
Citation: Sarukhanian, S.;

Maslovskaya, A.; Kuttler, C.

Three-Dimensional Cellular

Automaton for Modeling of

Self-Similar Evolution in

Biofilm-Forming Bacterial

Populations. Mathematics 2023, 11,

3346. https://doi.org/10.3390/

math11153346

Academic Editor: Galina P. Neverova

Received: 21 June 2023

Revised: 26 July 2023

Accepted: 28 July 2023

Published: 31 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Three-Dimensional Cellular Automaton for Modeling of
Self-Similar Evolution in Biofilm-Forming
Bacterial Populations
Samvel Sarukhanian 1 , Anna Maslovskaya 1,* and Christina Kuttler 2

1 Laboratory of Mathematical Modeling of Complex Physical and Biological Systems, Amur State University,
Ignatyevskoye Shosse, 21, 675027 Blagoveshchensk, Russia; saruhanyan.sc@amursu.ru

2 Department of Mathematics, School of Computation, Information and Technology, Technical University of
Munich, Boltzmannstraße 3, 85747 Garching, Germany; kuttler@ma.tum.de

* Correspondence: maslovskaya.ag@amursu.ru or maslovskayaag@mail.ru

Abstract: Bacterial populations often form colonies and structures in biofilm. The paper aims to
design suitable algorithms to simulate self-similar evolution in this context, specifically by employing
a hybrid model that includes a cellular automaton for the bacterial cells and their dynamics. This is
combined with the diffusion of the nutrient (as a random walk), and the consumption of nutrients
by biomass. Lastly, bacterial cells divide when reaching high levels. The algorithm computes
the space-time distribution of biomass under limited nutrient conditions, taking into account the
collective redistribution of nutrients. To achieve better geometry in this modified model approach,
truncated octahedron cells are applied to design the lattice of the cellular automaton. This allows
us to implement self-similar realistic bacterial biofilm growth due to an increased number of inner
relations for each cell. The simulation system was developed using C# on the Unity platform for
fast calculation. The software implementation was executed in combination with the procedure of
surface roughness measurements based on computations of fractional dimensions. The results of the
simulations qualitatively correspond to experimental observations of the population dynamics of
biofilm-forming bacteria. Based on in silico experiments, quantitative dependencies of the geometrical
complexity of the biofilm structure on the level of consumed nutrients and oxygen were revealed. Our
findings suggest that the more complex structure with a fractal dimension of the biofilm boundaries
(around 2.6) corresponds to a certain range of nutrient levels, after which the structure degenerates
and the biofilm homogenizes, filling the available space provided and tending towards a strictly 3D
structure. The developed hybrid approach allows realistic scenario modeling of the spatial evolution
of biofilm-forming bacterial populations and specifies geometric characteristics of visualized self-
similar biofilm bacterial structures.

Keywords: bacterial biofilm; cellular automaton; discrete dynamic model; limited nutrient consumption;
nutrient diffusion; population dynamics; simulation of bacterial growth

MSC: 37M05

1. Introduction

Mathematical modeling and computer simulation have become indispensable compo-
nents of research in microbial evolutionary dynamics and in silico studies. The progress in
mathematical techniques and the introduction of personal computers with increased pro-
cessing power and increasing availability of software have resulted in the development of
mathematical models in a wide spectrum of applied problems. Mathematical modeling and
computer simulation are natural languages to examine biological systems that demonstrate
complex nonlinear space-time behavior. Most in silico models focus on complementing
(and not replacing) conventional experimental studies as well as research with in vitro
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models. Experimental data are needed for parameterization, calibration, and validation of
in silico models. The development of in silico models is facilitated by rapidly advancing
experimental and analytical tools that generate high-throughput biological and medicine
data [1–3].

Bacteria are some of the most crucial objects of mathematical biology and in silico
studies. In nature, most bacteria live within biofilms, because they provide a structured and
protective environment for microbial growth, survival, and adaptation. Bacterial biofilms
can be found in diverse environments, including water, soil, industrial piping, medical
implants, and dental plaque [4], especially on surfaces. Control and utilization of these tiny,
ubiquitous organisms can generate huge leaps to advance human society. Bacteria play
a crucial role in human microbiota and they are responsible for many infectious diseases;
bacteria are an imperative part of fertile soil, and even tools in biological warfare and
bioterrorism [5].

It should be pointed out why biofilms are so vital for bacteria: protection from envi-
ronmental stress such as temperature fluctuations, pH changes, and UV radiation; nutrient
availability by means of the extracellular polymeric matrix; antibiotic resistance due to
such factors as decreased antibiotic penetration and increased genetic exchange; adaptation
to changing conditions due to the close proximity and exchange of genetic material, and
persistence in devices or in the human body causing hospital infections [6–8].

Bacteria in biofilms adhere to surfaces and are embedded in an extracellular polymeric
matrix. Biofilms can either have positive or negative effects on their environment. The
undesirable effects of biofilm activity lead to biofouling of industrial systems, promoting
the growth of harmful bacteria, and contributing to the formation of dental plaque. For
many bacterial species, the formation of biofilms is caused by the activation of bacterial
communication mechanisms, in particular, quorum sensing. Quorum sensing is realized
via special chemical signals called autoinducers. These signaling molecules are produced
by bacterial cells and diffuse through the surrounding environment. As the bacterial
population grows and the concentration of autoinducers increases, the cells are able to
sense the presence of other cells and coordinate their behavior accordingly. In other words,
quorum sensing allows bacteria to “count” the number of cells in their immediate vicinity
and respond in a collective manner to changes in population density. This coordinated
behavior is often critical for the survival and success of bacterial communities, such as
biofilms, which rely on the collective actions of individual cells for their growth and
maintenance [9,10].

Controlling the evolution of bacterial biofilms is one of the most important problems
in the biotech industry and medicine. In biological experiments, an environment for biofilm
formation is created to control and monitor its growth and architecture [11]. As noted by
many studies, most bacterial biofilms are formed as complex self-similar structures. The
geometric configurations of specific bacterial species are characterized by a certain set of
patterns, the density of which is largely determined by the conditions for maintaining vital
activity: the level of nutrition, oxygen, the removal of metabolic products, etc. [12,13].

Taking into consideration the importance of controlling bacterial biofilms, they have
become the objects of interdisciplinary research. The most important areas are presented
by the modeling of biomass growth (density and rate of progress) [14–20], the mechanisms
of regulation of key chemical compounds related to the quorum sensing [21–28], and
the study of the geometric characteristics of the complex morphology of the observed
structures [29–31].

Modeling of bacterial biomass evolution refers to the process of developing mathemat-
ical models to describe the behavior of microorganisms, including growth, metabolism, and
interactions with the environment. There are various methods used for microbial modeling
including deterministic, stochastic, and agent-based approaches [32].

Mostly, deterministic models describe the behavior of microorganisms with the use
of differential and integral calculus. Differential models are often applied to simulate
the growth of microorganisms under different conditions, such as temperature, pH, and
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nutrient availability. For example, the fundamental Monod approach describes the growth
of microorganisms based on their nutrient uptake rates [33]. The model of biofilm growth
supplemented by the Navier–Stokes equations describing the motion of fluids has been
reported in [34] to account for the growth and decay of microbial populations in response to
nutrient availability and other environmental factors. Mathematical models formalized by
partial differential equations have been used to simulate the surface growth of biofilms [35]
and the influence of antimicrobial agents [36].

Stochastic models describe the behavior of microorganisms using probabilistic meth-
ods. These models are useful for studying the variability and randomness in microbial
behavior, such as the probability of mutations or the distribution of metabolic pathways
in a population. Examples of stochastic models include the Gillespie algorithm and the
Markov chain Monte-Carlo method [37].

Individual-based models allow us to simulate the behavior of individual microorgan-
isms and their interactions with each other and their environment. These models can be
applied to explore the emergent behavior of microbial populations, such as the formation
of biofilms or the spread of infectious diseases. Individual-based and cellular automaton
models are typical representatives of this research direction [38]. In particular, cellular
automata have been proposed to simulate the growth of biofilms on a surface [39], evolu-
tion, and antibiotic resistance of bacterial populations in heterogeneous environments [40].
In such a class of models, interactions between agents and the environment are defined
by a set of rules and parameters. Hybrid models are based on a combination of various
approaches [41]. The stochastic particle-based model has been formalized in combination
with the partial differential equations to describe the distribution of cell density and activity
within the biofilm [42].

Nevertheless, developing a general framework for modeling the evolution of biological
films has not been completed yet. This is explained by the fact that the simulated systems
are difficult to formalize and differ in the heterogeneity of the biochemical composition, the
diversity of the genetic material, and the impact of self-organization, which is promoted
due to the packed and dense structure. For this reason, modifications to current approaches
continue to be developed to create the most appropriate models describing the dynamics
of biofilm formation, with self-similar complex geometries and growth characteristics
observed in biological experiments.

The classical cellular automaton was proposed in [39] for modeling the formation of a
bacterial film from the point of view of formalizing the rules of “life” of a discrete structure.
The authors formalized numerous processes that accompany the formation of bacterial
structures (birth, division, erosion, death) to give realistic scenarios for the evolution of the
biosystem. In this case, the effect of nutrients is taken into account solely depending on the
distance to the surface of the biofilm (biofilm front) and the complex formalization of the
algorithm involves the consideration of rather small lattices.

Computational fluid dynamics has been considered to describe the flow and transport
of substances in the liquid phase [43,44]. Furthermore, a particle-based method has been ap-
plied to model biofilm structuring and evolution. The original algorithm can be interpreted
as a numerical solution of a differential problem for a discrete region, each element of which
represents a fragment of the biofilm structure. Using the introduced discrete-dynamic struc-
ture (classified as a cellular automaton), both the behavior of biomass and the evolution of
nutrients have been investigated. The control parameters of the biosystem are introduced,
which determine the adequacy of the model to actually observed processes. In this model,
only one component of the nutrient has been considered and a mechanism for calculating
the diffusing substance has been based on a numerical approach, which significantly com-
plicates the calculations and deprives the model of the advantages of parallelizing cellular
automata. In addition, the porosity of the structure has not been examined.

Hence, there is previous evidence for mechanisms underlying mathematical models
in the aspect of specification of nutrient and biomass concentrations. However, no studies
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intended for this field of study have yielded rather simple rules for cellular automation for
elementary cells with complex geometry that can provide realistically visualized structures.

The present study is dedicated to creating the research framework of mathematical
modeling of the bacterial communication process, which, in turn, results in the formation
of dense self-similar biofilm structures. In our previous works [24–28] various modifica-
tions of the bacterial communication model were proposed with the use of a simplified
formalization of the spatio-temporal dynamics of bacterial populations based on approx-
imating dependencies. In this field of study, the formalization of the spatial evolution
of bacterial populations is an important subproblem. One of the promising directions
in this area is to use a cellular automaton with an optimal set of control parameters that
provides realistic simulations but stays focused on the the main phases of bacterial growth
to be controlled. Moreover, a challenging problem that arises in this domain is to exploit
biofilms with desired porosity. The latter requires finding out the crossover from fractal
aggregates at low density to homogeneous ones at high density. Hence, the aim of the
current study was to develop an effective cellular automaton algorithm based on simple
rules for realistic scenario modeling of the spatial evolution of biofilm-forming bacterial
populations and specifying geometric characteristics of visualized self-similar biofilm bac-
terial structures. The contributions of this work are the following: the algorithm design
and software development for the operation of a cellular automaton were proposed to
simulate the spatial self-similar evolution in bacterial biofilm populations with numerical
assessments of porosity for visualized fractal aggregates. The main improvement of the
novel approach concerns the hybrid modeling of self-similar evolution in bacterial biofilms
based on the combination of rather simple rules for the cellular automaton, the computation
of the diffusion characteristics of biomass and nutrients. The truncated octahedron cells
used here allow one to simulate the growth reflecting more realistically the fractal geometry
of the boundaries.

The main part of the paper is organized as follows. The concise conceptualization
of the problem, the geometry of the grid, and cellular automation rules are presented in
Section 2. Section 3 focuses on the programming algorithm. Finally, the results of the
simulation of biofilm evolution and fractal analysis of the complex structure of biofilm are
discussed in Section 4.

2. Cellular Automaton Model: Problem Formalization and Computational Techniques

As a first step, we aim at designing a three-dimensional cellular automaton to model
the self-similar evolution in biofilm-forming bacterial populations. Let us formalize the
main principles of how the cellular automaton operates, which include model conceptual-
ization, initialization of the lattice geometry, and setting transition rules.

2.1. The Brief Biological Setup

In general, most free-living bacteria can attach to biotic or abiotic surfaces. This leads
to the formation of organized complex three-dimensional multicellular communities of
aggregated cells encased into an extracellular polymeric matrix (EPS), known as biofilms.
Biofilms are formed by specific substances: organic microbial polymers implicated in
the association of bacterial cells with their environment. Its formation includes several
stages [45], the most important ones are shown in Figure 1.

In the first stage, individual planktonic cells migrate and attach to a substrate. Pro-
vided vital conditions, many co-adhered bacteria form microcolonies and then induce
biofilm production by physical appendages and EPS. In the next stage, the growth of
bacterial populations is accompanied by immersion in EPS secreted by the cells themselves,
providing the necessary conditions for biofilm maturation and progress. Finally, the fully
mature biofilm reaches its maximum cell density and can release microcolonies or single
cells which can freely migrate and adhere to new locations.
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Figure 1. The scheme of the typical stages of biofilm formation.

The production of EPS plays a crucial role for the survival of biofilms. In addition to
water, the EPS consists of different concentrations of lipids, proteins, minerals, extracellular-
DNA, and polysaccharides. Apart from providing surface attachment, it plays an integral
role in structural support, nutrition delivery, protection against the host immune system,
and antimicrobial treatment. EPS may also support cell-to-cell bacterial communication, in
particular by quorum sensing [46].

Modulation of quorum sensing allows bacteria to respond to external exposure, coor-
dinate virulence phenotypes, and provide optimal population density in biofilm.

The development and maturation of biofilms occur under physiologically relevant
living conditions, including the type of strain, chemical-physical properties of the surface,
temperature, nutrient availability (nutrient-rich or nutrient-limited media), water flow
rate, removal of metabolic products, oxygen concentrations (for aerobic bacteria), growth
media and the presence of other microorganisms, etc. (a more detailed discussion of the
conditions and biological processes related to biofilm growth can be found in [47] and
references therein).

In order to model the evolution of biofilms, in particular cases, concepts related to
death and living conditions need to be defined and formalized. In the present study, we
assume biofilm development under the following conditions: biofilm development is
considered in a limited computation domain corresponding to the media supplemented by
a nutrient. In the beginning, individual bacterial cells can be randomly inoculated. The
chemical composition of the nutrient solution is assumed to be represented by oxygen
(in short notation O2), a carbon-containing component (named as the C-component), and
a nitrogen-containing component (named as the N-component) (here we consider most
relevant nutrient components according to [48]). During the evolution of the biofilm,
all nutrient components diffuse at different rates. In addition, O2, C-component, and
N-component underlie different absorption rates by bacteria.

The total nutrient concentration is limited and controlled. Here, we assume to consider
the growth phase due to nutrient consumption (the lifetime of bacteria is longer than the
time the evolutionary process is considered). Bacteria can divide provided the sufficient
consumption of O2, C-component, and N-component. Moreover, we included a simplest
quorum sensing-regulated mechanism for optimal nutrient redistribution. If a bacterial cell
cannot divide due to lack of free space for bacteria to grow, it can share its nutrients with
neighboring cells. There are no inhibitory factors (such as high temperatures, radiation,
antibiotic treatment, etc.) In the process of modeling, it is also required to control the
porosity and geometric structure of the visualized biofilm. The scenario for culturing the
biosystem is depicted in Figure 2.



Mathematics 2023, 11, 3346 6 of 18

Nutrient

Consumption

Bacterial cell division

Bio!lm development

N
u

tr
ie

n
t 

d
if

fu
si

o
n C

of the nutrient

ollective redistribution

Figure 2. Biofilm evolution and considered processes under simulated conditions.

2.2. Grid Geometry

Generally, a cellular automaton model can be classified as a discrete spatio-temporal
mathematical model that allows to describe many complex systems with discrete dynamics,
approximating continuous processes. In the cellular automaton approach, each discrete
element can be characterized by a state and all possible states are finite and discrete. A
cellular automaton features a grid of cells that change their state handled by the rules of
local evolution.

To define the shape of the basic cells of the constructed 3D cellular automaton, we
use truncated octahedrons. A truncated octahedron, unlike a cube with just six faces in its
vicinity, offers 14 neighboring faces, allowing for more accurate modeling of processes at a
discrete level. The truncated octahedron cell possesses symmetry with respect to the center.
This type of cell provides a complete covering of the 3D space. In addition, the increase
in neighbors for each cell allows us to more accurately model the behavior of the discrete
system. Basically, this cell obtains a total of 14 faces, six squares, and eight hexagons. Hence,
each cell has 14 neighbors, including eight diagonal and six orthogonal neighbors. We take
four horizontal and two diagonal vectors as basis vectors,

~v(i, j, k) = i~a1 + j~a2 + k~a3, where


~a1 = (2, 0, 0)
~a2 = (1, 1, 1)
~a3 = (0, 0, 2),

(1)

as schematically illustrated in Figure 3. We define the rules for transitioning from an
element with an index [i, j, k] to Cartesian space.

(a) (b)

Figure 3. Planes directions associated with the neighbors (a) and corresponding basis vectors (b) for
a truncated octahedron cell.
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2.3. Cellular Automaton, State Changing Rules, and Boundary Conditions

According to the biological context, the term “cell” has a double meaning. In this way,
we use the term “unit” instead of specifying the nodes in the grid of a cellular automaton.
Additionally, the term “cell” is going to be associated with bacterial cells (concretely, “cell”
is related to the populated “unit”). In the model being discussed, we have not specifically
accounted for the inclusion of the EPS matrix to simplify the whole setup and its analysis.
We assume that bacterial cells are already embedded in it and we do not consider its
secretion beyond this assumption. We will assume that a unit of a cellular automaton
corresponds to a certain amount of biomass and corresponds to a set of bacterial cells. Let
us consider the dynamic finite cellular automaton, which is formalized by the triple of
objects:

< X, A, Θ >, (2)

where X is the set of units of the automaton; A is a finite set of unit states; Θ is a set
of transition operators between different unit states, depending on the configuration of
the units.

We define the set of units X as follows:

X = {[0, 0, 0], [1, 0, 0], ..., [l, 0, 0], [0, 1, 0], ..., [l, w, h]}. (3)

Therefore, the set of units is indexed along the basis axes. l denotes the length of the
computational domain, w the width, and h is the height. The finite set of unit states is
specified as:

A =

{
0− unit is empty
1− unit is populated

(4)

Each unit of the grid is characterized by a bacterial biomass concentration Cb and a
nutrient concentration. Here, we denote the oxygen concentration as PO2 , the concentra-
tion of carbon-containing component as PC, and the concentration of nitrogen-containing
component as PN . At the initialization phase, the values of PO2 , PC and PN are set to the
initial values PO2,init, PC,init and PN,init, respectively, for each unit. At the start, values of the
bacterial biomass concentration Cb are equal to zero for each unit of the grid apart from
randomly defined units at the bottom of the computation domain, for which we inoculated
bacterial cells with the initial value Cb0. Due to the presence of shared faces with each
neighboring element (unlike the diagonal neighbors of a cube), we have made the assump-
tion of a uniform diffusion in all directions, regardless of the specific direction. However, it
is important to note that recalculating diffusion based on the presence of bacterial biomass
within cells complicates the calculation process. Nevertheless, this adjustment does not
result in a qualitative change in the model’s behavior. For simplicity, this factor was not
incorporated into consideration.

The set of transition operators between different unit states can be defined as follows:

Θ([i, j, k]) = (θdi f ,O2 [i, j, k], θdi f ,C[i, j, k], θdi f ,N [i, j, k], θcons[i, j, k], θdiv), (5)

where θdi f ,O2 [i, j, k], θdi f ,C[i, j, k], θdi f ,N [i, j, k] are the transition operators related to mass-
balance operators to define corresponding nutrient concentrations; θcons[i, j, k] is the transi-
tion operator for nutrient consumption by a bacterial cell; θdiv is the transition operator to
specify biomass division.

In order to keep the mass balance of nutrients, Fick’s law can be applied to express a
spatial-temporal distribution of the nutrient concentration. For specific nutrient compo-
nents, we can use the following general diffusion equation:

∂Pn

∂t
= D

(∂2Pn

∂x2 +
∂2Pn

∂y2 +
∂2Pn

∂z2

)
, (6)
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where the general notation Pn is related to the O2 concentration PO2 , C-component concen-
tration PC or the N-component concentration PN ; D is the diffusion coefficient defined as
DO2 , DC, DN , respectively.

Further, we use Equation (6) to estimate the concentrations of nutrient components by
the following rules for the cellular automaton:

θdi f ,O2 [i, j, k] : PO2 [i, j, k, t + δt] = PO2 [i, j, k, t] + DO2

( M

∑
m=1

PO2(m, t)−MPO2 [i, j, k, t]
)

, (7)

θdi f ,C[i, j, k] : PC[i, j, k, t + δt] = PC[i, j, k, t] + DC

( M

∑
m=1

PC(m, t)−MPC[i, j, k, t]
)

, (8)

θdi f ,N [i, j, k] : PN [i, j, k, t + δt] = PN [i, j, k, t] + DN

( M

∑
m=1

PN(m, t)−MPN [i, j, k, t]
)

, (9)

where P(m, t) is a m-th neighbor of the unit at the iteration which corresponds to the time t;
M is the total number of neighbors around the unit.

The recalculation of biomass and nutrient concentrations is done using the follow-
ing rules:

θcons[i, j, k] :


PO2 [i, j, k] = PO2 [i, j, k]− JO2 [i, j, k]
PC[i, j, k] = PC[i, j, k]− JC[i, j, k]
PN [i, j, k] = PN [i, j, k]− JN [i, j, k]
Cb[i, j, k] = Cb[i, j, k] + µ[i, j, k] · Cb[i, j, k],

(10)

where JO2 , JC, JN are the uptake rates of nutrient concentrations by bacteria; µmax (known
as the Michaelis constant) is the maximum specific growth rate of the microorganism and µ
is the calculated growth rate of bacterial cell in considered unit.

The rule used to define the biomass division is followed by:

θdiv[i, j, k] :

{
Cb[i, j, k] = Cb[i, j, k]/2
Cb[inew, jnew, knew] = Cb[i, j, k]/2

(11)

where inew, jnew, knew are coordinates for the new populated cell, which is neighboring the
origin cell i, j, k (the position of a new cell is selected randomly from the available set
of positions).

This rule is implemented only for cells, which fits the following conditions:{
Cb[inew, jnew, knew] = 0
Cb[i, j, k] > Cdiv

(12)

This implementation is possible for cells with a sufficiently high biomass concentration
Cb[i, j, k] and if it has a free neighbor Cb[inew, jnew, knew].

Further, we apply the Monod equation to calculate the uptake concentration of nutri-
ents for each cell. In order to consider multiple types of nutrients, we rewrite the Monod
equation in a suitable form according to [49]. Here, for O2 the form of equation remains
the same, but on the other hand, it becomes a valuable multiplier for nitrogen and carbon
concentrations. This effect could be explained by the importance of oxygen in almost all
kinds of reactions within the considered nutrients.

JO2 [i, j, k] = µmax,O2

PO2 [i, j, k](
KO2 + PO2 [i, j, k]

) , (13)

JC[i, j, k] = µmax,C
PC[i, j, k](

KC + PC[i, j, k]
) PO2 [i, j, k](

KO2 + PO2 [i, j, k]
) , (14)
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JN [i, j, k] = µmax,N
PN [i, j, k](

KN + PN [i, j, k]
) PO2 [i, j, k](

KO2 + PO2 [i, j, k]
) , (15)

µ[i, j, k] = µmax
PO2 [i, j, k](

KO2 + PO2 [i, j, k]
) PC[i, j, k](

KC + PC[i, j, k]
) PN [i, j, k](

KN + PN [i, j, k]
) (16)

where KO2 , KC and KN are the saturation constants for each type of substrate, respectively;
µ[i, j, k] is the growth rate for the considered cell.

By model construction, we suppose here that boundaries are considerably distant from
the active area and do not affect the processes in the computational domain. Therefore,
their influence was not taken into account. During the calculation process, all grid units are
updated synchronously.

3. Programming Algorithm

Following the previous statement, let us formalize the developed algorithm and
determine the control parameters of the model. The process flow diagram illustrates the
life-cycle stages and unit processes as shown in Figure 4.

(a) (b)

Figure 4. Algorithm flowcharts for the whole life-cycle stages (a) and the unit processes (b).

The algorithm consists of two blocks: the main program block and the calculation
loop for the corresponding cell. The main program block begins with grid generation
and setting initial nutrient values. Then, bacterial cells are inoculated at the bottom of
the computational domain. After that, the loop through all cells executes and for each
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unit, the diffusion of nutrients and consumption of nutrients are estimated. For populated
units, we calculate consumed nutrients and specify the possibility of division. Then, the
nutrient level is examined to make a decision to continue computing. If the average value
of nutrients reaches a certain threshold, the program terminates itself.

The calculation loop for each unit includes the following steps. We skip the unit if
it has not been yet populated with bacterial cells. For a populated unit, we calculate the
concentration value of consumed nutrients of each type. Further, the amount of biomass
in the cell is increased. If this value reaches the required level and there is free space
adjacent to the cell, the specified cell divides in a direction which is randomly selected
from the available ones. If there is no free space around the cell, excess nutrients are
redistributed among neighbors of the cell. The process of redistribution occurs in all
directions, proportional to the concentration of bacteria in neighboring cells, where the
biomass concentration is lower than the current concentration.

We executed the proposed algorithm using the C # language on the Unity platform.
Unity is a real-time 3D development platform for building 2D and 3D applications, such as
games and simulations with the use of .NET and the C # programming language. The 3D
model involves a large amount of data and its processing. However, cellular automata can
be parallelized due to their independent computational units (each cell depends solely on
its nearest neighbors). In the context of the C # language, built-in parallelization features
such as Parallel. For and Parallel. For Each can be utilized. However, to avoid simultaneous
access, the use of lock objects is also recommended. This approach allows us to improve
the algorithm performance, specifically, to simulate diffusion processes. This results in a
speedup of approximately 30–40% in execution time.

To store information about all cells containing biomass, a Generic.List structure was
used. In a loop iteration, each cell, upon reaching a sufficient biomass concentration
level, searches for an available neighbor for division. If multiple neighbors are available,
it randomly selects one, increases the biomass concentration in the designated cell, and
adds the new cell to the list of new cells. After iterating through all cells, the new cells
are rendered and added to the master list, while the list of new cells is cleared. This
approach helps to avoid the issue of continuous calculation of new cells and prevents
program looping. The simulation system efficiently supports the forecasting of space-time
distributions of bacterial populations in biofilms and evaluating geometrical characteristics
of surface roughness. The functionality of the software implementation was enhanced with
a user interface.

4. Computational Experiments and Discussion

In this section, we will focus on conducting computational experiments to explore
the dependence of the geometrical complexity of the structures forming a biofilm on the
parameters of the cellular automaton model. In these terms, we specify a set of parameters
that affect the spatial-temporal distributions of bacterial biomass. To solve the diffusion
problems (modeling of nutrient distribution and consumption), dimensional parameters
are used, while for a computer simulation of growth, relative units are applied. The time
unit corresponds to the iteration number Iter and the space unit is associated with the
specific cellular automaton non-dimensional normalized unit (called “CA unit”). The issue
of correlating real-time with a computer iterative process requires additional investigations
because the rates of successive stages of biofilm development may differ.

The model parameters are listed in Table 1. It should be noted that most of these parame-
ters are not fixed and strongly depend on the conditions of the considered environment, such
as temperature, liquid viscosity, bacterial species, etc. We will assume that the growth of the
bacterial film is carried out in the aquatic environment. The values of the absorption parame-
ters for the considered nutrients are defined using the data reported in detail in [50]. Note
also that carbon and nitrogen nutrients are not free agents. These nutrients are components of
more complex compounds, such as nitrate (NO3-N), ammonium (NH4-N), dissolved organic
carbon, particulate organic matter, methane (CH4), and other molecules. Diffusion coefficients
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for these nutrients have been extensively discussed [51–53]. The initial level of nutrients in the
environment is the primary control parameter of the model. For convenience in calculations,
all control parameters are normalized, with the normal value represented in the table as
the unit. Subsequently, nutrient levels were both decreased (0.25 of the normal value) and
increased to explore different situations concerning growth possibilities and bacterial colony
behavior.

Table 1. Model parameters.

Parameter Symbol Value Units

Space length lx 0.2× 10−3 m
Space width lz 0.2× 10−3 m
Space height ly 0.1× 10−3 m

CA length L 200 CA units
CA width W 200 CA units
CA height H 100 CA units

Initial nutrient concentration [O2] PO2,init 7× 10−3 kg·m−3

Initial nutrient concentration [C] PC,init 25× 10−3 kg·m−3

Initial nutrient concentration [N] PN,init 0.7× 10−3 kg·m−3

Initial number of units with biomass n0 100 CA units
Maximum specific consumption [O2] µmax,O2 0.3 h−1

Maximum specific consumption [C] µmax,C 1.5 h−1

Maximum specific consumption [N] µmax,N 0.15 h−1

Maximum biomass growth rate µmax 4.2× 10−9 h−1

Diffusion coefficient DO2 2.1× 10−9 m2·s−1

Diffusion coefficient DN 1.9× 10−9 m2·s−1

Diffusion coefficient DC 2.4× 10−9 m2·s−1

Half-saturation constant [O2] KO2 3.1× 10−3 kg·m−3

Half-saturation constant [C] KC 10.3× 10−3 kg·m−3

Half-saturation constant [N] KN 0.2× 10−3 kg·m−3

The cellular automaton model allows us to simulate the spatial self-similar evolu-
tion in bacterial biofilm populations. Figure 5 shows the computer simulation results of
bacterial biofilm formation at fixed time moments. Computations are performed using
the defined above parameters. Notably, the numerical experiment was conducted under
the conditions of moderately saturated nutrients (here we assume a 70 percent level of all
nutrient components related to the initial data). The simulated biofilm can be characterized
by a porous fractal structure and, after 4000 iterations, it occupies the entire area of the
computational domain.

(a) (b) (c)

Figure 5. The spatial dynamics of bacterial biomass calculated at fixed times corresponding to the
iteration number: Iter = 500 (a), Iter = 800 (b), and Iter = 3500 (c) respectively; color distributions
correspond to different heights: from the lowest (green) to the highest (red).

In order to qualitatively compare the results of simulation based on a cellular automa-
ton with experimental data, we simulated the bacterial population dynamics during the
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observation time of biofilm growth to the saturation stage. Figure 6 illustrates the calcula-
tion result of the population dynamics curve in qualitative comparison with a typical curve
of population dynamics reported in [54] for aerobic bacterium Pseudomonas aeruginosa. The
simulation parameters are adjusted to provide logistic growth under continuous cultural
conditions (nutrients are sufficient during the observation time). These data suggest that
the model adequately reflects the main periods of development of the bacterial population,
corresponding to the phases of population dynamics: the lag-phase of slow growth at the
beginning of the process, the log-phase of rapid growth, and the stationary phase (during
flow cultivation, the degradation phase is absent on the evolutionary curve). The conducted
comparative analysis yields agreeable simulation data and experimental data, which is in
favor of the adequacy of the designed algorithm.

Figure 6. Dynamics of the number of bacterial cells under saturation conditions: computed curve (1)
compared to the experimental data (2).

In general, the developed algorithm allows us to visualize complex bacterial structures
by varying the input parameters of nutrient levels as shown in Figure 7. All images are
referred to the final time moment (Iter = 19,000) corresponding to the stationary mode.

To be more concrete, here we can detect geometric features of visualized self-similar
bacterial biofilm structures related to the percent level of nutrients. The parameters listed
in Table 1 are associated with the 100 percent level of nutrients, while for simulations
represented in Figure 7 we varied the percent level under the range of 25–150% related to
the initial value. The images on the left are 3D renderings of the results, and on the right are
slices with a width of 5 CA units along the entire length of the computational domain. The
observations indicate that at the low level of nutrients, the biofilm takes on an extremely
sparse and discharged structure due to nutrient deficiencies. At the same time, at the high
level of nutrients, porosity decreases significantly.

The main control parameters of the model responsible for the shaping the struc-
ture’s flatness are the power components. We conducted a comprehensive study to
investigate the influence of each nutritional component on the geometrical plane of struc-
tures. Initially, with sufficient nutrition, the bacterial film completely covers the space.
However, as the nutritional components decrease, a dendrite-like structure appears,
characterized by a more complex surface geometry. In case of lower initial nutrient
values, the biofilm develops less densely, displaying either dendrite growth for small
grid sizes or the formation of small clusters within it. These findings are consistent with
the data presented in the study [43,44].
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)
Figure 7. Results of 3D simulation of biofilm-forming bacterial populations and 2D slices under
simultaneous variation of nutritional components at the percent level: 25—(a), 30—(b), 40—(c),
50—(d), 60—(e), 70—(f), 80—(g), 100—(h), 120—(i), 150—(j) (color distributions correspond to
different heights: from the lowest (green) to the highest (red).
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To mathematically characterize the complexity of the geometric configurations, we
used the Hausdorff fractal dimension. For instance, to estimate the fractal dimensions of
simulated biofilm structures, we applied the box-counting method. As the most important
advantage of this methodology, we note the comparative simplicity of the implementation
of the algorithm and the sufficient level of approbation in practice of such assessments
by independent researchers. In general, there are many variations in the application of
the box-counting method. We calculated the fractal dimension of the biofilm surface area,
including the pore surface area. The entire boundary surface was covered with a spatial
grid consisting of cells of a certain size δ, and the number of coating elements N was
counted. The dependence constructed on a double logarithmic scale ln(N) = −DHln(δ)
allows one to calculate the fractal dimension DH .

To assess changes in the irregularity and roughness of the simulated biofilm structures,
we calculated the fractal dimension under the variation of the level of nutrients. Due to
the fact that the parameters of carbon and nitrogen are not fundamentally different in the
equations considered, the variation is performed for oxygen and carbon, while the nitrogen
value remains either too high or too low. The computing results are visualized in Figure 8.

(a)

(b)

Figure 8. Fractal dimensions DH calculated for surfaces of simulated biofilm structures under
variation of the percent level of the C-component and O2-component of nutrients and fixed levels of
N-component: 25 percent level—(a) and 500 percent level—(b).

Our observations suggest that surfaces of biofilm structures can be characterized by
rather uncomplicated geometry at very low and very high values of nutrients, compared
to the standard setting. It is clear that underdeveloped small-scale “island” structures are
formed at a low level of nutrient. On the other hand, the conditions of high values of
nutrients lead to filling the entire space provided and the degeneration of the structure, in
which the number of pores is small and the surface is practically uniform.

It should be noted that our simulation data are in qualitative agreement with the data
obtained by [41] for a certain set of parameters. The visualized shape of the geometry
of the biofilm configurations coincides. Notably, in [41] a complex parameter has been
introduced which includes several biological parameters at once (the overall change is
not transparent to establish the control parameters responsible for the complexity of the
structure). In our case, we can vary the parameters separately and we have focused on
studying the dependence of complexity of biofilm geometry on nutrient levels. In addition,
visualized two-dimensional slices allow us to clearly demonstrate the fractality of the
biofilm structure.
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The complex geometric configurations of biofilms occur at a certain nutrient defi-
ciency. At the 500 percent nutrient level of the N-component, each cut for fixed oxygen- or
carbon-contained components has a pronounced maximum. For example, DH = 2.57 for
162.5 percent nutrient levels of the O2-component as well as the C-component. Increasing
the percent level for the C-component to 300 gives only DH = 2.55 while increasing the
percent level for the O2-component to 300 yields DH = 2.54. A further increase in the value
of nutrients will not lead to a complication of the structure. The rise of the fractal dimension
is related to the development of dendrite structures with increased porosity. The biofilm
surface as well as the structure of pours are characterized by inhomogeneity and roughness
of boundaries. Bacterial colonies, trying to get additional nutrients, tend to increase their
surface area. The designed algorithm provides accurate simulations of self-similar biofilm
structures due to the introduced mechanism of “motivation” of bacterial colonies to obtain
the maximum value of nutrients at the current population density.

Since any model is incomplete by definition, let us point out some limitations of the
developed approach. The model contains a large number of parameters, which limits
the possibility of their simultaneous variation. With limited nutrition, growth retardation
occurs, which leads to an increase in simulation time or the need to stop simulation. In
addition, for perspective, the algorithm for solving diffusion problems for already occupied
cells can be improved by taking into account the cell state, the list of considered processes
can also be expanded, and gratings of different sizes can be used for near and far zones to
speed up computational processes.

5. Conclusions

In summary, we have developed a cellular automaton algorithm to model the self-
similar evolution in biofilm-forming bacterial populations. The cellular automaton grid
was constructed using truncated octahedron cells to provide a realistic scenario for the
simulations, incorporating increased inner cell relations. The algorithm design included
natural-based rules such as nutrient diffusion, biomass consumption of nutrients, and
bacterial cell division. The algorithms was implemented using C # on the Unity platform.
Three typical phases of the bacterial population evolution could be observed: a slow growth
phase (lag phase), a fast growth phase (log phase), and a stationary phase.

The nutrient components and their values played the role as key control model parame-
ters. The simulation results indicated that biofilm structures exhibit a rather uncomplicated
geometry at both too low and too high too-low nutrient values. Furthermore, dendrite-like
structures with increased porosity were observed under certain nutrient deficiency conditions.

For self-organizing structures, such as evolving biofilms, it is important to know
not only the area and volume of overgrowth but also the scaling characteristics of fractal
aggregates. Therefore, computer-assisted modeling allows us to establish a numerical rela-
tionship between the geometric characteristics of structures and nutrient levels, which is
essential for controlling growth phenomena in biofilms, particularly concerning pathogenic
bacteria. The main advantage of our study compared to previous findings in applied math-
ematics in microbiology lies in the developed hybrid 3D model suitable for aerobic bacteria
capable of forming complex biofilm structures with different porosity at different levels of
nutrients due to self-regulation processes. The mathematical foundation of the proposed
model comprises the cellular automaton with a truncated octahedron cell, modified rules
for calculating local diffusion characteristics, and the procedure to redistribute nutrients
among bacterial cells.

Furthermore, it is worth noting that the cellular automaton model was supplemented
by only one simple mechanism to formalize the relation to bacterial quorum sensing,
here concretely the optimal nutrient and oxygen redistribution. The prospect for further
research involves the development of a hybrid approach incorporating more complex laws
governing bacterial cell-to-cell communication in the algorithm.
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