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Abstract: Opportunistic osteoporosis screening using multidetector CT-scans (MDCT) and convo-
lutional neural network (CNN)-derived segmentations of the spine to generate volumetric bone
mineral density (vBMD) bears the potential to improve incidental osteoporotic vertebral fracture (VF)
prediction. However, the performance compared to the established manual opportunistic vBMD mea-
sures remains unclear. Hence, we investigated patients with a routine MDCT of the spine who had
developed a new osteoporotic incidental VF and frequency matched to patients without incidental
VFs as assessed on follow-up MDCT images after 1.5 years. Automated vBMD was generated using
CNN-generated segmentation masks and asynchronous calibration. Additionally, manual vBMD
was sampled by two radiologists. Automated vBMD measurements in patients with incidental VFs
at 1.5-years follow-up (n = 53) were significantly lower compared to patients without incidental VFs
(n = 104) (83.6 ± 29.4 mg/cm3 vs. 102.1 ± 27.7 mg/cm3, p < 0.001). This comparison was not
significant for manually assessed vBMD (99.2 ± 37.6 mg/cm3 vs. 107.9 ± 33.9 mg/cm3, p = 0.30).
When adjusting for age and sex, both automated and manual vBMD measurements were significantly
associated with incidental VFs at 1.5-year follow-up, however, the associations were stronger for
automated measurements (β = −0.32; 95% confidence interval (CI): −20.10, 4.35; p < 0.001) compared
to manual measurements (β = −0.15; 95% CI: −11.16, 5.16; p < 0.03). In conclusion, automated
opportunistic measurements are feasible and can be useful for bone mineral density assessment in
clinical routine.

Keywords: osteoporosis; opportunistic screening; computed tomography; bone mineral density;
osteoporotic fractures; computational neural networks
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1. Introduction

Osteoporosis is a systemic bone disease characterized by a decrease in bone mass
and microarchitectural deterioration of bone tissue, predisposing the individual to an
increased risk of osseous fractures [1]. Osteoporosis occurs very frequently worldwide, yet
particularly affects the elderly population in developed countries [2]. The prevalence of
osteoporotic vertebral fractures (VFs) amounts to between 18% and 26% among Europeans
older than 50 years [3]. VFs can lead to severe consequences, such as a reduced quality
of life [4], a two-fold increase in age-adjusted mortality risk [5], and a three-fold increase
in the risk of developing additional fractures compared to the normal population [6].
Early medical treatment of osteoporotic patients with a high fracture risk is, therefore,
highly recommended in order to avoid poor outcomes [7,8]. However, osteoporosis is
an underdiagnosed condition in clinical practice. Osteoporotic patients are commonly
asymptomatic until a fracture occurs, and even among fractures, only about one quarter
of osteoporotic VFs are diagnosed clinically [9,10]. Thus, it is a high priority in the care of
osteoporotic patients to identify individuals at high fracture risk in order to timely initiate
medical treatment before the first fracture occurs.

Dual-energy X-ray absorptiometry (DXA) measuring the areal bone mineral density
(aBMD) is currently considered the standard screening method for osteoporosis beside
assessing clinical risk factors [11]. Yet, there are some major concerns regarding this
approach. Only 44% of females and 21% of males with osteoporotic fractures exhibited
a low aBMD in a large observational study [12], which further emphasizes the inherent
inaccuracies of DXA [13].

The potential of opportunistic vBMD values derived from routine CT data have in-
creasingly moved into the focus of osteoporosis screening [14,15]. Important disadvantages
of the established method are a user-dependent and time-consuming extraction process
of vBMD [16–18]. A deep-learning (DL)-based approach recently enabled the automated
extraction of vBMD from multidetector CT (MDCT) scans [19–23] and has demonstrated an
improvement of the association between VFs and vBMD compared to the DXA method [20].

Already published studies investigating machine learning and CNN approaches to
predict future osteoporotic fractures are mainly risk assessment tools requiring the input of
existing clinical examination data, such as aBMD derived from DXA, but not generating
any new BMD data for fracture prediction [24–26]. Other approaches focused on machine
learning combined with texture analysis of vertebrae, however, not did not take BMD
into consideration [27], or performed feature extraction by a deep-learning algorithm from
lateral spine radiographs by using non-CNN-generated aBMD values from DXA-scans [28].

Therefore, the aim of this study was to compare opportunistic CT-based trabecular
vBMD measurements derived using automated convolutional neural network (CNN)-based
segmentations with manual vBMD measurements for the prediction of the occurrence of
incidental osteoporotic VFs at 1.5-years follow-up.

2. Materials and Methods

The workflow utilized in this study is illustrated in Figure 1.

2.1. Subjects

The local Ethics Committee of University Hospital, LMU Munich, Marchioninistr. 15,
81,377 Munich, Germany approved this study [protocol code 23-0131, date of approval
03.04.2023] and waived the requirement of written informed consent.

The study population was retrospectively identified within the local picture archiving
and communication system (PACS) on all patients registered between August 2009 and
April 2021. The criteria for the inclusion of patients with incidental VFs were (1) a history
of two MDCT scans showing the thoracolumbar spine (T1 to L5) and (2) at least one
new appeared incidental osteoporotic VF in the 1.5-year follow-up CT scan. Each patient
with an incidental VF at 1.5-years follow-up was frequency matched to two patients
who did not develop an incidental VF between baseline and 1.5-years follow-up. The
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matching criteria were sex, age (range of 5 years) and time interval between the two
required CT scans. Baseline and follow-up scans were routine CTs with other indication
than to screen for osteoporosis, of which most were staging CTs in tumor patients. The
exclusion criteria were a history of vertebral metastasis or hematologic disorder, traumatic
spine injury, a history of an osteoporotic fracture in a different region (e.g., hip), or previous
spinal surgery. Incidental osteoporotic VFs were evaluated on the 1.5-year follow-up
scans (18.3 ± 14.8 months) using the semi-quantitative technique by Genant, which rates
vertebrae from grade 0 to grade 3 depending on the loss of vertebral height [29]. Based on
visual image review, patients were categorized as either a patient with newly fractured
vertebrae (grade ≥ 1) or without fractured vertebrae.
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Figure 1. Flowchart illustrating the study’s workflow with regards to automated spine processing
and vBMD extraction. Clinical routine MDCT scans of the thoracolumbar spine were retrospectively
identified by using criteria for inclusion as described in the Section 2.1 (1. a). Segmentation and
labelling of vertebrae were performed using an CNN-based automated pipeline (https://anduin.
bonescreen.de) (2. b,c). Segmentation masks of vertebral bodies were eroded by the cortical bone
and posterior vertebral elements were removed using affine and deformable transformations (3. d).
vBMD measurements were extracted using asynchronous calibration and correction for contrast
medium, if applicable (4).

This yielded a final study cohort of 157 patients (84 females, 73 males) with a mean
age of 65.7 ± 11.8 years, with 53 patients (28 women, mean age 64.7 ± 12.0 years) showing
at least one incidental VF at the 1.5-year follow-up and 104 patients (56 women) with no
evidence of an incidental VF at the 1.5-year follow-up.

2.2. CT Image Acquisition

CT data were acquired on six different MDCT scanners (GE Revolution and GE
Optima, GE Healthcare; Somatom Definition AS+, Somatom Definition Edge, Somatom
Drive, and Somatom Force, Siemens Healthineers). A peak tube voltage of 120 kVp and
adaptive tube load was used for all images with the scanners in helical mode. Depending
on the clinical indication, most scans were performed after application of intravenous
contrast agent (Iomeron 400, Bracco) (n = 152). Arterial or portal venous phase scans were
either acquired after a CT-attenuation threshold was surpassed in a region of interest (ROI)
placed in the aorta (arterial) or after 70 s of delay (venous). Reconstructions for sagittal
reformation of the spine were conducted with a standard bone kernel and 2 mm slice
thickness. Clinical indications for CT imaging were not related to bone densitometry and
included, e.g., acute and chronic back pain, suspected VF, as well as the assessment of acute
thoracic and abdominal pathologies.

https://anduin.bonescreen.de
https://anduin.bonescreen.de
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2.3. Opportunistic CT-Based Measurements of Volumetric BMD

Volumetric BMD measures were extracted from clinical baseline MDCT scans in verte-
brae L1 to L4 for both automatic and manual analysis in order to assess the average vBMD
according to previous study results [20,30,31]. In the case of VFs of L1 to L4 in any CT scans,
these vertebral bodies were excluded from data analysis (n = 13). No patients with more than
one vertebral height from L1 to L4 had to be excluded due to a preexisting VF.

2.3.1. Asynchronous Calibration and Correction for Contrast Medium

CT attenuation in Hounsfield units (HU) was converted to vBMD using asynchronous
calibration in a similar manner as previously described by Löffler et al. [20]. In asyn-
chronous calibration, HU–BMD-relations are calculated after scanning phantoms contain-
ing bone-equivalent elements with hydroxyl-apatite inserts of known density in milligrams
per cubic centimeter (Anthropomorphic Abdomen Phantom, QRM Quality Assurance in
Radiology and Medicine). The equations are specific for a certain scanner, respectively ac-
quisition protocol, as previously reported [31]. To correct for BMD bias after the injection of
contrast medium, linear correction equations able to correct for arterial and venous contrast
phases were applied, analogous to a previously published study [32]. Both manually and
automatically sampled vBMD measures were corrected for contrast medium prior to any
subsequent evaluation of the data, if applicable.

2.3.2. Automatic and Manual Extraction of Trabecular Volumetric BMD

An automatic three-step procedure, which was implemented in Python, was used for the
extraction of vBMD measures. In a first step, automated segmentation of vertebrae was per-
formed by a CNN-based framework (https://anduin.bonescreen.de) that is able to identify the
spine and to create segmentation masks after labelling each vertebral body [20,23,33]. Secondly,
as only the vertebral body is used for vBMD extraction, the posterior vertebral elements in the
segmentation masks were removed using affine and deformable transformations, for fitting
templates of vertebral subregions to each vertebral level. Thirdly, to only sample trabecular
vBMD, segmentation masks of vertebral bodies were eroded by the cortical bone [20] (Figure 2).
Manual extraction of HUs on the other hand was performed by placing a volumetric ROI of
4.5 cm3 in the anterior trabecular region of vertebrae L1 to L4 (Figure 3) and BMD values were
calculated from these as described above.

2.3.3. Image Reconstructions for Quality Assurance

For identifying vertebrae that had to be excluded from vBMD assessment, e.g., due
to severe degenerative changes leading to alterations in bone mass not associated with
osteoporosis, curved planar reconstructions from CT data were generated in sagittal and
coronal views. With an opacity of 40%, the reconstructions were overlaid with segmentation
masks on the center of mass of the vertebral bodies. In addition, virtual radiographs in the
lateral projection were calculated from the CT data (Figure 2).

2.4. Clinical Thresholds for Volumetric BMD Measures

For trabecular vBMD assessment, the diagnostic thresholds for osteoporosis
(BMD < 80 mg/cm3) and osteopenia (80 mg/cm3 ≤ BMD ≤ 120 mg/cm3) proposed
by the American College of Radiology (ACR) were applied [34].

2.5. Statistical Analysis

Statistical analysis was performed with SPSS (version 28; IBM SPSS Statistics for ma-
cOS, IBM Corp., Armonk, NY, USA) using a two-sided level of significance of 0.05 for
all statistical tests. A Shapiro-Wilk test was performed to test for normal distribution of
the data. One-way analysis of variance (ANOVA; for parametric testing) and chi-square
tests (for categorical variables) were used to evaluate differences in the subject character-
istics between patients with and without VFs at follow-up. Due to the large number of
parameters, the analyses were categorized into primary and exploratory data. As primary

https://anduin.bonescreen.de
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data, based on previous publications [20,30,31,35], multivariable linear regression analyses
adjusting for age and sex were performed using the fracture status (occurrence of inci-
dental VF at follow-up versus no incidental VF at follow-up) as a dependent variable and
automatic respectively manual vBMD extraction (average across L1–L4) as an independent
variables for the assessment of associations between the different vBMD measurement
approaches and the incidental VF status. Goodness of fit measures were applied for linear
regression analysis including Durbin–Watson statistics. In addition, as exploratory analy-
ses, multivariate linear regression analyses adjusting for age and sex were performed to
assess associations between automatic respectively manual vBMD measurements at single
vertebral levels from L1 to L4, respectively, at combinations of two consecutive vertebral
bodies (L1–L2, L2–L3, and L3–L4) and fracture status at follow-up. Adjustment for age
and sex was performed as both parameters have been proven to potentially influence BMD
results [36].
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Figure 2. Automatic extraction of trabecular volumetric BMD. Representative example illustrating
the automated spine processing and BMD extraction pipeline. CT scan (b) of a 42-year-old male
visualized as virtual radiograph in lateral projection (a) and curved planar reconstructions in lateral
views (c,d). Anduin (https://anduin.bonescreen.de) was used to localize, label, and segment the
vertebrae (c). To exclude cortical bone, vertebral bodies were separated from the posterior vertebral
elements and segmentation masks were eroded by 5 mm (d). L1 to L4 yielded a mean trabecular
vBMD of 123.7 mg/cm3.
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Figure 3. Manual extraction of trabecular volumetric BMD. CT scan of a 42-year-old male illustrating
the manual trabecular vBMD extraction process. Volumetric ROIs of 4.5 cm3 were manually placed
in the anterior trabecular region of vertebrae L1 to L4 (a–e) yielding a mean trabecular vBMD of
161.3 mg/cm3 after converting CT attenuation in HU to BMD values using asynchronous calibration.

3. Results

A total of 157 patients (84 women, 73 men) with a mean age of 65.7 ± 11.8 years were
included in this study. Patients with newly occurring incidental VFs at 1.5-year follow-up
showed no statistically significant differences in sex distribution and age
(64.8 ± 12.0 years vs. 66.3 ± 11.8 years, p = 0.77) when compared to controls without inci-
dental VFs at 1.5-year follow-up. Patients with incidental VFs at follow-up (n = 53) showed
significantly lower automatically extracted average vBMD values across L1 to L4 at baseline
(83.6 ± 29.4 mg/cm3 vs. 102.1 ± 27.7 mg/cm3, p < 0.001) compared to patients with-
out incidental VFs at follow-up. Manual average vBMD values assessed at baseline re-
vealed no significant differences between patients with incidental fractures at follow-up
(99.2 ± 37.6 mg/cm3 vs. 107.9 ± 33.9 mg/cm3, p = 0.30) compared to the patient cohort
without incidental VFs at follow up (Table 1 and Figure 4).

The incidental VF status at follow-up, meaning the occurrence of a new incidental
VF between baseline and follow-up scan, was significantly associated with automatically
extracted vBMD adjusting for age and sex (β = −0.32; 95% confidence interval (CI): −20.10,
4.35; p < 0.001). A significant but less strong association was also found between the manual
vBMD assessment and the incidental VF status at follow-up (β = −0.15; 95% CI: −11.16,
5.16; p < 0.03).

Further, the incidental VF status at follow-up was significantly associated with auto-
matically extracted vBMD assessment adjusting for age and sex for both single vertebral
levels from L1 to L4 (L1: p < 0.001, L2: p < 0.001, L3: p = 0.001, L4: p = 0.002) as well as for
combinations of consecutive vertebral body heights from L1-L2 to L3-L4 (L1-2: p < 0.001,
L2-3: p < 0.001, L3-4: p < 0.001) (Tables 2 and 3). The incidental VF status at follow-up was
significantly associated with manual trabecular vBMD assessment adjusting for age and sex
at single vertebral levels L1 and L2 (L1: p = 0.006, L2: p = 0.029) and at consecutive levels
L1-L2 and L2-L3 (L1-2: p < 0.001, L2-3: p = 0.007), respectively, while there was neither a
significant association found at single vertebral levels L3 and L4 nor at the combination of
the BMD values from L3 to L4 (Tables 2 and 3).
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Table 1. Baseline characteristics of patients stratified by vertebral fracture status; VF, vertebral fracture
(at follow-up); vBMD, volumetric bone mineral density; SD, standard deviation; Significant results
(p < 0.05) are bolded.

Variable VF (n = 53) No VF (n = 104) VF vs. No VF p-Value Total (n = 157)

Females, n (%) 28 (53%) 56 (54%) 0.63 84 (54%)

Age, years, mean (SD) 64.7 (12.0) 66.3 (11.7) 0.77 65.7 (11.8)

Automatic vBMD *, mg/cm3, mean (SD) 83.6 (29.4) 102.1 (27.7) <0.001 95.9 (29.5)

Manual vBMD *, mg/cm3, mean (SD) 99.2 (37.6) 107.9 (33.9) 0.30 105.0 (35.3)

* trabecular vBMD.
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Figure 4. Boxplots showing the minimum, first quartile, median, third quartile, and maximum for
both automatic- and manual-derived baseline vBMD values in the patient cohort with and without
incidental vertebral fractures at follow-up, respectively.

Table 2. Single vertebra analysis. Associations between automatically and manually assessed
trabecular vBMD and incident vertebral fracture status at follow-up for all single vertebral levels of
the lumbar spine (L1 to L4); Multivariable linear regression adjusting for age and sex.

Level Automatic vBMD p-Value Manual vBMD p-Value

L1 −0.33 (−0.34–−0.32) <0.001 −0.22 (−0.23–−0.21) 0.006

L2 −0.30 (−0.31–−0.29) <0.001 −0.18 (−0.19–−0.17) 0.029

L3 −0.25 (−0.26–−0.24) 0.001 −0.13 (−0.14–−0.12) 0.11

L4 −0.24 (−0.25–−0.23) 0.002 −0.07 (−0.08–−0.06) 0.38
Numbers are given as standardized regression coefficients (β) and 95% confidence intervals (95%-CI); vBMD,
volumetric bone mineral density; significant results (p < 0.05) are bolded. Goodness of fit measures were applied
for both linear regression models (manual: R2 = 0.27, p < 0.001; Durbin–Watson statistic 2.06; automatic: R2 = 0.25,
p < 0.001; Durbin–Watson statistic 2.07).
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Table 3. Analysis of averages across combinations of two consecutive vertebral bodies: Associations
between automatically and manually assessed trabecular vBMD and incident vertebral fracture status
at follow-up for combinations of consecutive vertebral body levels of the lumbar spine (L1–L2 to
L3–L4); Multivariable linear regression adjusting for age and sex.

Level Automatic vBMD p-Value Manual vBMD p-Value

L1–L2 −0.32 (−0.33–−0.31) <0.001 −0.20 (−0.21–−0.19) <0.001

L2–L3 −0.28 (−0.29–−0.27) <0.001 −0.15 (−0.16–−0.14) 0.007

L3–L4 −0.25 (−0.26–−0.24) <0.001 −0.10 (−0.11–−0.09) 0.08
Numbers are given as standardized regression coefficients (β) and 95% confidence intervals (95%-CI); vBMD,
volumetric bone mineral density; significant results (p < 0.05) are bolded. Goodness of fit measures were applied
for both linear regression models (manual: R2 = 0.27, p < 0.001; Durbin–Watson statistic 2.06; automatic: R2 = 0.25,
p < 0.001; Durbin–Watson statistic 2.07).

4. Discussion

Osteoporosis is a highly prevalent disorder in the elderly characterized by decreased
BMD and microarchitectural deterioration of the bone [1,37]. This leads to an increased
risk of low-energy trauma fractures, of which vertebral fractures are the most common [3].
Incidental osteoporotic fractures cause a significant decrease in quality of life [4], increased
risk of future fractures [6], and bring burden to the socioeconomic system [38]. As an
underdiagnosed condition [9,10], diagnostic tools for an early discovery of patients at
risk for an incidental osteoporotic fracture are important. The gold standard tool for the
diagnosis of osteoporosis is DXA, measuring aBMD [11]. This highlights a major problem
of DXA, measuring areal but not volumetric BMD, which is easily contaminated by intra-
and extra-osseous soft tissue effects [13]. Avoiding this, qCT is a different, more accurate
method for osteoporosis assessment, measuring vBMD from dedicated CT-scans performed
to assess BMD, but has the disadvantage of additional radiation and costs [39]. Therefore,
we focused on using opportunistically generated vBMD by a CNN-based approach, caus-
ing no additional radiation to the patient and minimizing the costs for future vertebral
fracture prediction.

Automated and manual opportunistic trabecular vBMD extractions of the lumbar
vertebrae L1 to L4 were performed in clinical routine MDCT scans to assess the association
between the vBMD and the development of incidental VFs of the thoracolumbar spine.
The occurrence of new incidental VFs at 1.5-years follow-up was significantly associated
with automated vBMD measurements averaged across L1 to L4, whereas there was a less
significant association found between the average manual vBMD (L1-L4) and incidental VF
status at 1.5-years follow-up. Patients with new incidental VFs showed significantly lower
automatically assessed vBMD values in the baseline CT scan compared to patients without
incidental VFs, yet this comparison did not reach the level of significance when assessing
the manually extracted BMD. Further, the incidental VF status at the 1.5-year follow-up
was significantly associated with automatically extracted vBMD for both single vertebral
levels from L1 to L4 as well as for combinations of consecutive vertebral bodies from L1–L2
to L3–L4, yet the manually assessed vBMD values at the single vertebral levels L3 and L4
and the combination of L3 to L4 showed no significant associations.

Unlike DXA, CT enables the extraction of vBMD since it is a three-dimensional imaging
modality. The ACR defined reference values to allow the use of CT data for standardized di-
agnosis of osteopenia (80 ≤ BMD ≤ 120 mg/cm3) and osteoporosis
(BMD < 80 mg/cm3) for the lumbar spine [34] relating to measurements within trabecular
bone tissue [34,40]. By now, quantitative computed tomography (QCT) is the imaging
modality used to calculate the vBMD with dedicated software packages typically derived
from three consecutive vertebral levels (L1 to L3) [14,41]. This is commonly achieved by
measuring a reference phantom with known density during the same scanning process to
be able to convert attenuation values in HU to vBMD [14,41]. A fundamentally different
method for vBMD assessment is using CT data acquired for other clinical indications than
osteoporosis screening, e.g., such as oncological staging, which is referred to as oppor-
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tunistic CT [14,41]. A major benefit with this approach is that additional scanning time
respective to radiation exposure can be saved [14,41]. In particular, patients who regu-
larly undergo CT examinations, such as cancer patients, and have an increased risk of
osteoporosis due to either comorbidity or treatment side effects may mostly benefit from
opportunistic osteoporosis screening [42].

Various study results have led to an increasing acceptance of opportunistic osteo-
porosis assessment using clinical routine CT data over recent years [15–17,20,22,30,43–49].
QCT and opportunistically used CT data showed no significant difference in vBMD mea-
surements, underlining the fact that opportunistic bone densitometry is feasible for both
non-contrast as well as contrast-enhanced CT-scans [46]. Opportunistic trabecular vBMD
can either be manually determined by placing small volumetric ROIs in vertebral bodies,
which is relatively time consuming and more user-dependent [18] than an automated
pipeline, which enables vertebral segmentation, asynchronous calibration for HU-to-vBMD
conversion, and correction of contrast medium within several seconds [30]. The automated
technique with vertebral segmentation of the entire trabecular region sparing the corti-
cal bone (Figure 3) covers significantly more anatomically involved structure than the
established manual method [50,51]. This could explain the less strong association between
incidental VF status at the 1.5-year follow-up and manually assessed vBMD averaged across
L1 to L4 compared to incidental VF status and the vBMD averaged across L1 to L4 derived
from automatic measurements. Another explanation could be the higher user-dependency
in manually extracting vBMD compared to the automatic CNN approach [16].

A previous study revealed significantly lower trabecular vBMD values in patients
with VFs than in controls without VF analyzing the diagnostic accuracy of vBMD thresh-
old values at different spinal levels derived from opportunistic routine CT data for the
prediction of incident VFs of the thoracolumbar spine, which is in line with the results
presented in this study [30]. In addition, multiple studies revealed comparable results
of lower vBMD values in patients with VFs for opportunistically used CT, with varying
but overall acceptable discriminatory power to differentiate patients with and without
VFs in different study settings [43–45]. Automated opportunistic osteoporosis screening
of vBMD along the thoracolumbar spine allowing for risk assessment of imminent VFs
and level-specific thresholds at the thoracolumbar spine for the identification of patients at
high fracture risk have recently been introduced [30]. In addition, an important previous
study comparing different spinal bone measures derived from automatic as well as man-
ual assessment in routine CT and DXA for evaluating in their association with prevalent
osteoporotic VFs using the same fully automated pipeline showed that except for bone
mineral content, all CT-based measures performed significantly better as predictors for VFs
compared to DXA [20]. In some ways different from our findings, age- and sex-adjusted
associations with fracture status were strongest for manually assessed trabecular vBMD
followed by automatically assessed vBMD [20]. However, the design, objectives, and meth-
ods of this study are not fully comparable with ours as the authors assessed the association
of spinal bone measures with prevalent osteoporotic VFs, while we analyzed incidental
VFs. Evaluating the prediction of incident VFs using CT-based finite element analysis,
Allaire et al. showed an association between vertebral strength measures and incident
vertebral fractures, which is in accordance with our findings [52]. However, the patient
cohort of the cited study was significantly lower in the previous study [52]. A further
previous study analyzed incidental VFs of elderly men and reported stronger associations
with fracture risk for trabecular vBMD than cortical vBMD, which may be due to a greater
metabolic activity of the trabecular compartment [53]. This is in line with our study, in
which trabecular vBMD was assessed and showed an association with the presence of
incidental VFs at 1.5-year follow-up in a longitudinal analysis, when comparing patients
matched for age and sex with and without incidental VFs.

In a future perspective, automated opportunistic vBMD extraction could be added to
more routine MDCT scans in groups with increased fracture risk as well as pediatric cohorts
who receive regular MDCT-scans, to timely initiate medical or surgical treatment if needed.
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Especially due to the correlation of low bone quality in early childhood and the increased
risk for the development and progression of scoliosis [54], early automated opportunistic
detection of low vBMD could be helpful to diagnose and, therefore, treat such conditions
earlier. This is may potentially prevent future fractures and has to be further investigated.

We acknowledge that this study has limitations. We used a retrospective study design.
Therefore, we could not correlate laboratory parameters such as vitamin D or serum
calcium levels with the vBMD measures due to lacking patient blood samples, even though
low bone mass quantified by vitamin D and calcium showed an increased low-energy
trauma fracture risk in a pediatric population [55]. Thus, future research could address
the correlation of automated vBMD measures with serum vitamin D and calcium levels in
an adult study cohort. As not every patient of the study cohort additionally underwent
DXA or QCT at the time of baseline MDCT, relevant radiological parameters, such as
phantom-calibrated vBMD or aBMD values could not be assessed. Baseline and follow-up
CT scans were partially performed at different scanners with slight differences in image
protocols and software. However, this exactly reflects the clinical routine setting.

5. Conclusions

This study shows a significant association between automated CNN-based measure-
ments of opportunistic trabecular vBMD and incidental VFs at the thoracolumbar spine
at 1.5-years follow-up, with potential superiority to manual vBMD measures. Therefore,
automated vBMD measurements could be highly advantageous in clinical practice for
identifying individuals at a high risk of an incidental vertebral fracture, without additional
costs and radiation exposure.
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