric complexes and prevent denatured proteins from

aggregation until they can be refolded by other HSPs. They have

been speculated to interact with transcription factors of the HEAT

SHOCK FACTOR (HSF) family to create the HSP-HSF complex,

alteration of which can drive essential reactions in response to ROS
A B

FIGURE 5

Selected DEGs commonly regulated in leaves and roots of barley upon H2O2 treatment. Down-regulated (A) and up-regulated (B) genes are
grouped by functional category and presented with their Arabidopsis orthologs. TFs, transcription factors.
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(Driedonks et al., 2015). The SHSPs in our data set belong to

subfamilies with close orthologs in Arabidopsis, i.e. HSP17.6, 15.4,

15.7, and 17.4 (Li and Liu, 2019). HSP17.6 and HSP15.7 have been

shown to be localized in the peroxisomes in Arabidopsis (Ma et al.,

2006; Li et al., 2017). Peroxisomes are one of the main subcellular

compartments in which ROS are produced by processes such as ß-

oxidation and photorespiration, and which are crucial for

antioxidant defense (Sandalio et al., 2013; del Rıó and López-

Huertas, 2016). Additionally, HSP17.4 and 17.6 have been shown

to exhibit increased transcript levels during periods of abiotic stress

in Arabidopsis (Swindell et al., 2007). Thus, the induction of these

HSPs points to a potential role of these proteins in increasing the

tolerance to oxidative stress also in barley leaves. The single down-

regulated SHSP is an ortholog to AtHSP15.4, for which this contrary

behavior upon stress was already described (Siddique et al., 2008).

Not surprising, considering the well-established juxtaposition

between ROS production and photosynthesis, the application of

H2O2 negatively affected several photosynthetic components

(Table 2). The most affected group represents chlorophyll a/b binding

proteins orthologous to various light-harvesting complex proteins of the

LHCb-type and to a component of the light-harvesting complex I,

LHCa1, of Arabidopsis. Down-regulation of LHCb-type proteins upon

oxidative stress has been previously described (Staneloni et al., 2008). It

is likely part of an established photoprotection mechanism to alleviate

increased ROS levels generated when the photosynthesis reaction

becomes unbalanced, e.g., under high light conditions.

The role of phytohormones like ABA and jasmonate in response to

several biotic and abiotic stimuli has been extensively studied in plants
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(Verma et al., 2016). In our data, several genes related to jasmonate

signaling were found to be down-regulated (Table 2), including an

ortholog of Arabidopsis 12-OXOPHYTODIENOATE REDUCTASE

(OPR). The OPR3 protein of Arabidopsis has been denoted as one

of the most crucial enzymes in jasmonate synthesis, which converts 12-

oxophytodieonic acid (cis-OPDA) to OPC8:0 in peroxisomes (Bittner

et al., 2022). However, recent studies highlighted the role of an OPR3-

independent pathway for jasmonic acid (JA) biosynthesis, involving an

OPR2-mediated alternative bypass via dinor-OPDA (dnOPDA) and

4,5-didehydro-JA, which is then converted to JA (Chini et al., 2018).

Interestingly, we found a down-regulation of the barley ortholog of

OPR2 in leaves, the consequence of which remains speculative due to

the unclear role of the OPR3-independent bypass pathway. By contrast,

genes coding for ALLENE OXIDE CYCLASE (AOC) and ALLENE

OXIDE SYNTHASE (AOS) were up-regulated in leaves. These enzymes

catalyze the generation of both cis-OPDA and dnOPDA, which in turn

would increase OPDA production for both pathways. This is

interesting, because OPDA is believed to have an independent

regulatory function both on transcription (similar to JA-Ile), but also

on protein activity by OPDadylation. Moreover, OPDA-mediated

signaling seems closely associated with thiol metabolism and redox-

mediated processes (Böttcher and Weiler, 2007; Ohkama-Ohtsu et al.,

2011; Bittner et al., 2022). Also related to jasmonate signaling are two

TIFY domain-containing proteins that were induced in response to

H2O2 (Table 2). The TIFY domain is found in members of the

JASMONATE ZIM DOMAIN (JAZ)-type transcriptional repressors

involved in jasmonate signaling (Chung and Howe, 2009; Pauwels and

Goossens, 2011). However, no regulation of TFs associated with

jasmonate signaling was detected in our data set.

By contrast, many of the genes associated with other

phytohormones, e.g. auxins and ABA, encode TFs or other

proteins involved in transcription regulation (Table 2). Several of

these genes belong to the large family of AP2/ERF-type TFs, members

of which have been associated with environmental stresses including

hypoxia and oxidative stress. While mostly associated with ethylene,

AP2/ERF function is also connected to ABA, gibberellic acid,

cytokinin, and brassinosteroids (Xie et al., 2019). The largest group

of genes associated with hormones relates to auxin (Table 2), the role

of which is mostly associated with development and growth.

However, experimental evidence linked auxin also to oxidative

stress, especially auxin-mediated stress-dependent cell proliferation

including the RSL-type TF ROOT HAIR DEFECTIVE SIX-LIKE4

(RSL4) that targets NADPH oxidases also known as respiratory burst

oxidase homologs (RBOHs) and secreted plant-specific type III

peroxidases that impact apoplastic ROS homeostasis and in turn

stimulate root hair cell elongation (Pasternak et al., 2005; Iglesias

et al., 2010; Mangano et al., 2017).
4.2 Root-specific transcriptomic changes
in response to H2O2

In roots, many DEGs were found to be associated with the

detoxification of H2O2 (Table 3), especially peroxidases and genes

re la ted to g lu ta th ione metabo l i sm. GLUTATHIONE

TRANSFERASES (GSTs) and GLUTATHIONE PEROXIDASES
FIGURE 6

Selected counter-regulated DEGs in leaves and roots upon H2O2

treatment. Genes up-regulated in leaves and down-regulated in
roots are grouped by functional category and presented with their
Arabidopsis orthologs. Metabo., metabolism; sig., signaling.
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(GTPs) have both been shown to be involved in plant stress

responses (Bela et al., 2015; Nianiou-Obeidat et al., 2017).

However, somewhat surprisingly, our data showed clear down-

regulation of several GSTs and GTPs along with other key players

associated with H2O2 detoxification such as orthologs of

Arabidopsis ASCORBATE PEROXIDASE 1 (APX1) and

CATALASE 1(CAT1). Moreover, two putative DETOXIFICATION

EFFLUX CARRIERS/MULTIDRUG AND TOXIC COMPOUND

EXTRUSION (DXT/MATE) proteins were strongly up-regulated

in roots. The MATE family proteins facilitate the efflux of various

compounds including substances, such as hormones or flavonoids,

that improve adaptation to stress (Ku et al., 2022).

The largest set of genes whose expression was affected in

response to H2O2 belongs to class III plant type peroxidases

(Table 3), whose role in plant defense mechanisms in response to
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a wide variety of biotic and abiotic stresses is well established. They

play an important role in the cellular redox homeostasis upon stress.

In addition, they also catalyze the oxidation of a variety of substrates

and have been linked to processes involved in cell wall stability,

including lignin and suberin polymerization in response to stress

(Kidwai et al., 2020). Thus, the up-regulation of these peroxidases in

roots upon H2O2 treatment is in line with the up-regulation of genes

involved in cell wall metabolism observed in this study. Some

components of the cell wall architecture, particularly the

xyloglucans, have been shown to play an important role in

imparting abiotic stress tolerance by coordinating with hormonal

and other signaling cascades. For example, a xyloglucan galactosyl

transferase from Arabidopsis, SHORT ROOT IN SALTMEDIUM 3

(RSA3), was shown to play a crucial role under salt stress by

assembling actin microfilaments and thus preventing ROS
FIGURE 7

Analyses of transcript levels for selected candidate genes by qRT-PCR. Data represent means ± SE of three biological replicates (n=3), each having
two technical repeats. Transcript levels were normalized to HvACTIN and HvGAPDH. Letters represent significant differences estimated using one-
way ANOVA and Tukey’s Post-Hoc HSD test (P<0.05). Potential functions of the genes inferred from orthologous genes in Arabidopsis are indicated
in brackets.
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accumulation induced by disruption of actin microfilaments (Cho

et al., 2006; Li et al., 2013). Also the role of xyloglucan modifying

enzymes along with expansins in loosening and expanding the cell

wall network upon abiotic stresses has already been described

(Tenhaken, 2015).
4.3 Commonly and counter-regulated
DEGs in responses to H2O2

Overall, leaves and roots showed very unique transcriptional

responses upon H2O2 treatment. Not only the number of DEGs was

much higher in roots compared to leaves, the change in

transcription also affected a quite different set of genes (Figures 2,

3). Nevertheless, there are DEGs that were found in both plant parts

(Figure 4). These 349 DEGs were further divided into four clusters,

depending on their expression pattern. Looking at the two larger

clusters, the commonly up- or down-regulated DEGs (Figure 5,

Supplementary Table S3 and S4), certain patterns in the functional

categories can be observed. Both clusters include TFs from different

families. This is not unexpected and highlights their versatility in

differentially regulating genes as an important part of all stress

responses (Javed et al., 2020). However, of the TFs identified in this

study, only few have previously been associated with oxidative

stress, such as an Arabidopsis ortholog to HORVU2Hr1G066080

and HORVU3Hr1G016320, the LOB DOMAIN CONTAINING

PROTEIN 41 (LBD41), that was previously identified in relation

with low-oxygen endurance or high-light-induced increase in H2O2

(Mustroph et al., 2009; Vanderauwera et al., 2011). However, some

were found associated with stresses, such as herbivory, that include

ROS-mediated signaling or mutations that cause increased levels of

ROS (Paudel et al., 2013; Garcia et al., 2016).

Several transporters were found commonly down-regulated

(Supplementary Table S4 and Figure 5A). The aquaporin encoded

by HORVU4Hr1G085250 is orthologous to the TONOPLAST

INTRINSIC PROTEIN 4;1 (TIP4;1) of Arabidopsis and rice.

Aquaporins not only transport water but also other molecules

including H2O2. TIP4;1 from barley was shown to be up-

regulated by ABA in roots and gibberellic acid in shoots (Ligaba

et al., 2011). Moreover, its expression was also up-regulated upon

drought (Kurowska et al., 2019). Also sugar transporters of the

SWEET-type and PHT1.7 phosphate transporters have been

demonstrated to play a role in abiotic stress tolerance and showed

variable expression patterns under stress conditions (Cao et al.,

2020; Gautam et al., 2022).

We also found common down-regulation of orthologs to

RECEPTOR-LIKE PROTEIN KINASES(RLKs) from different

subfamilies, i.e., WAK, LLR, CRK and RLCK (Supplementary Table

S4 and Figure 5A). Experimental evidence suggests that RKLs are a

vital part of the growth-defense trade-off, i.e. by facilitating the cross-

talk between different phytohormones (Zhu et al., 2023). However, of

the specific RLKs found commonly down-regulated in barley leaves

and roots, only the pepper ortholog of WAKL20 was described in

relation to stress (Zhu et al., 2023). DEGs connected to various facets

of primary metabolism were found commonly up-regulated
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(Supplementary Table S4 and Figure 5B). While several of them

are involved in pathways that play a role in stress responses, an

obvious connection between these specific DEGs is lacking. Overall,

even if no clear connection to oxidative stress exists, many of the

commonly regulated DEGs have been described or postulated

previously to be involved in stress tolerance mechanisms.

A very small number of DEGs was found counter-regulated

upon treatment with H2O2 (Supplementary Table S4 and Figure 6),

the majority of which showing up-regulation in leaves and down-

regulation in roots. Several of those genes are connected to aspects

of metabolism and hormone signaling, and some orthologous genes

of other plant species, such as SERAT1, OSM34, and UGT74D1 of

tomato, grapevine and Arabidopsis have been previously connected

to stress, ABA signaling, or auxin (Tavares et al., 2015; Jin et al.,

2021; Park and Kim, 2021; Liu et al., 2022). Remarkably, this cluster

also includes a group of nine HSPs, and this different expression in

leaves and roots raises questions about their specific role in stress

response in the different tissues.
5 Conclusions

Plant adaptation to changing environmental cues requires

acclimation, enabling them to fulfil their lifecycle. This adaptation

is based to a large extent on substantial changes on transcriptional

level. Our data reveal that H2O2 modulates the expression of a wide

range of genes within the barley genome. The results provide first

insights into the significant role of H2O2 in altering cellular activities

in this important crop species. However, in which manner all these

genes are coordinated within the cell to provide an appropriate

response during stress-induced H2O2 increase is an important

question that needs to be addressed in further research. Many of

them have previously been associated to stress responses in barley or

more often via their orthologs in Arabidopsis or other crops. This

reveals a high degree of similarity in the responses of these plants to

situations where cellular H2O2 levels increase either as a toxic by-

product of stress or as a dedicated signaling molecule. Other genes

identified in this screen have so far not been associated with stress. As

important redox molecules participating in plant cell signaling,

developmental processes stress responses, as well as causing

oxidative damage, uncovering the effect of ROS generally and H2O2

specifically on gene expression provides good insights into the

molecular mechanisms of oxidative stress responses in barley. Such

understanding might increase our ability to improve stress resistance

in barley and other crops to optimize crop performance and

productivity in present and future environmental climate

challenges. Particularly, the highest up- or down-regulated genes in

our dataset in both tissues were mostly uncharacterized and

information on the exact nature of the genes is missing. These data

can be used to guide future studies aimed to functionally characterize

novel stress-related genes using state-of-the-art experimental designs

including generation of mutants and ectopic expression lines. This

will enable us to better understand H2O2 mediated regulation of

adaptive processes not only in barley but also in other crops and

might thus support targeted breeding of more resilient crops.
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(2013). “Role of peroxisomes as a source of reactive oxygen species (ROS) signaling
molecules,” in Peroxisomes and their key role in cellular signaling and metabolism. Ed.
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