
Density Planner: Minimizing Collision Risk in Motion Planning
with Dynamic Obstacles using Density-based Reachability∗

Laura Lützow1,2, Yue Meng2, Andres Chavez Armijos3 and Chuchu Fan2

Abstract— Uncertainty is prevalent in robotics. Due to
measurement noise and complex dynamics, we cannot
estimate the exact system and environment state. Since
conservative motion planners are not guaranteed to find a
safe control strategy in a crowded, uncertain environment,
we propose a density-based method. Our approach uses
a neural network and the Liouville equation to learn the
density evolution for a system with an uncertain initial state.
We can plan for feasible and probably safe trajectories
by applying a gradient-based optimization procedure to
minimize the collision risk. We conduct motion planning
experiments on simulated environments and environments
generated from real-world data and outperform baseline
methods such as model predictive control and nonlinear
programming. While our method requires offline planning,
the online run time is 100 times smaller compared to model
predictive control.

The code and supplementary material can be found at
https://mit-realm.github.io/density_planner/.

I. INTRODUCTION

Ensuring safety is crucial for autonomous systems.
However, because of uncertainties such as measurement
errors, external disturbances, and model errors, we
cannot precisely predict the future state of the system or
the environment, which complicates safety certification.

To deal with these uncertainties, there are two main
directions in motion planning: Conservative approaches
focus on robust safety by considering all possible
situations via reachability analysis [1], planning a worst-
case safe trajectory [2] or computing safe sets in which
safety can be guaranteed for contained trajectories [3,
4]. However, in many situations, a guaranteed safe
trajectory may not exist. Thus, other approaches seek
trajectories that are safe with high probability [5, 6]
by assuming linear dynamics or Gaussian distributions
to propagate the uncertainties along the trajectories.
Our method follows a similar philosophy as the latter
approach but we handle nonlinear dynamics and the
propagation of arbitrary initial state uncertainties by
leveraging machine learning techniques.

*Laura Lützow was supported by a fellowship within the IFI
program of the German Academic Exchange Service (DAAD). Ford
Motor Company provided funds to assist the authors with their
research, but this article solely reflects its authors’ opinions and
conclusions and not Ford’s.

1 Department of Informatics, Technical University of Munich,
Germany

2 Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, USA

3 Division of Systems Engineering, Boston University, USA

Recent work [7] solves the Liouville equation [8]
with a neural network to learn the density distri-
bution of reachable states. The follow-up work [9]
conducts perturbation-based motion planning to en-
sure probabilistic safety. However, the method in [9]
is computationally expensive and was not tested on
realistic datasets. Inspired by this work, we design a
differentiable framework to plan for feasible trajectories
which minimize the collision risk. Beyond the system
settings in [9], we also model the uncertainty from the
environment and estimate the collision probability in
an efficient manner. The proposed planning process can
be described as follows: First, we predict the evolution
of the state distribution in time for a closed-loop system
under a parameterized control policy using a neural
network. Then, we model the environment uncertainty
as a probability occupancy grid map. Finally, we use a
gradient method to optimize the policy parameters by
minimizing the collision risk.

We conduct experiments on both simulated and real-
world data [10] where our method can outperform a
standard and a tube-based model predictive control
(MPC) with a lower failure rate and lower online
runtime. Furthermore, our method can be used for
nonlinear system dynamics and uncertain initial states
following an arbitrary probability distribution and can
find plausible trajectories even when the worst-case
collision is inevitable.

Our contributions are threefold: (1) To the best of
our knowledge, we are the first to propose a density-
based, differentiable motion planning procedure for
nonlinear systems with state and environment uncer-
tainties. (2) We provide an efficient method to compute
the collision probability for closed-loop dynamics and
an effective gradient-based algorithm for probabilistic
safe trajectory planning. (3) We test our approach
on simulated and real-world testing cases where we
outperform state-of-the-art motion planning methods.

II. RELATED WORKS

Motion planning under uncertainties: Motion plan-
ning aims to find a trajectory that minimizes some
cost function, fulfills the kinematic constraints, and
avoids collisions [11]. Environment uncertainties can be
treated as occupancy maps [12, 13, 14] where probability
navigation functions [15], chance-constrained RRT [16],
or constrained optimization techniques [17] are applied
to ensure safety. However, most of these methods

https://mit-realm.github.io/density_planner/

assume that the initial state is precisely known, but
this is often not given in the real world due to sensor
noise. Thus, it is desirable to consider the whole initial
state distribution for motion planning as it is done by
density-based planning methods.

Density-based planning: Many density-based plan-
ning approaches assume that the initial state follows
a Gaussian distribution. Under linear dynamics, the
mean and covariance of the state distribution can be
easily propagated through time [18], and the related
optimal control problems can be solved by convex pro-
gramming [19]. There exist several publications dealing
with the covariance steering problem for nonlinear
systems [20, 21, 22], but these methods are not directly
applicable to non-Gaussian cases.

Controlling arbitrary initial distributions is closely
related to optimal transport theory [23]. The work [24,
25] finds the optimal policy by solving the Hamilton-
Jacobi-Bellman (HJB) equation. However, this method
can only be used for full-state feedback linearizable
systems and the convergence cannot be guaranteed.
In [26], a primal-dual optimization is proposed to
iteratively estimate the density and update the policy
with the HJB equation, but this approach requires a time-
consuming state discretization and cannot generalize to
high-dimensional systems.

The closest work to ours is [9], which estimates the
density for nonlinear systems and arbitrary initial distri-
butions with neural networks (NN). With a perturbation
method and nonlinear programming, a valid control
policy is searched. However, the planning algorithm
is very near-sighted, the collision-checking procedure
is still computationally expensive, and no optimality
statements can be claimed. Our approach overcomes
these drawbacks by utilizing a more efficient collision
computation method and a gradient-based optimization
algorithm to minimize the collision probability.

III. PRELIMINARIES

Density prediction: First, we consider an autonomous
system ẋ = f (x) where x ∈ Rn is the system state
with initial density distribution ρ0(x) and ρ(x, t) is the
density of x at time t. According to [8], ρ(x, t) follows
the Liouville equation (LE):

∂ρ

∂t
+∇ · (f · ρ) = 0, (1)

where ∇ · (f · ρ) =
n
∑
i

(
∂

∂xi
fi(x)ρ(x, t)

)
. Following [26],

we know that the density at the future state Φ(x0, t) is

ρ(Φ(x0, t), t) = ρ0(x0) exp
(
−

∫ t

0
∇ · f (Φ(x0, τ)) dτ︸ ︷︷ ︸

g(x0,t)

)
,

(2)
where Φ denotes the flow map of the system. By solving
Eq. (2), which can be accelerated by approximating

g(x0, t) with a neural network [27], and using interpo-
lation methods, the whole density distribution ρ(·, t) at
time t can be estimated.

Problem formulation: In this work, we want to define
an optimal control policy that steers an autonomous
system to a goal state while minimizing the collision
probability with dynamic obstacles. The state and input
constraints must be satisfied, and the system dynamics
can be nonlinear in the states.

In contrast to standard motion planning problems, we
consider an uncertain initial state following an arbitrary
but known probability density function. During the
execution of the control policy, the state can be measured
and used for closed-loop control.

IV. DENSITY-BASED MOTION PLANNING

In this section, we explain the proposed algorithm.
First, we show how the density distribution of the closed-
loop dynamics can be predicted given a parameterized
control policy. Based on this, we provide an algorithm to
compute the collision probability. Next, we introduce the
cost function to evaluate the policy parameters. Lastly,
we describe the gradient-based optimization method.

A. Density Estimation for Controlled Systems

A controlled system ẋ = f (x, u) with policy u =
π(x; p) and parameters p can be treated as an au-
tonomous system with dynamics fp(x), and hence, its
density can be computed with Eq. (2).

Although our approach can adapt to arbitrary control
policies, we choose p to parameterize a reference
trajectory that is tracked by a tracking controller. By
utilizing contraction theory [28] for the controller syn-
thesis, the tracking error between the system and the
reference trajectory can be upper-bounded and formal
convergence guarantees can be provided. In this paper,
the contraction controller is learned with the algorithm
from [29] which requires the system to be control-affine.
However, the remaining parts of the density planner
do not need this special system structure such that the
planner can be applied to arbitrary system dynamics
when replacing the controller.

Analog to [27], we train an NN to approximate g and
Φ from Eq. (2) using the initial state x0, the prediction
time tk, and the control parameters p as inputs.

Assuming that the initial density ρ0 at state x0 is
known, the density ρ(Φ(x0, tk), tk) can be predicted.

B. Computation of the Collision Probability

In this paper, we assume the probabilistic predictions
for the evolution of a 2D environment are given as
occupancy maps. The environment is evenly split into
Cx ×Cy grid cells along x and y directions. Pocc(cx, cy, tk)
denotes the probability that cell (cx, cy) is occupied by
an obstacle at time tk. Obstacles can be road users, lanes,
or static objects, and their respective occupancy proba-
bilities can be generated by off-the-shelf environment

predictors as in [30, 31, 32]. The discretization of the
environment is illustrated in Fig. 1 as a coarse grid map
for visualization purposes.

t0 t1

cx

cy

t0

cx

cy

t1

Fig. 1: Discretization of the environment.
We can compute the density distribution of the

position of our ego vehicle as follows: First, we randomly
sample initial states {x(i)(0)}N

i=1 from the support of
the given initial density distribution and predict the
density {ρ̂(x(i)(tk), tk)}N

i=1 along the reference trajectory
p with the trained NN. To compute the occupation
probabilities of the ego vehicle Pego(cx, cy, tk) for every
cell (cx, cy) and timestep tk, we assign to each predicted
sample position x̂(i)(tk) a corresponding cell (c(i)x , c(i)y)
on the occupancy map. The densities of all samples
falling into the same cell are averaged to represent the
intermediate occupancy logits. Finally, the occupancy
logits are normalized on the xy-plane to transform to
the occupancy probability of the ego vehicle Pego. The
collision probability on (cx, cy) can be computed as:

Pcoll(cx, cy, tk) = Pocc(cx, cy, tk) · Pego(cx, cy, tk). (3)

By integrating Pcoll(cx, cy, tk) over the x and y dimen-
sions, we can derive the overall collision probability at
time tk. For simplicity, we do not consider the physical
dimensions of the system when predicting the future
density distribution but assume a point shape.

C. Cost Function Formulation

After computing the collision probability for a given
reference trajectory p, we seek to find the reference
trajectory that reaches a target goal and stays within
the valid state space while minimizing the collision
probability and the control effort. On that account,
we create a differentiable cost function as a convex
combination of four sub-objectives with weighting
factors α to evaluate trajectory

(
x(·), u(·)

)
:

J
(
x(·), u(·)

)
=αG JG + αI JI + αB JB + αC JC. (4)

JG penalizes the distance from the final state of the state
trajectory to the goal state, weighted by the final density
of the trajectory,

JG = ρ(x(tN), tN)||x(tN)− xG||2QG
, (5)

where tN is the final time, xG is the goal state for the ego
vehicle to reach and QG is a weighting matrix. Similarly,
JI penalizes the control effort,

JI =
N−1

∑
k=0

||u(tk)||2QI
. (6)

The term JB aims to keep the state trajectory within the
valid state space and is defined as

JB =
N

∑
k=0

ρ(x(tk), tk)
(
||x(tk)− xmin||2Qmin(x(tk))

+||x(tk)− xmax||2Qmax(x(tk))

)
(7)

where xmin is the minimum and xmax is the maxi-
mum bound for the state space, and Qmin(x(tk)) and
Qmax(x(tk)) are diagonal matrices whose diagonal
elements are nonzero only when the corresponding
state exceeds the maximum or falls below the minimum
bound, respectively.

The last term, JC, describes the cost for high collision
probabilities. Due to the non-differentiability of the
implemented binning method for computing Pego, the
collision probability cannot be minimized directly by
a gradient-based optimization algorithm. Instead we
compute a differentiable collision risk for x(tk) as
follows:

1) We approximate the gradients of Pocc between
adjoining cells in x and y direction denoted by Gx
and Gy, respectively.

2) Following the negative gradient, we can compute
the desired position for sample x(tk):

cx,des(tk) = cx(tk)− βGx(cx, cy, tk) (8)
cy,des(tk) = cy(tk)− βGy(cx, cy, tk), (9)

where β is the step size, and cx and cy are the x and
y position of x(tk) in grid coordinates, respectively.

3) After transforming the desired grid position to the
position in real-world coordinates (px,des, py,des),
we can compute the collision risk cost as

JC =
N

∑
k=0

Pcoll(x(tk))
((

px(tk)− px,des(tk)
)2

+
(

py(tk)− py,des(tk)
)2
)

, (10)

where the collision probability for the refer-
ence trajectory is computed as Pcoll(x(tk)) =
Pocc(x(tk), tk)ρ(x(tk), tk). The minimization of JC
yields positions x(tk) with low occupancy prob-
ability, and consequently, decreases the collision
probability of the trajectory.

Finally, the overall cost function can be minimized by
gradient descent methods such as ADAM [33].

D. Optimization Approach
We propose the following two-step procedure for

optimizing the reference trajectory:
Initialization: Since the optimization of Eq. (4) for

an uncertain initial state is computationally complex
and due to its non-convexity can get stuck in local
minima, we wish to find a suitable initial guess first
without performing any density predictions. This can
be done by assuming an exactly given initial state which

is chosen as the mean of the initial density distribution
and optimizing a large number of reference trajectories
starting from there. The process is given as follows:

First, we randomly sample M parameter sets {p(i)}M
i=1

from the admissible policy parameter space and recover
the corresponding reference trajectories starting at the
predefined initial state. Next, we calculate the cost with
Eq. (4) for each parametrization by assuming that the
system follows the corresponding reference trajectory
accurately. We update the parameters {p(i)}M

i=1 with
gradient descent until a certain number of iterations
is reached. Since we do not consider the uncertainty
of the initial state, we assume that the density of each
state is equal to one.

Given that we wish to guide the trajectories to the
goal, we initialize αB and αC in Eq. (4) for all trajectories
with zero. At each optimization iteration and for each
trajectory pair, we check if the distance to the goal is
smaller than a threshold. If this is true for one trajectory,
the corresponding αB is set to a nonzero value such
that the state space constraints get enforced. For all
trajectories where αB ̸= 0, we perform another check: If
the state space constraints are met, the collision cost will
be considered by setting αC to a nonzero value. This
cost calculation procedure ensures that the trajectories
are first steered to the goal, are next moved to the valid
state space, and only then get optimized with respect
to collisions. This procedure saves computation effort
and leads to good trajectories much faster than when
considering all cost terms from the beginning. Finally,
we compare the costs of all optimized parameter sets
and return the set p∗ with the lowest cost.

Local optimization with density predictions: In the
next step, we locally optimize the best parameter set
p∗ by taking the initial state uncertainties into account.
First, we randomly sample S initial states {x(i)(0)}S

i=1
from the given initial density distribution ρ(·, 0) and
approximate their state trajectories x(i)(·) as well as their
density ρ(x(i)(·), ·) with the neural density predictor
when tracking reference trajectory p∗.

Next, we compute the costs J(i) of all trajectories
with Eq. (4) where all weights α are nonzero from the
beginning. If the maximum number of optimization
iterations is not reached, we calculate the gradient of
the overall cost ∑S

i=1 J(i) and optimize p∗.

V. EXPERIMENTS
While the proposed motion planning algorithm can

be applied to all kinds of autonomous systems, we im-
plement our method on a self-driving car in a congested
uncertain environment. In this section, we introduce the
model and problem for an autonomous-driving scenario.
Additionally, we perform an ablation study on the
proposed optimization method. Lastly, we compare our
algorithm against three baseline methods in different
environments. All experiments were conducted on an
AMD Ryzen Threadripper 3990X (2.9GHz) with an

−2 0 2
−2

−1

0

1

2

p y
−

p y
∗

[m
]

LE Prediction

−2 0 2
px − px∗ [m]

−2

−1

0

1

2

p y
−

p y
∗

[m
]

NN Prediction

Density Scale

1e-07 1e-04

(a) tk = 0.5s

−2 0 2
−2

−1

0

1

2

p y
−

p y
∗

[m
]

LE Prediction

−2 0 2
px − px∗ [m]

−2

−1

0

1

2

p y
−

p y
∗

[m
]

NN Prediction

Density Scale

1e-09 1e-04

(b) tk = 4s

−2 0 2
−2

−1

0

1

2

p y
−

p y
∗

[m
]

LE Prediction

−2 0 2
px − px∗ [m]

−2

−1

0

1

2

p y
−

p y
∗

[m
]

NN Prediction

Density Scale

1e-10 1e-05

(c) tk = 10s

Fig. 2: Performance of the density NN.

NVIDIA A4000 16GB graphics card. The environments
considered in the experiments are visualized in the
supplementary video.

Model description: The system is described by
a kinematic vehicle model [34] with input u(t) =
[ω(t), a(t)]T , where ω(t) is the angular velocity and
a(t) is the longitudinal acceleration. Additionally, to
demonstrate the robustness of the proposed algorithm
to disturbances, we included a constant sensor bias θbias
for measuring the heading angle. The resulting vehicle
dynamic model is defined as

ẋ(t) =

ṗx(t)
ṗy(t)
θ̇(t)
v̇(t)

θ̇bias(t)

 =

v(t) cos (θ(t))
v(t) sin (θ(t))

ω(t)
a(t)

0

 (11)

where px(t) and py(t) describe the position along
the x-axis and y-axis respectively. θ(t) denotes the
heading angle and v(t) the longitudinal velocity. The
control input u is generated by the learned contraction
controller to track the reference trajectory on the basis of
a biased state measurement x̂(t) = [px(t), py(t), θ(t) +
θbias(t), v(t), 0]T .

Next, we train the NN to predict the density along
the reference trajectory. For this purpose, we define an
architecture with seven fully connected layers and 150
neurons. A sample of the density predictions is shown
in Fig. 2 where the NN predictions are compared against
the solution of the LE as defined by Eq. (2). While the
prediction of 10s-trajectories of the state and the density
starting from 500 initial states takes on average 11.6s
when integrating the system dynamics and using LE,
the NN decreases this time to 0.3s.

Lastly, to plan the reference trajectory, we define the
following weighting matrices:

QG = diag([1, 1, 0, 0, 0]), QI = diag([1, 1]),

where diag() denotes a diagonal matrix. The cost factors
α in Eq. (4) are chosen such that the resulting cost
gradient is sensible to JG and JC but is dominated by JB
when the trajectory is out-of-bounds. By tuning αG and
αC, we can adjust the trade-off between low collision
probabilities and goal-directed behavior. Furthermore,
we clip the gradient if its absolute value becomes too
big to ensure numerical stability.

Trajectory optimization: To analyze the performance
of the reference trajectory computation, we compare
the proposed gradient-based optimization method with
a sampling-based and a search-based approach. For
this purpose, we generate environments with a random
number of uncertain stationary and dynamic obstacles.
Similarly, the obstacle sizes, positions, uncertainties,
and velocities are chosen randomly. Furthermore, we
define the following criteria for the evaluation of the
aforementioned methods:

• The failure rate is the percentage of environments
where the considered method did not find a so-
lution within five minutes. Failure cases are not
considered when computing the average computa-
tion time or the cost scores.

• The collision risk increase (CRI), goal cost increase
(GCI), and input cost increase (ICI) quantify the
average increment of the collision risk, the goal
cost, and the input cost when compared to the best
possible method in each environment.

• The computation time is averaged over all evalua-
tions.

The results are illustrated in Fig. 3. It can be seen that
the proposed gradient-based approach achieves better
performance in almost every criterion as compared to
the other two methods. In each scenario, the gradient-
based method was able to provide a valid solution
while the sampling-based method failed in 35% of
the environments. In addition, the distance from the
final state of the planned trajectory to the goal was on
average 0.2m as compared to the search-based (1.4m)
and the sampling-based method (2.8m). Additionally,

Failure Rate [%]
0

10

20

30

40

CRI GCI ICI
0

2

4

6

8 Gradient
Search
Sampling

Computation Time [s]
0

50

100

150

Fig. 3: Comparison of the optimization methods.

the collision risk of the gradient-based approach is
comparatively small in most environments with an
acceptable computation time.

Baseline methods: To evaluate the performance of
the proposed density planner, we compare it against
other collision-minimizing motion planning approaches.

Specifically, we define two receding horizon MPC
algorithms for the given motion planning task.

The first implementation corresponds to an standard
MPC, denoted as M0, which does not consider any
disturbances or model uncertainties. The corresponding
cost function is defined as:

JMPC =αI

h+H−1

∑
k=h

||u(tk)||2QI
+ αG||x(th+H)− xG||QG

+ αC

h+H

∑
k=h

(
Pcoll(x(tk), tk)

)2, (12)

where H denotes the prediction horizon, th is the current
point in time, and α and Q are the same weighting
factors and matrices as in Eq. (4).

Similarly, to handle imperfect measurements due
to sensor bias, we define a tube-based MPC which
minimizes the collision probability and enforces the
state space constraints within a tube around the nominal
trajectory. We will test implementations with the tube
radii 0.3m, 0.5m, and 1m which are denoted as M1, M2,
and M3, respectively.

For each environment, we assume that the minimum
cost is achieved by an oracle, O, that computes the
optimal solution of Prob. (12) with h = 0 and H =
N = 100. To compute the optimal solution, we do not
consider computation time constraints nor uncertainties.
Thus, we assume that the oracle knows the true initial
state and the exact system model.

Numerical evaluation: First, we analyze the motion
planning methods in 50 randomly generated environ-
ments. The motion planners are compared using the
same criteria defined in the ablation study with the
difference that a failure is reported when JC > 10 or
when the distance from the final state to the goal is
larger than 4.5m (the distance between the start and the
goal position lies between 10 and 70m).

DP M0 M1 M2 M3 O
0

20

40

60

80

100

Fa
ilu

re
R

at
e

[%
] Ideal

Biased

(a) Failure rate.
DP M0 M1 M2 M3 O

0.0

0.3

0.5

0.8

1.0

1.3

C
R

I

Ideal
Biased

(b) Collision risk.

DP M0 M1 M2 M3 O
0

1

2

3

4

5

G
C

I

Ideal
Biased

(c) Goal cost.
DP M0 M1 M2 M3 O

0

2

4

6

8

10

IC
I

Ideal
Biased

(d) Input cost.

Fig. 4: Comparison in artificial environments.

In Fig. 4a, we can see that the proposed density
planner (DP) is the most reliable method given a

DP M0 M1 M2 M3 O
0

500

1,000

1,500

131
0 0 0 0

1,340

Pl
an

ni
ng

Ti
m

e
[s

]

(a) Offline planning time.
DP M0 M1 M2 M3 O

0

0.25

0.5

0.75

1

∆t 0.001
0.12 0.11

0.25

0.88

0C
om

pu
ta

ti
on

Ti
m

e
[s

]

(b) Online computation time.

Fig. 5: Computational time evaluation.

success rate of 90% when using perfect measurements.
Furthermore, all trajectories end within an average
distance of 0.71m from the goal and low input cost.
However, the collision risk in Fig. 4b is higher when
compared to the other motion planning approaches due
to the higher risk tolerance of the proposed algorithm:
Even in very crowded environments, DP is able to reach
the goal and stay below the acceptance tolerance for the
collision risk (JC ≤ 10) such that these environments are
considered in the computations of the CRI. The other
planners, on the other side, either reach the goal with
a very low collision risk or are very far off such that a
failure is reported and the trajectory is discarded.

When the measurements are biased, the failure rate
of DP is marginally higher than for the perfect measure-
ment cases. This shows that the proposed algorithm is
robust against deterministic disturbances. The collision
risk is, on average, lower compared to the case of
perfect measurements since the density NN was mostly
trained with data where θbias ̸= 0 and hence better
approximates the density for these cases. In contrast,
the MPC methods present lower collision risks at
the expense of higher goal costs and higher failure
rates due to the conservative nature of the algorithms.
Additionally, the input costs are considerably higher
than for DP which is a byproduct of the short prediction
horizon.

Fig. 5a shows the planning time which the algorithms
need before starting the online control. DP takes on
average 131s to compute the reference trajectory, which
is a tenth of the planning time of the oracle. Furthermore,
the oracle requires the true initial state when starting the
planning while the density planner only needs the initial
density distribution. The MPCs solve the corresponding
optimization problems online and consequently do not
need any planning time in advance. On the other hand,
the online computational complexity of the MPC algo-
rithms is high, as shown in Fig. 5b. Only M0 and M1 are
able to solve the optimization problem in approximately
real-time when using a time step of ∆t = 0.1s. DP only
has to compute the output of the contraction controller
online to follow the precomputed reference trajectory.
Hence, the resulting online computational complexity
is significantly lower.

Evaluation on a real-world dataset: Next, we show
that the proposed algorithm can be applied to real-
world environments without modifications. However,

we assume access to the predicted occupancy maps
for the environment. Here, we use the inD dataset
[10] which contains a collection of naturalistic vehicle,
bicyclist, and pedestrian trajectories recorded at German
intersections by drones. We add stochasticity around
each traffic participant by using a Gaussian distribution
with a mean equal to the vehicle position and a
standard deviation equal to the obstacle length plus
1m. Additionally, we skewed the distribution along the
direction of movement.

To evaluate the performance, we compare our algo-
rithm against M0, M2, and O. We choose M2 since its
tube radius is a compromise between robustness and
low computational complexity. We randomly sample
start and goal positions for ten random time periods
at three intersections and compute the costs for each
planner. The failure rate is visualized in Fig. 6. DP
achieves the best results; it finds a path to the goal in 24
of 30 environments when using perfect measurements.

DP M0 M2 O
0

20
40
60
80

20

53 60

37
23

70 63

Fa
ilu

re
R

at
e

[%
]

Ideal
Biased

Fig. 6: Failure rate in real-world environments.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a density-based

motion planning approach to ensure system safety
under uncertainties. The approach is based on a differen-
tiable cost function that considers the density evolution
starting from arbitrary initial state distributions and can
handle nonlinear system dynamics. The motion plan-
ner was applied to simulated environments generated
from artificial data and from real-world data where it
outperformed the baseline methods with significantly
less online computational complexity.

However, the algorithm needs a planning time of
approximately 130s to compute the reference trajectory
on basis of the predicted environment occupations
and the initial state distribution. As state-of-the-art
environment predictors usually cannot look far ahead,
the planning time must be decreased by using a more
efficient implementation in C or C++ or by modifying
our algorithm to perform in a receding horizon fashion.
Furthermore, we plan to improve the density NN by
using a more sophisticated architecture. For instance, the
usage of a multi-dimensional convolutional NN could
enable the prediction of the whole density distribution
at once such that a differentiable expression for the
collision probability could be derived. Thus, instead
of minimizing the collision risk for density-weighted
sample trajectories, we could minimize the collision
probability directly. Additionally, we want to extend
the approach to systems with stochastic disturbances
by replacing the LE with the Fokker-Planck equation
[35, 36].

References

[1] M. Althoff. “Reachability Analysis and Its Appli-
cation to the Safety Assessment of Autonomous
Cars.” PhD thesis. 2010.

[2] J. Lofberg. “Approximations of closed-loop min-
imax MPC.” In: IEEE International Conference on
Decision and Control. 2003, pp. 1438–1442.

[3] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas,
and D. Q. Mayne. “Invariant approximations of
the minimal robust positively invariant set.” In:
IEEE Transactions on automatic control 50.3 (2005),
pp. 406–410.

[4] F. Gruber and M. Althoff. “Computing safe sets
of linear sampled-data systems.” In: IEEE Control
Systems Letters 5.2 (2020), pp. 385–390.

[5] A. Mesbah. “Stochastic model predictive con-
trol: An overview and perspectives for future
research.” In: IEEE Control Systems Magazine 36.6
(2016), pp. 30–44.

[6] A. Wang, A. Jasour, and B. C. Williams. “Non-
gaussian chance-constrained trajectory planning
for autonomous vehicles under agent uncer-
tainty.” In: IEEE Robotics and Automation Letters
5.4 (2020), pp. 6041–6048.

[7] Y. Meng, D. Sun, Z. Qiu, M. T. B. Waez, and C. Fan.
“Learning Density Distribution of Reachable States
for Autonomous Systems.” In: Conference on Robot
Learning. 2022, pp. 124–136.

[8] M. Ehrendorfer. “The Liouville Equation and
Prediction of Forecast Skill.” In: Predictability
and Nonlinear Modelling in Natural Sciences and
Economics. 1994, pp. 29–44.

[9] Y. Meng, Z. Qiu, M. T. B. Waez, and C. Fan.
“Case Studies for Computing Density of Reachable
States for Safe Autonomous Motion Planning.” In:
NASA Formal Methods Symposium. 2022, pp. 251–
271.

[10] J. Bock, R. Krajewski, T. Moers, S. Runde, L.
Vater, and L. Eckstein. “The ind dataset: A drone
dataset of naturalistic road user trajectories at
german intersections.” In: IEEE Intelligent Vehicles
Symposium. 2020, pp. 1929–1934.

[11] J.-C. Latombe. Robot motion planning. Vol. 124.
Springer Science & Business Media, 2012.

[12] K. Lee and D. Kum. “Collision avoid-
ance/mitigation system: Motion planning
of autonomous vehicle via predictive occupancy
map.” In: IEEE Access 7 (2019), pp. 52846–52857.

[13] G. Francis, L. Ott, and F. Ramos. “Stochastic func-
tional gradient for motion planning in continuous
occupancy maps.” In: IEEE International Conference
on Robotics and Automation. 2017, pp. 3778–3785.

[14] K Macek, I. Petrovic, and E. Ivanjko. “An approach
to motion planning of indoor mobile robots.” In:
IEEE International Conference on Industrial Technol-
ogy. 2003, pp. 969–973.

[15] S. Hacohen, S. Shoval, and N. Shvalb. “Prob-
ability navigation function for stochastic static
environments.” In: International Journal of Control,
Automation and Systems 17.8 (2019), pp. 2097–2113.

[16] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy,
and J. P. How. “Probabilistically safe motion
planning to avoid dynamic obstacles with uncer-
tain motion patterns.” In: Autonomous Robots 35.1
(2013), pp. 51–76.

[17] Z. Huang, W. Schwarting, A. Pierson, H. Guo, M.
Ang, and D. Rus. “Safe Path Planning with Multi-
Model Risk Level Sets.” In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2020,
pp. 6268–6275.

[18] Y. Chen, T. T. Georgiou, and M. Pavon. “Optimal
steering of a linear stochastic system to a final
probability distribution, Part I.” In: IEEE Transac-
tions on Automatic Control 61.5 (2015), pp. 1158–
1169.

[19] K. Okamoto and P. Tsiotras. “Optimal stochastic
vehicle path planning using covariance steering.”
In: IEEE Robotics and Automation Letters 4.3 (2019),
pp. 2276–2281.

[20] J. Ridderhof, K. Okamoto, and P. Tsiotras. “Non-
linear uncertainty control with iterative covariance
steering.” In: IEEE Conference on Decision and
Control. 2019, pp. 3484–3490.

[21] Y. Chen. “Covariance Steering for Nonlin-
ear Control-affine Systems.” In: arXiv preprint
2108.09530 (2021).

[22] Z. Yi, Z. Cao, E. Theodorou, and Y. Chen. “Non-
linear covariance control via differential dynamic
programming.” In: American Control Conference.
2020, pp. 3571–3576.

[23] V. Krishnan and S. Martínez. “Distributed optimal
transport for the deployment of swarms.” In: IEEE
Conference on Decision and Control. 2018, pp. 4583–
4588.

[24] K. F. Caluya and A. Halder. “Finite horizon
density steering for multi-input state feedback
linearizable systems.” In: American Control Confer-
ence. 2020, pp. 3577–3582.

[25] K. F. Caluya and A. Halder. “Reflected
Schrödinger bridge: Density control with
path constraints.” In: American Control Conference.
2021, pp. 1137–1142.

[26] Y. Chen and A. D. Ames. “Duality between
density function and value function with applica-
tions in constrained optimal control and Markov
Decision Process.” In: arXiv preprint 1902.09583
(2019).

[27] Y. Meng, D. Sun, Z. Qiu, M. T. B. Waez, and C. Fan.
“Learning density distribution of reachable states
for autonomous systems.” In: Conference on Robot
Learning. 2022, pp. 124–136.

[28] I. R. Manchester and J.-J. E. Slotine. “Control Con-
traction Metrics: Convex and Intrinsic Criteria for

Nonlinear Feedback Design.” In: IEEE Transactions
on Automatic Control 62.6 (2017), pp. 3046–3053.

[29] D. Sun, S. Jha, and C. Fan. “Learning Certified
Control using Contraction Metric.” In: Conference
on Robot Learning. 2020.

[30] S. Hoermann, M. Bach, and K. Dietmayer. “Dy-
namic occupancy grid prediction for urban au-
tonomous driving: A deep learning approach
with fully automatic labeling.” In: IEEE Interna-
tional Conference on Robotics and Automation. 2018,
pp. 2056–2063.

[31] J. Wu, J. Ruenz, and M. Althoff. “Probabilistic
map-based pedestrian motion prediction taking
traffic participants into consideration.” In: IEEE
Intelligent Vehicles Symposium. 2018, pp. 1285–1292.

[32] M. Koschi, C. Pek, M. Beikirch, and M. Althoff.
“Set-based prediction of pedestrians in urban en-
vironments considering formalized traffic rules.”
In: IEEE International Conference on Intelligent
Transportation Systems. 2018, pp. 2704–2711.

[33] D. P. Kingma and J. Ba. “Adam: A Method for
Stochastic Optimization.” In: International Confer-
ence on Learning Representations. 2015.

[34] L. Dubins. “On Curves of Minimal Length with
a Constraint on Average Curvature, and with
Prescribed Initial and Terminal Positions and
Tangents.” In: American Journal of Mathematics 79.3
(1957), pp. 179–202.

[35] G. Terejanu, P. Singla, T. Singh, and P. D. Scott.
“Uncertainty Propagation for Nonlinear Dynamic
Systems Using Gaussian Mixture Models.” In:
Journal of Guidance, Control and Dynamics 31.6
(2008), pp. 1623–1633.

[36] Y. Xu, H. Zhang, Y. Li, K. Zhou, Q. Liu, and
J. Kurths. “Solving Fokker-Planck equation using
deep learning.” In: Chaos: An Interdisciplinary
Journal of Nonlinear Science 30.1 (2020).

	INTRODUCTION
	RELATED WORKS
	PRELIMINARIES
	DENSITY-BASED MOTION PLANNING
	Density Estimation for Controlled Systems
	Computation of the Collision Probability
	Cost Function Formulation
	Optimization Approach

	EXPERIMENTS
	CONCLUSIONS AND FUTURE WORK

