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Abstract

In 1665, Christiaan Huygens observed the so-called odd sympathy of the coupled pendulum
of two clocks. Such a collective behavior of coupled oscillators, which cannot be understood
in terms of the laws for individual oscillators, has been under consideration in various
scientific fields. Having passed more than 300 years since that observation in Holland, one of
the most intriguing collective dynamics of coupled oscillators came into observation in 2002:
A symmetric oscillator system can spontaneously split into the simultaneous coexistence
of coherent and incoherent oscillations via the breaking of the system’s symmetry. Such
coexistence patterns of the incongruity in the oscillator system were highlighted in 2004 when
the term, chimera states, was first introduced. In this thesis, we discuss some theoretically
interesting and important chimera dynamics of coupled phase oscillators, starting with
the simplest model and then gradually introducing topological complexity to a network
of networks where the oscillators are stationed. More specifically, a system of identical
Kuramoto-Sakaguchi phase oscillators is considered setting on the background topology,
ranging from two-population networks, a triangular network of three populations, to a ring
of six populations. In two-population networks, we investigate the dynamical and spectral
properties of what we coin a Poisson chimera state, which is known to be neutrally stable.
Then, two ways that give rise to the attracting Poisson chimeras are discussed based on
the Lyapunov stability analysis. Next, as a configuration of higher topological complexity,
we consider a triangular network of three oscillator populations. Thereby, we elucidate the
dynamical properties of symmetric- and symmetry-broken chimera states. Particularly, a
tri-stability of chimera attractors is discussed, including chaotic chimera states, periodic
antiphase chimeras, and steady chimera states. Thirdly, considering a ring of six oscillator
populations, we therein study heteroclinic switching dynamics between saddle chimera
states such as unstable steady, breathing, and quasiperiodic chimera states, respectively. We
demonstrate that the structure of the unstable manifold of each saddle chimera state can
form such a heteroclinic cycle between saddle chimeras. Finally, to take into account higher-
dimensional complexity, the Kuramoto-Sakaguchi phase oscillators defined usually on a unit
circle are extended to the generalized KS oscillators on the surface of a higher-dimensional
unit sphere. Thereby, we study the scenario of the emergence of observable chimera states in
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two-population networks. Due to the higher-dimensional nature of the oscillators, we observe
more complex chimera states such as periodic alternating chimeras and component-wise
aperiodic chimera dynamics than those, e.g., stationary and breathing chimeras in the usual
KS oscillators in two-population networks. Not only for those phenomenological observations
and their explanations, but we also provide all the necessary theoretical principles for the
exploration of the aforementioned chimera dynamics.



Abstract

Im Jahr 1665 beobachtete Christiaan Huygens die sogenannte "seltsame Sympathie" der
gekoppelten Pendel zweier Uhren. Ein solches kollektives Verhalten gekoppelter Oszilla-
toren, das nicht mit den Gesetzen für einzelne Oszillatoren erklärt werden kann, wurde in
verschiedenen wissenschaftlichen Bereichen untersucht. Mehr als 300 Jahre nach dieser
Beobachtung in Holland wurde im Jahr 2002 eine der faszinierendsten kollektiven Dy-
namiken gekoppelter Oszillatoren beobachtet: Ein symmetrisches Oszillator-System kann
spontan in die gleichzeitige Koexistenz von kohärenten und inkohärenten Schwingungen
übergehen, indem die Symmetrie des Systems gebrochen wird. Solche Koexistenzmuster der
Unvereinbarkeit im Oszillator-System wurden 2004 hervorgehoben, als der Begriff "Chimäre-
Zustände" erstmals eingeführt wurde. In dieser Arbeit diskutieren wir einige theoretisch
interessante und wichtige Chimären-Dynamiken gekoppelter Phasen-Oszillatoren, begin-
nend mit dem einfachsten Oszillator-Modell und allmählich eine topologische Komplexität
in das gekoppelte Oszillator-Netzwerk einführend. Konkret wird ein System identischer
Kuramoto-Sakaguchi-Phasen-Oszillatoren betrachtet, das auf der zugrunde liegenden Topolo-
gie basiert, angefangen von Zweipopulationsnetzwerken über ein dreieckiges Netzwerk aus
drei Populationen bis hin zu einem Ring aus sechs Populationen. In Zweipopulationsnet-
zwerken untersuchen wir die dynamischen und spektralen Eigenschaften eines sogenannten
Poisson-Chimäre-Zustands, der als neutral stabil bekannt ist. Anschließend werden zwei
Möglichkeiten diskutiert, die zu den anziehenden Poisson-Chimären führen, basierend auf der
Lyapunov-Stabilitätsanalyse. Als Konfiguration mit höherer topologischer Komplexität betra-
chten wir ein dreieckiges Netzwerk aus drei Oszillator-Populationen. Dabei klären wir die dy-
namischen Eigenschaften von symmetrischen und symmetriebrechenden Chimäre-Zuständen
auf. Insbesondere wird eine Tri-Stabilität von Chimäre-Attraktoren diskutiert, einschließlich
chaotischer Chimäre-Zustände, periodischer gegenphasiger Chimären und stabiler Chimäre-
Zustände. Drittens untersuchen wir ein Ringnetzwerk aus sechs Oszillator-Populationen und
studieren darin die heterokline Schalt-Dynamik zwischen Sattel-Chimäre-Zuständen wie in-
stabilen, stationären, atmenden und quasiperiodischen Chimäre-Zuständen. Wir zeigen, dass
die Struktur des instabilen Mannigfaltigkeitsbereichs jedes Sattel-Chimäre-Zustands solch
einen heteroklinen Zyklus zwischen den Sattel-Chimären bilden kann. Schließlich werden,
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um eine höherdimensionale Komplexität zu berücksichtigen, die üblicherweise auf einem
Einheitskreis definierten Kuramoto-Sakaguchi-Phasen-Oszillatoren auf die generalisierten
KS-Oszillatoren auf der Oberfläche einer höherdimensionalen Einheitssphäre erweitert.
Dabei untersuchen wir das Szenario des Auftretens beobachtbarer Chimäre-Zustände in
Zweipopulationsnetzwerken. Aufgrund der höherdimensionalen Natur der Oszillatoren
beobachten wir komplexere Chimäre-Zustände wie periodische abwechselnde Chimären
und komponentenweise aperiodische Chimäre-Dynamiken im Vergleich zu den üblichen
KS-Oszillatoren in Zweipopulationsnetzwerken, wie z.B. stationäre und atmende Chimären.
Wir bieten nicht nur für diese phänomenologischen Beobachtungen und deren Erklärungen,
sondern auch für die Erforschung der genannten Chimären-Dynamiken alle notwendigen
theoretischen Prinzipien.
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Chapter 1

Introduction

In 1996, perhaps, I spent most of my day-time in a kindergarten learning many things for
myself to be prepared to study in an elementary school. The kindergarten had a few classes
named after flowers, although I do not remember which flower I belonged to, unfortunately.
During those times, all children therein learned basic arithmetic, refined their Korean expres-
sions, and undertook many activities. Some of them, especially those in advanced classes, to
which I did not belong, studied multiplication tables and English. As adorable children in
a typical Korean preschool, we spent some of our days learning children’s songs, and we
practiced the lyrics and dance routines to have a small stage in a kindergarten festival every
year, showing the profound innocence of our childhood to our parents. I believe it brought
great joy to my parents amidst the Korean currency crisis in 1997, which was a national
bankruptcy that brought tough times to all families, in particular, for young parents. As of
now, I do not remember every song that I knew completely when I wore a younger man’s
clothes. Many things have grown dim in my memory and I remember those days less and less
as time goes by. Still, one song has burned into my memory and even today I know it by heart.
The song is simple and thus suitable for little children to enhance not only their vocabulary
but also their emotional quotient (EQ). The name of the song is ‘Rocks and Water’1. It has
been literally a long time since I sang this song (note that this was in the last century!).

1I was not able to find any official English translation of this song. Thus, it was translated by myself.
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Rocks and Water

Breaking a big boulder, a stone
Breaking a stone, a cobble
Breaking a cobble, a pebble
Breaking a pebble, grains of sand
La la la la la la la la
La la la la la la la la

Gathering ditch water, it becomes a stream
Gathering stream water, it becomes a brook
Gathering brook water, it becomes a large river
Gathering river water, it becomes the sea
La la la la la la la la
La la la la la la la la

Seok-Jung Yun (1911–2003)

Although this song was originally written in order to help children learn the concepts of
certain vocabulary words, I believe the song teaches us more than this. It consists of two
verses. The first verse deals with rocks such as a boulder, pebbles, and grains of sand and
goes to ever smaller sizes of the original object. In the second verse, the size of the objects is
increased, here different kinds of water combine to ever larger structures. Two verses classify
the objects according to increasing/decreasing scales while decreasing/increasing complexity.
At that time, I did not notice the true meaning of what the song tells us. I think nobody in my
class realized it. We just noticed that the word ‘boulder’ indicates something bigger than a
stone whereas the river is larger than the ditch water. However, I now see something deeper
than this. It reminds me of something in my physics studies. The song actually teaches us
an important lesson, which brings us to the main motivation of this thesis. The two verses
display two different flows when it comes to the development of physics or methods of
physical science. To understand this, we first take a squint at the unique characteristics of
physics by comparing it with other scientific studies.

A scientific study can be defined or characterized by a particular focus on the objects
within its scale that an observer (or a researcher) wants to explore. For example, the American
Heritage Dictionary of the English Language (AHD) describes chemistry:

The science of the composition, structure, properties, and reactions of matter,
especially of atomic and molecular systems [1]
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while the AHD says about biology:

The science of life and of living organisms, including their structure, function,
growth, origin, evolution, and distribution [1].

Note that the italic phrases above indicate the objects that chemistry and biology deal with,
respectively. Also, we know that geology mainly deals with the composition and the structure
of the earth and astronomy is the study of celestial bodies. They all are characterized by
having their own specific target objects. We can say without loss of generality that chemistry
is the science of atoms and molecules, biology is the one of living things, geology is the
study of the earth, and astronomy is the one of celestial bodies. Hence, in the school of
natural science, one can concentrate one’s interest on a specific physical object or a group of
materials, and then disclose their predictable behavior and elucidate their properties.

If so, how does physics go on? I learned an important lesson about the unique characteris-
tics of physics from an open course lecture by Prof. Dr. Sang-Jin Sin2: Physics is defined or
characterized by the methods, not the specific objects. Therefore, the objects under its scope
are everything in the universe, i.e., physics is the study of everything. The AHD describes
physics:

The science of matter and energy and of interactions between the two, grouped
in traditional fields such as acoustics, optics, mechanics, thermodynamics, and
electromagnetism, as well as in modern extensions including quantum mechanics,
relativity theory, cryogenics, solid-state physics, particle physics, and plasma
physics [1].

The definition speaks about matter (especially of which system?) and energy (of what?).
However, all physical objects are matter, and hence they have energy. The so-called fields
described above are not restricted to the specific physical objects or a group of physical
materials, such as molecules, atoms, celestial bodies, or living things but rather they are
the methods to describe the laws of physics by which all materials are governed, such as
mechanics or dynamics, and theories like XXX-physics where XXX could be any of physical
objects, e.g., solid-state physics, particle physics, or plasma physics. In this perspective,
there could be so-called chemical physicists, biological physicists, geological physicists, or
astronomical physicists. To clarify this, we have to recall the old description of physics. The
AHD says physics is also:

2The lecture is given here (only Korean version available): https://www.youtube.com/playlist?list=
PLGF0JqQbSvJpesmPJfHSmvfcjV5FTFzyb. The tile of lectures can be translated as ‘Principles of Physical Phe-
nomena: Utility of Physics and Worldviews’

https://www.youtube.com/playlist?list=PLGF0JqQbSvJpesmPJfHSmvfcjV5FTFzyb
https://www.youtube.com/playlist?list=PLGF0JqQbSvJpesmPJfHSmvfcjV5FTFzyb
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(Archaic) The study of the natural or material world and phenomena; natural
philosophy [1].

Physics is the study of the laws that govern everything in every scale, whatever they may be,
and of the methods used to describe them. In terms of our song, everything in all the different
scales, from the boulders down to grains of sand, or from the ditch water up to the sea, is
governed by the laws of physics and they lie under the framework of the physical methods.
This explains why the department of physics in a university covers all the scales of objects
from the Planck scale to the galaxy unit3. I would say it is a scale-free science. Not only all
scales but also all physical objects, from subatomic particles, chemical and biological objects
to celestial bodies, can be explored using the methods or theories of physics since all their
properties and motions are governed by the laws of physics4. This raises important questions:
How have the laws of physics been constructed? Which method has led physics in the history
of modern science? Or is it possible to understand the entire nature by investigating each
scale of objects? In particular, is it possible to explain all natural phenomena just in terms of
properties of those on the simplest level and their extrapolation? If not, why is it? And, how
then can we understand natural phenomena that cannot be described in terms of a simple
extrapolation of properties of each scale? Those questions lead to the overarching concepts
of this thesis, and we will answer them below.

The lesson of the song answers those questions and is relevant to the main idea of this
thesis, or its philosophical background. The first verse and the second verse of the song
depict two conceptually different routes, along which physicists have understood natural
phenomena in the history of modern science. The first verse directly teaches us to break the
objects into simpler units on smaller scales; breaking the boulder into a stone, the stone into
a cobble, the cobble into pebble, and the pebble into grains of sand. In this process, the scale
of the objects usually (but not necessarily) gets smaller, and more importantly, the objects
necessarily become simpler and easier to deal with. The concept behind this approach is
called ‘reductionism’, which is well described in a lecture by S. Haro:

The reductionism (or reduction) is often used to imply the whole is nothing but
the sum of its part [2].

3See, for example, https://www.ph.tum.de/research/groups/?language=en
4In this perspective, physics sometimes seems useless to some laypeople. Prof. Sang-Jin Sin said in his

lecture “physics is a discipline that encompasses all things, which is why physics students graduate without
learning as much about molecules and atoms as chemistry students. Similarly, they graduate without learning
as much about celestial bodies as astronomy students. It can be said that there is nothing they learn more than
students in other fields.” However, physics is the study of the laws that govern everything and the methods used
to describe all things in the universe. Hence, I would say we can apply, in principle, our knowledge to every
problem in every field. From this point of view, it is the most useful and instructive study.

https://www.ph.tum.de/research/groups/?language=en
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More practically, in performing physical science, J. C. Lennox pointed out:

One obvious thing to try to do is to split the problem up into separate parts or
aspects, and thus reduce it to simpler components that are individually easier to
investigate [3].

The message of the reductionism is clear and simple: The whole is nothing but the sum
of its parts. It then implies that we are only required to understand the properties of
simple building blocks that constitute the whole and this is necessary and sufficient for a
complete understanding of the entire system. In fact, it is not an exaggeration to say the
major trajectory of physics has been led by reductionism since Galileo challenged Aristotle’s
natural philosophy, and the advent of Sir Isaac Newton’s Principia [4, 5], followed by
Kepler [6]. For example, note that calculus itself is the method of breaking a complicated
curve into simpler straight segments that make the system much easier to explore. Up to
the middle of the 20th century, reductionism has dominated the world of physical science
and also efficiently enhanced our understanding of natural phenomena in our universe or
specific physical systems according to the interests of each scientist. From the perspective
of the extreme reductionists, in order to completely understand, for example, a stone that
looks complicated, they have broken the stone, and further and further split it into silicon
dioxide, oxygen atoms, and finally into subatomic particles5, which looks much simpler to
investigate6. Thus, we reach the knowledge of the building blocks of the system, simpler and
easier to investigate, and that is all. If we understood the properties of the building blocks,
then we are done at this stage since the original complex physical phenomenon is nothing
more than the sum of the properties of those building blocks. The reductionism in physical
science can be encapsulated in the below quote by S. Weinberg who said:

The reason we give the impression that we think that elementary particle physics
is more fundamental than other branches of physics is because it is [9].

In this saying, his philosophy describes well the holy prophecy of reductionism to the secular
world of science. The study of building blocks, i.e., elementary particles, is all for physics and
moreover all for science since (once again) the whole is nothing but the sum of its parts. Then,

5depending on readers, it could be a string or loop [7]
6In this perspective, we have one humorous metaphor for highly simplified or reduced physical methods

of the exploration of complex phenomena: Milk production at a dairy farm was low, so the farmer wrote to
the local university, asking for help from academia. A multidisciplinary team of professors was assembled,
headed by a theoretical physicist, and two weeks of intensive on-site investigation took place. The scholars
then returned to the university, notebooks crammed with data, where the task of writing the report was left to
the team leader. Shortly thereafter the physicist returned to the farm, saying to the farmer, “I have the solution,
but it works only in the case of spherical cows in a vacuum.”, quoted from Ref. [8].
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Fig. 1.1 A cartoon depicts the hierarchy of knowledge in terms of reductionism. See the main
text. From https://larspsyll.wordpress.com/2013/09/08/probabilistic-reductionism/

it follows from the assumption of S. Weinberg that there exists the so-called fundamental
study which explores the building blocks and we can completely explain everything in
nature by simply extrapolating their properties. In this light, i.e., the existence of the most
fundamental study, the creed of reductionism sometimes appears as the saying, for example,
by J. Watson: “There is only one science, physics: everything else is social work [10]”.

On the other hand, reductionism sometimes can be represented by the philosophical
trend of defining a higher-level concept by breaking it down into lower-level elements. Thus,
it follows that there is a hierarchical structure of knowledge. In Fig. 1.1, one aspect of
reductionism is well described. It tells X is nothing more than, or nothing but, slightly
complex Y. In other words, X can be reduced just to an application of Y. Here,

(X,Y) ∈ {(sociology,psychology),(psychology,biology),

(biology,chemistry),(chemistry,physics), · · ·}=: S (1.1)

At the last step, the reductionists can say that physics is nothing but a slightly complex
application, described in the language of mathematics, to acquire knowledge about the entire
natural phenomena in the universe, i.e., (physics,math) ∈ S. Thus, as J. C. Lennox pointed
out, a reductionist could say “There is the way in which the language of mathematics is
used to reduce or compress the description of often very complex phenomena into short
and elegant equations.” This reduction method has been accompanied by the development
of physics. For example, phenomenological observations by Tycho Brahe led Kepler to
the reduced statements of his observations, which inspired Sir Isaac Newton to further

https://larspsyll.wordpress.com/2013/09/08/probabilistic-reductionism/
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compress Kepler’s work into some mathematical statements [3]. Then, in the history of
modern science, theoretical physicists and mathematicians have tried to reduce and compress
complex phenomena into a single mathematical statement or simple equations like the so-
called theory of everything [9]. This trend, the dream of reductionists, reached its zenith in
this context when David Hilbert, more specifically, the Hilbert program tried to reduce all
the mathematics into some general algorithmic process based on sets of formal statements
using a finite set of symbols, axioms, and rules of inference [3]. Hence, one can say
(math,Hilbert) ∈ S in Eq. (1.1).

Do we really need only the properties of fundamental particles, to understand every
natural phenomenon? At this point, it is time to invoke what R. Dawkins said7: “Next time
somebody tells you that something is true, why not say to them: ‘What kind of evidence is
there for that?’ And if they can’t give you a good answer, I hope you’ll think very carefully
before you believe a word they say” [11]. We should ask something important: Can building
blocks indeed explain everything? Does nature evidence only the phenomenon that can be
explained by the simple sum of the building blocks? Let Sir Isaac Newton speak [12] and
this is what the second verse of the song tells:

What we know is a drop,
what we don’t know is an ocean.

First of all, we all know that the Hilbert program turned out to be failed by Gödel’s
incompleteness theorems [3]. There exist true statements that cannot be proven in the
framework of finite sets of symbols, axioms, and inference rules. As Freeman Dyson, a
theoretical physicist, said in Ref. [13] “Gödel proved that in mathematics the whole is
always greater than the sum of the parts.” Secondly, we all know that many phenomena in
nature cannot be explained only in terms of the building blocks or a simple extrapolation of
their properties. Let us consider two extreme examples, with a particular focus on how the
interaction works between building blocks.

On the one hand, the simple extrapolation of the properties of the building blocks works
well, e.g., when the system holds the superposition principle due to the linear governing
equations. Consider a charged particle interacting with another charged particle (and ignore
all the other interactions). In this system, the electric field, i.e., the interaction between
them, is governed by a linear differential equation of electrostatics and the superposition

7I must say I do not follow all his philosophy. However, the statement itself is instructive to follow.



8 Introduction

principle holds: The introduction of the third charged particle to the system does not change
the interaction between the two, originally set in the system. It is due to the linearity and this
system can be understood in terms of the properties of building blocks and a simple sum of the
interaction between them. On the other hand, where nonlinearity works, something different
can happen. Let us consider an extreme example of a system of nonlinearly interacting
agents. Consider a system of a young couple. The interaction between a man and a woman
does not follow the superposition principle. To prove this, just introduce the third party, who
particularly had a close relationship to one of the two. The introduction of that third party
makes completely different the interaction between the two preexisting people. This reminds
us of what S. Strogatz said in Ref. [14]: “the term ‘many-body problem’ takes on new
meaning.” Thus, we know this system and its phenomenon cannot be understood in terms of
a simple extrapolation of properties of building blocks. Assuming that we understand all the
particles consisting of our bodies, it does not guarantee anything about our behaviors as a
simple sum of the properties of those particles. Let Sir Isaac Newton speak once again: “I
can calculate the motion of heavenly bodies, but not the madness of people” [12].

Such phenomena beyond the sum of its parts are called ‘emergent phenomena’. The
emergent phenomenon is something emerging on a higher level that cannot be reduced to the
lower-level properties of the building blocks. More specifically, as P. W. Anderson brought it
to the point:

The behavior of large and complex aggregates of elementary particles, it turns
out, is not to be understood in terms of a simple extrapolation of the properties
of a few particles [15]

since we know that:

At each level of complexity entirely new properties appear, and the understanding
of new behaviors requires research which is as fundamental in its nature as any
other [15].

The message of this way of physical science can be encapsulated in one simple sentence:

More is different

by P. W. Anderson [15] or More than the sum by S. Strogatz [16]. The doctrine of this is that
the understanding of the building blocks is not equivalent to the understanding of the entire
system. There is something more than the sum of its parts. In mathematics, it was proved
by K. Gödel as we saw above. In natural phenomena, there are countlessly many emergent
phenomena around us such as self-organization, evolution of networks, pattern formation,
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phase transition, and so on, in complex systems [17–20]. One of the most well-known
emergent phenomena is the collective behavior of a large system. A complex system, which
consists of numerous objects with nonlinear interactions, easily shows entirely new collective
properties which are not to be understood in terms of a simple extrapolation of the properties
of the individuals at the lowest level of the building blocks. The importance of collective
phenomena of complex systems was highlighted by S. Hawking, saying “I think the next
century will be the century of complexity” [21]. We see that contemporary physics is de
facto full of boundary-free and complexity-ridden studies. Contemporary research brings
more and more complexity and takes fewer and fewer boundaries.

Now, we can answer what brings us to the topic of this thesis. In 1665, Christiaan
Huygens in Holland observed something strange when he played with two pendulum clocks.
This strange behavior emerges in a system of two-coupled pendulum clocks hung on the same
rigid board. He observed the so-called ‘odd sympathy’ where one pendulum clock is swung
to the right while at the same time the other to the left, forming exactly 180 degrees out of
phase [22–24]. This phenomenon is one important example of emergent phenomena that
cannot be understood in terms of the laws for individual pendulum clocks [16]. Particularly,
it is the collective dynamics of a system of coupled oscillators, or oscillating objects. In
the history of modern science, oscillations or oscillators have been under consideration in
various scientific fields in order to understand some natural phenomena. For example, one
can approximate the dynamics as a simple harmonic oscillation (see Chap. 2 for details), near
a local minimum of a given potential in a physical system. Likewise, we can understand some
important emergent phenomena in nature by exploring the collective behavior of coupled
oscillator ensembles [25, 26]. Especially within the realm of modern interdisciplinary studies,
the collective dynamics of a network of interconnected oscillators are becoming increasingly
significant [25, 26]. Here, the network (or the system) consists of numerous oscillators
that are nonlinearly interacting with each other. Such systems are well known to exhibit a
variety of emergent/collective phenomena, with various applications in laser physics [27, 28]
or Josephson junctions [29, 30] and also in biology [31–33], neural science [34–37], and
atomic physics [38, 39] or engineering application [40, 41]. Note that collective behavior,
by definition, cannot be understood in terms of the uncoupled or intrinsic dynamics of each
oscillator, a building block of the system. S. Strogatz highlighted such a collective behavior
of systems of coupled oscillators, concerning the observation of Christiaan Huygens, saying

even though we know the laws for individual pendulum clocks, that isn’t enough
to tell us how two or more of them will behave together [16].
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Hence, we are required to not only understand the microscopic individual oscillators (building
blocks) of the system but also to study the macroscopic dynamics of the oscillator ensembles.
This motivates and leads us to the following chapters in the thesis.

From the observation of Huygens in 1665, researchers have been exploring and investi-
gating various emergent/collective behaviors in a system of coupled oscillators. For example,
Y. Kuramoto suggested a simple model, now called the Kuramoto model, to study a transi-
tion from incoherence to partially locked states [42] where oscillators with heterogeneous
intrinsic frequencies exhibit self-organized order depending on interaction strength [43].
Subsequently, a variety of collective behaviors in a system of coupled oscillators has been
under consideration such as properties of incoherent oscillators [44], cluster patterns with
higher order interactions [45] or in a network [46–48], macroscopic chaos of limit-cycle
oscillators [49, 50], a discontinuous transition from incoherence to coherence [51], and
synchronization in a complex networks [52]. There are numerous examples of collective
motions of coupled oscillators in nature and man-made systems [25, 26]. A system of
coupled oscillators results in a self-organized collective behavior, and thus researchers have
explored dynamical characteristics or properties of oscillator ensembles resulting from a
given interaction among the oscillators. After such a long history of emergent/collective
behaviors in coupled oscillator ensembles, one intriguing phenomenon was observed in a
system of identical oscillators stationed along a ring geometry in 2002 [53]. Despite the
system’s translational invariance due to its composition of identical oscillators, the ensuing
collective dynamics is quite remarkable. Note that the above-mentioned collective phenom-
ena can each be characterized by a unique essential property such as synchronization of
a system. In contrast, this novel observation does not just exhibit the anticipated uniform
oscillation or complete synchronization of identical oscillators. Instead, depending on a
given initial condition, it spontaneously self-organizes into two distinct groups, and the
dynamics or characteristics within these two groups do not show a straightforward relation-
ship but rather display entirely different behaviors. The observed collective dynamics of
this system can be characterized by coexistence of coherence and incoherence via the
symmetry-breaking mechanism. What does that coexistence mean? The system of given
oscillators splits spontaneously into a synchronously oscillating part and the other part con-
sisting of incoherent oscillators. Thus, the disparate parts, i.e., coherence and incoherence,
coexist in a network of coupled oscillators. This intriguing dynamical state arises from the
breaking of the system’s symmetry: here, the translational invariance of identical oscillators
is broken along the ring geometry. Such coexistence patterns or dynamics manifests itself
as a spatiotemporal pattern, wherein the system demonstrates both a coherently oscillating
portion and an incoherently oscillating portion along the ring. Later in 2004, it was coined
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a chimera state to highlight its peculiarity, i.e., the simultaneous presence of incongruous
parts [54].

The first chimera states, as mentioned above, were studied in a spatially extended ring
geometry with a nonlocal coupling function where the interaction strength between the
oscillators is decreased as a function of the distance between them [59–71]. However,
simpler configurations, such as a network of networks, have also revealed fundamental
properties of chimera states. Here, a network of networks means that the system consists of
some populations within which there are numerous oscillators with a given interaction rule
between populations. Then, chimera states in a network of networks arise due to the breaking
of permutation symmetries of the network topology of populations. To gain more insights into
its fundamental characteristics, D. Abrams et al. [72] and E. Montbrió et al. [73] exploited a
simplified model where a system of identical or heterogeneous Kuramoto-Sakaguchi (KS)
phase oscillators is arranged in two-population networks, respectively8. In these studies,
the connections within and between populations are assumed to be all-to-all, with different
coupling strengths where the former is stronger than the latter to emulate the nonlocal
coupling as in a ring geometry. Subsequently, systems of coupled oscillators have been
extensively investigated in a network of networks. More specifically, the two-population
network was considered for the system of identical [72, 74, 55] and heterogeneous [75–77]
Kuramoto-Sakaguchi oscillators. Also, numerous other variations were taken into account,
including phase oscillators under higher-order interaction and planar oscillators [78–85],
or a nonlocal intra-population network topology [86, 87]. In addition, researchers have
investigated chimera states by considering more complex topological setups such as three-
and multi-population networks [88, 89, 56, 90–93, 57, 94].

The success of such models for the study of macroscopic dynamics relied on two main
pillars (for details, see Chap. 2): First, the system of identical Kuramoto-Sakaguchi oscillators
in a network of networks, a so-called sinusoidally coupled system [95]. This means each
oscillator is sinusoidally influenced by an external forcing term or an effective force that
depends only on the macroscopic observable. Here, the macroscopic observable is the
Kuramoto order parameter that measures the degree of coherence of the oscillators in each
population, requiring the whole information from all the microscopic individual oscillators.
Second, dimension reduction methods allow for the description of the system’s collective
dynamics in terms of a few macroscopic variables rather than directly studying all the
microscopic individual oscillators. Particularly, in the thermodynamic limit, the collective

The contents of the following paragraphs in part were described previously in more detail in Refs. [55–58].
8For those who are not familiar with Kuramoto-Sakaguchi oscillators, see Chap. 2
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dynamics of infinitely many oscillators can be confined to low-dimensional dynamics on
an invariant manifold called Ott-Antonsen (OA) manifold [96, 97]. In this manifold, the
dynamics of the Kuramoto order parameter can be written in a closed form with only
two variables (not an infinite number of degrees of freedom), provided that the mean-
field force is given by the Kuramoto order parameter. For finite-sized ensembles, the
so-called Watanabe-Strogatz (WS) transformation [98, 99], which is a linear fractional
transformation [100], conformally maps the microscopic individual oscillators of each
population to three macroscopic variables and N −3 independent constants of motion [101–
103]. In the following chapters, we will discuss them in detail.

This thesis raises several important questions on chimera states in a network of networks.
As mentioned above, such chimeras emerge via the breaking of permutation symmetries of a
given network topology. Thus, in the following chapters, we will ask how different topologies
of networks of populations will affect chimera states and their macroscopic dynamics. To
this end, we will first discuss how to deal with the system’s macroscopic dynamics, not
just exploring all the individual degrees of freedom. Then, we consider two-population
networks to ask how the observable macroscopic dynamics of chimera states is affected
by different complexities such as initial conditions, intra-population network topology, and
higher-dimensional dynamics. Next, how a simple transition from two- to three-population
networks gives rise to various chimera dynamics in terms of their collective motion. Moving
further, we will ask how a specific complexity of a network of populations, i.e., a ring
of six oscillator populations, and its permutation symmetries change chimera dynamics,
compared to those in two- and three-population networks. Finally, how about considering the
dimensional complexity of oscillators? Does the system of higher-dimensional oscillators
defined on the surface of the unit sphere of higher-dimensional complex spaces bring forth
different chimera dynamics?

To answer those questions, we follow the below steps.

[1] Introduction and motivation were given in Chap. 1.

[2] In Chap. 2, we will discuss one part of the title of this thesis, that is, theoretical princi-
ples. Therein, we will discuss all the theoretical ingredients for the exploration of the
coexistence dynamics, being the main issues of the following chapters. Starting from
a single oscillator, we revisit ensembles of identical Kuramoto-Sakaguchi oscillators
and study the dynamics of their macroscopic behavior. Next, we discuss how to deal
with the macroscopic dynamics of the system using the dimension reduction methods,
i.e., the Ott-Antonsen and the Watanabe-Strogatz ansatz. Then, we extend a KS phase



13

oscillator defined on a unit circle to a unit vector oscillator, called a generalized KS
oscillator on the surface of the higher-dimensional unit sphere. Both usual and general-
ized Kuramoto-Sakaguchi oscillators will be dealt with in a network of networks for
the study of chimera states. Finally, the theoretical tools for the study of stability will
be given.

[3] In Chap. 3, a thorough investigation is given for chimera states of identical Kuramoto-
Sakaguchi oscillators in two-population networks. Therein, the spectral properties of
finite-sized chimeras in two-population networks are discussed. We classify chimera
states as Poisson or Non-Poisson chimeras based on the collective dynamics of the
incoherent oscillators. Then, a Lyapunov analysis is performed, confirming the neutral
stability of Poisson chimeras. By introducing perturbations to the system of identical
phase oscillators, either in the form of topological variations or of amplitude degrees
of freedom, we will demonstrate that Poisson chimeras can be rendered attracting.

[4] In Chap. 4, the chimera states of identical Kuramoto-Sakaguchi oscillators are studied
in three-population networks. We investigate the full phase space dynamics of the sys-
tem beyond the symmetry-reduced manifold and discover the existence of macroscopic
chaotic chimera attractors. These chaotic chimera states, characterized by aperiodic
antiphase dynamics of the order parameters, are observed in both finite-sized systems
inside the Poisson submanifold and the thermodynamic limit outside the OA manifold,
respectively. Furthermore, the chaotic chimera states coexist with a periodic antiphase
chimera solution in the OA manifold and a stationary symmetric-chimera solution,
resulting in the tri-stability of chimera attractors.

[5] In Chap. 5, we focus on chimera states in a network of six populations of identical
Kuramoto-Sakaguchi phase oscillators arranged in a ring. Although many configura-
tions of synchronized and desynchronized populations are possible, they are found
to be linearly unstable in almost all parameter ranges. Nevertheless, some unstable
chimera states, characterized by one incoherent and five synchronized populations, are
observed in a wide parameter range and for random initial conditions. The structure
of the saddle chimera in phase space is relevant to the formation of a heteroclinic
cycle of symmetric variants of the saddle chimera, resulting in switching dynamics.
Small natural-frequency heterogeneities make the heteroclinic switching dynamics
asymptotically attracting, while large heterogeneities lead to a variety of attracting
chimera states replacing the heteroclinic switching between saddle chiemras.
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[6] In Chap. 6, we will explore the generalized Kuramoto oscillators defined on a higher-
dimensional unit sphere, rather than being confined to the unit circle of the complex
plane. Using the extended Watanabe-Strogatz transformation [104], the macroscopic
dynamics of chimera states is investigated in both real and complex spaces. More
specifically, chimera states in two-population networks are studied in terms of the
motion of order parameter vectors, varying the intra-population coupling strength.
The results show stationary and breathing chimeras for strong coupling, periodic
alternation of order parameters for weaker coupling, and a transition to aperiodic
chimera dynamics as the coupling weakens further via the breaking of the conserved
quantities. This scenario of the emergence of various chimera states will be validated
both for C2 and R4 cases.

[7] Finally, in Chap. 7, we will make a conclusion of this thesis.

[8] In Append. A, an example of collective dynamics of coupled oscillator systems different
from a chimera state is given. See Chap. 2 for details.



Chapter 2

Theoretical Principles

Since Y. Kuramoto introduced a simple model to demonstrate a transition from disorder to
self-organized order in a system of coupled oscillators [42], numerous authors have examined
and discussed a variety of oscillator ensembles to investigate collective behaviors that arise
in ensembles of nonlinearly coupled self-sustained oscillators. [25, 26, 105, 32]. The aim
of this chapter is to provide the theoretical principles for the description of the macroscopic
dynamics of oscillator ensembles as needed to follow the main results of the thesis. As
stated in Chap. 1, our goal in this thesis is the exploration of the coexistence dynamics of a
system of identical Kuramoto-Sakaguchi oscillators in a network of networks. To give
the theoretical background, we first discuss how to construct a system of identical Kuramoto-
Sakaguchi oscillators in a single network (or one population), starting from an individual
oscillator, i.e., a building block of the system. Then, the macroscopic behavior of the system
of identical Kuramoto-Sakaguchi oscillators is discussed based on the investigation of the
Kuramoto order parameter. Note that the Kuramoto order parameter is defined and obtained
from the sum of the microscopic individual oscillators, which requires us to investigate a
numerous number of degrees of freedom. Next, we study how to describe the macroscopic
dynamics of the ensemble using dimension reduction methods. In this chapter, we provide
all the practical steps for the utilization of the Ott-Antonsen (OA) ansatz and the Watanabe-
Strogatz (WS) transformation. Then, we will construct a system of Kuramoto-Sakaguchi
oscillators in a network of networks, and show how one can describe it in terms of the WS
and the OA variables. The aforementioned process will be given for both the usual and the
generalized Kuramoto-Sakaguchi oscillators, respectively. Finally, we discuss the theoretical
background of Lyapunov stability analysis, which we will exploit throughout the thesis for
the study of the stability of chimera dynamics.
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2.1 From a Building Block to an Ensemble

The simplest, yet the most important oscillating behavior both in nature and man-made
systems is, without any doubt, a simple harmonic oscillator (SHO) [106–108]. In physics,
this model is often used to approximate the local behavior of a physical system by considering
a linear oscillation. For example, consider a complicated potential of a given physical system
that is concave up at some point, i.e., it has a local minimum, then in the vicinity of the
local minimum of the potential, the dynamics of the system can be approximated as a simple
harmonic oscillator problem in the vicinity of the local minimum point of the potential. We
readily encounter many instances of such a harmonic oscillation in diverse physical systems,
including mechanical systems and electrical circuits [109]. In the complex plane, the SHO is
described as W (t) =W (0)eiω0t which is a solution of initial value problem of the ODE:

∂tW (t) = iω0W (t) (2.1)

where ∂t := d
dt and ∀t: W (t) =W (t −T ) ∈ C fully depicts a periodic motion in the complex

plane with the period T = 2π

ω0
. Here, ω0 ∈ R is called a natural frequency determined by

intrinsic properties of the system such as the length of a pendulum, a spring constant, or the
capacitance/inductance, according to the physical nature of the system under consideration.
Equation (2.1) is linear so that the rotational symmetry can be considered, i.e., the system is
invariant under the transformation W 7→Weiθ0 where θ0 ∈ R. Hence, there is no preferred
phase value in this periodic motion [110]. Note that the simple harmonic oscillator represents
one periodic trajectory whose amplitude is determined by the initial condition. Thus, there
exists a continuous band of periodic orbits around a center [111–113]. An SHO is not an
isolated closed trajectory in the phase space.

As described above, the SHO is the simplest linear oscillator. In Chap. 1, we learned that
nonlinearity is necessary to observe the collective behavior in a complex system. How then
can we describe a simple nonlinear oscillator? To this end, we impose the simplest nonlinear
term in Eq. (2.1) that preserves the rotational symmetry [110]. This leads to

∂tW = iω0W + f (W,W ) (2.2)

where f (W,W ) characterizes the nonlinearity and satisfies

f (Weiθ0,We−iθ0) = f (W,W )eiθ0. (2.3)

Hereafter, the symbol with an overbar indicates the complex conjugate. Among many other
ways to satisfy Eq. (2.3), the simplest nonlinear term doing so is f (W,W ) =WWW = |W |2W .
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The nonlinear oscillator constructed from the above is called a Stuart-Landau oscillator
(SLO) and is governed by

∂tW = c1W + c2|W |2W (2.4)

where c1,c2 ∈ C. As the simple harmonic oscillation represents a universal local behavior
of any linear oscillation, likewise, Eq. (2.4) represents the normal form of Hopf bifurcation,
i.e., the universal local behavior of nonlinear oscillation near the emergence of a limit-cycle
oscillation [114]. The periodic motion of Eq. (2.4) is an isolated closed trajectory in the
phase space. To be more specific, let us assume that c1 = µ + i and c2 = α + iβ . Then,
µ ∈ R is the bifurcation parameter and α ∈ R is called the first Lyapunov coefficient [112]
that determines the stability of the limit-cycle generated in the Hopf bifurcation at µ = 0: If
α < 0, the limit-cycle described by W (t) =

√
−µ/αei(1−β µ/α)t , is stable for µ > 0 and the

bifurcation is then called supercritical. Otherwise, if α > 0, an unstable limit-cycle emerges
for µ < 0 in a so-called subcritical Hopf bifurcation1.

The Stuart-Landau oscillator could be a good candidate for a building block of a generic
system of coupled oscillators. Let us extend an oscillator to an ensemble of coupled oscil-
lators, of which we are to study the collective dynamics. First of all, we consider a system
of infinitely many oscillators since we have the digitus minimus of physicists2. We assume
that oscillators are interacting with others according to a given coupling scheme, which
will be specified in this chapter. To give a concrete shape to this idea, we here consider a
continuous oscillatory medium. The system is described by an oscillator field W (x, t) ∈ C
over a spatiotemporal domain, depending on x ∈ [0,L] =: D ⊆ R and t ∈ R3. At a certain
point x ∈ D, the oscillator field W (x, t) can be interpreted as a single oscillator W (x, t) that is
coupled with other oscillators at other points on D via a given coupling function. Note that,
for simplicity, we only deal with a 1D geometry of length |D|= L with periodic boundary
conditions. The simplest spatiotemporal dynamical system of such a continuous oscillatory
field is a reaction-diffusion equation which reads

∂

∂ t
W (x, t) = F (W )+D

∂ 2

∂x2W. (2.5)

1Cf. the SHO is one of a continuous band of (i.e., an infinite number of) periodic orbits near a center, and
hence it is a non-isolated neutrally stable orbit, not a limit-cycle. In fact, the analytic planar system (∂tx = f(x)
where x ∈ R2 and f is analytic in R2) has at most a finite number of limit-cycles in any bounded region in R2

(Dulac) [112].
2We know that physicists have five fingers to count the number of degrees of freedom: one, two, three,

finite-N, and infinity.
3A dynamical system is a triplet (X ,T ,ϕt), where X is a topological space, called the phase space, with

an appropriate structure such as a metric, T is the time domain and ϕt : X → X for t ∈ T is the family of
evolution operators satisfying ϕ0 = id and ϕs ◦ϕt = ϕt+s ∀t,s ∈ T [115]. Throughout this thesis, we consider
T = R+ without loss of generality.
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where D is a diffusion coefficient. In Eq. (2.5), the reaction term F (W ) governs the
(decoupled) local dynamics by which the single oscillator behaves independently of the others.
The coupling term, i.e., the diffusion term D∂ 2

x W (x, t) specifies a pure-local interaction
through which each oscillator (i.e., the oscillator field at a certain point x in the domain) can
be considered as coupled only with the nearest neighbors due to the property of the Laplacian
operator4. Equation (2.5) is a general reaction-diffusion equation. Now, we can specify
the reaction term using the building block that we had, i.e., the Stuart-Landau oscillator in
Eq. (2.4). This leads to the reaction-diffusion equation given by

∂

∂ t
W (x, t) = (1+ iω0)W (x, t)− (1+ ic2)|W (x, t)|2W (x, t)︸ ︷︷ ︸

intrinsic dynamics of building block, i.e., SLO

+(1+ ic1)
∂ 2

∂x2W (x, t)︸ ︷︷ ︸
purely local coupling

(2.6)

where ω0,c1,c2 ∈ R 5. Equation (2.6) is called the Complex Ginzburg-Landau Equation
(CGLE). The CGLE is known to exhibit a variety of spatiotemporal collective patterns
depending on the parameter values, examples ranging from a nearly uniform oscillation to
chaotic dynamics [110, 116]. Note that the local dynamics of Eq. (2.6) is still the Stuart-
Landau oscillator, which is our building block that constitute the ensemble.

The diffusion term in Eq. (2.6) describes a purely local interaction between neighboring
oscillators. In fact, we can consider a rather general spatial coupling function in the oscillatory
medium. For this, we replace the Laplacian operator (local coupling) with an integral operator
which reads

∂

∂ t
W (x, t) = (1+ iω0)W (x, t)− (1+ ic2)|W (x, t)|2W (x, t)+ εe−iα(GW )(x, t) (2.7)

where ε ∈ R is the coupling strength and α ∈ [0,2π] is the so-called phase-lag parameter.
Note that here we write 1+ ic1 7→ εe−iα ∈C. The coupling term can be written as an integral
convolution operator defined by

(GW )(x, t) :=
∫
D

G(x− x′)W (x′, t)dx′ (2.8)

where D := [0,L] is the spatial domain of the medium and G(y) with |y| ≤ L/2 is a coupling
function that will be specified later in this chapter. Note that in general the integral in Eq. (2.8)

4This can be easily understood by, for example, considering a finite difference discretization of the Laplacian
operator ∂ 2

x W ∼Wj+1 +Wj−1 −2Wj. Thus, each oscillator j interacts only with the nearest neighbors j−1
and j+1 in a ring geometry.

5Here, the constants c1 and c2 have different meanings from those in Eq. (2.4)
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is not treated in a Riemannian sense but rather in a Lebesgue sense since the continuity of
W (x, t) as a function of x is not guaranteed in general [117, 118].

Although Equation (2.7) is defined ab initio in a continuous oscillatory medium described
by the oscillator field W (x, t), we interpreted the oscillatory field W (x, t) at a certain point
x as an oscillator coupled with other oscillators situated in the domain of the medium. In
this perspective, we can view (not rigorously but practically) this continuous system as a
continuum limit of a finite-sized ensemble6. The governing equation of the finite-sized
ensemble is given by

∂tWj = (1+ iω0)Wj − (1+ ic2)|Wj|2Wj + εe−iα
(

L
N

N

∑
k=1

G jkWk

)
(2.9)

where Wj(t) :=W (x, t) at x = x j := L( j−1)
N and G jk for j,k = 1, ...,N. Here, N is the number

of oscillators in the finite-sized ensemble.
Both continuous and discrete systems of coupled Stuart-Landau oscillators can display a

variety of collective dynamics, depending on the specifics of the coupling function G(y). For
discrete systems, we consider the following four cases:

[1] For G jk ∼ δ j,k+1+δ j,k−1, the purely local interaction of diffusive coupling is recovered,
as discussed above for the CGLE [110, 116];

[2] G jk =
1
L for all j,k = 1, ...,N results in a global (all-to-all) coupling in the system

where each oscillator is coupled with all the others through the mean-field force [119];

[3] A network structure of oscillators is obtained when G jk represents its weighted ad-
jacency matrix, which has zero entries for all pairs of oscillators j,k that are un-
coupled [52, 120] and all non-zero values represent the interaction strength between
oscillators j and k.

[4] G jk = G(x j − xk) with non-constant, piece-wise smooth and even function G(y) [61,
60] yields an ensemble of nonlocally coupled Stuart-Landau oscillators in a spatially
extended system [53, 64];

In this thesis, in order to study chimera states, we will exploit the second case [2], however,
with a structure of a network of networks. In Appendix. A, we consider collective behavior
in a system with spatially nonlocal coupling as an example of the case [4]. More precisely,
we will discuss a traveling wave solution of nonlocally coupled Stuart-Landau oscillators in
a ring geometry [121].

6or one can interpret this finite-sized ensemble as a finite-size approximation of the continuous medium.
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2.2 Ensemble of Kuramoto Phase Oscillators

Depending on the coupling scheme, an ensemble of coupled Stuart-Landau oscillators in
Eq. (2.9) can exhibit various collective dynamics including chimera states. Yet, it is not
an easy task to deal with planar oscillators since they have two degrees of freedom, the
phase and the amplitude. In this section, we focus on the collective behavior of so-called
phase-oscillators with the phase being the only degree of freedom.

The Stuart-Landau oscillator in Eq. (2.4) represents a limit-cycle in the phase space
(R2) around the origin, i.e., an isolated periodic trajectory on a circle with radius

√
−µ/α

centered at the origin. Here, the amplitude dynamics governs the transversal direction to
the periodic motion on the limit-cycle whereas the phase variable describes the tangential
motion of the periodic orbit [25]. However, since the amplitude shows constant motion, we
are tempted to ignore it and consider only the phase dynamics meaningful. Let us see how
we can justify such a treatment. In Sec. 2.1, we discussed that a Stuart-Landau oscillator
can be either stable or unstable, depending on a given parameter set. The stability of the
limit-cycle oscillation can be investigated by measuring Lyapunov exponents [122–124]. The
Lyapunov exponents provide the local information on the exponential growth/shrinkage rate
of a given perturbation in the tangent space dynamics along a reference trajectory. For the
details, see Sec. 2.6. In the case of a stable limit-cycle, we can easily find that the amplitude
dynamics has a negative Lyapunov exponent with a finite order of magnitude. This means
that transversal perturbations shrink exponentially fast to zero, so that the stable limit-cycle
trajectory is restored. How rapidly it settles down to the original trajectory is characterized by
the magnitude of the Lyapunov exponent. On the other hand, the phase degree of freedom is
characterized by a zero Lyapunov exponent, which confirms that tangentially to or along the
periodic motion, the dynamics is neutrally stable. The neutrally stable phase dynamics gives
rise to collective motion when the oscillator phases are coupled with the phases of others in
an appropriate condition [25]. Since the Lyapunov exponents characterizing the dynamics of
the two variables have different orders of magnitude, i.e., the expansion/contraction rate of
local perturbations, we observe a separation of time scales. Starting from an initial condition
near the stable limit-cycle, the trajectory falls into the limit-cycle trajectory asymptotically
and fast. Then, the trajectory evolves according to the phase dynamics along the limit-cycle
with |W (t)| →

√
−µ/α . For details on the reduction with the center manifold theorem, see

Ref. [125].
In a system of identical Stuart-Landau oscillators coupled through a sufficiently weak

coupling strength, the amplitude variables likewise approach the amplitude value of the
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given uncoupled SLO on a fast time scale, i.e., |W (x, t)| ≈ 1 for all x ∈ D7. This leads the
amplitude variables of the oscillator ensemble to a nearly homogeneous distribution. The
small fluctuations around the homogeneous amplitude distribution can be ignored in this
context8. In contrast, on the slow time scale, the phase variables adjust their dynamics
through the interaction between the oscillators due to their (nearly) neutral stability. Hence, a
system of weakly coupled oscillators can display a nontrivial (inhomogeneous) collective
motion in their phase degrees of freedom while the amplitude variables settle down to the
trivial behavior, i.e., the homogeneous distribution. Hence, we can consider only the phase
dynamics of the ensemble.

Such phase-only dynamics of a system of nearly identical oscillators can be validated in
general as long as the coupling strength is sufficiently weak [126, 42, 25]. In other words, this
reduction method is generally applicable for other nearly identical planar oscillators, such
as van der Pol oscillators when they are weakly coupled [127]. But, here we focus on the
system of Stuart-Landau oscillators in Eq. (2.7). Let us first assume that the coupling strength
is sufficiently weak, i.e., ε ≪ 1. Then, in polar coordinates where W (x, t) = r(x, t)eiφ(x,t) for
r(x, t) ∈ R and φ(x, t) ∈ T := [0,2π], Equation (2.7) can be written as

∂

∂ t
r(x, t) = r(x, t)− r(x, t)3 + ε

∫
D

G(x− x′)r(x′, t)cos(φ(x′, t)−φ(x, t)−α)dx′

= r(x, t)(1− r(x, t)2)+O(ε) (2.10)

and

∂

∂ t
φ(x, t) = ω0 − c2r(x, t)2 +

ε

r(x, t)

∫
D

G(x− x′)r(x′, t)sin(φ(x′, t)−φ(x, t)−α)dx′

= ω0 − c2r(x, t)2 +O(ε)

7→ c2(1− r(x, t)2)+O(ε) (2.11)

for the amplitude and phase variables, respectively. Note that the last line of Eq. (2.11) arises
from the phase shift invariance φ 7→ φ +(ω0 − c2)t since the system has the continuous
rotational symmetry. For ε ≪ 1, the system has two time scales [59]: The amplitude
dynamics falls first into its homogeneous arrangement within the fast time scale such that
r(x, t) = 1 for all x ∈ D. On the slow time scale, the system dwells in a manifold with a
uniform amplitude distribution such that only the phase dynamics is nontrivial via O(ε) term

7Note that in Eq. (2.7), the corresponding amplitude is given as
√

−µ/α = 1.
8Note that we cannot ignore the amplitude dynamics if the coupling strength is not sufficiently weak. For

example, see Appendix. A.
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in Eq. (2.11). Therefore, the phase-reduced dynamics reads

∂

∂ t
φ(x, t) = ω + ε

∫
D

G(x− x′) sin(φ(x′, t)−φ(x, t)−α)dx′ (2.12)

where ω results from an appropriate rotating reference frame, and can be interpreted as a
natural (intrinsic) frequency of the phase oscillator. This phase-only equation is called in
general a phase-reduced model or a phase model [127, 128].

In the finite-sized approximation, each phase oscillator φ j(t) ∈ T is governed by

∂tφ j = ω + ε
L
N

N

∑
k=1

G(x j − xk)sin(φk −φ j −α) (2.13)

for j = 1, ...,N. This set of coupled equations is called an ensemble of Kuramoto-Sakaguchi
phase oscillators. In contrast, it is called Kuramoto-Battogtokh model [53] when the coupling
function represents the (spatially extended) nonlocal coupling on a ring geometry. A chimera
state was initially observed in the Kuramoto-Battogtokh model [53]. However, in this thesis,
our main concern is the study of chimera states in a network of networks, where intra- and
inter-population coupling is all-to-all, yet with different coupling strengths. Hence, as the
first step, here we study systems of globally coupled Kuramoto phase oscillators in a single
network and then construct a network of networks. To this end, we discuss the details of a
system of identical Kuramoto-Sakaguchi oscillators below, which reads

∂tφ j(t) = ω +
ε

N

N

∑
k=1

sin(φk −φ j −α) (2.14)

for j = 1, ...,N. Due to the phase shift invariance in Eq. (2.14), we can set ω = 0. Note
that Eq. (2.14) can be obtained from Eq. (2.13) when G jk =

1
L for j,k = 1, ...,N, i.e., the

(all-to-all) globally coupled system. For the sake of simplicity, we set ε to unity.
So far, we have prepared the building blocks of our main system (Kuramoto-Sakaguchi

oscillators) and an ensemble of them. To study the collective dynamics of the system, we
need one more necessary ingredient. We have to find a ruler to measure the macroscopic
behavior from the information of the individual oscillators {φ j(t)}N

j=1. Such a ruler is given
by the Kuramoto order parameter. It is defined as [129]

Γ(t) = R(t)eiΘ(t) :=
1
N

N

∑
k=1

eiφk(t) ∈ C1 (2.15)
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where Γ(t) ∈ C, R(t) ∈ R and Θ(t) ∈ T. To understand its physical meaning, suppose
that each oscillator moves according to Eq. (2.14) on a unit circle in the complex plane,
i.e., the motion follows eiφk(t) as a function of time for k = 1, ...,N 9. Then, the Kuramoto
order parameter corresponds to the centroid of the oscillator phases on the unit circle [43].
The modulus |Γ(t)| = R(t) measures the degree of coherence of the phase variables, and
the argument argΓ(t) = Θ(t) gives the average phase of the oscillators on the unit circle.
Therefore, a completely incoherent state where all the oscillators are distributed uniformly
on the unit circle (we assume N ≫ 1) is characterized by R = 0. On the other hand, the
synchronized state results in R = 1. An intermediate value 0 < R < 1 indicates partial
coherence of the oscillator phases. Thus, the Kuramoto order parameter is a good ruler
that measures the collective behavior of the system. However, so far, the Kuramoto order
parameter in Eq. (2.15) is calculated from a numerous number of microscopic phases, i.e.,
we have to obtain all φ j(t) as a function of time for j = 1, ...,N. Furthermore, the Kuramoto
order parameter in Eq. (2.15) only provides us with a phenomenological observation of the
collective behavior, not the governing equation of the order parameter. Recall that our goal
is the description of the collective dynamics, which means we would like to investigate the
governing equation of the Kuramoto order parameter if it exists. In Sec. 2.4, we will discuss
this aspect in more detail.

Now we introduce a more concrete approach to the system of Kuramoto-Sakaguchi
oscillators. Here, we show another simple way to Eq. (2.14) that includes important concepts
for the study of oscillator systems. Let us first discuss an obvious concept, a phase on a
limit-cycle trajectory in the state space10. The single nonlinear oscillator can be generally
written as [42, 130, 25]

∂tX = F(X) (2.16)

where X ∈ E ⊆ RM, F ∈ C1(E) and E is an open subset of RM. Assume that Eq. (2.16)
has a stable limit-cycle trajectory such that X0(t +T ) = X0(T ) where T is its period and
X0 : R→ E denotes the very stable limit-cycle in phase space. Next, we can introduce the
frequency, ω = 2π

T , and define the limit set Γ := {X ∈ E | X = X0(t), t ∈ [0,T ]} that attracts
nearby trajectories into itself. Since a limit-cycle is a periodic trajectory, whose phase evolves
monotonically, gaining 2π in each cycle [25], and Γ is one-dimensional manifold embedded
in E ⊆RM, we can uniquely assign any point Xp ∈ Γ to a phase ψp ∈ T := [0,2π], on which
a diffeomorphism is defined as Ψ : Γ → T, called the phase map such that Ψ(Xp) = ψp

9Note that the phase variable is the argument of eiφk(t), and this fact will be needed again when we discuss
the generalized Kuramoto oscillator in Sec. 2.5

10the phase space
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and ϕt(Xp) := X0(t + T
2π

ψp) = X0(t +
ψp
ω
) by setting Ψ(X0(0)) = 0 where ϕt : E → E (or

ϕ : R×E → E ⊆ RM) is a flow of Eq. (2.16) [112]. Therefore, the phase variable on a
limit-cycle Γ is defined as θ : R→ T to satisfy θ(t) = Ψ(ϕt(Xp)) = Ψ(X0(t +ω−1ψp)). In
fact, we can define the frequency as ω := ∇XΨ · dX

dt = ∇XΨ ·F(X) without loss of generality.
Note that the phase variable θ(t) is also T -periodic in time, and one can define it to be
θ(t) = ωt +ψp, which results in θ̇(t) = ω without loss of generality [130, 131].

The concept of a phase can be extended to a trajectory outside the limit-cycle but
asymptotically converging to the limit-cycle under a weak perturbation [25, 42, 130]. To
define the phase outside the limit-cycle, we consider an open neighborhood U(Γ)⊆ E of the
limit-cycle trajectory where an initial condition starting in U(Γ) converges to Γ as t → ∞.
From an initial condition Xp ∈U(Γ), the asymptotic phase ψp ∈ T is defined to fulfill

lim
t→∞

∣∣∣∣ϕt(Xp)−X0(t +
1
ω

ψp)

∣∣∣∣= 0 (2.17)

(compare this with the phase defined above on the limit-cycle). Likewise, the asymptotic
phase map is defined as Ψ : U(Γ)→ T with Ψ(Xp) = ψp and the asymptotic phase variable
as θ : R→ T such that θ(t) = Ψ(ϕt(Xp)) satisfies Eq. (2.17) [130]. Here, the asymptotic
phase variable is also T -periodic and can be chosen to follow θ(t)=ωt+ψp so that θ̇(t)=ω .
The collection of all points in U(Γ) with the same asymptotic phase variable is called an
isochron [132, 42]. The isochron is an (M−1)-dimensional hypersurface that is a level set of
Ψ. If a given set of points belongs to U(Γ) at a certain time, it will stay on the same isochron
for all t as long as no perturbation is imposed on them [42].

The concept of an asymptotic phase variable is still valid in the presence of a weak
perturbation as long as the trajectory starting in U(Γ) asymptotically converges to Γ. First,
we introduce a small perturbation to Eq. (2.16) such that

∂tX = F(X)+ εP(X) (2.18)

where P : E → E and ε ≪ 1 is a small parameter which determines the perturbation strength
so that εP(X) describes a small perturbation depending on X. The periodic orbit still persists,
however, with a period slightly changed. We can therefore study how to approximate the
orbit in the lowest order of ε under a weak perturbation [130, 42]. From the above definitions,
we can consider a time derivative of the phase map, which reads

∂tΨ(X) = ∇XΨ · dX
dt

= ∇XΨ ·
[
F(X)+ εP(X)

]
= ω + ε∇XΨ ·P(X) (2.19)
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where we define for the situation without perturbation ∇XΨ ·F(X) =: ω . This exact equation
does not give a closed form in Ψ. The RHS depends generally on the precise value of X
on the isochron characterized by Ψ. However, we can introduce the lowest approximation
to obtain the closed equation for the phase variable since X ∈ U(Γ) still lies near Γ so
that |X−X0| → 0 as ε → 0 and the asymptotic phase variable has the same value on an
isochron [42]. Hence, replacing X by X0(Ψ) 11 results in the approximated equation

∂tΨ = ω + ε ∇XΨ

∣∣∣∣
X=X0(Ψ)

·P(X0(Ψ)) = ω + ε Q(Ψ) ·P(Ψ) (2.20)

where Q(Ψ) = ∇XΨ|X=X0(Ψ) is called the phase sensitivity function (or the phase response
curve) and both functions Q and P are 2π-periodic in Ψ. Returning back to our usual notation,
we can rewrite Eq. (2.20) as

∂tφ(t) = ω + ε Q(φ)P(φ) (2.21)

where Q(φ) is the phase response curve. It determines how sensitively a single oscillator at
phase φ responds to a weak external perturbation in the lowest order of ε [42].

Many dynamical systems in nature, for example, ensembles of biological individuals as
coupled oscillators, appear as a pulse-coupled oscillator system [133, 31]. Each oscillator
sees a sudden impact from other interacting oscillators in the system. Such a system can be
described by the so-called Winfree model

∂tφ j(t) = ω + ε Q(φ j)
1
N

N

∑
k=1

P(φk), j = 1, ...,N (2.22)

where ε is the coupling strength, Q(φ) is the phase response curve, i.e., the phase sensitivity
function, and P(φ) characterizes a smooth pulse-like coupling. This equation describes a
system of coupled oscillators with the building block represented in Eq. (2.21). It is important
to note that in Eq. (2.22), there is no phase shift invariance since the oscillators are pulse-
coupled (P(φk)), not pairwise phase-coupled (H(φk−φ j)). More specifically, Ariaratnam and
Strogatz [133] introduced a mathematically tractable model for such pulse-coupled oscillator
ensembles with specific functions:

Q(φ) =−sinφ , P(φ) = 1+ cosφ . (2.23)

11note that the phase map Ψ on a limit-cycle X0 is defined to be bijective, so that one can consider X0(Ψ)
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The smooth function P(φ) describes a pulse coupling since at φ = 0, the function is so sharply
peaked as to represent the sudden firing impulse from the other oscillators [133, 134, 80].
Furthermore, one can generalize these functions to obtain a more sharply peaked pulse:

Q(φ) = σ − sin(φ +α), P(φ) = an(1+ cosφ)n (2.24)

where n ∈ N and an = 2n(n!)2/(2n)!. In this case, the larger n is, the more sharply peaked is
P(φ), so that as n → ∞, P(φ) = 2πδ (φ) [133, 80].

To obtain the relation between Winfree (2.22) and Kuramoto (2.13), we take the method
of averaging [111, 135, 136]: Under a transformation φ j 7→ t +φ j and averaging both sides
over t, i.e., taking ⟨·⟩t =

1
2π

∫ 2π

0 · dt, we get

∂t⟨φ j⟩t +1 = ω +
ε

N

N

∑
k=1

1
2π

∫ 2π

0
(1+ cos(t +φk))(σ − sin(t +φ j +α))dt

=⇒ ∂t⟨φ j⟩= ω −1+ εσ +
ε

N

N

∑
k=1

1
2π

(
−π sin(φ j −φk +α)

)

=⇒ ∂tϕ j = ω +
ε

N

N

∑
k=1

sin(ϕk −ϕ j −α), j = 1, ...,N (2.25)

where the last line arises due to the approximation method of averaging for which φ j =

⟨φ j⟩+O(ε) and ϕ j := ⟨φ j⟩ with ω − 1+ εσ 7→ ω and ε

2 7→ ε for j = 1, ...,N. The above
equation is nothing but Eq. (2.14).

2.3 System of Identical Kuramoto-Sakaguchi Oscillators

In this section, we investigate a system of identical Kuramoto-Sakaguchi oscillators and
study their collective behavior which looks rather trivial but is important. More specifically,
looking at the macroscopic dynamics, we here exploit directly the Kuramoto order parameter,
as a phenomenological observation from all the individual oscillators {φ j(t)}N

j=1, i.e., no
governing equation of the order parameter is considered in this section. The system can
display either complete phase synchronization or the completely incoherent state 12 depending
on the value of the phase-lag parameter α ̸= 0. The phase-lag parameter determines the
Benjamin-Feir instability αBF: for α < αBF, the synchronized state is stable whereas the
(completely) incoherent state is unstable. In contrast, for α > αBF, the synchronized state is

12Note that this state is a complete phase desynchronization where the oscillators are fully locked at the
common frequency Ω while uniformly distributed on the unit circle. However, in the thesis, we call it the
completely incoherent state to follow terms in the literature, e.g., Ref. [99].
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Fig. 2.1 Snapshots of the distribution of phases of different solutions of Eq. (2.14) with
N = 100 oscillators at t = 10,000. (a) The synchronized state for α = π

2 − 0.1. (b) The
completely incoherent state for α = π

2 +0.1. Both results are obtained from random initial
conditions. (c) The splay state for α = π

2 + 0.1 from an initial condition φ j(0) = 2π

N j for
j = 1, ...,N. Note that when we rearrange the oscillator in ascending order of the phase
values in (b), it does not exhibit a straight line with a constant slope as depicted in (c).

unstable and the incoherent state stable [110]. Below, we will show that the Benjamin-Feir
instability occurs at αBF = π

2 using linear stability analysis.

2.3.1 Complete Phase Synchronization

First of all, since we assume all the oscillators are identical, complete phase synchronization
is expected to occur where φ j(t) = φ0 + Ωt for j = 1, ...,N (see Fig. 2.1 (a)). All the
oscillators have the same phase value and they are locked at the same collective frequency Ω.
The (completely) synchronized state has unit modulus of the Kuramoto order parameter in
Eq. (2.15):

Γ(t) =
1
N

N

∑
j=1

eiφ j(t) =
1
N

N

∑
j=1

eiφ0eiΩt = eiφ0eiΩt (2.26)

for all t. Hence, |Γ(t)| = 1 for all t ∈ R. In an appropriate rotating reference frame, for
example, φ 7→ φ +Ωt, the synchronized state is a fixed point solution to Eq. (2.14) with
φ j = φ0 for j = 1, ...,N. Thus, we can apply linear stability analysis straightforwardly by
calculating the eigenvalues of the Jacobian matrix evaluated at the synchronized state. The
Jacobian matrix reads

Ji j :=
∂ φ̇i

∂φ j

∣∣∣∣
φ0

=
∂

∂φ j

(
ε

N

N

∑
k=1

sin(φk −φi −α)

)∣∣∣∣∣
φ0

=
ε

N

N

∑
k=1

cos(φk −φi −α)(δk j −δi j)

∣∣∣∣∣
φ0

=
ε

N
cos(−α)−δi j

( N

∑
k=1

cos(φ0 −φ0 −α)

)
=

ε

N
cosα −δi j ε cosα (2.27)
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where δi j is a Kronecker’s delta for i, j = 1, ...,N. For the eigenvalues, we obtained

λi =

0, if i = 1

−ε cosα, if i = 2, ...,N
. (2.28)

Hence, the stability of the synchronized state is determined by the phase-lag parameter α : If
α > π

2 , then the eigenvalue λi≥2 =−ε cosα > 0 so that the sync state is unstable. On the con-
trary, if α < π

2 , it becomes stable. Note that there is always one zero eigenvalue, λ1 = 0, which
arises from the phase-shift invariance with the corresponding eigenvector v1 ∼ (1, ...,1)⊤.
On the other hand, there are (N −1)-fold degenerate negative eigenvalues with correspond-
ing eigendirections transverse to the synchronized manifold, i.e., vi = (v(1)i , ...,v(N)

i )⊤ with

∑
N
k=1 v(k)i = 0 for i = 2, ...,N.

2.3.2 Completely Incoherent State: Splay State

Secondly, one can obtain a set of oscillators distributed uniformly on the unit circle of C1

while all the oscillators are rotating with the common frequency Ω. This incoherent state
is characterized by the Kuramoto order parameter in Eq. (2.15) being zero. An example is
depicted in Fig. 2.1 (b). In fact, there are many realizations of such incoherent states for large
N with

1
N

N

∑
j=1

sinφ j =
1
N

N

∑
j=1

cosφ j = 0 (2.29)

that leads to |Γ(t)| = 0. Here, we focus on a very specific example of an incoherent state,
which shows equally spaced phases along the unit circle when arranged in ascending order
of the phase value. This incoherent state is called a splay state (see Fig. 2.1 (c)) [137]13 and
is considered the core of all the completely incoherent states [99]. Thus, we next concentrate
on the splay state as a representative of all the realization of the incoherent states. The splay
state satisfies

φ j(t) =
2π

N
j+Ωt (2.30)

where Ω is the common frequency at which every oscillator is fully locked, i.e., it describes
the uniform ratotion of the phases.

In Eq. (2.30), we defined and then observed the splay state, which consists of equally
spaced phases on the unit circle [137, 138]. Furthermore, all the oscillators are uniformly
rotating with the same common collective frequency Ω, i.e., they are fully-locked. Hence, in

13Some authors call this state ponies on a merry-go-round [138] due to its shape on the unit circle.
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a suitable rotating reference frame, a splay state also can be treated as a fixed point solution
of Eq. (2.14). The Jacobian matrix evaluated at the splay state solution φφφ

∗ := {φ j =
2π

N j| j =
1, ...,N} reads

Ji j :=
∂ φ̇i

∂φ j

∣∣∣∣
φφφ
∗
=

∂

∂φ j

(
ε

N

N

∑
k=1

sin(φk −φi −α)

)∣∣∣∣∣
φ∗

=
ε

N
cos
(

2π

N
( j− i)−α

)
−δi j

ε

N�������������:0N

∑
k=1

cos
(

2π

N
(k− i)−α

)
=

ε

N
cos
(

2π

N
( j− i)−α

)
(2.31)

for i, j = 1, ...,N. In fact, due to the equally spaced phases, the Jacobian matrix in Eq. (2.31)
becomes a circulant matrix with zero row-sum. In a matrix form, it reads [139, 140]

J =



c0 cN−1 . . . c2 c1

c1 c0 cN−1 . . . c2
... c1 c0

. . . ...

cN−2
. . . . . . . . . cN−1

cN−1 cN−2 . . . c1 c0


. (2.32)

Hence, the eigenvalues of the Jacobian matrix are given by

λ j = c0 + cN−1w j + cN−2w2 j + · · ·+ c1w(N−1) j (2.33)

with corresponding eigenvectors v j = (1,w j,w2 j, ...,w(N−1) j)⊤ where w = ei 2π

N for j =
0, ...,N−1 [139, 140]. Among the eigenvalues, there are two non-zero eigenvalues λ2 =

ε

2eiα

and λN−1 =
ε

2e−iα . Apart from these two, there are N −2 neutrally stable directions with
zero eigenvalues. One of them arises from the phase-shift invariance of the system. The
other N − 3 neutral stabilities arise from the fact that there are many realizations of the
incoherent states that satisfy the condition ∑

N
k=1 eiφk = 0, and the perturbations among these

realizations bring about the neutrally stable directions [99]. We will discuss the details of the
neutral stability on the ground of Watanabe-Strogatz transformation later in this chapter. As
a consequence, the linear stability of the splay state is determined by the real part of the two
non-zero eigenvalues, i.e., Re

[
ε

2e±iα]= ε

2 cosα: if α > π

2 , then the real parts of these two
eigenvalues are negative. The splay state is found to be stable. On the contrary, it is unstable
as long as α < π

2 .
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In conclusion, the Benjamin-Feir instability of the system of identical Kuramoto-Sakaguchi
oscillators occurs at αBF = π

2 .

2.4 Macrosopic Dynamics: Watanabe-Strogatz and Ott-
Antonsen Ansatz

In this section, we revisit a remarkable rather recently developed result, which allows us to
describe the macroscopic dynamics of ensembles of coupled phase oscillators. Let us begin
with the simplest system, i.e., the identical Kuramoto-Sakaguchi oscillators in Eq. (2.14).
The identical KS oscillators in Eq. (2.14) can be written in the following general form

∂tφ j = g+ Im
[

f e−iφ j
]
, j = 1, ...,N (2.34)

where g is determined from the (decoupled) local information of each oscillator, and f
governs how the oscillators are coupled in a mean-field manner, i.e., it describes an all-to-all
coupling. Equation (2.14) is obtained with

f = εΓ(t)e−iα := εe−iα 1
N

N

∑
k=1

eiφk(t) and g = ω (2.35)

Then, each oscillator is effectively decoupled and influenced by the mean-field forcing only,
i.e., the Kuramoto order parameter Γ(t). This is a typical example of sinusoidally coupled
systems. What does ‘sinusoidally’ mean? As one can easily notice, the governing equation
of each oscillator depends on its own index j only through the first harmonics, e.g., e±iφ j(t)

while the other terms are the same for all the oscillators acting like an external forcing and
constitute the mean-field coupling. Such a system is called a sinusoidally coupled system of
identical phase oscillators [95].

In 1993-1994, S. Watanabe and S. Strogatz reported remarkable results. They stated
that a system of N sinusoidally coupled identical phase oscillators can be reduced to
3D dynamics and all the other degrees of freedom are just constants of motion [98, 99].
They introduced a time-dependent transformation between the microscopic phase variables
{φ j(t)}N

j=1 and the microscopic constants of motion {ψ j}N
j=1 plus three macroscopic vari-

ables {ρ(t),Φ(t),Ψ(t)}. The transformation is called the Watanabe-Strogatz transformation
after their discoverers.

In 2008, E. Ott and T. Antonsen worked also on various sinusoidally coupled phase
oscillator ensembles in the thermodynamic limit, but in contrast to Watanabe and Strogatz
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they considered heterogeneous natural frequencies [96, 97]. They proposed a 2D invariant
manifold to which the infinite-dimensional system can be reduced when a certain condition
is met. Later, Marvel, Mirollo and Strogatz [95] and Pikovsky and Rosenblum [101, 102],
respectively, demonstrated the relation between the Watanabe-Strogatz transformation and
the Ott-Antonsen ansatz. Thereafter, many researchers have exploited those two approaches
so as to understand a variety of collective dynamics including a chimera state [62]. In this
chapter, we revisit their works in a practical way which will help us explore the coexistence
dynamics in the following chapters.

In describing the collective behavior of the system, a ruler to measure its macroscopic
feature was introduced. In our context, the Kuramoto order parameter is a perfect quantity to
measure the degree of coherence of oscillator phases. For example, in the identical KS model
in Sec. 2.3, the Kuramoto order parameter distinguishes between phase synchronization
(|Γ(t)|= 1) and the incoherent state (|Γ(t)|= 0). In this measuring process, first of all, one has
to obtain the microscopic information, i.e., {φ j(t)}N

j=1 from the governing equations (2.34).
Then, {φ j(t)}N

j=1 can be substituted into the definition of the Kuramoto order parameter in
Eq. (2.15). Can we think about the governing dynamics of the macroscopic observable?
Can we find a governing equation of the order parameter? The Watanabe-Strogatz (WS)
transformation [98, 99, 141] and Ott-Antonsen (OA) ansatz [96, 97, 142] give answers to
such questions.

Below, we follow all the important steps of both the WS and the OA ansatz. A system of
sinusoidally coupled oscillators is, in general, governed by

∂tφ j(t) = ω + Im
[

H(t)e−iφ j(t)
]

(2.36)

for j = 1, ...,N. Here, H(t) could be any forcing function acting on an oscillator, e.g., it
could determine the mean-field forcing like the Kuramoto order parameter. The Watanabe-
Strogatz transformation is a time-dependent analytic automorphism of linear fractional
transformation [100] onto the unit disk such that [95, 102]

eiφ j(t) = Mt(eiψ j) := eiΦ(t) ρ(t)+ ei(ψ j−Ψ(t))

1+ρ(t)ei(ψ j−Ψ(t))
(2.37)

for j = 1, ...,N where ρ(t) ∈ [0,1), and Φ(t),Ψ(t) ∈ R. This transformation is equivalent to
another form that reads

tan

(
φ j(t)−Φ(t)

2

)
=

1−ρ(t)
1+ρ(t)

tan

(
ψ j −Ψ(t)

2

)
(2.38)
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for j = 1, ...,N (for the detailed derivation between them, see Refs. [95, 102]). It is a
one-parameter family of linear fractional transformations and its inverse maps the time-
independent phases {ψ j}N

j=1 onto the time-dependent phase variables {φ j(t)}N
j=1. In other

words, the microscopic phases {φ j(t)}N
j=1 are transformed to one time-dependent macro-

scopic radial variable ρ(t) ∈ R and two time-dependent macroscopic angular (or phase)
variables Ψ(t),Φ(t)∈R plus the time-independent microscopic constants of motion {ψ j}N

j=1.
The constants of motion are determined by a given initial condition {φ j(0)}N

j=1 with three
constraints [99]. There are only N −3 independent constants of motion in {ψ j}N

j=1. Two of
the constraints are imposed by

1
N

N

∑
k=1

cosψk =
1
N

N

∑
k=1

sinψk = 0 (2.39)

and the other one can be relatively freely chosen such as ∑
N
k=1 ψk = 0 or ∑

N
k=1 cos(2ψk) =

0 [102]. We will explain why these constraints are imposed later in this section. After having
introduced these three constraints, it is possible to determine φ j(0) from the macroscopic
variables ρ(0),Ψ(0),Φ(0) and ψ j for j = 1, ...,N, and vice versa.

To describe how the WS variables govern the macroscopic behavior of the system, we
need to find the relation between the Kuramoto order parameter Γ(t) and the macroscopic WS
variables. Therefore, the WS transformation in Eq. (2.37) is substituted into the Kuramoto
order parameter such that

Γ(t) =
1
N

N

∑
k=1

eiφk(t) =
1
N

N

∑
k=1

eiΦ(t) ρ(t)+ ei(ψk−Ψ(t))

1+ρ(t)ei(ψk−Ψ(t))

= ρ(t)eiΦ(t)

(
1

Nρ(t)

N

∑
k=1

ρ(t)+ ei(ψk−Ψ(t))

1+ρ(t)ei(ψk−Ψ(t))

)
=: ρ(t)eiΦ(t)

γ(ρ,Ψ) (2.40)

where γ(ρ,Ψ) ∈ C and |γ| ≤ 1. This relation gives physical meanings of the macroscopic
WS variables. The radial variable ρ(t) and the angular variable Φ(t) act similarly (not exactly
since γ(ρ,Ψ)) like the Kuramoto order parameter Γ(t) = R(t)eiΘ(t). As the modulus of the
Kuramoto order parameter measures the degree of coherence of the oscillators, so does
the WS radial variable. For ρ = R = 0, the completely incoherent state is captured while
ρ = R = 1 indicates complete phase synchronization. Furthermore, 0 < ρ < 1 represents
partial coherence of the system although ρeiΦ does not exactly coincide with the Kuramoto
order parameter due to γ(ρ,Ψ). The angular variable Φ(t) measures the mean phase value
of the ensemble, just as Θ(t) does. The other angular variable Ψ(t) characterizes how the
individual oscillators behave with respect to Φ(t) [102]. Furthermore, the group action of the
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Watanabe-Strogatz transformation in Eq. (2.37) gives an orbit partition of the phase space.
The N-dimensional phase space now can be partitioned into a set of 3D invariant subspaces
which are characterized by N −3 constants of motion determined by the initial condition.
Hence, the reduced 3D macroscopic dynamics resides in the (N −3)-parameter family of
invariant manifolds as long as the constants of motion are given [95, 99].

Our main task in this section is to find the governing equations for the Kuramoto order
parameter. For this, we can obtain a hint from Eq. (2.40). The macroscopic WS variables
ρ(t)eiΦ(t) are linked to the Kuramoto order parameter Γ(t) = R(t)eiΘ(t). Now, the task
appears clear: If one can find (i) the governing equations for WS variables and (ii) some
conditions where γ = 1 so that Γ= ρeiΦ, then the WS variables exactly describe the dynamics
of the Kuramoto order parameter. Below, we follow some steps that lead us to the governing
equations of the WS variables and the conditions for γ = 1.

Following the steps reported in Ref. [99] and previously discussed in Ref. [56], we below
obtain the governing equations of the WS variables. Starting with Eq. (2.38) and its time
derivative, we obtain

d
dt
(φ j −Φ) = 2

d
dt

[
tan−1

(
g tan

(
ψ j −Ψ

2

))]

=
2

1+g2 tan2
(ψ j−Ψ

2

)[ġ tan
(ψ j −Ψ

2
)
+

g

cos
(ψ j−Ψ

2

)(− 1
2

Ψ̇
)]

=
g

cos2
(ψ j−Ψ

2

)
+g2 sin2 (ψ j−Ψ

2

)( ġ
g

sin(ψ j −Ψ)− Ψ̇

)
(2.41)

for j = 1, ...,N and g := 1−ρ

1+ρ
∈ R. Using the trigonometric identity, the denominator can be

written as

cos2 (ψ j −Ψ

2
)
+g2 sin2 (ψ j −Ψ

2
)
=

1+ cos(ψ j −Ψ)

2
+g2 1− cos(ψ j −Ψ)

2

=
1+ρ2

(1+ρ)2 +
2ρ

(1+ρ)2 cos(ψ j −Ψ)

=
1+ρ2 +2ρ cos(ψ j −Ψ)

(1+ρ)2 (2.42)

The time derivative of g is

ġ
g
=

−ρ̇(1+ρ)− ρ̇(1−ρ)

(1+ρ)2
1+ρ

1−ρ
=

−2ρ̇

1−ρ2 . (2.43)
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Substituting Eqs. (2.42-2.43) into Eq. (2.41), the phase velocity reads

d
dt

φ j = Φ̇+
1−ρ2

1+ρ2 +2ρ cos(ψ j −Ψ)

(
−2ρ̇

1−ρ2 sin(ψ j −Ψ)− Ψ̇

)
(2.44)

for j = 1, ...,N. On the other hand, the same velocity is given by

d
dt

φ j = ω + Im
[

H(t)e−iφ j

]
= ω +

1
2i

(
He−iφ j −Heiφ j

)
= ω − sinφ j ReH + cosφ j ImH (2.45)

for j = 1, ...,N. To compare these two equations, we need to describe (cosφ j,sinφ j)
⊤ in

terms of the macroscopic WS variables. To do so, we use Eq. (2.37), and obtain

ei(φ j−Φ) = cos(φ j −Φ)+ i sin(φ j −Φ)

=
2ρ +(1+ρ2)cos(ψ j −Ψ)

1+ρ2 +2ρ cos(ψ j −Ψ)
+ i

(1−ρ2)sin(ψ j −Ψ)

1+ρ2 +2ρ cos(ψ j −Ψ)
(2.46)

for j = 1, ...,N. Now, we can express (cosφ j,sinφ j)
⊤ in terms of the WS variables(

cosφ j

sinφ j

)
=

1
1+ρ2 +2ρ cos(ψ j −Ψ)

(
−sinΦ cosΦ

cosΦ sinΦ

)(
(1−ρ2)sin(ψ j −Ψ)

2ρ +(1+ρ2)cos(ψ j −Ψ)

)
.

(2.47)

From the last equation, the meaning of the three constraints on the constants of motion
becomes clear. For ρ = 0, the completely incoherent state occurs as Γ = 0 in Eq. (2.40). The
complete incoherence is characterized by Eq. (2.29). Furthermore, at ρ = 0, Equation (2.47)
reads

cosφ j =−sinΦsin(ψ j −Ψ)+ cosΦcos(ψ j −Ψ) = cos(ψ j −Ψ+Φ)

sinφ j = cosΦsin(ψ j −Ψ)+ sinΦcos(ψ j −Ψ) = sin(ψ j −Ψ+Φ) (2.48)

for j = 1, ...,N. Substituting this into Eq. (2.29), one recovers the constraints on the constants
of motion as in Eq. (2.39). The third constraint tells the relation between the constants of
motion and Ψ in a rather arbitrary way [102]. Inserting Eq. (2.47) into Eq. (2.45) and then
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comparing Eq. (2.45) to Eq. (2.44), we obtain

Φ̇

(
1+ρ

2 +2ρ cos(ψ j −Ψ)

)
+(1−ρ

2)

(
−2ρ̇

1−ρ2 sin(ψ j −Ψ)− Ψ̇

)
= ω

(
1+ρ

2 +2ρ cos(ψ j −Ψ)

)
−ReH

[
(1−ρ

2)cosΦsin(ψ j −Ψ)+2ρ sinΦ+(1+ρ
2)sinΦcos(ψ j −Ψ)

]
+ ImH

[
− (1−ρ

2)sinΦsin(ψ j −Ψ)+2ρ cosΦ+(1+ρ
2)cosΦcos(ψ j −Ψ)

]
(2.49)

Arranging then both sides with respect to the linearly independent functions {1,sin(ψ j −
Ψ),cos(ψ j −Ψ)}, the three governing equations for the macroscopic WS variables are
obtained in the form of [102]

∂tρ(t) =
1−ρ2

2
Re
[
H(t)e−iΦ

]
∂tΨ(t) =

1−ρ2

2ρ
Im
[
H(t)e−iΦ

]
∂tΦ(t) = ω +

1+ρ2

2ρ
Im
[
H(t)e−iΦ

]
. (2.50)

Furthermore, these equations can be rewritten by introducing z(t) := ρ(t)eiΦ(t) and ξ (t) :=
Φ(t)−Ψ(t) as

∂tz(t) = iωz+
1
2

H(t)− 1
2

z2H(t)

∂tξ (t) = ω + Im
[
zH(t)

]
. (2.51)

So far, we have done the first task, i.e., finding the governing equations for the WS variables.
Next, to complete our task, we need to find the condition for which γ(ρ,Ψ) is unity.

Up to now, the constants of motion, after being defined with three constraints, did not take
any role in the description. Now we consider them more closely. In Eq. (2.40), γ depends
on the constants of motion {ψ j}N

j=1. How do they affect the macroscopic dynamics? Let us
play with the definition of γ . Using the geometric series expansion, we can write [101]

γ =
1
N

N

∑
k=1

1+ρ−1ei(ψk−Ψ)

1+ρei(ψk−Ψ)
= 1+(1−ρ

−2)
∞

∑
l=2

Cl(−ρeiΨ)l (2.52)
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where Cl := 1
N ∑

N
k=1 eilψk with C1 = 0 due to the constraints on the constant of motion. Note

that γ is written as a sum of 1 plus an additional term. This additional term vanishes as long
as Cl = 0 for all l ≥ 2. Taking a close look at Cl , it depends on the structure (distribution)
of the constants of motion since it is defined as the l-th Daido order parameter on the
constants of motion [143]. Therefore, in order for Cl to be zero for some l’s, we first
consider uniformly distributed constants of motion that make |Cl|= 1 and argCl = ψ1l for
l = N,2N, ... and Cl = 0 otherwise [102]. Assuming uniformly distributed constants of
motion {ψ j =−π +2π

j−1
N }N

j=1 leads us to

γ = 1+(1−ρ
−2)

∞

∑
l=2

Cl(−ρeiΨ)l = 1+(1−ρ
−2)

[−ρei(ψ1−Ψ)]N

1− [−ρei(ψ1−Ψ)]N
. (2.53)

The second term gives rise to an oscillation of the Kuramoto order parameter and it goes to
zero as N → ∞ since ρ < 1 [55]. Thus, we obtain the condition for which we are looking:
uniformly distributed constants of motion in the thermodynamic limit, i.e., N → ∞.

Under the two conditions, i.e., (i) uniformly distributed constants of motion and (ii) the
thermodynamic limit, the Kuramoto order parameter reads

Γ(t) := r(t)eΘ(t) = ρ(t)eiΦ(t) =: z(t) (2.54)

and z(t) is governed by Eq. (2.51). We will call the manifold where this condition holds the
Ott-Antonsen manifold [102, 95].

What does this manifold mean for the behavior of our phase oscillators? In the thermody-
namic limit with the conservation of the number of oscillators, the governing equation of
the system is the continuity equation of the phase density function f (φ , t) in terms of the
continuous variable φ . Here, the constants of motion are also read as continuous parameters
ψ . We already considered the thermodynamic limit. So, we assume uniform distribution
of constants of motion dµ(ψ) = 1

2π
dψ together with the Watanabe-Strogatz transformation

φ = T (ψ) :=−i logMt(eiψ) for a fixed t [95]. This transformation pushes-forward a measure
µ to T∗µ . Therefore, d(T∗µ)(φ) = f (φ)dφ where the phase density function

f (φ) :=
1

2π
∂φ T−1(φ) =

1
2π

1−ρ2

1−2ρ cos(φ −Φ)+ρ2

=
1

2π

1−|z|2

1−2|z|cos(φ − argz)+ |z|2
(2.55)

is the normalized Poisson kernel [95]. Note that z(t) = ρ(t)eiΦ(t). This fact reveals that the
oscillators’ phases are distributed according to the Poisson kernel in the OA manifold [62].
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In fact, the Poisson kernel interprets the Kuramoto order parameter in the thermodynamic
limit as

Γ(t) =
∫
T

Mt(eiψ)dµ(ψ) =
∫
T

eiφ d(T∗µ)(φ)

=
∫
T

eiφ 1
2π

1−|ρ|2

1−2|ρ|cos(φ −Φ)+ |ρ|2
dφ

= ρ(t)eiΦ(t) = z(t). (2.56)

This also reveals that the macroscopic behavior (i.e, the dynamics of the Kuramoto order
parameter) of the system is equivalent to the dynamics of the WS (or OA) variables in the
Ott-Antonsen manifold [102, 95].

To characterize the Ott-Antonsen manifold further, we again consider the continuity
equation

∂

∂ t
f (φ , t)+

∂

∂φ

(
f (φ , t)v(φ , t)

)
= 0 (2.57)

where the continuous velocity reads

v(φ , t) := ω + Im
[

H(t)e−iφ
]

(2.58)

Then, the phase density function, which is 2π-periodic in φ , is Fourier-expanded

f (φ , t) =
1

2π

[
1+

∞

∑
n=1

(
an(t)e−inφ + c.c.

)]
(2.59)

where c.c. stands for the complex conjugate. Note that we need to investigate infinitely many
Fourier coefficients, i.e., {an(t)}n∈N. The Fourier coefficient in this case is nothing but the
n-th Daido order parameter [143] in the thermodynamic limit which is defined by

Γn(t) :=
∫

π

−π

f (φ , t)einφ dφ = an(t) (2.60)

where n ∈ N and its finite-sized version is Γn(t) := 1
N ∑

N
k=1 einφk(t). The Kuramoto order

parameter is Γ(t) = Γ1(t). Substituting Eq. (2.59) into the continuity equation, one ob-
tains [102]

∂tΓn(t) = iωΓn(t)+
n
2

H(t)Γn−1(t)−
n
2

H(t)Γn+1(t) (2.61)

for n ∈ N. The dynamics of the Kuramoto order parameter and the Daido order parameters
are governed by infinitely many equations [77]. Nevertheless, the difficulty can be lifted
using the conditions on the distribution of constants of motion. First, we use the finite-sized
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system for the sake of simplicity. The Daido order parameter can be written in terms of the
WS variables. It then follows [144]

Γn(t) :=
1
N

N

∑
k=1

einφk(t) = ρ
n(t)einΦ(t) 1

N

N

∑
k=1

(
1+ρ−1ei(ψk−Ψ)

1+ρei(ψk−Ψ)

)n

=: ρ
n(t)einΦ(t)

γn(ρ,Ψ) = zn
γn (2.62)

where z(t) = ρ(t)eiΦ(t). The uniform distribution of constants of motion gives γn = 1, and
then leads to Γn = zn = Γn for all n. In the thermodynamic limit with uniformly distributed
constants of motion dµ(ψ) = 1

2π
dψ , this can be written as

Γn(t) = ρ
n(t)einΦ(t)

∫
π

−π

(
1+ρ−1ei(ψ−Ψ)

1+ρei(ψ−Ψ)

)n
1

2π
dψ

= ρ
n(t)einΦ(t)

∫
π

−π

(
1+ρ

−1ei(ψ−Ψ)

)n
[

1+
∞

∑
l=1

(
−ρei(ψ−Ψ)

)l

]n
1

2π
dψ

= ρ
n(t)einΦ(t) = zn(t) (2.63)

where we used
∫

π

−π
eikψ 1

2π
dψ = 0 for k ∈ Z\{0}. Consequently, for a uniform distribution

of the constants of motion, the Daido order parameter is nothing but the n-th power of the
Kuramoto order parameter:

Γn(t) = zn(t) = Γ
n(t) (2.64)

and all the Fourier coefficients (higher Daido order parameters) in Eq. (2.59) can be written
in terms of the first coefficient (Kuramoto order parameter):

an(t) = zn(t) = Γ
n(t) (2.65)

for n ∈ N. Furthermore, the infinitely many equations in Eq. (2.61) can be reduced to just
one equation

∂tΓ(t) = iωΓ(t)+
1
2

H(t)− 1
2

Γ
2(t)H(t) or

∂tz(t) = iωz(t)+
1
2

H(t)− 1
2

z2(t)H(t). (2.66)

The invariant manifold defined by Eq. (2.65), i.e., {an(t) = Γn(t)}n∈N, is called Ott-Antonsen
manifold and Eq. (2.66) is called Ott-Antonsen equation [96, 97]. Note that this equation is
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exactly the same as the first equation of Eqs. (2.51), and in the OA manifold where γ = 1, the
second equation of Eq. (2.51) is irrelevant since it is decoupled from z(t) [144]. Furthermore,
the Ott-Antonsen equation can be written in a closed form as long as the forcing H(t) is
represented in terms of z(t), i.e., depends on the Kuramoto order parameter (the mean-field
forcing) [72].

Finally, the Ott-Antonsen ansatz (Eq. (2.65)) also leads to the normalized Poisson kernel
for the phase distribution [96, 97]:

f (φ , t) =
1

2π

[
1+

∞

∑
n=1

(
an(t)e−inφ + c.c.

)]
=

1
2π

[
1+

∞

∑
n=1

(
zn(t)e−inφ + c.c.

)]
=

1
2π

1−|z|2

1−2|z|cos(φ − argz)+ |z|2
(2.67)

for |z|< 1. Thus, for the (partially) incoherent states, the oscillators are distributed according
to the normalized Poisson kernel peaked around argz(t). Note that as |z| → 1−, the phase
distribution becomes f (φ , t) = δ (φ − argz), and then all the oscillators have the same phase
value as argz(t) [95].

2.4.1 The Identical Kuramoto-Sakaguchi Model Revisited

In this section, we apply the WS and OA ansatz to a familiar example, the identical Kuramoto-
Sakaguchi phase oscillator ensembles from Sec. 2.3. The system reads

∂tφ j(t) = ω + Im
[

Γ(t)e−iφ j(t)e−iα
]
, j = 1, ...,N (2.68)

where Γ(t) := 1
N ∑

N
k=1 eiφk(t) is the Kuramoto order parameter and α ∈ [0,2π] is the phase-lag

parameter. Each oscillator is affected by the common mean-field forcing H(t) := Γ(t)e−iα ,
and the governing equation can equivalently be expressed as

∂tφ j(t) = ω + Im
[
H(t)e−iφ j(t)

]
(2.69)

for j = 1, ...,N. Here, it is apparent that each oscillator depends only on the mean-field
coupling through the Kuramoto order parameter; the dependence on its own index j appears
only through the first harmonics e±iφ j . It is the sinusoidally coupled system.

For the identical Kuramoto-Sakaguchi phase oscillators, the mean-field forcing H(t) =
Γ(t)e−iα is already written in terms of the Kuramoto order parameter Γ(t), which is not in
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general the case. Therefore, the OA equation in Eq. (2.66) is written in a closed form as

∂tz(t) = iωz+
1
2

Γe−iα − 1
2

z2
Γeiα

= iωz+
1
2

ze−iα − 1
2
|z|2zeiα . (2.70)

This equation governs the dynamics of the Kuramoto order parameter, and can be solved
easily. Let us study the magnitude of the order parameter, which sufficiently characterizes
the order parameter behavior. The magnitude dynamics reads

∂t |z|2 = z
dz
dt

+ z
dz
dt

= |z|2(1−|z|2)cosα. (2.71)

Putting r(t) = |z(t)|2, we obtain a simple ODE that reads

∂tr = r(1− r)cosα. (2.72)

There are two fixed points r∗ = 0 and r∗ = 1, which correspond to the completely incoherent
state and the fully synchronized state, respectively. The linear stability of the state is easily
obtained: If cosα < 0 (α > π/2), then r∗ is stable whereas r∗ is unstable. However, r∗
becomes unstable and r∗ stable when cosα > 0, i.e., α < π

2 . This result is consistent with
the finite-sized system result that we discussed in Sec. 2.3.

Furthermore, recall that when the linear stability analysis was performed for the splay
state, we found many neutrally stable directions. According to the WS transformation, there
are N−3 constants of motion that give rise to N−3 neutrally stable directions. As we already
discussed, for large enough N, there are many ways to give a completely incoherent state. The
core of them is a splay state. Both the splay state and all the other incoherent states should
satisfy Γ = 0. Then, the phase space of the incoherent states characterized by Γ = 0 consists
of the (N −3)-parameter family of invariant subspaces (characterized by N −3 constants of
motion). Each of them corresponds to a realization of the incoherent states. The perturbations
among these N −3 subspaces give rise to N −3 neutrally stable directions [99]. On the other
hand, the synchronized state can be represented only in one way, i.e., φ j = const., except
for the phase shift invariance, for j = 1, ...,N. Thus, the synchronization takes a role of a
hinge at which all the invariant subspaces of the incoherent states meet [99]. Hence, there
is only one perturbation within the synchronization manifold (phase shift invariance along
the sync manifold) and no further neutrally stable directions exist. Again, the Benjamin-Feir
instability occurs at αBF = π

2 .
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2.4.2 System of Coupled Oscillators in a Network of Networks

Thus far we have taken a look at the description of the system’s macroscopic motion for a
single network of globally coupled Kuramoto-Sakaguchi phase oscillators. In this section,
we introduce a set of such populations, a network of networks, and give a general description
of the system based on the WS and OA ansatz. In the following chapters, we will discuss
chimera states in this network of networks as the main theme of the thesis.

The governing equations are [101, 102]

∂tφ
(a)
j = ωa + Im

[
Ha(t)e

−iφ (a)
j

]
,

Ha(t) :=
M

∑
b=1

GabΓb(t)e−iα ,

Γa(t) = Ra(t)eiΘa(t) :=
1
N

N

∑
k=1

eiφ (a)
k (t) (2.73)

for j = 1, ...,N and for a,b = 1, ...,M where M is the number of populations and N is the
number of oscillators in each population (same for all the populations). Also, Gab is a
coupling strength matrix between populations and Γa denotes the Kuramoto order parameter
within the individual populations. Equation (2.73) describes the system of sinusoidally
coupled oscillators in a network of networks, and hence we exploit the WS and OA dimension
reduction methods to investigate the macroscopic dynamics of the entire system. Note that
each subpopulation only includes identical oscillators whose natural frequencies are the
same as ωa within the population but they might have different values for the different
populations [101]. For a finite number of populations, the population index takes a role
as a discrete parameter. We first consider the Watanabe-Strogatz transformation for each
population such that [101]

tan

(
φ
(a)
j (t)−Φa(t)

2

)
=

1−ρa(t)
1+ρa(t)

tan

(
ψ

(a)
j −Ψa(t)

2

)
(2.74)



42 Theoretical Principles

for j = 1, ...,N and a = 1, ...,M. Then, the macroscopic WS variables of each population are
governed by [102]

∂tρa =
1−ρa

2
Re
[

Hae−iΦa

]
∂tΨa =

1−ρ2
a

2ρa
Im
[

Hae−iΦa

]
∂tΦa = ωa +

1+ρ2
a

2ρa
Im
[

Hae−iΦa

]
(2.75)

for a= 1, ...,M with constants of motion {ψ
(a)
j }N

j=1 for a= 1, ...,M with constraints discussed
previously. In other forms, these equations are written as [144]

∂tza = iωaza +
1
2

Ha −
1
2

z2
aHa,

∂tξa = ωa + Im
[

zaHa

]
(2.76)

where za = ρaeiΦa and ξa = Φa −Ψa for a = 1, ...,M. As we discussed in Sec. 2.4, the
WS transformation gives the relation between the Kuramoto order parameter and the WS
variables, which reads

Γa(t) = ρa(t)eiΦa(t)γa(ρa,Ψa; t) (2.77)

where γa is defined by

γa =
1
ρa

(ζa + iηa)

:=
1

ρaN

N

∑
k=1

2ρa +(1+ρ2
a )cos(ψ(a)

k −Ψa)

1+2ρa cos(ψ(a)
k −Ψa)+ρ2

a

+ i
1

ρaN

N

∑
k=1

(1−ρ2
a )sin(ψ(a)

k −Ψa)

1+2ρa cos(ψ(a)
k −Ψa)+ρ2

a

(2.78)
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where ζa = Reγa and ηa = Imγa for a = 1, ...,M. Using the above equations, we can rewrite
Eq. (2.126) as [101, 102, 74]

∂tρa =
1−ρ2

a
2

M

∑
a′=1

Gaa′
(
ζa′ cos(Φa′ −Φa −α)−ηa′ sin(Φa′ −Φa −α)

)
,

∂tΨa =
1−ρ2

a
2ρa

M

∑
a′=1

Gaa′
(
ζa′ sin(Φa′ −Φa −α)+ηa′ cos(Φa′ −Φa −α)

)
,

∂tΦa = ωa +
1+ρ2

a
2ρa

M

∑
a′=1

Gaa′
(
ζa′ sin(Φa′ −Φa −α)+ηa′ cos(Φa′ −Φa −α)

)
(2.79)

for a = 1, ...,M.
In Sec. 2.4, we showed that the OA dynamics assumes that the following two conditions

are met: (i) uniform constants of motion ψ
(a)
j =−π + 2π( j−1)

N for j = 1, ...,N, and (ii) the
thermodynamic limit N → ∞. Under these conditions, the Kuramoto order parameter is
exactly described by Γa(t) = ρa(t)eiΦa(t) since γa = 1 for a = 1, ...,M and the governing
equations of the OA variables read [88, 101, 102]

∂tρa =
1−ρ2

a
2

M

∑
a′=1

Gaa′ρa′ cos(Φa′ −Φa −α),

∂tΦa = ωa +
1+ρ2

a
2ρa

M

∑
a′=1

Gaa′ρa′ sin(Φa′ −Φa −α) (2.80)

for a = 1, ...,M. These equations are equivalent to

∂tza(t) = iωaza +
1
2

Ha(t)−
1
2

z2
aHa(t) (2.81)

for a = 1, ...,M. Here, the forcing fields read

Ha(t) := e−iα
m

∑
a′=1

Gaa′Γa′ = e−iα
M

∑
a′=1

Gaa′

∫
T

fa′(φ
(a′), t)eiφ (a′)

dφ
(a′)

= e−iα
m

∑
a′=1

Gaa′za′ = e−iα
m

∑
a′=1

Gaa′ρa′e
iΦa′ (2.82)

for a = 1, ...,M where fa(φ
(a), t) is the phase distribution function for each population, which

follows the normalized Poisson kernel.
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2.5 System of Generalized Kuramoto Oscillators

Thus far, we have discussed the collective behavior of systems of identical Kuramoto-
Sakaguchi oscillators. The investigation of them relied on the utilization of dimension
reduction methods such as the Watanabe-Strogatz transformation [98, 99, 95] and the Ott-
Antonsen ansatz [96, 97]. These methods were applicable since the Kuramoto oscillator
systems are sinusoidally coupled phase oscillators defined on the unit circle in C1 or R2.
In recent developments, the Kuramoto phase oscillators have been extended to the so-
called generalized Kuramoto oscillators [145–150]. In these models, each oscillator is
represented by a unit vector defined on the surface of a higher-dimensional unit sphere.
Dimension reduction methods like the OA or the WS ansatz, which we discussed in Sec. 2.4,
also have been developed and employed to study the collective dynamics of these higher-
dimensional oscillators [151–157, 104]. In this section, we present some theoretical principles
for ensembles of generalized Kuramoto-Sakaguchi oscillators. Likewise, we review the
dimension reduction method, i.e., the generalized Watanabe-Strogatz transformation as
a vector form of a linear fractional transformation. This projection map provides a way
for the investigation of the macroscopic dynamics of the vector oscillator system in the
thermodynamic limit, considering both real (RM) and complex (CM) spaces. Later on, in
Chap. 6, we will investigate the chimera states of generalized Kuramoto-Sakaguchi oscillators
in two-population networks.

2.5.1 Identical Generalized Kuramoto-Sakaguchi Oscillator Ensemble

The system of Kuramoto-Sakaguchi oscillators (2.68) defined on a unit circle in C1 or R2

has a sinusoidal form and therefore can be extended to a system of generalized Kuramoto
oscillators. In this higher-dimensional model, the oscillators are defined on the surface of
a unit sphere in M-dimensional real and complex spaces, respectively [104]. To get a brief
glimpse of this, we can write Eq. (2.68) with an appropriate time rescaling as

∂teiφ j = iφ̇ jeiφ j = iωeiφ j +2ieiφ jIm
[

H(t)e−iφ j

]
= iωeiφ j + eiφ j

(
H(t)e−iφ j −H(t)eiφ j

)
=−eiφ jH(t)eiφ j + iωeiφ j +H(t) (2.83)

The contents of this section were in part published previously in S. Lee and K. Krischer, J. Phys. A: Math.
Theor. 56, 405001 (2023) [58]. All figures and their captions are reproduced from those in it.
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for j = 1, ...,N. Let us take eiφ j(t) ∈ C1 7→ xxx j(t) ∈ KM with a constraint xxx j(t)†xxx j(t) =〈
xxx j(t)

∣∣xxx j(t)
〉
= 1 for all t and j = 1, ...,N where K=R or C is a ground field, and † denotes

a Hermitian adjoint [158]. Then, one can treat xxx j(t) as a unit vector oscillator defined on the
surface of the unit sphere denoted by SM := {xxx ∈KM|xxx†xxx = 1} either for K= R or C. Then
one can assume that the oscillator xxx j is governed by

∂txxx j =−xxx jHHH†xxx j +Ωxxx j +HHH (2.84)

for j = 1, ...,N. Here, the mean-field forcing HHH(t) ∈ KM generally can be any arbitrary
vector that characterizes an external forcing function or the global (mean-field) coupling of
the system corresponding to H(t) in Eq. (2.83). Also, Ω ∈KM×M, corresponding to iω in
Eq. (2.83), with Ω† =−Ω is an anti-hermitian natural frequency matrix that we will set to
zero throughout this thesis. In this system, the Kuramoto order parameter serves as the center
of mass of the oscillators on SM, which is defined by

ΓΓΓ(t) :=
1
N

N

∑
k=1

xxxk(t) ∈KM. (2.85)

In Ref. [104], the generalized Watanabe-Strogatz transformation14 was introduced as a
vector form of a linear fractional transformation, defined by

xxx j(t) = Mt(xxx0, j) :=
AAAxxx0, j +ψψψ

ψψψ†AAAxxx0, j +1
(2.86)

for j = 1, ...,N where AAA(t) ∈KM×M and ψψψ(t) ∈KM are the WS variables that describe the
macroscopic dynamics of the system. In this context, the initial conditions xxx j(0) =: xxx0, j

act as the constants of motion. Furthermore, the WS variable ψψψ characterizes the degree of
coherence of the oscillators on the unit sphere, as similar to the Kuraomto order parameter in
Eq. (2.85). To see this, consider

ΓΓΓ =
1
N

N

∑
k=1

xxxk =
1
N

N

∑
k=1

AAAxxx0,k +ψψψ

ψψψ†AAAxxx0,k +1
(2.87)

If |ψψψ|= 1, Equation (2.87) gives ψψψ†ΓΓΓ = 1, i.e., |ΓΓΓ|= 1 (synchronization). On the other hand,
if ψψψ = 0, we obtain

ΓΓΓ = AAA
(

1
N

N

∑
k=1

xxx0,k

)
= 0 (completely incoherent) (2.88)

14For more details, see Ref. [159].
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provided that the initial conditions are distributed uniformly on SM ensuring 1
N ∑

N
k=1 xxx0,k = 0.

For the intermediate values 0 < |ψψψ| < 1, it indicates the partially incoherent state as the
Kuramoto order parameter does, yet both variables do not necessarily coincide with each
other. This behavior is reminiscent of the relation between the Kuramoto order parameter
and the WS variables of the Kuramoto phase oscillators, discussed in Sec. 2.4.

As we did in Sec. 2.4, the Kuramoto order parameter Γ(t) can be described by solely the
WS variable ψψψ as long as we take uniform constants of motion and the thermodynamic limit.
In the thermodynamic limit, the governing equation for the continuous oscillator is given by

∂txxx =−xxxHHH†xxx+ΩΩΩxxx+HHH. (2.89)

Note that the oscillator vector should satisfy ⟨xxx|xxx⟩= 1 to be confined to SM. From Eq. (2.86)
and Eq. (2.89), we obtain

∂txxx =
(ȦAAxxx0 + ψ̇ψψ)(ψψψ†AAAxxx0 +1)− (AAAxxx0 +ψψψ)∂t(ψψψ

†AAA)xxx0

(ψψψ†AAAxxx0 +1)2 (2.90)

and the inverse transformation reads

xxx0 = (AAA− xxxψψψ
†AAA)−1(xxx−ψψψ)

=
1

1−ψψψ†xxx
(AAA−1 −ψψψ

†xxxAAA−1 +AAA−1xxxψψψ
†)(xxx−ψψψ). (2.91)

Note that the last line is due to Ref. [160]. For the sake of simplicity, we introduce some
useful notations:

QQQxxx0 +qqq = I−1(QQQ(AAA−1 −ψψψ
†xxxAAA−1 +AAA−1xxxψψψ

†)(xxx−ψψψ)+ Iqqq
)

= I−1(QQQAAA−1(xxx−ψψψ)+QQQ(ψψψ†xxxAAA−1 −AAA−1xxxψψψ
†)ψψψ I +qqq

)
(2.92)

where I = 1−ψψψ†xxx. Then, ψψψ†AAAxxx0 +1 = κI−1 where κ = 1−ψψψ†ψψψ . Using these quantities,
we can rewrite the first term of Eq. (2.90) as

(ȦAAxxx0 + ψ̇ψψ)(ψψψ†AAAxxx0 +1) = κI−2
(

ȦAAAAA−1(xxx−ψψψ)+ ȦAA(ψψψ†xxxAAA−1 −AAA−1xxxψψψ
†)ψψψ + Iψ̇ψψ

)
(2.93)

and the second term as

−(AAAxxx0+ψψψ)∂t(ψψψ
†AAA)xxx0 = κI−2xxx

(
∂t(ψψψ

†AAA)AAA−1(xxx−ψψψ)+∂t(ψψψ
†AAA)(ψψψ†xxxAAA−1−AAA−1xxxψψψ

†)ψψψ
)
.

(2.94)
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Finally, Equation (2.90) can be rewritten as

∂txxx =
1
κ

(
xxx(−κ∂t(ψψψ

†AAA)−∂t(ψψψ
†AAA)AAA−1

ψψψψψψ
†AAA)AAA−1xxx

+(κȦAA+ ȦAAAAA−1
ψψψψψψ

†AAA− ψ̇ψψψψψ
†AAA+∂t(ψψψ

†AAA)AAA−1
ψψψAAA)AAA−1xxx− ȦAAAAA−1

ψψψ + ψ̇ψψ

)
. (2.95)

Comparing this equation with Eq. (2.89) under the condition xxx ∈ SM, we obtain for the
dynamics of the WS variables

∂tAAA = HHHψψψ
†AAA−HHH†

ψψψAAA

∂tψψψ =−ψψψHHH†
ψψψ +HHH. (2.96)

Furthermore, T. Tanaka [104] showed that AAA = PPP1/2UUU (polar decomposition) where UUU ∈
KM×M is a unitary matrix and PPP1/2 = VVV Σ1/2VVV † with Σ1/2 := (

√
Σi j). Here, VVV ΣVVV † is a

singular value decomposition of PPP := (1−|ψψψ|2)IM +ψψψψψψ† where IM ∈ RM×M is the identity
matrix and thus it follows that PPP1/2

ψψψ = ψψψ holds [104]. This information will be used later
in this section.

In the thermodynamic limit, without loss of generality, it is possible to set UUU = IM as
long as all xxx0 are uniformly distributed on SM. Then, the Kuramoto order parameter can be
expressed in terms of the WS variables15 as in Eq. (2.56). To obtain this, we use the same
method as in Sec. 2.4, which is somewhat different from Ref. [104]. Consider the Kuramoto
order parameter defined in Eq. (2.85) with the WS transformation in Eq. (2.86):

ΓΓΓ(t) =
1
N

N

∑
k=1

xxxk(t) =
1
N

N

∑
k=1

AAAxxx0,k +ψψψ

ψψψ†AAAxxx0,k +1
. (2.97)

15Here, we call ψψψ the WS variable even though it is taken from the uniform constants of motion and the
thermodynamic limit.
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Substituting AAA = PPP1/2UUU and PPP1/2
ψψψ = ψψψ into the above equation, we obtain

ψψψ
†
ΓΓΓ =

1
N

N

∑
k=1

(ψψψ†HHH1/2UUUxxx0,k + |ψψψ|2) 1
1+ψψψ†UUUxxx0,k

=
1
N

N

∑
k=1

(ψψψ†UUUxxx0,k + |ψψψ|2)
∞

∑
ℓ=0

(−1)ℓ(ψψψ†UUUxxx0,k)
ℓ

=− 1
N

N

∑
k=1

∞

∑
ℓ=0

(−1)ℓ+1(ψψψ†UUUxxx0,k)
ℓ+1 + |ψψψ|2 1

N

N

∑
k=1

∞

∑
ℓ=0

(−1)ℓ(ψψψ†UUUxxx0,k)
ℓ

= |ψψψ|2
(

1+(1−|ψψψ|−2)
∞

∑
ℓ=2

(−1)ℓCℓ

)
(2.98)

where Cℓ := 1
N ∑

N
k=1(ψψψ

†UUUxxx0,k)
ℓ and C1 = 0. Taking the thermodynamic limit with uniformly

distributed constants of motion, we can set UUU = IM and write Cℓ as

Cℓ =



1
SM

∫
|xxx0|=1

(ψψψ†xxx0)
ℓdxxx0, for K= R

1
S2M

∫
|xxx0|=1

(ψψψ†xxx0)
ℓdxxx0, for K= C

(2.99)

where SM = 2πM/2

Γ(M/2) is the surface area of the (M − 1)-sphere. Let us first consider the
real space, i.e., K = R. Using the spherical coordinate systems, one can write a position
of an oscillator on the surface of the unit ball in RM as x1 = sinθ1 sinθ2 · · ·sinθM−2 cosφ ,
x2 = sinθ1 sinθ2 · · ·sinθM−2 sinφ , ..., xM−2 = sinθ1 sinθ2 cosθ3, xM−1 = sinθ1 cosθ2, and
xM = cosθ1 where θ1, ...,θM−2 ∈ [0,π] and φ ∈ [0,2π]. Here, xM corresponds to the z-
axis, for example, in the 3D space. We call this axis the M-axis and we refer to the plane
perpendicular to the M-axis as the M⊥-(hyper)plane throughout this thesis. Without loss of
generality, we can assume that ψψψ is aligned along the M-axis, i.e., ψψψ = |ψψψ|x̂M. Consequently,
this yields

Cℓ =
1

SM
|ψψψ|ℓ

∫
|xxx0|=1

cosℓθ1dMV =
|ψψψ|ℓ

SM
SM−1

∫
cosℓθ1 sinM−2

θ1dθ1

= |ψψψ|ℓ1+(−1)ℓ

2
√

π

Γ
(
ℓ+1

2

)
Γ
(M

2

)
Γ
(
ℓ+M

2

) (2.100)
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which leads to

∞

∑
ℓ=2

(−1)ℓCℓ = |ψψψ|2
Γ
(M

2

)
2Γ
(
1+ M

2

) 2F1(1,
3
2

;
M+2

2
; |ψψψ|2) (2.101)

where 2F1 is the ordinary hypergeometric function [161]. Finally, Equation (2.98) can be
written as

ψψψ
†
ΓΓΓ = |ψψψ|2

(
1+

|ψψψ|2 −1
M 2F1(1,

3
2

;
M+2

2
; |ψψψ|2)

)
= ψψψ

†
ψψψ

M−1
M 2F1(

1
2
,1;

M+2
2

; |ψψψ|2) = ψψψ
†h(|ψψψ|2,M)ψψψ (2.102)

where h(|ψψψ|2,M) := M−1
M 2F1(

1
2 ,1; M+2

2 ; |ψψψ|2). Hence, we can assume that

ΓΓΓ(t) =
M−1

M 2F1(
1
2
,1;

M+2
2

; |ψψψ|2)ψψψ(t) = h(|ψψψ|2,M)ψψψ(t). (2.103)

For K= C, obtaining ΓΓΓ(t) = ψψψ(t) is straightforward as the coefficients Cℓ = 0 for ℓ ̸= 016.
To explore chimera states in a system of generalized Kuramoto-Sakaguchi oscillators in

two-population networks, as we did in Sec. 2.3 for the usual KS model, we here introduce
a suitable coupling matrix, which corresponds to the phase-lag parameter α in Eq. (2.14).
Moreover, the Benjamin-Feir instability point becomes relevant to this coupling matrix.

In line with Eq. (2.14), we define in Eq. (2.84) HHH(t) = KKKΓΓΓ(t) where KKK ∈ KM×M is a
coupling matrix. Then, the microscopic dynamics of the oscillators are given by [104]

∂txxx j =−xxx jHHH†xxx j +HHH

=−xxx jΓΓΓ
†KKK†xxx j +KKKΓΓΓ (2.104)

for j = 1, ...,N. In Eq. (2.14), the phase-lag parameter induces phase rotations of −α to
each phase on the unit circle. Similarly, we introduce a rotation matrix as the coupling
matrix [150, 157]. First, we consider the real space RM. For a rotation in the real space, we
need to distinguish between even and odd dimensional cases [153, 148]. For odd M, we set
the M-axis as the rotational axis, and then the M⊥-plane is isoclinically rotating with the

16T. Tanaka in Ref. [104] obtained ΓΓΓ(t) =
∫
|xxx0|=1 Mt(xxx0)dµ(xxx0) = 1

SM

∫
|xxx0|=1 xxx(t)dxxx0 =

M−1
M 2F1(

1
2 ,1; M+2

2 ; |ψψψ|2)ψψψ(t) = h(|ψψψ|2,M)ψψψ(t) and ΓΓΓ(t) = 1
S2M

∫
|xxx0|=1 xxx(t)dxxx0 = ψψψ(t).
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same angle. An example is

KKK =


cosα −sinα 0 0 0
sinα cosα 0 0 0

0 0 cosα −sinα 0
0 0 sinα cosα 0
0 0 0 0 1

 (2.105)

for R5. For even M, there is no rotational axis and hence we exploit planes of rotation, in
particular, an isoclinic rotation with the same rotational angle for each plane. An example is

KKK =


cosα −sinα 0 0
sinα cosα 0 0

0 0 cosα −sinα

0 0 sinα cosα

 (2.106)

which holds in R4.
To determine the Benjamin-Feir instability, we take a look at the macroscopic dynamics

in the thermodynamic limit determined by the WS variable from Eq. (2.96):

∂tψψψ =−ψψψHHH†
ψψψ +HHH

= h(|ψψψ|2,M)

(
−ψψψψψψ

†KKK†
ψψψ +KKKψψψ

)
(2.107)

where the order parameter ΓΓΓ is replaced by h(|ψψψ|2,M)ψψψ as in Eq. (2.103). Using Eq. (2.107),
the dynamics of the magnitude of the WS variable is given by

∂t |ψψψ|2 = ∂t(ψψψ
†
ψψψ)

= h(|ψψψ|2,M)

(
(−ψψψ

†KKKψψψψψψ
† +ψψψ

†KKK†)ψψψ +ψψψ
†(−ψψψψψψ

†KKK†
ψψψ +KKKψψψ)

)
= 2h(|ψψψ|2,M)(1−|ψψψ|2)

〈
ψψψ

∣∣∣∣KKK +KKK†

2

∣∣∣∣ψψψ〉 . (2.108)

For even M, the last term becomes
〈

ψψψ

∣∣∣KKK+KKK†

2

∣∣∣ψψψ〉 = cosα|ψψψ|2. Thus, Equation (2.108) is
simply written as

∂t |ψψψ|2 = 2h(|ψψψ|2,M)(1−|ψψψ|2)|ψψψ|2 cosα (2.109)
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Fig. 2.2 (a) The time-parametric plot showcases a trajectory initiated close to the origin on the
M⊥-plane (blue). This trajectory gradually converges towards a limit-cycle solution on the
unit circle within the M⊥-plane, indicating a synchronized solution. If a slight perturbation
is introduced along the M-axis, the trajectory is abruptly redirected towards the north pole
(red). (b) The plot illustrates the time evolution of the components of the WS variable ψψψ∗

⊥(t).
The rotation occurs at a tangential speed of sinα . Blue: (ψψψ∗

⊥)1, Orange: (ψψψ∗
⊥)2 and Green:

(ψψψ∗
⊥)3 = 0.

which resembles Eq. (2.72). There exist two fixed points: ρ∗ = |ψψψ| = 0 representing the
incoherent state, and ρ∗ = |ψψψ|= 1 indicating the synchronized state. The stability of these
fixed points depends on the value of α . Specifically, the synchronized state ρ∗ is stable
while the incoherent state ρ∗ is unstable for α < π

2 . Opposite to this, the incoherent state
ρ∗ is stable while the synchronized state ρ∗ becomes unstable for α > π

2 . Therefore, the
Benjamin-Feir instability occurs at αBF = π

2 for even M.

For odd M, the last term of Eq. (2.108) reads
〈

ψψψ

∣∣∣KKK+KKK†

2

∣∣∣ψψψ〉= |ψψψ|2 cosα+(1−cosα)x2
M

where xM is the coordinate of ψψψ along the rotational axis, i.e., the M-axis. In this case, the
synchronized state manifests in two distinct spaces: either on the M-axis or on the M⊥-plane.
In the former case, the synchronized state is always stable regardless of the value of α since on
the M-axis it is governed by ∂t |ψψψ|2 = 2h(|ψψψ|2,M)(1−|ψψψ|2)|ψψψ|2. Note ψψψ = (0, ...,0,xM)⊤

and |ψψψ| = xM along the M-axis. In the latter case, the stability of the synchronized state
is determined by the parameter α . Equation (2.108) on the M⊥-plane can be expressed as
∂t |ψψψ|2 = 2h(|ψψψ|2,M)(1−|ψψψ|2)|ψψψ|2 cosα (where xM = 0 on the M⊥-plane). As a result, the
synchronized state is stable for α < π

2 and unstable for α > π

2 . Thus, the Benjamin-Feir
instability also occurs at αBF = π

2 . However, the synchronized state on the M⊥-plane is
always unstable to perturbations along the M-axis, as the synchronized states at the poles are
globally attracting in each hemisphere of the unit ball except for the M⊥-plane, regardless of
the value of α .
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As an example, we consider the 3D real space for the stability analysis of the synchronized
state. First, consider the synchronized state on the M-axis ψψψ∗ = (0,0,±1), i.e., the north and
the south poles, respectively. In fact, the dynamics asymptotically approaches this solution
as t → ∞ since h(|ψψψ|2,3) = |ψψψ|−(1−|ψψψ|2) tanh−1 |ψψψ|

|ψψψ|3 and tanh−1(1) = ∞ while h(|ψψψ|2,3) → 1
as |ψψψ| → 1−. To study the stability of this solution, let ψψψ∗ = (0,0,±1∓ δ ). Then, the
trajectory starting on the upper/lower hemisphere approaches this fixed point solution on the
north/south pole: limδ→0+ F(ψψψ∗) = (0,0,0)⊤ where F(ψψψ) :=−ψψψHHH†

ψψψ +HHH. The Jacobian
matrix evaluated at this solution is given by

lim
δ→0+

J
∣∣∣∣
ψψψ∗

=

−1+ cosα −sinα 0
sinα −1+ cosα 0

0 0 −2

 (2.110)

and its eigenvalues are λ1 =−2,λ± =−1+ e±iα . Hence, the synchronized solution on the
poles is always a stable solution regardless of α . Each pole is a globally attracting fixed
point of the corresponding hemisphere (not including the M⊥-plane). If the trajectory starts
slightly outside the M⊥-plane, the solution asymptotically approaches the north pole or the
south pole, depending on whether it initiates above or below the plane. as time goes on
(Fig. 2.2 (a)).

Subsequently, we observe that a trajectory precisely starting on the M⊥-plane for α < π

2
asymptotically approaches a limit-cycle solution, which rotates around the great circle
on the x1x2-plane, as depicted in Fig. 2.2 (a). This limit-cycle solution also represents
the synchronized state, as the magnitude of the WS variable is equal to unity. By con-
sidering ψψψ⊥(t) = ε(cosθ(t),sinθ(t),0)⊤ and taking the limit as ε → 1−, we find that
limε → 1−F(ψψψ⊥) = sinα(−sinθ(t),cosθ(t),0)⊤. This demonstrates that the trajectory
asymptotically converges to the synchronized limit-cycle trajectory, which rotates coun-
terclockwise along the unit circle with a tangential speed of sinα . Due to the rotational
symmetry of the system, we can set the synchronized solution as a fixed point on the unit
circle, which then reads ψψψ∗ ⊥= limε→1− ε(1,0,0). To study its stability, we obtain the
eigenvalue of the Jacobian matrix, evaluated at this solution, with the corresponding eigendi-
rection along the M-axis. The eigenvalue is given by λ3 = 1− cosα , confirming that the
synchronized limit-cycle solution is always unstable along the M-axis. Note that it remains
stable on the M⊥-plane for α < αBF as we discussed earlier.

Next, for the complex space K= C, we choose the coupling matrix as KKK = e−iα IM for
all M. Then, the WS variable is governed by

∂tψψψ =−ψψψHHH†
ψψψ +HHH =−ψψψψψψ

†KKK†
ψψψ +KKKψψψ. (2.111)
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where the WS variable equals the Kuramoto order parameter, i.e., ΓΓΓ(t) = ψψψ(t) for CM.
Consequently, the magnitude dynamics of the Kuramoto order parameter reads

∂t |ψψψ|2 = 2(1−|ψψψ|2)
〈

ψψψ

∣∣∣∣KKK +KKK†

2

∣∣∣∣ψψψ〉= 2(1−|ψψψ|2)|ψψψ|2 cosα (2.112)

Note that this equation is the same as Eq. (2.72). Therefore, the synchronized state |ψψψ|= 1
is stable for α < π

2 whereas unstable for α > π

2 , and thus, again αBF = π

2 .
Here, we make an additional remark regarding the distribution of oscillators on SM. In

Sec. 2.4, we demonstrated that the phase distribution in the Ott-Antonsen manifold follows
the normalized Poisson kernel. For the generalized Kuramoto oscillators, we can also guess
the distribution of the oscillators on the surface of unit sphere. Considering the Watanabe-
Strogatz transformation in Eq. (2.86), it is anticipated that the oscillators on SM are distributed
according to the higher-dimensional Poisson kernel in CM. Let us first consider the complex
spaces. Assume that the oscillators on SM are distributed by

fcomplex(xxx,ψψψ; t) =
1

S2M

1−|ψψψ|2

|ψψψ − xxx|2M (2.113)

for ψψψ ∈ CM and for xxx ∈ SM. Then, we can calculate the Kuramoto order parameter as

ΓΓΓ(t) =
∫
|xxx|=1

xxx f (xxx,ψψψ; t)dxxx

=
1−|ψψψ|2

S2M

∫
|xxx|=1

xxx
(1+ |ψψψ|2 −2Re⟨ψψψ|xxx⟩)M dxxx

=
1−|ψψψ|2

S2M

∫
|η |≤1

∫
|nnn|=

√
1−|η |2

ηψ̂ψψ +nnn
(1+ |ψψψ|2 −2Re⟨ψψψ|xxx⟩)M dnnn

1√
1−|η |2

dη (2.114)

where ψ̂ψψ := ψψψ

|ψψψ| is a unit vector and ⟨nnn|ψψψ⟩= 0. Here, we decompose the unit vector on the
sphere into xxx = ηψ̂ψψ +nnn [104]. Then, the integral can be written as

ΓΓΓ(t) =
1−|ψψψ|2

S2M
ψ̂ψψ

∫
|η |≤1

∫
|nnn|=

√
1−|η |2

η

(1+ |ψψψ|2 −2|ψψψ|Reη)M dnnn
1√

1−|η |2
dη

=
S2M−2

S2M
(1−|ψψψ|2)ψ̂ψψ

∫
|η |≤1

η

(1+ |ψψψ|2 −2|ψψψ|Reη)M dnnn
(1−|η |2) 2M−3

2√
1−|η |2

dη

=
S2M−2

S2M
(1−|ψψψ|2)ψ̂ψψ

∫ 1

0

∫ 2π

0

reiθ

(1+ |ψψψ|2 −2|ψψψ|r cosθ)M (1− r2)M−2rdθdr

= ψψψ(t) (2.115)
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which is consistent with the result above, i.e., ΓΓΓ(t) = ψψψ(t) for the complex space. Thus, we
can expect that the oscillators for the complex spaces are distributed according to Eq. (2.113),
i.e., the higher-dimensional normalized Poisson kernel. However, for the real spaces, RM,
the normalized Poisson kernel is given by

freal(xxx,ψψψ; t) =
1

SM

1−|ψψψ|2

|ψψψ − xxx|M
(2.116)

which leads to the following relation for the Kuramoto order parameter

ΓΓΓ(t) =
1−|ψψψ|2

SM

∫
|xxx|=1

xxx
(1+ |ψψψ|2 −2⟨ψψψ|xxx⟩)M/2 dxxx

=
1−|ψψψ|2

SM

∫ 1

−1

∫
|nnn|=

√
1−η2

ηψ̂ψψ +nnn
(1+ |ψψψ|2 −2⟨ψψψ|xxx⟩)M/2 dnnn

dη√
1−η2

=
SM−1

SM
(1−|ψψψ|2)ψ̂ψψ

∫ 1

−1

η

(1+ |ψψψ|2 −2|ψψψ|η)M/2
(1−η2)

M−2
2√

1−η2
dη

= ψψψ(t) (2.117)

which is inconsistent with Eq. (2.103), i.e., ΓΓΓ(t) = h(|ψψψ|,M)ψψψ(t). This suggests that the dis-
tribution of higher-dimensional real oscillators on SM does not follow the higher-dimensional
normalized Poisson kernel given by Eq.(2.116) with the given ψψψ . Previous studies have
reported that in the thermodynamic limit, higher-dimensional real oscillators distributed
according to the higher-dimensional Poisson kernel satisfy the Ott-Antonsen (OA) equations
introduced in Refs.[152, 153]. In those works, the authors employed the spherical harmonics
expansion (for 3D real space) of the oscillator distribution function17, similar to how Ott and
Antonsen used the Fourier series expansion for 2D real space in Eq. (2.59). The oscillator
distribution, e.g., for 3D real spaces, is assumed to be [152]

freal(θ ,φ , t) =
∞

∑
l=0

l

∑
m=−l

flmYlm(θ ,φ)

=
1
S3

(
1+4π

∞

∑
l=0

l

∑
m=−l

ρ
lYlm(Θ,Φ)Ylm(θ ,φ)

)
(2.118)

17For higher dimensions, a generalized spherical harmonics expansion was utilized [153].
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where flm = ρ lYlm(Θ,Φ) is taken as a generalied OA ansatz and Ylm(θ ,φ) are spherical
harmonics [161, 162]. To obtain the phase distribution function, we can use [152]

4π

2l +1

l

∑
m=−l

Ylm(ŷ)Ylm(x̂) = Pl(x̂ · ŷ) (2.119)

where Pl(x) are Legendre polynomials and

∞

∑
l=0

ylPl(x) =
1√

1+ y2 −2xy
. (2.120)

Using the above relations, we obtain

freal(θ ,φ , t) =
1
S3

(
1+4π

∞

∑
l=1

2l +1
4π

ρ
lPl(r̂ · ρ̂)

)
=

1
S3

(
2

∞

∑
l=0

lρ lPl(r̂ · ρ̂)+
∞

∑
l=0

ρ
lPl(r̂ · ρ̂)

)
=

1
S3

(
2ρ

∂

∂ρ

∞

∑
l=0

ρ
lPl(r̂ · ρ̂)+

∞

∑
l=0

ρ
lPl(r̂ · ρ̂)

)
=

1
S3

(
2ρ

∂

∂ρ

1√
1+ρ2 −2r̂ · ρ̂

+
1√

1+ρ2 −2r̂ · ρ̂

)
(2.121)

where ρρρ = ρ(sinΘcosΦ,sinΘsinΦ,cosΘ)⊤ ∈R3 is the OA variable18 and the microscopic
oscillator is represented by rrr = (sinθ cosφ ,sinθ sinφ ,cosθ)⊤ ∈ S3 with rrr†rrr = 1 in the
thermodynamic limit. Finally, the oscillator distribution is given by [152]

freal(θ ,φ , t) =
1

4π

1−ρ2

(1+ρ2 −2ρρ̂ · r̂)3/2 =
1
S3

1−|ρρρ|2

|ρρρ − rrr|3
(2.122)

as in Eq. (2.116). However, the OA variable consistent with the normalized Poisson kernel
as above is governed by

∂tρρρ = ΩΩΩρρρ +
1
2
(1+ |ρρρ|2)(KKKΓΓΓ)−

[
ρρρ
⊤(KKKΓΓΓ)

]
ρρρ (2.123)

which is different from Eq. (2.96). In conclusion, for both higher-dimensional complex and
real spaces, the distribution of oscillators follows the higher-dimensional Poisson kernel in
the Ott-Antonsen manifold. In the case of complex oscillators, the model and the generalized
WS transformation described in Ref.[104] provide the correct approach, and the Kuramoto
order parameter precisely coincides with the OA variable. However, to obtain the Poisson
kernel distribution in real spaces, we need to consider the spherical harmonics expansion and

18In our notation, it corresponds to ψψψ
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the governing equations introduced in Refs.[152, 153]. In this manifold, the Kuramoto order
parameter exactly matches the OA variable.

2.5.2 System of Coupled Oscillators in a Network of Networks

In the previous subsection, we studied the generalized Kuramoto-Sakaguchi oscillator sys-
tems in a single network, and therein we revisited the dimension reduction methods, i.e., the
generalized Watanabe-Strogatz transformation. In the thermodynamic limit with uniformly
distributed initial conditions, the WS variable itself can fully depict the Kuramoto order
parameter and their dynamical equations, the Ott-Antonsen dynamics. In this section, we
construct a system of generalized Kuramoto-Sakaguchi oscillators in a network of networks
as we did in Sec. 2.4.2 for a system of classical Kuramoto-Sakaguchi oscillators.

The governing equations of the microscopic individual oscillators can be written as

∂txxx
(a)
j =−xxx(a)j HHH†

axxx(a)j +HHHa, HHHa(t) := KKK ·
L

∑
b=1

GabΓΓΓb(t), ΓΓΓ
(a)(t) :=

1
N

N

∑
k=1

xxx(a)k (2.124)

for j = 1, ...,N and for a,b = 1, ...,L where L is the number of populations and N is the
number of oscillators in each population (same for all the populations). Also, Gab is a
coupling strength matrix between populations and ΓΓΓ

(a)(t) denotes the Kuramoto order
parameter for population a, as the center of mass of the oscillators on SM. For this system,
we can also think about a set of Watanabe-Strogatz transformations given by

xxx(a)j (t) = Mt(xxx
(a)
0, j) :=

AAA(t)axxx(a)0, j +ψψψa(t)

ψψψa(t)†AAAa(t)xxx
(a)
0, j +1

(2.125)

for j = 1, ...,N and a = 1, ...,L. From Eq. (2.96), we know that the macroscopic WS variables
of each population are governed by

∂tAAAa(t) = HHHaψψψ
†
aAAAa −HHH†

aψψψaAAAa

∂tψψψa(t) =−ψψψaHHH†
aψψψa +HHHa (2.126)

with uniformly distributed initial conditions xxx(a)0, j on SM for j = 1, ...,N and for a = 1, ...,M.
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In the thermodynamic limit, the Kuramoto order parameter can be written only in terms
of the WS variables. Hence, the forcing field can be written as

HHHa(t) := KKK ·
L

∑
b=1

GabΓΓΓb(t) = KKK ·
L

∑
b=1

Gab

∫
|xxxb|=1

xxxb fb(xxxb, t)dxxxb

= KKK ·
L

∑
b=1

Gab

∫
|xxxb|=1

xxxb
1

S2M

1−|ψψψb|2

|ψψψb − xxxb|2M dxxxb

= KKK ·
L

∑
b=1

Gab
1−|ψψψb|2

S2M

∫
|xxxb|=1

xxxb

(1+ |ψψψb|2 −2Re⟨ψψψb|xxxb⟩)M dxxxb

= KKK ·
L

∑
b=1

Gabψψψb(t) (2.127)

for a = 1, ...,L for the complex space K= C. On the other hand, as we discussed in Sec. 2.5,
the forcing field of the real spaces K= R reads

HHHa(t) := KKK ·
L

∑
b=1

GabΓΓΓb(t) = KKK ·
L

∑
b=1

Gabh(|ψψψb|2,M)
∫
|xxxb|=1

xxxb fb(xxxb, t)dxxxb

= KKK ·
L

∑
b=1

Gabh(|ψψψb|2,M)
∫
|xxxb|=1

xxxb
1

SM

1−|ψψψb|2

|ψψψb − xxxb|M
dxxxb

= KKK ·
L

∑
b=1

Gabh(|ψψψb|2,M)
1−|ψψψb|2

SM

∫
|xxxb|=1

xxxb

(1+ |ψψψb|2 −2Re⟨ψψψb|xxxb⟩)M/2 dxxxb

= KKK ·
L

∑
b=1

Gabh(|ψψψb|2,M)ψψψb(t) (2.128)

for a = 1, ...,L. Therefore, the OA dynamics of generalized Kuramoto-Sakaguchi oscillators
in multi-population networks read

∂tψψψa =−ψψψaHHH†
aψψψa +HHHa =−ψψψa

( L

∑
b=1

Gabψψψ
†
bKKK†

)
·ψψψa +KKK ·

L

∑
b=1

Gabψψψb (2.129)

for a = 1, ...,L for the complex spaces CM, while the OA dynamics for RM can be written as

∂tψψψa =−ψψψaHHH†
aψψψa +HHHa

=−ψψψa

( L

∑
b=1

Gabh(|ψψψb|2,M)ψψψ⊤
b KKK⊤

)
·ψψψa +KKK ·

L

∑
b=1

Gabh(|ψψψb|2,M)ψψψb (2.130)

for a = 1, ...,L.
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2.6 Lyapunov Exponent and Covariant Lyapunov Vector

In Sec. 2.3, we studied the stability of the synchronized state and the completely inco-
herent state for the system of identical Kuramoto-Sakaguchi oscillators. In those two cases,
the dynamical states are fixed points in a rotating reference frame, and the linear stability is
readily obtained from the eigenvalues of the Jacobian matrix evaluated at the fixed point. In
this section, we briefly take a look at a practical tool for the general exploration of the stability
of dynamical states. It is called Lyapunov stability analysis. Along a given trajectory in phase
space, we can investigate the stability of the trajectory by imposing local perturbations. This
is done by measuring how rapidly a local perturbation grows (unstable) or shrinks (stable).
The local growth rate is characterized by the Lyapunov exponents and the local perturbation
directions of expansion/contraction are given by the covariant Lyapunov vectors [122–124].
Here, we give the mathematical background of such a Lyapunov analysis.

Let us consider a set of ordinary differential equations ∂tx = f(x) with an initial condition
x(0) = x0 where x ∈ RM and f : RM → RM is the vector field of the system. The initial
condition determines a reference trajectory xref(t). Along the reference trajectory, we dive
into the tangent space Txref(t)R

M where the local perturbation vector δx(t) ∈ Txref(t)R
M

resides. The local perturbation vectors are governed by the Jacobian matrix evaluated along
the reference trajectory such that

∂tδx(t) = J(xref(t); t)δx(t) (2.131)

for δx(t) ∈ Txref(t)R
M where (J(t))i j := ∂ fi

∂x j

∣∣∣∣
xref(t)

. From Eq. (2.131), the tangent linear

propagator can be constructed from the fundamental matrix solution, which is obtained by

∂tO(t) = J(xref(t); t)O(t) (2.132)

for the initial condition O(0) = IM. Therefore, the tangent linear propagator is given by

M(t0, t) = O(t)O(t0)−1 (2.133)

for t0 < t. The tangent linear propagator propagates the local perturbation vector at the time
point t0, i.e., δx(t0) ∈ Txref(t0)R

M, to the perturbation vector δx(t) ∈ Txref(t)R
M at the future

The contents of this section were in part published previously in S. Lee and K. Krischer, Chaos 31, 113101
(2021) [55].
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The tangent linear 

propagator

Fig. 2.3 (Left) A schematic figure of the dynamical system. Along the reference trajectory,
the local perturbation vector which lives on the tangent space evloves according to the
tangent linear propagator. (Right) A schematic figure of the covariant Lyapunov vectors. The
first Lyapunov exponent is assumed to be negative (contracting CLV) and the second LE is
assumed to be positive (expanding CLV).

time point, which means
δx(t) = M(t0, t)δx(t0). (2.134)

In 1965, Valery Oseledets proved the so-called multiplicative ergodic theorem or Os-
eledets theorem [163]. It says that with the tangent linear propagators, we can construct the
forward/backward Oseledets matrices according to

ΞΞΞ
+(t) = lim

t2→∞

[
M(t, t2)⊤M(t, t2)

]1/(2(t2−t))

ΞΞΞ
−(t) = lim

t1→−∞

[
M(t1, t)−⊤M−1(t1, t)

]1/(2(t1−t)) (2.135)

where −⊤ indicates the transpose and inverse of a matrix. The Oseledets theorem proves that
the limits in Eq. (2.135) exist and share the same real positive eigenvalues denoted by µ1 >

µ2 > ... > µM
19. The Lyapunov exponents are defined by λi = log µi for i = 1, ...,M. The

meaning of the Lyapunov exponents will be clear later in this section. The forward/backward
Oseledets matrix explores the future/past dynamics along the reference trajectory xref(t).
The eigenvalues µi for i = 1, ...,M have corresponding eigenvectors, which are called the
forward/backward Lyapunov vectors d(i)

± (t). Nevertheless, the forward/backward Lyapunov
vectors are not covariant under the dynamics. Hence, those vectors are not related to
the information on the local expansion/contraction of the perturbation vectors along the
reference trajectory. To study the correct local perturbation directions, V. Oseledets suggested

19Here, we only consider the nondegenerate case. Hence, there are M eigenvalues.
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decomposing the tangent space according to the local expansion/contraction behavior along
the reference trajectory [123, 124, 163, 164], which is called the Oseledets splitting. Define
the nested subspaces as

(ΓΓΓ(i)(t))+ :=
M⊕
j=i

(U( j)(t))+

(ΓΓΓ(i)(t))− :=
i⊕

j=1

(U( j)(t))− (2.136)

where (U( j)(t))± are the eigenspaces of the forward/backward Oseledets matrices spanned by
{d( j)

± (t)}M
j=1. Therefore, the tangent space is decomposed into Txref(t)(R

M) =
⊕M

j=1 ΩΩΩ
( j)(t),

where ΩΩΩ
(i)(t) := (ΓΓΓ(i)(t))+∩ (ΓΓΓ(i)(t))− is called the Oseledets’ splitting. In contrast to the

eigenspaces of the forward/backward Lyapunov matrices, the Oseledets’ splitting is covariant
under the dynamics such that ΩΩΩ

(i)(t) = M(t0, t)ΩΩΩ(i)(t0). The spanning vectors {v(i)(t)}M
i=1

of the Oseledets’ splittings are called the Covariant Lyapunov Vectors (CLVs) [123, 124].
The information on the local expansion/contraction direction is given by the Oseledets’
splitting since they are norm-independent and also covariant under the given dynamics. Now
the Lyapunov exponents get their meaning. The Lyapunov exponents are the exponential
growth/shrinking rates of the local perturbations along the direction of the CLVs (see Fig. 2.3).
They are defined by

Λi = lim
t→∞

1
t

log
||M(t0, t)u(t0)||

||u(t0)||
(2.137)

for u(t0) ∈ (ΓΓΓ(i)(t0))+\(ΓΓΓ(i+1)(t0))+ where the nested subspaces are RM = (ΓΓΓ(1)(t))+ ⊃
(ΓΓΓ(2)(t))+ ⊃ ... ⊃ (ΓΓΓ(M)(t))+. In conclusion, for the study of the stability of a dynamical
state, we measure the Lyapunov exponents characterizing the exponential asymptotic growth
rate ||M(t0, t)v(i)(t0)|| ∼ ||v(i)(t0)||exp(Λit), and we also investigate the covariant Lyapunov
vectors indicating the stable/unstable directions of the perturbation vectors in the phase
space [122].



Chapter 3

Coexistence Dynamics I: Attracting
Poisson Chimera

In this chapter, we discuss the first and the simplest coexistence dynamics of identical
Kuramoto-Sakaguchi oscillators in a network of networks, that is, a chimera state in a two-
population network. This system and its observable chimera states were originally studied
in Refs. [72, 74]. Our main task in this chapter is to provide details on (a) how the chimera
states behave as the system size increases, (b) how the chimeras in a finite-sized ensemble
are linked to the chimeras in the OA manifold, and (c) their spectral properties based on the
Lyapunov analysis that we discussed in Sec. 2.6. As introduced in Chap. 1, after the first
observation of chimera states in a ring geometry with a nonlocal coupling function, chimera
states in two-population networks have been investigated with various oscillator systems in
numerous papers to emulate a nonlocal coupling in a simpler setting that allows for a deeper
understading both in the thermodynamic limit and in finite-sized ensembles [72, 74, 78, 79,
87, 75, 76, 80, 101, 73, 86, 77, 165–167]. In the thermodynamic limit, the chimera states of
Kuramoto-Sakaguchi oscillators can be studied using the Ott-Antonsen ansatz described in
Sec. 2.4.2. We know that the oscillators are distributed according to the normalized Poisson
kernel in the OA manifold and the dynamics in the OA manifold can be written in a closed
form that enables one to easily investigate the essential properties of chimeras. Furthermore,
chimeras in the OA manifold are known to be neutrally stable when the oscillators are strictly
identical [97]. In contrast, when the oscillators are slightly heterogeneous, the asymptotic
dynamics even starting slightly off the OA manifold was found to be attracted to the OA
manifold in the long time limit [97, 168, 78, 169]. On the other hand, in the finite-sized

The contents of this chapter were in part published previously in S. Lee and K. Krischer, Chaos 31, 113101
(2021) [55]. Note all figures and figure captions are reproduced or regenerated from those in it.
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system, the behavior of the chimera states exhibits a strong dependence on initial conditions
(ICs) [73, 77, 167, 101, 102, 168]. Below, we will demonstrate that the strong dependence
on the ICs of the finite-sized chimeras is due to their neutral stability. Depending on initial
conditions, their macroscopic observables may exhibit simple and regular dynamics or
irregular, complicated motions. The simplest chimera dynamics of the finite-sized ensemble
can be obtained when the initial phases of the incoherent population are distributed according
to the normalized Poisson kernel. In the following, we will call such ICs Poisson initial
conditions (PIC), in order to start the dynamics for small N as close as possible to the OA
manifold, which will be called the Poisson submanifold throughout this thesis. All the other
initial conditions generated outside the Poisson submanifold are referred to as non-Poisson
initial conditions (n-PIC), i.e., a set of initial phases randomly and independently generated
from the uniform distribution of T. In the case of PICs, previous works showed that for large
N the dynamics of the Kuramoto order parameter are indistinguishable from that observed
in the OA manifold in the thermodynamic limit [72, 74]. However, the PIC-started chimera
states for small-N exhibited prominently different order parameter dynamics from that of
the large-sized populations or the OA dynamics, which has been attributed to finite-size
fluctuations [74].

In this chapter, we demonstrate the dynamical and spectral properties of finite-sized
chimeras in two-population networks. Considering the two different initial conditions de-
scribed above, the initial condition dependence of chimera states is thoroughly discussed.
Moreover, we increase the system size N to elucidate how the finite-sized chimera is con-
nected to that of the OA dynamics in the thermodynamic limit. Next, we demonstrate the
neutral stability of the chimera states in finite-sized ensembles, employing Lyapunov analysis.
Finally, we impose a ‘perturbation’ to the identical Kuramoto-Sakaguchi oscillators. To this
end, we consider either a nonlocal intra-population network as a topological variation or an
ensemble of identical Stuart-Landau oscillators as a dynamical variation. We demonstrate
that both variations could induce small heterogeneities to the phase dynamics that render
Poisson chimeras attracting.

3.1 Chimeras in Two-population Network

3.1.1 Governing Equations and Observable Chimera Dynamics

Consider a set of identical Kuramoto-Sakaguchi phase oscillators arranged in a two-population
network topology. In each population, the oscillators are all-to-all coupled with each other as
well as to the oscillators in the other population. However, the strength of the inter-population



3.1 Chimeras in Two-population Network 63

1

2

3

N/2+1

N

N-1

…

…

N+1

N+2

N+3

2N

2N-1

N+N/2+1

…

…

1

2

3

N/2+1

N

N-1

…

…

N+1

N+2

N+3

2N

2N-1

N+N/2+1

…

…

(a)

(b)

𝝁

𝝁

𝝁

𝝁

𝝂

𝝂

Fig. 3.1 Schematics of the two-population network topologies considered in this paper.
(a) Global intra- and inter- population topology, and (b) global inter- and nonlocal intra-
population coupling. Here, only the connections from the first oscillator are fully depicted.
The solid connections indicate the intra-population coupling with strength µ , and the dashed
ones the inter-population connections with strength ν . Note that in the nonlocal intra-
population topology, each oscillator is connected to all the other oscillators except of the
opposite one.

coupling is weaker than the intra-population coupling strength. This situation is depicted
in Fig. 5.1 (a). Note that this model can be obtained from Eq. (2.73) with M = 2, i.e., two-
population networks with each population consisting of N oscillators. As we discussed in
Chap. 2, the dynamics of each oscillator is fully described by its phase φ

(a)
j (t) ∈ T= [−π,π)

for j = 1, ...,N and a = 1,2. Then, the oscillators are governed by

∂tφ
(a)
j = ωa + Im

[
Ha(t)e

−iφ (a)
j

]
(3.1)

for a = 1,2. Here, the forcing field that affects each oscillator in population a is defined by

Ha(t) :=
M

∑
b=1

GabΓb(t)e−iα (3.2)
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where the Kuramoto order parameter is given by

Γa(t) = ra(t)eiΘa(t) :=
1
N

N

∑
k=1

eiφ (a)
k (t) (3.3)

for a = 1,2 and the coupling strength matrix reads G11 = G22 = µ and G12 = G21 = ν

with µ > ν . The parameter ν and µ are the inter- and intra-population coupling strengths,
respectively (see Fig. 5.1). Notice that all the oscillators are identical within each population,
i.e., they have the same intrinsic frequency ωa = 0 for a = 1,2 and the same phase-lag
parameter α = π/2−β where β is small enough for chimera states to exist [170]. More
specifically, the governing equations can be rewritten as

∂tφ
(1)
j (t) = ω1 +

µ

N

N

∑
k=1

sin(φ (1)
k −φ

(1)
j −α)+

ν

N

N

∑
k=1

sin(φ (2)
k −φ

(1)
j −α) (3.4)

for the oscillators φ
(1)
j in the first population for j = 1, ...,N, and those of the second

population read

∂tφ
(2)
j (t) = ω2 +

µ

N

N

∑
k=1

sin(φ (2)
k −φ

(2)
j −α)+

ν

N

N

∑
k=1

sin(φ (1)
k −φ

(2)
j −α) (3.5)

for j = 1, ...,N. For the sake of simplicity, we rescale time to set µ + ν = 1 and define
A = µ − ν as the control parameter. Throughout this work, we fix β = 0.08 and A to be
either 0.2 (stationary chimera states) or 0.35 (breathing chimera states) [72]. In this system,
a chimera state is characterized by one perfectly synchronized oscillator population with
rsync(t) = 1 and one (partially) incoherent oscillator population, i.e., 0 < rincoh(t)< 1 [74].

Numerical integration of Eqs. (3.4-3.5) shows that the chimera trajectories can be classi-
fied according to the type of initial conditions as well as to the motion of the order parameter.
If a trajectory starts from a PIC1, the modulus of the order parameter dynamics of the chimera
state shows a simple, regular motion, as depicted in Fig. 3.2. More specifically, for large N as
in Fig. 3.2 (b,d), the modulus of the Kuramoto order parameter for the incoherent population,
i.e., rincoh(t), is either stationary in time (Fig. 3.2 (b)) or exhibits a periodic oscillation
(Fig. 3.2 (d)), depending on the value of A. These chimera dynamics were termed stationary
and breathing chimeras, respectively [72]. Note that for large sized N, rincoh(t) is virtually
indistinguishable from the OA dynamics in the thermodynamic limit (see Ref. [72, 74]). For

1The detailed description of ICs and how one can obtain it will be given in the next section.
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Fig. 3.2 The magnitudes of Kuramoto order parameters r(t) of the coherent and incoher-
ent populations of chimera states in the two-population network starting from PICs after
transients have died out (t ≥ 105). For each figure, the gray solid line indicates the order
parameter for the perfectly synchronized population (r(t) = 1) and the black solid line the
incoherent population (r(t) < 1): (a-b) Stationary chimera states with A = 0.2 and (c-d)
breathing chimera states with A = 0.35 for the system sizes N = 6 (left) and N = 60 (right),
respectively.

small N, as in Fig. 3.2 (a,c), rincoh(t) is composed of two contributions: the motion of the
OA dynamics and a superimposed secondary oscillation along the OA dynamics2.

In contrast, a chimera trajectory initiated from an n-PIC shows a rather complicated
motion of rincoh(t), strongly depending on the given initial condition (Fig. 3.3). This initial
condition dependence of rincoh(t) has been pointed out previously [73, 101, 72, 88], and
many authors have exploited rather special initial conditions for their chimera studies [72, 74].
Below, we will address the initial condition dependence of chimera states in more detail, and
classify the chimera states according to the concept of Poisson and non-Poisson chimeras.

3.1.2 Poisson and Non-Poisson Chimeras

To obtain a PIC for a finite-sized ensemble, we first consider the thermodynamic limit
where the Ott-Antonsen ansatz works. The OA manifold can be approached by considering
uniformly distributed constants of motion with N → ∞ and applying the WS transformation.
Then, the phase density function can be written as a Fourier series expansion where the
n-th coefficient is the n-th power of the first coefficient, i.e., the Kuramoto order parameter.
Hence, for each population and |za|< 1, the phase density function in the OA manifold can

2Note that throughout this chapter, we name each chimera state according to its dynamics in the thermody-
namic limit at the given parameter set for the sake of simplicity.



66 Coexistence Dynamics I: Attracting Poisson Chimera

0 100 200
Time

O
rd

e
r 

P
a
ra

m
e
te

rs

0.0

0.2

0.4

0.8

(a) (b)
𝐴 = 0.2

𝑁 = 6

𝐴 = 0.2

𝑁 = 60

0.6

1.0

0.0

0.2

0.4

0.8

0.6

1.0

0 100 200
Time

O
rd

e
r 

P
a
ra

m
e
te

rs

(c) (d)

0 100 200
Time

0.0

0.2

0.4

0.8

0.6

1.0

𝐴 = 0.35

𝑁 = 60

0 100 200
Time

0.0

0.2

0.4

0.8

0.6

1.0

𝐴 = 0.35
𝑁 = 6

Fig. 3.3 The magnitudes of Kuramoto order parameters r(t) of the coherent and incoherent
populations of chimera states in the two-population network starting from n-PICs after
transients have died out (t ≥ 105). For each figure, the gray solid line indicates the order
parameter for the perfectly synchronized population (r(t) = 1) and the black solid line the
incoherent population (r(t)< 1): (a-b) A = 0.2 (for which with PICs stationary chimeras are
obtained) and (c-d) A = 0.35 (for which with PICs breathing chimeras are obtained) for the
system sizes N = 6 (left) and N = 60 (right), respectively.

be written as

fa(φ
(a), t) =

1
2π

[
1+

∞

∑
n=1

(
zn

a(t)e
−inφ (a)

+ c.c.

)]
=

1
2π

1−|za|2

1−2|za|cos(φ − argza)+ |za|2

(3.6)

for a = 1,2. Note that for |za| → 1− the phase distribution function fa(φ
(a), t) = δ (φ (a)−

argza) is the Dirac delta distribution, reflecting synchronization (see Sec. 2.4). The Ott-
Antonsen equation can then be written as

∂tza(t) = iωaza(t)+
1
2

Ha(t)−
1
2

za(t)2Ha(t) (3.7)

for a = 1,2. Here, we can write Ha in terms of za

H2eiα = µΓ2 +νΓ1 = µ

∫
T

f2(φ
(2), t)eiφ (2)

dφ
(2)+ν

∫
T

f1(φ
(1), t)eiφ (1)

dφ
(1) = µz2 +νz1

H1eiα = µΓ1 +νΓ2 = µ

∫
T

f1(φ
(1), t)eiφ (1)

dφ
(1)+ν

∫
T

f2(φ
(2), t)eiφ (2)

dφ
(2) = µz1 +νz2.

(3.8)



3.1 Chimeras in Two-population Network 67

Finally, the OA equation can be rewritten in a closed form

∂tz2 = iωz2 +
e−iα

2
(µz2 +νz1)−

eiα

2
z2

2(µz2 +νz1)

∂tz1 = iωz1 +
e−iα

2
(µz1 +νz2)−

eiα

2
z2

1(µz1 +νz2). (3.9)

If we restrict the dynamics to a chimera state with |z1|= 1, |z2|= ρ , and ϕ := Φ1 −Φ2, the
governing equations become a set of ODEs in terms of the radial and the phase variables
which reads

∂tρ =
1−ρ2

2
(
µρ cosα +ν cos(ϕ −α)

)
,

∂tϕ =
1+ρ2

2ρ

(
µρ sinα −ν sin(ϕ −α)

)
−ν sinα −νρ sin(ϕ +α). (3.10)

This equation has a fixed point solution corresponding to a stationary chimera state at the
given parameter set, e.g., A = 0.2 and α = π

2 −0.08.
As discussed above, for finite N, we need a specific initial condition, called a PIC, to

study the simpler dynamics of the chimera state as depicted in Fig. 3.2. The PIC is defined
and obtained as follows. The incoherent phases are generated from the normalized Poisson
kernel (Eq. (3.6)) that corresponds to the Poisson submanifold for N initial phases. Thus, we
first solve the 2D Ott-Antonsen reduced equations in Eq. (3.10) for the incoherent population.
In this chapter, we consider the stationary chimera state with the parameter set A = 0.2 and
β = 0.08 that results in ρ = 0.69998 and ϕ = 6.11918 from Eq. (3.10). Then, consider the
Poisson kernel

f (φ ;ρ,ϕ) =
1

2π

[
1+

∞

∑
n=1

((
ze−iφ)n

+ c.c.
)]

=
1

2π

1−ρ2

1−2ρcos(φ −ϕ)+ρ2 (3.11)

where z = ρeiϕ . For the finite-sized ensembles, we want the initial incoherent phase distribu-
tion {φ j(0)}N

j=1 to be as close as possible to Eq. (3.11). To obtain such initial conditions, we
use equally spaced probabilities as arguments of the inverse cumulative distribution function
(CDF) of the normalized Poisson kernel. Then, the initial phases can be numerically obtained
from

j− 1
2

N
=
∫

φ j(0)

−π

1
2π

1−ρ2

1−2ρcos(φ −ϕ)+ρ2 dφ (3.12)
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for j = 1, ...,N where ρ and ϕ are the solutions to Eq. (3.10). For the perfectly synchronized
population, the initial phases {φ j(0)}N

j=1 are picked from the delta distribution f (φ) =
δ (φ − φ0) where φ0 ∈ T. In contrast, an n-PIC can be obtained by considering initial
phases {φi(0)}2N

i=1 that are randomly and mutually independently picked up from the uniform
distribution within T.

Starting from PICs, the modulus of the Kuramoto order parameter exhibits different
features, depending on the population size N. For large N, rincoh(t) is virtually nothing but
the OA dynamics, i.e., the dynamics of the OA radial variable |zincoh| = ρincoh [72]. For
small N, the motion of the Kuramoto order parameter rincoh(t) is comprised of the motion
close to the OA dynamics plus the motion superimposed by a regular secondary oscillation
(Fig. 3.2 a,c). It looks rather regular and does not seem to be comprised of irregular small-
size fluctuations, as discussed in the literature Ref. [74]. We therefore conjecture that the
secondary oscillation of the small-size chimera states has a deterministic origin.

To show the deterministic origin of the secondary oscillation of the small-sized PIC-
started chimera dynamics, we first focus on the stationary chimera states with A = 0.2.
For the small-sized ensembles, the Watanabe-Strogatz macroscopic dynamics is given by
Eq. (2.126) or Eq. (2.79) with M = 2. Then, for A = 0.2, we obtain a stationary chimera state
characterized by ρ1 = 1, ρ2 = ρ < 1, ∂tΦa = Ω for a = 1,2, and ∂tΨ1 = 0, ∂tΨ2 = Ω̃ when
the constants of motion are uniformly distributed, i.e., ψ

(a)
j =−π + 2π( j−1)

N for j = 1, ...,N
and a = 1,2. Note that a PIC of the microscopic dynamics corresponds to the uniform
constants of motion in the WS dynamics, and both characterize the Poisson submanifold (a
manifold as close as possible to the OA manifold for finite-N). For the moment, we assume
that the second population is incoherent whereas the first population is synchronized. Using
the relation between the Kuramoto order parameter and the WS variables in Eq. (2.77), we
observe that the secondary oscillation occurs around the value of ρ2(t) = ρ , as obtained from
the Kuramoto order parameter measured from the microscopic individual oscillators (3.3).
This secondary oscillation is suppressed as N → ∞ since both the amplitude (Fig. 3.4 (a))
and the period (Fig. 3.4 (b)) of the secondary oscillation decrease with N increasing. This
phenomenon can be understood as follows. First, pertaining to the decreasing amplitude, the
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Kuramoto order parameter from Eq. (2.77) can be written as

r2(t) = |Γ2(t)|= ρ2(t)|γ2(ρ2,Ψ2)|

= ρ2

∣∣∣∣1+(1−ρ
−2
2 )(−ρ2)

N ei(2π−NΨ2)

1− (−ρ2)Nei(2π−NΨ2)

∣∣∣∣
=

∣∣∣∣ ρ2︸︷︷︸
OA dynamics

+ρ2(1−ρ
−2
2 )(−ρ2)

N ei(2π−NΨ2)

1− (−ρ2)Nei(2π−NΨ2)︸ ︷︷ ︸
secondary oscillation

∣∣∣∣. (3.13)

Thus, as N → ∞, the amplitude of the secondary oscillation in the modulus of Kuramoto
order parameter goes to zero since (1−ρ

−2
2 )(−ρ2)

N → 0 for ρ2 < 1, and approaches the OA
dynamics: r2(t)→ ρ2 = ρ (See Fig. 3.4 (d)).

Next, concerning the decreasing period, the inverse WS transformation in Eq. (2.38)
directly produces a time derivative of each phase variable that reads

φ̇
(a)
j (t) = Φ̇a −

1−ρ2
a

1+ρ2
a +2ρa cos(ψ(a)

j −Ψa)

(
Ψ̇a +

2ρ̇a

1−ρ2
a

sin(ψ(a)
j −Ψa)

)
(3.14)

where the constants of motion ψ
(a)
j are uniformly distributed in [−π,π] for a = 1,2 and

j = 1, ...,N. Plugging ρ2 = ρ , ∂tΦ2(t) = Ω and Ψ2(t) = Ω̃t +Ψ2(0) from the WS dynamics
into Eq. (3.14), we obtain the instantaneous phase velocities of the incoherent, i.e., second
population as

φ̇
(2)
j (t) = Ω−

Ω̃(1−ρ2
2 )

1+ρ2
2 +2ρ2 cos(ψ(2)

j − Ω̃t −Ψ2(0))

= Ω−
Ω̃(1−ρ2

2 )

1+ρ2
2 +2ρ2 cos(ψ(2)

j − Ω̃(t − 2π

Ω̃
)+Ψ2(0))

= φ̇
(2)
j (t −T ) where T :=

2π

|Ω̃|
(3.15)

for j = 1, ...,N. From the above equation, we find three properties of the instantaneous phase
velocities of the incoherent oscillators:

• (i) The instantaneous phase velocity of each oscillator is a periodic function with the
period T = 2π

|Ω̃| .

• (ii) All of them have the same functional form due to identical values of the three WS
variables (ρ0,Ω and Ω̃).
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• (iii) They are equally shifted within a period T due to the uniform constants of motion.

From this fact, we can assume φ̇
(2)
i (t − j

N T ) = φ̇
(2)
i+ j(t) for an arbitrary j ∈ {1, ...,N}, which

gives φ
(2)
i (t− 1

N T ) = φ
(2)
i+1(t)+C for i = 1, ...,N with φ

(2)
N+1 ≡ φ

(2)
1 where C ∈R is a constant.

This assumption leads to

r2(t) = |Γ2(t)|=
∣∣∣∣ 1
N

N

∑
k=1

eiφ (2)
k+1(t)

∣∣∣∣= ∣∣∣∣e−iC

N

N

∑
k=1

eiφ (2)
k (t− T

N )

∣∣∣∣= ∣∣∣∣ 1
N

N

∑
k=1

eiφ (2)
k (t− T

N )

∣∣∣∣
= r2

(
t − T

N

)
= r2(t − τ) (3.16)

where the period is given as τ = T
N = 2π

|Ω̃|N . Numerical integration of Eqs. (3.4-3.5) with

PICs reveals that the instantaneous velocity of each incoherent oscillator {φ̇
(2)
j (t)}N

j=1 indeed
satisfies the three properties depicted above (see Fig. 3.4 (e)). Thus, rincoh(t) is indeed a
periodic function and its period τ = 2π

|Ω̃|N is smoothly vanishing as N increases. In Fig. 3.4
(b), the numerically obtained period (τ) of the Kuramoto order parameter is plotted as a
function of N together with the values predicted above (τ = T

N ). The good agreement of
both values verifies that the period τ(N) of the regular oscillation in the Kuramoto order
parameter is indeed decreasing with N following the curve T/N. Note that for N ≳ 24, the
secondary oscillation does not appear prominently but rather rincoh(t) displays a motion
indistinguishable from that of the OA dynamics in the thermodynamic limit. We therefore
classify chimeras with population sizes N ≳ 24 as large-size chimeras, and those with N < 24
as small-size chimeras. In conclusion, we find a continuous change from the small-size to
the large-size chimeras. Furthermore, the Poisson chimeras eventually approach the OA
dynamics in the thermodynamic limit as N → ∞, in that the period and the amplitude of the
secondary oscillation of rincoh(t) continuously decrease as the system size increases.

On the other hand, one can initiate the dynamics from an n-PIC. In this case, we observe
that for the same parameter set (A = 0.2 and β=0.08) which yields stationary chimera states
the order parameter no longer exhibits a simple, regular dynamics, which is qualitatively
different from that of the chimeras from a PIC. The specific irregular shape of the magnitude
of the order parameter for the incoherent population depends on a given set of randomly
generated initial phases. In Fig. 3.3, the time evolutions of the modulus of the Kuramoto order
parameters are shown for n-PICs. The motion of rincoh(t) looks more complicated in all four
cases, compared to those in Fig. 3.4. In particular, the fluctuations of rincoh(t) are no longer a
combination of the OA dynamics and the superimposed secondary oscillation. Furthermore,
such an irregularity does not disappear for large N. This is consistent with the observation
that the instantaneous phase velocities of the incoherent oscillators {φ̇

(2)
j (t)}N

j=1 do not
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Fig. 3.4 (a) Oscillations of the magnitude of the order parameter for A = 0.2 and different
system sizes: N = 4 (red), N = 8 (blue), N = 16 (green), and N = 32 (black). (b) Period
of rincoh(t) as determined numerically (red) and predicted from Eq. (3.16) as a function
of the system size N. (c) Snapshot of the sorted incoherent phases in the numerical order
with N = 100 as a function of the rescaled index after a time t ≥ 106 for a Poisson chimera
(black dots), a non-Poisson chimera (gray diamonds) and the theoretical curve of the inverse
CDF of Poisson kernel (red solid curve). (d) Magnitude of the secondary oscillation as a
function of system size. (e,f) Instantaneous frequencies of the incoherent oscillators of the
system N = 8 for a Poisson chimera (e) and a non-Poisson chimera (f). (g) Snapshot of the
incoherent phase distribution for a Poisson chimera (red) and the non-Poisson chimera (blue)
for t ≥ 106 with N = 100 oscillators. Each solid line indicates the theoretical Poisson kernel
curve corresponding to ρ0 within an appropriate rotating frame.

follow the above discussed three characteristics of chimeras starting from a PIC (Fig. 3.4
(f)). As discussed above, an n-PIC corresponds to nonuniform constants of motion. Thus, we
conclude that the dynamics lives outside the Ott-Antonsen manifold in the thermodynamic
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limit and the Poisson submanifold for the finite-sized ensemble, respectively. This is in
line with literature results on the dynamics of chimera states in two-population networks
of identical Kuramoto-Sakaguchi oscillators [101, 102, 72]. For example, with nonuniform
constants of motion, a quasiperiodic chimera motion can be obtained, which does not exist
in the OA manifold [72]. Hence, such a quasiperiodic chimera state can be classified as a
non-Poisson chimera state.

We can numerically check whether a given chimera trajectory indeed lives on or outside
the Poisson submanifold. In Fig. 3.4 (g), the red distribution illustrates that if the chimera
trajectory starts from a PIC, then the incoherent phases of this chimera state remain distributed
in the normalized Poisson kernel. This can be numerically confirmed by the observation
that the incoherent phases sorted in ascending order of their values and plotted vs. the
rescaled index (normalized to the total number of oscillators) coincide with the inverse CDF
of Eq. (3.11) (Fig. 3.4 (c), black dots). This observation is in line with the fact that the
OA manifold is invariant under the dynamics in the thermodynamic limit [95–97]. For the
finite-sized chimeras, the numerical results verify that the finite-sized Poisson submanifold is
also invariant under the dynamics along the PIC-started chimera dynamics. To show this, let
us define

E(t) =
∣∣∣⟨eiφ(t)⟩2 −⟨e2iφ(t)⟩

∣∣∣ (3.17)

where ⟨·⟩ is the ensemble average, i.e., ⟨eimφ(t)⟩ := 1
N ∑

N
k=1 eimφk(t) for m ∈ N. If a phase

distribution follows the normalized Poisson kernel, this quantity is zero since the Poisson
kernel is characterized by the fact that n-th Fourier coefficients (n-th Daido order parameter)
are nothing but the n-th power of the first coefficient (the Kuramoto order parameter).
Therefore, E(t) = 0 in the OA manifold for infinite-N or Poisson submanifold for finite-N.
For large enough N, E(t) of the PIC-started chimera trajectory is numerically found to be
close to zero E(t)∼ O(10−5), revealing that the incoherent phases of such chimeras remain
in the normalized Poisson kernel. However, the n-PIC-started chimera trajectories do not
have the incoherent phase distribution satisfying the normalized Poisson kernel (see Fig. 3.4
(c,g)). After a long enough transient time, we obtain E(t)∼ O(10−1) for n-PICs.

So far, we demonstrated that PICs give rise to a particularly simple dynamics. This makes
it worthwhile to go a step further and define a Poisson chimera state in two-population net-
works as follows: A chimera trajectory is called a Poisson chimera if the phases {φ

(a)
i (t)}N

i=1

of a given ensemble of oscillators satisfy the following two dynamical characteristics for
a = 1,23:

3Note that the Poisson chimeras were originally characterized by three conditions in Ref. [55]. However,
the third condition is not necessary to distinguish Poisson and non-Poisson chimera states in the context of this
thesis.
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Condition 1. One population is perfectly synchronized and invariant.

Condition 2. The other population consists of incoherent phases that remain distributed
according to the normalized Poisson kernel or at least in a close vicinity of the Poisson
submanifold.

Chimera states in two-population networks that do not fulfill Conditions 1 - 2 are termed
a non-Poisson chimera state. As demonstrated above, the Poisson chimera state can be
obtained from a PIC for the finite-sized microscopic dynamics or uniform constants of
motion for the WS dynamics, whose incoherent phases live in the Poisson submanifold since
the Poisson submanifold is invariant. On the other hand, the non-Poisson chimera state can
be obtained from an n-PIC or with nonuniform constants of motion, the incoherent oscillators
of which reside outside the Poisson submanifold.

3.2 Stability of Poisson and Non-Poisson Chimeras

Thus far, we have discussed the dynamical properties of the observable chimera states and
classified them according to the properties of the incoherent oscillators. In this section, we
investigate the spectral properties of Poisson and non-Poisson chimeras. To this end, we
consider the chimera state as the reference trajectory in the phase space, from which we will
explore the tangent space dynamics. We numerically determine the Lyapunov exponents
associated with the synchronized manifold and also the corresponding covariant Lyapunov
vectors. Furthermore, we will classify them and approximate the values of the Lyapunov
exponents exploiting the network symmetry analysis [47, 46]. For the incoherent oscillators,
we will explain them by recalling the WS dynamics.

3.2.1 Network Symmetry Analysis: General Description

Let us first discuss how one can study the stability of the synchronized oscillators by taking a
look at the structure of the network topology. The two-population network topology can be
considered a finite-sized network with 2N nodes. Recently, many authors have focused on
various network topologies to investigate the dynamics of a variety of coupled oscillators
on a given finite-sized network with abundant discrete symmetries [171, 172, 48, 173–175].
For such symmetric network topologies, one can exploit the symmetries of the network to
identify various cluster patterns of the coupled oscillators and determine their stability.

Such discrete network symmetries are represented by the automorphism group of a
network [46, 47, 176, 177]. The automorphism group denoted by Aut(G ) of the network
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G is a mathematical group consisting of all the automorphisms. Here, an automorphism
indicates a permutation σ of the set of nodes that preserve the adjacency relation between the
nodes, i.e., Ai j = Aσ(i)σ( j) for all i, j [177]. Then, we can consider the group action on the
nodes under a subgroup G ≤ Aut(G ), which defines an orbit partition of a given network G

under the subgroup G, i.e., ϕ(G, i) = {σ(i)|σ ∈ G}, which (mathematically) partitions the
set of nodes according to ϕ(G, i) = ϕ(G, j) for all j ∈ ϕ(G, i), and ϕ(G, i)∩ϕ(G, j) = /0 if
j /∈ ϕ(G, i). This partition of a network could be a candidate of a cluster synchronization (CS)
pattern of the dynamical objects that are coupled via the network topology [46, 172, 47, 48]4.
It is due to an orbit partition of a network where each oscillator in the same orbit (cluster)
should receive the same input from the others. Note that every orbit partition of a network is
an equitable partition. However, there are equitable partitions of a network that are not orbit
partitions [177].

For concrete examples, let us consider two different types of governing equations. The
first one is called here the Pecora-type equation [47, 48, 172] and governed by

∂txi(t) = F(xi(t))+K
N

∑
j=1

Ai jH(x j(t)) (3.18)

and the other one is called the Kuramoto-type equation and is governed by

∂txi(t) = F(xi(t))+K
N

∑
j=1

Ai jH(x j(t)−xi(t)) (3.19)

for i = 1, ...,N where N is the number of oscillators. Here, xi(t) ∈ Rn denotes the dynamical
variable, F(x) characterizes the uncoupled local dynamics, i.e., the dynamics of a building
block. The coupling function is denoted by H, and K denotes the coupling strength. The
network topology is given by the adjacency matrix Ai j.

Assume that we have a CS pattern candidate according to an orbit partition of the network.
Then, we can denote the set of all clusters as {ϕ(i,G)}N

i=1 = {Cm}M
m=1 where M is the total

number of clusters, including trivial clusters that are composed of a single oscillator. Then,
the coarse-grained CS dynamics is described by the variables {sm(t) = xi(t)|i ∈Cm,1 ≤ m ≤
M} under the quotient adjacency matrix Ãmm′ = ∑ j∈Cm′ Ai j for an arbitrary node i ∈Cm. The
element of the quotient adjacency matrix Ãmm′ is nothing but the number of links from an
arbitrary node in Cm to all the nodes in Cm′ . Note again that we can choose an arbitrary
node in Cm since all the nodes in Cm receive the same input from Cm′ . Hence, the quotient

4For the details, see the Supplemental Materials of Ref. [46].
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(coarse-grained) dynamics of the CS pattern reads

∂tsm(t) = F(sm(t))+K
M

∑
m′=1

Ãmm′H(sm′(t))

∂tsm(t) = F(sm(t))+K
M

∑
m′=1

Ãmm′H(sm′(t)− sm(t)) (3.20)

for m = 1, ...,M. Note that the dynamics of each cluster depends on all the other clusters
that are connected through the quotient adjacency matrix Ã. This means that the stability
of a cluster also could depend on the dynamics of other linked clusters. However, under an
appropriate condition, one can study the stability of one cluster independently of others even
though they are linked. To this end, we follow below the results of Ref. [46].

First, we introduce so-called cluster-based coordinates [46]. The set of N-dimensional
orthonormal vectors {u(m)

κ ∈RN}|Cm|
κ=1 for m= 1, ...,M are called the cluster-based coordinates

if they satisfy the following rules [46]:

• (i) u(m)
κi = 0 if i /∈Cm.

• (ii) For κ = 1, all the nonzero elements of u(m)
1 should be 1/

√
|Cm|, which indicates

the sync-manifold of the cluster Cm.

• (iii) The other vectors {u(m)
κ }|Cm|

κ=2 are mutually orthogonal and also orthogonal to u(m)
1 .

Hence, they indicate the transverse directions to the sync-manifold of Cm.

Here, |Cm| is the number of nodes in a Cm cluster. The cluster-based coordinates not only can
block-diagonalize the adjacency matrix according to the given cluster pattern but also can be
chosen to be eigenvectors of it [46].

To study the spectral properties of the quotient dynamics of each cluster, we consider the
given CS pattern as the reference trajectory in phase space. Then, we add a small perturbation
on them. This yields the following variational equation of an oscillator coupled to the
oscillators in other clusters

∂tδxi(t) = DF(sm)δxi +K
M

∑
m′=1

∑
j∈Cm′

Ai jDH(sm′)δx j (3.21)

for i = 1, ...,N. Here, we consider the Pecora-type model where δxi(t) = xi(t)− sm(t) for
i ∈ Cm and DF and DH indicate the Jacobian matrices of the given dynamical functions.
Using the cluster-based coordinates such that ηηη

(m)
κ = ∑i∈Cm u(m)

κi δxi for m = 1, ...,M and
κ = 2, ..., |Cm|, we obtain ηηη

(m)
κ for κ ≥ 2, which represents the perturbation of the transverse
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direction to the cluster Cm. Furthermore, in the cluster-based coordinates, the adjacency
matrix takes a bock-diagonal form where each block corresponds to an ISC (independently
synchronizable cluster, see Ref. 6.2) or an ISC set. Therefore, if the cluster Cm is an ISC,
then the transversal variational equations of ηηη

(m)
κ (t) become independent of ηηη

(m′)
κ for the

other clusters Cm′ . Thus, the |Cm|−1 transversal variational equations of the cluster Cm are
given by [46]

∂tηηη
(m)
κ (t) =

[
DF(sm)+Kλ

(m)
κ DH(sm)

]
ηηη
(m)
κ (t)

∂tηηη
(m)
κ (t) =

[
DF(sm)−K

M

∑
m′=1

Ãmm′DH(sm′ − sm)+Kλ
(m)
κ DH(0)

]
ηηη
(m)
κ (t) (3.22)

for κ = 2, ..., |Cm|, where λ
(m)
κ is the eigenvalue of the adjacency matrix. The eigenvalues

have corresponding eigenvectors u(m)
κ associated with the cluster Cm since the cluster-based

coordinates can be chosen to be the eigenvectors of the adjacency matrix [46, 172]. From
the transversal variational equations, we can explore the spectral information, in particular,
the stabilirt of the transverse direction of the synchronization manifold along our chimera
trajectory.

3.2.2 Network symmetry Analysis: Application to Kuramoto-Sakaguchi
Oscillators in Two-population Networks

In the following, we apply the above general description of network symmetry analysis
to the system of identical Kuramoto-Sakaguchi oscillators in two-population networks. In
particular, we will consider chimera states. Note that a chimera state can be interpreted
as a CS pattern where the synchronized population is treated as one giant cluster C0 while
the incoherent population consists of N trivial clusters Cm with m = 1, ...,N. This leads
us to the corresponding cluster-based coordinates U⊤ = [u(0)

1 ,u(1)
1 , ...,u(N)

1 ,u(0)
2 , ...,u(0)

N ] for
the chimera pattern discussed in Sec. 3.2.1. Here, u(0)

1 indicates the direction along the
synchronized cluster C0 of the chimera state, so that u(0)1 j = 1√

N
for j ∈ C0 and u(0)1 j = 0 if

j /∈ C0. For the directions transverse to the sync-manifold, we obtain ∑ j∈C0 u(0)
κ j = 0 and

u(0)
κ j = 0 if j /∈C0 for κ = 2, ...,N. For the incoherent trivial clusters, we obtain u(m)

1 j = 1 if

j ∈Cm; otherwise u(m)
1 j = 0 for m = 1, ...,N. Hence, a possible candidate of the cluster-based
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coordinates of a chimera pattern could be [178]

U⊤ =



1√
N
... ON,N P
1√
N

0
... D ON,N−1

0


(3.23)

where the first column u(0)
1 = [ 1√

N
, · · · , 1√

N
,0, · · · ,0]⊤ indicates the sync-manifold direction,

D = diag(1, ...,1) ∈ RN×N corresponds to the incoherent trivial clusters, each O is a zero-
matrix, and P ∈ RN×N−1 represents the directions transverse to the sync manifold C0. P is
chosen to satisfy orthonormality and transversality conditions such as

P =



N−1√
N(N−1)

0 0 0

− 1√
N(N−1)

N−2√
(N−1)(N−2)

0 0

− 1√
N(N−1)

− 1√
(N−1)(N−2)

. . . ...
...

... . . . 1√
2·1

− 1√
N(N−1)

− 1√
(N−1)(N−2)

· · · − 1√
2·1


(3.24)

Considering the chimera states in two-population networks and the corresponding CS
pattern (C0 for the sync population and {Cm}N

m=1 for the incoherent population, respectively),
the transversal Lyapunov exponents corresponding to the synchronized cluster C0 can be
analytically approximated. To do so, we first rewrite the governing equation (3.1) as

∂tφi(t) = F(φi(t))+
2N

∑
j=1

Ki jB
(c)
i j H(φ j(t)−φi(t)) (3.25)

for i = 1, ...,2N where the uncoupled dynamics is F(φ) = − µ

N sinα (here, just a constant
as the local dynamics of the Kuramoto-Sakaguchi oscillator is a constant given by the
natural frequency) and the coupling function is H(x) = sin(x−α). The adjacency matrix
B(c)

i j ∈ R2N×2N stands for the complete graph with 2N nodes which reflect the topology
of the all-to-all intra- and inter-population coupling. However, as we defined in Fig. 5.1,
the coupling strengths are different between inter- and intra-populations, which leads us to
introduce Ki j =

µ

N if i, j belong to the same population, and Ki j =
ν

N if i, j belong to different
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populations, respectively, for i, j = 1, ...,2N. From the CS pattern {Cm}N
m=0 of the chimera

state, the quotient adjacency matrix is given as

Ã =


N −1 1 · · · 1

N
... A(c)

N

 (3.26)

where A(c) ∈RN×N is the adjacency matrix of the complete graph with N nodes that describes
the all-to-all intra-population coupling5. Therefore, we obtain the (coarse-grained) quotient
dynamics corresponding to the chimera pattern from Eq. (3.20) with the quotient variables
denoted by s0(t) = φi(t) (sync., C0) and sm(t) = φi+N(t) (incoh., Cm) for m = i = 1, ...,N:

∂ts0(t) = F(s0(t))+
µ

N
H(0)Ã00 +

ν

N

N

∑
m′=1

Ã0m′H(sm′(t)− s0(t))

=−µsinα +
ν

N

N

∑
m′=1

sin(sm′(t)− s0(t)−α) (3.27)

for the synchronized cluster (C0), and H(0) =−sinα . The variables of the N trivial clusters
(C1, ...,CN) for the incoherent population are governed by

∂tsm(t) = F(sm)+
ν

N
Ãm0H(s0 − sm)+

µ

N

N

∑
m′=1

Ãmm′H(sm′ − sm)

= νsin(s0 − sm −α)+
µ

N

N

∑
m′=1

sin(sm′ − sm −α) (3.28)

for m = 1, ...,N. Then, we consider the variational equations of the synchronized oscillators
around the CS pattern as

∂tδφi = DF(s0)δφi −
N

∑
m′=0

∑
j∈Cm′

Ki jB
(c)
i j DH(sm′ − s0)δφi +

N

∑
m′=0

∑
k∈Cm′

KikB(c)
ik DH(sm′ − s0)δφk

= DF(s0)δφi −
µ

N
Ã00DH(0)δφi −

ν

N

N

∑
m′=1

Ã0m′DH(sm′ − s0)δφi +
µ

N ∑
k∈C0

B(c)
ik DH(0)δφk

+
ν

N

N

∑
m′=1

∑
k∈Cm′

B(c)
ik DH(sm′ − s0)δφk (3.29)

5Note that for the quotient adjacency matrix Ã ∈ R(N+1)×(N+1) in Eq. (3.26), we take the index from 0 to N
for the sake of simplicity: Ãmm′ for m,m′ = 0,1, ...,N. For example, Ã00 = N −1 and Ã0m′ = 1 for m′ = 1, ...,N
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for each i ∈C0 where the small perturbation to the CS pattern is denoted by δφi(t) = φi(t)−
sm(t) for i∈Cm and m= 0,1, ...,N. Next, in the cluster-based coordinate defined in Eq. (3.23),
the transverse variables of the sync cluster can be written as η

(0)
κ (t) = ∑i∈C0 u(0)

κi δφi(t) with

U = [u(0)
1 ,u(1)

1 , ...,u(N)
1 ,u(0)

2 , ...,u(0)
N ]⊤. Then, the variational equations transverse to the

sync-cluster C0 read

∂tη
(0)
κ = ∑

i∈C0

u(0)
κi δ φ̇i(t)

= ∑
i∈C0

u(0)
κi

(
DF(s0)−

µ

N
Ã00DH(0)− ν

N

N

∑
m′=1

Ã0m′DH(sm′ − s0)

)
δφi

+
µ

N
DH(0) ∑

k∈C0

∑
i∈C0

u(0)
κi B(c)

ik δφk +
ν

N

N

∑
m′=1

∑
i∈C0

∑
k∈Cm′

u(0)
κi B(c)

ik DH(sm′ − s0)δφk

=

(
DF(s0)−

µ

N
Ã00DH(0)− ν

N

N

∑
m′=1

Ã0m′DH(sm′ − s0)

)
η
(0)
κ

+
µ

N
DH(0) ∑

k∈C0

∑
i∈C0

|C0|

∑
κ ′=1

u(0)
κi B(c)

ik u(0)
κ ′kη

(0)
κ ′

+
ν

N

N

∑
m′=1

∑
i∈C0

∑
k∈Cm′

|Cm′ |

∑
κ ′=1

u(0)
κi B(c)

ik u(m
′)

κ ′k DH(sm′ − s0)η
(m′)
κ ′ (3.30)

for κ = 2, ...,N. Note that the adjacency matrix B(c) can be block-diagonalized by the cluster-
based coordinates, so that the block corresponding to the sync-cluster C0 can be represented
by the matrix diag(λ (0)

2 ,λ
(0)
3 , ...,λ

(0)
N ) ∈ R(N−1)×(N−1) and the off-diagonal blocks are zero.

Hence, the last term in Eq. (3.30) should be zero and we obtain

∑
i∈C0

∑
k∈C0

u(0)
κi B(c)

ik u(0)
κ ′k = λ

(0)
κ δκκ ′ (3.31)

for κ,κ ′ = 2, ...,N where λ
(0)
κ are the eigenvalues of the adjacency matrix and u(0)

κ for
κ = 2, ...,N are the corresponding eigenvectors of the adjacency matrix [46, 178]. Finally,
the transversal variational equations to the sync-manifold are given by

∂tη
(0)
κ =

(
DF(s0)−

µ

N
Ã00DH(0)+

µ

N
λ
(0)
κ DH(0)− ν

N

N

∑
m′=1

Ã0m′DH(sm′ − s0)

)
η
(0)
κ

=

(
− µ

N
(N −1)cosα +

µ

N
λ
(0)
κ cosα − ν

N

N

∑
m′=1

cos(sm′ − s0 −α)

)
η
(0)
κ (3.32)
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for κ = 2, ...,N. Notice that for the all-to-all intra- and inter- population network, we obtain
the eigenvalues in Eq. (3.32) as λ

(0)
κ =−1 for all κ = 2, ...,N. For example, the adjacency

matrix of the system with N = 4 can be block-diagonalized as

UB(c)U−1 =



3 2 2 2 2
2 0 1 1 1
2 1 0 1 1 O5,3

2 1 1 0 1
2 1 1 1 0

−1 0 0
O3,5 0 −1 0

0 0 −1


(3.33)

where the lower-right block corresponds to the sync-cluster C0 and we obtain λ
(0)
κ = −1

for all κ for the all-to-all intra- and inter- population network. Hence, if we consider the
summation term in Eq. (3.32) as an external forcing field [74], then it gives approximate
values of the (N −1)-fold degenerate transverse LEs as

Λ
(0)
trans,κ =−µcosα − ν

N
Z < 0 (3.34)

for κ = 2, ...,N where Z = ∑
N
m′=1 cos(sm′ − s0 −α) is treated as an external forcing field.

So far, we have investigated the stability corresponding to the directions transverse to the
sync-manifold. To study the stability of the synchronized population along the sync-manifold,
we impose a perturbation along the sync-manifold: s0(t)→ s0(t)+δ s0(t) where |δ s0(t)|≪ 1
is applied to Eq. (3.27). Then, the variational equation reads

∂tδ s0(t) = DF(s0)δ s0(t)−
ν

N

N

∑
j=1

DH(s j − s0)δ s0 =−
(

ν

N

N

∑
m′=1

cos(sm′ − s0 −α)

)
δ s0(t)

(3.35)

from which we obtain
Λ
(0)
perturb =− ν

N
Z < 0 (3.36)

provided that Z = ν

N ∑
N
m′=1 cos(sm′ − s0 −α) is regarded as external forcing function [74].

In Fig. 3.5, panels (a-b) display Lyapunov exponents along Poisson chimera trajectories
for stationary (a) and breathing (b) chimeras from numerical experiments. Here, we also use
the method described in Sec. 2.6 to obtain the Lyapunov exponents and the corresponding
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Fig. 3.5 (a-b) Lyapunov spectra of the full dynamics of Poisson chimera states with N = 12
for A = 0.2 (stationary chimeras) (a) and A = 0.35 (breathing chimeras) (b). For the meaning
of the Λs see text. (c-d) Lyapunov spectra for the 6-dimensional Watanabe-Strogatz reduced
dynamics of the chimera states in (a) and (b), respectively. The exponents marked by the
black dashed lines indicate the LE corresponding to the radial WS variable.

covariant Lyapunov vectors. The Lyapunov exponents of a stationary chimera state (Fig. 3.5
(a)) are classified into four groups:

• (i) (N −1)-fold degenerate zero exponents denoted by Λ
(incoh)
zero = 0,

• (ii) (N −1)-fold degenerate negative exponents denoted by Λ
(0)
trans < 0,

• (iii) and (iv) two individual negative LEs, denoted by Λ
(0)
perturb and Λ

(incoh)
ρ .

The Lyapunov exponents obtained along a breathing Poisson chimera trajectory (Fig. 3.5
(b)) exhibit a similar classification of the Lyapunov exponents. However, we find just
one individual non-degenerate negative exponent, Λ

(0)
perturb since one more zero Lyapunov

exponent arises from the Hopf frequency, i.e., a periodic motion of the modulus of the order
parameter.

Synchronized Population: Λ
(0)
trans and Λ

(0)
perturb

In the previous section, we discussed analytically approximated Lyapunov exponents corre-
sponding to the synchronized population: both transverse and parallel to the sync-manifold.
In Fig. 3.5, Lyapunov exponents are depicted, which are obtained from numerical simula-
tions. There are (N −1)-fold degenerate transverse Lyapunov exponents denoted by Λ

(0)
trans,

approximated in Eq. (3.34). The numerical analysis shows −µcosα ≪ − ν

N Z < 0. Thus,
the degenerate transverse Lyapunov exponents in Eq. (3.34) are all negative, ensuring that
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the chimera state is attracting in all directions transverse to the synchronized oscillators.
Furthermore, numerically obtained covariant Lyapunov vectors corresponding to the LEs in
Eq. (3.34) are of the form

v(0)κ = [v(trans)
κ1 , ...,v(trans)

κN ,0, ...,0]⊤ ∈ Tφφφ ch(t)(T
2N) (3.37)

and ∑
N
i=1 v(trans)

κi = 0 for κ = 2, ...,N where φφφ ch(t) ∈ T2N stands for the given chimera refer-
ence trajectory and Tφφφ ch(t)(T

2N) is the tangent space, as explained in Sec. 2.6. This result
ensures that the LEs in Eq. (3.34) correspond indeed to the transverse Lyapunov exponents
to the sync-manifold of the synchronized oscillators. In Fig. 3.5 (a-b) another negative
Lyapunov exponent Λ

(0)
perturb is depicted, which corresponds to the perturbation along the

sync-manifold. Its analytically approximated value is given in Eq. (3.36). Its numerical
value is also negative, confirming that a perturbation along the sync-manifold exponen-
tially shrinks to zero. Note that Λ

(0)
perturb depends strongly on the collective behavior of

the incoherent oscillators {φi+N(t) = sm(t)|i = m = 1, ...,N} (see Fig. 3.5 (f)) via the sum-
mation term in Eq. (3.36)). The numerical CLV corresponding to Λ

(0)
perturb has the form

v(0)perturb = [v, ...,v,v(incoh)
1 , ...,v(incoh)

N ]⊤ ∈ Tφφφ ch(t)(T
2N) where ∑

N
j=1 v(incoh)

j ̸= 0. Therefore, we
conclude that the synchronized manifold is stable not only along the perturbations transverse
to the sync-manifold but also for the perturbation along the sync-manifold.6.

All the chimera states obtained in a two-population network, have the same ‘pattern’ of
Lyapunov exponents, which is dictated by the structure of the network topology, namely;
(N − 1)-fold degenerate Λ

(0)
trans,κ for κ = 2, ...,N and Λ

(0)
perturb. Thus, as can be seen from

Fig. 3.5 (b), the same LEs associated with the synchronized population for the breathing
chimera state were numerically detected, except for the additional zero LE.

Incoherent Population: Λ
(incoh)
zero and Λ

(incoh)
ρ

Next, we examine the Lyapunov exponents associated with the incoherent population and
consider first stationary Poisson chimera states. In Fig. 3.5 (a), the numerical results confirm
that there are (N−1)-fold degenerate zero Lyapunov exponents Λ

(incoh)
zero = 0 and one negative

exponent Λ
(incoh)
ρ < 0. To obtain more insight into this result, we consider the Watanabe-

Strogatz transformation in Eq. (2.74) for a = 1,2. The WS transformation leads to the
6D WS variables governed by Eq. (2.126) for M = 2. Here, the forcing field Ha(t) =
e−iα

∑
2
a′=1 Gaa′Γa′(t) for a = 1,2 and the Kuramoto order parameter are given by Eq. (2.77).

Considering the 6D WS dynamics in the phase space together with the tangent space dynamics

6Note that the Lyapunov exponents obtained in Eq. (3.34) and Eq. (3.36) are consistent with previous results
in Ref. [74].
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Fig. 3.6 (a-b) Temporal evolution of the magnitude of the Kuramoto order parameter obtained
from non-Poisson chimera times series starting from different n-PICs after a time t ≥ 106

for N = 12 and A = 0.2. (c-d) Lyapunov spectra corresponding to the dynamics of (a-b).

along the corresponding chimera reference trajectory (ρ1(t) = 1 and ρ2(t) < 1), we also
numerically determine the six Lyapunov exponents, as depicted in Fig. 3.5 (c-d). The results
provide some insight into the classification of the Lyapunov exponents. As we discussed
in Sec. 2.4, the WS variables (here, for the incoherent population) reside in an invariant
subspace of the phase space, characterized by the N−3 constants of motion, i.e., by the initial
condition [99]. The perturbations among those invariant subspaces yield N − 3 neutrally
stable directions, i.e., N − 3 zero LEs. Apart from them, we observe two additional zero
Lyapunov exponents associated with the incoherent population. These two zero LEs arise
from the angular motions of the two angular WS variables [179]. In total, we obtain N −1
zero Lyapunov exponents. In addition to these zero LEs, we obtain one negative LE that
corresponds to the stable WS radial dynamics whose value is determined by the parameter
set. For the breathing chimera states, we numerically find N-fold degenerate zero Lyapunov
exponents in the incoherent population. Here, an additional zero Lyapunov exponent results
from the Hopf frequency since the breathing chimera arises at a supercritical Hopf bifurcation
where the stationary chimera state loses its stability.

Non-Poisson Chimeras

We also numerically determine the Lyapunov exponents for non-Poisson chimera dynamics,
shown in Fig. 3.6. As studied in Sec. 3.1.2, the incoherent population of non-Poisson chimera
states strongly depends on a given initial condition. Here, we show two representative non-
Poisson chimera motions at the same parameter set yet starting from different ICs, depicted
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in Fig. 3.6 (a) and (b), respectively. In Fig. 3.6 (c-d), Lyapunov exponents are shown for
the corresponding non-Poisson chimera trajectory in Fig. 3.6 (a-b). Note that a non-Poisson
chimera state is also set on the same two-population network. Hence, we can expect that
the Lyapunov exponents corresponding to the synchronized population exhibit the same
features as those of the Poisson chimera state since they are dictated by the network structure.
Figure 3.6 (c-d) shows that there are also (N − 1)-fold degenerate transverse Lyapunov
exponents Λ

(0)
trans,κ for κ = 2, ...,N given by Eq. (3.34). Likewise, the CLV analysis confirms

that their perturbation directions are indeed transverse to the sync-manifold as in Eq. (3.37).
What is different from the Poisson chimeras, is that the LE arising from the perturbation
along the sync-manifold ( Eq. (3.36)) can take a different value depending on a given initial
condition since Λ

(0)
perturb strongly depends on the motion of the incoherent oscillators through

Z in Eq. (3.36). Concerning the Lyapunov exponents of the incoherent population, they
also follow the same characteristics as the Poisson chimera state, i.e., N −1 zero Lyapunov
exponents and one negative LE, as discussed above.

3.3 Two Ways toward Attracting Poisson Chimeras

As discussed above, the identical Kuramoto-Sakaguchi oscillator system in the OA manifold
is found to be neutrally stable [97, 102, 62]. Furthermore, in the previous section, we
demonstrated that chimera states of identical KS oscillators in two-population, whether it is
Poisson or non-Poisson, are neutrally stable with many zero Lyapunov exponents. To obtain
attracting dynamics in the OA manifold, many authors have added a small heterogeneity,
e.g., in the form of nonidentical natural frequencies or noisy oscillators, to the system of
identical coupled oscillators. Such heterogeneity causes the dynamics to approach at least a
close vicinity of the OA manifold or the Poisson submanifold. Furthermore, the stabilization
of the OA manifold has been reported to be a generic consequence due to the presence of the
small heterogeneity [101, 168, 180, 97, 169, 181, 62]. In this section, we suggest two simple
systems that, according to the Lyapunov analysis, render Poisson chimeras in a network of
identical and deterministic ensembles attracting. First, we consider a topological variation to
Eq. (3.1), that is, nonlocal intra-population connectivity. For the second system, amplitude
degrees of freedom of the oscillators will be introduced, i.e., we investigate a system of
identical Stuart-Landau oscillators rather than Kuramoto-Sakaguchi phase oscillators in
two-population networks. Below, we will see how those two variations introduce a small
heterogeneity to the dynamics of phase variables, which then renders the Poisson chimeras
attracting.
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3.3.1 Topological Variation: Nonlocal Intra-population Network

The previous studies of the chimera dynamics of coupled oscillators, particularly, on nonlocal
intra-population networks focused on randomly but systematically constructed topologies
in the thermodynamic limit [87, 86]. We here consider the simplest regular and finite-
sized nonlocal intra-population coupling while the inter-population coupling is all-to-all, as
schematically depicted in Fig. 5.1(b). Compared to the global (all-to-all) connectivity of the
intra-population, each oscillator loses one intra-population connection: it is not connected to
the opposite oscillator on the ring7.

The adjacency matrix of this nonlocal intra-population network is defined as

A =



N/2︷ ︸︸ ︷
0 1 · · · 1

N/2︷ ︸︸ ︷
0 1 · · · 1

1 0 . . . ... 1 0 . . . ...
... . . . . . . 1

... . . . . . . 1
1 · · · 1 0 1 · · · 1 0
0 1 · · · 1 0 1 · · · 1

1 0 . . . ... 1 0 . . . ...
... . . . . . . 1

... . . . . . . 1
1 · · · 1 0 1 · · · 1 0


(3.38)

where the i-th oscillator (node) is disconnected from the (i+ N
2 )-th oscillator (node) in the

same population.
The governing equations of the Kuramoto-Sakaguchi phase oscillators in the nonlocal

intra-population topology are

∂tφ
(1)
i (t) =−µ

N
sinα +

µ

N

N

∑
j=1

Ai jsin(φ (1)
j −φ

(1)
i −α)+

ν

N

N

∑
j=1

sin(φ (2)
j −φ

(1)
i −α)

∂tφ
(2)
i (t) =−µ

N
sinα +

µ

N

N

∑
j=1

Ai jsin(φ (2)
j −φ

(2)
i −α)+

ν

N

N

∑
j=1

sin(φ (1)
j −φ

(2)
i −α) (3.39)

for i = 1, ...,N. Here, Ai j is the adjacency matrix of the nonlocal intra-population connectivity
of each population defined in Eq. (3.38).

The nonlocally coupled system in Eq. (3.39) is no longer a sinusoidally coupled system,
and therefore we cannot consider the OA or the WS dynamics to describe the macroscopic
motions of the system. In spite of this, we found that chimera trajectories satisfy the

7To do so, we only consider even numbers of the oscillators for each population here
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Fig. 3.7 The Kuramoto order parameters of the phase oscillators governed by the nonlo-
cal intra-group coupling. (a,b) Chimera states with the parameter A = 0.2 and β = 0.08
corresponding to stationary chimeras for the system sizes N = 6 and N = 60, respectively.
(c-d) Chimera sates with A = 0.35 corresponding to the breathing chimera states. Gray line:
synchronized group (r(t) = 1), black line: incoherent order parameter (r(t)< 1).

dynamical characteristics of Poisson chimeras as defined in Sec. 3.1.2 as long as we started
from a PIC. For this nonlocal Poisson chimera state8, we observe that the distribution of the
incoherent phases asymptotically approaches a close vicinity of the Poisson submanifold,
regardless of whether the initial condition is a PIC or an n-PIC. In Fig. 3.7, the simple motion
of the modulus of the Kuramoto order parameter for a stationary ((a-b) forA = 0.2) and a
breathing ((c-d) for A = 0.35) Poisson chimera states is depicted. For the stationary chimera
state (a-b), the modulus of the Kuramoto order parameter shows regular periodic motion
for small N while it exhibits a stationary motion for large N, as expected for the stationary
Poisson chimera state in Sec. 3.1.2. It follows from the fact that the nonlocal stationary
chimera states also exhibit equally shifted, periodic phase velocities with the same functional
form for the incoherent oscillators. Hence, we obtain the time-periodic order parameter
for the small-sized stationary chimeras, and the oscillation gets suppressed as N → ∞. For
the breathing chimera states (c-d), the modulus of the Kuramoto order parameter displays
periodic dynamics for large N, as anticipated for a typical breathing chimera motion after a
supercritical Hopf bifurcation. However, for small N, the chimeras show no longer the main
breathing motion superimposed by a secondary oscillation. We guess this might arise from
the fact that the change of topology can vary the Hopf bifurcation point for small N, as it was
reported in Ref. [87] for different nonlocal systems.

8To distinguish the two systems, we call them the global and the nonlocal chimera states, respectively.
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3.3.2 Lyapunov Stability Analysis: Nonlocal Poisson Chimeras

In this section, we investigate the spectral properties of nonlocal Poisson chimera states, as
we did for the global Poisson chimera state in Sec. 3.2.2. First, we analytically approximated
the Lyapunov exponents associated with the synchronized population. Then, we compare
our results with the numerically determined LEs and also discuss the LEs for the incoherent
population.

Network symmetry Analysis: Application to Nonlocal Poisson Chimeras

For the Kuramoto-Sakaguchi phase oscillators in the nonlocal intra-population network, we
employ the same method as in Sec. 3.2.1 where we treated the chimera state as a CS pattern
dynamics. To do so, we rewrite Eq. (3.39) as

∂tφi(t) = F(φi(t))+
2N

∑
j=1

Ki jB
(n)
i j H(φ j(t)−φi(t)) (3.40)

for i = 1, ...,2N where F(φ), Ki j, and H(x) are the same as defined in Eq. (3.25). However,
the matrix B(n) ∈ R2N×2N is defined to reflect the nonlocal intra-population connectivity
besides the all-to-all inter-population coupling, which therefore reads

B(n) =

(
A JN

JN A

)
∈ R2N×2N (3.41)

where A ∈ RN×N is defined in Eq. (3.38) and JN ∈ RN×N is the unit matrix whose elements
are all 1, i.e., (JN)i j := 1 for all i, j = 1, ...,N. In this setup, the (coarse-grained) quotient
adjacency matrix is given by

Ã(n) =


N −2 1 . . . 1

N
... A
N

 (3.42)

wherein Ã(n)
00 = N −2 and Ã(n)

i j = Amm′ for m,m′ = 1, ...,N, again ensuring the nonlocal intra-
population connectivity. The quotient dynamics is then obtained according to the CS pattern
corresponding to the nonlocal Poisson chimeras. The quotient variables are defined by
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s0(t) = φi(t) (sync.) and sm(t) = φi+N(t) (incoh.) for i = m = 1, ...,N, and are governed by

∂ts0 = F(s0)+
µ

N
Ã(n)

00 H(0)+
ν

N

N

∑
m′=1

Ã(n)
0m′H(sm′ − s0)

=−µ

N
(N −1)sinα +

ν

N

N

∑
m′=1

sin(sm′ − s0 −α) (3.43)

for the synchronized population, and

∂tsm = F(sm)+
ν

N
Ã(n)

m0H(s0 − sm)+
µ

N

N

∑
m′=1

Ã(n)
mm′H(sm′ − sm)

=−µ

N
sinα +νsin(s0 − sm −α)+

µ

N

N

∑
m′=1

Amm′sin(sm′ − sm −α)

= ω̃m(t)+νsin(s0 − sm −α)+
µ

N

N

∑
m′=1

sin(sm′ − sm −α) (3.44)

with Ã(n)
0m = 1 and Ã(n)

m0 = N for m = 1, ...,N for the incoherent trivial clusters. Note that the
summation term in the last line of Eq. (3.44) indicates the all-to-all mean-field coupling
since we put the nonlocal term outside the summation, which leads us to the topology-
induced heterogeneity defined by ω̃m(t) =− µ

N sin(sm+N/2 − sm −α). This reminds us of the
system of heterogeneous KS oscillators. However, here, the heterogeneity is induced by the
topology in a system of identical oscillators. Does this render the dynamics attracting, as the
heterogeneous natural frequency distribution does? This is our main concern in this section.

First, we need to study the stability of the synchronized cluster. To do so, consider the
cluster-based coordinate vectors u(m)

κ , which are set to be the eigenvectors of the adjacency
matrix. For the nonlocal population, the eigenvalues of the adjacency matrix are given as
λ
(0)
κ = 0 for κ = 2, ...,N/2+1 and λ

(0)
κ =−2 for κ = N/2+2, ...,N. Note that due to the

nonlocal connectivity, the eigenvalues are different from those of the all-to-all connectivity
matrix9. This fact leads to the variational equations from Eq. (3.22), which read

∂tη
(0)
κ =

(
DF(s0)−

µ

N
Ã(n)

00 DH(0)+
µ

N
λ
(0)
κ DH(0)− ν

N

N

∑
m′=1

Ã(n)
0m′DH(sm′ − s0)

)
η
(0)
κ

=

(
− µ

N
(N −2)cosα +

µ

N
λ
(0)
κ cosα − ν

N
Z
)

η
(0)
κ (3.45)

9Recall that λ
(0)
κ =−1 are the same for κ = 2, ...,N for the global intra-population network.
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for κ = 2, ...,N. Substituting the eigenvalues above into Eq. (3.45), we obtain the splitting of
the transversal (to the sync-manifold) Lyapunov exponents as

Λ
(0)
trans,κ =−µ

N
(N −2)cosα +

µ

N
λ
(0)
κ cosα − ν

N
Z

=


−µ

N
(N −2)cosα − ν

N
Z < 0, κ = 2, ...,N/2+1

−µcosα − ν

N
Z < 0, κ = N/2+2, ...,N

(3.46)

provided that Z, defined in Eq. (3.34), is treated as an external forcing field. Likewise, another
Lyapunov exponent of the synchronized population can be associated with a perturbation
along the sync-manifold. Here, a small perturbation s0 → s0 +δ s0 is imposed on Eq. (3.43)
where |δ s0|≪ 1. This perturbation gives Λ

(0)
sync =− ν

N Z< 0 strongly depending on the motion
of the incoherent oscillators.

Synchronized Population: Λ
(0)
trans and Λ

(0)
perturb

For the nonlocal Poisson chimeras, the numerical Lyapunov analysis shows that nonlocal
Poisson chimera states have qualitatively different LEs from those of the global Poisson
chimeras, as shown in Fig. 3.8. We numerically obtain N − 1 transverse Lyapunov expo-
nents split into two different values, which is consistent with Eq. (3.46) that analytically
approximates the N −1 transverse Lyapunov exponents. The splitting of the values of Λ

(0)
trans

arises from the transversal variational equations in Eq. (3.45), which include two different
eigenvalues of the adjacency matrix for the nonlocal connectivity. Also, the numerical
experiments show that the LEs in Eq. (3.46) are indeed transverse to the sync-manifold since
the corresponding CLVs are of the form

v(0)κ = [v(trans)
κ1 , ...,v(trans)

κN ,0, ...,0]⊤ ∈ Tφφφ ch(t)(T
2N) (3.47)

where ∑
N
i=1 v(trans)

κi = 0 for κ = 2, ...,N. Note that as N increases, the gap between the two
different transverse Lyapunov exponent groups in Eq. (3.46) is decreasing (compare Fig. 3.8
(b) with Fig. 3.8 (c)). Moreover, we find another Lyapunov exponent for the synchronized
population, associated with a perturbation along the sync-manifold as we predicted above:
Λ
(0)
perturb =− ν

N Z < 0. Therefore, the nonlocal Poisson chimera states are also stable in both
the directions transverse and parallel to the sync-manifold, and their properties are dominated
by the structure of the nonlocal connectivity.
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Fig. 3.8 (a) Schematic drawing of the two-population oscillators network with nonlocal
coupling for N = 6. The same color in the incoherent group indicates that the oscillators
marked by the same color are characterized by the same evolution dynamics. (b-c) The
Lyapunov spectra for A = 0.2 with N = 6 and N = 60, respectively. (d-e) The Lyapunov
spectra for A = 0.35 with N = 6 and N = 60, respectively.

Incoherent Population : Pairs of Two Nearly-degenerate Lyapunov Exponents

Next, we elucidate the Lyapunov exponents corresponding to the incoherent oscillators.
As discussed above, the dimension reduction methods such as the OA ansatz and the WS
transformation cannot be applied to the nonlocal intra-population network. Despite this, we
can still reveal the properties of the Lyapunov exponents for the incoherent population.

In fact, the quotient dynamics for the incoherent oscillators in Eq. (3.44) is influenced
by discrete symmetries arising due to the nonlocal topology, as schematically depicted
in Fig. 3.8 (a). The nonlocal topology was defined ina way that each oscillator on the
ring is disconnected only from the opposite one. Hence, the two incoherent oscillators
sm(t) and sm+N/2(t) are governed by the same evolution equation10. Ref. [122] discusses
that such discrete symmetries can cause nearly-degenerate Lyapunov exponents. Thus, we
can anticipate N/2 pairs of two nearly identical Lyapunov exponents for the incoherent
population (see Fig. 3.8 (b,d)). Furthermore, we numerically find these pairs of Lyapunov

10Note that the cluster pattern in Fig. 3.8 (a) is also an orbit partition. Hence, each oscillator in a cluster is
affected by the same input from all the others.
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exponents to be clearly negative. Therefore, unlike the global Poisson chimeras, which are
neutrally stable, the incoherent dynamics of nonlocal Poisson chimeras is attracting. Thus,
the dynamics asymptotically approaches a vicinity of the Poisson submanifold, even when
initiated from an n-PIC. Note that there are two zero Lyapunov exponents arising from the
two continuous symmetries: the phase shift (vps = (δφ0, ...,δφ0)

⊤ where |δφ0| ≪ 1) and
the time shift (vts ∝ φ̇ch = f(φch)) symmetries, respectively, which in fact do not affect the
stability of the trajectory. In Fig. 3.8 (c,e), it is shown that the nearly identical pairs of the
Lyapunov exponents for the incoherent population are getting closer and closer to one another
as N increases. Eventually, they form two almost continuous branches of the spectrum for
large N. Nevertheless, they are slightly negative, which confirms that the large-sized nonlocal
Poisson chimeras are still attracting.

In conclusion, the nonlocal topology adds a term to the governing equations of the system
which can be interpreted as a topology-induced heterogeneity ω̃m(t). Such a heterogeneity
renders the OA manifold attracting, and leads to the attracting Poisson chimeras dynamics
in a vicinity of the Poisson submanifold [97, 169, 168, 180]. Thus, the chimera dynamics
asymptotically approaches a close vicinity of the Poisson submanifold and we obtain the
attracting Poisson chimeras in the two-population network of the nonlocal intra-population
connectivity.

3.3.3 Dynamical Variation: Stuart-Landau Oscillator Ensemble

In this section, we study the second way toward attracting Poisson chimera states. To do so,
we impose a dynamical variation to Eq. (3.1). More precisely, we here consider a system of
identical Stuart-Landau (SL) oscillators in two-population networks (all-to-all as in Fig. 5.1
(a)). Such a system has been studied recently in the thermodynamic limit [78, 79], in which
attracting chimera states have been reported. In this chapter, the finite-sized ensemble is
investigated and a full Lyapunov stability analysis is performed to give further evidence
that the amplitude degrees of freedom are the key to rendering Poisson chimeras attracting.
We will see below that the amplitude degrees of freedom introduce a small self-organized
heterogeneity to the dynamics of incoherent phase variables.

In a system of identical Stuart-Landau (SL) oscillators, each oscillator is described by
both a phase φi(t) ∈ T and an amplitude variable ri(t) ∈ R>0. For one population, the
evolution of the amplitude variables is governed by

∂tri(t) = ε
−1(1− r2

i )ri +
µ

N

N

∑
j=1

r jcos(φ j −φi −α)+
ν

N

N

∑
j=1

r j+Ncos(φ j+N −φi −α) (3.48)
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and the one of the phase variables follows

∂tφi(t) = ω −σr2
i +

µ

N

N

∑
j=1

r j

ri
sin(φ j −φi −α)+

ν

N

N

∑
j=1

r j+N

ri
sin(φ j+N −φi −α) (3.49)

for i = 1, ...,N. The dynamics of the oscillators in the second population can be described
correspondingly. Below, we fix some parameters: σ = 0.2 and ω = 0. Note that the system
approaches the phase-reduced model, i.e., the Kuramoto-Sakaguchi phase oscillators (3.4-3.5)
as ε → 0, since then ri = r0 → 1 for all i = 1, ...,2N [78], as we discussed in Chap. 2.

To study Poisson chimeras of the SL ensemble, we also start the dynamics from a PIC
on the phase variables in Eq. (3.49). For the amplitude degrees of freedom (DOFs), we set
ri(0) = 1 for i = 1, ...,2N11. The chimera trajectory evolving from such a PIC satisfies all
the dynamical properties of Poisson chimeras according to their definition for the phase
DOFs. Numerical integration of Eqs. (3.49-3.48) shows that one population remains perfectly
synchronized and the other population holds the incoherent phase distribution to remain in
the normalized Poisson kernel. Also, the stationary chimera states show the equally shifted
instantaneous incoherent phase velocities within an oscillation period, which leads to the
periodic order parameter motion for the small-sized stationary chimeras. Regarding the
amplitude variables, all synchronized oscillators show homogeneous amplitude distribution
ri(t) = 1 for i = 1, ...,N, and the amplitudes of the incoherent oscillators display a smooth
curve as a function of sorted phase values, depending on the parameter ε [79]. This is
called a quasiphase oscillator regime [182]. Indeed, varying the coupling strength ε as a
bifurcation parameter, sufficiently small ε (here, we use ε = 0.01) exhibits a dynamics close
to the one of the phase-reduced system. The evolution of the Kuramoto order parameter,
defined using the phase variables, is very close to the motion depicted in Fig. 3.2. More
specifically, the modulus of the Kuramoto order parameter is stationary for A = 0.2 and
exhibits a (periodic) breathing motion for A = 0.35. For strong coupling strength ε with
fixed A = 0.2, the stationary chimera, which can be obtained, e.g., for ε = 0.1, undergoes a
Hopf bifurcation, giving rise to breathing chimeras, which are observed, e.g., for ε = 0.15,
and is in line with findings reported in Ref. [78].

11Note that the Poisson chimeras are defined and characterized by solely the phase DOFs. Hence, we will
investigate the properties of the phase DOFs to characterize the Poisson chimeras.
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3.3.4 Lyapunov Stability Analysis: Poisson Chimeras of Stuart-Landau
Oscillators

In this subsection, we investigate the spectral properties of Poisson chimera states of Sutart-
Landau oscillators using Lyapunov stability analysis. First, we approximate the Lyapunov
exponents for the synchronized population, for both the amplitude and the phase DOFs.

Network Symmetry Analysis: Application to Poisson Chimeras of Stuart-Landau
Oscillators

Let us first consider the analysis of the amplitude DOFs. Using the same method as we
employed above, the evolution of the amplitude DOFs can be re-expressed as

∂tri(t) = F(amp)(ri(t))+
2N

∑
j=1

K(amp)
i j B(c)

i j H(amp)(r j(t)) (3.50)

for i = 1, ...,2N. Here, the local dynamics is given as F(amp)(r) = ε−1(1− r2)r+ µ

N rcosα

and the coupling function is H(amp)(r) = r. This is a Pecora-type equation. Note that in
order to obtain the approximated Lyapunov exponents, we assume that the phase variables in
Eq. (3.50) are external forcing functions and treated them as constants in the amplitude DOF
calculation. Thus, we define the coupling weight in Eq. (3.50) as K(amp)

i j = µ

N cos(φ j −φi−α)

if i, j belong to the same population and K(amp)
i j = ν

N cos(φ j − φi −α) if i, j belong to the
different populations.

Following the CS pattern of the chimera dynamics introduced in Sec. 3.2.2, we denote
the amplitude degrees of freedom as ri(t) = R0(t) = 1 for the synchronized cluster and
ri+N(t) = Rm(t) for the incoherent trivial clusters. The phase DOFs are written as s0 = φi

(sync.) and sm = φi+N (incoh.) for i = m = 1, ...,N. Then, the quotient dynamics of the
amplitude DOFs for the synchronized population with the quotient adjacency matrix defined
in Eq. (3.26) is governed by

∂tR0 = F(amp)(R0)+
µ

N
Ã00H(amp)(R0)cosα +

ν

N

N

∑
m′=1

Ã0m′H(amp)(Rm′)cos(sm′ − s0 −α)

=

(
ε
−1(1−R2

0)+
µ

N
cosα

)
R0 +

µ

N
(N −1)R0cosα +

ν

N

N

∑
m′=1

Rm′cos(sm′ − s0 −α).

(3.51)
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Imposing a small deviation on the CS dynamics, i.e., δ ri(t) = ri(t)−Rm(t) for i ∈Cm for
m = 0,1, ...,N, the coupled variational equations read

∂tδ ri(t) = DF(amp)(R0)δ ri +
µ

N
C00 ∑

k∈C0

B(c)
ik DH(amp)(R0)δ rk

+
ν

N

N

∑
m′=1

∑
k∈Cm′

B(c)
ik DH(amp)(Rm′)Cm′0δ rk (3.52)

for each i ∈ C0 and Cm′m = cos(sm′ − sm −α) for m,m′ = 0, ...,N. When we employ the
cluster-based coordinates, the transversal variational equations in Eq. (3.22) read

∂tξ
(0)
κ = ∑

i∈C0

u(0)
κi δ ṙi(t) = DF(amp)(R0) ∑

i∈C0

u(0)
κi δ ri +

µ

N
DH(amp)(R0)C00 ∑

i∈C0

∑
k∈C0

u(0)
κi B(c)

ik δ rk

+
ν

N ∑
i∈C0

N

∑
m′=1

∑
k∈Cm′

u(0)
κi B(c)

ik DH(amp)(Rm′)Cm′0δ rk

= DF(amp)(R0)ξ
(0)
κ +

µ

N
DH(amp)(R0)C00 ∑

i∈C0

∑
k∈C0

|C0|

∑
κ ′=1

u(0)
κi B(c)

ik u(0)
κ ′kξ

(0)
κ ′

+
ν

N

N

∑
m′=1

∑
i∈C0

∑
k∈Cm′

|Cm′ |

∑
κ ′=1

u(0)
κi B(c)

ik u(m
′)

κ ′k ξ
(m′)
κ ′ Cm′0DH(amp)(Rm′) (3.53)

for κ = 2, ...,N. Due to the cluster-based coordinate vectors that make the adjacency matrix
block-diagonalized, the last term becomes zero. Furthermore, they are chosen to be the
eigenvectors of the adjacency matrix, which leads to ∑i∈C0 ∑k∈C0 u(0)

κi B(c)
ik u(0)

κ ′k = λ
(0)
κ δκκ ′ for

κ = 2, ...,N. Finally, the N − 1 transversal variational equations to the sync-manifold are
given by

∂tξ
(0)
κ =

(
DF(amp)(R0)+

µ

N
cosαλ

(0)
κ DH(amp)(R0)

)
ξ
(0)
κ

=

(
ε
−1(1−3R2

0)+
µ

N
(1+λ

(0)
κ )cosα

)
ξ
(0)
κ (3.54)

For the global topology, we know λ
(0)
κ =−1. Thus, from Eq. (3.54), we obtain the approxi-

mate values of the (N −1)-fold degenerate transverse Lyapunov exponents in the amplitude
DOFs as Λ

(amp,0)
trans,κ ≈ ε−1(1−3R2

0)< 0 for κ = 2, ...,N.
For the Lyapunov exponent associated with the perturbation along the sync-manifold

in the amplitude DOFs, we consider R0(t)→ R0(t)+δR0(t) with |δR0| ≪ 1 in Eq. (3.51).
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Then, we obtain

∂tδR0(t) = DF(amp)(R0)δR0 +
µ

N
cosαÃ00DH(amp)(R0)δR0

=

(
ε
−1(1−3R2

0)+µcosα

)
δR0(t) (3.55)

which gives a slightly greater Lyapunov exponent value than the transverse ones as

Λ
(amp,0)
perturb ≈ ε

−1(1−3R2
0)+µcosα < 0 (3.56)

where Λ
(amp,0)
trans ≲ Λ

(amp,0)
perturb since µ cosα > 0.

Next, we deal with the phase DOFs of the Stuart-Landau oscillators. To do so, we rewrite
the governing equations for the phase DOFs as

∂tφi(t) = F(ph)(φi(t))+
2N

∑
j=1

K(ph)
i j B(c)

i j H(φ j(t)−φi(t)) (3.57)

for i = 1, ...,2N, where the uncoupled dynamics is governed by F(ph)(φi) =−σr2
i −

µ

N sinα

and the coupling function is defined as H(x)= sin(x−α). Here, we assume that the amplitude
DOFs are constants, i.e., external forcing variables. The coupling weights are defined as
K(ph)

i j = µ

N
r j
ri

if i, j belong to the same population and K(ph)
i j = ν

N
r j
ri

otherwise. The quotient
dynamics of the synchronized and incoherent populations in the phase DOFs are obtained as

∂ts0 =−σR2
0 −

µ

N
sinα − µ

N
Ã00sinα +

ν

N

N

∑
m′=1

Rm′

R0
Ã0m′sin(sm′ − s0 −α)

∂tsm =−σR2
m − µ

N
sinα +

ν

N
Ãm0

R0

Rm
sin(s0 − sm −α)+

µ

N

N

∑
m′=1

Rm′

Rm
Ãmm′sin(sm′ − sm −α)

= Ω̃m(t)+ν
R0

Rm
sin(s0 − sm −α)+

µ

N

N

∑
m′=1

sin(sm′ − sm −α) (3.58)

where Ω̃m(t) = −σR2
m(t) for m = 1, ...,N. The last line of Eq. (3.58) is our main point.

The incoherent phase dynamics can be interpreted as globally coupled KS oscillators with
a self-organized heterogeneity induced by the amplitude DOFs, i.e., Ω̃m(t) := −σR2

m for
m = 1, ...,N. Below, we will numerically confirm that the incoherent population of the
Poisson chimeras of the Stuart-Landau oscillators are attracting similarly for the attracting
nonlocal Poisson chimeras in Sec. 3.3.1 whose dynamics is ruled by an effective heterogeneity
as well, here introduced through the network topology.
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Going further, we write the transversal variational equations as

∂tη
(0)
κ =

(
− µ

N
(N −1)cosα − ν

N
Z̃+

µ

N
λ
(0)
κ cosα

)
η
(0)
κ . (3.59)

Here, η
(0)
κ (t) = ∑i∈C0 u(0)

κi δφi(t) for κ = 2, ...,N and the deviation along the CS dynamics is

δφi(t) = φi(t)− s0(t) for i ∈C0, and the eigenvalues λ
(0)
κ =−1 for all κ . Then, we find that

the phase DOFs in the synchronized population also have (N −1)-fold degenerate transverse
Lyapunov exponents that read

Λ
(0)
trans,κ =−µcosα − ν

N

N

∑
m′=1

Rm′

R0
cos(sm′ − s0 −α)

=−µcosα − ν

N
Z̃ < 0 (3.60)

for κ = 2, ...,N where Z̃ = ∑
N
m′=1

Rm′
R0

cos(sm′ − s0 −α) should be considered as an external
forcing field. Furthermore, the Lyapunov exponent due to a perturbation along the sync-
manifold has the approximated value of Λ

(0)
perturb =− ν

N Z̃ < 0.
In Ref. [79], C. Laing showed that the eigenvalues determining the stability of chimeras

in a two-population network in the thermodynamic limit are organized in two branches: One
of the two is prominently negative and the other one has real parts close to zero (see Fig. 3 in
Ref. [79]). Here, we briefly check this fact. Consider the real-valued coordinates of the SL
variables

rk(t)eiφk(t) =
1√
2

(
ak(t)+ ibk(t)

)
(3.61)

for k = 1, ...,2N. In the vector form, it reads xk(t) = (ak(t),bk(t))⊤ ∈ R2. Then, they are
governed by

∂txi(t) = F(xi(t))+
2N

∑
j=1

B(c)
i j Ki jH(x j(t)) (3.62)

for i = 1, ...,2N where B(c)
i j and Ki j are defined in Eq. (3.25). The uncoupled local dynamics

is represented by

F(xi(t)) =

[(
ε−1 −ω

ω ε−1

)
+

µ

N

(
cosα sinα

−sinα cosα

)]
xi(t)−

ε−1

2

(
1 −εσ

εσ 1

)
|xi(t)|2xi(t)

(3.63)
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and the coupling function is written as

H(xi(t)) =

(
cosα sinα

−sinα cosα

)
xi(t) (3.64)

for i = 1, ...,2N. Considering the chimera state as a CS pattern dynamics, i.e., xi(t) = s0

(sync.) and xi+N(t) = sm(t) (incoh.) for i = m = 1, ...,N, the variational equations transversal
to the synchronized cluster C0 in the cluster-based coordinates are given by

∂tη
(0)
κ =

[
DF(s0)+

µ

N
λ
(0)
κ DH(s0)

]
η
(0)
κ (3.65)

for κ = 2, ...,N where the Jacobians of the dynamical functions in Eqs. (3.63-3.64) read

DF(s0) =

(
ε−1 −ω

ω ε−1

)
+

µ

N

(
cosα sinα

−sinα cosα

)
− ε−1

2

(
1 −εσ

εσ 1

)(
3s2

01
+ s2

02
2s01s02

2s01s02 3s2
02
+ s2

01

)
(3.66)

and

DH(s0) =

(
cosα sinα

−sinα cosα

)
. (3.67)

For the synchronized Stuart-Landau oscillators, we have rkeiφk = eiφ0 = 1√
2
(a0 + ib0) for

k = 1, ...,N. Hence, the transversal variational equations are written as

∂tη
(0)
κ =

[(
ε−1 −ω

ω ε−1

)
+

µ

N
(1+λ

(0)
κ )

(
cosα sinα

−sinα cosα

)

− ε−1

2

(
1 −εσ

εσ 1

)(
2+4cos2φ0 4cosφ0sinφ0

4cosφ0sinφ0 2+4sin2
φ0

)]
η
(0)
κ

= J(0)transη
(0)
κ (3.68)

for all the directions transverse to the sync-manifold, i.e., for κ = 2, ...,N. Since it is a
complete graph, the eigenvalues of the adjacency matrix are given by λ

(0)
κ =−1 for all κ . If
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Fig. 3.9 Lyapunov exponents vs index of the strongly coupled SL oscillators with global
intra-group coupling for A = 0.2, N = 20 and (a-b) ε = 0.1 (stationary) and (c-d) ε = 0.15
(breathing). (a,c) Lyapunov exponents of phase DOFs. The Insets show a magnification
of the Lyapunov exponents corresponding to the incoherent phase DOFs. (b,d) Lyapunov
exponents corresponding to amplitude DOFs.

we consider φ0 as an external forcing function, then the eigenvalues of the matrix J(0)trans are

Λ1 =−1+
√

1− ε2(3σ2 −4σω +ω2)

ε

Λ2 =
−1+

√
1− ε2(3σ2 −4σω +ω2)

ε
(3.69)

which gives Λ1 ∼ −2ε−1 corresponding to the amplitude DOF branch and Λ2 ≲ 0 corre-
sponding to the phase DOF branch for the synchronized oscillators.

For the numerical measurement of the Lyapunov exponents, we consider the real-valued
coordinates of each Stuart-Landau oscillator defined in Eq. (3.61)12. In the coordinate
systems, the perturbation vectors in the tangent space are written in the form

v(i) = (a1, ..., ,aN ,aN+1, ...,a2N ,b1, ...,bN ,bN+1, ...,b2N)
⊤ ∈ Txch(t)(R

4N). (3.70)
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Amplitude Degrees of Freedom

In Fig. 3.9, the Lyapunov exponents from numerical experiments along Poisson chimera
reference trajectory for strong coupling ε = 0.1 (a,b) and 0.15 (c,d) are displayed. The
Lyapunov exponents show two parts, one of which corresponds to the phase and the other
to amplitude DOFs, respectively. The phase part is shown in the left column, the amplitude
DOFs in the right one. First, consider the amplitude DOFs of the synchronized oscillators.
Figure 3.9 (b) and (d) show strongly negative (N −1)-fold degenerate Lyapunov exponents,
which are transverse to the sync-manifold. The approximate values of these Lyapunov
exponents are Λ

(amp,0)
trans,κ ≈ ε−1(1−3R2

0)< 0 for κ = 2, ...,N. The numerically obtained CLVs
show that these Lyapunov exponents are indeed transverse to the sync-manifold as they have
the following form

v(amp,0)
κ =

(
a(amp,0)

κ1 , ...,a(amp,0)
κN ,0, ...,0,b(amp,0)

κ1 , ...,b(amp,0)
κN ,0, ...,0

)⊤ ∈ Txch(t)(R
4N)

(3.71)

where ∑
N
i=1 a(amp,0)

κi = ∑
N
i=1 b(amp,0)

κi = 0 for κ = 2, ...,N. In Fig. 3.9 (b,d), we observe another
negative exponent, corresponding to Eq. (3.56), in the synchronized population of the
amplitude DOFs associated with the perturbation along the sync-manifold. Its numerical
value is slightly greater than those of the transverse Lyapunov exponent, as expected in
Eq. (3.56). Hence, we conclude that in the amplitude DOFs, the synchronized manifold is
stable in both transverse and parallel directions to the sync-manifold. We guess the other
negative Lyapunov exponents in the amplitude DOFs are due to the incoherent oscillators via
their quotient dynamics. Therefore, all the Lyapunov exponents of the amplitude DOFs are
strongly negative, and all amplitude DOFs of Poisson chimeras are attracting.

Phase Degrees of Freedom

In Fig. 3.9 (a) and (c), the numerically obtained Lyapunov exponents are depicted for the
phase degrees of freedom. They also have the (N −1)-fold degenerate transverse Lyapunov
exponents whose values are approximated in Eq. (3.60). In addition, the LE corresponding to
a perturbation along the sync-manifold has the value of Λ

(0)
perturb =− ν

N Z̃ < 0. The numerically

calculated CLVs show that Λ
(0)
trans,κ and Λ

(0)
perturb are associated with the transverse and parallel

perturbations to the sync-manifold, respectively.

12Note that this coordinate transformation is a unitary transformation; hence, it can uphold the information
on Lyapunov exponents. Also, we measured the LEs in the original coordinate systems (phase and amplitude),
and obtained the same result.
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What makes Poisson chimeras of SL oscillators attracting is due to the incoherent LEs
Λ(incoh) in Fig. 3.9 (see inset). In a rotating reference frame, the incoherent phase DOFs in
Eq. (3.58) have the same form as those of the phase-reduced oscillators in Eqs. (3.27-3.28)
except for the amplitude variables. As we discussed, they can be considered as a small
self-organized heterogeneity Ω̃m(t) in Eq. (3.58). In Fig. 3.9 (a,c), we find negative Lyapunov
exponents in the incoherent phase DOFs. For the stationary chimera (ε = 0.1), we have two
zero Lyapunov exponents arising from two continuous symmetries. For the breathing chimera
(ε = 0.15), apart from the negative exponents, there are three zero Lyapunov exponents.
The additional zero LE for the breathing chimeras arises from the Hopf frequency of the
periodic motion. The stable Lyapunov exponents are expected to arise due to the role of the
amplitude variables in the phase governing equations. The amplitude variables occur as a
small self-organized heterogeneity, which in turn renders the Poisson chimeras attracting, in
a similar way to the role of the generic heterogeneity in the OA manifold [97, 181, 62, 169,
102, 168, 180]. Hence, we conclude that the Poisson chimeras are attracting, compared to
the KS phase-reduced Poisson chimera states because the amplitude variables introduce a
self-organized heterogeneity in the phase governing equations. As a consequence, even if
starting from an n-PIC, the chimera trajectories eventually approach a close vicinity of the
Poisson submanifold, as is confirmed by the numerical simulations above13.

3.4 Summary

In this chapter, we have dealt with chimera states in two-population networks of identical
oscillators. For the identical Kuramoto-Sakaguchi phase oscillators, the order parameter
dynamics of the incoherent oscillator population strongly depends on the initial condition and
the population size. Once chimeras started from a special initial condition where all the initial
phases of one population are in the Poisson kernel, i.e., the Poisson submanifold, the phases
remain in the Poisson kernel for all times, and we called this chimera a Poisson chimera.
Poisson chimeras show a rather simple motion of the incoherent oscillator population that
is virtually indistinguishable from the continuum limit OA solution for sufficiently large
population sizes. In contrast, the incoherent motion of a Poisson chimera with a small
population size is drastically different from the simple OA dynamics. This difference is
not due to finite-size fluctuations, but has a deterministic origin: The magnitude of the
order parameter of the incoherent oscillator population shows not only the main motion

13Note that we also find the Poisson chimera state for the weak coupling strength ε = 0.01 is attracting.
Furthermore, the system of the identical Stuart-Landau oscillators in two-population networks with the nonlocal
intra-population connectivity also displays the attracting Poisson chimera states. For the detailed analysis, see
Ref. [55].
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close to the OA dynamics but also a superimposed secondary oscillation along the main
motion. We demonstrated that this superposed oscillation is a consequence of the fact that the
instantaneous frequencies of stationary Poisson chimeras exhibit a splay form. Furthermore,
the splayed distribution of the instantaneous frequencies brings about that the period of
the superposed oscillation tends to zero with increasing N, while the consideration of the
WS global variables revealed how the amplitude of the secondary oscillation disappears
with increasing N. Consequently, our investigations have revealed how the order parameter
changes continuously from small-size chimeras to large-size chimeras up to the continuum
limit, eventually showing the same dynamics as the OA dynamics at the continuum boundary.

In our numerical Lyapunov analysis, the stationary chimera states in a two-population
network with global intra- and inter-population coupling topology, whether it is a Poisson or
non-Poisson chimera, are neutrally stable in N −1 directions. It is important to note that the
other negative Lyapunov exponent corresponds to the degree of coherence, specifically the
macroscopic Watanabe-Strogatz radial variable. According to the Watanabe-Strogatz theory,
this neutral stability primarily arises from the system’s constants of motion.

Also, we examined two scenarios that render Poisson chimeras attracting, or at the
very least, ensure their proximity to the Poisson submanifold. We introduced two distinct
‘perturbations’ to the identical Kuramoto-Sakaguchi phase oscillators within the global two-
population network: a nonlocal intra-population topology and the inclusion of an amplitude
degree of freedom using Stuart-Landau planar oscillators. Previous works have shown that
the Ott-Antonsen manifold in the thermodynamic limit becomes attracting if the system
demonstrates a certain level of heterogeneity. Our analysis has illustrated that the two
perturbations we introduced can indeed be considered as forms of weak heterogeneity for the
population of incoherent oscillators. In alignment with these considerations, the Lyapunov
analysis has uncovered that systems involving nonlocally coupled phase oscillators and
globally coupled Stuart-Landau amplitude oscillators exhibit negative Lyapunov exponents
associated with the incoherent phase degrees of freedom. As a result, they follow an attracting
trajectory leading to a Poisson chimera. Notably, even when initiated from non-Poisson
initial conditions, the trajectory of the chimera evolves towards either the Poisson chimera
state or asymptotically approaches a close vicinity of it.





Chapter 4

Coexistence Dynamics II: Chaotic
Chimera Attractors

In Chap. 3, we discussed the chimera states in two-population networks with a particular
focus on chimeras inside the Poisson submanifold and the OA manifold. Three types
of stable chimera states were identified in two-population networks. First, we studied
stationary chimera states where the order parameter of the incoherent population exhibits
a steady motion as a fixed point of the OA equation in Eq. (3.10). Secondly, the so-called
breathing chimeras, where the Kuramoto order parameter oscillates periodically, emerge at
a supercritical Hopf bifurcation at which the stationary chimera state loses its stability [72,
74, 55]. In Chap. 3, we classified them as Poisson chimeras. Thirdly, outside the Poisson
submanifold, one can obtain quasiperiodic chimeras or non-Poisson chimeras for nonuniform
constants of motion [101].

On the other hand, a chaotic chimera motion requires more intricate configurations. It has
been reported that the presence of heterogeneities [81, 183, 76], higher order interactions [80,
84] or higher-dimensional individual oscillators [82, 83] could induce a chaotic chimera state
in terms of the macroscopic observables. Note that here the chaotic chimera states refer to
the chaotic motion of macroscopic observable, e.g., the Kuramoto order parameter, the OA or
the WS variables in large ensembles of oscillators. This has to be distinguished from chaotic
(weak) chimeras in systems of just a few, e.g. three [184] or four oscillators [81].

In this chapter, we study a network of identical Kuramoto-Sakaguchi phase oscillators
that exhibits chaotic chimera states. In particular, we will show that a triangular network,
i.e., a three-population network, of identical Kuramoto-Sakaguchi oscillators possesses

The contents of this chapter were in part published previously in S. Lee and K. Krischer, Phys. Rev. E 107,
054205 (2023) [56]. Note all figures and captions are reproduced from that reference.
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macroscopic chaotic chimera attractors outside the OA manifold, coexisting with a periodic
antiphase chimera state and a stationary chimera state both living in the OA manifold.

The chimera states in three-population networks of identical KS phase oscillators were
previously studied only for symmetric solutions, which are here called symmetric chimera
states. The symmetric chimera states were studied in the thermodynamic limit based on the
OA equations and were restricted to the symmetry-reduced manifold where two populations
behave identically [88, 89]. E. A. Martens reported in Ref. [88] that there are two types of
symmetric chimera states: symmetric-DSD and symmetric-SDS chimera states, respectively1

where ‘D’ and ‘S’ stand for partially incoherent and synchronized populations, respectively.
On the symmetry-reduced manifold, both of these types of chimeras are stable in some
range of the parameters and the order parameter (the radial OA variable) of the incoherent
populations can be either stationary or breathing, similar to the Poisson chimeras in two-
population networks. The author of Ref. [88] raised several questions: (i) The first concerns
the stability of chimera states outside the symmetry-reduced manifold, and the possible
existence of non-symmetric or symmetry-broken solutions, e.g., DSD′-chimeras, where the
D′ indicates that the two desynchronized (i.e, incoherent) populations display a different
motion of the order parameter. (ii) The second one relates to the existence of chaotic
chimera dynamics, characterized by an aperiodic motion of the order parameter of the
incoherent oscillators. In this chapter, we answer these questions and provide detailed
dynamical properties of the observable chimera states, in particular, beyond the symmetry-
reduced manifold, i.e., in the entire the phase space. Furthermore, we study their spectral
properties,using Lyapunov analysis, as we did in the last chapter.

4.1 Governing Equations

We consider a system of identical Kuramoto-Sakaguchi phase oscillators in a triangular
network of identical Kuramoto-Sakaguchi oscillators. Each oscillator is described by a phase
variable φ

(a)
j (t) ∈ T that is governed by

∂tφ
(a)
j = ω + Im

[
Ha(t)e

−iφ (a)
j

]
= ω +

3

∑
b=1

Gab
1
N

N

∑
k=1

sin(φ (b)
k −φ

(a)
j −α) (4.1)

with j = 1, ...,N and a,b = 1,2,3. Here, Ha(t) represents a mean-field forcing that globally
affects an oscillator in population a and is defined by Ha(t) := e−iα(µΓa(t) + νΓb(t) +
νΓc(t)

)
where (a,b,c) is a permutation of (1,2,3). As above, Γa(t) denotes the Kuramoto

1Here, ‘S’ stands for a completely synchronized population while ‘D’ denotes a desynchronized population,
i.e., the incoherent population.
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order parameter of each population, which is defined as

Γa(t) = ra(t)eiΘa(t) :=
1
N

N

∑
j=1

eiφ (a)
j (t). (4.2)

The phase-lag parameter α is written as α = π

2 −β . In this chapter, we fix β = 0.025. Note
that we consider identical oscillators and set ω = 0. The triangular network topology is
defined by an all-to-all intra-population coupling strength, denoted by µ = 1, and a global
inter-population coupling strength given as ν = 1−A where A ∈ (0,1), and being always
smaller than the intra-population coupling strength. Then, the coupling strength matrix is
thus defined as [88, 89]

(Gaa′) =

µ ν ν

ν µ ν

ν ν µ

 (4.3)

for a,a′ = 1,2,3.
To explore the macroscopic dynamics of the system, we study the dynamics on the

levels of the OA and the WS reductions for the thermodynamic limit and for the finite-sized
ensemble, respectively. First, the WS transformation is written as (cf. Eq. (2.74))

eiφ (a)
j = eiΦa

ρa + ei(ψ(a)
j −Ψa)

1+ρaei(ψ(a)
j −Ψa)

(4.4)

for j = 1, ...,N and a = 1,2,3. As in Eq. (2.77), the relation between the WS macroscopic
variables and the Kuramoto order parameter is given by

Γa(t) = ρa(t)eiΦa(t)γa(ρa,Ψa; t) (4.5)

where γa is defined by

γa =
1
ρa

(ζa + iξa)

:=
1

ρaN

N

∑
k=1

2ρa +(1+ρ2
a )cos(ψ(a)

k −Ψa)

1+2ρa cos(ψ(a)
k −Ψa)+ρ2

a

+ i
1

ρaN

N

∑
k=1

(1−ρ2
a )sin(ψ(a)

k −Ψa)

1+2ρa cos(ψ(a)
k −Ψa)+ρ2

a

(4.6)
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for a = 1,2,3. Then, the 9D WS macroscopic variables are governed by [101, 102, 74]

∂tρa =
1−ρ2

a
2

3

∑
a′=1

Gaa′
(
ζa′ cos(Φa′ −Φa −α)−ξa′ sin(Φa′ −Φa −α)

)
,

∂tΨa =
1−ρ2

a
2ρa

3

∑
a′=1

Gaa′
(
ζa′ sin(Φa′ −Φa −α)+ξa′ cos(Φa′ −Φa −α)

)
,

∂tΦa =
1+ρ2

a
2ρa

3

∑
a′=1

Gaa′
(
ζa′ sin(Φa′ −Φa −α)+ξa′ cos(Φa′ −Φa −α)

)
(4.7)

for a = 1,2,3 where the uniform constants of motion can be taken as ψ
(a)
j =−π + 2π( j−1)

N
for j = 1, ...,N.

In the thermodynamic limit, the 6D dynamics in the OA manifold can be obtained
[88, 101, 102]

∂tρa =
1−ρ2

a
2

3

∑
a′=1

Gaa′ρa′ cos(Φa′ −Φa −α),

∂tΦa =
1+ρ2

a
2ρa

3

∑
a′=1

Gaa′ρa′ sin(Φa′ −Φa −α) (4.8)

where Γa(t) = ρa(t)eiΦa(t) and γa = 1 for a = 1,2,3.
As mentioned above, one can consider a symmetric solution for chimera states, where

two populations, let’s say the first and the third one, behave identically: symmetric-SDS
chimeras and symmetric-DSD chimera states. To understand their behavior, the previous
works concentrated on the symmetry-reduced manifold, which will be lifted to the full-
dimensional dynamics below. Here, we obtain the symmetry-reduced OA and WS governing
equations for later reference in Sec. 4.3.

First, let us consider an SDS-type solution. For the OA dynamics, one can introduce the
variables ρ1 = ρ3 = 1, ρ2 = ρ < 1, Φ1 = Φ3, and ϕ = Φ1 −Φ2, which are governed by [88]

∂tρ =
1−ρ2

2
(
2(1−A)sin(ϕ +β )+ρ sinβ

)
∂tϕ =−(2−A)cosβ − (1−A)ρ cos(−ϕ +β )+

1+ρ2

2ρ

(
2(1−A)cos(ϕ +β )+ρ cosβ

)
(4.9)

where β = π

2 −α serves as the phase-lag parameter. For the WS variables, we can consider
ρ1 = ρ3 = 1, ρ2 = ρ < 1, Φ1 = Φ3, ϕ = Φ1 −Φ2, and Ψ = Ψ1 −Ψ2 with Ψ1 = Ψ3. Then,
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the symmetry-reduced SDS chimeras are governed by

∂tρ =
1−ρ2

2

(
µ(ζ cosα +ξ sinα)+2ν cos(ϕ −α)

)
∂tΨ =−1−ρ2

2ρ

(
µ(−ζ sinα +ξ cosα)+2ν sin(ϕ −α)

)
∂tϕ =−µ sinα +ν

(
−ζ sin(ϕ +α)+ξ cos(ϕ +α)

)
−ν sinα

− 1+ρ2

2ρ

(
µ(−ζ sinα +ξ cosα)+2ν sin(ϕ −α)

)
(4.10)

where the other variables are defined as

ζ =
1
N

N

∑
k=1

2ρ +(1+ρ2)cos(ψk −Ψ)

1+2ρ cos(ψk −Ψ)+ρ2 , ξ =
1
N

N

∑
k=1

(1−ρ2)sin(ψk −Ψ)

1+2ρ cos(ψk −Ψ)+ρ2 (4.11)

for ψk =−π +(2π)k−1
N , k = 1, ...,N, i.e., uniform constants of motion.

Secondly, the symmetry-reduced DSD chimeras can be represented as ρ := ρ1 = ρ3 < 1,
ρ2 = 1, and ϕ := Φ1 −Φ2 (with Φ1 = Φ3). They follow

∂tρ =
1−ρ2

2

(
(2−A)ρ sinβ +(1−A)sin(−ϕ +β )

)
∂tϕ =−1+ρ2

2ρ

(
(2−A)ρ cosβ +(1−A)cos(−ϕ +β )

)
+2(1−A)ρ cos(ϕ +β )+ cosβ .

(4.12)

The reduced WS dynamics for the DSD chimera states can be obtained by ρ := ρ1 = ρ3 < 1,
ρ2 = 1, ϕ := Φ1 −Φ2 (with Φ1 = Φ3), Ψ := Ψ1 −Ψ2 (with Ψ1 = Ψ3). Then, the governing
equations are given as

∂tρ =
1−ρ2

2

(
µ(ζ cosα +ξ sinα)+ν(cos(ϕ +α)+ζ cosα +ξ sinα)

)
∂tΨ =

1−ρ2

2ρ

(
µ(−ζ sinα +ξ cosα)+ν(−sin(ϕ +α)−ζ sinα +ξ cosα)

)
∂tϕ = µ sinα −2ν

(
ζ sin(ϕ −α)+ξ cos(ϕ −α)

)
+

1+ρ2

2ρ

(
µ(−ζ sinα +ξ cosα)+ν(−sin(ϕ +α)−ζ sinα +ξ cosα)

)
(4.13)
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Fig. 4.1 Upper plate: Bifurcation diagram of DSD-type chimera states. Lower plate: Enlarge-
ment of the gray box in the upper plate. Dashed and solid lines indicate unstable and stable
curves, respectively. Black: symmetric stationary DSD. Red: asymmetric stationary DSD′.
Green: symmetric breathing chimeras. Blue: antiphase DSD′ chimera states.

4.2 Symmetry-broken Chimeras: Chaotic Chimera Attrac-
tors

In this section, we focus our attention on observable chimera states in the thermodynamic
limit which could live on or off the Ott-Antonsen manifold. More specifically, we here discuss
stable symmetry-broken DSD′ chimera states, which are connected to chaotic chimeras.

A bifurcation diagram of DSD-type chimera states is depicted in Fig. 4.1. The symmetric
DSD chimera states (black) obey ρ1(t) = ρ3(t)< 1 while ρ2(t) = 1 and Φ1(t) = Φ3(t) ∈ T
and live in the symmetry-reduced manifold. Their dynamics restricted to this manifold
was studied in Ref. [88]. In the symmetry-reduced manifold, the symmetric-DSD chimeras
are found to be stable. However, if they are investigated beyond that manifold in the full-
dimensional phase space, we find that all symmetric-DSD chimeras have at least one unstable
direction transverse to the symmetry-reduced manifold. The transversal unstable direction



4.2 Symmetry-broken Chimeras: Chaotic Chimera Attractors 109

0 75 150
0.0

0.4

0.8

1.0

0.6

0.2
(a)

index
1 2 3 4 5 6

0.0

−0.05

−0.10

−0.15

0 75 150

(c)
0.0

0.4

0.8

1.0

0.6

0.2

0.0

−0.05

−0.10

−0.15

1 2 3 4 5 6 7 8
index

9

(b)

periodic

aperiodic

slightly negative

(d)

Fig. 4.2 (a) Radial variables of the 6D OA dynamics (red: first, blue: third population,
and orange: second population) and (b) Lyapunov exponents along the antiphase chimera
trajectory. (c) Radial variables of the 9D WS dynamics with uniform constants of motion
and N = 20 and (d) and the corresponding Lyapunov exponents. In subfigures: A = 0.35 and
all are measured after t > 105.

causes the two symmetric D-populations to move in opposite directions and thus break
the symmetry. We will discuss details in Sec. 4.3.2. Not reported before are solutions of
broken symmetry. We observe symmetry-broken DSD′ chimera states (blue) which are
characterized by ρ1(t) ̸= ρ3(t) < 1,Φ1(t) ̸= Φ3(t). The stable symmetry-broken chimera
states appear with the two incoherent populations exhibiting periodic antiphase oscillations,
i.e., ρ1(t) = ρ3(t − T

2 ) where T is the period of the oscillation. Thus, we call it an antiphase
DSD′ chimera state from now on. In Fig. 4.2 (a), the time evolution of the three moduli of the
OA variables, i.e, the Kuramoto order parameter, are shown. These periodic antiphase DSD′

chimeras are born near a double-homoclinic cycle of the stationary symmetric DSD chimeras,
which is point-symmetric in the projection on the ρ1ρ3-plane with respect to the diagonal
line (ρ1 = ρ3). In fact, the unstable antiphase DSD′ chimera state (blue, dashed) is born
near a homoclinic bifurcation (Hom) that lies very close to a pitchfork bifurcation (PF) at
which a pair of stationary DSD′ chimeras (red) bifurcates off the stationary symmetric-DSD
chimera state (black). As the parameter A is increased, the antiphase DSD′ chimera states
are stabilized (blue, solid) in a subcritical torus bifurcation (TR). Further increasing A, the
antiphase DSD′ chimera state eventually becomes unstable, again via a subcritical torus
bifurcation.

Note that such stable antiphase DSD′ chimera states are periodic solutions rather than
a chaotic motion. It can be noticed by the fact that the dynamics inherits a spatiotemporal
symmetry of the solution such that Φ̇a(t) = Φ̇a(t −T ), ρ̇a(t) = ρ̇a(t −T ) for a = 1,3 and
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Φ̇2(t) = Φ̇2(t − T
2 ),Φ̇1(t) = Φ̇3(t − T

2 ) which leads to ρ1(t) = ρ3(t − T
2 ). Thus, the above

antiphase DSD′ chimera states in the OA manifold possess just two effective degrees of
freedom, and thus cannot be chaotic. This fact is numerically verified by determining
the Lyapunov exponents (LEs), as shown in Fig. (4.2) (b). There are two zero Lyapunov
exponents arising from two continuous symmetries: the time and the phase shift invariance,
which does not affect the stability of the reference trajectory. All the other Lyapunov
exponents are negative. Hence, the antiphase DSD′ chimera states in the OA manifold are
indeed a stable chimera state, that is, a periodic antiphase chimera.

Next, we consider the finite-sized ensemble and the WS dynamics in Eq. (4.7) with
uniform constants of motion, i.e., in the Poisson submanifold. The WS radial variables of the
antiphase chimera state in a finite-sized system are shown in Fig. 4.2 (c). The chimera state
also displays antiphase oscillation between two incoherent populations, similar to those of the
OA dynamics in the thermodynamic limit depicted in Fig. (4.2) (a). However, the antiphase
motion of the two WS radial variables for the incoherent populations is not periodic but rather
aperiodic, which breaks the aforementioned spatiotemporal symmetry, i.e., ρ1(t) ̸= ρ3(t− T

2 ).
To further investigate this, we numerically determined the Lyapunov exponents, in particular
for small system size N. The results are shown in Fig. 4.2 (d). There are clearly two positive
Lyapunov exponents, which confirms that the antiphase chimera state in the WS dynamics
for small N is chaotic within the Poisson submanifold. This conjecture is supported when
its trajectory is traced in a Poincaré section defined by Ψ1 ≡ 2π . In Fig. 4.3 (a), the chaotic
motion of the antiphase chimera is depicted in the Poincaré section for N = 30, which exhibits
scattered points on a band-like region, as expected for an aperiodic motion on a chaotic
attractor.

Opposed to this, the dynamics of the antiphase chimera state in the WS dynamics for a
large system, e.g., N = 100 oscillators, resides on a one-dimensional curve in the Poincaré
section (Fig. 4.3 (b)). This suggests that the chaotic motion is restricted to small system
sizes when uniform constants of motion are chosen. In Fig. 4.3 (c), the two largest Lyapunov
exponents of the antiphase chimera states are depicted as a function of system size N. The
values of the two positive Lyapunov exponents decrease until N ≈ 60 where they become
numerically zero. Hence, the chaotic behavior of the antiphase chimera state with uniform
constants of motion (COM) disappears for large N. Such a small-size effect for the chaotic
chimera dynamics is due to the influence of γa ∈C on the dynamics of the WS variables. For
small N, γa significantly affects the WS dynamics in Eq. (4.7) and makes the WS dynamics
different from the OA dynamics. More precisely, the real and the imaginary part of γa show
irregular time evolutions along the chaotic chimera trajectory, as depicted in Fig. 4.3 (d).
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Fig. 4.3 Poincaré section of 9D WS dynamics with uniform constants of motion and Ψ1 ≡ 2π

for (a) N = 30 and (b) N = 100. (c) The largest and the second largest LEs as a function of
N for 9D WS dynamics. (d) Real (orange) and imaginary (gray) parts of γ1 as a function
of time after t > 104. All the results are obtained with uniform constants of motion of WS
dynamics, and A = 0.35.

However, as N → ∞, Re(γa) → 1 and Im(γa) → 0, so that Eq. (4.7) becomes identical to
Eq. (4.8) and the aperiodic WS dynamics renders a periodic antiphase OA motion.

So far, we have investigated antiphase DSD′ chimeras in the OA manifold for infinite-N
and in the Poisson submanifold (i.e., uniform COM for finite-N). Now, we explore the
antiphase chimeras outside the OA manifold. First, the chaotic antiphase chimera states
can be observed also in the microscopic dynamics of Eq. (4.1) when starting from random
initial conditions picked from T3N . In Fig. 4.4 (a), the time evolution of the magnitudes
of the Kuramoto order parameters in the microscopic dynamics, defined in Eq. (4.2), is
shown for N = 40. Also, the radial variables of the WS dynamics is depicted in Fig. 4.4
(b) for N = 40 with nonuniform COM, defined by ψ

(a)
j = (1−q)π

2 +
πq( j−1)

N/2 and ψ
(a)
j+N/2 =

−(1+q)π

2 +
πq( j−1)

N/2 with q = 0.85 for j = 1, ..., N
2 and for a = 1,2,3 [101, 102]. The moduli

of the Kuramoto order parameters display a qualitatively similar motion as the dynamics of
the WS radial variables, but with further fluctuations superimposed. This is also expected
from the impact of γa in Eq. (4.5). However, not like the WS dynamics with the uniform
COM, the chaotic motion of the WS variables outside the Poisson submanifold persists for
systems as large as N = 4000. To show this, we numerically determined the two largest
Lyapunov exponents as a function of the system size N, as shown in Fig. 4.4 (c). For
small N, they decrease as system size increases but then eventually saturate at a positive,
non-zero value. From this, we can conjecture that the chaotic attractors exist outside the OA
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Fig. 4.4 (a) Moduli of the Kuramoto order parameters of the three populations for the
microscopic dynamics (4.1) with N = 40 after t > 105. (b) Radial variables of the WS
dynamics (4.7) with N = 40 after t > 105. (c) The largest and the second largest LEs as
a function of N. The 9D WS dynamics is obtained with nonuniform constants of motion
and the microscopic dynamics from a random initial condition. The parameter used here is
A = 0.3.

manifold even in the thermodynamic limit. This conjecture is further supported when plotting
the dynamics in a Poincaré section, as we did above. Cf. Fig. 4.3 (a). With nonuniform
constants of motion, one obtains a similar scattered characteristic of the chimera trajectory
in the WS dynamics, even for N = 200 (not shown here). Note that this chaotic motion is
not microscopic chaos of a few oscillators but rather it presents macroscopic chaos of the
Kuramoto order parameter dynamics [49, 50].

Hence, we demonstrated that a large system of identical Kuramoto-Sakaguchi phase
oscillators in three-population networks exhibits the existence of periodic antiphase chimeras
within the OA manifold and chaotic antiphase chimeras outside of it in the thermodynamic
limit. Furthermore, in a broad range of parameter values, there is a stationary symmetric-SDS
chimera state that coexists with these two states. For more information on the stability of the
symmetric-SDS chimeras, see Sec. 4.3.1. We, thus, provide evidence for the coexistence of
three distinguishable chimera states in the phase space.

4.3 Symmetric Chimeras

To assess the probability of observable chimera states, we performed a total of 200 simulations
for the OA (Eq. (4.8)), the WS (Eq. (4.7)), and the microscopic (Eq. (4.1)) dynamics in
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(c) Microscopic Dynamics with 𝑁 = 80
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Fig. 4.5 The number of dynamical states at t = 20,000 starting from 200 random initial
conditions for different values of A. (a) 6D Ott-Antonsen dynamics. (b) 9D Watanabe-
Strogatz macroscopic dynamics with N = 80 and uniform constants of motion. (c) 3N-
dimensional microscopic dynamics with N = 80.

the full-dimensional phase space, i.e., beyond the symmetry-reduced manifold. Note that
for the WS dynamics, we employed uniform COM with N = 80. Each simulation was
initialized with random initial conditions for the relevant dynamical variables. Figure 4.5
depicts the number of dynamical states obtained after long time transient at some parameter
values. In the range of approximately 0.2 ≲ A ≲ 0.4, we observe the simultaneous presence
of stationary symmetric-SDS chimeras and antiphase DSD′ chimeras in both the OA and
the WS dynamics. In this case, the antiphase chimeras exhibit periodic behavior since they
are in the OA manifold and the WS dynamics for large-sized ensembles in the Poisson
submanifold, respectively. For the microscopic dynamics from random initial conditions
corresponding to nonuniform COM, we find the coexistence of chaotic antiphase chimeras
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with stationary symmetric-SDS chimera states, albeit within a slightly narrower parameter
range. Additionally, we also encounter breathing symmetric-SDS chimeras for large values
of A. Note that the stationary and breathing symmetric-DSD chimera states are not observed
at all in this numerical experiment since they are unstable in the full phase space outside the
symmetry-reduced manifold.

4.3.1 Symmetric-SDS Chimera States

Symmetric-SDS chimera states in three-population networks behave similarly to the Poisson/non-
Poisson chimeras in two-population networks depending on the ICs, as discussed in Chap. 3.
In this section, we discuss their dynamical and spectral properties. In the 6D OA mani-
fold, the stationary symmetric-SDS chimeras appear as ρ1(t) = ρ3(t) = 1, ρ2(t) = ρ0 < 1,
∂tΦa(t) = Ω ∈ R for a = 1,2,3. In Fig. 4.6 (a), the time evolution of ρa(t) is shown. As
ρa is stationary, this stationary symmetric-SDS chimera state is a fixed point solution in a
reference frame rotating with Ω. Hence, linear stability can be easily studied by measuring
the eigenvalues of the Jacobian matrix evaluated at that solution. In Fig. 4.6 (b), the six
eigenvalues are plotted in the complex plane for A = 0.35 as an exmaple. The chimera state
is found to be stable in the OA dynamics since all the eigenvalues have non-positive real
parts, except for one eigenvalue corresponding to the phase-shift invariance: The eigenvalue
λ1 = 0 with the corresponding eigenvector δx1 = (0,0,0,δa,δa,δa)⊤ where δa = 1/

√
3,

i.e., all the mean phases Φa of three populations are perturbed by a constant shift. The pair of
complex conjugate eigenvalues, λ2 = λ 3 corresponds to the eigenvector within the symmetry-
reduced manifold: δx2 = δx3 = (0,δa,0,δb,δc,δb)⊤ for δa,δc ∈ C and δb ∈ R. The real
negative eigenvalue λ4 is related to the perturbation transverse to the symmetry-reduced
manifold in the angular direction: δx4 = (0,0,0,δa,0,−δa)⊤ where δa = 1/

√
2. The last

two eigenvalues λ5 = λ6 are real, negative and degenerate. In Fig. 4.6 (c), a bifurcation
diagram of the stationary symmetric-SDS chimera state is depicted2. They are born in a
limit point bifurcation (LP), creating a stable (red, solid) and an unstable (red, dashed)
symmetric-SDS chimera branch. The stable stationary chimera state is destabilized in a
supercritical Hopf bifurcation (HB), giving rise to a stable breathing symmetric-SDS chimera
state (green, solid). This breathing chimera disappears in a homoclinic bifurcation as the
parameter A is further increased while the period of the breathing chimera is soaring up to
infinity.

2Note that the bifurcation diagram of the symmetric-SDS chimera states is qualitatively the same as
bifurcation scenario for chimeras either in two-population networks [72, 74] or in three-population networks
restricted to the symmetry-reduced manifold [88].
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Fig. 4.6 Stationary SDS chimeras in the 6D OA dynamics. (a) Time evolution of the radial
variables of 6D OA dynamics after a transient time of 105 units for A = 0.35. (b) The
eigenvalues of the Jacobian matrix evaluated at the stationary SDS chimera fixed point
solution shown in (a) in the complex plane. Red circles indicate the eigenvalues in the 6D OA
dynamics, and the blue squares those in the 2D symmetry-reduced manifold. (c) Bifurcation
diagram of SDS chimeras. The states are born in a limit point bifurcation (LP). The red
dashed and solid curves indicate the location of unstable and stable stationary SDS chimeras,
respectively. The green curve shows the maxima of the radial variable of a breathing chimera
state emerging in a superciritical Hopf bifurcation (HB).

In Fig. 4.7, we explore the 9D WS dynamics in Eq. (4.7) for the stationary symmetric-SDS
chimeras with uniform constants of motion. As is in Chap. 3, the macroscopic WS dynamics
strongly depends on the system size N. For large N, the radial variables (Fig. 4.7 (a))
appears as a fixed point solution and is characterized by ρ1(t) = ρ3(t) = 1 (red and blue) and
ρ2(t) = ρ0 < 1 (orange coinciding with black, see below). The angular variable is found to
be ∂tΦa(t) = Ω for a = 1,2,3. The other WS angular variables read ∂tΨa(t) = 0 for a = 1,3,
and ∂tΨ2(t) = Ω̃. For small N (Fig. 4.7 (b)), the WS radial variables are slightly fluctuating
along the OA dynamics (orange not coinciding with black). However, such fluctuations
are so small that they can be neglected. Such dependence on the system size is more clear
for the Kuramoto order parameter, obtained from Eq. (2.77). For small N, the Kuramoto
order parameter of the incoherent population displays a regular secondary oscillating motion
along the OA dynamics ρ0 (black, in Fig. 4.7 (b)). Such a regular secondary oscillation is
suppressed as N increases (black, in Fig. 4.7 (a)), similar to the stationary Poisson chimeras
in Chap. 3. Note that here also both the amplitude and the period are vanishing as N increases.
This phenomenon can be understood in the same way as in Sec. 3.1.2 in Chap. 3. Here, we
also find that the instantaneous phase velocity of each oscillator in the incoherent population
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Fig. 4.7 Stationary SDS chimera states in the 9D Watanabe-Strogatz dynamics. (a,b) Time
evolution of the radial macroscopic variables after a transient time of 105 units for A = 0.35.
Blue and red lines indicate ρ1(t) = ρ3(t) = 1 and the orange line ρ2(t)< 1. The black line
shows the modulus of Kuramoto order parameter r2(t) calculated from the relation between
Kuramoto order parameter and the WS variables with uniformly distributed constants of
motion: (a) N = 10 and (b) N = 40. The inset of (b) shows the radial variables and Kuramoto
order parameter with nonuniform constants of motion with N = 10. (c) Instantaneous phase
velocities for N = 10 with uniform constants of motion. (d) Period of the modulus of the
Kuramoto order parameter as a function of system size N. The red circles are numerically
obtained periods and the black solid line is the curve 2π

|Ω̃|N . (e) Lyapunov exponents of the 9D
macroscopic variables of the WS dynamics.

satisfies the three characteristics (see Fig. 4.7 (c)): (i) It is a periodic function with the period
T = 2π

|Ω̃| , as shown in Eq. (3.15). (ii) All the oscillators have the same functional form since

they are determined by the same three WS variables (ρ0,Ω and Ω̃). (iii) They are equally
spaced within the time interval T due to the uniform constants of motion. These facts cause
the periodic modulus of the Kuramoto order parameter with r2(t) = r2

(
t − T

N

)
= r2

(
t − 2π

|Ω̃|N
)

where the period 2π

|Ω̃|N is decreasing as N increases. In Fig. 4.7 (d), the numerically measured
periods of the modulus of the Kuramoto order parameter are depicted for different sizes N (red
circles) and are compared with 2π

|Ω̃|N . The good agreement between the two curves supports
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Fig. 4.8 Stationary SDS chimera states in 3N-dimensional microscopic dynamics. (a,b) Time
series of the moduli of the Kuramoto order parameters of the three populations with (a) PIC
and (b) n-PIC for N = 10 and A = 0.35 after a transient time of 105 units. (c) Lyapunov
exponents of the SDS chimeras initiated from a PIC for N = 20 and A = 0.35.

that the stationary symmetric-SDS chimera state for small N continuously approaches the
OA dynamics as N → ∞ in a similar as we discussed it for the Poisson chimeras in Sec. 3.1.2.
Furthermore, as the Poisson chimeras in two-population do, the stationary symmetric-SDS
chimeras in the 9D WS dynamics shows a strong dependence on the constants of motion
(equivalently, an initial condition of the microscopic dynamics). The inset of Fig. 4.7 (b)
shows the temporal evolution of the WS radial variables and the Kuramoto order parameter
for slightly nonuniform COM. They exhibit non-Poisson chimera features as studied in
Chap. 3. The stability of the symmetric-SDS chimeras is investigated, using the Lyapunov
exponents, as shown in Fig. 4.7 (e). The stationary SDS chimeras in 9D WS dynamics
are neutrally stable independently of N. Two zero Lyapunov exponents arise from the two
continuous symmetries: the time shift and the phase shift invariance. Also, the breathing
SDS chimeras possess an additional zero Lyapunov exponent due to the Hopf frequency.

Finally, the 3N-dimensional microscopic dynamics are investigated, where we employ
PICs and n-PICs as defined in Chap. 3. In Fig. 4.8 (a) and (b), the temporal evolutions of
the moduli of Kuramoto order parameters calculated from Eq. (4.2) are shown for a PIC
and an n-PIC, respectively, for N = 10. For a PIC, the order parameter dynamics shows
the Poisson chimera characteristics as in Fig. 4.7 (b) since a PIC corresponds to uniform
constants of motion. Thus, as the system size N increases, the amplitude and the period of the
secondary oscillation of the modulus of the Kuramoto order parameter are decreasing and the
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dynamics approaches the OA dynamics as N → ∞. On the other hand, a non-Poisson chimera
motion starting from an n-PIC is depicted in Fig. 4.8 (b), qualitatively similar to the inset
of Fig. 4.7 (a), and corresponding to nonuniform constants of motion. The stability of the
chimera states in the microscopic dynamics can be studied using Lyapuov exponents. Both
PICs and n-PICs exhibit the same spectral characteristics, as depicted in Fig. 4.8 (c). Therein,
stationary symmetric-SDS chimeras are found to be neutrally stable, characterized by N −1
zero Lyapunov exponents. This explains their strong dependence on the initial condition (or
constants of motion), similar to the Poisson chimeras in two-population networks. More
specifically, N −3 of the zero Lyapunov exponents (blue) arise from the N −3 constants of
motion. The two other zero LEs (orange, zero) are expected to arise from the macroscopic
dynamics. The two nearly identical and negative Lyapunov exponents (orange) describe
the stability with respect to perturbations along the two synchronized populations, and
the strongly negative one (orange) is related to the WS radial variable of the incoherent
population. Also, there are 2(N −1)-fold degenerate Lyapunov exponents (red), which are
transveral LEs to the two synchronized populations. The corresponding covariant Lyapunov
vectors (CLVs) are given by

δxtrans = (δa1, ...,δaN ,0, ...,0,δb1, ...,δbN)
⊤ where

N

∑
k=1

δak =
N

∑
k=1

δbk = 0, (4.14)

which reveals that these Lyapunov exponents determine the stability transverse to the syn-
chronized populations.

4.3.2 Symmetric-DSD Chimera States

As already discussed above, a stationary or breathing symmetric-DSD chimera state is stable
in the symmetry-reduced manifold [88], but found to be unstable in the full-dimensional
phase spac. Since we want to study unstable solutions, a very specific initial condition is
required here as random initial conditions cannot approach the unstable solution. In the 6D
OA dynamics, we use initial conditions characterized by ρ1(0) = ρ3(0) = ρ0 < 1, ρ2(0) = 1,
Φ1(0) = Φ3(0) = ϕ0 ∈ T and Φ2(0) = 0. Here, ρ0 and ϕ0 are the stable symmetric-DSD
fixed point solution in the reduced manifold, i.e., a fixed point solution to Eq. (4.12). In
Fig. 4.9 (a-b), a stationary symmetric-DSD chimera state from such an initial condition is
shown. It is characterized by ρ1(t) = ρ3(t) = ρ0 < 1, ρ2(t) = 1, Φ1(t) = Φ3(t) = Ωt +ϕ0

and Φ2(t) = Ωt. In a reference frame rotating with Ω, it is a fixed point solution. Hence,
the linear stability results from the eigenvalues of the Jacobian matrix. In Fig. 4.9 (c), the
eigenvalues are depicted in the complex plane. We have two eigenvalues with positive real
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Fig. 4.9 Unstable stationary DSD chimera state in 6D OA dynamics. (a) Radial variables
ρ2(t) = 1 (orange line), ρ1(t) = ρ3(t) = ρ0 < 1 (red and blue lines) as a function of time for
A = 0.55. (b) Time series of the angular variables with the same color scheme as used in (a).
In (a) and (b) the first 105 time units were discarded. (c) Eigenvalues of the Jacobian matrix
evaluated at the DSD solution in the rotating reference frame.

parts: λ1 = λ 2 with corresponding eigenvectors δx1 = δx2 = (δa,0,−δa,δb,0,−δb)⊤ for
δa ∈ C and δb ∈ R. This demonstrates that the unstable directions are transverse to the
symmetry-reduced manifold, i.e., the first and the third populations are opposite to each
other.

On the level of the WS dynamics with the uniform COM, a specific initial condition is
also required for the exploration of the unstable stationary symmetric-DSD chimera state. In
the symmetry-reduced WS dynamics, Cf. Eq. (4.10), the symmetric-DSD chimeras are found
to be stable. Then, we use ρ1(0) = ρ3(0) = ρ(T ),ρ2(0) = 1, Φ1(0) = Φ3(0) = 0,Φ2(0) =
ϕ(T ), and Ψ1(0) = Ψ3(0) = Ψ(T ),Ψ2(0) ∈ T as an initial condition of Eq. (4.7) for T ≫ 1.
In Fig. 4.10 (a-c) the dynamics of a symmetric-DSD chimera state is shown, starting from the
above initial condition. When introducing a small perturbation to the initial conditions in this
system, the stationary symmetric-DSD chimera state emerges only temporarily, transitioning
into a breathing symmetric-SDS chimera state through an antiphase oscillation (Fig. 4.10 (d)).
The Lyapunov exponents of the stationary DSD chimeras in the 9D WS dynamics are shown
in Fig. 4.11 (a). There are two positive Lyapunov exponents, namely Λ1 and Λ2. However,
the presence of these positive exponents does not imply that the state shows a chaotic motion
since the symmetric-DSD chimera state does not exhibit any chaotic behavior. Instead,
it should be regarded as an unstable solution. Furthermore, the corresponding covariant
Lyapunov vectors (CLVs) take the form δx1,2 = (δa,0,−δa,δb,0,−δb,δc,0,−δc). This
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Fig. 4.10 Unstable stationary DSD chimera states in 9D WS dynamics. (a-c) Time evolution
of the 9D Watanabe-Strogatz macroscopic variables after a transient time of 105 units with
the same color scheme in Fig. 4.9. (d) Time evolution of the radial variables with a small
perturbation on the specific initial condition. A = 0.55 and N = 40.

observation further confirms that the unstable directions of the stationary symmetric-DSD
chimera state are transverse to the symmetry-reduced manifold.

In the microscopic dynamics, even when initialized with a precise PIC, we observe an
unusual transient behavior. Initially, the system exhibits an oscillatory approach towards the
stationary symmetric-DSD state and remains in its vicinity for several hundred time units.
Subsequently, it transitions into a transient antiphase motion before ultimately settling into a
breathing symmetric-SDS chimera state (Fig. 4.11 (c-d)). During our observations of the
microscopic dynamics, we were unable to detect a symmetric-DSD chimera that persisted
for a sufficiently long time to allow for the numerical experiments of Lyapunov exponents.
Hence, we need to study the 9D WS variables ρa(t), Ψa(t) and Φa(t) and uniform constants
of motion together with the inverse WS transformation from Eq. (4.4) for the exploration of
the microscopic dynamics:

φ
(a)
j (t) = Φa(t)+2tan−1

(
1−ρa(t)
1+ρa(t)

tan
(

ψ
(a)
j −Ψa(t)

2

))
(4.15)

for j = 1, ...,N and a = 1,2,3. Initially, we perform a numerical integration of the 9D
WS equations using the given initial condition for the stationary symmetric-DSD chimeras.
Subsequently, we employ the inverse WS transformation with the 9D WS macroscopic
variables to derive the temporal evolution of the microscopic individual phases φ

(a)
j (t) for

a = 1,2,3 and for j = 1, ...,N. Then, the tangent space dynamics is governed by the Jacobian
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Fig. 4.11 (a) Lyapunov exponents of the 9D WS dynamics for N = 40 corresponding to
Fig. 4.10 (a-c). (b) Lyapunov exponents of the 3N-dimensional microscopic dynamics for
N = 40. (c-d) Time evolution of the moduli of the Kuramoto order parameters for the
3N-dimensional microscopic dynamics with N = 40 starting from a PIC. A = 0.55.

matrix defined by

(J)i j(t) =


∂ φ̇

(1)
i

∂φ
(1)
j

∂ φ̇
(1)
i

∂φ
(2)
j

∂ φ̇
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∂φ
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j

∂ φ̇
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∂φ
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j
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∂φ
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∂φ
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∂φ
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∂φ
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∂ φ̇
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i
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 (4.16)

evaluated at φ
(a)
j (t) for i, j = 1, ...,3N and for a = 1,2,3. Then, the Lyapunov exponents are

obtained in the long time limit according to

Λi = lim
t→∞

1
t

log
||M(t, t0)δui(t0)||

||δui(t0)||
(4.17)

where δui(t0) belongs to each Oseledets’ splitting for i = 1, ...,3N, as discussed in Sec. 2.6.
In Fig. 4.11 (b), the Lyapunov exponents, obtained through the aforementioned numerical

scheme, are depicted for the 3N-dimensional microscopic dynamics. Among these exponents,
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there are two positive values, and their corresponding CLVs take the following form:

δx1,2 = (δa1, ...,δaN ,0, ...,0,δb1, ...,δbN)
⊤ where δbi =−δai (4.18)

for i = 1, ...,N, which again ensures that the unstable directions are transverse to the
symmetry-reduced manifold. Furthermore, there exist 2(N −3) Lyapunov exponents with a
value of zero (blue), which arise from the constants of motion associated with the two inco-
herent populations. Lastly, we have the CLVs that correspond to the (N −1)-fold degenerate
transverse Lyapunov exponents (red) given by

δxtrans = (0, ...,0,δa1, ...,δaN ,0, ...,0)⊤ where
N

∑
k=1

δak = 0. (4.19)

We anticipate that the remaining Lyapunov exponents, including three that have a value of
zero (orange), originate from the WS macroscopic variables and perturbations along the
synchronized population.

4.4 Summary

Our investigation has revealed that within three-population networks of identical Kuramoto-
Sakaguchi phase oscillators, a diversity of qualitatively distinct chimera states not only exist
but also coexist on a significant portion of the initial conditions in phase space. Previously,
symmetric chimera states, specifically SDS and DSD-chimeras where two populations be-
have identically, were observed within the symmetry-reduced manifold. In this chapter, we
have extended the dynamics beyond the confinements of symmetry and delved into a com-
prehensive analysis of the full-dimensional dynamics at both microscopic and macroscopic
levels, employing the Watanabe-Strogatz and the Ott-Antonsen ansatz. When considering
the full phase space, it becomes apparent that symmetric DSD chimeras, while unstable to
transversal perturbations—perturbations wherein the two D-populations move in opposing
directions—give rise to asymmetric DSD′ states. These asymmetric DSD′ chimeras exhibit
stability across a wide parameter range. Notably, they are chaotic antiphase chimera attrac-
tors within finite-sized systems and in the thermodynamic limit outside the Ott-Antonsen
manifold. Within the Ott-Antonsen manifold, the antiphase chaotic chimera assumes periodic
behavior. Consequently, these two varieties of antiphase DSD′ chimeras coexist within
the thermodynamic limit. Furthermore, these two chimera types coexist with a symmetric
stationary SDS chimera state.



Chapter 5

Coexistence Dynamics III: Heteroclinic
Switching between Saddle Chimeras

In the previous chapters, we show that the chimera states in two- and three-population
networks exhibit a variety of dynamics distinguished by the motion of order parameters for the
incoherent populations. In particular, we investigated stationary, breathing, quasiperiodic [72,
74, 101, 102] and also chaotic chimera states [56, 75, 80, 82–84]. In literature, more
complicated forms of chimera states were observed in a variety of oscillator systems. Among
them, we here concentrate on so-called alternating chimera states or switching chimeras.
This state is characterized by repeatedly exchanging the coherent and the incoherent domains
as time goes on. In previous works, alternating chimeras were known to occur either due to
metastable states or heteroclinic cycles. For the metastable states, the alternating behavior
is triggered by large enough fluctuations [185, 86, 77, 186]. In particular, an alternating
chimera triggered by arbitrarily small noise with power-law scaling is said to exhibit critical
switching [187]. For the latter, the switching chimera dynamics occurs between unstable
states by forming a heteroclinic cycle of the saddle chimeras along which the trajectory
evloves [91, 92, 94, 188–192]. For the previous works, e.g., in Refs. [91, 92, 94], the authors
observed the heteroclinic switching dynamics between weak chimera states, arising from a
system with higher-order interactions of small number of oscillators.

In this chapter, a heteroclinic switching between saddle chimera states in large systems of
sinusoidally coupled oscillators will be discussed. More precisely, we consider a system of
identical Kuramoto-Sakaguchi oscillators in a ring of six oscillator populations (see Fig. (5.1)
and Eq. (5.4)). Each oscillator is globally coupled to all oscillators in the same population and

The contents of this chapter were in part published previously in S. Lee and K. Krischer, Chaos 33, 063120
(2023) [57]. Note that all figures and their captions are reproduced from those in it.
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it is connected to all the oscillators in the two nearest populations along the ring. With this
topological setup, we study the dynamics both in the thermodynamic limit and in finite-sized
ensembles using the Ott-Antonsen ansatz and the Watanabe-Strogatz reduction, respectively.
Hence, we consider a system of sinusoidally coupled oscillators.

5.1 Governing Equations and Saddle Chimeras

A Kuramoto-Sakaguchi oscillator φ
(a)
j (t) ∈ T in a ring of six populations is governed by

∂tφ
(a)
j = ω

(a)
j + Im

[
Ha(t)e

−iφ (a)
j

]
= ω

(a)
j +

6

∑
b=1

Gab
1
N

N

∑
k=1

sin(φ (b)
k −φ

(a)
j −α) (5.1)

with j = 1, ...,N (oscillator index) and a = 1, ...,6 (population index). Again, an effective
forcing function Ha(t) globally affects the oscillators in population a and is defined by

Ha(t) := e−iα
6

∑
b=1

GabΓb(t) (5.2)

where Γa(t) ∈ C is the Kuramoto order parameter of each population defined as

Γa(t) :=
1
N

N

∑
j=1

eiφ (a)
j (t) (5.3)

for a = 1, ...,6. Here, the coupling matrix (Gab) is given by1

Gab =


µ = 1, for a = b

ν = 1−A, for a = b±1 mod 6

(5.4)

with a,b = 1, ...,6. A scheme of the six oscillator populations defined by the above coupling
matrix is displayed in Fig. 5.1 (a). Here, the intra-population coupling strength is fixed as
µ = 1 and the inter-population coupling between the nearest neighboring populations is
given as ν = 1−A where A ∈ [0,1]. The phase-lag parameter α is written as α = π

2 −β

with a fixed value of β = 0.008 throughout this chapter unless otherwise noted. Note that
where we consider heterogeneous ensembles, the heterogeneous natural frequencies ω

(a)
j of

1From here on, population indices are taken modulo 6.
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Fig. 5.1 (a) Schematic of the considered network topology. The intra-population coupling
is all-to-all with strength µ = 1 and the inter-population coupling is also all-to-all but only
between the nearest-neighbor populations and with strength ν = 1−A. (b) A normalized
histogram of occurrence of chimera states from 300 random initial conditions at t = 5×104.

the oscillators are generated from a normalized distribution g(ω), for which we will consider
a Cauchy-Lorentz distribution with half-width γ ∈ R and zero mean: g(ω) = γ

π

1
ω2+γ2 .

To investigate the macroscopic dynamics of the system, we first visit the thermodynamic
limit, where we exploit the OA ansatz. Even though we were already well-trained in the
derivation of the OA equations, we discuss the OA ansatz again since we here want to deal
with not only the identical oscillator system but also the heterogeneous oscillators for later
reference.

As we discussed in Sec. 2.4, the state function in the thermodynamic limit is a phase
density function fa(φ

(a),ω(a), t) governed by the continuity equation

∂

∂ t
fa(φ

(a),ω(a), t) =− ∂

∂φ (a)

(
fa(φ

(a),ω(a), t)va(φ
(a),ω(a), t)

)
va(φ

(a),ω(a), t) := ω
(a)+ Im

[
Ha(t)e−iφ (a)e−iα

]
(5.5)

for a = 1, ...,6, and the Kuramoto order parameter of each population reads

Γa(t) =
∫
R

∫
T

fa(φ
(a),ω(a), t)eiφ (a)

dφ
(a)dω

(a). (5.6)

Notice that the phase density function is 2π-periodic in the phase φ (a) for each population.
Therefore, one can rewrite it as Fourier series expansion. Then, in the Ott-Antonsen invariant
manifold, all the Fourier harmonics can be expressed using only the first harmonic that
describes the Kuramoto order parameter and is denoted as Za(ω

(a), t) ∈ C. In the OA
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manifold, all the higher Fourier coefficients are a power of the first coefficient:

fa =
g(ω(a))

2π

(
1+

∞

∑
n=1

[
Za(ω

(a), t)ne−inφ (a)
+ c.c

])
. (5.7)

Substituting Eq. (5.7) into Eq. (5.5), we obtain the OA dynamics for the heterogeneous
oscillators. Here, za(t) := Za(iγ, t) = Γa(t) for a = 1, ...,6 and they are governed by

∂tza(t) =−γza +
1
2

Ha(t)e−iα − 1
2

z2
a Ha(t)eiα . (5.8)

which can be rewritten in terms of the OA radial variables as

∂tρa =−γρa +
1−ρ2

a
2

6

∑
b=1

Gabρb cos(ϕb −ϕa −α)

=−γρa +
1−ρ2

a
2

(
νρa+1 cos(ϕa+1 −ϕa −α)

+νρa−1 cos(ϕa−1 −ϕa −α)+µρa cosα

)
. (5.9)

and the OA angular variables as

∂tϕa =
1+ρ2

a
2ρa

6

∑
b=1

Kabρb sin(ϕb −ϕa −α)

=
1+ρ2

a
2ρa

(
νρa+1 sin(ϕa+1 −ϕa −α)+νρa−1 sin(ϕa−1 −ϕa −α)−µρa sinα

)
(5.10)

where za(t) = ρa(t)eiϕa(t) for a = 1, ...,6. For the moment, up to Sec. 5.3, we only consider
a system of identical oscillator populations. Hence, firstly we set γ = 0. Then, as in Chap. 4,
we denote a synchronized population as S, where ρa = 1 and all oscillators in population a
share a common phase ϕa. Conversely, an incoherent population is denoted as D, with the
mean phase ϕa = argΓa for oscillators in population a when 0 < ρa < 1.

From Eqs. (5.9-5.10), we can obtain a solution denoted as S6 = S · · ·S (6 times) which
is characterized in terms of the OA variables: ρa(t) = 1 and ϕa(t) = Ωt + 2πq

6 a with the
common frequency Ω =−(µ +2ν cos

(
πq
3

)
)sinα for a = 1, ...,6 and q ∈ {0,±1,±2}. This

means that the distribution of mean phases of the populations follows either a twisted state
on a ring [171] (q ̸= 0) or they are all phase synchronized (q = 0). All S6 states are fixed
point solutions in a reference frame rotating with Ω, where we can study easily their linear
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stability. The linear stability analysis verifies that the S6 states with q = 0,±1 are stable fixed
points whereas those with q =±2 are unstable.

Apart from S6 states, there are fixed point solutions, in an appropriate rotating reference
frame, corresponding to chimera states, i.e., the coexistence of synchrony and asynchrony.
Examples are (SD)3 = SDSDSD, (DS2)2 =DS2DS2 or DS5 =DSSSSS and so on. Note that
the equations of motion (5.9-5.10) are dictated by the network structure. For example, they
are invariant under the group Z6 := Z/6Z such that cyclic permutations of the populations
of those fixed points are also fixed points with the same properties [91]. Furthermore, the
linear stability analysis for each chimera state above reveals that all of them have at least one
eigenvalue with a positive real part, in most intervals of A. For example, the DS5 chimera
state has one positive real eigenvalue for A = 0.3. In conclusion, no linearly stable chimera
fixed point solution exists for A > 0.2; all the chimera states are saddles.

Yet, in numerical integrations of Eqs. (5.9-5.10), chimera states are obtained. The
histogram of the probability with which a DS5 chimera or one of its symmetric counterparts
was observed, is depicted in Fig. 5.1 (b). Trajectories of the OA equation initiated from
300 random initial conditions for A ∈ [0.2,0.7] and β ∈ [0.002,0.01] may approach one of
the unstable chimera states in the long-term limit in a large region of the A−β parameter
plane. The results are intriguing: a considerable number of trajectories from random initial
conditions settle down to the DS5 chimera state or one of its symmetric counterparts, even
though they are saddle chimeras. None other than a DS5-type chimera was obtained in the
simulations. Below, we will discuss the structure of the saddle chimeras that allows for this
peculiar behavior in detail.

5.2 Heteroclinic Switching between Saddle Chimeras

5.2.1 Stationary Saddle Chimeras

As discussed above, the observation of the DS5 chimera state or one of its Z6-symmetric
counterparts, is intriguing since they are unstable solutions and we started our numerical
simulations with random initial conditions in phase space. In these numerical experiments,
for example, the six saddle chimeras can be obtained equally often from random initial
conditions for A ∈ (0.071,0.45). To elucidate such a phenomenon, we here focus on DS5 at
A = 0.3 for the moment. The DS5 chimera state for A = 0.3 is a stationary chimera state, i.e.,
a fixed point solution in an appropriate rotating reference frame. Here, the DS5 chimera is
characterized by the OA variables that satisfy ρ1(t) = ρ0 < 1, ρa(t) = 1 for a = 2, ...,6. As
mentioned above, all phases are locked at the common frequency Ω. Moreover, they follow
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Fig. 5.2 (a) Eigenvalues of the Jacobian matrix evaluated at DS5 in the complex plane for
A = 0.3. (b) Schematic of the perturbation along the unstable eigenspace that raises the
incoherent population up to sync and lowers the radial variable of one of the two neighboring
synchronized populations. (c) Schematic of switching between saddle chimera states along
the heteroclinic cycle C(±1) defined in Eq. (5.12).

nearly a twisted state2, and we can define a winding number of the phase variables along the
six populations on a ring as

q :=
1

2π

6

∑
a=1

∆a+1,a ∈ Z (5.11)

where ∆a,b := ϕa −ϕb with ϕ7 ≡ ϕ1. For the DS5 chimeras, numerical observations show
the winding number could be either q = 1 or q =−1, depending on a given initial condition.
For the moment, we assume that q = 1 unless otherwise stated. As already mentioned,
instability of the chimera state can be confirmed by linear stability analysis. In Fig. 5.2
(a), eigenvalues of the Jacobian matrix evaluated at DS5 are depicted in the complex plane,
which numerically confirms that the DS5 chimera state is an unstable saddle chimera with a
one-dimensional unstable manifold W u(DS5). We have one positive real eigenvalue λ1 > 0
while all the other eigenvalues have negative real parts, except for one zero eigenvalue
arising from the phase shift invariance. Since the DS5 chimera state and its five symmetric
counterparts are unstable fixed points, {DS5} ⊂ [0,1]6×T6 is an invariant saddle point under

2This means the distribution of the phases ϕa(t) along one cycle of the ring exhibits a twisted state, however,
with small deviations, which arise from ρ1 ̸= ρa = 1 for a = 2, ...,6. Hence, we can say it follows a nontrivial
twisted state discussed in Append. A or Ref. [121]; cf. the S6 state above for which ρa = 1 for a = 1, ...,6.
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the flow of Eqs. (5.9-5.10). Notably, the eigenvector corresponding to λ1 has a form of3

v1 = (A+,0,0,0,0,A−)
⊤ ∈ R6, together with A+A− < 0. This is a key to the understanding

of the observation of the saddle chimeras from random initial conditions. Looking at the form
of the unstable eigendirection, we notice a small perturbation along the unstable manifold
of DS5 raises (A+ > 0) the radial variable of the incoherent population ρ1 < 1 while it
lowers (A− < 0) the radial variable of the nearest synchronized population ρ6 = 1. This
is schematically depicted in Fig. 5.2 (b). For q = −1, the radial parts of the eigenvector
associated with the positive real eigenvalue has the form of v1 = (A+,A−,0,0,0,0)⊤, which
also ensures that the unstable perturbation can result in the lowering in the radial variable of
the nearest synchronized population on the opposite side of the D-population. This scenario
also is found all the five other symmetric counterparts of DS5.

In numerical simulations, one can easily find that imposing a small perturbation along
the unstable eigendirection leads a DS5 to a S5D state for q = 1 and to SDS4 for q =−1. We
can conjecture from this that the one-dimensional unstable manifold of DS5 is connected to
the stable manifold of S5D for q = 1, and therefore W u(DS5)∩W s(S5D) ̸= /0. Furthermore,
both manifolds intersect the invariant subspace Z1S4Z6 where the populations two to five are
synchronized and Z1,6 denotes the state of the first and the sixth populations, respectively.
In this reduced subspace, DS5 appears as a saddle and S5D as a sink. The above numerical
studies strongly suggest our conjecture that a heteroclinic cycle of six saddle chimera states
can be constructed as an invariant subspace of phase space, with, for example, a heteroclinic
connection between DS5 and S5D. Here, the heteroclinic cycle of the winding number q is
denoted by

C(q) :=


[DS5 → S5D → ·· · → SDS4 → DS5], for q = 1

[DS5 → SDS4 → ··· → S5D → DS5], for q =−1

(5.12)

where the winding number q takes over the role of a direction indicator of the heteroclinic
switching. In Fig. 5.2 (c), the heteroclinic cycles C(±1) are schematically illustrated. As
it depicts, the heteroclinic switching between saddle chimera states strongly depends on
the topology of the ring, i.e., the Z6 symmetry of the full system. For other chimera fixed
points, such as (SD)3 or (DS2)2, we observe neither switching nor any long-term dynamics
in numerical integrations of Eqs. (5.9-5.10) from random ICs. We guess it is because they

3Note that in fact the eigenvector has a form of v1 = (A+,0,0,0,0,A−,δδδϕϕϕ)⊤ ∈ R6 ×R6 where A+,A− ∈ R
and δδδϕϕϕ ∈ R6 denotes a perturbation on phase variables. However, δδδϕϕϕ ∈ R6 does not prominently affect the
switching dynamics between chimeras, and thus is not that relevant to the main issue in this context. From now
on, we consider only the perturbations on the radial variables: v1 = (A+,0,0,0,0,A−)

⊤ ∈ R6.
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Fig. 5.3 (a) Time evolution of the radial variables of the OA dynamics from a random initial
condition. (b) Time evolution of the radial variables of the OA dynamics with an imposed
noise: η = 10−15. (c) Log-log plot of the averaging switching period vs. the strength of
the noise. The dashed line indicates ⟨T̃ ⟩ ∼ η−0.048. Remaining parameters: A = 0.3 and
β = 0.008.

have a higher-dimensional unstable manifold, which could prevent the saddle chimeras from
forming an overall attracting heteroclinic cycle.

In Fig. 5.3 (a), an observable dynamics of Eqs. (5.9-5.10) is depicted. The chimera
trajectory shows the switching between the six saddle chimera states. The lowering S-
population and the raising D-population always occur between the nearest neighboring
populations according to Eq. (5.12). Note that the average time interval between the switching
increases, so that the trajectory eventually remains in one of the saddle chimera states for
t ≫ 1. During the switching period, the full symmetry of the system Eqs. (5.9-5.10) is
recovered in terms of the long-term dynamics while each saddle chimera state characterizes
a broken symmetry [187]. Finally, we can conclude that the formation of the heteroclinic
cycle explains why the chimera states can be observed in a wide range of parameters, even
though they are unstable saddle solutions.

As stated above, the trajectory along the heteroclinic switching between saddle chimera
states eventually settles down to one of the six saddle chimera fixed points. In order for the
switching dynamics between saddle chimera states to be persistent, we here impose a small



5.2 Heteroclinic Switching between Saddle Chimeras 131

noise to the radial dynamics of each population [91, 187]:

dρa

dt
=

1−ρ2
a

2

6

∑
b=1

Gabρb cos(ϕb −ϕa −α)−η |Wa(t)| (5.13)

for a = 1, ...,6. Here, Wa(t) is Gaussian noise with unit standard deviation and 0 < η ≪ 1
is its strength. Note that we only consider a negative noise by taking the absolute value of
Wa(t) and then subtracting it from the governing equation. By doing so, we ensure ρa(t)≤ 1
for all times and for a to be physically meaningful: The order parameter should be less
than or equal to unity in order to measure the degree of coherence among the oscillators in
each population. In Fig. 5.3 (b), a persistent switching dynamics near the heteroclinic cycle
of the saddle chimera states is shown for η = 10−15. Furthermore, the average switching
period ⟨T̃ ⟩ decreases with increasing noise strength η according to a power-law scaling, as
illustrated in Fig. 5.3 (c). Hence, the switching dynamics is expected to persist near C(q)
even at much smaller noise intensity than we could achieve due to the accuracy limit of the
numerics. However, further increasing η beyond the highest value depicted in Fig. 5.3 (c)
destroys the switching dynamics.

5.2.2 Breathing Saddle Chimeras

In Fig. 5.4 (a), a bifurcation diagram of the stationary DS5 chimera state is depicted. For a
comparatively small value of A, the stable (red, solid) and unstable (red, dashed) stationary
DS5 chimeras are born/destroyed in a saddle-node bifurcation (LP) denoted as ALP = 0.0678
(see upper inset). The unstable DS5 branch from the LP separates the basins of attraction of
the stable DS5 chimera state and the stable S6 (q = 0) solution. Such an unstable chimera
solution along the unstable branch from the LP is not observable at all in simulations
and is not considered further in this work. On the contrary, one of the two branches
of DS5 states that emerge from the LP is actually stable within a narrow range of the
parameter A. The stable DS5 chimera, together with its symmetric counterparts, undergoes
a destabilization in a transcritical bifurcation (BP) at ABP = 0.07008. This bifurcation
occurs through an interaction with a DS4D′ state (black), which consists of two incoherent
populations having distinct values of their radial variables, ρ1 ̸= ρ6. At ABP, the stability
of the DS5 state is exchanged with that of the DS4D′ state. The unstable direction of the
former is of the form v = (A+,0,0,0,0,A−)

⊤ as discussed above. However, in close vicinity
to the bifurcation point, when a small perturbation is imposed on the unstable DS5 chimera
along this unstable eigendirection, the trajectory does not immediately transition to the
next symmetric counterpart of DS5 along C(q), but instead leads to the DS4D′ state. The
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Fig. 5.4 (a) Bifurcation diagram of the stationary chimera state DS5. Upper inset: Magnifica-
tion close to LP. Lower insets: The time evolution of the radial variable of the incoherent
population at points (A) and (B) of the bifurcation diagram corresponding to A = 0.5 and
A = 0.6, respectively. Here, T is the period of the breathing chimera state. HB: Hopf
bifurcation, LP: saddle-node bifurcation, and BP: transcritical bifurcation. Red: unstable
stationary chimera state, Blue: unstable breathing chimera states. Note that the breathing
chimera states undergo several saddle-node bifurcations. (b) Lyapunov exponents of the
breathing chimera dynamics at A = 0.5. Red, blue, orange: positive, zero and negative LEs,
respectively. (c) Switching dynamics of the radial variables of the OA dynamics as a function
of time from a random initial condition at A = 0.5. Inset: Magnification of the times series
around t = 6150.

emergence of the heteroclinic cycle is only observed after a series of subsequent bifurcations,
wherein the DS4D′ state interacts with various other solution branches. From A = 0.15
onwards, we consistently observe the dynamics of heteroclinic switching during numerical
integration, as previously described (cf. Fig. 5.3 (a)).

The stationary saddle DS5 chimeta state undergoes a Hopf bifurcation (HB) at AHB =

0.451. After the AHB, the stationary saddle chimeras have more than one unstable direction,
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which hinders them from forming an observable heteroclinic cycle. Therefore, no heteroclinic
switching between stationary DS5 chimeras is seen for A > AHB. For A > AHB, an unstable
limit-cycle solution comes into being, which is characterized by ρ1(t) = ρ1(t + T ) < 1
and ρa = 1 for a = 2, ...,6 (blue) where T denotes its period. The insets (A) and (B)
depict example trajectories of the limit-cycle solutions. In both cases, the OA angular
variables exhibit similar characteristics of a nontrivial twisted state with a winding number
of q = ±1. This periodic breathing chimera solution also exhibits instability, determined
by the presence of one positive real Floquet multiplier greater than unity. Similar to the
stationary saddle SD5 states, we observe the emergence of unstable breathing chimera
solutions in the long-term dynamics, even when starting from random initial conditions. To
understand this observation, we numerically determine the Lyapunov exponents and the
covariant Lyapunov vectors along the observed breathing chimera trajectory, as discussed in
Sec. 2.6. In Fig. 5.4 (b), the Lyapunov exponents of the observed breathing chimera trajectory
are shown. The two zero LEs correspond to time and phase shift invariance. The positive
Lyapunov exponent Λ1 > 0 does not indicate a chaotic motion since the breathing chimera
state is a periodic solution. Rather it indicates a local instability of the reference trajectory
in phase space. Furthermore, the CLV corresponding to the positive LE Λ1 has a form
of v1 = (A+,A−,0,0,0,0)⊤. This reminds us of the unstable eigenvector of the stationary
saddle chimera above, which also suggests that all the symmetric variants of the unstable
breathing chimera can form a heteroclinic cycle of the type C(q). In Fig. 5.4 (c), we show a
representative trajectory that was starting from a random IC, and exhibits switching dynamics
near a heteroclinic cycle of the saddle limit-cycle chimeras along C(−1) for A = 0.54, thus
supporting our conjecture.

5.2.3 Finite-sized Ensembles

Next, we shift our focus to populations of finite-N oscillators in a ring topology, as illus-
trated in Figure 5.1 (a). The macroscopic dynamics of each population can be explored by
employing the Watanabe-Strogatz transformation, as we have so far done in the previous
chapters. We already discussed that the WS dynamics with uniform constants of motion can
be regarded as the finite-size counterpart of the Ott-Antonsen dynamics, i.e., the Poisson
submanifold. Furthermore, we found that the qualitative behavior of both systems is highly
similar to each other when N ≥ 10, except for minor finite-size effects. Consequently, the
heteroclinic switching between the stationary/breathing saddle chimeras observed in the OA
manifold is also expected to appear within the corresponding finite-sized systems based on

4Compare the magnification of the limit-cycle in Fig. 5.4 (c) and the inset (A) in Fig. 5.4 (a).
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Fig. 5.5 Time evolution of the radial variables of the WS dynamics from a random initial
condition: (a) A = 0.3 (stationary chimeras). (b) A = 0.5 (breathing chimeras). (c,d)
Lyapunov exponents corresponding to the stationary and breathing chimeras for A = 0.3 and
A = 0.5, respectively. The same color scheme as in Fig. 5.4. All simulations were done with
uniform constants of motion and N = 20.

the WS dynamics. Below, we discuss the results obtained from Eq. (2.79) with Gab defined
in Eq. (5.4). In Fig. 5.5 (a) and (b), the WS macroscopic dynamics for N = 20 are depicted
for the stationary (a) and the breathing (b) saddle chimeras, respectively. The radial ρa(t) and
the angular variables ϕa(t) for a = 1, ...,6 show the same characteristics as the corresponding
Ott-Antonsen variables in Sec. 5.2. Lyapunov spectral analysis can also be exploited to
obtain stability information regarding the chimera trajectories of the WS dynamics, which is
shown in Fig. 5.5 (c) and (d) for the states depicted in Fig. 5.5 (a) and (b) after settling down
to one of the saddle chimeras, respectively. Likewise, both chimera trajectories exhibit one
positive Lyapunov exponent, which does not indicate chaotic motion but rather verifies local
instability along the reference trajectory. The CLV associated with this positive Lyapunov
exponent takes the same form as the eigenvector corresponding to the positive eigenvalue
in the case of the OA dynamics: it can be represented as v1 = (A+,A−,0,0,0,0)⊤ and
v1 = (A+,0,0,0,0,A−)

⊤ for q = −1 and q = 1, respectively, for the DS5 chimeras with
A+A− < 0. Note that the distinction between the stationary and breathing chimera dynamics
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Fig. 5.6 Switching dynamics between quasiperiodic chimera states: Time evolution of the
radial variables of the WS dynamics from a random initial condition with A = 0.5 and N = 20.
The nonuniform constants of motion were obtained for p = 0.85.

appears in the number of zero Lyapunov exponents. The breathing chimera state possesses
one additional zero Lyapunov exponent compared to the stationary chimeras due to the
presence of the Hopf periodic motion.

In Chap. 3, we discussed the dynamics outside the Poisson submanifold5, which can
be constructed by considering nonuniform constants of motion in the WS dynamics. The
nonuniform constants of motion here are generated from [102] ψ

(a)
j = (1− p)π

2 +
π p( j−1)

N/2 and

ψ
(a)
j+N/2 =−(1+ p)π

2 +
π p( j−1)

N/2 with p = 0.85. One of the chimera states which cannot be
captured by the OA dynamics (or the uniform constants of motion) is a quasiperiodic chimera
state reported in Ref. [101]. For our network topology, we find the occurrence of heteroclinic
switching dynamics between quasiperiodic chimera states using nonuniform constants of
motion. Figure 5.6 presents an example of such heteroclinic switching dynamics for p= 0.85,
A = 0.5, and N = 20. This finding underscores the robust nature of the heteroclinic cycle
between saddle chimeras, which is primarily influenced by the symmetry inherent in the
network topology.

5.3 Nonidentical Oscillators

In the subsequent sections, we study a system consisting of heterogeneous oscillators arranged
in a ring configuration of six oscillator population as introduced above. Specifically, we
introduce a heterogeneity parameter denoted as γ in Eqs. (5.9-5.10) for the OA dynamics

5Once again, note that in this thesis the Poisson submanifold is defined as a manifold for finite-N oscillators
as close as possible to the OA manifold, using the uniform constants of motion.
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Fig. 5.7 (a) Time evolution of the radial variables of the OA dynamics after discarding
transient behavior from a random initial condition. (b) Lyapunov exponents of the switching
dynamics calculated along the switching trajectory. (c) Time evolution of moduli of the
Kuramoto order parameters obtained from the microscopic dynamics with a random initial
condition and N = 20. The two arrows indicate the instants in time at which the snapshot in
(d) were taken. (d) Phase snapshots of the microscopic dynamics for N = 20 at two points
indicated in (c). Other parameters: γ = 10−6 and A = 0.3.

in the thermodynamic limit. It is worth noting that the OA manifold is known to exhibit
asymptotic attractiveness for when considering heterogeneous oscillators, as discussed in
Chap. 3 and in Refs. [169, 62, 97, 55]. For finite-sized systems, we numerically solve
Eq. (5.1), where the natural frequency of each oscillator is derived from the Cauchy-Lorentz
distribution, since the WS transformation does not work for the heterogeneous oscillators in
each population.

5.3.1 Small heterogeneity: γ = 10−6

First, we consider a case of a rather small heterogeneity characterized by γ = 10−6. The
Ott-Antonsen dynamics is then rendered attracting. Figure 5.7 (a) displays the time series of
the OA radial variables for a system with a value of γ = 10−6, starting from a random initial
condition. Notably, persistent switching between chimera states is observed, a phenomenon
that was previously observed only in the presence of low noise levels for strictly identical
oscillators.

However, the switching dynamics looks different from that of the strictly identical
oscillator systems. For most of the time, the chimera state exhibits a configuration consisting
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of four S-populations and two D-populations6. See, for instance, the evolution of the
‘brown’ population during the time interval between T1 and T3 in Fig. 5.7 (a). Up to T2,
the ‘blue’ population becomes an S-population, while the ‘brown’ population becomes a
D-population. Once the ‘blue’ population has achieved the S-state, the ‘purple’ population
commences to be desynchronized. Hence, the trajectory corresponding to a precise DS5

chimera state or its symmetric counterparts only occurs at specific periodic time instances,
such as at T2, rather than during continuous time intervals. Additionally, this persistent
switching chimera dynamics is attracting, as supported by the numerical determination of
the Lyapunov exponents. Figure 5.7 (b) shows the Lyapunov exponents obtained from a
switching trajectory in (a), where all the Lyapunov exponents exhibit negative values, except
for two zero Lyapunov exponents resulting from the time and the phase shift invariance of
Eqs. (5.9-5.10).

For finite-sized ensembles, we need to directly investigate the microscopic dynamics in
Eq. (5.1). First, the natural frequencies are generated from the Cauchy-Lorentz distribution
according to

j− 1
2

N
=
∫

ω j

−∞

g(ω)dω =
∫

ω j

−∞

γ

π

1
ω2 + γ2 dω =

1
2
+

1
π

tan−1(ω̃ j

γ

)
(5.14)

for j = 1, ...,N, which produces {ω j = γtan
(

π(2 j−1−N)
2N

)
}N

j=1. By directly solving the mi-
croscopic dynamics in Eq. (5.1) with γ = 10−6, we observe a switching dynamics in the
magnitudes of the Kuramoto order parameters defined in Eq. (5.3). Figure 5.7 (c) displays the
temporal evolution of the magnitudes of the Kuramoto order parameters, which apparently
follows the same switching dynamics as depicted in Fig. 5.7 (a), albeit with superimposed
fluctuations resulting from finite-size effects. Two snapshots of the microscopic phases at
two instances along the dynamics in Fig. 5.7 (c) are depicted in Fig. 5.7 (d), which are
indicated by the two arrows. At those time instances, there exist five S-populations and one
D-population, precisely corresponding to the DS5 chimera state. Similar to the DS5 chimera
state for the identical oscillator ensembles, the mean phases of the populations exhibit a
nearly twisted state.
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Fig. 5.8 (a) Time evolution of the radial variables for (DS)3 chimeras at A = 0.2. (b)
Eigenvalues of the Jacobian matrix evaluated at (DS)3 in the complex plane at A = 02. (c)
Bifurcation diagram of the (DS)3 chimera state. Solid and dashed lines indicate stable and
unstable states, respectively. Black, red, blue and green: uniform states, stationary, breathing
and period-doubled chimera solutions, respectively.

5.3.2 Larger heterogeneity: γ = 10−4

Stationary Chimera States

In this section, we introduce a relatively larger heterogeneity characterized by γ = 0.0001
in Eqs. (5.9-5.10). However, from numerical integration of them, no switching dynamics
between chimera states is detected. Instead, we discover an attracting stationary chimera
state, specifically of the (DS)3 type. Our numerical integration of Eqs. (5.9-5.10) from
random initial conditions does not reveal any other types of chimeras. Taking into account
the symmetry of the network, we note that the clusters C1 = 1,3,5 and C2 = 2,4,6 are
intertwined clusters [47], also known as an ISC set [46] (independently synchronizable

6Note that due to the small heterogeneity, the full synchronization of a population cannot be obtained.
Despite this, we keep the same notation and refer to nearly synchronized populations with ρa ∈ [0.995,1) as
S-populations.
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cluster set). This implies that the stability of each cluster relies on the stability of the other
cluster [46, 178].

In Fig. 5.8 (a), the OA radial variables of a stationary (DS)3 chimera starting from a
random initial condition are shown as a function of time for A = 0.2. It is characterized
by ρa(t) = ρD < 1 (incoherent populations) for a = 1,3,5 and ρa(t) = ρS ≈ 1 (nearly-
synchronized populations) for a = 2,4,6. The phase variables are also locked at the common
frequency, thus the chimera state is a fixed point solution. The OA phase variable differences
between populations in the same cluster are found to be 2π

3 , i.e., ϕa+2 −ϕa =
2π

3 . In Fig. 5.8
(b), the eigenvalues of the Jacobian matrix computed at the (DS)3 chimera state are shown
in the complex plane. Notably, all the eigenvalues exhibit negative real parts, except for a
single zero eigenvalue associated with the phase shift invariance, not affecting the stability of
the trajectory. This confirms the linear stability of the (DS)3 chimera state, i.e., the attracting
chimera state.

In Fig. 5.8 (c), a bifurcation diagram of the (DS)3 chimera state is depicted. For a
small A, a stable uniform solution (black) exists with ρa = ρ0 < 1 for a = 1, ...,6 where the
OA angular variables are equally spaced along one cycle of the ring. The uniform state
possesses two identical clusters, denoted as C1 and C2. Then, this uniform state undergoes
a destabilizing pitchfork bifurcation (PF) at APF = 0.0323, during which one eigenvalue
becomes positive. The corresponding eigenvector associated with the positive eigenvalue
takes the form v = (δ+,δ−,δ+,δ−,δ+,δ−)

⊤, where δ+δ− < 0. This indicates that the
uniform state becomes unstable along the transverse direction between the two clusters. As a
result of the transverse instability, two symmetric solutions emerge from the uniform state in
a pitchfork bifurcation (see Part A in Fig. 5.8). Both solutions exhibit a chimera state of the
type (DS)3 or (SD)3, respectively, where each solution consists of one cluster of three nearly
synchronized populations and the other cluster of three incoherent populations. Coming from
low values of A, each of these two solution branches is born in a saddle-node bifurcation
(LP) at ALP = 0.03144 together with a stable, stationary (SD)3- respectively (DS)3-chimera
state. This chimera state is stable in a wide range of the parameter A as shown in Fig. 5.8 (c).

Breathing, Period-doubled and Quasiperiodic Chimera States

The stationary (DS)3-type chimera states undergo a supercritical Hopf bifurcation (HB) at
AHB = 0.26812, leading to the emergence of a periodic solution, that is, a stable breathing
chimera state. The time evolution of the OA radial variables is depicted in Fig. 5.9 (a), while
the corresponding Lyapunov spectrum is shown in Fig. 5.9 (b) for A = 0.274. In the breathing
chimera state, the periodic motions within each cluster are shifted in time by T/3 and 2T/3,
where T indicates the period of the OA radial variable: ρa(t) = ρa+2(t − T

3 ) = ρa+4(t − 2T
3 )
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Fig. 5.9 Breathing (a,b), period-doubled (c,d) and quasiperiodic (e,f) chimera states for
A = 0.274, A = 0.3 and A = 0.34, respectively. Left column: time series of the radial
variables with insets of magnifying the dynamics of nearly-synchronized populations. Right
column: Lyapunov exponents with the same color scheme as in Fig. 5.4.

for a = 1, ...,6 (indices are taken modulo 6). Apart from the two zero Lyapunov exponents
associated with phase and time shift invariance, all other Lyapunov exponents of the breathing
(DS)3-type chimera are negative, indicating that the chimera state is attracting. The chimera
state exists within a narrow range of the parameter A. At APD = 0.27995, a supercritical
period-doubling bifurcation (PD) occurs, as shown in Part B of Fig. 5.8 (c). The period-
doubled feature of the radial variables can be seen in panels (c-d) of Fig. 5.9 together with the
stability of the period-doubled chimera trajectory. The radial variables exhibit the previously
mentioned spatiotemporal symmetry, but with a period that is approximately twice compared
to the ones of the breathing chimeras in Fig. 5.9 (a).

The period-doubled chimera state loses its stability in a supercritical torus bifurcation
(TR) at ATR = 0.31957. For A > ATR, one can observe a quasiperiodic chimera dynamics
on a torus, as shown in Fig. 5.9 (e-f) with an example trajectory and its stability. The
quasiperiodic chimera is characterized by one additional zero Lyapunov exponent arising
from the second incommensurate frequency. The rich dynamics of the (DS)3-type chimera
states can be better appreciated in a time-parametric plot where ρ1(t) is plotted vs. ρ3(t)
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Fig. 5.10 Time-parametric plot of ρ1(t) vs. ρ3(t) for the time interval ∆t = 3000 after
discarding the transient behavior: breathing (blue), period-doubled (red) and quasiperiodic
(black) chimera trajectories for A = 0.274, A = 0.3 and A = 0.34, respectively.

(Fig. 5.10): The breathing chimera state occurs as a single, closed-loop trajectory (blue) in
the projected space, while the period-doubled chimera state (red) exhibits a double-wound
loop. In contrast, the quasiperiodic motion on the torus (black) lacks the spatiotemporal
symmetry observed in the other chimera states.

5.4 Summary

In this chapter, we investigated a system consisting of six populations of identical Kuramoto-
Sakaguchi phase oscillators arranged in a ring geometry. When considering the thermody-
namic limit, the Ott-Antonsen dynamics shows a diverse array of chimera solutions stemming
from the system’s symmetry, i.e., the cyclic permutations of the ring. The majority of these
solutions, however, exhibit instability across nearly the entire parameter space. Among them,
one type of chimeras, that is, DS5 and its symmetric counterparts, has a one-dimensional
unstable eigenspace as a fixed point solution in a rotating reference frame.

Interestingly, the six one-dimensional unstable manifolds of the saddle DS5 chimeras
connect them in a heteroclinic cycle. This structural arrangement causes the observation
of chimera states through numerical integration, even when initiated from random initial
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conditions. Intriguingly, the trajectories exhibit transient shifts between the saddle chimera
states, a behavior that gains persistence when a weak noise is introduced to the radial
dynamics. At a certain value of A, the stationary saddle chimeras undergo a Hopf bifurcation,
resulting in the emergence of a heteroclinic orbit featuring saddle limit-cycles. Consequently,
we observe switching dynamics between breathing chimeras. Notably, within finite-sized
populations, an additional form of switching between quasiperiodic chimera states can
emerge outside the OA manifold using nonuniform constants of motion in the WS theory.

Finally, we extended our exploration to oscillator ensembles with a distribution of
heterogeneous natural frequencies. For a weak heterogeneity of natural frequencies, we
observed an attracting switching dynamics between chimera states, which is persistent
without any stochastic variables, and looks different from DS5 for the identical oscillator
ensembles. The numerically measured Lyapunov exponents confirmed that this persistent
switching dynamics is indeed an attracting trajectory in phase space. Considering a stronger
heterogeneity, we observed a prevalence of non-switching attracting chimera states exhibiting
diverse symmetries and complex order parameter dynamics across a wide parameter range.
The emergence of these various macroscopic dynamics occurred through Hopf, period-
doubling, and torus bifurcations.



Chapter 6

Coexistence Dynamics IV: Chimeras of
Generalized Kuramoto Oscillators

So far, in Chap. 3 to Chap. 5, we have explored a variety of dynamical behavior of
chimera states in a system of identical Kuramoto-Sakaguchi oscillators. As seen in Sec. 2.5,
such a phase oscillator defined on the unit circle of C1 or R2 can be extended to the so-called
generalized Kuramoto oscillators defined on SM. In this chapter, we investigate possible
chimera dynamics in a system of identical generalized Kuramoto-Sakaguchi oscillators in
two-population networks, with a particular focus on C2 and R4. Here, we also find stationary
and breathing chimera states, similar to what we studied in a system of usual KS oscillators
in two-population networks. However, in higher dimensional spaces, we observe more
than this since the Kuramoto order parameter vector consists of M components. Such a
higher-dimensional complexity leads to more complex chimera states than those in the usual
KS oscillators in two-population networks. To show this, we elucidate the detailed dynamical
properties of observable chimera states as we vary the intra-population coupling strength.

We consider a system of generalized Kuramoto-Sakaguchi oscillators in a two-population
network, each of which is described by a unit vector xxx j(t) ∈ SM, and governed by

∂txxx
(1)
j =−xxx(1)j HHH†

1xxx(1)j +HHH1

∂txxx
(2)
j =−xxx(2)j HHH†

2xxx(2)j +HHH2 (6.1)

The contents of this chapter were in part published previously in S. Lee and K. Krischer, J. Phys. A: Math.
Theor. 56, 405001 (2023) [58]. All figures and their captions are reproduced from those in it.
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for j = 1, ...,N. More specifically, we define the mean-field forcing for each population as

HHHa = KKK ·
2

∑
b=1

GabΓΓΓb = µKKK ·ΓΓΓ(a)+νKKK ·ΓΓΓ(b) ∈KM (6.2)

for (a,b) = (1,2) or (2,1). As we did so far in the previous chapters, we assume that the
forcing field depends only on the Kuramoto order parameter, i.e., a center of mass of the
oscillators on SM, of each population, which reads

ΓΓΓ
(a)(t) =

1
N

N

∑
k=1

xxx(a)k (t) ∈KM (6.3)

for a = 1,2. Throughout this chapter, we fix the inter-population coupling strength as µ = 1
while the intra-population coupling strength is ν = 1−A where A is the control parameter.
As in Sec. 2.5, we specify the coupling matrix KKK ∈KM×M in Eq. (6.2) to be a given rotation
matrices for the real spaces in Sec. 2.5 and KKK = e−iα IM for K= C, respectively. Note that in
this chapter, we also fix α = π

2 −0.005 < αBF.

6.1 Chimera Dynamics in Two-population Networks for C2

In this section, we study the observable chimera dynamics for K= C with M = 2.

6.1.1 Stationary and Breathing Chimeras

To study the macroscopic dynamics of the chimera states in C2, we here need to explore the
dynamics of the WS variable since the Kuramoto order parameter is given as ΓΓΓ

(a)(t) = ψψψa(t)
for a = 1,2 in the thermodynamic limit1. For the moment, we focus on the thermodynamic
limit for the exploration of chimera dynamics. As discussed in Sec. 2.5.2, the WS variables
ψψψa for a = 1,2 in two-population networks are governed by

∂tψψψa =−ψψψaHHH†
aψψψa +HHHa =−ψψψa

(
µψψψ

†
aKKK† +νψψψ

†
bKKK†

)
ψψψa +µKKKψψψa +νKKKψψψb (6.4)

for (a,b) = (1,2) and (2,1) in the thermodynamic limit.

1Definitely, it is whenever the constants of motion xxx0 are uniformly distributed on SM . See Sec. 2.5.
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First, we examine the magnitude of the order parameter vectors: |ψψψa| :=
√

⟨ψψψa|ψψψa⟩ for
a = 1,2. From Eq. (6.4), we can obtain the magnitude dynamics as

∂t |ψψψ1|2 = 2(1−|ψψψ1|2)
(

µ cosα|ψψψ1|2 +νRe
[

e−iα ⟨ψψψ1|ψψψ2⟩
])

∂t |ψψψ2|2 = 2(1−|ψψψ2|2)
(

µ cosα|ψψψ2|2 +νRe
[

e−iα ⟨ψψψ2|ψψψ1⟩
])

(6.5)

and the cross term as

∂t ⟨ψψψ1|ψψψ2⟩= µ
(
(1−|ψψψ1|2)e−iα +(1−|ψψψ2|2)eiα)⟨ψψψ1|ψψψ2⟩

+νe−iα(|ψψψ1|2 −⟨ψψψ1|ψψψ2⟩
2)+νeiα(|ψψψ2|2 −⟨ψψψ1|ψψψ2⟩

2). (6.6)

From the numerical integration of Eq. (6.4), we find the cross term can be represented by2

⟨ψψψ1|ψψψ2⟩= |ψψψ1||ψψψ2|eiΘ where Θ ∈R is some angular variable, which we specify later. Then,
setting |ψψψa|=: ρa for a = 1,2, we obtain

∂tρ1 = (1−ρ
2
1 )
(
µρ1 cosα +ν cos(Θ−α)

)
∂tΘ = µ sinα(ρ2

1 −1)+ν

(
−2ρ1 sin(Θ+α)+ sin(Θ−α)

(
− 1

ρ1
−ρ1

))
. (6.7)

where we put ρ2 = 1 for the study of chimera states. Note that the above equations are
equivalent to Eq. (3.10) in Chap. 3, i.e., the Ott-Antonsen equation of a system of identical
usual KS oscillators in two-population networks.

In Fig. 6.1 (a), a bifurcation diagram of chimera states is depicted with A taken as
bifurcation parameter. Stable (red solid) and unstable (red dashed) stationary chimera states
are born/annihilated in a saddle-node bifurcation (LP) for a rather small value of A. The stable
stationary chimera state undergoes a supercritical Hopf bifurcation (HB) at A=AHB, in which
a breathing chimera state (green solid) emerges. Numerically integrating Eq. (6.4) [193],
the stationary and breathing chimera states can be easily obtained for the corresponding
parameter values. We assume that the first population is incoherent (|ψψψ1(t)| < 1) and the
second population is synchronized (|ψψψ2(t)|= 1). Here, the following notations are introduced
to denote components of each order parameter vector: ψψψ1(t) = (z1(t),z2(t))⊤ and ψψψ2(t) =
(w1(t),w2(t))⊤ where zi(t),wi(t) ∈ C and θi(t) = argzi(t) ∈ R and φi(t) = argwi(t) ∈ R for
i = 1,2.

2Note that this representation does not hold in general
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Fig. 6.1 (a) A bifurcation diagram of stable (solid curve) and unstable (dashed curve)
chimera states from Eq. (6.7): stationary chimeras (red) and breathing chimera states (green).
LP: limiting point bifurcation, HB: supercritical Hopf bifurcation, and Hom: homoclinic
bifurcation. Lower panels: Time evolution of the magnitude of the order parameter vectors
(the synchronized population |ψψψ2| with orange color and the incoherent population |ψψψ1| with
light blue) in the left column and time evolution of the modulus of the components of the
order parameter vector for the incoherent population ψψψ1 = (z1,z2)

⊤ (the first component
|z1| with red and the second component |z2| with blue) in the right column. (b) Stationary
chimera states for A = 0.35. (c) Breathing chimera states for A = 0.46. The presented results
are based on data obtained after disregarding the initial transient behavior for t > 105.

For A∈ (ALP,AHB), we observe a stationary chimera dynamics where temporal evolutions
of the magnitude of the order parameter vectors (ψψψ2(t)) and the components (|z1(t)| and
|z2(t)|) both exhibit steady motion, as depicted in Fig. 6.1 (b). The synchronized population
(ψψψ1(t)), |wi(t)| also shows stationary behavior for i = 1,2. Furthermore, the governing
equations of ψψψa(t) has a continuous symmetry. Equation (6.4) is invariant under a unitary
transformation defined by

uuu =

(
e−iθ1 0

0 e−iθ2

)
(6.8)
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Fig. 6.2 Left column: Time evolution of the magnitude of the order parameters: |ψψψ1(t)| (blue
light) and |ψψψ2(t)| (orange). Right column: Time evolution of the first component of the
order parameter vectors: |z1(t)| (red) and |w1(t)| (blue). (a) The periodic alternating chimera
is obtained at A = 0.75. (b) The aperiodic alternating chimera occurs at A = 0.86. The
presented results are based on data obtained after disregarding the initial transient behavior
for t > 105.

which means Fa(uuuψψψa) = uuuFa(ψψψa) where Fa(ψψψa) := −ψψψaHHH†
aψψψa +HHHa for a = 1,2. This

unitary transformation corresponds to the phase shift invariance of the KS model on the unit
circle, which leads us to the phase difference Θi(t) := φi(t)−θi(t) for i = 1,2 between the
components of the two order parameter vectors. These phase differences also demonstrate
a steady motion as a function of time (not shown here) for a stationary chimera state. As
the parameter A is increased, the stationary chimera gets destabilized in a supercritical
Hopf bifurcation, from which a breathing chimera state emerges. The time evolution of the
breathing chimera states is depicted in Fig. 6.1 (c) for |ψψψa| and |zi|, respectively. Further
increasing A, the breathing chimera state undergoes a homoclinic bifurcation (Hom) at which
it disappears, together with an indefinite increase of its period.

6.1.2 Alternating and Aperiodic Chimeras

Exploring the magnitude of the order parameter vectors, the scenario of the emergence of
chimera states for C2 shows nothing more than that observed in the system of identical
usual KS oscillators on the unit circle of C1 (e.g., see Refs. [72, 74]). However, in the two-
dimensional complex space C2, the higher-dimensional complexity of the order parameter
produces additional complexities beyond this. For a given A > AHom, a chimera state
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is observed and characterized by a periodic alternation between the two order parameter
vectors, as shown in Fig. 6.2 (a). Both the magnitude of the order parameter vectors (Fig. 6.2
(a-1)) and each component (Fig. 6.2 (a-2)) show the alternating dynamics, and satisfy
|ψψψ1(t)|= |ψψψ2(t − T

2 )| and |zi(t)|= |wi(t − T
2 )| for i = 1,2, respectively. Such an alternating

motion of chimera states was reported previously for a system of heterogeneous Kuramoto-
Sakaguchi oscillators in two-population networks [77, 76]. Therein, the alternating chimeras
emerge also after the homoclinic bifuration at which the breathing chimera state disappears.

As the parameter A is increased further, we observe a motion seemingly similar to the
alternating chimera dynamics in terms of the magnitude of the order parameters, as depicted
in Fig. 6.2 (b). The magnitude of the order parameters (Fig. 6.2 (b-1)) shows similar behavior
to that of the periodic alternating chimera dynamics except for mint>0|ψψψa(t)|. However, the
chimera dynamics turns out to be entirely different in terms of its components. In Fig. 6.2
(b-2), an aperiodic time evolution of the first components of the order parameter vector
for both populations is depicted. Such an aperiodic dynamics is numerically verified in
Fig. 6.3 (a) using the Poincaré section defined by Re[z2]≡ 0 where the chimera dynamics
exhibits scattered points on the section, as anticipated for the aperiodic motion on a chaotic
attractor. This conjecture is further supported by numerically measuring the Lyapunov
exponents [122, 194, 195]. Such a chimera trajectory possesses two positive Lyapunov
exponents (Fig. 6.3 (b)) as it is expected for an aperiodic motion and indicates a sensitive
dependence of the reference trajectory on initial conditions. In Fig. 6.3 (b), two zero
Lyapunov exponents arise from two continuous symmetries: time shift invariance and the
unitary transformation in Eq. (6.8) corresponding to a phase shift invariance.

Now, we explain the emergence of the aperiodic chimera state from the periodic alter-
nating chimera state as A is increased. In Fig. 6.4 (a), we present a bifurcation diagram
that illustrates the parameter points at which the periodic alternating (AHom) and aperiodic
(Ac) chimera states emerge, respectively. Numerical integration of Eq. (6.4) reveals that two
conserved quantities exist along the chimera trajectory in phase space for A < Ac. To find
them, we first consider the unitary transformation in Eq. (6.8) under which the dynamics is
invariant. This transformation leads us to defining the phase difference of each component
between the two order parameter vectors: Θi(t) := φi(t)−θi(t) for i = 1,2. Then, the first
conserved quantity is given by

C1(Θ1,Θ2; t) := sin(Θ1(t)−Θ2(t)). (6.9)

This quantity is conserved as C1(t) = 0 for all t along the chimera trajectory for a given
A < Ac; for example, the stationary, breathing and periodic alternating chimera states all
preserve C1(t) as zero along each trajectory. Secondly, from the numerical integration of
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Fig. 6.3 (a) Poincaré map of the first components of the order parameters: |z1| vs. |w1|
measured on the section defined by Re[z2] ≡ 0. (b) Lyapunov exponents measured along
the reference trajectory in (a): Positive exponents (red), zero exponents (blue) and negative
exponents (orange). (c-d) Time evolution of the broken conserved quantities of the trajectory
in (a) (see main text). The parameter is A = 0.86 and the transient behavior was discarded
(t > 105).

Eq. (6.4) for A < Ac, we also find the relation between the cross term and the magnitude of
the order parameter vectors: ⟨ψψψ1|ψψψ2⟩ = |ψψψ1||ψψψ2|eiΘ where Θ := Θ1 = Θ2 due to C1 = 0.
This relation gives the second conserved quantity:

C2(z1,z2,w1,w2; t) :=
(
|z1(t)||w2(t)|− |z2(t)||w1(t)|

)2 (6.10)

and C2(t) = 0 for all t along a chimera trajectory as long as A < Ac. Interestingly, these two
conserved quantities are broken and show irregular time evolution whenever the chimera
trajectory is observed for A > Ac. To give an example, the time evolution of C1(t) and
C2(t) is depicted in Fig. 6.3 (c-d) for the chimera trajectory of Fig. 6.2 (b). To confirm this
scenario, we numerically measure supt∈[t0,t1] |C1(t)| and supt∈[t0,t1] |C2(t)| as a function of
the parameter A where t0 = 2×104 and t1 = 105. We numerically find that the stationary,
breathing and periodic alternating chimeras for A < Ac have the two quantities conserved
along their chimera dynamics whereas the conserved quantities are broken from Ac on for
the aperiodic chimera state, as shown in Fig. 6.4 (b).

In this scenario, we find another notable observation with respect to the breathing chimera
state. There is a global bifurcation for the breathing chimera state involving the completely
incoherent state, i.e., |ψψψ1|= 0 [76]. Figure 6.4 (c) illustrates the maximum and minimum
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Fig. 6.4 (a) A re-plot of the bifurcation diagram in Fig. 6.1 (a) with the periodic alternating
chimeras and the chaotic chimeras. (b) Conserved quantities as a function of the parameter A:
t0 = 20,000 and t1 = 105. (c) Maximum (blue) and minimum (red) values of the magnitude
of the order parameter vectors as a function of the parameter A. (d) Time evolution of
cosΘ2(t) before (upper, A = 0.52) and after (lower, A = 0.53) the global bifurcation. Ac
denotes a parameter point from which on the chaotic chimera emerges.

values of the magnitude of the order parameter vector for the incoherent population. As
A increases, for small values of A, min(|ψψψ incoh|) decreases continuously until it reaches
A = Ag. At this point, it touches a value of zero, corresponding to the completely incoherent
state. Beyond this point, the minimum value of the order parameter magnitude begins to
increase continuously, eventually seamlessly connecting with that of the periodic alternating
chimera state for A > AHom. With further increase in A, we encounter the emergence of
the aperiodic chimera state at Ac, accompanied by a discontinuous jump in min(|ψψψ incoh|)
to higher values. At the global bifurcation point Ag, the behavior of the breathing chimera
undergoes a significant change in its phase variable. In Fig. 6.4 (d), we depict the time
evolution of cosΘ(t) for the breathing chimera state before (d-1) and after (d-2), i.e., after
the global bifurcation. For A < Ag, the phase variable Θ(t) of the breathing chimera states
evolves within a limited interval smaller than T= [0,2π] (libration). However, after touching
the incoherent state for A > Ag, the phase Θ(t) of the breathing chimera states monotonically
increases over time, sweeping across the entire range of T (rotation).
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Fig. 6.5 (a-d) Time evolution of the magnitude of the order parameter vectors defined in
Eq. (6.3) from solving Eq. (6.1) with N = 30: the first population |ΓΓΓ(1)(t)| (light blue) and
the second population |ΓΓΓ(2)(t)| (orange). (a) The stationary chimera state with A = 0.35.
(b) The breathing chimera state with A = 0.55. (c) The periodic alternating chimera state
with A = 0.75. (d) The chimera state of the broken conserved quantities with A = 0.86.
Insets of (c-d): Time evolution of ΓΓΓ

(1)
1 (t) (blue) and ΓΓΓ

(2)
1 (t) (red). (e) Snapshot of the

oscillators with N = 100. Blue dot: synchronized oscillators xxx(2)j . Red dots: incoherent

oscillators xxx(1)j . Blue curve: ΓΓΓ
(2)(t). Red curve: ΓΓΓ

(1)(t). (f) The histogram of the distribution

of the phases
{

arg
( 1
|ψψψ1|

ψψψ
†
1xxx(1)j

)}N
j=1 for N = 500 and A = 0.35. Red curve indicates the

normalized Poisson kernel in Eq. (6.14). The presented results are based on data obtained
after disregarding the initial transient behavior for t > 104.

6.1.3 Chimera States in Microscopic Dynamics

In this section, we investigate the microscopic dynamics of the system of generalized
Kuramoto-Sakaguchi oscillators in two-population networks. Here, we directly perform
numerical integrations of Eq. (6.1) for C2.

Figure 6.5 (a-d) displays the temporal evolution of the magnitude of the Kuramoto
order parameter |ΓΓΓ(a)(t)|, as defined in Eq.(6.3), for each population a = 1,2. All the
presented outcomes are obtained from random initial conditions of xxx(a)j (0), satisfying
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〈
xxx(a) j(0)

∣∣∣xxx(a) j(0)
〉
= 1 for j = 1, ...,N and a = 1,2. For a given value of A ∈ (ALP,AHB),

i.e., in a region where stationary chimeras exist, the order parameter vector exhibits fluc-
tuations, as we expect for finite-sized systems (Fig.6.5 (a)). Similarly, in Fig. 6.5 (b), the
typical dynamics of breathing chimera states exhibit superposed fluctuations caused by
finite-size effects when A ∈ (AHB,AHom). Additionally, the microscopic dynamics reveals the
occurrence of alternating chimeras (Fig. 6.5 (c)) for a given parameter A ∈ (AHom,Ac). The
alternating chimera state exhibits alternating motion in both the magnitude and individual
components of the order parameter vectors between the two populations (as depicted in the
inset of Fig. 6.5 (c)). Notably, in the microscopic dynamics, we numerically verify that these
three types of chimera states also possess conserved quantities along their trajectories in
phase space. The quantities defined by

C1(t) := sin(Θ1(t)−Θ2(t))

C2(t) :=
(
|m(1)

1 (t)||m(2)
2 (t)|− |m(2)

2 (t)||m(1)
1 (t)|

)2 (6.11)

remains always zero (not shown). Here, ΓΓΓ
(1)=(m(1)

1 ,m(1)
2 )⊤ ∈C2 and ΓΓΓ

(2)=(m(2)
1 ,m(2)

2 )⊤ ∈
C2 are the Kuramto order parameters in Eq. (6.3), and Θi = argm(2)

i − argm(1)
i for i = 1,2.

When the parameter A exceeds Ac, the chimera states undergo a breakdown of their conserved
quantities. Figure 6.5 (d) depicts the time evolution of the order parameters for a chimera
trajectory with a given parameter A > Ac. Clearly, the conserved quantities are no longer
maintained (not shown here). Furthermore, the components of the order parameter vectors
no longer exhibit alternation between the two populations but instead display aperiodic
dynamics (as shown in the inset of Fig. 6.5 (d)). Therefore, our observation of chimera
states in the thermodynamic limit can also be confirmed in ensembles of a finite number of
oscillators. Figure 6.5 (e) shows a snapshot of 100 oscillators, corresponding to the stationary
chimera state. The synchronized oscillators altogether (depicted as blue dots) exhibit identical
behavior along the trajectory of the order parameter ΓΓΓ

(2)(t) (represented by the blue curve).
On the other hand, the incoherent oscillators (depicted as red dots) are dispersed, and their
order parameter ΓΓΓ

(1)(t) (indicated by the red curve) has a lower magnitude compared to
ΓΓΓ
(2)(t).

Finally, one can study the distribution of the incoherent oscillators along the direction of
ψψψ1 as follows. In this context, we consider a stationary chimera state for a specific value of
A ∈ (ALP,AHB), where the magnitude of ψψψ1 reaches a steady value after a transient behavior.
To begin, let us introduce angular variables for the incoherent oscillators along the direction
of the order parameter: eiϕ(t) := 1

|ψψψ1|
ψψψ

†
1xxx(1)(t) and eiϕ0 := 1

|ψψψ1|
ψψψ

†
1xxx(1)0 in the thermodynamic
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limit. Using the generalized Watanabe-Strogatz transformation in Eq. (2.86), we obtain

eiϕ :=
1

|ψψψ1|
ψψψ

†
1xxx(1) =

1
|ψψψ1|

ψψψ
†
1AAA1xxx(1)0 + |ψψψ1|2

|ψψψ1|eiϕ0 +1
(6.12)

with AAA = HHH1/2UUU and HHH1/2
ψψψ1 = ψψψ1 where we can set UUU = IM as long as xxx(1)0 are uniformly

distributed on SM. Algebraically rearranging Eq. (6.12), we obtain

eiϕ0 =
eiϕ −|ψψψ1|

1−|ψψψ1|eiϕ . (6.13)

Denoting ϕ = T (ϕ0) and ϕ0 = T−1(ϕ) (inverse transformation), it leads to d(T∗µ)(ϕ) =

f (ϕ)dϕ where f (ϕ) := 1
2π

∂ϕT−1(ϕ) is the phase density function, and dµ(ϕ0) =
1

2π
dϕ0

since xxx(1)0 are uniformly distributed on SM. Then, we obtain

f (ϕ) =
1

2π
∂ϕT−1(ϕ) =

1
2πi

(
ieiϕ

eiϕ −|ψψψ1|
+

i|ψψψ1|eiϕ

1−|ψψψ1|eiϕ

)
=

1
2π

1−|ψψψ1|2

1−2|ψψψ1|cosϕ + |ψψψ1|2
(6.14)

which is the normalized Poisson kernel distribution. This is reminiscent of the Ott-Antonsen
manifold, which applies to the usual Kuramoto-Sakaguchi oscillators on the unit circle in
C1, where the phases of the oscillators follow the normalized Poisson kernel as described
in Eq. (2.55). In the case of higher dimensions, such as C2, we observe that the oscilla-
tor distribution along the generalized WS variable also satisfies the normalized Poisson
kernel. In Fig. 6.5 (f), the histogram of the distribution (represented by the blue bars) of
ϕ j := 1

|ψψψ1|
ψψψ

†
1xxx j(1) j = 1N is displayed for N = 500 and A = 0.35. The numerical results

obtained from the finite-sized ensemble align well with the analytical prediction (illustrated
by the red curve) given by Eq. (6.14).

6.2 Chimera Dynamics in Two-population Networks for R4

In this section, we investigate the system of identical generalized Kuramoto-Sakaguchi
oscillators in two-population networks for K=R in the thermodynamic limit as a comparison
to Sec. 6.1. The WS variables ψψψa(t) ∈ RM are governed by

∂tψψψa =−ψψψaHHH†
aψψψa +HHHa =−ψψψaHHH⊤

a ψψψa +HHHa (6.15)
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for a = 1,2 where † =⊤ (i.e., hermitian adjoint=transpose) for K= R. In this system, it is
worth noting that the mean-field forcing is expected to differ. This is because the Kuramoto
order parameter does not exactly coincide with the WS variable as described in Eq. (2.103).
Instead, we use ΓΓΓ

(a)(t) = h(|ψψψa|2,M)ψψψa(t). Thus, we have to consider

HHHa := µKKKh(|ψψψa|2,M)ψψψa(t)+νKKKh(|ψψψb|2,M)ψψψb(t) (6.16)

for (a,b) = (1,2) or (2,1). Here, the coupling matrix KKK is a suitable rotational matrix
introduced in Sec. 2.5. In this section, we use the following notations: ψψψ1 = (x1, ...,xM)⊤

and ψψψ2 = (y1, ...,yM)⊤ where xi,yi ∈ R for i = 1, ...,M.
To gain an overview of the observable chimera states, our initial focus is on exploring the

reduced dynamics, i.e., the dynamics of the magnitude of ψψψa. Considering Eq. (6.15), we
obtain

∂tρ1 =
1−ρ2

1
ρ1

(
µh(ρ2

1 ,M)ρ2
1 cosα +νh(ρ2

2 ,M)ξ
)

∂tρ2 =
1−ρ2

2
ρ2

(
µh(ρ2

2 ,M)ρ2
2 cosα +νh(ρ2

1 ,M)
(
ξ cos2α + sin2α

√
ρ2

1 ρ2
2 −ξ 2

))
(6.17)

for the magnitude of the order parameter vectors and

∂tξ = µh(ρ2
1 ,M)

(
ξ (1−ρ

2
1 )cosα + sinα

√
ρ2

1 ρ2
2 −ξ 2

)
+µh(ρ2

2 ,M)

(
ξ (1−ρ

2
2 )cosα − sinα

√
ρ2

1 ρ2
2 −ξ 2

)
+νh(ρ2

1 ,M)

(
(ρ2

1 −ξ
2)cos2α − sin2α

√
ρ2

1 ρ2
2 −ξ 2

)
+νh(ρ2

2 ,M)(ρ2
2 −ξ

2)

(6.18)

for the cross term. Here, ρa := |ψψψa| for a = 1,2 and ξ := ⟨ψψψ1|KKK|ψψψ2⟩ indicates the cross
term. Note that the behavior of the magnitude of ψψψa depends on the dimension M, cf. the
complex space as in Eq. (6.7).
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Fig. 6.6 (a) Bifurcation diagram of stable (solid curve) and unstable (dashed curve) chimera
states in two-population networks. Red: stationary chimeras and Green: breathing chimera
states. LP: limiting point bifurcation, HB: supercritical Hopf bifurcation, Hom: homoclinic
bifurcation, and Ac from which on a chaotic chimera appears. (b) Conserved quantities as a
function of the parameter A. t0 = 20,000 and t1 = 105. (c) Maximum and minimum values
of the magnitude of the WS variable ψψψ1 as a function of the parameter A. All the results are
obtained for R4. (d) Bifurcation points ALP and AHB as a function of the dimension M.

To obtain Eqs. (6.17-6.18), we consider

∂t |ψψψ1|2 = ∂t(ψψψ
†
1ψψψ1)

=−µh1
(
ψψψ

†
1KKKψψψ1ψψψ

†
1 −ψψψ

†
1KKK†)

ψψψ1 −νh2
(
ψψψ

†
1KKKψψψ2ψψψ

†
1 −ψψψ

†
2KKK†)

ψψψ1

−µh1ψψψ
†
1
(
ψψψ1ψψψ

†
1KKK†

ψψψ1 −KKKψψψ1
)
−νh2ψψψ

†
1
(
ψψψ1ψψψ

†
2KKK†

ψψψ1 −KKKψψψ2
)

= 2(1−|ψψψ1|2)
(

µh1

〈
ψψψ1

∣∣∣∣KKK +KKK†

2

∣∣∣∣ψψψ1

〉
+νh2 ⟨ψψψ1|KKK|ψψψ2⟩

)
∂t |ψψψ2|2 = ∂t(ψψψ

†
2ψψψ2)

= 2(1−|ψψψ2|2)
(

µh2

〈
ψψψ2

∣∣∣∣KKK +KKK†

2

∣∣∣∣ψψψ2

〉
+νh1

〈
ψψψ1

∣∣∣KKK†
∣∣∣ψψψ2

〉)
∂t ⟨ψψψ1|KKK|ψψψ2⟩=−µh2

(
|ψψψ1|2 cosα ⟨ψψψ1|KKK|ψψψ2⟩−⟨ψψψ1|ψψψ2⟩

)
−νh2

(
⟨ψψψ1|KKK|ψψψ2⟩

2 −|ψψψ2|2
)

−µh2
(
|ψψψ2|2 cosα ⟨ψψψ1|KKK|ψψψ2⟩−

〈
ψψψ1
∣∣KKK2∣∣ψψψ2

〉)
−νh1

(
⟨ψψψ1|KKK|ψψψ2⟩

〈
ψψψ1

∣∣∣KKK†
∣∣∣ψψψ2

〉
−|ψψψ1|2 cos2α

)
(6.19)
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where ha := h(|ψψψa|2,M) for a = 1,2. Then, we consider the cross term with the coupling
matrix as a variable, i.e., ξ := ⟨ψψψ1|KKK|ψψψ2⟩= |ψψψ1||ψψψ2|cosθ which leads to

⟨ψψψ1|ψψψ2⟩= |ψψψ1||ψψψ2|cos(θ −α) = ξ cosα + sinα

√
|ψψψ1|2|ψψψ2|2 −ξ 2〈

ψψψ1

∣∣∣KKK†
∣∣∣ψψψ2

〉
= |ψψψ1||ψψψ2|cos(θ −2α) = cos2αξ + sin2α

√
|ψψψ1|2|ψψψ2|2 −ξ 2〈

ψψψ1
∣∣KKK2∣∣ψψψ2

〉
= |ψψψ1||ψψψ2|cos(θ +α) = cosαξ − sinα

√
|ψψψ1|2|ψψψ2|2 −ξ 2. (6.20)

Note that for even M, we can easily find
〈

ψψψa

∣∣∣KKK+KKK†

2

∣∣∣ψψψa

〉
= cosα|ψψψa|2. However, for odd M,

we find that chimera states only live in the M⊥-plane. Hence, we assume
〈

ψψψa

∣∣∣KKK+KKK†

2

∣∣∣ψψψa

〉
=

cosα|ψψψa|2 for a = 1,2. Finally, plugging Eq. (6.20) into Eq. (6.19), we obtain Eqs. (6.17-
6.18) in Sec. 6.2.

Here, we only focus on the dynamics for R4 unless stated otherwise. A bifurcation
diagram from Eqs. (6.17-6.18) is depicted in Fig. 6.6 (a), assuming ρ2 = 1. Similar to Fig. 6.4
(a), stable (red, solid) and unstable (red, dashed) chimeras are created in a saddle-node (LP)
bifurcation, however, at a rather large value of ALP compared to the case of C2. Likewise,
the stable stationary chimera state undergoes a supercritical Hopf bifurcation at which a
stable limit-cycle solution, i.e., a breathing chimera state (green, solid) emerges. Increasing
A, the breathing chimera disappears in a homoclinic bifurcation as its period is soaring
up. Moreover, we also observe periodic alternating chimera states in the full component-
dynamics from numerical integrations of Eq. (6.15). For a given A ∈ (AHom,Ac), a periodic
alternating chimera state is found, which also apparently satisfies ψψψ1(t) = ψψψ2(t − T

2 ) and
xi(t) = yi(t − T

2 ) for i = 1, ...,4 where T is the period. We also find two conserved quantities
along the trajectory of the stationary, breathing, and periodic alternating chimera states, as we
did so for the complex spaces. The conserved quantities are here defined as follows. First, we
define angular variables θ1 := tan−1 x2

x1
, θ2 := tan−1 x4

x3
, φ1 := tan−1 y2

y1
, φ2 := tan−1 x4

x3
. Then,

instead of using the unitary transformation, we here notice that Equation (6.15) is equivariant
under a rotational transformation

Q :=

(
R(−θ1) 000

000 R(−θ2)

)
where R(θ) =

(
cosθ sinθ

−sinθ cosθ

)
(6.21)

and Q ∈ R4×4, R(θ) ∈ R2×2, and 000 ∈ R2×2 is the zero-matrix. Therefore, the phase differ-
ences are defined as Θ1 := φ1 −θ1 and Θ2 := φ2 −θ2. The first conserved quantity is written
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by

C1 := sin
(
Θ1 −Θ2

)
(6.22)

and C1(t) = 0 for all t along the chimera trajectory for A< Ac. The second conserved quantity
reads

C2 :=
4

∑
k=1

x2
k

4

∑
k=1

y2
k −
(√

x2
1 + x2

2

√
y2

1 + y2
2 +
√

x2
3 + x2

4

√
y2

3 + y2
4

)2

(6.23)

which arises from the relation

⟨ψψψ1|ψψψ2⟩= |ψψψ1||ψψψ2|cosΘ =
√

x2
1 + x2

2

√
y2

1 + y2
2 cosΘ+

√
x2

3 + x2
4

√
y2

3 + y2
4 cosΘ (6.24)

where Θ := Θ1 = Θ2 since C1 = 0. To show how the aperiodic dynamics occurs, we
also measure supt∈[t0,t1]C1(t) and supt∈[t0,t1]C1(t) as a function of the parameter A with
t0 = 2×104 and t1 = 105. Figure 6.6 (b) shows that these two quantities conserve a value of
zero along the chimera trajectory for A < Ac. Moreover, they are broken along a chimera
trajectory for A > Ac (Fig. 6.6 (b)). For A > Ac, a chimera state shows componentwise
aperiodic motion of the WS variables, similar to the ones in C2 shown in Fig. 6.3.

A global bifurcation involving the completely incoherent state also occurs for the real
spaces. However, this global bifurcation is observed for the periodic alternating chimera
state for A > AHom rather than the breathing chimeras. In Fig. 6.6 (c), the maximum and
the minimum values of |ψψψ incoh| are shown versus the parameter A. With increasing A, the
breathing chimera state exhibits a continuous decrease in min|ψψψ incoh|, eventually seamlessly
connecting to that of the periodic alternating chimera state for A > AHom. These chimera
states are characterized by the phase variable Θ(t) evolving within a smaller interval than
T (libration), similar to the behavior depicted in Fig.6.4 (d-1). As A is further increased,
the alternating chimera state touches the completely incoherent state, and its phase variable
monotonically increases with time (rotation), analogous to the scenario shown in Fig.6.4
(d-2).

Finally, we note that the chimera dynamics in terms of the WS variables depends on
the dimension M of the real space. For small A, the emergence of the chimera states
in low-dimensional real spaces follows the scenario that the stationary chimera state is
born/annihilated in a saddle-node bifurcation (ALP) which undergoes a supercritical Hopf
bifurcation at A = AHB. However, Figure 6.6 (d) shows that the length of the parameter
interval (ALP,AHB) decreases as M increases. This observation suggests that obtaining
stationary chimera states becomes more challenging in higher-dimensional real spaces.
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Moreover, it is difficult to observe other types of chimera states within our numerical
capabilities in higher-dimensional real spaces.

6.3 Summary

In this chapter, we explored a system comprised of identical higher-dimensional Kuramoto-
Sakaguchi oscillators situated on the surface of the unit sphere within two-population net-
works. First, we introduced a suitable coupling matrix for both the real and complex spaces,
analogous to the phase-lag parameter for the conventional KS model on the unit circle. This
parameter assumes significance in determining the Benjamin-Feir instability.

For the 2D complex space C2, particularly in the context of the thermodynamic limit,
we observed the emergence and annihilation of stationary chimeras at a saddle-node bifur-
cation. The stable chimera states undergo a supercritical Hopf bifurcation, giving rise to
stable breathing chimera states. Notably, these breathing chimera states underwent a global
bifurcation involving the completely incoherent state, leading to a shift from libration to
rotation in their phase variable dynamics. Then, the breathing chimera states encounter a
homoclinic bifurcation, after which we observe a periodic alternating chimera dynamics.
It is important to highlight that all three varieties of chimera states presented above were
characterized by two conserved quantities throughout their phase space trajectories. However,
a further reduction in coupling strength resulted in the breaking of these conserved quantities,
leading to componentwise aperiodic dynamics within the chimera trajectory. This scenario of
the emergence of chimera states in the thermodynamic limit can be substantiated by studying
a finite-sized ensemble of identical generalized KS oscillators in two populations on C2.

Finally, we proceeded to compare the results from C2 with the dynamics exhibited
in R4 within the thermodynamic limit. Remarkably, chimera states within the real space
followed a similar scenario, encompassing stationary and breathing chimeras, the presence
of conserved quantities, and ultimately, the breaking of these conserved quantities to become
componentwise aperiodic chimera dynamics. Notably, in this context, the global bifurcation
manifested within the realm of alternating chimera states rather than simple breathing chimera
states.



Chapter 7

Conclusion

As we discussed earlier in the thesis, many natural phenomena cannot be explained, unlike the
doctrine of reductionism, in terms of a simple extrapolation of the properties of the building
blocks, which constitute the complex system. Thus, understanding the complex system
necessarily requires us to investigate collective behavior described in terms of the macro-
scopic observable, as well as the properties of individual building blocks. In this thesis, we
focused on the collective/emergent phenomena in a system of coupled Kuramoto-Sakaguchi
oscillators, with a particular focus on coexistence dynamics of coherence and incoherence.
This coexistence pattern is called a chimera state and is simultaneously composed of a
coherently oscillating part and an incoherently oscillating part, and constitutes a symmetry
broken state. We studied the dynamical and spectral properties of chimera states in a network
of networks, where a system consists of more than one interacting population in each of
which there are numerous Kuramoto-Sakaguchi oscillators. In these systems, the chimera
state emerges through the breaking of the permutation symmetries of populations in a given
topology, i.e., elements of the automorphism group of the graph. We know that the chimera
states are not only just theoretically interesting concepts but also appear in many natural
phenomena and in man-made systems [165, 166, 196–202].

In this thesis, we theoretically and numerically elucidate some interesting and important
properties of chimera states. To do so, we first started in Chap. 2 with discussions about
the theoretical principles by which one can investigate dynamical and spectral properties of
chimera patterns as collective behavior in a network of networks. Therein, we studied how
to construct an ensemble of Kuramoto-Sakaguchi phase oscillators, starting from a single
oscillator as a building block of the system. Next, we revisited dimension reduction methods
of sinusoidally coupled systems, which allows for the description of the system’s macroscopic
dynamics in terms of a few dynamical variables, for both standard and higher-dimensional
Kuramoto oscillator ensembles. Moreover, we reviewed Lyapunov stability analysis which
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has been exploited throughout the thesis in order to investigate spectral properties of chimera
states.

For the exploration of chimera states, we considered two aspects in this thesis: (a) How
the complexity of the network topology, i.e., topology of a network of networks, affects
observable chimera dynamics and (b) how the macroscopic dynamics of chimera states
behaves, i.e., the dynamics of the Kuramoto order parameter. In Chap. 3, we investigated a
system of identical Kuramoto-Sakaguchi oscillators in two-population networks, as the first
example of a network of networks. This network topology can be considered the simplest
network where one can explore chimera dynamics of coupled oscillators. In this system,
chimera states consist of one synchronized population, where the modulus of the Kuramoto
order parameter is unity, and one other incoherent population where the modulus of the
Kuramoto order parameter is less than unity, showing various dynamics depending on a
given parameter. This system exhibits the simplest chimera dynamics in the Ott-Antonsen
manifold and in a finite-sized system with uniform constants of motion, i.e., with a PIC.
Such simplest chimeras appear as an equilibrium solution in terms of its Kuramoto order
parameter in the OA manifold, i.e., a stationary chimera state, while it accompanies a regular,
secondary oscillation superimposed to the OA solution for the finite-sized ensembles. We
also observed a breathing chimera state in the simplest form as a stable limit-cycle solution
of the OA equation and also in a finite-sized ensemble with uniform constants of motion
or PICs after a supercritical Hopf bifurcation. On the other hand, we further supported
that outside the OA manifold or with n-PICs, chimera states show an irregular dynamics
of the Kuramoto order parameter that cannot be understood in terms of the OA dynamics.
Moreover, we explained how such irregular dynamics appears in terms of Lyapunov stability
analysis. It is due to many neutrally stable directions arising from constants of motion of the
dynamics and we confirmed it by investigating Lyapunov exponents and covariant Lyapunov
vectors. Finally, we studied how the complexity of topology in two-population networks and
how higher-dimensional complexity, namely, amplitude oscillators, influences the chimera
dynamics by considering nonlocal intra-population topology and a system of Stuart-Landau
oscillators, respectively. Both cases render the chimera states attracting in phase space.

Next, for the second example of a network of networks, we increased the complexity
of the network topology, i.e., we considered a system of identical Kuramoto-Sakaguchi
oscillators in three-population networks in Chapt. 4. In this system, we observed symmetric
chimera states, namely, SDS and DSD chimeras where two populations behave identically in
terms of their order parameter dynamics. The symmetric chimera states appear in various
forms of Kuramoto order parameter dynamics such as stationary and breathing chimeras,
depending on a parameter set. Furthermore, the three-population network of KS oscillators
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can show a symmetry-broken chimera state in a form of DSD′ in full-dimensional phase
space. The symmetry-broken chimera states arise from the transverse perturbations to the
symmetric DSD-chimeras wherein the two D-populations move in opposite directions and
are characterized by a periodic alternation of the two Kuramoto order parameters for the two
incoherent populations. However, when we consider the system outside the OA manifold
using nonuniform constants of motion or n-PICs, the symmetry-broken chimera states
constitute a chaotic attractor where the Kuramoto order parameter dynamics shows aperiodic
motion. Moreover, we found that the chaotic chimera attractor coexists with a periodic DSD′

chimera state and a stationary SDS chimera state in phase space. Consequently, the simple
transition from two- to three-population networks results in an enriched Kuramoto order
parameter dynamics. In particular, symmetry-broken chimeras emerge from the breaking of
the cyclic permutations of the populations via transverse perturbations. Hence, we can expect
that the more complex the topology is, the richer the Kuramoto order parameter dynamics can
be. If such a simple transition from two- to three-population networks brings forth various
chimera dynamics concerning its Kuramto order parameter, how much more diverse can the
dynamics become in more complex topologies of networks?

In Chap. 5, we further increased the complexity of the network topology to a ring of six
oscillator populations. This complex network topology gives rise to a rather different chimera
dynamics, namely, a heteroclinic switching between saddle chimera states. The observable
saddle chimera states are characterized by one incoherent and five synchronized populations
and found to be unstable by linear stability analysis. However, they can form a heteroclinic
cycle in phase space due to cyclic permutation symmetries of the ring of six populations
and their stable/unstable manifold structure. The heteroclinic switching dynamics shows
stationary and breathing chimera dynamics inside the OA manifold as well as quasiperiodic
motions of the Kuramoto order parameter for the incoherent population outside the OA
manifold. The saddle chimera states emerge from the breaking of the cyclic permutations
of the populations in a ring while the heteroclinic switching dynamics restores the broken
symmetry in terms of the long-term dynamics. The robust presence of heteroclinic cycles
displaying diverse Kuramoto order parameter dynamics stands out distinctly when compared
to the dynamics observed in alternative network topologies. In scenarios involving 3, 4, 5, 7,
and 8 populations arranged in a ring, we did not detect any instances of switching dynamics
between chimera states initiated from random initial conditions. The reason why others
do not exhibit the switching dynamics of chimera states is now unclear and can be further
investigated in the future. Thus, one could say that the ring of six oscillator populations has
not only more symmetries than two- or three-population networks but also has an appropriate
symmetry that can bring forth the switching chimera dynamics. Thus, we learned that not
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only the complexity of the topology but also an appropriate symmetry of the topology is of
great importance when it comes to the Kuramoto order parameter dynamics of the chimera
states in a network of networks.

Finally, in Chap. 6, we considered a system of higher-dimensional Kuramoto-Sakaguchi
oscillators in two-population networks. In this chapter, we studied how the higher-dimensional
complexity affects the chimera dynamics, not the complexity of its topology. Note that in
Chap. 3, we considered a system of Stuart-Landau oscillators in two-population networks as
another higher-dimensional complexity. We demonstrated here that not only the topological
complexity but also the higher-dimensional complexity of the oscillator ensembles gives rise
to more complex motions of order parameter dynamics. Due to the higher-dimensional nature
of the Kuramoto order parameter vectors, we observed a periodic alternation of magnitudes
of the Kuramoto order parameter vectors, and they also show componentwise aperiodic
dynamics by the breaking of the conserved quantities.

In this thesis, we thoroughly explored the coexistence dynamics of a system of iden-
tical Kuratmo-Sakaguchi oscillators, considering various network topologies and higher-
dimensional complexities. In a network of networks, chimera states emerge via the breaking
of permutation symmetries of the populations in a given topology. Note that the chimera
states were originally observed in a ring geometry, arising from the breaking of the transla-
tional invariance. Thus, introducing more complex network topology gives rise to various
complex chimera motions in terms of the Kuramoto order parameter for the incoherent
populations. Starting from two-population networks, we visited three-population networks
that exhibit symmetric and symmetry-broken chimera states, and move further to a ring of
six oscillator populations where the heteroclinic switching chimera dynamics can be detected
due to cyclic permutations of populations in a ring. Thus, we studied various chimera patterns
whose order parameter dynamics is dominated by network symmetry, and explored how such
network topology affects the observable chimera patterns as macroscopic dynamics.

Such studies enhanced our understanding of chimera dynamics and can lead us to a variety
of future explorations for coexistence dynamics of coherence and incoherence in physics,
biology, chemical oscillations, and even to engineering systems. Nowadays, investigations of
chimera states become of great importance in many interdisciplinary fields. For example,
scientists, mathematicians, and engineers gathered at the workshop named Chimera States:
From theory and experiments to technology and living systems and discussed/shared their
impressive studies of chimera patterns [203]. As implied by the workshop’s title, delving
into chimera states can pave the way for insights and practical applications related to the
collective and emergent behaviors of coupled oscillators in various fields, including living
systems, technology, and experimental and theoretical research. Particularly, it does not stop
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at a theoretical/mathematical play but rather it goes further to understandings of emergent
behaviors in nature and man-made systems. Therefore, as the next step, it is possible to
explore numerous real-world phenomena that demonstrate the coexistence of incoherent and
coherent oscillations such as unihemispheric sleep, onset of epileptic seizure, symmetry-
breaking cluster patterns in a complex network, coexistence patterns in neural networks,
chemical oscillation or quantum-mechanical systems, as introduced in Ref. [203], and their
fundamental characteristics by leveraging the dynamics and the properties of chimera states
as discussed throughout this thesis.





Appendix A

Collective Dynamics I: Nontrivial Twisted
States

In this thesis, our main concerns are chimera states in a network of networks where each
network consists of globally coupled identical oscillators. In all-to-all coupling or a system on
a network topology, there is no spatial information but rather they are coupled via a topology
defined by Gi j =

1
L and a given adjacency matrix Gi j = Ai j, respectively. On the other hand,

for Eq. (2.9), another situation can be considered to introduce a geometrical coupling scheme.
To give a concrete example, we here discuss a system of (spatially) nonlocally coupled
Stuart-Landau oscillators on a ring geometry. In this system, the oscillators, geometrically
arranged on a ring, show collective dynamics in the form of a spatiotemporal pattern. The
coupling function is given by a nonconstant, piece-wise smooth function G jk = G(x j −
xk) where x j =

L( j−1)
N−1 for j = 1, ...,N. Moreover, it has been observed that the system

of nonlocally coupled oscillators can also exhibit chimera states with various coupling
functions [54, 66, 67, 71, 170]. In fact, the chimera states were originally observed in such a
system [53].

In a ring of nonlocally coupled oscillators, there exists a significant form of collective
dynamics called a twisted state [118, 204, 171, 205, 206]. The ‘traditional’ twisted state,
which we call a trivial twisted state (TTS), is characterized by the fact that the phase difference
between adjacent oscillators is always the same along the ring. The phase distribution gains an
integer multiple of 2π when it is traced along the ring. This means the phase profile satisfies
φ(x, t) = 2πq

L x+Ωt where Ω is a collective frequency and L is the length of the medium.
The phase gradient is everywhere constant, given by ∂xφ(x, t) = 2πq

L with a winding number

The contents of this section are written by revisiting S. Lee and K. Krischer, Phys. Rev. E 106, 044210
(2022) [121]. All figures and captions are reproduced directly from it.
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q ∈ Z where ∂x := ∂

∂x . For the TTS, the amplitude variables are distributed homogeneously
on the ring, which then follows r(x, t) = r0 ≈ 1 for all x ∈ [0,L] =: D. Hence, the TTS can
be studied in the phase-reduced model as we discussed in Sec. 2.2.

In this Appendix, we explore another type of twisted states in a ring of nonlocally coupled
oscillators. It is called a nontrivial twisted state (NTS) [121], compared to the trivial twisted
state (TTS) characterized above. What looks different is that the NTS is characterized by a
non-constant gradient of the phase profile, that is, ∂xφ(x, t) ̸= const. and an inhomogeneous
amplitude profile r(x, t) ̸= const. for all x ∈ D. Due to the inhomogeneous amplitude profile,
the NTS cannot be treated in the framework of the phase model as introduced in Sec. 2.2.
Hence, we need to study the Stuart-Landau oscillators themselves. Furthermore, the NTS
solution occurs as a coherent traveling wave of the system [60], with a fixed shape and a
constant speed. Nevertheless, we can define a winding number for the NTS since the phase
still advances by a multiple of 2π as going once around the ring. A similar observation to the
NTS was reported in Ref. [207].

A.1 Nontrivial Twisted State

A.1.1 Governing Equation and Observable Collective Dynamics

To observe an NTS, we consider a system of nonlocally coupled, identical Stuart-Landau
oscillators along a 1D ring of length |D| = L. The building block of this system is repre-
sented by a complex-valued dynamical oscillator W (x, t) = r(x, t)eiφ(x,t) ∈ C for x ∈ D. The
oscillator field is governed by

∂

∂ t
W (x, t) = F (W (x, t))+ εe−iα(H(x,t))H(x, t)

= (1+ iω)W (x, t)−|W (x, t)|2W (x, t)+ εe−iα(H(x,t))
∫ L

0
G(x− x′)W (x′, t)dx′

(A.1)

with periodic boundary condition, i.e., W (0, t) = W (L, t) for all t. The (uncoupled) local
dynamics of a building block is given by a Stuart-Landau oscillator F (W ) = (1+ iω)W −
|W |2W [69, 68, 65]. Note that Eq. (A.1) can be obtained from Eq. (2.7) with an appropriate
set of parameters. Here, the phase-lag is not just a constant but rather the nonlinear phase-lag
function is assumed to be α(H(x, t)) = α0 +α1|H(x, t)|2 with real parameters α0, α1 ∈ R.
The coupling strength is denoted by ε ∈R and the natural frequency of the identical oscillators
is set to ω = 0.
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Now, we are ready to specify a nonlocal coupling function G(y) for |y|< L/2. To do so,
we first assume that an oscillator located at x ∈ D is nonlocally influenced by the forcing
field H(x, t). Also, the forcing field is assumed to be governed by an auxiliary equation that
reads [63, 208, 209]

τ
∂

∂ t
H(x, t) =

1
κ2

∂ 2

∂x2 H(x, t)−H(x, t)+W (x, t) (A.2)

which characterizes the nonlocal coupling feature of the system. The parameter κ−1 ∈ R
determines the interaction range with the dimension of length while the parameter τ indicates
the characteristic time scale of the forcing field H(x, t) in the auxiliary equation. In the
limit of τ → 0, the forcing field then satisfies an inhomogenous Helmholtz equation with the
periodic boundary condition, H(0, t) = H(L, t) and ∂xH(0, t) = ∂xH(L, t) such that

∂ 2

∂x2 H(x, t)−κ
2H(x, t) =−κ

2W (x, t). (A.3)

This gives the nonlocal coupling function G(y) as the Green’s function of it, i.e.,

G(y) =
κ

2sinh(κL/2)
cosh

(
κ(|y|−L/2)

)
(A.4)

for |y| ≤ L/2 so that the normalization condition
∫ L/2
−L/2 G(y)dy = 1 holds. Finally, the forcing

field can be rewritten as an integral convolution operator which reads

H(x, t) = (GW )(x, t) :=
∫ L

0
G(x− x′)W (x′, t)dx′. (A.5)

Note that κ−1 characterizes the length of the medium. In the limit of κL → ∞, the coupling
kernel becomes G(x) = κe−κ|x|/2, as used in [53]. In the following (up to Sec. A.3),
we use the following parameter values: ε = 1, κ = 4.874, L = 1, α0 = −0.4π and α1 =

−(π/2+α0)/0.36. In this setup, the coupling strength ε cannot be considered small, which
would justify the use of the phase-reduced model. Hence, not only the phase variables but
also the amplitude variables may display nontrivial dynamics.

For the exploration of the NTS, we consider the microscopic dynamics of the finite-
size approximation with N = 200 oscillators. The discrete system of nonlocally coupled
Stuart-Landau oscillators is governed by

∂tφ j(t) = ω +
ε

r j
Im
[
H j(t)e−iφ je−iα(H j(t))

]
(A.6)
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Fig. A.1 Nontrivial twisted state dynamics obtained from a random initial condition. (a)
Amplitude profiles at t = 104 (gray) and t + 2 (black), (b) spatio-temporal evolution of
the amplitude (t ≥ 105), (c) phase profiles at t = 104 (gray) and t + 2 (black), (d) spatio-
temporal evolution of the phase (t ≥ 105). Other parameter values: ε = 1, κ = 4.874, L = 1,
α0 =−0.4π and α1 =−(π/2+α0)/0.36.

and

∂tr j(t) = r j − r3
j + εRe

[
H j(t)e−iφ je−iα(H j(t))

]
(A.7)

where r j(t)eiφ j(t) =W (x j, t) and H j(t) = H(x j, t) for x j =
L( j−1)

N−1 for j = 1,2, ...,N.
In Fig. A.1, an example of observed nontrivial twisted states is depicted: the amplitude

dynamics r j(t) (a,b) and the phase dynamics φ j(t) (c,d) are shown, respectively. First, the
amplitude profile forms a smooth time-dependent curve as a function of the spatial variable
x ∈ D for a fixed t while it travels along the ring with that shape fixed and a constant speed,
i.e., it constitues a traveling wave solution. Second, the phase snapshots in Fig. A.1 (c) show
that the phase profile is also smooth along the ring for a fixed t. Moreover, the phases of the
oscillators are uniformly rotating with a common collective frequency Ω as well as traveling
with the lateral speed c (Fig. A.1 (c,d)). In a rotating reference frame, an NTS appears
as a traveling wave solution due to the phase shift-invariance of the system. Note that the
phase profile does not have a constant-valued gradient as a function of x but rather we find
∂xφ(x, t) ̸= const., which makes an NTS different from a TTS. In spite of this, we can define
the winding number of the phase distribution as follows. The phase difference modulo 2π in
the interval [−π,π) is written as ∆i, j := φi −φ j with φN+1 ≡ φ1. Then, it follows that we can
define the winding number as

q =
1

2π

N

∑
j=1

∆ j+1, j ∈ Z. (A.8)
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Fig. A.2 (a) Red curve: Snapshot of the amplitude profile of an NTS on the ring, i.e.,
r(2π

L x)cos(2π

L x) vs. r(2π

L x)sin(2π

L x) for x ∈ [0,L] and N = 200; black line: trajectory of
the first oscillator in the complex plane: Re[W1(t)] vs. Im[W1(t)]); (b) Instantaneous phase
velocity of the individual oscillators as a function of time for N = 6. (c) Time evolution of
Re[W (t)] for N = 200. The black line highlights the time series of one of the oscillators. (d)
Poincaré map of W10 (blue, dark gray) and W90 (red, light gray) in the complex plane where
the Poincaré section is defined by φ1(t)≡ 0 (mod2π). (e) Modulus of the global Kuramoto
order parameter as a function of time for different system sizes N (increasing from bottom
to top). All numerical values shown for t ≥ 104. (f) Period of the modulus of the global
Kuramoto order parameter as a function of the system size N. The numerically obtained
value (red circle) coincides with T/N (blue square).

Depending on an initial condition, we can numerically obtain q =±1 for a nontrivial twisted
state with ∆ j+1, j ̸= const at this parameter set. For example, in Fig. A.1, q =−1.

The NTS is not just a traveling wave solution but it is a coherent traveling wave. The
coherent traveling wave is defined as a traveling wave solution that exhibits locally coherent
phases everywhere [60]. To see this, we introduce the local order parameter z(x, t) for the
NTS as a function of x. The local order parameter characterizes the degree of coherence of
oscillator phases in a small neighborhood of a given x ∈ D, which is defined by [71, 210]

z(x, t) = lim
N→∞

1
|BN

δ
(x)| ∑

j∈BN
δ
(x)

eiφ j(t) (A.9)

with BN
δ
(x) = { j : 1 ≤ j ≤ N, |x− x j| < δ} for small enough 0 < δ ≪ 1. Equation (A.9)

provides a definition of the local order parameter and how to calculate it numerically from
the finite-sized microscopic dynamics. In the continuum limit, Equation (A.9) is equivalent
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to

z(x, t) =
1

2δ

∫ x+δ

x−δ

eiφ(x′,t)dx′ (A.10)

for 0 < δ ≪ 1 [118, 69]. Thus, the local order parameter demonstrates a coarse-grained
observable that is continuous both in x and t, and thus characterizes a local degree of
coherence in a small neighborhood around x ∈ D [61, 60, 101]. Note that in general φ(x, t)
is not continuous. For the NTS, we obtain |z(x, t)|= 1 for all x ∈ D and all t, confirming that
the NTS is an everywhere coherent traveling wave solution as a TTS is.

We now investigate the microscopic dynamical properties of the NTS. In Fig. A.2 (a),
the trajectory of an oscillator in the NTS (black line) is shown together with a snapshot
of the amplitude profile (red curve) in the complex plane. The trajectories encircle the
origin, but exhibit a backward motion in its phase when the amplitude goes through a
pronounced deformation from a circular structure (cf. also Fig. A.1 (d)). The reversal of the
direction of the phase change is due to the negative values the instantaneous phase velocity
attains when the amplitude variable goes through the hump (Fig. A.2 (b)). In Fig. A.2 (b),
the time evolution of the instantaneous frequency of each oscillator is depicted. They are
equally shifted in the time interval of the period T where φ̇ j(t) = φ̇ j(t −T ) for j = 1, ...,N.
The time evolution of Re(W ) of the oscillators is shown in Fig. A.2 (c). The real part of
each individual Stuart-Landau oscillator displays an irregular oscillation (illustrated by the
black highlighted curve) whereas the motion of the entire oscillators fills the figure with a
periodically oscillating envelope. In Fig. A.2 (d), the motions of two representative oscillators
(W10 and W90) are depicted on the Poincaré section defined by φ1(t) ≡ 0 (mod 2π). The
trajectory of the oscillator on the section forms closed curves, as expected for a quasi-periodic
motion in phase space.

To study the macroscopic dynamical properties of the NTS, we obtain the modulus of the
global Kuramoto order parameter defined as

Γ(t) :=
1
L

∫ L

0
eiφ(x,t)dx (A.11)

which corresponds to

Γ(t) :=
1
N

N

∑
j=1

eiφ j(t) (A.12)

in the finite-sized ensemble. In Fig. A.2 (e), the modulus of the global Kuramoto order
parameter |Γ| is shown as a periodic motion for small system size N. Also, we notice that
the period and amplitude of it decrease as N increases. After all, |Γ| eventually reaches a
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constant value, and Γ(t) rotates uniformly with Ω, i.e., Γ(t) = |Γ|eiΩt . This reminds us of the
order parameter behavior of the Poisson chimeras in two-population networks in Sec. 3. In
Fig. A.2 (b), we find that the instantaneous phase velocities {φ̇i(t)}N

i=1 of all oscillators are
periodic functions with the same period T ≈ 23, and they have identical shapes yet equally
shifted in the time interval of T . Hence, we can assume that φ̇i(t − j

N T ) = φ̇i+ j(t) for an
arbitrary j ∈ {1, ...,N}, which gives φi(t − T

N ) = φi+1(t)+Θ0 for i = 1, ...,N with a common
constant shift Θ0 ∈ R and φ1 ≡ φN+1. Substituting this into Eq. (A.11), we obtain

|Γ(t)|=
∣∣∣∣ 1
N

N

∑
j=1

eiφ j+1(t)
∣∣∣∣= ∣∣∣∣e−iΘ0

N

N

∑
j=1

eiφ j(t− T
N )

∣∣∣∣= |Γ(t − T
N
)|= |Γ(t − τ)| (A.13)

which eventually leads to |Γ(t)|= |Γ(t − τ)| for ∀t where τ = T
N . The modulus of the global

Kuramoto order parameter is T
N -periodic. This conjecture can be further verified by measuring

the period of |Γ| numerically from Eq. (A.11) and comparing it with τ = T/N where T is the
period of each instantaneous phase velocity in Fig. A.2 (f). In fact, this reveals the difference
between an NTS and a TTS in terms of the macroscopic dynamics. The global Kuramoto
order parameter |Γ(t)|= 0 for all N ∈ N for a TTS.

A.1.2 Linear Stability of the Nontrivial Twisted States

In this section, we study the stability of the NTS both for a continuous system and a discrete
ensemble. First, in the continuous system, the NTS is treated as a stationary solution for both
the phase and amplitude profiles in a reference frame moving with the constant lateral speed
c and uniformly rotating with Ω. Here, we assume that

W (x, t) =W0(ξ )eiΩt (A.14)

where ξ = x− ct. Then the winding number of the NTS is obtained by

q =
1

2π

N

∑
j=1

(Φ j+1 −Φ j) (A.15)

where Φ j = argW0(ξ j) at ξ j =
( j−1)
N−1 ∈ D for j = 1, ...,N. The stationary profile of the NTS

satisfies

−c∂ξW0(ξ ) = (1+ i∆)W0(ξ )−|W0(ξ )|2W0(ξ )+ εe−iα((GW0)(ξ ))(GW0)(ξ ) (A.16)
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where ∂ξ := d
dξ

and ∆ = ω −Ω is a real unknown constant. Here, the integral convolution
operator is written as

(GW0)(ξ ) = H0(ξ ) =
∫ L

0
G(ξ −ξ

′)W0(ξ
′)dξ

′ (A.17)

where G(y) is defined in Eq. (A.4).
As we did in Sec. 2.3, the linear stability of the stationary solution can be investigated by

linearizing the evolution equation around the stationary wave profile and then determining
the eigenvalues of the Jacobian matrix evaluated at the stationary solution. To this end, we
introduce a coordinate transformation

W0(ξ ) = X0(ξ )+ iY0(ξ ) (A.18)

where ReW0 =X0 and ImW0 =Y0 are real-valued functions that are periodic in ξ : X0(ξ +L)=
X0(ξ ) and Y0(ξ +L) = Y0(ξ ). Then, the stationary wave solution satisfies

−c∂ξ

(
X0

Y0

)
=

[(
1 −∆

∆ 1

)
− (X2

0 +Y 2
0 )I2

](
X0

Y0

)
+ ε

(
cosα sinα

−sinα cosα

)(
(G X0)(ξ )

(GY0)(ξ )

)
(A.19)

where α = α0 +α1|H0(ξ )|2 and I2 ∈ R2×2 is the identity matrix. To obtain the linearized
equation, we impose a small deviation onto W0(ξ ): v1(ξ , t) = X(ξ , t)−X0(ξ ) and v2(ξ , t) =
Y (ξ , t)−Y0(ξ ) with |vi| ≪ 1 for i = 1,2. By treating ξ here as a time-independent spatial
variable, we obtain the linearized equation as

dV
dt

= LV (A.20)

where V = (v1,v2)
⊤ and L := M+K is a time-independent linear operator whose point and

continuous spectra σ(L) = σpt(L)∪σcont(L) determine the linear stability of the profiles of
the NTS. To numerically obtain the spectra, we uniformly discretize operators calculated at
each ξ = ξ j for j = 1, ...,M with M ≫ 1 [63]. The multiplication operator then reads

(MV)(ξ ) = M(ξ )V(ξ ) =

[(
cD+2Y2

0 −∆

∆ cD+2X2
0

)
+

(
Re η(ξ ) Im η(ξ )

Im η(ξ ) Re η(ξ )

)]
V(ξ )

(A.21)
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where η(ξ ) = 1−3(X2
0 +Y 2

0 )− i2X0Y0 ∈ CM×M and D ∈ CM×M is a differential operator1.
From the numerical evaluation, we observe that the multiplication operator M only has a
discretization of continuous spectrum branches σ(M) = σcont(M) [61]. On the other hand,
the compact integral operator K is given by

(KV)(ξ ) = ε

(
A(ξ )+2α1B(ξ )

)(
(G v1)(ξ )

(G v2)(ξ )

)
,

A(ξ ) =

(
cosα sinα

−sinα cosα

)
, α = α0 +α1|H0(ξ )|2,

B(ξ ) =

(
−sinα cosα

−cosα −sinα

)(
Re2H0 0

0 Im2H0

)
+ ImH0ReH0

(
cosα −sinα

−sinα −cosα

)
,

(G vi)(ξ ) =
∫ L

0
G(ξ −ξ

′)vi(ξ
′)dξ

′, i = 1,2 (A.22)

where Re2H0 =(ReH0)
2 and Im2H0 =(ImH0)

2 are also discretized with the same method [63].
In Fig. A.3 (a), the eigenvalues of the linear operator L are shown in the complex plane.

Note that the eigenvalues with large imaginary parts outside of the continuous branches
are spurious eigenvalues due to the numerical evaluation, especially in the discretization
of the differential operator [212]. The two (discretized forms of) continuous branches
correspond to phase and amplitude variables, respectively. These continuous branches
obtained from the entire linear operator, i.e., σcont(L) coincide with the eigenvalues of
the multiplication operator, i.e., σ(M). Thus, the continuous branches are invariant under
the compact operator K [61, 60]. In Fig. A.3 (b), a magnification of (a) is shown for the
eigenvalues with the small imaginary part. There are a few scattered eigenvalues (blue) in
σ(L). Since σpt(L) = σ(L)\σ(M) = σ(L)\σcont(L), we can identify them as the point
spectrum [61, 60]. The point spectrum has one zero eigenvalue arising from the translational
invariance, not affecting the stability of the solution. All other eigenvalues have a negative
real part, ensuring that the observed NTS is linearly stable. Note that an unstable TTS
exists at the same parameter value where the stable NTS occurs. The linearized operator for
the TTS has two complex conjugate eigenvalues with positive real parts. It is therefore an
unstable solution (Fig. A.3 (c)).

1For the numerical calculation, we exploit the differential operator in Ref. [211].
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Fig. A.3 (a) Eigenvalues of the linearized system around the NTS solution in a reference
frame moving with c and rotating with Ω. (b) Magnification of (a) to highlight the eigenvalues
with small imaginary part. The blue filled dots indicate the eigenvalues which do not coincide
with the eigenvalues of the multiplication operator, i.e. σ(L) \σ(M), and the black dots
display a discretization of the continuous spectrum. These eigenvalues are obtained from
the discretization of the linear operator with M = 210. (c) Some eigenvalues of the unstable,
coexisting TTS near the origin of the complex plane. The parameters are specified in
Sec. A.1.1.

Next, we investigate the stability of the NTS in a finite-sized system. For a finite-sized
ensemble, an NTS cannot be represented as a stationary solution in an appropriate reference
frame. Hence, to study its spectral properties, we exploit the Lyapunov stability analysis
in Sec. 2.6. Let us say an NTS is our time-evolving reference trajectory in the phase space.
In Sec. 2.6, we studied that the tangent space dynamics is governed by the Jacobian matrix,
which reads

(J)i j =

 ∂ φ̇i
∂φ j

∂ φ̇i
∂ r j

∂ ṙi
∂φ j

∂ ṙi
∂ r j

 ∈ R2N×2N , i, j = 1, ...,N. (A.23)
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Fig. A.4 (a) Lyapunov exponents of the NTS as a function of the re-scaled index ν for
various system sizes. The red dots reproduce the real parts of the eigenvalues obtained from
the continuum limit analysis. The inset depicts the first half of the Lyapunov spectrum for
N = 40. (b) and (c) The IPR as a function of system size N corresponding to the discrete
Lyapunov exponents around ν = 0.0 and ν = 1.0, respectively.

Then, we can follow the instruction of Sec. 2.6: Defining the tangent linear propagator
M(t, t0) = O(t)O−1(t0) where O(t) is the fundamental matrix solution of Ȯ(t) = J(t)O(t)
with the identity matrix O(0) = I2N , we obtain the Lyapunov exponents Λi as an exponential
growth rate

Λi = lim
t→∞

1
t

log
||M(t, t0)u(t0)||

||u(t0)||
(A.24)

along the perturbation vector in the tangent space TxNTS(t)(R2N) where xNTS(t) is a given
NTS reference trajectory in phase space, and u(t0) is an initial perturbation vector belonging
to each Oseledets’ splitting for i = 1, ...,2N.

In Fig. A.4 (a), Lyapunov spectra Λ(ν) are depicted for different system sizes N as a
function of the re-scaled index ν = i−1

2N−1 (black and gray tone) together with the real part of
σ(L) from the above analysis in the continuum limit (red points). Regardless of the system
size, there are two zero Lyapunov exponents which arise from the two continuous symmetries:
the time shift invariance due to the autonomous governing equations, and the phase shift
invariance, W →Weiχ for χ ∈ R as discussed in Sec. 2.1. These two perturbations do not
affect the stability of the NTS reference trajectory. Except for these two zero LEs, all other
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Lyapunov exponents are negative. The negative Lyapunov exponents confirm that a local
perturbation to the NTS trajectory exponentially decays to the trajectory and thus the NTS
solution is stable. Furthermore, comparing the Lyapunov exponents with σ(L), we classify
the LEs into two groups: discrete Lyapunov exponents and continuous branches, respectively.
In Fig. A.4 (a), some of the exponents approach continuous branches with nearly identical
values as N increases, whereas others remain discrete outside of the continuous branches.
This implies that for N → ∞ the Lyapunov spectrum converges to the real part of σ(L) in
the continuum limit, which resembles the spectral properties of chimera states reported in
Ref. [71].

One further remark on the Lyapunov analysis is concerned with the collective Lyapunov
modes. The traveling wave solution in fact is dominated by some collective modes since all
elements behave in the same way and the ensemble of them forms a propagating structure.
To capture the collective modes of the wave, we also exploit the Lyapunov analysis. Using
the CLVs, we can measure the time-averaged inverse participation ratios (IPRs) as a function
of N, which are defined by [213]

IPR(i)(N) =

〈
exp

(
1

q−1
log

2N

∑
j=1

∣∣∣∣v(i)j (t)
∣∣∣∣2q
)〉

t

(A.25)

where q = 2 and IPR(i) ∈ [(2N)−1,1] and v(i)j is the jth component of the CLV v(i) ∈
TxNTS(t)(R2N) corresponding to a certain Lyapunov exponent Λi(N) in Eq. (A.24) for i =
1, ...,2N. The IPR gives a way to capture the so-called collective Lyapunov modes. A CLV
is a collective Lyapunov mode if IPR(i)(N) ∼ 1

N as N → ∞, which means the CLV evenly
spreads out through all the oscillators [213]. In contrast, when IPR(i)(N) ∼ const. as N
increases, the vector is well localized.

In Fig. A.4 (b-c), the IPRs are depicted as a function of N for the first and the last
few Lyapunov modes, i.e., the discrete LEs near ν ≳ 0.0 and ν ≲ 1.0, respectively. We
numerically find IPR(N) ∼ 1

N as N increases. Therefore, these modes are the collective
Lyapunov modes. Also the discrete LEs around ν = i−1

2N−1 ≈ 0.5 show the same scaling, so
that they too are collective Lyapunov modes. All these numerical observations lead us to the
conclusion that an NTS trajectory is indeed dominated by collective modes as anticipated for
a traveling wave solution.
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Fig. A.5 NTS in a system with heterogeneous natural frequencies (γ = 0.002). (a) Phase
snapshot and (b) amplitude snapshot with N = 1600. (c) Lyapunov exponents for N =
40,60,80,100, and 120. Inset: IPR as a function of the system size for the first five modes in
ν ≥ 0.5.

A.2 Nonidentical Oscillators

Thus far, we have discussed the NTS in a system of identical Stuart-Landau oscillators on
a ring. Would an NTS remain, if a heterogeneity is imposed on the natural frequencies of
Stuart-Landau oscillators, which seems more realistic than identical oscillator systems? In
this section, we demonstrate the robustness of the NTS against adding a small heterogeneity
to the natural frequencies. To this end, we consider the Cauchy-Lorentz distribution

g(ω) =
γ

π

1
ω2 + γ2 (A.26)

that leads us to

j− 1
2

N
=
∫

ω̃ j

−∞

g(ω)dω =
1
2
+

1
π

tan−1(ω̃ j

γ

)
(A.27)

for j = 1, ...,N and for γ = 0.002 (a small heterogeneity). Note that since the system is not
all-to-all coupled, we need to mix the natural frequencies obtained above to assign randomly
distributed natural frequencies to the oscillators.
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The system of nonlocally coupled Stuart-Landau oscillators with natural frequency
heterogeneity also shows an NTS solution. In Fig. A.5 (a-b), snapshots of phase and
amplitude profiles are depicted for the heterogeneous Stuart-Landau oscillators. They look
similar to the NTS in Fig. A.1, and also the amplitude and phase variables travel along the
ring while the phase variables are rotating, yet not with the same angular frequency. However,
the NTS with heterogeneity is not a coherent wave solution, i.e., |z(x, t)| ̸= 1 for all x ∈D but
rather it is a partially coherent wave solution (0 < |z(x, t)|< 1 for all x ∈ D) that resembles a
partially coherent twisted state reported in Refs. [204, 117, 118]. To investigate the spectral
properties of the partially coherent NTS, we measure the Lyapunov exponents, which are
shown in Fig. A.5 (c). In spite of the heterogeneity, the NTS remains a stable solution. All
Lyapunov exponents are negative as in the identical system, except for the two zero exponents
which also correspond to the two continuous symmetries. Hence, we can say that the NTS
solution is robust to a small heterogeneity of the natural frequencies. Note that we cannot
capture the collective modes of the partially coherent NTS by the Lyapunov analysis, i.e.,
the collective Lyapunov modes, as apparent from the inset in Fig. A.5 (c). The incoherent
dynamics of the individual oscillators seems to overshadow the collective response of the
oscillators.

A.3 Bifurcation Scenario

Trivial twisted states and nontrivial twisted state with winding number q = 1

In this section, we perform a bifurcation analysis of the TTS and the NTS, based on pseudo-
arclength continuation with the Newton-Raphson method as in Refs. [214–216].

First, we discuss how the TTS solution behaves when the coupling strength ε varies. In
Fig. A.6 (a), the bifurcation diagram of the stable (gray) and the unstable (black) TTS are
depicted. The TTS is found to be unstable for small values of ε and becomes stabilized at
a comparatively large value of ε via a subcritical Hopf bifurcation (HB), i.e., there is no
stable periodic motion after the HB. Furthermore, the velocity c of the TTS depends linearly
on ε since the homogeneous amplitudes r j = r0 ≈ 1 for all j and the phase differences of
adjacent oscillators are the same as ∆ j, j+1 =

2π

N (TTS). Then, the coupling term in Eq. (A.6)
is identical for all oscillators (the same r j = r0 for all j) and scales linearly with ε . This
predicts a linear increase of |c| with ε . The branch of unstable TTS continues actually up to
ε = 0 at which also c = 0.

Secondly, for the NTS, the corresponding bifurcation curve is depicted by the red (stable)
and blue (unstable) lines in Fig. A.6 (a). For small values of ε , an unstable NTS exists. As ε

increases further, it is stabilized in a Hopf bifurcation (A) where a pair of complex conjugate
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Fig. A.6 (a) Bifurcation diagrams of the TTS (black and gray lower lines; black: unstable
states, gray: stable states) and NTS (blue and red upper lines; blue: unstable states, red;
stable states) with ε the speed c characterizing the NTS solution. The panels in the middle
row depict some of the eigenvalues of the linearized equation around the wave profiles in the
complex plane close to points (A-C) in (a). (b) Bifurcation diagram of the NTS solution with
κ as bifurcation parameter. The color code is as in (a). The remaining parameters are the
same as in Fig. A.1.

eigenvalues crosses the imaginary axis in the complex plane (see the left panel in the middle
row of Fig. A.6). Beyond the Hopf bifurcation (A), the stable NTS exists in a large range of
the parameter ε . Along this stable curve, the difference between the maximum and minimum
values of the amplitude hump increases with increasing ε . Note that apart from the NTS and
the TTS, we find that the fully synchronized state is stable for ε ⪆ 0.773. Thus, the NTS
coexists with the uniform oscillation in most of its existence range. Further increasing ε ,
the NTS solution is annihilated in a saddle-node bifurcation (SN) at point B (see the middle
panel in the middle row), and the fully synchronized state is the only stable state until the
TTS is stabilized in HB at somewhat larger values of ε . Along the unstable branch, the NTS
is more and more destabilized in a series of Hopf bifurcations starting at C. At the same
time, the amplitude profile becomes flatter and flatter approaching the uniform profile as c
approaches zero.
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Fig. A.7 (a-b) Phase and amplitude dynamics of the NTS with |q| = 2 for N = 200, and
ε = 0.6. The other parameters and the color code is the same as in Fig. A.1. (c) Lyapunov
exponents of the 2-NTS for N = 40,60,80,100 and 120. (d) Bifurcation diagrams of the
2-NTS with ε as bifurcation parameter and the propagation speed c characterizing the NTS
with the same color scheme as in Fig. A.6. (e) Full eigenvalue spectrum in the complex
pane of the Jacobian matrix evaluated at the stationary 2-NTS at A. (f) The eigenvalues
near zero in the complex plane at the Hopf bifurcation (HB1). (g) Temporal evolution of the
amplitude profile of the modulated 2-NTS at B after HB1; ε = 0.67. (h-i) The first half of
the Lyapunov exponents of 2-NTS and modulated 2-NTS for N = 80, respectively. Insets
show a magnification close to the origin and highlight the first six Lyapunov exponents.

Finally, a bifurcation diagram of the NTS with the parameter κ reveals that the solution
is restricted to a certain interaction range, or a certain length of the system (Fig. A.6 (b)).

Nontrivial twisted states with winding number q = 2

So far, we have discussed an NTS with a winding number |q|= 1 only. However, just like a
TTS, an NTS also shows a winding number |q|= 2, which is here called 2-NTS. In Fig. A.7
(a-b), snapshots and the time evolutions of the phase and the amplitude profiles are depicted
for a stable 2-NTS solution. Here, the amplitude profile has two humps and the phase profile
winds twice along the ring, gaining in total 4π along the full cycle of the ring. The 2-NTS
solution is also a stable solution, numerically verified by the Lyapunov exponents in Fig. A.7
(c). However, it is less stable than the 1-NTS; the first half of the Lyapunov exponents are
closer to zero than those of the 1-NTS (compare Fig. A.7 (c),(h) to Fig. A.4 (a)). This can
be also verified by determining the eigenvalues of the linearized equation in the continuum
limit analysis (Fig. A.7 (e)): One of the continuous branches of the 2-NTS is closer to the
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imaginary axis than that of the 1-NTS. The stable 2-NTS can be obtained in some nonzero
parameter range of ε in Fig. A.7 (d), which is, however, smaller than that of the 1-NTS.

In Fig. A.7 (d), we see that the 2-NTS is destabilized at both ends of the existence interval
via Hopf bifurcations (HB1 and HB2). Moreover, we have conducted numerical simulations
to confirm that one of the bifurcations (HB1) is indeed a supercritical Hopf bifurcation.
Prior to HB1, the 2-NTS solution demonstrates a stationary amplitude profile in a moving
reference frame (Fig. A.7 (b-2)). Beyond HB1, a 2-NTS state is still observed. However,
now its amplitude profile oscillates periodically. For this case, the 2-NTS solution appears
as a modulated traveling wave solution (Fig. A.7 (g)). The modulated NTS features three
zero Lyapunov exponents, two of which arise from the continuous symmetries, the third
originating from the modulation frequency (Fig. A.7 (i)).

A.4 Summary

In this Appendix, we presented a novel form of collective behavior within a circular arrange-
ment of Stuart-Landau oscillators that are connected nonlocally. This distinctive phenomenon,
labeled as a nontrivial twisted state, is distinguished by its uneven amplitude and phase gradi-
ent profiles, along with a designated winding number denoted as q. This winding number is
indicative of the twisted state and signifies a coherent progressive wave structure. Taking a
broader perspective, at a macroscopic level, the absolute value of the local order parameter
within the nontrivial twisted state (referred to as NTS) remains consistently at 1 across all
points x within the interval [0,L], and at all times t. In contrast, the global order parameter, as
defined by the global Kuramoto order parameter equation, maintains a value greater than 0
but less than 1 for all time instances. By way of comparison, the conventional trivial twisted
state features a uniform amplitude profile and a constant phase gradient, resulting in a global
order parameter of 0 (|Γ(t)| = 0), while still keeping the absolute value of the local order
parameter at 1 (|z(x, t)| = 1) for all values of x and t. The investigation involving linear
stability analysis, Lyapunov analysis, and bifurcation analysis collectively revealed that NTS
solutions displaying a winding number of |q|= 1 or 2 emerge as attractor states. These states
persist over extensive ranges of parameter configurations and various initial conditions.
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[145] V. Jaćimović and A. Crnkić, “Low-dimensional dynamics in non-Abelian Kuramoto
model on the 3-sphere,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 28, 08 2018. 083105.

[146] H. K. Lee, H. Hong, and J. Yeo, “Improved numerical scheme for the generalized Ku-
ramoto model,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2023,
no. 4, p. 043403, 2023.



194 References

[147] W. Zou, S. He, D. V. Senthilkumar, and J. Kurths, “Solvable Dynamics of Coupled
High-Dimensional Generalized Limit-Cycle Oscillators,” Phys. Rev. Lett., vol. 130,
p. 107202, Mar 2023.

[148] S. Chandra, M. Girvan, and E. Ott, “Continuous versus Discontinuous Transitions in
the D-Dimensional Generalized Kuramoto Model: Odd D is Different,” Phys. Rev. X,
vol. 9, p. 011002, Jan 2019.
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