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Abstract: The analysis of chromosome karyotypes is crucial for diagnosing genetic disorders such as
Patau syndrome, Edward syndrome, and Down syndrome. Chromosome cluster type identification
is a key step in the automated analysis of chromosome karyotypes. State-of-the-art chromosome
cluster-type identification techniques are based on convolutional neural networks (CNNs) and fail
to exploit the global context. To address this limitation of the state of the art, this paper proposes
a transformer network, chromosome cluster transformer (CCT), that exploits a swin transformer
backbone and successfully captures long-range dependencies in a chromosome image. Additionally,
we find that the proposed CCT has a large number of model parameters, which makes it prone to
overfitting on a (small) dataset of chromosome images. To alleviate the limited availability of training
data, the proposed CCT also utilizes a transfer learning approach. Experiments demonstrate that
the proposed CCT outperforms the state-of-the-art chromosome cluster type identification methods
as well as the traditional vision transformer. Furthermore, to provide insights on the improved
performance, we demonstrate the activation maps obtained using Gradient Attention Rollout.

Keywords: chromosome cluster identification; chromosome karyotype analysis; deep learning;
transformer; transfer learning

1. Introduction

Chromosomes contain the genetic information in a human cell [1]. Chromosome
karyotype analysis facilitates the prenatal diagnosis of severe abnormalities or genetic
disorders such as Patau syndrome, Edward syndrome, and Down syndrome [2,3]. Given
a grayscale image of a stained cell, the process of karyotype analysis is characterized
by the segmentation of chromosome instances and the subsequent arrangement of the
karyotypes according to their respective categories. Karyotype analysis is generally carried
out by experienced medical practitioners. However, the manual analysis of karyotypes is
tedious and highly time-consuming [4–6]. Furthermore, there can be inconsistencies in the
process due to the required domain expertise or even due to the fatigue and over-burden
of the medical practitioners. The above-mentioned limitations of the manual analysis of
chromosome karyotype analysis motivate the need to design an automated decision support
system for chromosome karyotype analysis [7–9]. An automated karyotype analysis model
has two stages: chromosome segmentation and chromosome classification. As shown in Figure 1,
chromosome cluster type identification is a key step towards chromosome segmentation
and classification [10,11].
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Figure 1. Flowchart depicting the pipeline of an automated karyotype analysis model. The model
consists of chromosome segmentation and chromosome classification stage. The contribution of this paper
lies in proposing a cluster type identification module (marked in red) that helps to perform the required
chromosome segmentation step.

Recent methods for chromosome cluster type identification [10,11] exploit deep mod-
els based on convolutional neural networks (CNNs). However, CNNs are known to exhibit
inductive bias and fail to capture long-range dependencies [12]. Recently, transformers
have been introduced to circumvent the aforementioned shortcomings of CNNs [12]. Moti-
vated by the success of transformers in image processing applications [13–16], we introduce
chromosome cluster transformer (CCT)—a swin transformer [17]-based hierarchical trans-
former model that leverages self-attention to identify cluster type in chromosome images.
To summarize, this paper makes the following research contributions:

• We address the limitation of state-of-the-art CNN-based chromosome cluster type
identification methods in capturing long-range dependencies. Towards this end, we
propose the chromosome cluster transformer (CCT), which successfully captures the
global context required for the successful identification of chromosome cluster types.

• To the best of our knowledge, this is the first work in the domain of chromosome
cluster type identification that utilizes a transformer model.

• To circumvent the limited availability of training data for cluster type identification,
the proposed CCT exploits a transfer learning approach.

• The proposed CCT outperforms the state-of-the-art traditional vision transformer in
chromosome cluster type identification.

• Furthermore, the proposed CCT outperforms the existing state-of-the-art chromosome
cluster type identification methods.

• Additionally, to provide insights on the improved performance, we visualize the
activation maps obtained using Gradient Attention Rollout [18].

2. Related Work

The automated analysis of chromosome images has intrigued researchers for a long
time [19–24]. The earliest methods for chromosome cluster identification exploited geomet-
ric features [25–27]. Minaee et al. [25] proposed a geometric method that exploits cut-line
to segment touching and partially overlapping chromosomes. Kubola and Wayalun [26]
utilized geometric features such as intersection points, as well as endpoints correspond-
ing to the image skeleton of the given chromosome image obtained after preprocessing.
Arora and Dhir [27] exploited the geometric features of an object, such as its circularity,
area, and length. Recently, learning-based methods have been exploited for the analysis
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of chromosome images [8,10,11,22,28–30]. Lin et al. [11] compared the performance of
classical machine learning and deep learning methods on the chromosome cluster type
identification task. One of the most recent methods proposed for automated cluster type
identification in chromosome images is the ResNeXt-WSL [10] model.

A promising direction for the segmentation of chromosome instances is the use of
co-saliency detection. The process of locating and highlighting similar salient regions in an
image is known as co-saliency detection. It is a useful technique to identify a group of re-
lated image regions [31]. The different research directions explored for co-saliency detection
can be broadly categorized as optimization-based, graph-based, and deep-learning-based
techniques. When posed as an optimization problem, sparse coding [32] and matrix factor-
ization [33] have been used for co-saliency detection. Graph-based co-saliency detection
techniques exploit graphs to represent the relationship between different image regions and
identify the related image regions [34,35]. On the other hand, deep-learning-based tech-
niques learn to predict the co-saliency maps by employing deep neural networks [36,37].
For this research, we keep our focus limited to the classification of chromosome images
and overcome the inability of state-of-the-art [10] approaches to understand long-range de-
pendencies and the global context by introducing a transformer-based classification model.

We hypothesize that due to high inter-class similarity, global context is crucial to
correctly identify cluster types in the chromosome images as some classes, for instance,
touching chromosome cluster and touching–overlapping chromosome cluster images.
However, we observe that all the deep models studied so far for chromosome cluster iden-
tification are CNN-based models, and so suffer from the inductive bias observed in CNNs
and, more importantly, fail to capture long-range dependencies and global context. We
address this limitation of state-of-the-art cluster-type identification methods by proposing
a self-attention-based hierarchical model that captures the global context in a chromosome
image and thereby allows better performance compared to the state of the art.

3. Proposed Method
3.1. Problem Formulation

Depending upon the connectivity of chromosome instances, a given chromosome
image denoted as X is labeled as one of four classes: chromosome instance, overlapping
chromosome cluster, touching chromosome cluster, or touching–overlapping chromosome
cluster. Thus, cluster type identification is formulated as a four-class classification problem.
Samples of all four class types are provided in Figure 2.

(a) (b) (c) (d)

Figure 2. Samples from [10] illustrating all four categories of cluster types: (a) single chromo-
some instance, (b) overlapping chromosome cluster, (c) touching chromosome cluster, (d) touching–
overlapping chromosome cluster.

3.2. Chromosome Cluster Transformer (CCT)

The proposed CCT is a self-attention guided deep model based on a swin trans-
former [17] that captures the global context of a chromosome image by modeling long-range
dependencies. However, different from the traditional vision image transformer [12], the
proposed CCT is a hierarchical model that computes multi-scale representations. At the
first stage of the proposed CCT, from a given chromosome image x ∈ RH×W×C, N patches
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of size 4× 4 are extracted, where N = H×W
4×4 . The extracted patches are projected onto a

linear layer to provide a C-dimensional embedding for each patch. In the second stage,
in order to obtain a hierarchical representation, patches in the 2× 2 neighborhoods are
merged to obtain a 4C dimensional feature representation, which is projected onto the
linear layer to obtain a total of H×W

8×8 patches, each with a feature vector of length 2C. A
similar procedure of patch merging and feature transformation is followed at the third
and the fourth stage to obtain a total of 4C dimensional H×W

16×16 patches and 8C dimensional
H×W
32×32 patches, respectively. All four stages jointly provide a hierarchical representation (see
Figure 3a) that is used to identify cluster types in a given chromosome image.

Multi Layer Perceptron
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Swin Transformer Block

Patch Merging

Swin Transformer Block
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(a) (b)

Figure 3. Flowchart depicting (a) a schematic diagram of the proposed chromosome cluster trans-
former (CCT), and (b) the architecture of a constituting swin transformer block. MLP, multi-layer
perceptron; LN, layernorm layer; RW-MHSA, regular window-based multi-head self-attention; and
SW-MHSA, shifted window-based multi-head self-attention.

The traditional vision transformer exploits a window-based self-attention mechanism
that does not interact among the different non-overlapping windows, leading to a limited
representation ability of the model. To circumvent this limitation, the proposed CCT
exploits two self-attention modules: a traditionally used regular window-based multi-head
self-attention head (RW-MHSA) and a shifted window-based multi-head self-attention
(SW-MHSA) head that effectively introduces cross-window connections (see Figure 3b).

3.3. Partitioning of Shifted Windows

The traditional vision transformer exploits a window-based multi-head self-attention
module (MHSA). However, this standard MHSA module does not have any connections
across the non-overlapping windows. To increase the model capacity, the proposed CCT
exploits cross-window connections through the partitioning of shifted windows. Through
the shifted window partitioning mechanism, two different partitioning configurations are
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maintained between the two adjacent swin transformer blocks [17]. As a result, the first
attention module exploits regular window partitioning such that the image is partitioned
from the pixel at the top left, and the corresponding 8 × 8 feature map is evenly partitioned
into 4 × 4 sized 2 × 2 windows. However, the subsequent attention module exploits
the shifted window partitioning such that the window configuration in this module is
obtained by displacing the windows of the previous layer by (2,2) pixels. A two-layer
multi-layer perceptron (MLP) follows the transformer blocks in the proposed CCT. Every
MHSA module and MLP have a LayerNorm (LN) layer applied prior to them, and every
module also has a residual connection added after it. Computations by the proposed CCT
can be formally defined as

ẑl = RW-MHSA(LN(zl−1)) + zl−1 (1)

zl = MLP(LN(ẑl)) + ẑl (2)

ẑl+1 = SW-MHSA(LN(zl)) + zl (3)

zl+1 = MLP(LN(ẑl+1)) + ẑl+1 (4)

3.4. Transfer Learning for Chromosome Cluster Transformer

Transformers lack inductive bias, such as locality and translation equivariance, due to
which transformers require larger training datasets compared to CNNs. To alleviate the
limited availability of training data for training the proposed CCT, we exploit a transfer
learning approach. We initialize the proposed CCT with the pre-trained weights of the
swin transformer trained on the large-scale ImageNet database [38]. Subsequently, the
proposed CCT is fine-tuned on the chromosome image training dataset.

3.5. Implementation Details

The proposed CCT is implemented on Tensorflow 2.x. The network is trained using
the Adam optimizer over a cross-entropy loss with label smoothing. A batch size of 16, a
patch size of 16, and a learning rate of 0.0001 are used. The model features a GPU node with
one Nvidia V100 card and two Intel Xeon G-6148 CPUs. While preprocessing, the images
are resized to 384 × 384, and the augmentations used include rotation, width shift, height
shift, shear, and zoom. Additional augmentations used include horizontal flip, vertical flip,
and varying the image brightness.

4. Databases and Experimental Protocol
4.1. Database

The proposed CCT is evaluated on a publicly available clinical database [10]. The
database was collected from the Medical Genetic Centre and Maternal and Children
Metabolic–Genetic Key Laboratory of Guangdong Women and Children Hospital [10].
The dataset comprises 500 stained microphotograph cell images that were eventually
segmented into 6592 chromosome images by the authors. The samples were manually
classified by the authors into one of four classes: chromosome instance, overlapping cluster,
touching cluster, and touching–overlapping cluster. The distribution of the class labels
in the database is summarized in Table 1. Furthermore, as the dataset is not explicitly
divided into training and testing sets, similar to the authors of [10], we exploit the hold-out
technique to determine the model performance.
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Table 1. Distribution of class labels in the database [10].

Class Label Image Count

Chromosome Instance 1712
Overlapping Cluster 1038

Touching Cluster 3029
Touching–Overlapping Cluster 813

4.2. Evaluation Metrics

To assess the classification performance obtained by the proposed CCT, the following
evaluation metrics were exploited. Let TN and TP denote the total number of true negative
and true positive samples classified by the proposed CCT. Similarly, FN and FP denote the
total number of false negative and false positive samples classified by the proposed CCT.
N denotes the total number of image samples in the database. The evaluation metrics used
in this paper are formally defined as follows:

1. Accuracy:

Accuracy =
(TP + TN)

N
(5)

2. Precision:

Precision =
TP

(TP + FP)
(6)

3. F1 score:

F1score =
TP

TP + 1
2 (FP + FN)

(7)

4. Sensitivity:

Sensitivity =
TP

(TP + FN)
(8)

5. Specificity:

Speci f icity =
TN

(TN + FP)
(9)

5. Results and Analysis
5.1. Comparison with State of the Art

We begin the analysis of the proposed CCT by comparing its performance with seven
state-of-the-art models for cluster type identification. A 5-fold cross-validation is performed
only for the proposed CCT and the ResNeXt-WSL [10], and the average value of the results
obtained for different folds is taken to represent the results of the corresponding method.
For the rest of the baselines, due to the limited availability of computational resources, the
numbers reported in [10,39] are taken. For all the baselines, pre-trained models trained
on ImageNet dataset are used. The corresponding classification results are reported in
Table 2. The proposed CCT significantly outperforms all seven state-of-the-art cluster-
type identification models on all five evaluation metrics, demonstrating the improved
performance obtained by the proposed CCT.
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Table 2. Comparison of the proposed CCT with the state of the art. Bold values represent the
best results.

Model Precision Accuracy F1 Sensitivity Specificity

MobileNetV2 [40] 81.83 83.41 77.52 76.85 94.47
DenseNet121 [41] 85.59 87.65 82.23 81.68 95.88

ResNet-50 [42] 88.30 90.15 86.08 85.68 96.72
ResNet-101 [42] 90.65 91.89 88.32 87.92 97.30
ResNet-152 [42] 90.71 91.97 89.09 88.79 97.32

ResNeXt-101-32×8d [43] 90.79 92.27 89.36 89.10 97.42
ResNeXt-WSL [10] 93.35 94.13 92.41 92.20 98.04

Dual-ViT [44] 94.07 94.10 94.05 94.10 97.69
SupCAM [39] 93.25 94.99 92.26 92.81 98.12

CCT (Proposed) 95.02 95.30 95.02 95.03 98.26

5.2. Cross-Validation Performance

Next, we assess the stability and robustness of the proposed CCT for different test
samples by performing five-fold cross-validation. To perform five-fold cross-validation, the
dataset is randomly split into five folds. Iteratively, one fold is selected as the validation
set, while the samples corresponding to the rest of the four folds are selected as the training
set. The model’s performance is evaluated for each of the five validation sets and reported
in Table 3. We observe that the proposed CCT performs well for the different choices of
training and validation sets, demonstrating the robustness and reliability of the proposed
CCT on different choices of training and validation data.

Table 3. Cross-validation performance of the proposed CCT compared to ResNeXt-WSL [10].

Method Fold Precision Accuracy F1 Sensitivity Specificity

1 94.28 94.77 93.58 93.43 98.26
2 91.52 92.73 90.54 90.33 97.58

ResNeXt- 3 92.70 93.63 91.21 90.82 97.88
WSL [10] 4 94.42 94.99 93.42 93.23 98.33

5 93.82 94.53 93.31 93.20 98.18

Mean (±std) 93.35 ± 2.19 94.13 ± 1.68 92.41 ± 2.55 92.20 ± 2.68 98.04 ± 0.56

1 95.37 95.75 95.36 95.36 98.44
2 94.52 94.84 94.55 94.59 98.09

CCT 3 95.00 95.07 95.02 95.01 98.15
(Proposed) 4 94.84 95.29 94.83 94.81 98.29

5 95.37 95.53 95.36 95.36 98.32

Mean (±std) 95.02 ± 0.32 95.30 ± 0.31 95.02 ± 0.31 95.03 ± 0.30 98.26 ± 0.12

5.3. Confusion Matrix

The results reported so far indicate the overall classification performance for all the
classes. Next, we assess the per-class classification performance. To achieve this, we plot
the confusion matrices obtained for all five folds (see Figure 4). We observe that across all
folds, on average, the touching class appears to be the most challenging for classification
and is often misclassified as the overlapping or instance class. Similarly, we find that the
overlapping class, when misclassified, is most likely to be classified as the instance class.
These results are intuitive as such confusions across classes are likely to be made by a
human expert as well.
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(a) (b)

(c) (d)

(e)

Figure 4. Confusion matrices quantifying the per class classification performance of the proposed
CCT for each of the five folds curated during the cross-validation of the proposed CCT. Subfigures
(a–e) represent the confusion matrices obtained respectively for the first to the fifth fold.

5.4. Effect of Model Architecture

Next, we study the impact of the model architecture and the number of parameters on
the performance of the proposed CCT. The default architecture is denoted as CCT-Large.
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Different variants of the proposed CCT include CCT-Tiny, CCT-Small, and CCT-Base, which
constitute approximately 0.125×, 0.250×, and 0.500× the model parameters compared
to the default architecture (CCT-Large). The difference in CCT-Tiny, CCT-Small, CCT-
Base, and CCT-Large exists in the number of stages and the number of transformer blocks
in each stage. CCT-Tiny consists of 2 stages, each with four transformer blocks and a
latent representation of dimension 96. CCT-Small constitutes two stages, each with four
transformer blocks and a latent representation of dimension 96. CCT-Base comprises four
stages, each with four transformer blocks and a latent representation of dimension 128. CCT-
Large comprises four stages, each with four transformer blocks and a latent representation
of dimension 192. Subsequently, the model with a greater number of stages and transformer
encoder layers, and a higher dimensionality of latent representation of the transformer
encoder has more parameters. While CCT-Base contains 88 M trainable parameters, CCT-
Tiny, CCT-Small, and CCT-Large contain 29 M, 50 M, and 197 M parameters, respectively.
As expected, the classification improves as the model capacity increases (see Table 4). We
observe that CCT-Large achieves the best classification performance. Therefore, we adopt
CCT-Large as the default architecture for all the experiments reported in this paper.

Table 4. Effect of choice of model architecture on the performance of the proposed CCT. Bold values
represent the best results.

Model Precision Accuracy F1 Sensitivity Specificity

CCT-Tiny 94.11 ± 0.31 94.72 ± 0.33 94.00 ± 0.29 94.05 ± 0.27 97.99 ± 0.34
CCT-Small 94.61 ± 0.20 95.16 ± 0.21 94.51 ± 0.25 94.55 ± 0.19 98.29 ± 0.23
CCT-Base 94.99 ± 0.15 95.13 ± 0.81 94.89 ± 0.11 95.01 ± 0.36 98.12 ± 0.12

CCT-Large 95.02 ± 0.32 95.30 ± 0.31 95.02 ± 0.31 95.03 ± 0.30 98.26 ± 0.12

5.5. Comparison with Traditional Vision Transformer

Next, we compare the classification performance of the proposed CCT with a tradi-
tional vision transformer [12]. Contrary to ViT, the proposed CCT employs a hierarchical
architecture to accommodate multi-scale information and capture long-range dependen-
cies. As a result, as reported in Table 5, the proposed CCT significantly outperforms the
ViT model.

Table 5. Comparison of the proposed CCT with the traditional vision transformer model. Bold values
represent the best results.

Model Precision Accuracy F1 Sensitivity Specificity

ViT [12] 90.17 92.75 91.06 91.97 97.34
CCT (Proposed) 95.02 95.30 95.02 95.03 98.26

5.6. Visualization of Model Activation

Lastly, to qualitatively analyze the improved performance obtained by the proposed
CCT and obtain insights into the salient regions that help CCT to predict a class, we
visualize its activation maps. The activation maps are computed using Gradient Attention
Rollout [18], a state-of-the-art method to visualize the activation maps of a transformer
model. Figure 5 demonstrates that higher activation is obtained for salient and decisive
image regions, such as the touching region for the touching and touching–overlapping
classes. The higher activation around informative and decisive image regions explains the
superior classification performance obtained by the proposed CCT.
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(a) (b)

(c) (d)

Figure 5. Visualization of activation maps of the proposed CCT. As expected, CCT obtains higher
activation around salient and decisive image regions for all four classes. The higher activation around
decisive image regions helps to qualitatively analyze the superior classification performance of the
proposed CCT. Subfigures (a–d) demonstrate the respective activation maps obtained for the samples
of the four classes.

6. Conclusions

This research introduces the chromosome cluster transformer (CCT) to classify a
given chromosome into one of four classes: instance, touching, overlapping, or touching–
overlapping. The results demonstrate the superior classification performance of the pro-
posed CCT compared to the state of the art. Furthermore, the visualization of model
activation maps provides the finding that higher activation is obtained around decisive and
more informative image regions, which subsequently helps the proposed CCT to obtain
superior classification performance. Chromosome cluster type identification is the first step
toward chromosome segmentation. Therefore, the proposed method can be viewed as the
first step in the direction of achieving this goal. In the future, we intend to extend this idea
and develop an end-to-end model that, given an input image, will simultaneously perform
both cluster type identification and segmentation.
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