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Abstract

We present measurements of branching fractions of B0 → π+π− and B0 → K+π−

decays and the direct CP -violation parameter in B0 → K+π− decays. The analyzed
data contain 387× 106 bottom-antibottom meson pairs generated in e+e− collisions
at the Υ (4S) resonance produced by the SuperKEKB asymmetric-energy collider
and are collected with the Belle II detector. We obtain

B(B0 → π+π−) = (5.83± 0.22 (stat)± 0.17 (syst))× 10−6 ,

B(B0 → K+π−) = (20.67± 0.37 (stat)± 0.62 (syst))× 10−6 ,

ACP (B
0 → K+π−) = −0.072± 0.019 (stat)± 0.007 (syst) .

The values are consistent with current global averages and demonstrate precision
comparable to the best determinations available, despite employing a substantially
smaller dataset. The measurement of B(B0 → π+π−) represents the most precise
determination to date by a single experiment.

We combine our findings with measurements of related B → Kπ transitions to
test the Standard Model employing a sum rule based on isospin symmetry. We find

IKπ = −0.03± 0.13± 0.04 ,

consistent with the theoretical Standard Model prediction of zero.
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Kurzfassung

Wir präsentieren Messungen der Verzweigungsverhältnisse von B0 → π+π− und
B0 → K+π− Zerfällen sowie der direkten CP -Verletzung in B0 → K+π− Zerfällen.
Die ausgewertete Datenmenge enthält 387× 106 Bottom-Antibottom-Mesonenpaare,
die in e+e−-Kollisionen an der Υ (4S)-Resonanz durch den SuperKEKB Collider
produziert, und mithilfe des Belle II Detektors aufgezeichnet wurden. Wir messen

B(B0 → π+π−) = (5.83± 0.22 (stat)± 0.17 (syst))× 10−6 ,

B(B0 → K+π−) = (20.67± 0.37 (stat)± 0.62 (syst))× 10−6 ,

ACP (B
0 → K+π−) = −0.072± 0.019 (stat)± 0.007 (syst) .

Die Ergebnisse sind konsistent mit den aktuellen globalen Durchschnittswerten. Die
Präzision ist trotz der Verwendung einer signifikant geringeren Datenmenge mit jener
der derzeit genauesten experimentellen Bestimmungen vergleichbar. Die Messung
von B(B0 → π+π−) stellt gegenwärtig die genaueste Einzelmessung weltweit dar.

Wir verwenden die Ergebnisse in Kombination mit Messungen verwandterB → Kπ

Übergänge, um mittels einer auf Isospin-Symmetrie basierenden Summenregel das
Standardmodell zu prüfen. Wir erhalten

IKπ = −0.03± 0.13± 0.04 ,

in Übereinstimmung mit dem Erwartungswert des Standardmodells von Null.
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1. Introduction

The Standard Model (SM) of particle physics is a theoretical framework that de-
scribes the observed fundamental constituents of nature and three of the four known
forces that govern their interactions. It presents our current best understanding of
particle dynamics at the subatomic level and has undergone rigorous experimental
verification. While the theory has arguably achieved many triumphs, it leaves many
fundamental questions of theoretical and phenomenological nature unanswered.

The SM lacks explanations for various phenomena, such as the appearance of
precisely three quark-lepton families or the origins of observed hierarchies in their
masses and the mixtures between them. In the context of the Big Bang Model,
one puzzling observation at the cosmological scale is the abundance of matter
in the Universe. In 1967, A. Sakharov postulated the violation of Charge-Parity
(CP ) symmetry, corresponding to differences between transitions of particles and
antiparticles, to be a necessary condition for the evolution of a matter-antimatter
asymmetry [1]. Within the Standard Model, CP violation is introduced in weak
interactions via the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes
the mixing between different quark flavors. However, the amount predicted by the
Standard Model is many orders of magnitude too small to explain the dominance of
matter in the Universe [2].

Regarding its shortcomings, it seems evident, that the SM is merely an effective
theory, able to successfully describe the phenomenology at energy scales probed up
to now, but incomplete at higher scales. Nowadays, the majority of high-energy
physics experiments therefore aims to find New Physics (NP) beyond the SM. To
this end, various extension mechanisms have been proposed that typically involve
the introduction of new massive particles into the existing framework.

On the so-called energy frontier, experiments at the Large-Hadron-Collider (LHC)
aim to directly produce new particles in high-energy proton-proton collisions at
center-of-mass energies of up to 14 TeV. The interaction between constituent gluons
or quarks restricts the mass reach for new particles to few TeV/c2. So far, direct
searches have yielded null results in the pursuit of NP.

Rather than directly producing new particles, indirect searches at the intensity
frontier aim to measure the decay properties of known particles with high precision
to find deviations from SM predictions. The latter could indicate the presence of
unobserved massive particles that contribute to transition amplitudes in quantum
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1. Introduction

loops. Assuming coupling strengths of O(1), these loop contributions render indirect
searches sensitive to masses up to hundreds of TeV/c2 [3].

The Belle II experiment, located at the next-generation e+e− collider SuperKEKB,
focuses on precise measurements of quark-flavor dynamics, in particular in B-meson
decays. Due to their comparatively long lifetimes and large predicted CP -violating
effects, B mesons offer a rich phenomenology to test a wide range of SM extensions.

Specifically, B-meson decays to hadronic two-body final states without charm
quarks are heavily suppressed in the SM and exhibit only small branching ratios
of O(10−5) or less. Consequently, loop-diagram contributions to these transitions
are often of leading order, rendering them particularly sensitive to non-SM physics.
However, large uncertainties in the theoretical predictions, due to non-factorizable
hadronic amplitudes that hinder the application of perturbation theory, spoil a
straightforward interpretation of these measurements. To mitigate this limitation,
dynamical symmetries such as isospin symmetry can be exploited to construct linear
combinations of branching fractions and CP asymmetries in related decay modes.

This thesis presents the measurements of branching ratios of B0 → π+π− and
B0 → K+π− decays1 and the direct CP -violation parameter in B0 → K+π− decays
in data corresponding to an integrated luminosity of 362 fb−1, recorded at the Υ (4S)
resonance with the Belle II detector. The results are combined with those of related
B → Kπ transitions, obtained on the same dataset, in an isospin-based sum rule
that serves as a stringent test of the SM.

The outline of this work is as follows. Chapter 2 gives a brief outline of the
Standard Model of particle physics, along with the theoretical foundation for CP -
violation measurements in B-meson decays. In Chapter 3, the SuperKEKB collider
and the Belle II experiment are described. Chapter 4 is devoted to the detailed
description of the analysis of B0 → π+π− and B0 → K+π− decays, covering the
techniques employed to measure the branching ratios and CP asymmetry. Chapter
5 is dedicated to the differences between Monte-Carlo simulations and real data,
and the methods employed to mitigate them. In Chapter 6, the final results are
presented, including a breakdown of all considered systematic uncertainties and a
comparison with previous results. Chapter 7 concludes the presented study and
provides an outlook for future measurements.

1The charge-conjugated transition is implied throughout this document unless stated otherwise.
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2. The Standard Model and B-Meson
Physics

2.1. The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is a theory that describes the elementary
particles and their interactions. It incorporates three of the four fundamental forces,
currently believed to exist: the electromagnetic force, the weak nuclear force, and
the strong nuclear force. Gravity is not explained by the SM and is instead described
by the theory of general relativity. The SM was formulated on the principles of
quantum field theory and local gauge symmetries. It has been remarkably successful
in explaining a wide range of experimental observations and is currently our best
understanding of the microscopic world. In the following, a short introduction to
the model is given, starting with the description of its fundamental particles and
some of the most important properties of their interactions. As CP violation is
uniquely associated with the weak interaction, we put an emphasis on the latter
and its unification with the electromagnetic force, the electroweak unification. We
also give a short description of the Higgs mechanism, by which all massive particles
obtain their masses in the SM. This chapter is largely based on derivations found in
the standard works [4] and [5], and more specific references such as [6, 7].

2.1.1. Particles of the Standard Model

The SM classifies particles into two main categories, fermions and bosons. Fermions
are particles with half-integer spins and follow the rules of Fermi-Dirac statistics.
They are the building blocks of all visible matter and include quarks and leptons.
Bosons are the force-carrying particles or gauge bosons and have integer-spins,
obeying Bose-Einstein statistics. They mediate the fundamental forces of nature
described by the SM by coupling to the charges of the corresponding interactions.

Fermions

Quarks come in six flavors, further classified into three generations: up- (u) and
down-quarks (d), which make up the first generation and are the constituents of

3



2. The Standard Model and B-Meson Physics

protons and neutrons, charm- (c) and strange-quarks (s), and top- (t) and bottom-
quarks (b), which are the heaviest and least stable. They carry fractional electron
charges of 2

3
or −1

3
as well as one of three color charges of the strong interaction.

Leptons, on the other hand, do not carry any color-charge and hence do not
participate in the strong interaction. They can also be divided into three generations
of progressively larger masses, each consisting of a charged lepton and its associated
neutrino. The first generation includes the electron (e), carrying an electric charge
of −1, and its corresponding, electrically-neutral neutrino, the electron-neutrino
(νe). The second and third generations feature the muon (µ) and the muon-neutrino
(νµ), and the tau lepton (τ) and its corresponding tau-neutrino (ντ ).

In the SM, for each of the fermions, there exists a corresponding anti-particle
with identical mass but opposite charge.

Bosons

The gauge bosons are spin-1 particles and act as force carriers between interacting
particles. The photon (γ) is the mediator of the electromagnetic force. The W+,
W− and Z bosons mediate the weak force, responsible for radioactive decays and
neutrino interactions. The gluon (g) mediates the strong force, which binds quarks
to hadrons. Finally there is the Higgs boson, the spin-0 boson of the scalar Higgs
field, which lends masses to the other particles of the SM.

Figure 2.1 shows all particles of the SM, illustrating the mass hierarchy of the
three generations of fermions.

2.1.2. Fundamental Forces and Gauge Symmetries

In the mathematical formulation of quantum field theory (QFT), the Lagrangian
(density) is used to describe the dynamics of a system. Following the Hamilton
principle of least action, we can derive field equations, like the Dirac equation, the
solutions to which represent the quantum states of the physical system described
by the field. In order to ensure a consistent description of the laws of physics,
the Lagrangian is required to remain invariant under certain transformations. For
example, any physical process must remain unaffected by a translation in space-time.
These transformations are expressed by global symmetry groups, like the Poincaré
group, required for all relativistic quantum field theories.

Following Noether’s theorem, for every continuous global symmetry of the La-
grangian, there exists a conserved quantity associated with that symmetry [9]. In
this sense, the conservation of quantities, such as electric charge, baryon number,
and lepton number, can be understood in terms of the global symmetries of the
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Figure 2.1.: Elementary particles of the Standard Model of particle physics [8].
They are categorized into three generations of quarks and leptons, force-
mediating gauge bosons, and the Higgs boson.

Lagrangian.
In addition to global symmetries, the Standard Model incorporates local symme-

tries, which are functions of space-time. Local gauge invariance is a fundamental
principle of the theory, which requires that the Lagrangian must remain unchanged
under local phase transformations that depend on space-time coordinates. When
promoting a global symmetry to a local one, the gauge invariance is restored via
addition of a vector field – the gauge field. The quanta of these gauge fields are called
gauge bosons and represent the observed force carrier particles. Mathematically,
they correspond to the generators of the respective local symmetry group, which
means that they are associated with the transformations that leave the Lagrangian
invariant.

The fundamental forces in the Standard Model are described by a a local
SU(3)⊗ SU(2)L ⊗ U(1)Y gauge symmetry, in which each contribution approxi-
mately corresponds to one of the three interactions, discussed in the following.

Quantum Electrodynamics (QED)

Quantum Electrodynamics (QED) is the quantum field theory that describes the
electromagnetic force, which is responsible for interactions of photons with electrically
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2. The Standard Model and B-Meson Physics

charged particles. The gauge symmetry associated with QED is the local U(1)
symmetry. The generator of this group corresponds to the massless gauge boson of
QED, the photon. The latter does not itself carry the interaction charge and hence
does not couple to other photons. Further, the photon has no rest mass, rendering
the range of the interaction to be infinite.

Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD) is the theory that describes the strong nuclear
force, which binds quarks together to form composite particles called hadrons. The
gauge symmetry of QCD is based on the SU(3) symmetry group. Similar to the
electric charge in QED, quarks carry one of three color charges: red, green, or blue.
Antiquarks carry the respective anti-colors.

QCD dictates systems of particles to be color-neutral, a phenomenon called color
confinement. Accordingly, individual quarks cannot exist in isolation, leading to the
observation of two classes of hadrons, namely mesons and baryons.1 Mesons are
quark-antiquark pairs, carrying combinations of color and the respective anti-color
to form color-neutral objects. Baryons on the other hand are composed of three
quarks, each carrying a different color charge, summing up to form a "white",
color-neutral hadron.

The generators of the SU(3) group produce eight gauge bosons of QCD, called
gluons, which mediate the strong interaction between quarks. One crucial aspect of
QCD is the fact that gluons themselves carry combinations of color charges, opening
the door for self-interactions. One consequence of this is that the interaction
strength increases indefinitely with increasing distance between two quarks. As
quarks move farther apart, the energy stored in the field between them increases
until it is sufficiently large to create additional quark-antiquark pairs, resulting in
the formation of new, color-neutral hadrons. This renders the effective range of the
strong force to be limited to distances on the order of femtometers. At very short
distances (or high energies) on the other hand, the interaction strength weakens,
rendering the quarks to behave almost as free particles [10, 11].

Electroweak unification

The weak interaction is the only mechanism that allows for flavor-changing processes
and is therefore responsible for most particle decays. In the framework of the
Standard Model, the weak interaction is unified with the electromagnetic interaction
to form the electroweak interaction [12, 13]. The combined force is based on the

1Exotic hadrons, like tetraquarks or pentaquarks, have been created and measured in dedicated
experiments. However, they are still an active area of research and not known to occur naturally.
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2.1. The Standard Model of Particle Physics

symmetry group SU(2)L ⊗ U(1)Y . Here, the SU(2)L group describes the symmetry
of the weak isospin, I. The latter is the additive quantum charge of the weak
interaction. The U(1)Y group represents the symmetry of the weak hypercharge,
Y = 2(QEM − I3), a quantum number relating the electric charge, QEM, with the
third component of the weak isospin.

One important peculiarity of the electroweak interaction is its chiral nature. In
the electroweak theory, left-handed fermions carry weak isospin charges of I = 1

2
,

forming doublets that include both up-type and down-type particles. On the other
hand, right-handed fermions have weak isospin charges of I = 0, forming singlets
under SU(2)L:

ψL =

[(
u

d

)

L

,

(
l

νl

)

L

]
, ψR = [uR, dR, lR] . (2.1)

So far, no right-handed neutrinos have been observed, which is why they are not
included in the SM. The W -boson triplet couples exclusively to the doublets of
left-handed fermions (or right-handed anti-fermions). This chiral nature of the
electroweak interaction leads to a maximal symmetry breaking of parity and charge
conjugation, which are discussed in more detail in Section 2.2.1.

The fermions transform under the combined local SU(2)L ⊗ U(1)Y symmetry
as [7, 14]:

ψL → ψ′
L = exp (−α · σa/2− iβY )ψL (2.2)

ψR → ψ′
R = exp (−iβY )ψR , (2.3)

where α is a three-component vector of gauge transformation parameters associated
with the SU(2)L group, σa are the Pauli matrices that describe the three generators
of the SU(2)L group, β is a gauge transformation parameter associated with the
U(1)Y group, and Y is the weak hypercharge.

To ensure that the Lagrangian remains invariant under these local gauge trans-
formations, we introduce the covariant derivative, a generalization of the partial
derivative, that incorporates the gauge fields:

Dµ = ∂µ − ig
σa

2
W a

µ − ig′
Y

2
Bµ (2.4)

Here, ∂µ is the partial derivative with respect to the space-time coordinates, g
and g′ are the coupling constants associated with the SU(2)L and U(1)Y groups,
respectively, W a

µ is a vector of the three gauge fields associated with the SU(2)L

7



2. The Standard Model and B-Meson Physics

group, and Bµ is the gauge field associated with the U(1)Y group.
The kinetic term of the Lagrangian for the electroweak interaction can now be

written as [15]:

Lkin = −1

4
W a

µνW
µνa − 1

4
BµνB

µν +
∑

fermions

(Dµψ)†(Dµψ) (2.5)

where W a
µν is the field strength tensor for the SU(2) gauge field,

W a
µν = ∂µW

a
ν − ∂νW

a
µ − gϵabcW b

µW
c
ν (2.6)

and Bµν is the field strength tensor for the U(1) gauge field,

Bµν = ∂µBν − ∂νBµ . (2.7)

The Lagrangian in Eq. 2.5 describes a system with massless fermions and massless
gauge bosons. To obtain the observed physical particles, W±, Z0, and γ, while pre-
serving gauge invariance, the symmetry of SU(2)L ⊗U(1)Y is broken spontaneously
via the Higgs mechanism.

2.1.3. Higgs Mechanism

The Higgs mechanism provides the means for particles to acquire mass without
violating the gauge symmetry of the theory, postulating an additional spin-0 boson,
the Higgs boson. The Higgs field, ϕ, is represented by a complex scalar field of a
particle with imaginary mass µ. In the SM, the Higgs field is associated to a doublet
under SU(2), which can be decomposed into real and imaginary parts,

ϕ =
1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
. (2.8)

The scalar part of the Lagrangian of the Higgs field is:

LHiggs = (Dµϕ)
†(Dµϕ)− V (ϕ) , (2.9)

where V (ϕ) is the Higgs potential, given by:

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 , (2.10)

with λ as self-coupling constant of the Higgs field. Taking λ > 0 and µ2 < 0, the
potential follows a shape illustrated in Figure 2.2. The minimum is obtained for all

8



2.1. The Standard Model of Particle Physics

Figure 2.2.: Higgs potential, V (ϕ), for λ > 0 and µ2 < 0. The minimum is located
at points with |ϕ|2 = −µ2

2λ
≡ v2

2
.

points fulfilling

|ϕ|2 = −µ
2

2λ
=
v2

2
with v ≡

√
−µ

2

λ
. (2.11)

We choose the specific point, ϕ1 = v, ϕ2 = ϕ3 = ϕ4 = 0 which corresponds to the
vacuum expectation value (VEV):

⟨0|ϕ|0⟩ = 1√
2

(
v

0

)
. (2.12)

We can now perturbate the complex scalar field ϕ(x) around this point in the
following way2:

ϕ(x) =
1√
2

(
v + h(x)

0

)
. (2.13)

The Lagrangian rewritten in such a way with respect to the lowest eigenstate has
lost its original symmetry — it is spontaneously broken. Plugging this into the
Lagrangian of Eq. 2.9 with the covariant derivative from Eq. 2.4, we obtain the

2When expanding the field around the minimum, we add new fields, yielding additional boson
fields, which need to be "rotated away" such that the acquired Goldstone bosons disappear.
This is referred to as unitary gauge transformation.

9



2. The Standard Model and B-Meson Physics

contribution

LHiggs = −1

8
v2
(
1

0

)T (
gW 3

µ − g′Bµ g(W 1
µ − iW 2

µ)

g(W 1
µ + iW 2

µ) − gW 3
µ − g′Bµ

)2(
1

0

)
+ . . . (2.14)

= −1

8
v2g2

(
(W 1

µ)
2 + (W 2

µ)
2
)
+

1

8
v2
(
g′Bµ − gW 3

µ

)2
+ . . . (2.15)

We can use W 1
µ and W 2

µ to construct the following linear combinations

W+
µ =

1√
2
W 1

µ − iW 2
µ , W

−
µ =

1√
2
W 1

µ + iW 2
µ , (2.16)

which, after comparison to the first term of Eq. 2.15, can be identified as the physical
charged gauge bosons of the weak interaction, with mass

MW =
1

2
vg . (2.17)

To interpret the second term in Eq. 2.15, we first define the weak mixing angle, or
Weinberg angle,

θW ≡ tan−1

(
g′

g

)
. (2.18)

The observed Z0 boson can then be expressed as linear combination of the neutral
components W 3

µ and Bµ as follows:

Z0
µ = cos θWW

3
µ − sin θWBµ with MZ =

1

2
v
√
g2 + g′2 . (2.19)

Lastly, for the massless photon field, with no coupling to the Higgs field, we obtain

Aµ = sin θWW
3
µ + cos θWBµ with Mγ = 0 . (2.20)

We have now attained the massive gauge bosons, that we observe in nature, all
of which obtain their masses due to a non-zero VEV, breaking the symmetry at
energies below the electroweak scale.

The masses of all charged fermions in the Standard Model are generated anal-
ogously through Yukawa couplings to the Higgs field. Specifically, the Yukawa
interaction terms of the Lagrangian for quarks can be written as:

LY uk = −
3∑

i,j

(
Y u
ij Q̄Liϕ̃u

′
Rj + Y d

ijQ̄Liϕd
′
Rj

)
+ h.c. (2.21)

10



2.1. The Standard Model of Particle Physics

where Y u,d
ij are the Yukawa coupling matrices for up-type and down-type quarks, QL

represents the left-handed quark doublet, u′R and d′R are the right-handed up-type
and down-type quark singlets, respectively, and ϕ is the Higgs doublet. The indices
i, j run from 1 to 3, corresponding to the three generations of quarks.

When the Higgs doublet acquires a non-zero vacuum expectation value of v/
√
2,

mass terms are generated through the Yukawa couplings:

Mu =
v√
2
Y u, Md =

v√
2
Y d . (2.22)

For each fermion, the respective Yukawa coupling determines the relative strength
of the interaction, while the VEV of the Higgs field sets the overall mass scale.

In their immediate form, the mass matrices, Mu and Md, are not diagonal,
which means that the mass eigenstates are not identical to the weak interaction
eigenstates. To obtain the physical mass eigenstates, we diagonalize Mu and Md via
transformations of the form

M f
diag =

v√
2
V f
L Y

fV f†
R with f = u, d , (2.23)

where the four V u,d
L,R matrices are unitary. We can now express the charged-current

interaction term of the Lagrangian, responsible for flavor-changing transitions in
the SM, in terms of the quark mass eigenstates:

LCC = − g√
2

3∑

i,j,k,l

(
ūLkγ

µW+
µ (V u

L )ki(V
d
L )

†
ljdLl

)
+ h.c. (2.24)

or in a more explicit matrix notation,

LCC = − g√
2
(ūL, c̄L, t̄L)γ

µW+
µ



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb





dL
sL
bL


+ h.c. , (2.25)

where g is the weak coupling constant and W+
µ is the charged weak boson field. We

can identify the Cabibbo-Kobayashi-Maskawa (CKM) matrix, VCKM, as the product
of the unitary matrices that diagonalize the up-type and down-type quark mass
matrices:

VCKM ≡ V u
L V

d†
L . (2.26)

The CKM matrix is a 3× 3 unitary matrix that parametrizes the mixing between
quark flavors in the weak charged current interactions and plays a central role in
the phenomenon of CP violation.
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2. The Standard Model and B-Meson Physics

2.1.4. Physics beyond the SM

Over the past several decades, the Standard Model has undergone rigorous experi-
mental verification, consistently matching the results of countless experiments with
extraordinary precision. The last missing piece, the Higgs boson, was experimentally
discovered in 2012 by the ATLAS and CMS collaborations at the Large Hadron
Collider, completing the SM [16, 17]. Despite its success, the SM of particle physics
falls short in explaining several important phenomena observed in nature.

In spite of decades of research, the integration of general relativity, describing
the curvature of space-time into the quantum field framework of the Standard
Model remains an unsolved problem in theoretical physics [18]. Similarly, there
is the hope to combine the strong nuclear force with the electroweak force under
a larger, encompassing gauge symmetry, that remains unbroken at higher energy
scales [19]. The most prominent approach to such a Grand Unified Theory (GUT) is
the super-symmetric (SUSY) extension of the SM, which predicts at minimum one
superpartner for each particle in the SM [20, 21]. Such a model could also address
the observed hierarchy of the fermion masses, which is, much like the number of
generations or the coupling strengths between them, not founded on any particular
rationale in the SM. So far, no particles pointing towards SUSY being realized in
nature have been observed.

Additionally, there are several observations at the cosmological scale that cannot
be understood in the context of the SM. For one, there exist gravitational effects
in galaxies and galaxy clusters, which cannot be accounted for by visible matter
alone, suggesting the presence of an unseen mass, known as dark matter [22].
In the SM, there exists no particle that could serve as a viable candidate for
such type of matter. Moreover, there remains the mystery of the abundance of
matter in the observable Universe. According to our most successful theories of
the early Universe, the Big Bang should have produced roughly equal amounts
of matter and antimatter. Sakharov’s conditions, proposed in 1967, address the
observed asymmetry [1]. Among these conditions is the requirement of Charge-Parity
(CP ) violation, which corresponds to differences in the behavior of particles and
antiparticles and is explained in more detail in the following section. Cronin and
Fitch’s discovery of CP violation in the neutral kaon system in 1964 [23] opened up
the possibility that similar violations could be responsible for the matter-dominated
Universe.

In the Standard Model, quark-flavor transitions in weak decays are governed
by the unitary CKM mixing matrix (cf. Section 2.2.2). This matrix includes a
complex phase, which leads to differences in the decay properties between matter
and antimatter particles. However, the observed baryon asymmetry in the Universe
is many orders of magnitude larger than our current theory accounts for [2]. It is
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2.2. CP Violation

evident that new sources of CP violation are needed.
Nowadays, the majority of elementary particle physics experiments therefore aim

to find physics beyond the SM, that could help address these unsolved puzzles.
Precision experiments, such as Belle II, focus on overconstraining a set of parameters
that describe the flavor dynamics in B-meson decays. By precisely measuring a vast
array of observables, such as branching ratios and CP -violation parameters, the
unitarity of the CKM matrix is tested. Any significant deviations from the expected
unitarity could provide crucial hints pointing towards the existence of new particles
or interactions.

2.2. CP Violation

2.2.1. Discrete Symmetries

The fundamental principle of symmetry plays a crucial role in elementary particle
physics and our understanding of the workings of the Universe. Continuous symme-
tries, such as gauge symmetries, form the basis of the Standard Model formulation,
providing a framework to describe the fundamental forces and particles. Noether’s
theorem connects symmetries to conservation laws, stating that every continuous
symmetry transformation corresponds to a conserved quantity [9]. For instance,
the invariance of physical processes under space and time transformations leads to
the conservation of momentum and energy. Next to continuous symmetries, three
related, discrete symmetries play a significant role in the SM: the discrete space-time
transformations of parity (P ) and time reversal (T ), as well as charge conjugation
(C) which corresponds to inverting the sign of all charges.

Parity

The parity operator, denoted as P , performs a spatial inversion through the origin,

PΨ(r⃗) = Ψ(−r⃗) . (2.27)

Alternatively, it can be thought of a reflection, followed by a rotation of 180◦ around
the axis of reflection. Applying the operation twice results in the original state,
that is P 2 = 1. The eigenvalues are therefore ηP = 1, for even parity, and ηP = −1,
for odd parity. Fermions have even intrinsic parity, while anti-fermions have odd
intrinsic parity.

Parity is a multiplicative quantum number. The parity of a many-particle system
is the product of the intrinsic parities of the particles and the parity of the spatial
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2. The Standard Model and B-Meson Physics

wavefunction, given by (−1)L, where L corresponds to the angular momentum of
the system.

Historically, the discovery of P -symmetry violation in weak interactions came as
a surprise in 1956, when C.S. Wu and her collaborators conducted an experiment
that involved beta decay of 60Co atoms [24]. They observed a preferential emission
of electrons in a specific direction, indicating a violation of the parity symmetry.
This discovery shattered the long-held belief that the laws of physics are symmetric
under parity reflection. In 1957 T.D. Lee and C.N. Yang were awarded the Nobel
Prize in Physics for their theoretical prediction of the violation of parity symmetry
one year earlier [25].

Charge conjugation

The charge conjugation operator C transforms a particle into its anti-particle,

CΨ = Ψ̄ . (2.28)

It inverts all additive quantum numbers such as electric charge, flavor, baryon
number, lepton number and weak isospin. As for the parity transformation, applying
C twice results in the original state and the possible eigenvalues are ηC = ±1.
Particles with vanishing additive quantum numbers, like the photon or the neutral
pion, are identical to their anti-particles and therefore evidently eigenstates of C.

As eluded to in the previous section, the absence of right-handed neutrino couplings
and the presence of right-handed anti-neutrino couplings in the weak interaction
violates the C-symmetry maximally. After the observation of parity violation by
Wu et al. it was generally assumed that the combined transformation CP remained
a perfect symmetry in nature. However, in 1964, J. Cronin and V. Fitch conducted
experiments at the Brookhaven National Laboratory, observing asymmetric decay
rates of neutral kaons and their antiparticles into specific final states [23]. This
groundbreaking discovery provided the first direct evidence of the violation of this
combined transformation. As a result, in 1980 they were awarded the Nobel Prize
in Physics. Many years later, in 2001 and 2019, the violation of CP -symmetry was
also observed in B-meson and D-meson decays [26, 27, 28].

Time reversal

The discrete symmetry operation T reverses the flow of time,

TΨ(t) = Ψ(−t) . (2.29)
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Whereas positions in space and all charges are left unaffected, it inverts the momenta
and spins of a system. At the macroscopic scale, the second law of thermodynamics
dictates an increase of entropy over time and therefore a violation of T -symmetry.
However, at the microscopic scale of individual particle interactions, the symmetry
is mostly conserved. As for P and C, the electromagnetic and strong interactions
are invariant under time reversal.

It can be shown that the dynamics of a system described by a local Lorentz
invariant gauge theory, like the SM, must be invariant under the combined trans-
formation of CPT [29]. This so-called CPT theorem implies that particles must,
consequently, have masses and lifetimes identical to their respective antiparticles.
So far, all experimental tests have confirmed CPT to be a perfect symmetry in
nature.

Another consequence of the CPT theorem is its implication of T -symmetry
violation: In order to compensate for the breaking of CP -symmetry, T -symmetry
must necessarily be broken. A direct evidence of this was obtained by the CPLEAR
collaboration at CERN in 1998 [30]. The experiment involved measurements of
semileptonic decays of neutral kaons and anti-kaons. The observed asymmetry in
the decay rates provided conclusive evidence for T -symmetry violation in the neutral
kaon system.

2.2.2. CKM Mechanism

In the SM, flavor-changing transitions are governed by charged currents of the
weak interaction. Mediated by charged W± bosons, left-handed up-type quarks
can transition to left-handed down-type quarks, and vice versa. The corresponding
interaction term of the Lagrangian can be written as:

LCC = − g√
2
ūLiγ

µ(VCKM)ijdLjW
+
µ + h.c. (2.30)

where g is the weak coupling constant, i, j = 1, 2, 3 refer to the quark generations,
ūLi and dLj are the left-handed components of the quark fields and VCKM is the
quark mixing matrix (cf. Eq. 2.25):



d′

s′

b′




weak

= VCKM



d

s

b




mass

≡



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb





d

s

b




mass

. (2.31)

The above Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix is a unitary matrix
that characterizes the mixing of quark flavors, relating the weak eigenstates to
their corresponding mass eigenstates. As the physical mass eigenstates are not
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2. The Standard Model and B-Meson Physics

identical to the eigenstates of the weak interaction, this matrix contains off-diagonal
elements, allowing for transitions between quark generations. Its elements govern
the probabilities of such transitions and need to be determined experimentally.

In order to explain the groundbreaking observation of CP violation consistently
within the quark model of the SM, the Lagrangian of Eq. 2.30 must not be invariant
under CP conjugation, and hence, VCKM ̸= V †

CKM. Accordingly, the matrix needs to
contain at least one irreducible complex phase, which changes sign under CP .

In principle, for a unitary N × N matrix, there exist N2 free parameters,
N(N − 1)/2 real parameters and N(N + 1)/2 complex phases. As the Lagrangian
is invariant under simultaneous phase shifts of the physical quark fields, (2N − 1)

complex phases in the VCKM matrix can be eliminated by a proper phase convention.
The remaining (N − 1)(N − 2)/2 independent complex phases accommodate any
CP violation, which becomes viable with a minimum of three quark generations. In
this case, the matrix is defined by three real parameters and a single complex phase.

At the time of discovery of CP violation in the neutral kaon system, only the
three lightest quarks, u, d and s, had been observed experimentally. In 1973, M.
Kobayashi and T. Maskawa provided a consistent explanation for CP violation,
postulating the existence of an unknown third generation quark doublet [31].3 In
recognition of their revolutionary finding, they were awarded the Nobel Prize in
Physics in 2008.

The original parametrization used by the authors was given in terms of three
Euler angles, θ1, θ2, θ3, and one complex phase, δ:

VCKM =




c1 −s1c3 −s1s3
s1c2 c1c2c3 − s2s3e

iδ c1c2s3 + s2c3e
iδ

s1c2 c1s2c3 + c2s3e
iδ c1s2s3 − c2s3e

iδ


 , (2.32)

where we denote the sine and cosine of the corresponding angle θi as ci and si.

An alternative, widely-used representation is given by the so-called Wolfenstein
parametrization [33], which provides a more intuitive visualization of the relative
sizes of the individual transition probabilities. It follows from a series expansion
of the matrix elements in powers of the parameter λ = |Vus| = |Vcd| = sin(θC),
which corresponds to the sine of the Cabibbo angle, governing transitions between
the first two generations. The approximate form of the CKM matrix using this

3The idea of a mixing mechanism connecting different quark flavors via the superposition of their
weak eigenstates was first proposed by N. Cabibbo for two generations [32]. Its central result,
the mixing matrix is, therefore, nowadays referred to as the Cabibbo-Kobayashi-Maskawa
matrix.
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parametrization, up to O(λ3), reads:

VCKM =




1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 , (2.33)

where A, ρ and η are real parameters in (0, 1). The only complex contribution is
given by iη, which hence accounts for any CP violation in this representation.

From the unitarity condition of the CKM matrix follows

(V V †)ij = (V †V )ij = δij , (2.34)

which results in twelve relations between matrix elements. Six of those with i ̸= j

can be represented as triangles in the complex plane with sides VikV ∗
jk. The latter

can be obtained in decay rate measurements of the corresponding transitions. The
interior angles are determined in measurements of CP violation.

One important relation relevant for B-meson decays is given by

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (2.35)

where all terms are of equal order in λ, O(λ3), which is unique to the B-meson
system. As a result, the interior angles are all O(60◦) and CP violation effects
are significantly larger than in other systems. For practicality, we can rotate the
triangle and normalize it by one of its sides, VcdV ∗

cb, to align it with the real axis.
The third corner is then located at (ρ̄, η̄), with

ρ̄ ≡
(
1− λ2

2

)
ρ, η̄ ≡

(
1− λ2

2

)
η . (2.36)

The corresponding angles are given by

ϕ1 ≡ β ≡ arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
, (2.37)

ϕ2 ≡ α ≡ arg

(
− VtdV

∗
tb

VudV ∗
ub

)
, (2.38)

ϕ3 ≡ γ ≡ arg

(
−VudV

∗
ub

VcdV ∗
cb

)
, (2.39)

where the different notations correspond to varying conventions. The triangle is
schematically shown in Figure 2.3.

The collaborative goal of experiments such as Belle II or LHCb is to overconstrain
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Figure 2.3.: Unitarity triangle for the B-meson system, corresponding to Eq. 2.35.
The sides are normalized by |VcdV ∗

cb|.

the parameters of the CKM triangle. By experimentally verifying the closure of the
triangle, one can test the unitarity condition and detect any deviations, which would
indicate the presence of physics beyond the Standard Model. Additional observables,
like the mass difference of neutral B mesons, ∆md, can provide further constraints.
Figure 2.4 shows a combination of constraints from numerous measurements along
with the result of a global fit to determine the shape of the triangle. Evidently, the
fit result coincides consistently with the 95% CL regions, indicating good agreement
at the current level of precision [20].

2.2.3. Time-Evolution of Neutral Mesons

Off-diagonal elements in the CKM matrix introduce flavor-changing transitions as
part of the weak interaction in the SM. Accordingly, the eigenstates of the weak
interaction are not identical to the physical mass eigenstates. As a consequence,
neutral mesons, such as B0 and B̄0, exhibit time-dependent flavor oscillations,
which result in a change of their flavor quantum number by two units. The
underlying mechanism driving these oscillations depends on a small mass difference
between the mass eigenstates, giving rise to a mixing of the flavor eigenstates as the
system evolves. In the following, the dynamics of the neutral meson system will be
described, establishing the necessary framework for a quantitative interpretation of
CP -violation measurements.4

We can express a neutral, flavored meson state as a linear combination of its two
4Though we use the notation of B-meson states, B0 and B̄0, already in this section, the results

are generally applicable to other heavy neutral mesons, as well. The specifics of B-meson
dynamics are discussed at the end of this section.
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13 12. CKM Quark-Mixing Matrix

γ

γ

α

α

d
m∆

K
ε

K
ε

sm∆ & 
d

m∆

ub
V

βsin 2

α

βγ

ρ

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

Figure 12.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

and the Jarlskog invariant is J =
(
3.08+0.15

−0.13
)
× 10−5. The parameters in Eq. (12.3) are

sin θ12 = 0.22500± 0.00067 , sin θ13 = 0.00369± 0.00011 ,
sin θ23 = 0.04182+0.00085

−0.00074 , δ = 1.144± 0.027 . (12.28)

Fig. 12.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements, and the global
fit result. The shaded 95% CL regions all overlap consistently around the global fit region. This
reverts a change in the 2020 edition, when the shown CL of each region was increased to 99%,
because of poor consistency (primarily due to changes in |Vud|), which is no longer the case.

If one uses only tree-level inputs (magnitudes of CKM elements not coupling to the top quark
and the angle γ), the resulting fit is almost identical for λ in Eq. (12.26), while the other pa-
rameters’ central values can change by about a sigma and their uncertainties double, yielding
λ = 0.22507 ± 0.00068, A = 0.805 ± 0.028, ρ̄ = 0.166+0.026

−0.024, and η̄ = 0.370+0.029
−0.028. This illustrates

how the constraints can be less tight in the presence of BSM physics.

12.5 Implications beyond the SM
The effects in B, Bs, K, and D decays and mixings due to high-scale physics (W , Z, t, H in

the SM, and unknown heavier particles) can be parameterized by operators composed of SM fields,

11th August, 2022

Figure 2.4.: Constraints from numerous measurements on the unitary triangle along
with the result of a global fit. Shaded areas indicate the 95% CL [20].

flavor-eigenstates at a given time, t0 = 0,

|B(t0 = 0)⟩ = a(0)|B0⟩+ b(0)|B0⟩ . (2.40)

For t > 0, this system will evolve into

|B(t)⟩ = a(t)|B0⟩+ b(t)|B0⟩+
∑

i

ci(t)|fi⟩ , (2.41)

where |fi⟩ denote final states accessible via decay. In the Weisskopf-Wigner ap-
proximation, that is, for time scales significantly larger than those of the strong
interaction, and neglecting the terms ci(t), we can approximate the time evolution
of the system, using the time-dependent Schrödinger equation:

iℏ
∂

∂t
ψ(t) = Heff ψ(t) with ψ(t) =

(
a(t)

b(t)

)
, (2.42)
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where Heff is a non-hermitian 2× 2 matrix, representing the effective Hamiltonian.
The latter can be expressed in terms of two hermitian matrices, M and Γ:

Heff = M − i

2
Γ . (2.43)

The diagonal elements of Heff correspond to flavor-conserving transitions, and
assuming CPT invariance, we can infer M11 = M22 ≡ m and Γ11 = Γ22 ≡ Γ.
Additionally, hermiticity of M and Γ dictates M12 =M∗

21 and Γ12 = Γ∗
21, such that

we can write

Heff =

(
m− i

2
Γ M12 − i

2
Γ12

M∗
12 − i

2
Γ∗
12 m− i

2
Γ

)
. (2.44)

The physical eigenstates of this matrix can be expressed as linear combinations of
the flavor-eigenstates,

|BL⟩ = p|B0⟩+ q|B0⟩

|BH⟩ = p|B0⟩ − q|B0⟩ ,
(2.45)

where the suffix L and H indicate the light and heavy mass eigenstates, respectively,
and normalization requires |p|2 + |q|2 = 1. With explicit diagonalization of Heff, it
can further be shown that q and p satisfy

q

p
=

√
M∗

12 − i
2
Γ∗
12

M12 − i
2
Γ12

[34]. (2.46)

The physical mass states obey the typical decay law,

|BL(t)⟩ = e−iωLt|BL⟩ = e−iωLt(p|B0⟩+ q|B0⟩)

|BH(t)⟩ = e−iωH t|BH⟩ = e−iωH t(p|B0⟩ − q|B0⟩) ,
(2.47)

with eigenvalues

ωL,H = mL,H − i

2
ΓL,H . (2.48)

We can express the parameters of ωL,H in terms of the observable average lifetime
and mass, and the difference between the light and heavy mass eigenstates:

∆m ≡ mH −mL , ∆Γ ≡ ΓL − ΓH , m =
mL +mH

2
, Γ =

ΓL + ΓH

2
. (2.49)

To obtain the time-evolution in the basis of the flavor-eigenstates, we solve Eq. 2.45
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for |B0⟩ and |B̄0⟩, and subsequently plug in the time-dependent terms for |BL(t)⟩
and |BH(t)⟩ from Eq. 2.47:

|B0(t)⟩ = 1

2p

(
e−iωLt(p|B0⟩+ q|B̄0⟩) + e−iωH t(p|B0⟩ − q|B̄0⟩)

)

=
1

2

(
e−iωLt + e−iωH t

)
|B0⟩+ q

2p

(
e−iωLt − e−iωH t

)
|B̄0⟩

|B̄0(t)⟩ = 1

2q

(
e−iωLt(p|B0⟩+ q|B̄0⟩)− e−iωH t(p|B0⟩ − q|B̄0⟩)

)

=
p

2q

(
e−iωLt − e−iωH t

)
|B0⟩+ 1

2

(
e−iωLt + e−iωH t

)
|B̄0⟩ .

(2.50)

These expressions can be simplified further by introducing the following parameter:

g± =
1

2

(
e−iωLt ± e−iωH t

)
, (2.51)

which can be written in explicit terms of the observables in Eq. 2.49,

g+ = e−imte−Γt/2

(
cosh

∆Γt

4
cos

∆mt

2
− i sinh

∆Γt

4
sin

∆mt

2

)

g− = e−imte−Γt/2

(
− sinh

∆Γt

4
cos

∆mt

2
+ i cosh

∆Γt

4
sin

∆mt

2

)
.

(2.52)

Using the definitions of g± from Eq. 2.51, we can rewrite the time-evolution in
Eq. 2.50,

|B0(t)⟩ = g+(t)|B0⟩+ q

p
g−(t)|B̄0⟩

|B̄0(t)⟩ = p

q
g−(t)|B0⟩+ g+(t)|B̄0⟩ .

(2.53)

Assuming a pure flavor initial state, |B0⟩, we can now readily determine the proba-
bility to observe the same or opposite flavor-state after some time t,

∣∣⟨B0|B0(t)⟩
∣∣2 = |g+(t)|2 =

e−Γt

2

(
cosh(

∆Γt

2
) + cos(∆mt)

)

∣∣⟨B̄0|B0(t)⟩
∣∣2 =

∣∣∣∣
q

p
g−(t)

∣∣∣∣
2

=

∣∣∣∣
q

p

∣∣∣∣
2
e−Γt

2

(
cosh(

∆Γt

2
)− cos(∆mt)

)
,

(2.54)
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where we have used the orthogonality of |B0⟩ and |B̄0⟩ and the explicit expressions
for g± in Eq. 2.52. Evidently, non-vanishing ∆Γ and ∆m will lead to an oscillation
of the two flavor eigenstates.

Finally, we consider the time-dependant decay rates of initially pure flavor states
into a common final state f . For this, we denote the amplitudes for transitions of
flavored mesons |B⟩ and |B̄⟩ to some final states |f⟩ and |f̄⟩ as

Af = ⟨f |H|B⟩ Āf = ⟨f |H|B̄⟩
Af̄ = ⟨f̄ |H|B⟩ Āf̄ = ⟨f̄ |H|B̄⟩ , (2.55)

with the effective Hamiltonian H. Further, we introduce the following CP -violation
parameter

λCP =
q

p

Āf

Af

=

∣∣∣∣
q

p

∣∣∣∣
∣∣∣∣
Āf

Af

∣∣∣∣ e−i(ϕM+ϕD) , (2.56)

where ϕM is the weak mixing phase, and ϕD is the decay phase.
Neglecting phase-space normalization, we obtain the decay rates by taking the

absolute squares of the transition amplitudes,

Γ(B0(t) → f) = |⟨f |H|B0(t)⟩|2 and Γ(B̄0(t) → f) = |⟨f |H|B̄0(t)⟩|2 . (2.57)

Inserting Eq. 2.53 into the above equations, and using the definition of λCP , we
obtain,

Γ(B0(t) → f) =
1

2
|Af |2e−Γt

[
(1 + |λCP |2) cosh

∆Γt

2
+ (1− |λCP |2) cos (∆mt)

− 2Re(λCP ) sinh
∆Γt

2
− 2 Im(λCP ) sin (∆mt)

]
(2.58)

Γ(B̄0(t) → f) =
1

2

∣∣∣∣
p

q

∣∣∣∣
2

|Af |2e−Γt

[
(1 + |λCP |2) cosh

∆Γt

2
− (1− |λCP |2) cos (∆mt)

− 2Re(λCP ) sinh
∆Γt

2
+ 2 Im(λCP ) sin (∆mt)

]
. (2.59)

Time-evolution of neutral B mesons

The flavor oscillation in neutral B-mesons is primarily mediated by box diagrams,
with the dominant contribution arising from virtual t-quark exchange due to the
corresponding CKM matrix element Vtb ∼ 1. The contributions from lighter quarks
(u, c, and d) can be neglected as a result of the Glashow-Iliopoulos-Maiani (GIM)
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mechanism [35], which largely cancels out their amplitudes, minimizing their impact
on the B0 − B̄0 mixing process. The leading-order Feynman diagrams are shown in
Figure 2.5, where b- and d-quarks undergo intermediate flavor changes to primarily
t-quarks via the exchange of W± bosons.

Figure 2.5.: Feynman diagrams of dominant contributions to the flavor-mixing
between neutral B-meson eigenstates.

For the neutral B-meson system, we can make two simplifications. Firstly, the
lifetime difference between the two mass eigenstates, BH and BL, is practically
negligible with ∆Γ/Γ ≈ O(10−3), such that we can write ΓL = ΓH = Γ.

Secondly, we have Γ12/M12 ≈ O(m2
b/m

2
t ) ≈ O(10−3) and hence |Γ12| ≪ |M12|.

We can therefore expand the mixing parameter as follows [36]:

q

p
=

√
M∗

12

M12

+O
(

Γ12

M12

)
≈ M∗

12

|M12|
. (2.60)

Consequently, the phase of q/p can be approximated by the phase of the box
diagrams governing the B0 − B̄0 oscillation. As the latter is dominated by virtual
t-quark contributions, we can infer

q

p
≈ V ∗

tbVtd
VtbV ∗

td

. (2.61)

Evidently, in this case, the mass eigenstates BL and BH can be considered as flavor
eigenstates, as |q/p| ≈ 1, rendering CP violation in mixing to be very small (see
Section 2.2.4).

Using ∆Γ = 0, we can simplify the expression for observing the same or opposite
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flavor of a pure initial flavor state after some time t (Eq. 2.53) to read

∣∣⟨B0|B0(t)⟩
∣∣2 =

e−Γt

2

(
1 + cos(∆mt)

)

∣∣⟨B̄0|B0(t)⟩
∣∣2 | qp |≈1

=
e−Γt

2

(
1− cos(∆mt)

)
.

(2.62)

Analogously, the decay rates of neutral B-meson states into a final state f ,
described in Eq. 2.58 and 2.59, can now be expressed as

Γ(B0(t) → f) =
1

2
|Af |2e−Γt

[
1 + |λCP |2 + (1− |λCP |2) cos (∆mt)− 2 Im(λCP ) sin (∆mt)

]

(2.63)

Γ(B̄0(t) → f) =
1

2
|Af |2e−Γt

[
1 + |λCP |2 − (1− |λCP |2) cos (∆mt) + 2 Im(λCP ) sin (∆mt)

]

(2.64)

2.2.4. Types of CP Violation

Based on the above derivations, we can classify the mechanisms of CP violation in
neutral meson decays into three categories.

CP violation in mixing

CP violation in mixing can occur during the oscillation of neutral mesons. In
this case, the mass eigenstates are not pure CP eigenstates, i.e., |q/p| ≠ 1. This
condition becomes evident when explicitly comparing the asymmetric transition
probabilities between the flavor eigenstates,

∣∣⟨B0|B̄0(t)⟩
∣∣2 ̸=

∣∣⟨B̄0|B0(t)⟩
∣∣2 , (2.65)

which is equivalent to
∣∣∣∣
p

q
g−(t)

∣∣∣∣
2

̸=
∣∣∣∣
q

p
g−(t)

∣∣∣∣
2

⇒
∣∣∣∣
q

p

∣∣∣∣ ̸= 1 . (2.66)

24



2.2. CP Violation

CP violation in decay

CP violation in decay (or direct CP violation) occurs when the decay amplitudes
of a specific transition differ between particle and its anti-particle,

Af ̸= Āf̄ . (2.67)

In general, a decay is governed by a number of possible intermediate states that
contribute to the total decay amplitude:

Af =
∑

i

|Ai| ei(δi+ϕi) Āf̄ =
∑

j

|Aj| ei(δj+ϕj) , (2.68)

where δi and ϕi represent strong and weak phases, respectively. Whereas the former
remain invariant under CP transformation, the weak phases change signs. We can
rewrite the condition for direct CP violation in the following form:

|Af |2 −
∣∣Āf̄

∣∣2 = −2
∑

i,j

|Ai| |Aj| sin(δi − δj) sin(ϕi − ϕj) . (2.69)

From the above equation it becomes evident that there needs to be a minimum of
two intermediate states governing the decay with differing strong and weak phases
for direct CP violation to occur.

Mixing-induced CP violation

Mixing induced CP violation can occur when a final state, fCP is accessed by both
flavor states. Figure 2.6 schematically shows the contribution of both states, after
undergoing flavor mixing, to a common final state. Even for

∣∣Af/Āf

∣∣ = |q/p| = 1,
the interference of the mixing and decay processes can generate a CP asymmetry,
if there is a non-vanishing phase difference. In terms of the complex quantity λCP ,
the condition for mixing induced CP violation can be expressed as Im(λCP ) ̸= 0.
Experimentally, the determination requires a time-dependant measurement, which
is discussed in the following section in detail.
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Figure 2.6.: Interference of two decay amplitudes leading to time-dependent CP
violation in the decay of a neutral meson to a CP eigenstate.

2.3. B-Meson Sector

At the Belle II experiment, electrons and positrons are collided primarily at a
center-of-mass energy of 10.58GeV, corresponding to the third radially-excited
bottomonium (bb̄) resonance, denoted as Υ (4S). The rest mass of the Υ (4S) lies
just above the production threshold for a pair of B mesons (mB = 5.279GeV). As
a result, the resonance predominantly decays at roughly equal rates into a pair of
B+B− or B0B̄0 mesons, which are nearly at rest in the center-of-mass frame.

B mesons exhibit comparably long lifetimes of τB0 = 1.52ps and τB± = 1.62ps.
These extended lifetimes facilitate the measurement of time-dependent CP violation
and can be attributed to the small couplings of the third quark generation to the
other two generations, which are CKM-suppressed by factors of Vub ∼ O(λ3C) and
Vcb ∼ O(λ2C).

The combination of long lifetimes and sizeable CP violation in the B-meson system
renders the latter an excellent laboratory for studying CP violation and precisely
testing the predictions of the Standard Model. In the following, we examine CP -
violation measurements in the B0B̄0 system, followed by a more detailed discussion
of the specific decay channels relevant to this thesis, B0 → π+π− and B0 → K+π−.

2.3.1. CP Violation in the B-Meson Sector

With negligible CP violation in mixing, B mesons can in principle still exhibit CP
violation in the decay, directly or mixing-induced, leading to observable differences
in the decay rates. We define the time-dependant rate asymmetry,

aCP (t) ≡
Γ(B̄0(t) → f)− Γ(B0(t) → f)

Γ(B̄0(t) → f) + Γ(B0(t) → f)
. (2.70)
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Plugging in the time-dependant decay rates from Eq. 2.63 and 2.64, the above
asymmetry reads

aCP (t) =
|λCP |2 − 1

|λCP |2 + 1
cos(∆mt) +

2 Im(λCP )

|λCP |2 + 1
sin(∆mt)

= ACP cos(∆mt) + SCP sin(∆mt) , (2.71)

where, for the last step, we have introduced the CP -violation parameters5

ACP ≡ |λCP |2 − 1

|λCP |2 + 1
and SCP ≡ 2 Im(λCP )

|λCP |2 + 1
. (2.72)

We have established, that for neutral B mesons q/p ≈ 1 and hence |λCP | = |Ā/A|,
indicating that ACP ̸= 1 corresponds to non-vanishing direct CP violation. SCP ≠ 0,
on the other hand, implies the presence of mixing-induced CP violation, resulting
from an interference of mixing and decay amplitudes. From an experimental point-of-
view, the task is to measure the time evolution of aCP (t) in terms of the coefficients
of cos(∆mt) and sin(∆mt), which in turn, determine |λCP | and Im(λCP ).

Lastly, we note, that the above relations are valid for decays of neutral B mesons
into CP eigenstates. In the case of charged mesons or decays to flavor-specific final
states, such as B0 → K+π−, there is evidently no mixing-induced CP violation. The
direct CP -violation parameter can then be readily expressed as difference between
time-independent decay rates,

Adir
CP ≡ Γ(B̄ → f̄)− Γ(B → f)

Γ(B̄ → f̄) + Γ(B → f)
. (2.73)

2.3.2. Time-Dependent CP -Violation Measurement

The time-evolution described in the preceding section and the corresponding rate
asymmetry in Eq. 2.71 rely on prior knowledge of the initial flavor of the decaying
B meson. As the Υ (4S) resonance decay produces pairs of B mesons, a neutral
decaying particle, in principle, has an equal probability of being created as either a
B0 or a B̄0. At the Belle II experiment, we take advantage of quantum entanglement
between the two mesons to address this challenge.

Due to conservation of total angular momentum of the Υ (4S) (JPC = 1−−), the
B mesons (JP = 0−) must have a relative angular momentum L = 1. Following
Bose-Einstein statistics, the symmetric states B0B0 and B̄0B̄0 are prohibited.

5An alternative notation in use is CCP = −ACP . We stick to the above convention to remain
consistent with references used in Section 2.3.3.
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Accordingly, the two mesons form a quantum-mechanically entangled state and
oscillate coherently until one of the B mesons decays. The combined state can be
expressed as

|B1(t1), B2(t2)⟩ =
1√
2

(
|B0

1(t1)⟩|B̄0
2(t2)⟩ − |B̄0

1(t1)⟩|B0
2(t2)⟩

)
. (2.74)

At the time of decay, t1, the flavor of the decaying meson, B1, dictates the flavor of
the other, B2, to be opposite. Following the time-evolution derived in the previous
sections, the second meson then oscillates until its decay at t2. Experimentally,
this circumstance is used by inferring the flavor of neutral B mesons decaying into
CP eigenstates from flavor-specific final state decays, which tag the flavor of both
mesons at the time of their decay. From the time-dependant decay rates, one can
derive the following expression for the probability of a decay to a CP final state
fCP for a given flavor tag q = ±1:

P (∆t, q) =
1

4τB
e
− |∆t|

τB

[
(1 + q

(
ACP cos(∆m∆t) + SCP sin(∆m∆t)

)]
, (2.75)

where ∆t = t2 − t1 is the decay-time difference, and τB is the average lifetime
for neutral B mesons. From the above expression it becomes clear, that fitting
the decay rates as a function of ∆t for both flavors allows to determine the CP
violation parameters ACP and SCP . In practice, due to the short lifetime of O(ps),
the time-difference is accessed via the spatial difference in decay vertex positions.
To this end, the Υ (4S) is produced with a Lorentz boost βγ. With the BB̄ pairs
almost at rest in the center-of-mass frame, the time difference can be approximated
with

∆t ≈ ∆z

βγc
, (2.76)

with ∆z corresponding to the spatial decay position difference along the boost axis,
z, and c representing the speed of light.

2.3.3. Hadronic Two-Body Decays

Hadronic two-body B-meson decays play a crucial role in exploring flavor dynamics
within the Standard Model. Specifically, transitions without charm quarks in the
final state are often heavily CKM-suppressed and therefore exhibit only small
branching ratios of O(10−5) or less. Despite this challenge, the suppression opens
up possibilities to precisely test SM predictions for the interference between different
higher-order decay amplitudes in the form of CP violation.

This study presents the analysis of neutral B-meson decays into two charged
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pseudo-scalar mesons, B0 → π+π− and B0 → K+π−. In both cases, the tree diagram
contribution to the transition amplitude is heavily CKM-suppressed, rendering the
so-called penguin (loop) diagram to be of leading order. The latter refers to one-loop
processes in which a quark temporarily changes flavor via the exchange of virtual
W± bosons, and engages in a typically strong tree interaction (see Figure 2.7).
These flavor-changing neutral current diagrams offer a valuable avenue to probe
new physics beyond the Standard Model. Unobserved particles might participate in
the virtual loop, introducing an extra amplitude to the decay process. Such effects
could be measured in terms of deviations from SM predictions of decay rates or CP
asymmetries.

The theoretical understanding of charmless two-body B-meson decays is challeng-
ing due to the non-perturbative nature of QCD in the low-energy regime. To tackle
this, various approaches have been developed, such as QCD factorization, which aims
to factorize the decay amplitude into perturbatively calculable and non-perturbative
hadronic matrix elements. Additionally, SU(3) flavor symmetry has been employed
to relate different decay modes, providing valuable insight and reducing the number
of independent parameters. As these methods make use of the world average values
for the CKM matrix elements and the related components of the unitarity triangle,
which are obtained only through experiment, precise measurements are of vital
importance.

In this section, the specifics of b → uūd and b → sud transitions are discussed.
The focus lies on two methods to combine measurements of isospin-related transitions
to significantly reduce theoretical uncertainties and constrain NP contributions.

b → uūd transitions

Transitions of the kind b → uūd are closely related to the angle ϕ2 of the CKM
triangle. Specifically the time-dependent measurement of B0 → π+π− decays can
be used to extract ϕ2 in terms of experimentally accessible CP -violation parameters.
The CP violation arises due to the interference of the B0-B̄0 mixing process with
the decay amplitude. Assuming a single contribution of the tree diagram to the
decay, and hence no direct CP violation, the angle ϕ2 is directly related to the
mixing-induced CP -violation parameter [37],

SCP ≡ 2 Im(λCP )

|λCP |2 + 1
= sin(2ϕ2) . (2.77)

We can visualize the topology of the leading contributions to the decay amplitude
in terms of their Feynman diagrams. In the case of B0 → π+π−, these are given by
the charged-current tree diagram and the one-loop penguin diagram, depicted in
Figure 2.7. The magnitude of both amplitudes can be compared in terms of the
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Figure 2.7.: Contributions of different topologies to the decay amplitude of
B0 → π+π−: (left) tree diagram, (right) one-loop QCD penguin di-
agram.

CKM matrix elements governing the respective transitions. With

|Vud| ∼ 1, |Vub| ∼ λ3C and |Vtb| ∼ 1, |Vtd| ∼ λ3C , (2.78)

where λC represents the sine of the Cabibbo angle, we find a similar suppression
of O(λ3C) for both transitions. Consequently, the penguin diagram with a different
weak phase pollutes the extraction of ϕ2 and leads to sizeable direct CP violation.
In 1990, M. Gronau and D. London proposed to combine the measurements of
all three isospin-related B0 → π+π−, B0 → π0π0 and B0 → π+π0 decay modes to
retrieve the unpolluted angle ϕ2 [38].

The proposed analysis relies on the approximate conservation of isospin symmetry
in the hadronization process of B → ππ transitions. With pions carrying an isospin
of 1, the total isospin of the di-pion final-state, I, can in principle be 0, 1 or 2. The
decay of B mesons, being spin-0 particles, dictates a total angular momentum of
J = 0. As such, a final state with I = 1 would be anti-symmetric, following (−1)J+I .
Hence, adhering to Bose-Einstein statistics, only final states with a total isospin of
either I = 0 or I = 2 are allowed.

Whereas the tree diagram can lead to both of these cases, with the gluon carrying
no isospin, the penguin diagram results only in final states with I = 0. In the case
of B0 → π+π0 with I = 2, the decay is only mediated by the tree diagram. The
amplitudes governing the different decays can be decomposed into components of
I = 0 and I = 2. Evaluating the Clebsch-Gordon coefficients, we can write

1√
2
A+− = A2 − A0 , (2.79)

A00 = 2A2 + A0 , (2.80)
A+0 = 3A2 , (2.81)

where Aij represent the total amplitude of the respective decay, and AI denote the
components leading to I = 0 or 2. Rearranging the above equations yields the
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following triangle relation in the complex plane:

1√
2
A+− + A00 = A+0 , (2.82)

and accordingly for the charge-conjugated case:

1√
2
Ā+− + Ā00 = Ā−0 . (2.83)

The magnitudes of the decay amplitudes are obtained experimentally through the
respective decay rate measurements, which, in the case of neutral decays, need
to account for mixing (cf. Eq. 2.63). Using the definition of the CP -violation
parameter λCP , and defining the following amplitude ratios,

z ≡ A0

A2

and z̄ ≡ Ā0

Ā2

, (2.84)

we can write for B0 → π+π−,

λCP =
q

p
e−2iϕt

(
1− z̄

1− z

) | qp |≈1
= e−2i(ϕt+ϕM )

(
1− z̄

1− z

)
, (2.85)

with ϕt and ϕM corresponding to the CKM phase of the tree-level amplitude and
the weak mixing phase, respectively. Identifying the CKM elements governing both
of these processes, we can relate them with the angles of the CKM triangle, ϕt = ϕ3

and ϕM = ϕ1. Further assuming CPT symmetry, ϕ2 = π − ϕ1 − ϕ3, we find for the
imaginary part,

Im(λCP ) = Im
(
e−2iϕ2

[
1− z̄

1− z

])
= Im

(
e−2iϕ2

[
1− |z̄|e±iθ̄

1− |z|e±iθ

])
. (2.86)

For the second equality, we have introduced the angles θ and θ̄, to express the phases
of z and z̄. Following geometrical considerations of the triangle relations visualized
in Figure 2.8, we can obtain all four parameters, z, z̄, θ and θ̄, from measuring the
decay rates, with a twofold ambiguity regarding the sign of the phases. The phase
of the term in the square bracket can therefore take on four values, which we denote
as ±ϵ± and ±η±. The angle ϕ2 is then a solution to one of the four equations,

sin(2ϕ2 ± ϵ±) = Im(λCP,±)/m± (2.87)
sin(2ϕ2 ± η±) = Im(λCP,±)/m± , (2.88)
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Figure 2.8.: Visual representation of the triangle relations between the three isospin-
related decay modes of the B → ππ system (Eq. 2.82 (left) and Eq. 2.83
(right)) [39]

where m± is the magnitude of the square bracket above. The fourfold ambiguity can
be resolved by establishing the analogous expressions for the B0 → π0π0 system,
which yields

sin(2ϕ2 ± ϵ00) = Im(λCP,00)/m00 (2.89)
sin(2ϕ2 ± η00) = Im(λCP,00)/m00 . (2.90)

The time-dependant measurement of B0 → π0π0 is experimentally very challenging,
as it requires the precise reconstruction of the decay vertex from four photons.
Additionally, with CP -eigenstate final states, both neutral decay modes require
the use of a flavor-tagger algorithm, which further complicates the extraction of
the CP -violation parameters. At this stage of the Belle II experiment, a precise
measurement of ϕ2 using the outlined analysis is not feasible with the limited data
currently available. A dedicated study estimates the precision of Belle II with an
integrated luminosity of 50 ab−1 to δϕ2 ≈ 0.6◦ [40]. This projection includes the
related analysis of B → ρρ and would correspond to a five-fold increase compared
to current world average precision.

b → sud transitions

The decay amplitude of B0 → K+π− transitions receives dominantly contributions
from the tree diagram and the QCD one-loop penguin diagram, which are visualized
in Figure 2.9. Comparing the magnitudes of both topologies in terms of the CKM-
matrix elements entering the transitions,

|Vub| ∼ λ3C , |Vus| ∼ λC and |Vtb| ∼ 1, |Vts| ∼ λ2C , (2.91)
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Figure 2.9.: Contributions of different topologies to the decay amplitude of
B0 → K+π−: (left) tree diagram, (right) one-loop QCD penguin dia-
gram.

we find that the penguin-diagram contribution dominates with a suppression of
O(λ2C). This feature renders the decay potentially sensitive to heavy new-physics
particles entering the loop, which could lead to measurable deviations from SM
expectations.

Further, the interference between both diagrams, with different weak and strong
phases, can lead to direct CP violation. As the final state is self-tagging, the flavor
of the decaying B meson is unambiguously determined by the charge of the kaon.
As such, the direct CP -violation parameter can be obtained via a time-integrated
measurement without the need to infer the initial flavor using the tag-side decay (cf.
Eq. 2.73). However, large theoretical uncertainties in predicted strong interaction
phases impede the extraction of the weak phase ϕ3 from the direct CP asymmetry.

Considerable interest in this decay mode was sparked by the observation of a
significant discrepancy between CP asymmetries in B0 → K+π− and B+ → K+π0

decays. In the limit of SU(3) symmetry and the absence of color-suppressed tree
and electroweak penguin contributions, the asymmetries were expected be equal,
∆ACP = ACP (K

+π−)−ACP (K
+π0) ≈ 0 [41]. However, independent measurements

by Belle, BaBar, LHCb and CDF have consistently confirmed a deviation from
this naive expectation with a significance of more than 5σ [20]. Many theoretical
conjectures have since been brought forward to try to resolve this ∆ACP puzzle
(see [42, 43, 44, 45] and references therein). Whereas an enhanced color-suppressed
tree contribution is at odds with well-established SM parameters, it would resolve
the discrepancy without the need for NP. The second prominent approach is the
inclusion of a sizable electroweak penguin contribution, which would indicate physics
beyond the SM. With considerable uncertainties in many of the assumptions, it is
fair to conclude that the theoretical interpretation of these measurements remains
somewhat unclear [46].

To obtain a model-independent test of the SM, in [47] M. Gronau suggests to
employ isospin symmetry among all B → Kπ modes to relate dominant terms in
the CP asymmetries. One significant advantage of the proposed sum rule is the

33



2. The Standard Model and B-Meson Physics

cancellation of common systematic uncertainties in theoretical predictions as well as
experimental measurements. In the following, we will briefly outline the derivation,
following the author’s line of arguments. The application, using the most recent
results for the measurements of all B → Kπ modes at Belle II, which includes the
measurement presented in this thesis, is detailed in Section 6.4.

Based on the effective Hamiltonian describing B → Kπ decays, in the diagrammatic
approach the total transition amplitudes can be decomposed into terms of distinct
topologies, which correspond to the operators in the Hamiltonian [48, 49]. We use
the following six diagrams: the color-favored and color-suppressed tree amplitudes
T and C, the gluonic penguin amplitude P , color-favored and color-suppressed
electroweak penguin amplitudes PEW and PC

EW , and the annihilation amplitude A.
Assuming unitarity of the CKM triangle, the transition amplitudes of the B → Kπ

system can be written as:

−A
(
K+π−) = λu(Puc + T ) + λt(Ptc +

2

3
PC
EW ) , (2.92)

−
√
2A
(
K+π0

)
= λu(Puc + T + C + A) + λt(Ptc + PEW +

2

3
PC
EW ) , (2.93)

√
2
(
K0π0

)
= λu(Puc − C) + λt(Ptc − PEW − 1

3
PC
EW ) , (2.94)

A
(
K0π+

)
= λu(Puc + A) + λt(Ptc −

1

3
PC
EW ) , (2.95)

where we have defined λq ≡ V ∗
qbVqs, as well as Ptc ≡ Pt − Pc and Puc ≡ Pu − Pc.6

Illustrations of the above Feynman diagrams are given in Appendix A.1.

Alternatively, these four amplitudes can be decomposed into isospin amplitudes,
according to the respective relative change ∆I of the transition. Analogous to the
derivation of the isospin relation in the previous section, for B → Kπ decays there
is a single ∆I = 1/2 contribution from the iso-singlet part of the Hamiltonian,
B1/2, and two allowed amplitudes, A1/2 and A3/2 from the iso-triplet part [50]. The
physical amplitudes are then given by

−A
(
K+π−) = B1/2 − A1/2 − A3/2 , (2.96)

−
√
2A
(
K+π0

)
= B1/2 + A1/2 − 2A3/2 , (2.97)

√
2A
(
K0π0

)
= B1/2 − A1/2 + 2A3/2 , (2.98)

A
(
K0π+

)
= B1/2 + A1/2 + A3/2 . (2.99)

6Here, the index of Pq indicates the flavor of the virtual quark in the loop of the penguin diagram.
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Next, we define the rate difference between CP -conjugates transitions as,

∆(B → f) ≡ Γ(B̄ → f̄)− Γ(B → f) , (2.100)

which, using Eqs. 2.92-2.95, yields

∆
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2

3
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∗
]
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∗
u) , (2.101)
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The rate differences can be combined by defining the difference δKπ,

δKπ ≡ ∆
(
K+π−)+∆

(
K0π+

)
− 2∆

(
K+π0

)
− 2∆

(
K0π0

)
. (2.105)

Following isospin symmetry, the dominant terms Ptc vanish in a combination, that
can be obtained from Eqs. 2.96-2.99,

−A
(
K+π−)+ A

(
K0π+

)
+
√
2A
(
K+π0

)
−
√
2
(
K0π0

)
= 0 . (2.106)

The difference then contains only the following subleading terms,

δKπ = −Im
[
(PEW + PC

EW )(T + C)∗ + (PEWC
∗ − PC

EWT
∗)

+ (PEW + PC
EW )A∗

]
4Im(λtλ

∗
u) .

(2.107)

In the SU(3) and heavy quark limits, all terms vanish or are doubly suppressed
relative to ∆(K+π−), and therefore δKπ ≈ 0 is expected to hold within several
percent. Finally, we can rewrite the sum rule (Eq. 2.105) in terms of direct CP -
violation parameters ACP and CP -averaged branching ratios B:

IKπ = AK+π−

CP +AK0π+

CP

BK0π+

BK+π−

τB0

τB+

− 2AK+π0

CP

BK+π0

BK+π−

τB0

τB+

− 2AK0π0

CP

BK0π0

BK+π−
, (2.108)

where τ0 and τ+ represent the lifetimes of neutral and charged B mesons.

At Belle II, all parameters can be accessed experimentally within a consistent
framework. The measurement of B0 → K0π0 decays is particularly challenging for
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several reasons. For one, this mode is a CP eigenstate and, as such, requires the
determination of the B-meson flavor using a flavor-tagging algorithm. The efficiency
of the Belle II flavor tagger is in the order of 30%, significantly limiting the statistical
precision of such measurements [51]. Additionally, both daughter particles further
decay within the detector volume and need to be reconstructed from long-lived
final-state particles, reducing both efficiency and vertexing accuracy. To address
these challenges, the Belle II experiment was designed to record approximately 50
times the amount of B-meson decays compared to its predecessor at unparalleled
precision. The following chapter will present some of the most crucial aspects of the
experiment.
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The Belle II experiment is a next-generation flavor factory experiment located at the
SuperKEKB collider in Tsukuba, Japan. Building upon the successes of its predeces-
sor, the Belle experiment, Belle II has been designed to explore the phenomenon of
CP violation in B-meson decays with unparalleled precision and search for physics
beyond the Standard Model at the intensity-frontier. The collaboration leading
this effort consists of an international group of approximately 1000 physicists and
engineers from universities and institutes in currently 26 countries around the globe.

The experiment is centered around the Belle II detector, a sophisticated apparatus
consisting of various subdetectors, developed to efficiently and accurately reconstruct
the decay products of B-meson decays. As the successor of the Belle experiment,
which made crucial contributions towards establishing the CKM mixing mechanism
in the SM, the primary focus of Belle II has shifted towards the exploration of
new physics scenarios. Next to overconstraining the CKM triangle, precision
measurements of rare processes with branching ratios of O(10−6) or less play a
pivotal role in this pursuit. With the upgraded detector, the clean environment of
e+e− collisions can also be leveraged to perform missing-mass analyses to look for
low multiplicity and dark sector signatures. The integrated luminosity, targeted to
exceed that of the original Belle experiment by approximately 50-fold, is of vital
importance for the success of this rich physics program.

To produce the large number of B mesons, the SuperKEKB accelerator provides
high-intensity electron and positron beams at center-of-mass energies in the region
of the Υ (4S) resonance, colliding them precisely at the center of the Belle II detector.
The accelerator has undergone significant upgrades to achieve higher collision rates
and beam intensities, currently holding the world record of 4.71× 1034 cm−2s−1 in
peak luminosity [52].

In the following sections, we give an outline of the SuperKEKB facility and the
Belle II detector, highlighting the key technologies of the individual components.
More in-depths descriptions can be found in [53, 54, 55, 56].

An equally crucial driver of the experiment is the dedicated Belle II Analysis
Software Framework, or short basf2. It encompasses all key elements of the data-
processing chain, including the generation and simulation of Monte-Carlo datasets,
the processings of raw simulated and real detector signals, as well as the reconstruc-
tion of high-level analysis objects, needed to extract the desired physics results. The

37



3. The Belle II Experiment

description of all these software aspects is beyond the scope of this thesis and can
be found in [57, 55].

3.1. SuperKEKB Accelerator

The SuperKEKB accelerator is an asymmetric e+e− collider built as an upgrade to
its predecessor, the KEKB B-factory, which was in operation between 1998 until
2010 [58]. The facility comprises a linear accelerator and two storage rings, of about
3 km circumference each. After their production, bunches of positrons and electrons
are accelerated to their final energies, before being injected into their respective
storage rings. The high-energy ring (HER) containing electrons and the low-energy
ring (LER) containing positrons intersect in the center of the Belle II detector,
where the bunches are focused to collide for the efficient production of B mesons. A
schematic drawing of the facility is shown in Figure 3.1.

Figure 3.1.: Schematic drawing of the SuperKEKB facility, consisting of the linear
accelerator and the two storage rings, along with the Belle II detector
[56].

A key parameter in collider experiments is the instantaneous luminosity, L, which,
together with the cross-section σ for a given process, determines its event rate,

dN
dt

= L · σ ∝ I

β∗
y

. (3.1)
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The term on the right-hand-side expresses the dependence on the beam current, I,
and the vertical beta function at the interaction point (IP), β∗

y , which characterizes
the focusing strength of the particle beams in the vertical plane. To achieve the
production rates needed for the success of the Belle II experiment, SuperKEKB
aims to increase the luminosity by a factor of 40 compared to its predecessor [56].

An increase by a factor of two compared to KEKB is obtained by a doubling
of the effective beam currents. Further, the novel nano beam scheme, proposed
by P. Raimondi, is designed to significantly reduce the vertical beta function by
another factor of 20 by minimizing the overlap of the bunches at the IP [54]. This is
achieved by focusing the vertical component of both beams to widths of only around
σ∗
y ≈ 50nm in the overlap region. Additionally, opposed to a more traditional

head-on collision design, in the nano beam scheme, a large half-crossing angle of
θy = 41.5mrad is chosen, yielding a significant reduction in the size of the interaction
region along the z-direction (see Figure 3.2).

Figure 3.2.: Illustration of the beam-beam crossing in the nano beam scheme, used
at SuperKEKB to minimize the effective overlap of bunches at the
interaction point [59].

The accelerator is capable of delivering collisions in the center-of-mass energy
range from slightly below the Υ (1S) resonance at 9.46GeV to just above the Υ (6S)
resonance at 11.24GeV. In order to maximize the production cross-section for
BB̄ pairs, the main running mode of SuperKEKB lies on the peak of the Υ (4S)
resonance at 10.58GeV, which decays almost exclusively to a pair of B mesons.

For time-dependent decay rate measurements, the center-of-mass system is boosted
along the beam direction (cf. Section 2.3.2). With beam energies of 7GeV for
electrons and 4GeV for positrons, the boost is reduced by a factor of approximately
2/3 compared to KEKB, leading to an average distance between the decay vertices
of two B mesons of around 130 µm. Although it comes with some advantages like
a reduced Touschek scattering within the positron bunches and an increased solid
angle acceptance for missing-energy analyses, this choice demands an improved
vertexing resolution. The newly developed pixel vertex detector at Belle II effectively
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addresses this challenge.

3.2. Belle II Detector

The Belle II detector is a magnetic spectrometer with large solid angle coverage,
built around the interaction point. It is symmetric around the beam axis, but has
an asymmetric acceptance to account for the boost of the Υ (4S), covering polar
angles between 17◦ and 150◦. The detector design is centered around the goal of
efficiently reconstructing and identifying final state particles of B-meson decays with
high accuracy. At Belle II, the following final-state particles are considered:

• charged particles: e±, µ±, π±, K±, p+, d+

• neutral particles: γ,K0
L .

In order to precisely reconstruct the decay properties of the decaying B mesons,
a number of subdetectors is employed, each specifically developed to deliver com-
plementary information. From this, important parameters like charge, energy or
momentum of the decay products can be reconstructed and used in further steps of
the analysis.

Figure 3.3 shows a schematic drawing of the cross-section through the Belle II
detector. Though the overall architecture closely resembles that of the Belle de-
tector, with the significantly higher luminosity of SuperKEKB, increased event
and background rates required substantial upgrades to the detector components,
including the trigger and data acquisition system. In the following sections, a brief
overview of each subsystem will be given.

3.2.1. Vertex detector (VXD)

The innermost detector component is the new Vertex Detector (VXD), which consists
of the silicon Pixel Detector (PXD) and the Silicon Vertex Detector (SVD). The
main purpose of the VXD is to enable the precise vertex reconstruction of short-lived
decay products for time-dependant measurements, which require accurate vertexing
resolutions in the order of O(10µm).

PXD

Due to the increased beam current and a reduced distance to the interaction point,
at Belle II there is a substantial increase of background radiation at the first layer
of the vertex detector. To reduce the occupancy to a manageable level, the first two
layers, at radii of only 14 mm and 22 mm, consist of pixel sensors. They comprise a
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3.2. Belle II Detector

Figure 3.3.: Cross-section through the Belle II detector, composed of a number of
subdetectors for the efficient reconstruction of B-meson decays. The
outline of two humans is shown for scale.

total of 20 ladders, cylindrically arranged around the beam pipe and make up the
PXD, depicted in Figure 3.4.

The sensors are based on the Depleted p-channel Field Effect Transistor (DEPFET)
technology [62], which allows for an internal, primary amplification of charges created
by traversing ionizing particles. The sensors are made from single silicon wavers
without the need for additional structural support or active cooling in the active area.
In order to minimize multiple scattering for an improved tracking of low transverse
momentum particles, the monolithic structures are thinned down to a thickness of
75 µm in the sensitive area, corresponding to only 0.2% of a radiation length. With
varying pixel sizes from (50×55) µm2 in the center of the inner layer to (50×85) µm2

in the outer layer, the PXD yields an impact parameter resolution of less than
15 µm, enabling precise tracking of charged particles and vertex reconstruction [61].
Additionally, the sensors exhibit low electronic noise levels, ensuring a high signal-
to-noise ratio and the efficient detection of low-energy particles. The DEPFET
technology further demonstrates fast readout capabilities to handle the high event
rates in the harsh collision environment at Belle II. The precise timing information,
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region close to the interaction point. Here tracks are crossing the detector essentially at
normal incidence. Hence charge generated by ionization are usually collected in a single
pixel and the resolution is binary, demanding the smallest pixel size. Further out tracks are
more inclined and the charge is distributed over two or more pixels. Hence the resolution is
improved applying a center of gravity algorithm and the pitch can be chosen larger without
compromising resolution. This way the total number of pixels in z can be reduced. In fact,
the number of rows has been chosen so that, given the fixed readout time per pixel given
by the readout electronics, the time to readout a complete frame can be achieved within
20µs. Hence the readout can be phase locked to the SuperKEKB revolution time of 10µs.
The “injection noise” effect introduced earlier features a period of 10µs, shorter than the
DEPFET integration time of 20µs driven by the read-out architecture of such sensors.
However, a special gating mode has been implemented to blind the sensors during the
passage of the noisy bunches, without loosing the signal previously integrated and not yet
read-out.

Two modules are assembled into ladders and arranged as two cylindrical layers around
the interaction point, as depicted in figure 2 and detailed in table I.

FIG. 2: Current PXD layout.

2.2. Current SVD

The SVD is composed by 4 layers (SVD3, SVD4, SVD5, SVD6) of double-sided silicon
microstrip detectors (DSSD) read-out with the APV25 chips [4] and organized in ladders,
as described in table II. The longitudinal schematic view of the current SVD is shown in
figure 3. A picture of the SVD is shown in figure 4.

The main feature of the three types of SVD silicon sensors are reported in table III.
The small rectangular sensors are used for layer SVD3. Ladders of layers SVD4, SVD5
and SVD6 are composed of two to four large rectangular sensors with a slanted trapezoidal
sensors used in the forward region to minimize the material and the instrumented surface
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Figure 3: Schematic view of the 40 PXD modules (20 ladders) in beam direction. Only the colored modules
are installed up to now.

Figure 4: The pixel vertex detector after mounting on the central beam pipe. The inset indicates the position
of ASICs on the visible outer layer modules. The DCD and DHP ASICs are located on the cooling block
outside of the acceptance, the Switcher ASICs along the side of the modules. The ASICs of the inner layer
modules are facing to the inside, thus they are not visible. Carbon cooling tubes for N2 flow are located
between the two layers. Around the second layer fibre optical sensors (FOS) are placed for temperature
measurement in the vertex detectors volume.

3

Figure 3.4.: Illustration of the silicon pixel detector (PXD), cylindrically arranged
around the beam pipe. In the nominal design, the PXD consists
of 8 inner and 12 outer ladders (left) [60]. Due to manufacturing
problems, only 2 ladders had been implemented in the outer layer for
the data taking period studied in this work (right) [61]. During the
2023 shutdown, the PXD was completed.

enabled by the PXD, is used to aid background rejection [53].

SVD

The VXD is completed by four layers of double-sided silicon strip sensors at radii of
39 mm, 80 mm, 104 mm, and 135 mm, concentrically arranged around the beam pipe.
To accommodate the large solid-angle coverage and the boost of the center-of-mass
system, the forward sensors in the outer three layers are mounted at angles towards
the IP, improving the spatial resolution (see Figure 3.5).

Figure 3.5.: Alignment of the Belle II vertex detector composed of two pixel sensor
layers (PXD), and four strip sensor layers (SVD).
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The sensor thickness varies between 320 µm for the slanted sensors, and 300 µm
for all others, which corresponds to 0.7% of a radiation length. The strips measuring
the distance along the beam axis (z) have a pitch size of 160− 240 µm, while those
measuring the position in the r−ϕ plane have a pitch size of 50− 75 µm, depending
on the layer.

With the small overall material budget, the VXD allows for a reconstruction of
low transverse momentum tracks down to few tens of MeV/c. Furthermore, the
SVD provides data to extrapolate tracks reconstructed in the outer detectors to hits
in the PXD with high efficiency, aiding an efficient background rejection, required
at high luminosities [63].

3.2.2. Central Drift Chamber (CDC)

The Central Drift Chamber (CDC) serves as the main tracking detector at Belle
II. In combination with the 1.5T magnetic field (see Section 3.2.5), it allows to
determine the momentum of charged particles from their track curvature. It is also
used for particle identification (PID) and background rejection at the trigger level.

The CDC consists of a gas-filled volume of cylindrical shape with an inner radius
of 16 cm and an outer radius of 113 cm, interlaced with a large number of sense
wires to measure ionization charges, caused by traversing ionizing particles. To
account for the boost of the Υ (4S), it is asymmetric along the beam axis. The
detector is composed of 56 layers of sense wires, further arranged into nine so-called
super-layers. These super-layers alternate in their orientation between axial (A)
orientation, which coincides with that of the magnetic field, and stereo orientation.
The latter corresponds to slightly skewed wires at small positive (U) or negative (V)
angles relative to the beam axis. In combination, this arrangement allows for a full
three-dimensional track reconstruction. A schematic of the layer configuration is
shown in Figure 3.6.

Figure 3.6.: Arrangement of the super-layers of the Belle II CDC, alternating between
axial (A) and stereo (U, V) orientations to allow for a three-dimensional
track reconstruction [40].
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The wires are arranged in cells, each composed of a single sense wire surrounded
by eight field wires, that generate strong electric fields. Traversing charged particles
cause ionization charges in the C2H6-He gas mixture, which subsequently drift
towards the surrounding sense wires. The resulting succession of time-resolved hits
can be fitted to yield a precise reconstruction of the particle trajectory.

Next to timing and spatial information, the sense wires also provide signal
amplitudes proportional to the collected charge, which can be used to measure the
energy loss per unit length dE/dx. As the latter varies for different particle species,
this information can be employed in the particle identification, which is especially
important for low-momentum particles that do not reach the outer PID detectors.
Figure 3.7 shows the energy deposition per unit length for different charged particles
as a function of their momentum.

Figure 3.7.: Energy deposition per unit length, dE/dx, in the CDC for different
charged particles as function of their momentum.

Lastly, the CDC is used as part of the trigger system at Belle II to suppress
backgrounds originating from outside of the interaction region. To this end, a novel
z-vertex trigger, based on a neural network approach, is employed to reconstruct
the position along the beam axis using hit information of the CDC. This estimation
is determined on dedicated Field Programmable Gate Arrays (FPGAs), without
explicit track reconstruction and within the latency of the first level trigger [64].

3.2.3. Particle Identification with ARICH and TOP

Belle II employs two dedicated subdetectors for particle identification, the Time Of
Propagation (TOP) detector and the Aerogel Ring-Imaging Cherenkov (ARICH)
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detector. They both exploit the Cherenkov radiation emitted by charged particles
passing through a dielectric medium at speeds greater than the speed of light in the
medium,

v > cn =
c

n
, (3.2)

with n as the refractive index, and c as the speed of light in vacuum. The radiation
is emitted as a light cone, where the emission angle, θC , depends on the particle’s
velocity as [65]

cos θC =
c

nv
=

1

nβ
. (3.3)

In combination with the momentum measurement provided by the CDC, the mass
of the particle can be determined.

TOP

The TOP detector is arranged in a barrel-like geometry around the interaction point
and uses quartz bars as Cherenkov radiators. Each of the 16 detector modules is
composed of a 45 cm wide, 2 cm thick and 260 cm long quartz bar, with two rows of
16 multi-anode photon detectors mounted on one end and a focusing mirror on the
other. The detectors are specially designed micro-channel-plate photo-multiplier
tubes (MCP-PMT), offering a single-photon time resolution of O(50ps). To achieve
this precision, custom waveform-sampling readout electronics were developed [53].

After creation, some Cherenkov photons undergo total internal reflection until
captured by fast multi-anode photon detectors. For a given momentum, the velocity-
dependant Cherenkov angle leads to different path lengths for photons created by
different particles (see Figure 3.8). The Cherenkov emission angle is determined
by measuring the propagation time of individual photons from their emission point
to the sensor plane. As there remain unavoidable ambiguities, PID information is
obtained in terms of likelihoods by analyzing the timing distribution of photons in
each of the 512 detector channels and comparing it with the expected Probability
Density Functions (PDFs) for six different particle hypotheses (e, µ, π,K, p, d) [66].

ARICH

The Aerogel Ring Imaging Cherenkov (ARICH) counter provides PID information
in the forward end-cap region of the Belle II detector. By detecting Cherenkov cones
and measuring the corresponding Cherenkov angle, its main purpose is to distinguish
between kaons and pions in the kinematic region between 0.4− 4.0GeV/c.

The detector is shaped like a rectangular torus with an inner radius of 420mm
and an outer radius of 1145mm. It is composed of 124 pairs of wedge-shaped
silica aerogel tiles, serving as radiator material, arranged in four concentric rings.
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Figure 3.8.: Total internal reflection of Cherenkov photons inside a TOP quartz bar.
The effective path length depends on the direction of the traversing
particle and its velocity, which determines the Cherenkov angle θC .

Each of these pairs consists of two radiator layers with different refractive indices,
n1 = 1.045 and n1 = 1.055, to increase the photon yield without degradation of
the angular resolution [67]. For the detection, a total of 420 single-photon-sensitive
hybrid avalanche photon detectors (HAPDs) are arranged in seven concentric rings.
An illustration of the detection mechanism is shown in Figure 3.9.

Figure 3.9.: Imaging of Cherenkov cones with the ARICH subdetector using sil-
ica aerogel radiator material and Hybrid Avalanche Photo Detectors
(HAPD).

3.2.4. Electromagnetic Calorimeter (ECL)

The Electromagnetic Calorimeter (ECL) is composed of a highly segmented array of
8736 thallium-doped caesium iodide CsI(Tl) scintillator crystals. Its main purpose is
the detection of photons and high-energy neutral pions in the energy range from few
MeV to few GeV. It is further used to discriminate between electrons and hadrons.
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Electrons and photons traversing the crystals deposit their energies in electro-
magnetic showers through the processes of bremsstrahlung or pair production. The
resulting scintillation light is proportional to the deposited energy and is measured
by photo-sensitive detectors. The E/p ratio, derived from the energy measurement
of an ECL cluster relative to the momentum of its associated particle, serves as a
valuable input for PID.

The ECL is made up of a 3 m long barrel section with an inner radius of 1.25m,
as well as two endcaps, covering polar angles between 12.4◦ and 155.1◦ (Figure 3.10).
The CsI(Tl) crystals are oriented towards the interaction point and have typical
dimensions of 6× 6 cm2 in cross-section and 30 cm in length, which corresponds to
16.2 radiation lengths. The scintillation is read out by two 10× 20mm2 silicon PIN
photodiodes attached to the rear surface of the crystals. To mitigate considerable
pile-up noise due to the relatively long decay time of scintillations in the crystals,
at Belle II new wave-form-sampling readout electronics are used.

3.2.5. K0
L and Muon Detector (KLM)

The ECL is encased by a superconducting solenoid that generates a uniform magnetic
field of 1.5T along the beam direction and serves to bend trajectories of charged
particles via the exerted Lorentz force. The magnetic flux is returned by a return
yoke, which consists of several iron plates that guide the magnetic flux to contain a
homogeneous field inside the detector volume.

The iron plates further serve as additional absorber material for muons and long-
lived neutral kaons, providing additional 3.9 interaction lengths. Whereas muons
interact electromagnetically with the material and can be linked to their generated
tracks, neutral kaons shower hadronically in the dense material, resulting in distinct
cluster shapes. To measure their energy deposition, the iron plates are interleaved
with active detector elements. In the forward and backward endcaps, as well as
the first two innermost layers in the barrel region, the sensors consist of scintillator
strips with wavelength-shifting fibers attached to silicon photo multipliers (SiPM)
for light read-out. The remaining 13 outer barrel layers are equipped with Resistive
Plate Counters (RPC). This multi-layer structure makes up the K0

L and Muon
(KLM) detector and is the outermost subdetector at Belle II.
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Figure 3.10.: Geometry of the Electromagnetic Calorimeter (ECL) [68].
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4. Analysis of B0 → π+π− and
B0 → K+π− Decays

4.1. Overview and Strategy

The goal of this study is to determine the branching ratios of B0 → π+π− and
B0 → K+π− decays as well as the direct CP -violation parameter in B0 → K+π−

decays. The samples used for this analysis comprise the full dataset obtained with
the Belle II detector between the start of the experiment in 2019 and 2022, recorded
at a center-of-mass collision energy just above the production threshold of the Υ (4S)
resonance at SuperKEKB. We dub this the LS1 dataset, referring to the first long
shutdown of the experiment, which marks the end of this data-taking period.

The reconstruction of candidate B mesons starts with the reconstruction of long-
lived charged final state particles from tracks in the CDC. Using the respective
mass-hypothesis, we fill lists of pions and kaons for each event and combine their
four-vectors to create B-meson candidates. In this exclusive1 decay analysis, it
is sufficient to only reconstruct the signal-side of the decay tree, though some
information of the tag-side is used to suppress background events.

At this stage of reconstruction, the majority of the data sample is composed of
background events. In order to obtain a sample with sufficiently high signal-to-
background ratio for a precise determination of the number of signal events, we
impose quantitative requirements (cuts) on variables with high discrimination power
between signal and background events.

One of the main challenges is posed by the fact that a large proportion of the
e+e− collisions produce so-called continuum events, where pairs of lighter quarks
qq̄ = uū, dd̄, cc̄, ss̄ are created. These events make up around 3/4 of the the total
production, even at resonance. Consequently, such continuum events make up a
dominant fraction of the total sample and present the major background contribution
in many B-decay analyses. Especially in analyses of hadronic charmless decays –
that is decays without any c quarks in the final state – the small decay rates of order

1Here, exclusive refers to the reconstruction of specific decay modes. In contrast, in inclusive
analyses, a wide range of transitions is considered, generally requiring a reconstruction of the
entire decay tree.
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10−5 or lower amplify this circumstance. To reduce the amount to a manageable
degree, we employ machine learning techniques trained on simulated Monte-Carlo
events to better distinguish between B-meson decays and continuum events. After
a loose cut, we further use the resulting classifier variable in the determination of
signal yields.

After the final event selection, we identify three different components in our
sample: correctly reconstructed signal events, misidentified events, in which one
of the light hadrons was reconstructed with an incorrect mass-hypothesis, and
continuum background events. In order to determine their respective yields, we
fit the distributions of two variables in data using a maximum-likelihood fit. We
simultaneously fit the energy-difference between the reconstructed energy and half
of the center-of-mass energy, ∆E = E −√

s/2, and a transformed version of the
continuum suppression classifier, C ′. These variables provide good discrimination
between all three components and are approximately uncorrelated.

The following sections detail all steps of the analysis, starting with the recon-
struction of B-meson candidates from final-state particles and the baseline selection
requirements. This is followed by a detailed explanation of the multivariate tech-
nique employed to efficiently suppress continuum background events. The remainder
of this chapter describes the fitting methods used to extract the physics parameters.

Lastly, it is important to mention that all analysis procedures are first applied to
simulated Monte Carlo (MC) experiments. This serves several purposes. For one,
the extra information available in MC allows to unambiguously identify the entire
decay chain for each reconstructed event. This is essential in finding variables, that
can be employed to separate signal from background events and to determine the
final reconstruction efficiencies. Secondly, we use simulated events to empirically
extract the probability density functions (PDFs), describing the distribution of fit
variables — a process often called model building. Lastly, we validate our entire
analysis first on MC and perform additional checks on a control channel before
applying it to data. This methodology is referred to as blind analysis and has
become a standard practice in the high-energy physics community. The rationale is
to develop the analysis without any biases that could, even unintentionally, arise if
the outcome were known. Therefore, to avoid any tuning that could bias the results,
the full analysis has to undergo a number of validation steps in MC as part of an
internal review before the approval is given to unblind the full dataset. After the
unblinding, the results are final and no changes can be made to any step of the
analysis.
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Figure 4.1.: Production cross-section as function of the center-of-mass energy for
several Υ resonances. Adapted from [69].
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4.2. Data Processing

4.2.1. Data Samples

For the measurements of the branching ratios and CP -violation parameter, we use
the full LS1 data, collected with the Belle II detector between 2019 and 2022. The
sample contains (387±6)×106 BB̄ pairs and corresponds to an integrated luminosity
of 362 ± 2 fb−1 recorded at the Υ (4S) resonance [70]. We employ a machine learning
algorithm, trained on large samples of simulated events, to suppress the dominant
background contribution from continuum events. To verify the agreement between
data and simulation in the distributions of the training variables, we additionally
reconstruct data containing only continuum background. This data is obtained
by lowering the collision energy slightly below the production threshold of the
Υ (4S) resonance. Whereas the production remains approximately unchanged for
continuum, the energy is not sufficient to create pairs of B mesons. The off-resonance
data sample corresponds to a total integrated luminosity of 42.3 ± 0.3 fb−1.

Samples of simulated MC events are produced, modelling the physics processes
resulting from e+e− collisions and their subsequent interactions with the detector.
We employ a series of software packages to produce the simulated data: KKMC
to generate continuum background [71], PYTHIA8 to simulate hadronization
[72], EVTGEN to simulate particle decays [73], PHOTOS to simulate final state
radiation [74], and GEANT4 to model interactions with the detector material [75].

The generic simulation sample consists of centrally produced, run-independent
MC samples and include B0B̄0, B+B−, uū, dd̄, cc̄, ss̄, τ+τ−, and simulated beam
backgrounds in adequate proportions. The sample size corresponds to an integrated
luminosity of 1 ab−1. In addition, 2 × 106 events are generated for each signal
channel, B0 → K+π− and B0 → π+π−. For these, one side of the generated BB̄

events is forced to decay according to the desired decay mode, while leaving the
B-meson decay on the tag-side unconstrained.

4.2.2. Reconstruction and Baseline Selection

Starting with recorded or simulated raw data, the signal provided by the different
detector components is processed and further combined to a format more suitable
for statistical analysis. The underlying principle is to reconstruct the particles re-
sponsible for recorded detector signals and successively combine them to reconstruct
the original four-vectors of initial particles produced in the collision.

One crucial part of this process is the track reconstruction. Here, information
provided by the tracking detectors are fed into tracking algorithms. In the first
step, called track finding, these algorithms perform pattern recognition to identify
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collections of hits stemming from individual trajectories of charged particles, which
are referred to as tracks. Figure 4.2 illustrates this process of track finding in a slice
of CDC hits for a single simulated event. Patterns of hits originating from the same
particle are shown in colors, with a large fraction of remaining CDC hits rejected as
background from either detector noise or beam-induced backgrounds shown in gray.
In the subsequent step of track fitting, the best estimate for kinematics describing
the particle trajectories, corresponding to the recorded hit pattern, is determined.
This way, for each track, the particle’s position and momentum near the interaction
region can be precisely computed.

Figure 4.2.: Cross-section of the CDC in the x-y-plane for a single simulated event.
Gray dots indicate registered hits and originate either from charged
particles or detector noise. In the track finding process, patterns of
connected hits form tracks, as indicated by the coloring on the right.
All remaining hits are rejected as background.

The second integral part of the reconstruction of decay products is the clustering.
Subdetectors such as the ECL register hits in multiple neighboring cells, which
can be caused by the same traversing particle. In order to group them together,
clustering algorithms are used, which allow to calculate properties like cluster energy,
shape or center position. As the characteristics of the cluster shapes depend on the
particle type causing it, we can make use of this information to help identify the
particle.

The identification of the particle type causing a detector signal is in most cases
ambiguous. However, the different subdetectors each provide valuable information,
that are used in combination to determine the likelihood for each type of observable
particle to have caused the recorded track and/or cluster. For example, the total
energy loss over the track length in the CDC is compared to the expected values
for different particle types. Likewise, the ARICH is checked for a corresponding
detection of Cherenkov radiation, which can be connected to the same trajectory
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and carries complementary information. In this way, the combined likelihood of all
subdetectors is computed for a given track or cluster and can be used to select the
desired particle type.

In this study, we analyze decays to two charged hadrons in the final state. To
reconstruct signal B-meson candidates, we fill lists of pion and kaon candidates,
using their respective mass-hypothesis and applying loose baseline selection criteria.
For charged pions and kaons, we require the particle’s polar angle to be within the
range of the CDC, that is 17◦ < θ < 150◦, with at least 20 registered CDC hits. To
reduce the amount of beam backgrounds, we impose loose criteria on the distance
to the interaction region. We require the distance of the point-of-closest-approach
(POCA) to the interaction point in the r − ϕ plane (dr) to be less than 0.5 cm and
less than 2 cm in the direction of the beam (dz). We then combine their four-vectors
in kinematic fits consistent with the topologies of the desired decay.

One variable providing good discrimination power between B-meson decays and
continuum events is the so-called beam-constrained mass, Mbc. In BB̄ events, the
two B mesons originate from a two-body decay of the Υ (4S), hence carrying equal
momenta and energies in the center-of-mass frame. The resolution of the invariant
B-meson mass is significantly improved by substituting the reconstructed energy
with the precisely known beam energy: Mbc =

√
s/4− p2. For neutral B mesons,

this variable peaks around the B-meson mass at 5.280 GeV/c2. We impose a signal
enriching window of 5.272 < Mbc < 5.288 GeV/c2. The width of this window
corresponds to three times the detector mass resolution as obtained by a fit to
simulated signal events.

Further, we restrict the energy difference between the reconstructed energy of
the B meson and half of the center-of-mass energy, −0.1 < ∆E < 0.2 GeV. An
asymmetric window is chosen to reduce B-decay backgrounds peaking at the low
end of the spectrum while retaining all signal events. As this variable provides
excellent distinction power between signal and background decays, we later fit the
remaining distribution in ∆E.

Lastly, we impose a loose cut on an event shape variable, calculated using the
so-called Fox-Wolfram moments. The latter are constructed to carry topological
information such as momenta, angular and energy distributions of reconstructed
jets and are expressed in terms of spherical harmonics [76]. We restrict R2, defined
as the ratio of the second and the zeroth Fox-Wolfram moment, to be smaller than
0.9. This cut removes a significant amount of continuum events without impacting
signal efficiencies, before a dedicated continuum suppression based on a multivariate
technique is applied at a later stage.

We use vertexing and flavor-tagging information for the classification of continuum-
background events. To reduce beam backgrounds, we apply loose selection require-
ments, similar to those on the signal side, on tracks and clusters used in the
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tag-side reconstruction. The selection is summarized in Table 4.1. We subsequently
reconstruct the vertex of the accompanying tag-side B mesons using a Kalman-
based vertexing algorithm, implemented in the RAVE fit package [77]. We use a
category-based algorithm to tag the flavor of the tag-side B mesons [78].

Table 4.1.: Selection requirements for tracks and clusters used in the tag-side re-
construction. Next to cuts on impact parameters, we impose loose
requirements on the transverse momentum of tracks, as well as on the
reconstructed cluster timing and energy, to reduce beam-background
contributions.

tracks clusters

17◦ < θ < 150◦ 17◦ < θ < 150◦

pt > 75MeV/c |clusterTiming| < 200ns
dr < 10 cm E > 0.05GeV

dz < 20 cm

4.2.3. Continuum Suppression

The B-meson pairs are created in e+e− collisions produced by the SuperKEKB
collider at a center-of-mass energy of 10.58GeV. Though this energy corresponds
to the peak of the Υ (4S), the production of the resonance makes up only around
1/4 of the total hadronic production cross section, with the remaining 3/4 producing
e+e− → qq̄ (where q = u, d, s, c) events, referred to as continuum (cf. Figure 4.1).
The latter presents the dominant source of combinatorial background where random
combinations of final state particles mimic the kinematic signatures of the signal
decay.

After the baseline selection is applied, the majority of candidates are misrecon-
structed continuum events. To effectively suppress this background, we construct
a multivariate classifier using a Boosted Decision Tree (BDT), which exploits the
differences in event topologies between B-meson decays and continuum events. The
lower masses of light quark pairs lead to a jet-like event shape in the hadronization
process, compared to a more spherical topology in the case of BB̄ events, which
carry very little momentum in the center-of-mass frame (Figure 4.3).

We compute an array of event shape variables quantifying this difference. One
illustrative example is the so-called thrust, which gauges the coherence of the set of
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Figure 4.3.: Illustration of differences in the event topologies between continuum
events, exhibiting jet-like event shapes, and BB̄ events, carrying lit-
tle momentum in the center-of-mass frame, leading to approximately
spherical topologies.

detected particles created in the hadronization process of quarks. It is defined as:

T = max
|n|=1

∑
i |pi · n|∑

i |pi|
, (4.1)

where pi is the momentum of particle i in the , ni is a unit vector that maximizes the
thrust, and we sum over all particles i. In the case of BB̄ events, both B mesons are
produced almost at rest in the Υ (4S) rest frame, leading to an isotropic distribution
of their decay products. For continuum events events on the other hand, where all
trajectories are approximately aligned with the thrust axis defined by n, the scalar
product evaluates to values close to 1.

We use the stochastic gradient-boosted decision algorithm FBDT [79], implemented
natively within basf2, to combine a number of variables, known to provide statistical
discrimination between signal and continuum background events. Starting from a
large set of observables, we successively reduce the set of training variables, keeping
only those with an importance for the distinction (or feature importance) greater
than 0.1%, as evaluated by FBDT. We choose a final subset of 35 variables, whose
absolute correlations with ∆E are below 5% in each component. This allows to
factorize the two-dimensional PDFs and minimizes sculpting effects when cutting
on the classifier later on. Figure 4.4 lists all input variables used for the training in
order of their feature importance.
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Figure 4.4.: List of variables used in the BDT training for the continuum suppression
in order of their feature importance.

The following provides short descriptions for the training variables. More detailed
definitions can be found in [55].

• cosTBTO – cosine of angle between thrust axis of signal B meson and thrust
axis of tag-side B meson. The isotropic distribution of decay particles in
BB̄ events yields an approximately uniform distribution in the range [0, 1].
In continuum events, the momenta of decay particles are highly collimated,
resulting in a distribution strongly peaked around values near 1.

• foxWolframR1, foxWolframR2, foxWolframR4 – ratio of n-th to 0-th order
Fox-Wolfram moments. The latter quantify event shapes by expanding the
geometric distribution of particle momenta in terms of Legendre polynomi-
als [76].

• Mbc – beam-constrained mass. B-meson decays peak at the nominal B-meson
mass, while continuum events follow the shape of an ARGUS distribution.

• DeltaT – decay time difference between signal and tag-side B-meson decay.
The finite lifetime of B-mesons results in a wider distribution for BB̄ events,
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compared to lighter quark pairs in continuum events, which hadronize imme-
diately.

• DeltaZ – spatial difference between signal and tag-side B-meson decay vertices
in beam direction

• qpKinLepton – charge of tag-side track with highest probability of being a
primary lepton multiplied by respective probability

• thrustOm – magnitude of thrust of tag-side B meson

• KSFWVariables – modified Kakuno-Super-Fox-Wolfram moments, designed
to differentiate between various particle classes in computation

• FBDT_qrCombined – tagged flavor, q, multiplied by respective dilution factor
r, provided by flavor-tagging algorithm. In BB̄ events, q typically corresponds
to the opposite flavor of the reconstructed signal B meson, while it is random
for continuum events.

• CMS_cosTheta – cosine of polar angle of signal B meson in center-of-mass frame.
To conserve the total angular momentum of the spin-1 Υ (4S), polarized parallel
to the beam axis, the spinless B mesons are created in a p-wave configuration.
As a result, BB̄ events exhibit a 1− cos2 θ distribution, whereas continuum
events follow a uniform distribution.

• dr – transverse distance of signal B meson with respect to interaction point

• cosTBz – cosine of angle between thrust axis of signal B meson and beam axis

• chiProb – vertex fit p-value of signal B-meson decay

• nTracks – total number of tracks in event

• CLEO cones – event shape variables designed to quantify flow of momentum
within concentric volumes around thrust axis in intervals of 10◦, using only
tag-side particles [80]

• flightDistance – signal B-meson flight distance with respect to interaction
point

• qpSlowPion – charge of tag-side track with highest probability of being a slow
pion from decay of a primary D∗ multiplied by its respective probability

• thrust – magnitude of thrust of event
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• dcosTheta – cosine of polar angle of B-meson vertex with respect to interaction
point

• thrustAxisCosTheta – cosine of polar angle of thrust axis

• KSFWVariables(mm2) – missing mass squared

In the context of supervised learning, the training of a BDT requires labeled data
with prior knowledge of the true output value for each input. In our case, we face
a binary classification problem, categorizing events as either signal or continuum
background. For an effective continuum suppression, an abundant dataset containing
both signal and background classes, each labeled with their true output values is
needed.

With no way of accessing a sufficiently large sample of pure signal events in
data, this limitation is overcome by relying on simulated Monte Carlo events. We
train the BDT on a set of 5× 105 correctly reconstructed signal events and 5× 105

continuum events (uū, dd̄, cc̄, ss̄ and τ+τ− in the expected proportions) surviving
the baseline selection. The signal sample is composed of equal parts of B0 → π+π−

and B0 → K+π− events. Subsequently, the total sample is divided into subsamples
of 80% for training and 20% for testing.

Starting with the default hyperparameters of FBDT, we iteratively optimize the
model architecture. A common challenge in machine learning is overtraining or
overfitting, which occurs when the model is overly complex and closely fits the
training data, losing its ability to generalize to new, unseen data. Therefore,
determining the optimal model architecture involves finding the right balance
between the complexity required for good discrimination and generalizability to new
data. The final BDT architecture comprises 300 trees arranged in 5 layers.

Following training, the BDT algorithm is applied to data, generating a single
output value, denoted C, for each event, which ranges continuously from 0 to 1.
A value of 0 corresponds to a definite classification of continuum, while a value of
1 signifies a signal event. To check for overtraining, we assess the performance of
the trained BDT model on both the training and test datasets by comparing the
output distributions of the signal and background events (Figure 4.5). We observe
excellent agreement.

A standard performance metric is provided by the ROC (receiver operating
characteristic) curve, a graphical representation that illustrates the performance of
a classification model across all possible classification thresholds. The ROC curve
plots the true positive rate against the false positive rate. The area under the curve
(AUC) is used as a measure of the classifier’s discrimination power. Figure 4.6
shows the ROC curve for our BDT evaluated on the test sample, along with that
of an alternative BDT, where we excluded Mbc from the training variables. Both
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Figure 4.5.: Overtraining test. Comparing the BDT output in the training and
test samples, we observe good agreement in both signal and continuum
event distributions. Continuum events peak near 0, signal events near
1, illustrating the excellent separation power of the classifier.

classifiers demonstrate AUCs close to the maximum value of 1, illustrating the
excellent performance of the classifiers.

After training, the BDT is applied to real data to classify the signal and background
events. However, in order to ensure the reliability of the classification, it is essential
to ensure that the simulation reproduces data sufficiently well. To this end, we
compare the distribution of all training variables in the simulated data with those
in the real data. Figs. 4.7–4.11 show the normalized distributions of all BDT input
variables in real and simulated off-resonance data. To illustrate the distinction
power of each variable, the distribution of simulated signal events is superimposed.
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Figure 4.6.: Receiver Operating Characteristic (ROC) curve of the continuum-
suppression classifier used for selecting signal-event candidates, eval-
uated on the test sample. The two ROC curves refer to different
sets of training variables: Moriond23 includes all training variables,
Moriond23_noMbc excludes the beam-constrained mass Mbc. The for-
mer is used for the work presented here, motivated by the slight en-
hancement in the Area Under the Curve (AUC), shown in parentheses.
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Figure 4.7.: Normalized distributions of training variables used in the continuum
suppression classifier in real (black) and simulated (light blue) off-
resonance data. To illustrate the distinction power, the distribution of
simulated signal events is superimposed (orange).
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Figure 4.8.: Normalized distributions of training variables used in the continuum
suppression classifier in real (black) and simulated (light blue) off-
resonance data. To illustrate the distinction power, the distribution of
simulated signal events is superimposed (orange).
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Figure 4.9.: Normalized distributions of training variables used in the continuum
suppression classifier in real (black) and simulated (light blue) off-
resonance data. To illustrate the distinction power, the distribution of
simulated signal events is superimposed (orange).
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Figure 4.10.: Normalized distributions of training variables used in the continuum
suppression classifier in real (black) and simulated (blue) off-resonance
data. To illustrate the distinction power, the distribution of simulated
signal events is superimposed (orange).
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Figure 4.11.: Normalized distributions of training variables used in the continuum
suppression classifier in real (black) and simulated (light blue) off-
resonance data. To illustrate the distinction power, the distribution of
simulated signal events is superimposed (orange).
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Finally, we perform a cut on the continuum suppression classifier to reduce
background from continuum events to a manageable level. As we include the
classifier variable in the fit, assuming a perfect modeling, more restrictive cuts on
this variable would reduce the statistical power of the data, leading to a decreased
precision. This trend can be seen in Figure 4.12, which shows the mean uncertainties
of the physics parameters for varying cuts, obtained with the nominal fitting
algorithm on large sets of pseudo experiments. For this, we first create samples
with different CS selection cuts, from which we empirically determine the fit shapes
of all components. Sampling from these fit shapes, we generate distributions for
each component in their expected proportion, scaled to an integrated luminosity
of the LS1 dataset and fit the samples using our nominal fit model. We repeat
this process 300 times for each CS cut and evaluate the mean uncertainties on the
physics parameters.

In this study, we generate and fit using the same PDF models, which is in
general an oversimplification. In order to reduce our accuracy requirements on
the background modeling to a reasonable level, we chose to impose loose cuts on
the BDT output, which remove 90% of continuum events as determined in MC:
C > 0.41 for B0 → K+π− and C > 0.34 for B0 → π+π−. For both modes, this
selection retains more than 95% of signal events.

We improve the fitting of the classifier distribution by applying the so-called
µ-transformation (or probability integral transformation) [81]. Here, we use the
cumulative distribution function Fc(C) of correctly reconstructed signal events
to transform the classifier variable C to C ′ = Fc(C). This allows for a simple
description of the PDFs using analytical functions, where the signal component is
per-definition uniformly distributed on the segment [0, 1] and continuum events
follow an exponential function.

For the extraction of signal yields, we fit simultaneously in ∆E and the trans-
formed classifier C ′. We find the Pearson-correlation coefficients to be small in all
components, supporting a factorization of the two-dimensional PDFs. Figure 4.13
shows the 2D-histograms in (C ′, ∆E), demonstrating negligible correlations in all
components.
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4.2.4. PID Selection

We use particle identification information (PID) to assign each reconstructed B-
meson candidate to one of the two possible final-state samples, B0 → K+π− or
B0 → π+π−. To this end, we evaluate the binary PID of reconstructed kaon and
pion candidates, defined as:

LK/π ≡ LK

LK + Lπ

.

For a given track, it compares specifically the two likelihoods of being produced
by either a kaon or a pion. By definition, assuming an ideal construction, kaons
will be assigned LK/π > 0.5 and analogously pions accumulate in the lower region
LK/π < 0.5. In some cases this assignment fails, leading to non-negligible fake rates
of misidentified candidates. In this analysis, we simultaneously fit reconstructed
B0 → K+π− and B0 → π+π− events, which exhibit cross-feed (CF) due to named
misidentification. The cut on the binary likelihood should therefore be chosen in
such a way, that fake rates are minimized to allow for clean signal peaks, while at
the same time keeping the selection efficiencies as high as possible in both samples.

Since we also use the cross-feed components in the determination of the branching
ratios, it is not trivial to determine the ideal PID cut. We therefore check the
impact of different choices on the measurement of our physics parameters by means
of pseudo experiments. For this, we first create multiple samples, differing in PID
selection, from which we determine the fit shapes for all components. Sampling
from these fit shapes, we then generate distributions for each component in their
expected proportion, scaled to an integrated luminosity of the LS1 dataset and
fit the samples using our nominal fit model. We repeat this process 300 times for
each PID selection and compare the mean uncertainties on the extracted physics
parameters.

Figure 4.14 shows the uncertainty distributions obtained with sets of three different
PID selection cuts used to classify kaons, namely LK/π > 0.4, LK/π > 0.5 and
LK/π > 0.6. Tracks failing these cuts, are assigned as pions. The difference in
mean fit uncertainty of B(B0 → K+π−) between LK/π > 0.4 and LK/π > 0.6

measures 0.05% relative to the generated input value. Compared to the total
uncertainty of 1.8%, this difference is deemed negligible. For B(B0 → π+π−) and
ACP (B

0 → K+π−), we observe no significant difference. We therefore adhere to
the originally chosen requirement of LK/π > 0.5 to select charged kaons. This
requirement correctly identifies 90% of pions and 84% of kaons.

We perform a correction of possible mismodeling of the PID selection efficiencies
and misidentification probabilities in the simulation using the Systematic Corrections
Framework [82]. This procedure is described in detail in Section 5.1.
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4.2.5. Final Selection and Composition

After all selection requirements, summarized in Table 4.2, the average number of
signal candidates per event ranges between 1.000 and 1.001. We do not apply a best
candidate selection and keep all candidates.

We use MC truth information to identify correctly reconstructed signal events and
calculate charge-dependent selection efficiencies. The efficiency and self-cross-feed
(SCF) fraction are defined as:

ϵ ≡ S

G
and SCF ≡ B

S +B
,

where S is the number of correctly reconstructed signal events, G is the total number
of generated signal events and B is the number of misreconstructed events in the
signal MC sample. The final charge-averaged signal efficiencies for correctly recon-
structed events are 52.4% for B0 → K+π− decays and 56.4% for B0 → π+π− decays.
Cross-feed events, in which one of the final-state hadrons is misreconstructed with
an incorrect mass-hypothesis are selected with efficiencies of 9.7% for B0 → K+π−

decays and 13.1% for B0 → π+π− decays. We include the non-negligible self-cross-
feed of 1.9% in B0 → K+π− in the signal component, as these events share a similar
distribution with correctly reconstructed events in both fit variables. In the case of
B0 → π+π−, we find a negligible SCF fraction of < 0.1%.

Table 4.2.: Summary of selection requirements for reconstructed tracks and B-meson
candidates.

tracks B0

17◦ < θ < 150◦ 5.272 < Mbc < 5.288GeV/c2

nCDCHits > 20 −0.1 < ∆E < 0.2GeV

dr < 0.5 cm CS classifier > 0.41 for Kπ
dz < 2 cm CS classifier > 0.34 for ππ
LK/π > 0.5 for kaons R2 < 0.9

LK/π < 0.5 for pions

Figures 4.15 and 4.16 show the contributions of different components making up
the total samples in generic, simulated data. We identify three components: signal
events, cross-feed events due to misidentified tracks, and combinatorial background
events, dominated by continuum. In samples scaled to the size of the LS1 dataset,
containing around 16000 candidates, background events from B-meson decays
amount to only 16 and 5 events for the B0 → K+π− and B0 → π+π− samples,
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respectively. Therefore, we include these in the combinatorial background instead
of assigning dedicated models.
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Figure 4.15.: Fit variable distributions in ∆E (left) and C ′ (right) of B0 → K+π−

candidates reconstructed in 1 ab−1 of generic MC. The sample contains
contributions from B0 → K+π− decays, misidentified B0 → π+π−

events and combinatorial background events.
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Figure 4.16.: Fit variable distributions in ∆E (left) and C ′ (right) ofB0 → π+π− can-
didates reconstructed in 1 ab−1 of generic MC. The sample contains con-
tributions from B0 → π+π− decays, misidentified B0 → K+π− events
and combinatorial background events.
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4.3. Extraction of Physics Parameters

We determine the branching ratios and the CP -violation parameter using an ex-
tended two-dimensional maximum-likelihood fit of the unbinned energy-difference
(∆E) and transformed CS classifier (C ′) distributions.

To perform a maximum-likelihood fit, one first needs to define a model that
describes the expected shape of the relevant signal and background distributions.
This model is typically a probability density function (PDF) that depends on one
or more parameters. The likelihood is given by the value of that probability density
function evaluated at the measured values of the observables. The aim of the fit is
to find the set of parameter values that maximizes the likelihood function, i.e., the
set of parameter values that best describes the data.

For a set of uncorrelated variables, the likelihood function for two-dimensional
probability distribution function f(x, y;θ) can be factorized into a product of
one-dimensional PDFs f1(x;θ) and f2(y;θ):

L(θ|x) =
N∏

i=1

f(xi, yi|θ) =
N∏

i=1

f1(xi|θ) · f2(yi|θ) . (4.2)

Here, x is the set of observed data points, θ represents the parameters of the PDF
that are being fitted, N is the total number of data points, and xi and yi are the
values of the two variables for the i-th data point. In our case, f1 and f2 will be
given by the PDFs of our fit variables, ∆E and C ′, which will be derived in detail
for all components in the following section.

In the context of this study, the detection of events can be modeled as a Poisson
process, where the number of events detected in a given interval of time or phase
space follows a Poisson distribution, assuming that the events occur independently
of each other with a constant average rate. The likelihood for a dataset consisting
of N events with expected number of events λ is given by the Poisson probability
mass function:

P (N |λ) = λNe−λ

N !
. (4.3)

We include it in the likelihood function as an extension term:

L(λ,θ|x) = P (N |λ)
N∏

i=1

f1(xi|θ) · f2(yi|θ) . (4.4)

The likelihood function is then maximized with respect to the parameters of the
signal and background distributions θ, as well as the expected number of signal
events λ, in order to determine the best-fit values and uncertainties of the model
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parameters:
λ̂, θ̂ = argmaxλ,θL(λ,θ|x) . (4.5)

In practice, this optimization problem is typically solved using numerical min-
imization algorithms, which iteratively adjust the parameter values to find the
maximum of the likelihood function. One popular algorithm for this purpose is the
gradient descent method, which uses the gradient of the likelihood function with
respect to the parameters to update the parameter values at each iteration, and is
used in this study.

For the error estimation, the Hessian matrix is calculated to determine the
corresponding covariance matrix. This involves computing the second derivatives of
the likelihood function with respect to the fit parameters at the minimum, assuming
that the likelihood is locally parabolic.

In this analysis, we simultaneously fit the charge-integrated B0 → π+π− sample
and the two charge-specific B → K±π∓ samples. As the B → K±π∓ decays are
flavor-specific, the measurement of ACP is practically obtained by assigning the
candidates to samples according to the charge of the kaon and combining the
measured signal yields in an appropriate manner. In each of the three samples, both
the signal component and the peaking background of misidentified cross-feed events
are used in the determination of the branching ratios. In total, we constrain the
physics parameters by fitting six yields:

N sig
K+π− = NB0B̄0 × B(K+π−)× εK+π− × εcorrK × εcorrπ × 1

2
(1−ACP ) , (4.6)

NCF,+
π+π− = NB0B̄0 × B(π+π−)× εCF

K+π− × f corr
π × εcorrπ × 1

2
, (4.7)

N sig
K−π+ = NB0B̄0 × B(K+π−)× εK−π+ × εcorrK × εcorrπ × 1

2
(1 +ACP ) , (4.8)

NCF,−
π+π− = NB0B̄0 × B(π+π−)× εCF

K−π+ × f corr
π × εcorrπ × 1

2
, (4.9)

N sig
π+π− = NB0B̄0 × B(π+π−)× επ+π− × εcorrπ × εcorrπ , (4.10)

NCF
Kπ = NB0B̄0 × B(K+π−)× εCF

π+π− × f corr
K+ × εcorrπ− , (4.11)

where N j
i are the fitted signal yields, NB0B̄0 is the number of neutral B-meson

events in the sample, B(i) are the respective branching fractions, εi and εCF
i are

the selection efficiencies for correctly and misreconstructed events, and εcorrk and
f corr
k are PID efficiency and fake rate correction factors. Note, that the latter are
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determined for each yield separately, as the data-MC corrections are dependant
on the momentum and angular distribution of the respective charged final-state
particles, which can differ significantly among these components. The extraction
and application of these corrections is detailed in Section 5.1.

4.3.1. Modeling

The PDFs of the signal and background components are modeled using analytical
functions that are chosen to accurately represent the expected shape of the dis-
tributions. We empirically obtain the PDF shape parameters by fitting to large
MC samples. To improve statistical power, pure signal Monte Carlo samples are
generated and reconstructed for the signal and cross-feed components. We find
the shapes of the signal and cross-feed components in B → K±π∓ decays to be
independent of the charge and use the same parameters for both charges.

Signal models for B0 → K+π− and B0 → π+π−

∆E

We use a combination of a Gaussian function and a Crystal Ball shape function
(CB) to model the ∆E distributions of the signal components in both B0 → K+π−

and B0 → π+π−. The Gaussian function is defined as:

fG(∆E;µG, σG) ≡ N · 1√
2πσG

· exp
(
−(∆E − µG)

2

2σ2
G

)
, (4.12)

where N is a normalization constant, and σG and µG are the mean and width of
the distribution.

The Crystal Ball function combines a Gaussian function for the core of the
distribution with a power-law function to model a one-sided tail [83]. The latter is
needed to account for final-state radiation of soft photons, which leads to a higher
population towards negative values in ∆E. The Crystal ball shape function is
defined as:

fCB(∆E;α, n, µCB, σCB) ≡ N ·




exp

(
− (∆E−µCB)2

2σ2
CB

)
, for ∆E−µCB

σCB
> −α

A ·
(
B − ∆E−µCB

σCB

)−n

, for ∆E−µCB

σCB
≤ −α

(4.13)

with
A =

(
n

|α|

)n

e−|α|2/2 , B =
n

|α| − |α| , (4.14)
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where N is a normalization constant, µCB and σCB are the mean and width of the
distribution, α determines the transition point between the Gaussian and the tail,
and n is a parameter controlling the power-law behavior of the tail.

The two functions are combined with a weight parameter w ∈ [0, 1], that is also
determined in the fit to simulated events:

fsig(∆E) ≡ w · fCB(∆E;α, n, µCB, σCB)

+ (1− w) · fG(∆E;µG, σG) .
(4.15)

We determine the best-fit parameters by means of maximum-likelihood fits to
samples of correctly reconstructed signal events, surviving all selection criteria. We
do this for each signal mode separately and fix all shape parameters.

C′

By construction, the µ-transformation of the CS classifier variable results in a
perfectly flat distribution in the case of correctly reconstructed signal events, i.e.,

fsig(C
′) ≡ 1 = const. (4.16)

Thus, no parameters are extracted from the fit to MC events.

Figure 4.17 shows the fit variable distributions for correctly reconstructed signal
events alongside the corresponding fitted PDFs for both modes. We combine the
two one-dimensional PDFs according to Eq. 4.4 to obtain the two-dimensional PDFs
for the signal components. For B0 → K+π−, we include the small fraction of 1.9%
of self-cross-feed events, formed by misreconstructed signal decays, in the signal
component, as their distributions resemble those of correctly reconstructed signal
events in both fit variables.
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Figure 4.17.: Signal event distributions reconstructed from abundant signal MC
samples, alongside fitted PDFs for B0 → K+π− (left) and B0 → π+π−

(right).
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Cross-feed models for B0 → K+π− and B0 → π+π−

∆E

We use a combination of two Gaussian functions to model the ∆E distributions of
the cross-feed components in both B0 → K+π− and B0 → π+π−. The two functions
are combined with a weight parameter w, that is determined in the fit to simulated
events:

fCF(∆E) ≡ w · fG,1(∆E;µG,1, σG,1)

+ (1− w) · fG,2(∆E;µG,2, σG,2) .
(4.17)

C′

We use a second-order polynomial to model the C ′ distributions of the cross-feed
components in both B0 → K+π− and B0 → π+π−:

fCF(C
′) ≡ N · (1 + a · C ′ + b · C ′2). (4.18)

We determine the best-fit parameters by means of maximum-likelihood fits to
samples of misidentified signal events, surviving all selection criteria. We do this for
each signal mode separately and fix all shape parameters. Figure 4.18 shows the
fit variable distributions for misidentified signal events alongside the corresponding
fitted PDFs for both modes. We combine the two one-dimensional PDFs according
to Eq. 4.4 to obtain the two-dimensional PDFs for the cross-feed components.
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Figure 4.18.: Misidentified signal event distributions reconstructed from abundant
signal MC samples, alongside fitted PDFs for B0 → K+π− (left) and
B0 → π+π− (right).
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Continuum models for B0 → K+π− and B0 → π+π−

∆E

We use an exponential function to model the ∆E distributions of combinatorial
background, dominated by continuum events, in both B0 → K+π− and B0 → π+π−:

fbkg(∆E) ≡ N · exp (c ·∆E). (4.19)

C′

We use a combination of two exponential functions to model the C ′ distributions of
the combinatorial background components in both B0 → K+π− and B0 → π+π−:

fbkg(C
′) ≡ w · exp (a ·∆E)

+ (1− w) · exp (b ·∆E)) . (4.20)

Due to the abundance of continuum events, we leave all background shape parameters
floating in the nominal fit. For completeness, we show the result of a fit to a simulated
continuum background sample in Figure 4.19. We combine the two one-dimensional
PDFs according to Eq. 4.4 to obtain the two-dimensional PDFs for the combinatorial
background components.

Table 4.3 summarizes the fit models for both signal modes. In order to account
for potential data-MC mismodeling, we obtain correction factors using the control
channel B+ → D̄0[→ K+π−]π+. From fits to data and MC samples, we extract
parameters quantifying any mismodeling of the widths and means in the ∆E

distributions, σcorr and µcorr. We apply these corrections to the signal and cross-feed
models in the fit to data. Section 5.3 details the extraction of the correction factors.

µG → µG + µcorr , µCB → µCB + µcorr

σG → σG + σcorr , σCB → σCB + σcorr
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Figure 4.19.: Continuum background event distributions reconstructed from generic
MC samples, alongside fitted PDFs for B0 → K+π− (left) and
B0 → π+π− (right).

Table 4.3.: Summary of shape functions used to model the PDFs

Decay Component ∆E model C ′ model

B0 → K+π− signal Gaussian + CB flat
cross-feed 2 Gaussians 2nd order poly.
comb. background exp. 2 exp.

B0 → π+π− signal Gaussian + CB flat
cross-feed 2 Gaussians 2nd order poly.
comb. background exp. 2 exp.

82



4.3. Extraction of Physics Parameters

4.3.2. Fitter Validation

In this section, we present the results of several fitter tests performed on simulated
data to assess the reliability and accuracy of our fit procedure. The fitter validation
tests are designed to identify any biases or systematic errors that may arise during
the fitting process, as well as to estimate the statistical uncertainties of the fitted
parameters. In addition, ensemble tests are employed to test the robustness of
the fitter in different regions of the parameter space and to quantify the effect of
statistical fluctuations on the results.

Fit to simulated data

We apply the fitter on a simulated sample corresponding to an integrated lumi-
nosity of 1 ab−1 and compare the fit results with MC truth information. Fig-
ures 4.20 and 4.21 show the fit variable distributions for reconstructed B0 → π+π−,
B0 → K+π− and B̄0 → K−π+ candidates alongside projections of an extended
unbinned maximum-likelihood fit. We observe good agreement between true and
fitted values in all components within their respective uncertainties (see Table 4.4).

Table 4.4.: Comparison of fit results with MC truth information. The values
are obtained by a simultaneous fit to B0 → π+π−, B0 → K+π− and
B̄0 → K−π+ candidates, reconstructed in simulated data corresponding
to an integrated luminosity of 1 ab−1. We also list the normalized resid-
uals (NR) of the individual parameters.

Parameter Fit Result Simulation Truth NR

B(B0 → π+π−) (5.15± 0.12)× 10−6 5.12× 10−6 0.25
B(B0 → K+π−) (19.39± 0.21)× 10−6 19.58× 10−6 -0.90
ACP (B

0 → K+π−) 0.010 ± 0.012 0.006 0.33
K+π− background 16462 ± 136 16365 0.71
K−π+ background 16488 ± 136 16495 -0.05
π+π− background 39497 ± 206 39489 0.04
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Figure 4.20.: Distributions in ∆E for B0 → π+π− (top), B0 → K+π− (center), and
B̄0 → K−π+ (bottom) candidates reconstructed in an MC sample
corresponding to an integrated luminosity of 1 ab−1. The projections
of an extended unbinned maximum-likelihood fit are overlaid.
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Ensemble tests

We validate our fit procedure using a large ensemble of 1000 artificially generated
datasets. Sampling from the nominal fit shapes, we generate distributions for each
fit variable and component in their expected proportion. For the physics parameters
of interest, we use the current average values reported by the Particle Data Group
(PDG) [20]:

B(B0 → π+π−) = 5.12× 10−6 ,

B(B0 → K+π−) = 19.58× 10−6 ,

ACP (B
0 → K+π−) = −0.0834 .

We calculate the expected event yields assuming the integrated luminosity of the LS1
dataset and the reconstruction efficiencies described in Section 4.2.2. We randomly
fluctuate the yields sampling from Poisson distributions around the expected values.
We then fit these artificial datasets and calculate the normalized residual (NR) for
each fit parameter. The latter is defined as:

NR ≡ xfit − xtrue
σx

, (4.21)

where xfit is the measured fit parameter, xtrue is the true input value of this parameter
and σx is the uncertainty on xfit, provided by the minimizer. Figure 4.22 shows the
NR distributions for the three physics parameters, B(B0 → π+π−), B(B0 → K+π−)
and ACP (B

0 → K+π−). We fit the distributions with a Gaussian function. The fits
yield unit widths and means consistent with zero, indicating an unbiased fitter with
accurate uncertainty estimation.

The expected statistical uncertainties on the physics parameters can be estimated
by computing the means of fit uncertainties across the ensemble of datasets. We
obtain the following values:

⟨σB(ππ)⟩ = 0.20× 10−6 ,

⟨σB(Kπ)⟩ = 0.35× 10−6 ,

⟨σACP (Kπ)⟩ = 0.019 .
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Figure 4.22.: Distributions of normalized residuals for the physics parameters
B(B0 → π+π−), B(B0 → K+π−) and ACP (B

0 → K+π−) obtained by
fits to 1000 artificially generated datasets, sampled from PDF shapes.
Projections of fits with a Gaussian function are shown alongside the
numeric fit results.
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Linearity Tests
We perform linearity tests to check for any biases in the fit procedure in case of
physics parameters deviating significantly from the reported average values. Fitting
large ensembles of artificial datasets, generated with varying physics parameters, we
test the accuracy of the fitter in different regions of the parameter space. We follow
two different approaches. In the first, we generate distributions from the PDFs of
the fit variables in each component. In the second approach, we sample from large
MC datasets with replacement. For both cases, we calculate the expected event
yields of each component assuming the integrated luminosity of the LS1 dataset and
the reconstruction efficiencies described in Section 4.2.2. We randomly fluctuate the
yields for each component sampling from Poisson distributions around the expected
values, estimated on MC.

(i) Sampling from PDFs
Sampling from the nominal fit shapes, we generate distributions for each fit variable
and component in their expected proportion. We vary the physics parameters from
70% to 130% of their nominal values in increments of 10%. We subsequently fit the
combined distributions, containing signal, cross-feed and combinatorial background
components. For each fraction, we perform 300 such pseudo experiments, varying
only one physics parameter at a time, and compare the average of the fit result with
the true input value. The results of the linearity tests are shown in Figure 4.23. We
fit these distributions with a linear function. We observe unit slopes and intercepts
consistent with zero, indicating an unbiased linear relationship across the tested
parameter space for all three physics parameters.

(ii) Sampling from MC datasets
In addition to drawing the samples from the modeling shapes, we perform linear-
ity tests following the principles of a method referred to as bootstrapping [84].
Bootstrapping is a statistical technique used to create large numbers of artificial
datasets by randomly sampling from the original data with replacement. Assuming
the original dataset represents a random sample of the underlying population and
individual observations are uncorrelated, the statistics of the generated datasets
closely approximate those of the original dataset. One advantage of this method
is that it preserves correlations that might not have been accounted for in the
modeling.

To create ensembles of bootstrap samples, we randomly select entries from large
MC datasets. For the signal and cross-feed components, we use abundant signal
MC samples, avoiding any resampling of same events. Regarding combinatorial
background, we use a simulation sample roughly three times the size of the generated
bootstrap samples. As a result, there is substantial overlap among the sets in our
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ensembles, with a significant fraction of them containing the same background events.
However, considering the quantity of such events numbering around 30 000 in the
original datasets, we can safely assume them to provide a proper approximation of
the underlying distribution.

Keeping the number of combinatorial background events constant across samples,
we vary the physics parameters from 80% to 120% of their nominal values in
increments of 10%. For each fraction, we generate an ensemble of 300 bootstrap
samples, varying only one physics parameter at a time. We extract the physics
parameters using our nominal fitter and compare the average over all fit results
across each ensemble with the true input value. The results of the linearity tests are
shown in Figure 4.24. We fit the resulting distributions with a linear function. We
observe unit slopes and intercepts consistent with zero, confirming an unbiased linear
relationship across the tested parameter space for all three physics parameters.yout
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Figure 4.23.: Linearity test performed on large ensembles of artificial datasets, sam-
pled from PDF shapes, for varying generated values of B(B0 → π+π−)
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5. Differences between MC and Data

Monte Carlo simulations can suffer from imperfections in the modeling of various
physical processes, like the generation of particle decays or the interactions with
detector material, to name only a few. To mitigate any resulting discrepancies
between MC samples and real data, we perform correction procedures, which are
instrumental in aligning the simulations more closely with the actual observations.

In this process, we turn to a number of control channel decays. Ideally, these tran-
sitions share similar kinematic and topological properties with the targeted B → hh′

(h = π±, K±) decays. By comparing fits to simulated and real data, we extract
correction factors to address mismodelings of the probability density functions, used
in the targeted signal analysis. Additionally, control modes allow us to evaluate and
correct the efficiency of continuum suppression requirements. We further extract
weights to rectify mismodelings of particle identification variables. Lastly, for the
measurement of the CP -violation parameter ACP , we obtain a correction factor to
account for any discrepancies in the instrumental charge asymmetry.

Beyond calibration, control modes play a crucial role in validating our analysis
methodologies. With significantly larger branching ratios compared to our targeted
signal modes, they allow for the reconstruction of abundant, signal-dominated
samples. These are utilized to verify the accurate extraction of efficiencies and
ensure the correct consideration of external input parameters, such as the number
of BB̄ events in the sample. We develop a full analysis procedure akin to that used
for our signal modes for the decay mode B+ → D̄0[→ K+π−]π+. We measure the
branching ratio in the LS1 dataset using a maximum-likelihood fit, and compare
our result with the world-average.
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5.1. Particle Identification (PID)

An essential component in the reconstruction of B-meson candidates is the efficient
selection of daughter particles through cuts on their particle identification distri-
butions. As eluded to in Chapter 4, we assign charged tracks with binary PID
likelihood LK/π < 0.5 as pions. Accordingly, tracks with LK/π > 0.5 are assigned as
kaons. The above likelihood, computed from an array of subdetector information,
largely depends on the momentum and the polar angle of a track, which are prone
to mismodeling in the simulation. Thus, a selection cut on the PID may induce a
large systematic error in the estimation of the actual selection efficiency.

This is mitigated by using a control sample, where tracks can be unambigu-
ously selected without requirements on the PID variable. Here, we use the decay
D∗+ → D0[→ K−π+]π+, where the charge of the prompt pion unambiguously tags
both decay products of the D meson. By fitting the invariant mass distribution
of signal candidates, we compute so-called sWeights, which in turn are used to
derive distributions of PID, track momentum and polar angle for tracks in signal
events. This is achieved by effectively subtracting the contribution of background
events, under the assumption of negligible correlations between the discriminant
variable, i.e., the invariant mass, and the variables of interest [85]. We use the
Belle II Systematic Corrections Framework developed for this purpose [82].

We obtain those distributions for a simulated sample corresponding to an inte-
grated luminosity of 1 ab−1 as well as for the LS1 dataset. Comparing the efficiencies
of our PID requirements in bins of momentum and the cosine of the polar angle, we
calculate correction weights, corresponding to the efficiency ratio between data and
MC. As we also fit the misidentified cross-feed events in our analysis, we additionally
extract such correction weights for the fake rates. Figures 5.1 and 5.2 show the
correction tables for charge-integrated kaon and pion efficiencies and fake rates in %.
Uncertainties are computed by taking the relative difference between the nominal
sWeight distribution and a second distribution obtained using an alternative PDF
for the invariant mass fit.

Using these lookup tables, we subsequently retrieve correction weights for each
charged track in reconstructed signal candidates and calculate the mean correction
over a large set. For this, we use large samples of simulated signal events and do so
for correctly reconstructed as well as for misidentified events, to account for the cross-
feed contribution. We obtain the correction factors independently for the different
components, as the momentum and angular distribution can differ substantially
between them. Figure 5.3 shows the normalized momentum and cos θ distributions
of pions in the different samples in MC. While pions in the correctly reconstructed
B0 → K+π− and B0 → π+π− events follow almost identical distributions, pions in
the cross-feed components significantly deviate from this.
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Table 5.1 lists the final PID correction weights computed for all categories of
charged particles used in the calculation of the branching ratios (cf. Equations 4.6–
4.11). In the fit to data, we fix the correction factors and assign a systematic
uncertainty taking into account their uncertainties.

Table 5.1.: PID correction factors to account for mismodeling of selection efficiencies
(εi) and fake-rates (fi), obtained for different categories i of charged
pions and kaons present in B → hh′ samples. The suffix CF refers to
the cross-feed components containing misidentified particles.

Parameter Value

εK 0.9704± 0.0013

επ 0.9811± 0.0011

fπ,ππ−CF 1.157± 0.010

επ,ππ−CF 0.9851± 0.0012

fK,Kπ−CF 1.192± 0.008

επ,Kπ−CF 0.9861± 0.0011
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Figure 5.1.: PID correction table for charge-integrated kaon efficiencies (top) and
fake rates (bottom) in % as function of momentum and polar angle.
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90.5±7.1 152.0±3.3 134.5±6.7 118.0±4.9 113.8±3.2 138.4±2.6 121.7±4.2 56.4±5.5

102.0±10.4 144.8±4.2 128.4±7.5 115.0±5.2 98.1±3.2 120.5±2.6 122.7±4.3 67.3±6.2

148.1±18.2 143.8±5.8 112.4±8.1 111.3±5.4 90.2±3.3 116.9±2.7 124.1±4.7 56.5±7.3

85.0±34.3 177.2±10.4 122.7±10.6 105.7±6.3 86.3±3.6 109.5±3.1 123.8±5.1 68.7±8.3

168.2±24.3 116.1±19.0 97.1±7.8 87.1±4.4 108.2±3.8 139.8±6.0 80.5±9.6
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Figure 5.2.: PID correction table for charge-integrated pion efficiencies (top) and
fake rates (bottom) in % as function of momentum and polar angle.
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Figure 5.3.: Normalized momentum (top) and polar angle (bottom) distributions
of pions in samples of correctly reconstructed and misidentified signal
events, obtained in simulated data. To address the observed differences,
we compute separate particle identification corrections for each compo-
nent.
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5.2. Correction for Instrumental Charge-Asymmetry

To measure the direct CP -violation parameter, ACP , we determine separate signal
yields for B0 → K+π− and B̄0 → K−π+ transitions. Yield asymmetries can be
biased by charge-dependent reconstruction efficiencies of final state particles. A
known example is the detection asymmetry due to differing interaction probabilities
of charged kaons with the detector material. Simulation might not perfectly replicate
such effects. To mitigate potential discrepancies, supplementary measurements on
abundant control mode samples are employed.

The measured charge-dependent yield asymmetry can be written as the sum of
the physical CP asymmetry of the decay, ACP , and the instrumental asymmetry
due to differences in interaction and reconstruction probabilities between particles
and antiparticles, Adet:

Araw = ACP +Adet .

With a branching ratio of 3.947± 0.030%, D0 → K−π+ decays occur sufficiently
frequently to allow for a precise measurement of the yield asymmetry between
the two charge cases. While sharing the same particles in the final state as our
signal decay, the transitions are flavor-specific, which allows for an unambiguous
charge assignment. In D0 → K−π+ transitions, direct CP violation is expected to
be smaller than 0.1% [20]. We can therefore attribute any excess asymmetry to
instrumental charge asymmetries.

In a separate Belle II study, D0 → K−π+ decays are reconstructed in MC and
LS1 data to determine Adet. The selection requirements are kept similar to those
employed in the B → hh′ analysis. The resulting ∆E distributions of candidates,
dominated by signal events, are subsequently used to extract the charge-specific signal
yields in maximum-likelihood fits. We obtain a correction of Adet = (0.62± 0.67)%,
which is subtracted from the raw rate asymmetry measured between B0 → K+π−

and B̄0 → K−π+ decays.
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5.3. Control Channel Analysis

We reconstruct the abundant decay mode B+ → D̄0[K+π−]π+ and develop a fit
procedure to measure the branching ratio in the LS1 data. A comparison with the
precisely determined value reported by the PDG allows for a rigorous validation
of our analysis methodologies. Further, we use this control channel to extract
calibration parameters for signal mode PDF shapes employed in the target analysis,
and to test the MC-data agreement in the efficiencies of continuum suppression
requirements.

5.3.1. Reconstruction and Selection

Keeping the requirements in the control channel analysis similar to those used
for B → hh′ decays reduces the risk of introducing selection-related biases and
ensures consistency in the estimation of systematic uncertainties. For final-state
particles, we start with the same selection requirements as used in the target analysis.
Subsequently, pairs of kaon and pion candidates are combined in kinematic fits to
reconstruct D-meson candidates. We constrain the D0 mass to be centered around
its nominal mass 1.853 < m(K−π+) < 1.876GeV/c2, which significantly reduces
combinatorial background. The width of this window corresponds to three times the
detector mass resolution as measured in a fit to simulated signal events. We further
combine the D-meson candidates with reconstructed pions using vertex fits. The
resulting B-meson candidates are required be fulfill −0.1 < ∆E < 0.1 GeV. The
final selection step is a loose cut on the continuum suppression classifier, for which
we use the BDT trained on B → hh′ decays. We use the same requirement as for
the B0 → K+π− analysis, C > 0.41, which reduces continuum significantly while
retaining around 95% of signal events. The selection requirements are summarized
in Table 5.2.

Figure 5.4 shows the ∆E distribution of B+ → D̄0[K+π−]π+ candidates recon-
structed in 1 ab−1 of generic simulation after all selection steps. We identify three
components, namely signal, B-decay background and continuum background events.
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Table 5.2.: Selection requirements for tracks, D- and B-meson candidates in the
reconstruction of B+ → D̄0[→ K+π−]π+ events.

tracks D0 / B+

17◦ < Θ < 150◦ 1.853 < m(K−π+) < 1.876GeV/c2

nCDCHits > 20 5.272 < Mbc < 5.288 GeV/c2

dr < 0.5 cm −0.1 < ∆E < 0.1 GeV

|dz| < 2 cm C > 0.41
LK/π > 0.5 for kaons
LK/π < 0.5 for pions
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Figure 5.4.: ∆E distribution of B+ → D̄0[K+π−]π+ candidates reconstructed in
1 ab−1 of generic simulation after all selection requirements.

101



5. Differences between MC and Data

5.3.2. Modeling

To extract the yields in each of the three contributions, we fit the distribution of
the energy-difference (∆E) of reconstructed candidates using an extended unbinned
maximum-likelihood fit. Analogous to the target analysis, we first extract shapes
for each component by fitting to abundant, truth-matched simulation samples. For
the signal shape, we generate two million signal events. For the B-decay background
and the continuum background, we make use of a generic MC sample corresponding
to an integrated luminosity of 1 ab−1.

Signal model

We use a combination of a Gaussian function and a Crystal Ball shape function to
model the ∆E distribution of the signal component. The two functions are combined
with a weight parameter w ∈ [0, 1], that is determined in the fit to simulated events:

fsig(∆E) := w · fCB(∆E;α, n, µCB, σCB)

+ (1− w) · fG(∆E;µG, σG) .
(5.1)

We determine the best-fit parameters by means of a maximum-likelihood fit to a
sample composed of correctly reconstructed signal events, surviving all selection
criteria. Figure 5.5 shows the ∆E distribution for correctly reconstructed signal
events alongside the fitted PDF.
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Figure 5.5.: ∆E distribution of correctly reconstructed B+ → D̄0[K+π−]π+ signal
events alongside the fitted signal PDF, composed of a Crystal Ball
shape and a Gaussian function.
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B-decay background model

The B-decay background is composed of a multitude of B-meson decays, where one
or more particles were misreconstructed, leading to a number of pronounced features
in the ∆E distribution. Since the relative contribution of this component is small
(O(103)) compared to the amount of signal decays (O(105)), we chose to model this
component using a single PDF. We opt for a kernel density estimation (KDE) PDF,
which models the distribution as a superposition of multiple Gaussian functions. In
this case, the widths of these Gaussian functions are adaptively calculated, taking
the population density of the respective region into account.

We determine the shape of the PDF on a sample composed of simulated B-decay
background events surviving the selection requirements. Figure 5.6 shows the
∆E distribution of B-decay background events along with the obtained PDF. A
pronounced peaking structure around ∆E = 0 is identified with misreconstructed
B− → J/ψ[→ l+l−]K− events. Given that this contribution is estimated to yield
only around 90 events under a signal peak of ∼27 000 events in the LS1 data, we
choose to include it in the KDE PDF, instead of assigning a dedicated model.
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Figure 5.6.: ∆E distribution of simulated B-decay background events alongside the
resulting KDE PDF. A pronounced peaking structure around ∆E = 0
is identified with misreconstructed B− → J/ψ[→ l+l−]K− events.

Continuum background model

We use an exponential function to model the ∆E distribution of continuum back-
ground events. We leave the shape parameter floating. For completeness, we show
the result of a fit to a simulated continuum background sample in Figure 5.7.
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Figure 5.7.: ∆E distribution of simulated continuum background events alongside
the fitted exponential function PDF.

5.3.3. Fits to MC and Data

We combine the PDFs describing the shapes of signal, B-decay background and
continuum background events to build a single likelihood function by multiplying
them with their respective yields. To account for the Poissonian nature of the
measurement, an extension term is included. We leave the yields floating in the
fit to data. To ensure a sufficient fit stability, we use a Gaussian constraint on
the B-decay background yield, centered around the expected value estimated on
MC. The resulting signal yield is used to measure the branching ratio of the control
mode. For this, we extract the selection efficiency from a large simulation sample,
consisting of two million signal events.

Fit to MC

Before fitting the LS1 data, we validate the fitting procedure on a large, generic
MC sample corresponding to an integrated luminosity of 1 ab−1 and compare the
fit results with MC truth information. Figure 5.8 shows the distribution in ∆E

along with the fit projection. Table 5.3 lists the best-fit parameters along with their
true values. We observe excellent agreement between fit result and true values in
all three contributions.
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Figure 5.8.: Distribution of ∆E for B+ → D̄0[→ K+π−]π+ candidates reconstructed
in 1 ab−1 of generic simulation. The projection of an extended unbinned
maximum-likelihood fit is overlaid. In the signal-dominated sample, the
background components are only faintly discernible.

Table 5.3.: Best-fit parameters, obtained in a fit to ∆E of B+ → D̄0[→ K+π−]π+

candidates reconstructed in simulated data corresponding to an inte-
grated luminosity of 1 ab−1, along with their true values and the corre-
sponding normalized residuals.

Parameter Fit Result Simulation Truth NR

signal yield 74653± 287 74545 0.38
BB̄ background 3492± 59 3501 0.15
qq̄ background 2865± 143 2797 0.48
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Fit to data

For the fit to data, the selection efficiency needs to be corrected to account for
mismodeling of the PID variables, as laid out in detail in the previous section. We
follow the same procedure as for the B → hh′ analysis and compute correction
parameters for all three final state particles of the decay, taking their momentum
and polar angle distributions into account. We obtain a final selection efficiency of
ε = 37.4%× 94.4% = 35.3%, where the second factor refers to the combined PID
correction.

In order to account for possible mismodeling of the signal PDF shape, we allow
the width and mean of the signal peak to vary from the nominal values determined
on the simulation sample. We assume that the measurement effects leading to any
deviations are also applicable to the signal mode analysis. The deviations labeled
as σcorr and µcorr correspond to the correction factors, which we employ in the
B → hh′ analysis to adjust the widths and means of all peaking components (cf.
Section 4.3.1).

µG → µG + µcorr , σG → σG + σcorr

Figure 5.9 shows the ∆E distribution in the full LS1 dataset along with the
projection of an extended unbinned maximum-likelihood fit. The data sample of re-
constructed B+ → D̄0[→ K+π−]π+ candidates is largely dominated by signal events
with only minuscule contributions from B-decay and continuum background events.
After the PID correction, the branching ratio evaluates to (1.829± 0.012)× 10−4,
which agrees with the current PDG average of (1.847 ± 0.053) × 10−4. Table 5.4
lists all best-fit parameters, including the shape correction factors.

Table 5.4.: Best-fit parameters, obtained by a fit to the ∆E distribution of
B+ → D̄0[→ K+π−]π+ candidates reconstructed in the LS1 data.

Parameter Fit result

B (1.829± 0.012)× 10−4

∆E mean shift (−0.29± 0.08) MeV

∆E width scaling 1.115± 0.007

signal 25 754± 170

qq̄ background 1 042± 89

BB̄ background 1 246± 35
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Figure 5.9.: Distribution of ∆E for B+ → D̄0[→ K+π−]π+ candidates reconstructed
in the LS1 dataset corresponding to an integrated luminosity of 362 fb−1.
The projection of an extended, unbinned maximum-likelihood fit is
overlaid. In the signal-dominated sample, the background components
are only faintly discernible.

5.3.4. Continuum Suppression Classifier

We compare the distributions of the CS classifier after applying the boosted decision
tree of the B → hh′ analysis to the control mode samples in MC and data. We divide
the samples into signal-enhanced and background-enhanced subsets to assess its
applicability in both components. Within a |∆E| < 50MeV window, signal events
dominate, while candidates outside this window primarily consist of background
events. Figure 5.10 illustrates the distributions in data and MC for both scenarios.
To facilitate the comparison, we normalize the MC distribution to match the
number of data points. We observe excellent agreement between the signal-enhanced
samples. In the background-enhanced samples a slight discrepancy is noticeable.
This discrepancy can be attributed to the wider peak width observed in data
compared to MC (σcorr = 1.115 ± 0.007), resulting in a greater number of signal
events contributing to this sample at higher values.

Additionally, we utilize the control mode to check for discrepancies between data
and simulation concerning the efficiencies of the cuts imposed on the continuum
suppression classifier. To obtain the selection efficiency of this requirement, we
perform a simultaneous fit to two disjoint samples: the first comprises candidates
that satisfy the CS selection cut used in the signal mode analysis, while the sec-
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ond comprises candidates that fail this selection. We employ the identical fitting
procedure as described in the previous section, allowing for varying shapes of the
signal peaks between the two samples. Figure 5.11 presents the ∆E distributions of
B+ → D̄0[→ K+π−]π+ candidates that satisfy and fail the CS requirement used to
select B0 → K+π− candidates, reconstructed in MC. The figure also displays the
projections resulting from a simultaneous fit to these two samples. The selection
efficiency is determined by the ratio of their respective signal yields. Figure 5.12
shows the distribution and fit projections for data. In Figures 5.13 and 5.14, we
present analogous studies for the CS requirement used to select B0 → π+π− candi-
dates. We find compatible efficiencies between data and MC for both requirements
(see Table 5.5). We include a systematic uncertainty related to the CS selection
quoting the statistical uncertainty on the efficiency ratio of data and MC.

Table 5.5.: Selection efficiencies of continuum suppression requirements used
in the B → hh′ analysis, extracted from simultaneous fits to
B+ → D̄0[→ K+π−]π+ candidates passing and failing the cuts. The
values obtained on data and MC show good agreement.

CS cut ε(data) ε(MC) ε(data)/ε(MC)

>0.34 95.56 ± 0.18 % 95.87 ± 0.10 % 99.68 ± 0.21 %
>0.41 94.64 ± 0.19 % 94.78 ± 0.11 % 99.85 ± 0.23 %
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Figure 5.10.: Data-MC comparison of the CS classifier for background-enhanced
(top) and signal-enhanced (bottom) B+ → D̄0[→ K+π−]π+ candidates.
MC is normalized to the total number of data events.

109



5. Differences between MC and Data

0.0

0.5

1.0

1.5

C
an

d
.

/
5

M
eV

×104

Belle II (MC)∫
L dt = 1000 fb−1 data

B− → D0π−

BB̄

qq̄

−0.10 −0.05 0.00 0.05 0.10

∆E [GeV]

−2.5
2.5

N
R

0

250

500

750

1000

C
an

d
.

/
5

M
eV

Belle II (MC)∫
L dt = 1000 fb−1 data

B− → D0π−

BB̄

qq̄

−0.10 −0.05 0.00 0.05 0.10

∆E [GeV]

−2.5
2.5

N
R

Figure 5.11.: ∆E distributions of B+ → D̄0[→ K+π−]π+ candidates that satisfy
(top) and fail (bottom) the CS requirement, C > 0.41, used to select
B0 → K+π− candidates, reconstructed in a simulated sample corre-
sponding to an integrated luminosity of 1 ab−1.
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Figure 5.12.: ∆E distributions of B+ → D̄0[→ K+π−]π+ candidates that satisfy
(top) and fail (bottom) the CS requirement, C > 0.41, used to select
B0 → K+π− candidates, reconstructed in the LS1 dataset.
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Figure 5.13.: ∆E distributions of B+ → D̄0[→ K+π−]π+ candidates that satisfy
(top) and fail (bottom) the CS requirement, C > 0.34, used to select
B0 → π+π− candidates, reconstructed in a simulated sample corre-
sponding to an integrated luminosity of 1 ab−1.
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Figure 5.14.: ∆E distributions of B+ → D̄0[→ K+π−]π+ candidates that satisfy
(top) and fail (bottom) the CS requirement, C > 0.34, used to select
B0 → π+π− candidates, reconstructed in the LS1 dataset.
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6. Results

In the following, we present the results of a simultaneous fit to the LS1 data to
measure the branching ratios B(B0 → K+π−) and B(B0 → π+π−), as well as the
direct CP -violation parameter, ACP , in B0 → K+π− decays. We estimate the
systematic uncertainties by investigating various sources and compare the final
results with previous studies performed at Belle and Belle II. Lastly, we incorporate
the new measurement into a model-independent isospin sum rule along with other
updated or new measurements of related B → Kπ decay modes and compare the
result with SM expectation.

6.1. Fit to LS1 Data

We simultaneously fit the distributions in the energy-difference, ∆E, and the trans-
formed continuum suppression classifier, C ′, in three disjoint samples, composed
of B0 → π+π−, B0 → K+π− and B̄0 → K−π+ candidates. After all selection re-
quirements, the total number of candidates in these samples are 10124, 6511 and
6240, respectively. There are a total of 18 free parameters in the fit: two branching
ratios, the charge asymmetry, three background yields and 12 background shape
parameters.

Figures 6.1 and 6.2 display the projections onto the two fit dimensions for all
three samples, along with the corresponding normalized residuals. The fit result
exhibits excellent agreement with data. The observed discrepancies between the
fitted model and the data points are well within the expected statistical fluctuations
across the parameter space, following approximately a standard normal distribution.
After applying all corrections, we obtain the following branching ratios and CP

asymmetry:

B(B0 → π+π−) = (5.83± 0.22)× 10−6 ,

B(B0 → K+π−) = (20.67± 0.37)× 10−6 ,

ACP (B
0 → K+π−) = −0.072± 0.019 .

The listed uncertainties are statistical and correspond to the symmetric errors
obtained by the covariance matrix. The systematic uncertainties are discussed in
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the following section. Table 6.1 lists the best-fit values for the full set of floating
parameters. The statistical correlation coefficients between all fit parameters are
listed in AppendixA.3.

Table 6.1.: Best-fit values of floating parameters obtained in an extended unbinned
maximum-likelihood fit to the LS1 data. The listed CP -violation param-
eter already includes the correction for instrumental charge asymmetries.
a, b, c and w represent PDF shape parameters for the combinatorial
background components (see Section 4.3.1 for details).

Parameter Fit Result

B(B0 → π+π−) (5.83± 0.22)× 10−6

B(B0 → K+π−) (20.67± 0.37)× 10−6

ACP (B
0 → K+π−) −0.072± 0.019

background yield (π+π−) 8093± 97

background yield (K+π
−) 4286± 72

background yield (K−π+) 4231± 71

a (C ′; π+π−) −6.68± 0.29

b (C ′; π+π−) −24.6± 1.9

w (C ′; π+π−) 0.566± 0.038

c (∆E; π+π−) −0.951± 0.134

a (C ′; K+π−) −6.80± 0.42

b (C ′; K+π−) −24.9± 3.6

w (C ′; K+π−) 0.662± 0.061

c (∆E; K+π−) −1.15± 0.183

a (C ′; K−π+) −6.94± 0.46

b (C ′; K−π+) −22.6± 3.8

w (C ′; K−π+) 0.669± 0.074

c (∆E; K−π+) −0.979± 0.184
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Figure 6.1.: Distributions in ∆E for B0 → π+π− (top), B0 → K+π− (center), and
B̄0 → K−π+ (bottom) candidates reconstructed in the LS1 dataset.
The projections of an extended unbinned maximum-likelihood fit are
overlaid. Normalized residuals are shown below.
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Figure 6.2.: Distributions in C ′ for B0 → π+π− (top), B0 → K+π− (center), and
B̄0 → K−π+ (bottom) candidates reconstructed in the LS1 dataset.
The projections of an extended unbinned maximum-likelihood fit are
overlaid. Normalized residuals are shown below.
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6.2. Systematic Uncertainties

The proper estimation of systematic uncertainties plays a crucial role in quantifying
potential biases and ensuring the reliability of a measurement. Combined with
statistical uncertainties, provided by the minimizer, systematic uncertainties are
an integral factor in determining the significance of the parameter estimation as a
whole. In the following, we discuss the various sources of systematic uncertainties
considered relevant to the level of statistical precision attained in our measurement.
Table 6.2 lists the individual contributions along with the statistical uncertainties
for measurements of branching ratios and the CP -violation parameter. The total
systematic uncertainties are obtained by summing the individual contributions in
quadrature.

Table 6.2.: Summary of estimated systematic uncertainties for a number of relevant
sources. The uncertainties are given in percent for the branching ratios,
and as absolute values for the CP -violation parameter.

Source B(B0 → K+π−) B(B0 → π+π−) ACP (B
0 → K+π−)

[%] [%]

Tracking efficiency 0.5 0.5 –
BB̄ pair counting 1.5 1.5 –
f 00 2.5 2.5 –
CS efficiency 0.2 0.2 –
PID correction 0.1 0.1 <0.001
∆E shift and scale 0.1 0.2 <0.001
Kπ signal model 0.1 0.2 <0.001
ππ signal model <0.1 0.1 <0.001
Kπ cross-feed model <0.1 0.1 <0.001
ππ cross-feed model 0.1 0.2 <0.001
Instrumental asymmetry – – 0.007
Multiple candidates <0.1 <0.1 <0.001

Systematic uncertainty 3.0 3.0 0.007
Statistical uncertainty 1.8 3.8 0.019

6.2.1. Tracking Efficiency

In a dedicated study on e+e− → τ+τ− events, the tracking efficiencies are determined
in data and MC using a tag-and-probe method. To this end, events are reconstructed,
where one τ decays leptonically, τ → ℓ±νℓν̄τ with ℓ = e, µ, and the other one
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hadronically, τ → 3π±ντ + nπ0. The measurement of two charged pions and
the lepton allows to infer the additional pion from charge conservation. The
reconstruction efficiency of this probe track is used as an approximation of the
tracking efficiency. The discrepancy between data and MC is then used to estimate
the corresponding uncertainty. We assign a systematic uncertainty on the branching
ratios of 0.24% per track in the final state. The study is explained in detail in [86].

6.2.2. BB̄ Pair Counting

The number of BB̄ pairs contained in the LS1 data is determined in a dedicated
study by the Belle II performance group. Comparing the number of recorded
events between an off-resonance data sample recorded at a centre-of-mass energy of
10.519 GeV and that of an on-resonance sample, the total number of BB̄ pairs is
estimated.

To account for the different sample sizes, and energy-dependent selection efficien-
cies and cross-sections, the following equation is used:

NBB̄ =
Non −R · k ·Noff

ϵBB̄

, (6.1)

where Non is the number of selected hadronic events in on-resonance data, R·k ·Noff is
the estimated number of non-BB̄ events in on-resonance data extrapolated from the
off-resonance sample, and ϵBB̄ is the selection efficiency for BB̄ events. R = Lon/Loff

is the luminosity ratio between the on-resonance and off-resonance data samples,
and k takes into account the variation in non-BB̄ efficiencies and cross sections due
to differences in center-of-mass energy. We assign a systematic uncertainty of 1.5%
to account for the uncertainty on the number of BB̄ pairs, where the dominant
contribution stems from systematic uncertainties in the luminosity measurements.
The study is explained in detail in [87].

6.2.3. f 00

The production ratio of charged and neutral B mesons in decays of the Υ (4S)

resonance is given by:

f+−/f 00 =
Γ[Υ (4S) → B+B−]

Γ[Υ (4S) → B0B̄0]
. (6.2)

To compute the number of neutral B mesons in our sample, we multiply the
total number of B mesons with f 00. The most precise measurement of this pa-
rameter to date is provided by the measurement of B0 → J/ψ(→ l+l−)K0 and
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B+ → J/ψ(→ l+l−)K+ decays using the full Belle dataset [88]. Assuming isospin
invariance in the B → J/ψ(→ l+l−)K system and accounting for reconstruction
efficiencies as well as lifetimes of the B mesons, the production ratio f+−/f 00 is
determined. Taking the combined uncertainties on this measurement, we compute
the uncertainty on f 00 and assign it as a systematic uncertainty in our branching
ratio measurement.

6.2.4. CS Selection

We suppress continuum background by imposing loose selection requirements on the
outputs of a dedicated boosted decision tree, which is trained and tested on simulation
samples. Possible differences between data and simulation in the distributions of
training variables can lead to non-negligible differences in the resulting classifier
distributions. We therefore investigate the data-MC agreement in an abundant
control sample of B+ → D̄0[→ K+π−]π+ decays. To determine the efficiencies of
the selection requirements on the CS classifier variable used in the B → hh′ analysis,
we measure the ratio of signal yields passing and failing these cuts in a simultaneous
fit to both samples (cf. Section 5.3.4). We obtain the efficiencies for both, simulation
and data samples. We find compatible efficiencies between the two and assign the
statistical uncertainties on the efficiency ratios as systematic uncertainties.

6.2.5. PID Correction

The Systematic Corrections Framework provides uncertainties on the extracted PID
correction tables, which include systematic as well as statistical uncertainties [82].
In the nominal correction, we use the central value for a given bin in momentum
and polar angle to obtain a correction weight for the PID selection efficiency for
each track on the signal side. Averaging over a large set of simulated events, we
obtain efficiency corrections for each class of particles, i.e., correctly reconstructed
and misidentified charged pions and kaons (cf. Section 5.1).

To estimate the systematic uncertainty due to uncertainties in the PID correction
tables, we generate large sets of alternative corrections for each particle class. Varying
the correction for each track within its uncertainty 300 times, and subsequently
taking the average over each set, we compute an ensemble of 300 alternative
corrections for each particle class. We use the standard deviation as a measure of
the systematic uncertainty of the PID correction for particle class c,

σc = stdk

(
1

N

N∑

i=1

ϵcorr
i,c,k

)
,
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where stdk represents the standard deviation over k ∈ {1, 2, 3, . . . , 300}, N is the
number of events/tracks in the simulation sample, and ϵcorr

i,c,k is the PID efficiency
correction for track i of particle class c in variation k. The resulting uncertainties
are listed in Table 5.1.

We combine the uncertainties of two tracks according to the event type and
compute the weighted average of signal and misidentified event yields to account
for the fact that both yields are used in the determination of branching ratios.

6.2.6. Shape Correction

To estimate the systematic uncertainty associated to the ∆E mean shift and width
scaling obtained in the control mode analysis, we generate 100 pseudo datasets.
Sampling from the nominal fit shapes, we generate distributions in ∆E and C ′ for
each component in their expected proportion. We randomly fluctuate the yields
sampling from a Poisson distribution around the expected value, estimated on a
large generic simulation sample, and appropriately scaled to match the integrated
luminosity of the LS1 dataset.

We fit these pseudo datasets twice: once using our nominal fitter and once using
alternative calibration parameters. The latter are obtained sampling from Gaussian
distributions, centered around the nominal corrections with widths corresponding
to their respective uncertainties. We calculate the relative differences in measured
physics parameters for each pair of fit results across the 100 pseudo experiments.
The resulting distribution is fitted with a Gaussian function and we quote the
fitted width, σ, as systematic uncertainty. Figure 6.3 shows the distributions of
the relative fit differences for the branching ratio measurements. We observe no
significant difference in the measurement of ACP .
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Figure 6.3.: Comparison of branching ratios for B(B0 → K+π−) (left) and
B(B0 → π+π−) (right) obtained from pairs of fits across 100 pseudo
experiments using both nominal and varied calibration parameters for
the width and mean of peaking components. The distributions depict
the relative differences between measured branching ratios. The width
of a fitted Gaussian function, σ, provides a measure of the systematic
uncertainty associated with the shape corrections.

6.2.7. Signal and Cross-Feed Modeling

The PDF shapes used for modeling the signal and cross-feed components are
extracted from fits to large signal simulation samples. Since we are using analytical
functions to describe these shapes, we use the uncertainties on the shape parameters,
provided in the minimization step, to estimate systematic uncertainties related to
modeling imperfections.

We evaluate the effect of the uncertainties on the shape parameters using ensembles
of 500 pseudo experiments. Sampling from the nominal fit shapes, we generate
distributions in ∆E and C ′ for each component in their expected proportion. We
randomly fluctuate the yields sampling from a Poisson distribution around the
expected value, estimated on a large generic simulation sample, and appropriately
scaled to match the integrated luminosity of the LS1 dataset.

We subsequently fit these pseudo datasets twice: once using our nominal fitter
and once using varied PDF shape parameters. The latter are obtained sampling
from Gaussian distributions centered around the nominal shape parameters with
widths corresponding to their respective uncertainties. We calculate the relative
differences in measured physics parameters for each pair of fit results across the 500
pseudo experiments. The resulting distribution is fitted with a Gaussian function
and we quote the width, σ, as systematic uncertainty related to the uncertainty on
the PDF under consideration. We perform this study separately for each peaking
component, that is, B0 → K+π− signal, B0 → π+π− signal, B0 → K+π− cross-
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feed, and B0 → π+π− cross-feed. Figures 6.4–6.7 show the distributions of relative
differences in branching ratios between nominal and alternative fit, for all four
components. We observe no significant differences in the measurements of ACP .
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Figure 6.4.: Relative differences in B(B0 → K+π−) (left) and B(B0 → π+π−) (right)
obtained from pairs of fits across 500 pseudo experiments using nominal
and varied B0 → K+π− signal PDF shapes. The width of a fitted Gaus-
sian function, σ, provides a measure of the corresponding systematic.
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Figure 6.5.: Relative differences in B(B0 → K+π−) (left) and B(B0 → π+π−) (right)
obtained from pairs of fits across 500 pseudo experiments using both
nominal and varied B0 → π+π− signal PDF shapes. The width of a
fitted Gaussian function, σ, provides a measure of the corresponding
systematic.
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Figure 6.6.: Relative differences in B(B0 → K+π−) (left) and B(B0 → π+π−) (right)
obtained from pairs of fits across 500 pseudo experiments using both
nominal and varied B0 → K+π− cross-feed PDF shapes. The width of
a fitted Gaussian function, σ, provides a measure of the corresponding
systematic.
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Figure 6.7.: Relative differences in B(B0 → K+π−) (left) and B(B0 → π+π−) (right)
obtained from pairs of fits across 500 pseudo experiments using both
nominal and varied B0 → π+π− cross-feed PDF shapes. The width of
a fitted Gaussian function, σ, provides a measure of the corresponding
systematic.

6.2.8. Instrumental Asymmetry

To determine the instrumental asymmetry, Adet, we measure the charge-asymmetry
in D0 → K−π+ decays in the LS1 data. We expect the asymmetry to depend
on the topology of the decay, which differs between the control mode and our
targeted signal mode, B0 → K+π−. We assess a systematic uncertainty to account
for any potential discrepancies in the measurement of Adet between these two decay
modes. A dedicated study outlining the strategy in detail confirms that simulation
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accurately models the dependencies of Adet [89]. We therefore measure the value
of Adet in simulation for signal and control mode decays, and assign the difference,
∆Adet = Asig,MC

det −Acontrol,MC
det , as systematic uncertainty.

6.2.9. Multiple Candidates

We perform no best candidate selection in events with more than one reconstructed
candidates. To assess a systematic uncertainty associated with a possible data-
simulation mismatch in candidate multiplicity, we repeat the fit to data after
randomly selecting a single candidate in each event. We observe no differences in fit
results for any physics parameter.
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6.3. Comparison with Previous Results

We compare our findings with results of a prior Belle II analysis, which was conducted
on a smaller subset of the LS1 data. Additionally, we draw comparisons with results
from the final study of these decays at the Belle experiment, which utilized the full
Belle dataset.

6.3.1. Previous Belle II Result

In the previous Belle II study, measurements of B(B0 → π+π−), B(B0 → K+π−)
and ACP (B

0 → K+π−) were carried out on a dataset containing 68 million BB̄

pairs [90]. Besides the substantial increase in integrated luminosity, our study
introduces several improvements aimed at enhancing the overall precision.

Contrasting the previous approach, where all physics parameters were measured
in separate fits, in this study, we simultaneously fit the B0 → π+π− sample and
both charge-separated B → K±π∓ samples. This enables the consideration of
misidentified events, in which one of the final-state hadrons was reconstructed with
an incorrect mass-hypothesis, in the computation of the branching ratios. In this
manner, we attain a significant enhancement of the effective reconstruction efficiency
and thereby the statistical precision of the measurement.

This improvement is augmented by our revised selection of fit variables. The
previous analysis entailed fitting the distributions of the energy-difference, ∆E, and
beam-constrained mass, Mbc, following an optimized cut on a continuum suppression
classifier. To this end, the selection criteria for particle identification variables and
the continuum suppression classifier were chosen to maximize a figure-of-merit in
a signal-enriched region. In contrast, our current approach involves fitting the
distribution of the continuum suppression classifier directly. This change enables us
to significantly relax the selection requirements on the analogous classifier, which
further enhances the efficiency for signal events.

We also refine the computation of the continuum suppression classifier itself.
While the boosted decision tree to compute the classifier used in the previous
analysis was trained on a sample composed of a wide variety of hadronic B-meson
decays, we tailor our method to the task at hand. We revise the array of input
variables and train the BDT specifically on simulated B0 → K+π− and B0 → π+π−

event samples. This modification further enhances the discriminative power of the
classifier, allowing for improved signal efficiencies at given levels of background
retention.

The enhanced efficiencies in the reconstruction and selection process become
evident when comparing the yields per unit of integrated luminosity between the
two studies. The normalized yields are tabulated in Table 6.3 for both Belle II
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analyses as well as for the final Belle analysis. To account for the incorporation of
cross-feed yields in the branching ratio determination, we have added the yields of
correctly reconstructed and misidentified events in parentheses. This study surpasses
all prior ones in terms of selection efficiencies, with an efficiency increase of 46%
and 133% for B0 → K+π− and B0 → π+π− events, respectively, compared to the
preceding Belle II study.

Further, several improvements have been made to also reduce systematic uncer-
tainties. In [91], the leading uncertainties were estimated to be due to imperfections
in the modeling of peaking components at around 4% for both decay modes. Besides
modifications to our fitting procedure, we adopt a novel approach for translating
uncertainties on individual shape parameters into uncertainties associated with
modeling inaccuracies. We estimate the relative systematic uncertainty of this effect
to be as low as 0.1% for B(B0 → K+π−) and 0.3% for B(B0 → π+π−).

Similar improvements have been made for nearly all other sources, with the leading
uncertainties in the branching ratio measurements now stemming from uncertainties
in the determination of the number of neutral B mesons in the sample.

Table 6.3.: Comparison of signal yields per fb−1 of integrated luminosity with previ-
ous analyses. The values in parentheses are obtained when including the
cross-feed yields in the calculation.

Decay mode Belle II (2023) Belle II (2021) [90] Belle (2012) [91]

B0 → K+π− 10.7 (13.1) 9.0 10.6
B0 → π+π− 3.3 (4.2) 1.8 3.0

The measurements presented in this thesis share a significant fraction of the ana-
lyzed data with the previous Belle II study. As an additional validation measure, we
apply our fit to data from the same runs, corresponding to an integrated luminosity
of 62.8 fb−1. Beyond statistical fluctuations, we anticipate minor differences due to
different data processings with revised detector calibrations and updated reconstruc-
tion software. We apply the same corrections (PID, instrumental asymmetry, PDF
shapes) as used in the nominal analysis, assuming negligible run-dependence of these
parameters. Figures 6.8 and 6.9 depict the projections onto the two fit dimensions
for all three samples, along with the corresponding normalized residuals. We list
the fit results obtained on the partial dataset in Table 6.4, alongside the previous
results reported in [91]. We observe good agreement between the measurements in
all parameters within their uncertainties, with increased statistical precision in the
updated analysis.
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Table 6.4.: Comparison of fit results with previous measurements reported in [91],
obtained on the partial dataset corresponding to an integrated luminosity
of 62.8 fb−1. We list only the statistical uncertainties.

Parameter Belle II (2023) Belle II (2021) [90]

B(B0 → K+π−) (20.9± 0.9)× 10−6 (19.9± 1.0)× 10−6

B(B0 → π+π−) (6.1± 0.5)× 10−6 (5.9± 0.7)× 10−6

ACP (B
0 → K+π−) −0.08± 0.04 −0.16± 0.05

6.3.2. Final Belle Result

We additionally compare our measurement with the final result reported by the Belle
experiment [91]. Using a dataset containing 772 million BB̄ events, the referenced
study follows a similar analysis strategy as presented in this thesis, extracting the
physics parameters from a simultaneous fit to the B0 → π+π− and B → K±π∓

samples.
We list the results in Table 6.5 along with our measurements for better compari-

son. We observe good agreement for B(B0 → K+π−) and ACP (B
0 → K+π−). For

B(B0 → π+π−), we compute a discrepancy of 2.0 standard deviations. However, this
deviation is put into perspective when compared to an alternative result from Belle
reported in [39], which measures a central value of B(B0 → π+π−) = 5.63× 10−6 on
the same dataset. We also note the most recent result from the BaBar experiment,
which reports 5.5× 10−6 [92].

Next to the central values, it is noteworthy that our measurements exhibit
comparable statistical significance to those of the Belle study, despite using a
significantly smaller dataset (∼ 50%). We can estimate the projected statistical
uncertainties of the Belle analysis, scaled to an integrated luminosity of the LS1
data. The relative increase in precision measures 24% for B(B0 → π+π−), 23% for
B(B0 → K+π−), and 5% for ACP (B

0 → K+π−).
Regarding the similar signal yields per unit of integrated luminosity, listed in

Table 6.3), we attribute much of the improvement in precision to the advanced
continuum suppression technique. The latter allows for a significant reduction of
continuum background events at high signal efficiencies while still providing excellent
discrimination power in the fit to the classifier variable distribution.
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Table 6.5.: Comparison of results with previous measurements, reported by the
Belle [91] and BaBar [92, 93] collaborations. Despite using a substan-
tially smaller dataset, we achieve comparable statistical precision in the
branching ratios measurements.

Parameter Belle II (2023) Belle (2012) BaBar (2007, 2013)

B(π+π−) [×10−6] (5.83± 0.22± 0.17) (5.04± 0.21± 0.18) (5.5± 0.4± 0.3)

B(K+π−) [×10−6] (20.67± 0.37± 0.62) (20.00± 0.34± 0.60) (19.1± 0.6± 0.6)

ACP (K
+π−) −0.072± 0.019± 0.007 −0.069± 0.014± 0.007 −0.107± 0.016+0.006

−0.004
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Figure 6.8.: Distributions in ∆E for B0 → π+π− (top), B0 → K+π− (center), and
B̄0 → K−π+ (bottom) candidates reconstructed in the partial dataset
of 62.8 fb−1, previously analyzed in [90]. The projections of an extended
unbinned maximum-likelihood fit are overlaid. Normalized residuals are
shown below.
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Figure 6.9.: Distributions in C ′ for B0 → π+π− (top), B0 → K+π− (center), and
B̄0 → K−π+ (bottom) candidates reconstructed in the partial dataset
of 62.8 fb−1, previously analyzed in [90]. The projections of an extended
unbinned maximum-likelihood fit are overlaid. Normalized residuals are
shown below.
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6.4. Determination of IKπ

In the context of probing the Standard Model, charmless hadronic B-meson decays
are particularly intriguing due to their substantial contributions from loop ampli-
tudes. Consequently, the measurements of branching fractions and CP asymmetries
in these decays offer valuable insight into potential non-Standard Model physics.
However, interpreting these measurements is not straightforward, primarily due to
considerable uncertainties inherent in the theoretical predictions. These uncertain-
ties stem from non-factorizable hadronic amplitudes, which impede the application
of perturbation theory.

The impact of these uncertainties can be mitigated by applying appropriate
combinations of measurements from decays that are related by flavor symmetries.
By exploiting isospin symmetry, sum rules can be constructed. These sum rules are
linear combinations of branching fractions and CP asymmetries that help to reduce
the influence of theoretical and experimental uncertainties.

In particular, for the set of B → Kπ decays, the following sum rule can be
constructed1:

IKπ = AK+π−

CP +AK0π+

CP

BK0π+

BK+π−

τ0
τ+

− 2AK+π0

CP

BK+π0

BK+π−

τ0
τ+

− 2AK0π0

CP

BK0π0

BK+π−
. (6.3)

Here, AKπ
CP and BKπ are the direct CP asymmetry and the CP -averaged branching

fraction of the respective B → Kπ decay, and τ0 and τ+ are the lifetimes of the
neutral and charged B mesons. The sum rule offers a robust test of the SM, which
predicts IKπ ≈ 0 with a precision of a few percent in the SU(3) and heavy quark
limits [47, 94, 95, 96].

To compute the value of the isospin sum rule we combine our measurements with
those of the other decay modes determined in the LS1 data [97]. In order to allow
for a consistent combination, the analyses were partly developed in collaboration,
with similar selection requirements, fit strategies, and treatments of systematic
errors. Due to this consistency, common systematic uncertainties cancel out in the
ratios of branching fractions, increasing the precision of the evaluation. Specifically,
these uncertainties relate to tracking efficiencies, the number of produced B mesons,
and the production ratio for neutral and charged B mesons in Υ (4S) decays, f+−/00.
We also considered the anti-correlation of f 00 and f+− uncertainties for the ratio
between B+ and B0 decays.

The resulting ratios of branching fractions and CP -violation parameters are listed
in Table 6.6. We use the current averages reported by the PDG for the ratio

1For the derivation, see Section 2.3.3.
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6. Results

τB0/τB+ = 0.9273± 0.0033 [20]. We obtain a value of

IKπ = −0.03± 0.13± 0.05 ,

in agreement with the SM expectation of zero. This result provides a useful constraint
to new physics models with uncertainties comparable with those of the corresponding
theoretical calculations. The precision is limited by sample size and is competitive
with the determination using averages of measurements by the Belle, BaBar, and
LHCb collaborations [20].

Table 6.6.: Ratios of branching fractions and CP -violation parameters, used as input
for the determination of IKπ at Belle II in the LS1 dataset [97].

Parameter Value

BK0π+/BK+π− 1.180± 0.040± 0.027

BK+π0/BK+π− 0.687± 0.022± 0.040

BK0π0/BK+π− 0.508± 0.031± 0.030

AK+π−
CP −0.072± 0.019± 0.007

AK+π0

CP 0.013± 0.027± 0.005

AK0π+

CP 0.046± 0.029± 0.007

AK0π0

CP −0.01± 0.12± 0.05
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7. Conclusion

The need for additional sources of CP violation, beyond the amount introduced by
the CKM mixing matrix, is only one of many indications that call for physics beyond
the Standard Model. The Belle II experiment is one of the leading experiments
at the intensity frontier and searches for new physics contributions with precise
measurements of quark-flavor dynamics in B-meson decays.

This thesis presents the measurements of branching ratios in B0 → π+π− and
B0 → K+π− decays and the direct CP -violation parameter in B0 → K+π− decays.
In both decay modes, the tree diagram contribution to the transition amplitude
is strongly CKM-suppressed, rendering the QCD penguin loop diagram to be of
leading order. As a consequence, these rare decays are particularly sensitive to
non-SM physics.

The analyzed data contains (387± 6)× 106 BB̄-meson pairs, corresponding to an
integrated luminosity of (362± 2) fb−1 collected with the Belle II detector, using
electron-positron collisions at the Υ (4S) resonance provided by the SuperKEKB
collider. We obtain the following branching ratios and CP -violation parameter:

B(B → π+π−) = (5.83± 0.22± 0.17)× 10−6 ,

B(B → K+π−) = (20.67± 0.37± 0.62)× 10−6 ,

ACP (B → K+π−) = −0.072± 0.019± 0.007 .

The results agree with current world averages at a level of precision comparable
to the current best results, despite using a substantially smaller dataset. The
measurement of B(B → π+π−) presents the most precise determination by a single
experiment to date.

The measurements of B(B → K+π−) and ACP (B → K+π−) are combined
with those of related B → Kπ transitions, obtained on the same dataset, in an
isospin-based sum rule that serves as a stringent test of the SM. We obtain a value
of

IKπ = −0.03± 0.13± 0.05 ,

in agreement with the Standard Model expectation of zero. The precision is
competitive with that resulting from the average of measurements by the Belle,
BaBar, and LHCb collaborations [20].
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7. Conclusion

The small branching ratios pose major challenges in these measurements. We
use a multivariate maximum-likelihood fit to extract signal yields from background-
dominated samples. In this study, for the first time at Belle II, we simultaneously
fit the B0 → π+π− sample and both charge-separated B → K±π∓ samples. This
enables the consideration of misidentified events, in which one of the final-state
hadrons was reconstructed with an incorrect mass-hypothesis, in the computation
of the branching ratios. In this manner, we attain a significant enhancement of the
effective reconstruction efficiency compared to previous measurements.

A rather inclusive choice of selection requirements is chosen to retain a high
efficiency for signal events, at the cost of large background yields. After the
baseline selection, the majority of candidates are misreconstructed continuum
events consisting of lighter quark pairs, e+e− → qq̄ (q = u, d, s, c). To suppress
this background, we develop a multivariate machine-learning algorithm which
exploits the differences in event topologies between B-meson decays and continuum
events. We train a stochastic gradient-boosted decision tree on the distributions
of 35 discriminating variables in large samples of simulated signal and continuum
events. The resulting classifier variable exhibits excellent distinguishing power and
allows to remove 90% of background events at signal efficiencies of more than 95%.
This improvement is augmented by including the continuum suppression classifier
as additional fit dimension, which enables us to significantly relax the selection
requirements, further enhancing the signal efficiency.

This study surpasses all prior ones in terms of selection efficiencies, with an
increase of 46% and 133% for B0 → K+π− and B0 → π+π− events, respectively,
compared to the preceding Belle II study. We attribute much of the improvement
to the efficient continuum background suppression. As machine learning techniques
continue to evolve, we anticipate further enhancements in the near future. First
studies exploring the potential of employing deep learning methods with low-level
track variables for discriminating between signal and background events show
promising results [98].

Even with the comparatively small data sample used in this study, the systematic
uncertainty already limits the precision in the measurement of B(B0 → K+π−). As
data collection is set to resume by the end of 2023, the other measurements will
soon follow suit. We undertake an array of validation and alignment procedures to
minimize analysis-specific systematic uncertainties.

Monte Carlo simulation samples are used in many steps of the analysis, such as
continuum background suppression, model building or determination of selection
efficiencies. Before unblinding data in the targeted signal mode analysis, large efforts
are spent to mitigate the effects of potential data-MC discrepancies using abundant
control mode decays. We reconstruct B+ → D̄0[→ K+π−]π+ decays to validate our
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reconstruction procedures and extract correction parameters to accurately align the
MC simulation with recorded data. We further validate the parametric modeling of
signal and background components on a number of MC ensemble tests and estimate
the impact of potential imperfections on the physics observables.

The leading systematic uncertainty in the branching ratio measurements is esti-
mated to be the uncertainty on the number of neutral B mesons in the sample. The
latter is determined in external measurements of NBB̄ and f 00 in dedicated control
sample studies. With more data and refined analyses tools, we anticipate crucial
improvements of these measurements in the future.

The accumulation of more data will also play a decisive role in further constraining
the angle α/ϕ2 of the CKM triangle using time-dependant measurements of mixing-
induced CP violation in B → ππ decays. With the excellent particle identification
capabilities of Belle II, showcased in this study, and the state-of-the-art pixel vertex
detector, enabling extraordinary vertexing resolution, Belle II will be able to measure
all three B → ππ transitions within a consistent framework at unprecedented
precision. Though LHCb is expected to soon provide the leading measurements
of CP asymmetries in fully-charged final-state transitions, due to the unmatched
B-meson production yields offered by the LHC, the complex event topologies created
in proton-proton collisions render the reconstruction of neutral pions challenging.
Likewise, Belle II’s measurements of the full set of B → Kπ transitions will be
vital to achieve the precision needed for any conclusive statements about potential
deviations from the SM expectation in the determination of IKπ. Currently, the
uncertainties are strongly dominated by the measurement of B0 → K0π0 decays, to
which Belle II has unique access.

With less than 1% of the projected integrated luminosity recorded so far, the search
for new physics beyond the Standard Model at Belle II has only just begun. So far,
the SM consistently holds up to all experimental tests, including the one presented
in this study. It is left for future measurements to show whether new phenomena will
finally emerge and lead the way to an improved understanding of particle physics.
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A. Appendix

A.1. Feynman Diagrams

Figure A.1 shows the dominant Feynman diagrams relevant for hadronic decays of
B mesons to pairs of light pseudoscalar mesons, M1 and M2.

A.2. Shape Parameters

Table A.1 lists all shape parameters of the parametric models used to describe the
different components in B → hh′ samples. The definitions of the parameters can
be found in Section 4.3.1. The values are obtained in fits to abundant simulation
samples. For signal and cross-feed components, signal-only MC samples are used.
The shape parameters for background components are determined in fits to generic
MC samples, but left floating in the fit to data.

A.3. Correlations of Fit Parameters

Table A.2 displays the correlation matrix for all floating parameters in the extended
unbinned maximum-likelihood fit to B → hh′ candidates, reconstructed in the LS1
dataset.

139



A. Appendix

(a) Color-allowed tree diagram
(b) Color-suppressed tree dia-

gram

(c) QCD penguin diagram (d) Annihilation diagram

(e) Color-allowed electroweak
penguin diagram

(f) Color-suppressed elec-
troweak penguin diagram

Figure A.1.: Feynman diagrams describing decays of B mesons to pairs of light
pseudoscalar mesons.
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A.3. Correlations of Fit Parameters

Table A.1.: Shape parameters of parametric models obtained by fits to abundant
simulated samples. The definitions of the parameters can be found in
Section 4.3.1.

Component Parameter Value Uncertainty

pipi_dE_alpha 1.7463 0.0109
pipi_dE_frac 0.0435 0.0018

B0 → π+π− pipi_dE_mean1 0.0159 0.0012
signal pipi_dE_mean2 0.0003435 0.000016

pipi_dE_n 1.4419 0.0238
pipi_dE_sigma1 0.0322 0.0004
pipi_dE_sigma2 0.01293 0.00002

pipi_TCS_pb_a -0.25595 0.0277
pipi_TCS_pb_b 0.1184 0.0274

B0 → π+π− pipi_dE_pb_frac 0.2492 0.0090
cross-feed pipi_dE_pb_mean1 -0.0530 0.0005

pipi_dE_pb_mean2 -0.0416 0.0001
pipi_dE_pb_sigma1 0.0282 0.0005
pipi_dE_pb_sigma2 0.01326 0.00008

pipi_TCS_qq_a -8.2048 0.1064
B0 → π+π− pipi_TCS_qq_b -30.7866 0.9442
background pipi_TCS_qq_frac 0.6218 0.0132

pipi_dE_qq_a -1.0991 0.0583

kpi_dE_alpha 1.8306 0.0118
kpi_dE_frac 0.0455 0.0017

B0 → K±π∓ kpi_dE_mean1 0.0159 0.0011
signal kpi_dE_mean2 0.000091 0.000016

kpi_dE_n 1.4555 0.0259
kpi_dE_sigma1 0.0320 0.0004
kpi_dE_sigma2 0.0127 0.00002

kpi_TCS_pb_a -0.3040 0.0210
kpi_TCS_pb_b 0.1376 0.0208

B0 → K±π∓ kpi_dE_pb_frac 0.2328 0.0042
cross-feed kpi_dE_pb_mean1 0.0386 0.0002

kpi_dE_pb_mean2 0.0420 0.00004
kpi_dE_pb_sigma1 0.0369 0.0005
kpi_dE_pb_sigma2 0.01375 0.00006

kpi_TCS_qq_a_plus -7.4649 0.1654
B0 → K+π− kpi_TCS_qq_b_plus -24.8956 1.3867
background kpi_TCS_qq_frac_p 0.6426 0.0254

kpi_dE_qq_a_plus -1.1940 0.0905

kpi_TCS_qq_a_minus -7.5630 0.1636
B̄0 → K−π+ kpi_TCS_qq_b_minus -26.4193 1.4656
background kpi_TCS_qq_frac_m 0.6410 0.0241

kpi_dE_qq_a_minus -1.1734 0.0902
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A. Appendix

Table A.2.: Correlations between fit parameters obtained in a fit to B0 → h+h−

candidates reconstructed in an MC sample corresponding to an inte-
grated luminosity of 1 ab−1.

AKπ BKπ C ′ bkg−Kπ a C ′ bkg+Kπ a C ′ bkg−Kπ b C ′ bkg+Kπ b C ′ bkg−Kπw C ′ bkg+Kπw ∆E bkg−Kπ c

AKπ 1.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.14
BKπ -0.02 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14
C ′ bkg−Kπ a 0.00 0.00 1.00 0.00 -0.10 0.00 0.33 0.00 0.00
C ′ bkg+Kπ a 0.00 0.00 0.00 1.00 0.00 -0.11 0.00 0.31 0.00
C ′ bkg−Kπ b 0.00 0.00 -0.10 0.00 1.00 0.00 -0.30 0.00 0.00
C ′ bkg+Kπ b 0.00 0.00 0.00 -0.11 0.00 1.00 0.00 -0.34 0.00
C ′ bkg−Kπw 0.00 0.00 0.33 0.00 -0.30 0.00 1.00 0.00 0.00
C ′ bkg+Kπw 0.00 0.00 0.00 0.31 0.00 -0.34 0.00 1.00 0.00
∆E bkg−Kπ c 0.14 0.14 0.00 0.00 0.00 0.00 0.00 0.00 1.00
∆E bkg+Kπ c -0.14 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
yield bkg−Kπ -0.23 -0.24 0.00 0.00 0.00 0.00 0.00 0.00 -0.14
yield bkg−Kπ 0.25 -0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bππ 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01
C ′ bkgππa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C ′ bkgππb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C ′ bkgππ w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
∆E bkgππ c 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.02
yield bkgππ 0.00 -0.12 0.00 0.00 0.00 0.00 0.00 0.00 -0.02

∆E bkg+Kπ c yield bkg−Kπ yield bkg−Kπ Bππ C ′ bkgππ a C ′ bkgππ b C ′ bkgππw ∆E bkgππ c yield bkgππ
AKπ -0.14 -0.23 0.25 0.00 0.00 0.00 0.00 0.00 0.00
BKπ 0.14 -0.24 -0.24 0.03 0.00 0.00 0.00 0.12 -0.12
C ′ bkg−Kπ a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C ′ bkg+Kπ a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C ′ bkg−Kπ b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C ′ bkg+Kπ b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C ′ bkg−Kπw 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C ′ bkg+Kπw 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
∆E bkg−Kπ c 0.00 -0.14 0.00 0.01 0.00 0.00 0.00 0.02 -0.02
∆E bkg+Kπ c 1.00 0.00 -0.13 0.01 0.00 0.00 0.00 0.02 -0.02
yield bkg−Kπ 0.00 1.00 0.01 -0.09 0.00 0.00 0.00 -0.05 0.06
yield bkg−Kπ -0.13 0.01 1.00 -0.09 0.00 0.00 0.00 -0.05 0.06
Bππ 0.01 -0.09 -0.09 1.00 0.00 0.00 0.00 0.24 -0.39
C ′ bkgππ a 0.00 0.00 0.00 0.00 1.00 -0.08 0.45 0.00 0.00
C ′ bkgππ b 0.00 0.00 0.00 0.00 -0.08 1.00 -0.17 0.00 0.00
C ′ bkgππ w 0.00 0.00 0.00 0.00 0.45 -0.17 1.00 0.00 0.00
∆E bkgππ c 0.02 -0.05 -0.05 0.24 0.00 0.00 0.00 1.00 -0.17
yield bkgππ 0.02 0.06 0.06 -0.39 0.00 0.00 0.00 -0.17 1.00
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