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Spotlight on Nerves: Portable Multispectral Optoacoustic
Imaging of Peripheral Nerve Vascularization and
Morphology

Dominik Jüstel,* Hedwig Irl, Florian Hinterwimmer, Christoph Dehner, Walter Simson,
Nassir Navab, Gerhard Schneider, and Vasilis Ntziachristos

Various morphological and functional parameters of peripheral nerves and
their vascular supply are indicative of pathological changes due to injury or
disease. Based on recent improvements in optoacoustic image quality, the
ability of multispectral optoacoustic tomography, to investigate the vascular
environment and morphology of peripheral nerves is explored in vivo in a
pilot study on healthy volunteers in tandem with ultrasound imaging (OPUS).
The unique ability of optoacoustic imaging to visualize the vasa nervorum by
observing intraneural vessels in healthy nerves is showcased in vivo for the
first time. In addition, it is demonstrated that the label-free spectral
optoacoustic contrast of the perfused connective tissue of peripheral nerves
can be linked to the endogenous contrast of hemoglobin and collagen.
Metrics are introduced to analyze the composition of tissue based on its
optoacoustic contrast and show that the high-resolution spectral contrast
reveals specific differences between nervous tissue and reference tissue in the
nerve’s surrounding. How this showcased extraction of peripheral nerve
characteristics using multispectral optoacoustic and ultrasound imaging
could offer new insights into the pathophysiology of nerve damage and
neuropathies, for example, in the context of diabetes is discussed.
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1. Introduction

Localization of peripheral nerves and in-
vestigation of their morphology and func-
tion is important in clinical medicine and
research, for example, to identify nerves
for regional anesthesia or during surgery,
and for studying the mechanisms under-
lying peripheral neuropathies. In current
clinical routine, peripheral nerves are dy-
namically localized with ultrasonography,
based on anatomical landmarks along the
nerve’s progression and via the honeycomb-
like appearance of the fascicular structure
of nerves.[1,2] Although ultrasound-guided
regional anesthesia has been shown to im-
prove the success rate and safety of the
procedure,[2] electrical nerve stimulation is
sometimes needed for verification due to a
lack of specificity of ultrasound contrast.

US is also employed for visualizing
morphological alterations associated with
disease and injury,[3,4] in particular for
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diagnosing neuropathies that correlate with a change in the neu-
ral cross-sectional area.[4] However, most acquired axonal neu-
ropathies, including diabetic neuropathy, are not associated with
specific morphological changes detectable with US, e.g., a sig-
nificant nerve enlargement.[4] Vascularization and oxygenation
are important features for clinical assessment of peripheral nerve
function.[5] Moreover, patients with diabetes[6] and peripheral de-
myelinating diseases[7] exhibit changes in their neural water and
fat content. Existing radiological modalities have insufficient ca-
pabilities to image these parameters, in particular in relation
to portable usage. The functional abilities of US imaging are
limited to visualizing intraneural blood flow using the Doppler
function, which is only sensitive enough to detect substan-
tially increased blood flow in progressed stages of neuropathy.[3]

Other radiological methods such as magnetic resonance imag-
ing (MRI) or positron emission tomography (PET) can identify
structural damage and edema[8,9] or regions of high metabolic
activity,[8] but are expensive, not ubiquitously available,[10] not
suited for all patient collectives (e.g., PET—pregnant, MRI—
pacemaker), and cannot assess the functionality of the vasa
nervorum.[9] Invasive approaches have also been considered for
functional nerve investigations (e.g., endoscopic fluorescence-
lifetime (sodium fluorescein) spectrophotometry of blood oxy-
genation in the nerve,[11] microscopic assessment of biopsies of
the sural nerve, or minimally invasive skin biopsies addressing
distal small fiber abnormalities[12]), however they are not suitable
for monitoring purposes and pose a greater risk to the patient.
These limitations explain why physical examinations and electro-
physiology remain the standard for clinical diagnosis of periph-
eral neuropathy.

Optoacoustic (OA, also photoacoustic) imaging has been pro-
posed as a noninvasive modality that complements existing pe-
ripheral nerve imaging approaches by providing optical contrast
in tissue dynamically and without harmful radiation exposure.
Pilot studies in animal models have demonstrated the feasibil-
ity of resolving nerve and vascular features using OA microscopy
or macroscopy.[13–16] A single-wavelength pilot study in humans
also showcased the ability of OA imaging to resolve the vascu-
lature around nerves. Nevertheless, no systematic study to our
knowledge has investigated the performance of OA imaging in
human nerves in vivo. Critically, no demonstration has built on
the ability of multispectral optoacoustic tomography (MSOT) to
identify endogenous chromophores (i.e., oxygenated and deoxy-
genated hemoglobin, lipids or water) in nerves by analyzing spec-
tral optoacoustic data. MSOT has already proven its value in clin-
ical studies by assessing the vasculature and vascular dynam-
ics in tissues, and visualizing small blood vessels with a perfor-
mance superior to clinical US.[17–19] MSOT also resolves tissue
oxygenation and metabolic parameters[20–25] without the use of
contrast agents (label-free operation) or ionizing radiation. Such
capabilities would make MSOT a valuable addition to existing
nerve imaging modalities by improving contrast for nerve lo-
calization and providing new biomarkers for the assessment of
nerve health, for example, in the context of diabetes. However, ap-
plying MSOT to nerve imaging requires suitable data processing
and analysis to overcome the detrimental effects of light absorp-
tion in superficial tissue layers and electrical noise in the imaging
system.

Recent enhancements in OA image quality[26–29] allow MSOT
to obtain high-resolution spectral OA data that potentially yields
more reliable spectral statistics. For example, correlations be-
tween spectral components in regions of interest (ROIs) may de-
tect changes in the relative proportions of tissue components.
Based on this development, we herein explore the performance
of MSOT for imaging human peripheral nerves in vivo. We
performed a pilot study in which three major distal nerves of
the brachial plexus are imaged with a handheld optoacoustic-
ultrasound (OPUS) system in the upper arm of healthy volun-
teers. Using the spatial and spectral dimensions of MSOT, we
explore its performance in revealing the vasa nervorum and the
internal structure of peripheral nerves. Of particular interest was
assessing MSOT’s ability to observe small intraneural vessels in
healthy peripheral nerves, which has previously not been possible
with a handheld system in vivo.[3] Visualization of physiological
intraneural vasculature would provide a reference for the detec-
tion of early signs of pathological perfusion prior to loss of neural
function.

We show that data-driven unmixing methods afford a detailed
picture of the vasa nervorum, including relative blood oxygena-
tion and the internal structure of peripheral nerves by identifying
various spectral components that relate to specific chromophores
and their variations due to fluence attenuation in the raw spectral
data. Individual fascicles can be identified via MSOT contrast of
the nerve’s connective tissue and its vascular supply. This level of
contrast and resolution in multispectral OA images has not been
demonstrated previously with a clinical hand-held system in vivo.

In addition, we highlight the ability of MSOT’s high-resolution
spectral contrast to sense differences in tissue composition. We
introduce metrics to quantify tissue-specific features related to
the mixing behavior of different spectral unmixing components
and demonstrate that these metrics capture the specific spec-
tral contrast of nervous tissue and link it to blood, lipid, and
collagen contrast. A refinement of the analysis that investigates
clusters in the data associated with specific tissue contrasts re-
veals fine nuances in spectral contrast, which are potentially sen-
sitive to pathological changes in the substructures of nerves.
Our data-driven analysis of raw spectral data complements ap-
proaches that try to correct the effects of light attenuation prior
to data analysis.[30] We discuss how OPUS has demonstrated the
most detailed anatomical and functional visualization of nerves
achieved so far and elaborate on applications that could give ac-
cess to early features of neuropathy, potentially leading to earlier
diagnosis and deeper insights into pathophysiology.

2. Results

2.1. OPUS Imaging of Peripheral Nerves

Figure 1 illustrates the data acquisition, the anatomy of the im-
aged region, the morphology of peripheral nerves, and represen-
tative US images of the three targeted nerves. Figure 1A shows
the OPUS system used in this study, an iThera Medical Acuity
Echo prototype, and the approximate region at the upper limb
(red dashed line), a few centimeters proximal of the elbow, where
OPUS images were acquired of the three major peripheral nerves
in the arm: the ulnar, median, and radial nerve. Each nerve was
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Figure 1. Data acquisition and anatomy. A) Co-registered ultrasound and OA images of the three major peripheral nerves of the upper limb were acquired
proximal of the elbow (red dashed line) with an iThera medical acuity echo prototype. B) Schematic of the cross-sectional anatomy of the upper arm
in the imaged region (red dashed line in A). The approximate locations of the fields of view for the three nerves are outlined with grey rectangles. C)
Schematic morphology of peripheral nerves. The nerve is organized in fascicles that contain the nerve fibers. The vascular supply is classified according
to its location into epineurial, perineurial, and endoneurial vessels. D–F) Three representative ultrasound images of the three different nerves and their
environments. The nerves are highlighted in purple. The areas shaded in green visualize the variance of the nerve locations in the whole dataset.

imaged in two different locations on each arm of the 12 volun-
teers, resulting in a dataset of 135 images (45 ulnar, 47 median,
43 radial). A qualitative sketch of the cross-sectional anatomy in
the imaged region of the arm is given in Figure 1B, with grey rect-
angles outlining representative fields of view for the three nerves.
Figure 1C shows the anatomy and vascular environment of pe-
ripheral nerves: nerve fibers are sheathed in lipid-rich myelin and
clustered in fascicles. The nerve’s substructures are covered in
collagen-rich connective tissue: the epineurium wraps the nerve,
the perineurium wraps the fascicles, and the endoneurium wraps
single nerve fibers. Accordingly, the supplying blood vessels are
classified by their location as epineurial, perineurial, and en-
doneurial vessels. Collectively, we refer to these vasa nervorum
as intraneural vessels.

Figure 1D–F shows representative US images of the ulnar, me-
dian, and radial nerves, respectively, which are highlighted in pur-
ple. The depth of the imaged nerves’ centers was 7.10 ± 3.40 mm
for the ulnar nerves, 8.93 ± 2.87 mm for the median nerves, and
14.93 ± 3.50 mm for the radial nerves. The green shaded areas in
Figure 1D–F visualize the variance of the nerve locations in the
dataset. These areas also serve as references for the spectral con-
trast of the nerve tissue. Within these regions, we can identify the
typical anatomical environments of the three nerves. The ulnar
nerve is superficially located next to the triceps with only smaller
vessels (e.g., the ulnar collateral arteries) in its immediate vicin-
ity. The median nerve is close to the brachial artery in a region

with several large vessels (e.g., brachial and basilic vein). The ra-
dial nerve lies significantly deeper, usually between the brachialis
and brachioradialis muscles.

Due to their different environments, the three nerves are not
equally well suited for OPUS imaging. The ulnar nerve is the
most accessible due to its superficial location and the absence
of strong absorbers in its vicinity. The big vessels in the median
nerve’s vicinity dominate the contrast and can make it difficult
to assess the nerve’s OA contrast if, for example, the nerve is be-
low a vessel or if imaging artifacts extend into the nerve region.
In addition, the pulsation of an artery close to the median nerve
might create motion artifacts that reduce image quality. The ra-
dial nerve lies deep in muscle tissue, which absorbs much light
and leads to a very low OA contrast of the nerve and its immediate
surrounding. These observations illustrate the fact that the pene-
tration depth of optoacoustic imaging systems depends strongly
on the imaged tissue and its absorption in the used wavelength
range. Peripheral nerves at less than 1 cm depth (ulnar nerve) can
be imaged with high data quality, while deeper nerves below mus-
cle (radial nerve) have a reduced contrast due to light absorption.

To understand the amount of information that is available
within the nerve segmentations, we investigated the cross-
sectional surface area of the nerves relative to the image resolu-
tion. The cross-sectional surface area of the imaged nerves is 6.5
± 4.1 mm2 for the ulnar nerves, 9.6 ± 4.4 mm2 for the median
nerves, and 5.7 ± 3.0 mm2 for the radial nerves. With an image
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pixel’s area of 0.01 mm2 (100 μm × 100 μm), a nerve contains on
average 732 ± 422 pixels. Factoring in the system resolution of
around 0.04 mm2, one arrives at a size ratio between nerve area
and resolution area of approximately 183 ± 106.

2.2. Data-Driven Spectral Unmixing Reveals Tissue-Specific
Optoacoustic Contrast

Raw MSOT imaging data are subject to spectral coloring due to
wavelength dependent light absorption in tissue. Since reliable
fluence correction is still an unsolved problem for clinical hand-
held systems, we embrace the fact that we work with raw (initial
pressure) spectra. We performed a data-driven spectral unmixing
of the MSOT data in order to extract the tissue-specific contrast
provided by the multispectral images. In contrast to simple lin-
ear unmixing, a data-driven unmixing method can capture spec-
tral variations due to wavelength-dependent fluence attenuation.
In addition, our method of choice (regularized non-negative ma-
trix factorization (NMF), see Experimental section C.2) can be
steered towards biologically reasonable spectra via suitable reg-
ularization, unlike other data-driven methods like vertex compo-
nent analysis (VCA). Our method explains the spectral MSOT
data better than linear unmixing or VCA with a relative mean
squared error of 0.72%, compared to 3.94% and 3.44% for linear
unmixing and VCA, respectively.

Since nerves are strongly vascularized and contain lipid-rich
myelin and collagen-rich connective tissue (Figure 1C), their
spectral OA contrast is expected to be a mixture of the absorption
spectra of hemoglobin, water, lipid, and collagen. Figure 2 shows
that the data-driven spectral unmixing successfully captures the
specific contrast of endogenous chromophores in the imaged tis-
sues and, contrary to simple linear unmixing, can extract small
spectral variations that are hidden behind the dominant absorp-
tions of melanin, hemoglobin, lipids, and water.

The qualitative accuracy of the unmixing is validated in a rep-
resentative image of an ulnar nerve. Figure 2A shows the nine
fundamental spectral components that the unmixing algorithm
extracted from the multispectral OA image data, i.e., every mea-
sured spectrum is represented as a weighted sum of these com-
ponents. Four of these spectra closely resemble the absorption
spectra of prominent endogenous chromophores: oxygenated
and deoxygenated hemoglobin (spectra 1 and 2, respectively),
lipids (spectrum 4), and water (spectrum 6). Spectrum 3 has the
common slope of the spectra of melanin and collagen, but dif-
fers from both in the regions of lipid and water absorption. In-
stead, the weak absorption peak of collagen around 900 nm is cap-
tured in spectrum 9. Since the absorption by collagen will have
the strongest effects in this wavelength region, spectrum 9 is ex-
pected to relate to collagen contrast. The remaining three spectral
components (spectra 5, 7, and 8) capture variations of the spectra,
presumably due to the light absorbed in superficial layers. While
spectrum 5 can capture variations of blood contrast in the pres-
ence of lipids and water, being located in between and overlap-
ping with the peaks of the respective spectra, spectrum 7 is able
to represent the effects of absorption by the melanin in the skin
by varying the contrast in the lower wavelength range. Spectrum
8 can adjust the contrast in the central wavelength range that cap-
tures the main blood contrast. Unlike these highly interpretable

spectra, the spectral components identified by VCA do not prop-
erly resemble literature spectra and are additionally influenced
by system noise (see Figure S1, Supporting Information).

Figure 2B–D visualizes the contrast of the nine spectral com-
ponents in a representative image of an ulnar nerve and its envi-
ronment by color-coding three of the components in each image.
The location of the nerve is indicated by a white ellipse. The in-
lays show an enlargement of the nerve with adjusted dynamic
range to reveal the intraneural contrast that is otherwise hidden
next to the strong signal of blood vessels. The spectral contrast
in Figure 2B highlights the melanin in the skin line, the blood
vessels in the skin, and two blood vessels to both sides of the
nerve (presumably the ulnar collateral arteries). The strong op-
toacoustic contrast of these tissues is in agreement with the fact
that blood and melanin are the strongest absorbers in tissue. Fig-
ure 2C shows strong contrast from spectra 4–6 in the superficial
layers, highlighting the dermis and the subcutaneous fat. The fact
that the subcutaneous fat extends until the depth of the nerve is
not correctly reconstructed from the OA signal data due to filter-
ing of the acquired signals to suppress low-frequency noise and
to achieve a better contrast of smaller structures, like nerves and
vessels. The perfused tissues below—muscle and nerve—have
good contrast in Figure 2D.

To qualitatively validate the accuracy of the unmixing results,
Figure 2E shows the normalized spectra and standard deviations
of six tissues that can be identified in the multispectral images to-
gether with their decomposition into the nine spectral unmixing
components. The corresponding tissue segmentations are shown
in Figure S2A (Supporting Information). The unmixing correctly
captures the contrast of the oxygenated hemoglobin in the artery
with spectrum 1, the contrast of water and melanin (epidermal
melanocytes) in the epidermis with spectra 3 and 6, and the lipid
contrast of the subcutaneous fat with spectrum 4. Since deoxy-
hemoglobin is present in healthy tissue only in mixtures dom-
inated by oxyhemoglobin, and collagen has a low absorption in
general, these two chromophores are difficult to unmix. The ad-
ditional fact that the absorption spectra of these chromophores
lack unique features in the considered wavelength range leads to
ambiguities in the unmixing. As a consequence, spectra 2 and
3, which both have a slope similar to the spectra of deoxyhe-
moglobin, collagen, and melanin, can be used to explain spectral
data related to any of these chromophores. Most notably, spec-
trum 3 is often present as a component of blood spectra, for ex-
ample, in the spectrum of the artery. The strong contribution of
spectrum 9 to the spectrum of the dermis indicates light absorp-
tion by dermal collagen. The spectra of nerve and muscle are sim-
ilar to the spectrum of oxyhemoglobin due to the fact that both
tissues are well perfused with blood. The ultrasound image (see
Figure S2B, Supporting Information) shows that the optoacous-
tic contrast of the muscle does indeed stem from the absorption
inside the muscle tissue and not from the fascia, that can be seen
as a strongly reflecting layer above the muscle. The dip in the
wavelength range of lipid absorption (900–940 nm) indicates the
light attenuation due to the subcutaneous fat layer above these
tissues.

The inlays in Figure 2B–D show the intraneural spectral con-
trast with two small absorbers (marked by arrows) in Figure 2B
that indicate the presence of two small intraneural blood vessels.
While there is a clear water contrast visible inside the nerve in
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Figure 2. Spectral unmixing of the MSOT data. A) The spectral unmixing algorithm found nine distinct spectral components that agree with features of
endogenous chromophores (hemoglobin, lipids, water, melanin, collagen). B–D) Spectral contrast of a representative ulnar nerve, visualized by color
coding three components per image. The spectral data inside the nerve is shown with adjusted contrast and slightly smoothed in the lower left of each
panel. E) Mean and standard deviations of the normalized spectra of the structures that are highlighted with white arrows in (C–E)—the artery to the
right of the nerve, the epidermis, the subcutaneous fat, the dermis, the muscle, and the ulnar nerve. To the right of the graphs, the corresponding mean
unmixing coefficients are displayed. HbO2: oxygenated hemoglobin, HHb: deoxygenated hemoglobin.
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Figure 3. Visualizing the vasa nervorum. Overlay images of ultrasound (US, gray) and two spectral OA components associated with oxygenated (spec-
trum 1, red) and deoxygenated (spectrum 2, blue) hemoglobin. The single components in the regions outlined with rectangles are shown in three small
panels next to the images with the nerve highlighted in yellow. A,B) Two ulnar nerves with intraneural vessels clearly visible in the OA channels. Arteries
(presumably the ulnar collateral arteries) and veins at comparable depths can be spectrally distinguished. C,D) Two ulnar nerves with vessels branch-
ing into the nerve. E) A median nerve with visible intraneural vessels. F) A radial nerve with two accompanying vessels of medium size, and a small
(presumably epineurial) vessel on top.

Figure 2C, the expected lipid contrast of myelin is not visible. A
possible reason for this is the attenuation of light in the respec-
tive wavelengths by the subcutaneous fat. The nerve has good
contrast in the inlay in Figure 2D, showcasing the ability of the
data-driven unmixing to represent spectral data in deep tissue by
capturing the spectral variations due to light attenuation, which
are encoded in spectra 7–9.

2.3. OPUS Visualizes the Vasa Nervorum in Unprecedented
Detail

A direct application of the spectral unmixing is the visualiza-
tion of the vasa nervorum which play a central role in several
neurological disorders. To this end, Figure 3 shows that OPUS

can visualize this vasculature with very good contrast, exceed-
ing the capabilities of other in vivo nerve imaging modalities.
All panels of Figure 3 show images of US contrast (gray) over-
laid with two OA channels related to hemoglobin contrast (spec-
trum 1—oxyhemoglobin in red, spectrum 2—deoxyhemoglobin
in blue) for six different peripheral nerves. The colormap has
been changed relative to Figure 2 to show vessels with the in-
tuitive red and blue contrast.

Figure 3A,B demonstrates the high MSOT contrast of blood
vessels running along and inside of two superficial ulnar nerves.
In Figure 3A, three blood vessels are clearly visible in the MSOT
image to the right of the ulnar nerve. While the middle of
these vessels, which is the ulnar collateral artery, could also be
identified via its pulsation in the US images or via Doppler, the
very small presumably epineurial vessels to the left of the nerve
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Figure 4. Visualizing the internal structure of nerves. The internal organization of nerves into fascicles and their vascular supply are visualized with good
contrast by data-driven spectral unmixing. Each panel shows an overlay of US and MSOT hemoglobin contrast (spectra 1 and 2) along with two enlarged
images of a nerve with contrast from spectral components 1 and 2 (hemoglobin contrast) and components 3 and 5 (contrast related to collagen and
hemoglobin). A,B) show two ulnar nerves, C) shows a median nerve.

Table 1. Visible vessels of the vasa nervorum. Numbers of nerves for which
individual vessels could be visually identified in MSOT images.

Visible vessels Ulnar nerve
(n = 45)

Median nerve
(n = 47)

Radial nerve
(n = 43)

Epineurial (pct.) 30 (67%) 17 (36%) 3 (7%)

Peri- or endoneurial (pct.) 16 (36%) 11 (23%) 1 (2%)

and the other intraneural vessels, which are clearly visible in the
MSOT images (marked by arrows), cannot be visualized with
US. Figure 3C,D shows two ulnar nerves with supplying vessels
branching into the nerves visible in the MSOT channels, another
detail of the vasa nervorum that cannot be visualized with US.
Figure 3E,F shows images of a median and radial nerve, which
showcase MSOT’s ability to visualize vasculature around and
within nerves that are deeper than 1.5 cm and below muscle
tissue. The median nerve in Figure 3E with the brachial artery
to its left has clearly visible intraneural vessels, while the radial
nerve in Figure 3F is accompanied by two medium-sized vessels
with clear hemoglobin contrast even though the nerve is below
a layer of muscle tissue. A small epineurial vessel is even visible
on top of the nerve. Intraneural blood flow could previously only
be visualized in patients with severe neuropathy,[3] making the
images in Figure 3 the first visualizations of intraneural vessels
in healthy probands in vivo with a handheld system.

The spectral contrast of arteries and veins at similar depths dif-
fers significantly, with arteries and veins having a stronger con-
trast in spectral components 1 and 2, respectively. This can clearly
be seen, e.g., in Figure 3A, where the ulnar collateral artery that
is accompanied by two veins could be identified via its pulsation
(see also the brachial artery and vein in Figure 4C, which can
be distinguished via their compressibility). The fact that spectral
components 1 and 2 are related to the contrasts of oxy- and deoxy-
hemoglobin shows that these differences result from differences
in blood oxygenation. This qualitative distinction between arter-
ies and veins at comparable depths is also demonstrated close to
the system resolution limit of about 200 μm in panel A, where
only one of the very small vessels (marked by arrows) is visible in
spectral component 2, indicating that it is a vein.

The visualization of the vasa nervorum strongly depends on
the depth and environment of the nerve, as shown by the percent-
ages of nerves for which epineurial or other intraneural vessels
could be visually identified (Table 1). Vessels are identifiable in

two thirds of the imaged ulnar nerves, less than half of the me-
dian nerves, and in only a few radial nerves. In addition, a diffuse
blood contrast is visible in almost all of the 135 imaged nerves,
indicating the contrast of subresolution vasculature, which is a
valuable feature for the assessment of nerve perfusion.

2.4. OPUS Can Access the Internal Structure of Peripheral Nerves

Figure 4 shows that OPUS can resolve the internal structure of
peripheral nerves, i.e., the organization of nerve fibers into fas-
cicles. The honeycomb-like contrast, which can usually also be
visualized with high-frequency ultrasound, is visible in MSOT in
spectral channels related to blood and collagen contrast. Thus,
MSOT can link the structure of nervous tissue to its function.

The three panels of Figure 4 show overlay images of US and
vascular contrast of two ulnar (A and B) and a median nerve (C),
which are outlined with ellipses. The respective two subpanels
display the intraneural contrast of spectra 1 and 2 (hemoglobin
contrast) and spectra 3 and 5 (contrast associated with collagen
and hemoglobin). The colormap for components 3 and 5 has
been changed relative to Figure 2 to provide a better visual qual-
ity of the intraneural contrast. While the upper subpanels only
show the intraneural vessels, fascicles can be clearly identified in
the lower subpanels as negative contrast (marked with arrows)
outlined by the contrast of the connective tissue and the intraneu-
ral vasculature. The images also again emphasize the intraneural
vascular detail that is accessible with MSOT.

We could not consistently see the expected lipid contrast of the
myelin sheaths as an increased signal of spectral component 4
(lipid peak) inside the fascicles. Due to light absorption in the
subcutaneous fat, the spectra of all structures below this layer
(artery, muscle, nerve) exhibit a dip in the lipid peak region (see
Figure 2E), which suggests that spectral coloring is the reason for
the missing fascicular lipid contrast.

2.5. Correlation Metrics Reveal Differences between the MSOT
Contrast of Nervous and Reference Tissue

Going beyond representative images, we performed a correla-
tion analysis on the whole dataset to confirm the observation
that OPUS can capture the specific spectral contrast of periph-
eral nerve tissue. The goal was to understand how different spec-
tral components mix in tissues, and which mixtures are observed
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Figure 5. Correlation analysis of the spectral data acquired from ulnar nerves. A) Pairwise Sørensen-Dice coefficients (DSC) of the spectral components
of the ulnar nerve and their differences from the reference spectra that were sampled from the surrounding tissue. B) Pairwise Pearson correlation
coefficients (PCC) of the spectral components of the ulnar nerve and their differences from the reference spectra that were sampled from the surrounding
tissue. The spectral components are reordered for better visual interpretability.

in the data. We also sampled reference spectra from the nerves’
surroundings to investigate how the spectral contrast of nerves
differs from that of other tissues at similar depths. In particular,
we were interested to see, if we can find indicators for the lipid
content of the myelin sheaths in the spectral data in the presence
of spectral coloring due to subcutaneous fat.

We focus on the ulnar nerve in the rest of the paper because of
the superior quality of the spectral data acquired in these more
superficial nerves.

We investigated the spectral mixtures quantitatively using two
correlation metrics—the Sørensen-Dice coefficient (DSC) and
the Pearson correlation coefficient (PCC) (see Experimental sec-
tion C.4). In the context of spectral components, the DSC can be
interpreted as the tendency of two components to mix: low DSCs
indicate that components rarely mix, while high values indicate
that components often appear together. The PCC in turn quanti-
fies the type of mixtures: positive values for fixed ratio mixtures,
low absolute values for random mixtures, or negative values for
competitive mixtures.

Figure 5 shows the correlation metrics for the ulnar nerve and
the reference data; the pairwise DSCs of the spectral components
in Figure 5A and the pairwise PCCs in Figure 5B. The results for
the median and radial nerves can be found in Figure S3 (Support-
ing Information). The left half of each panel displays the metrics
for the spectra inside the nerve segmentations, while the right
side shows the differences between correlations in nervous tis-
sue and reference tissue sampled from the nerve’s surrounding,
wherein positive and negative values indicate higher and lower
correlations inside nerve ROIs, respectively.

The results in Figure 5 confirm the biological accuracy of the
unmixing results by reproducing the expected spectral mixtures
in tissue and the expected differences between nervous and ref-
erence tissue. In particular, they show that in nervous tissue, rel-
ative to reference tissue, all components that relate to features of
the collagen spectrum have higher mutual correlations, and that
hemoglobin contrast is stronger correlated to lipid and collagen
contrast. This observation is in agreement with the expected per-
fused connective tissue contrast within the nerve, and with the
presence of the lipid-rich myelin sheaths in the fascicles.

The left side of Figure 5A shows that spectra 1 and 3 have the
highest DSC with each other, and also high DSC with all other
spectra, confirming that they are the main components used for
blood contrast, which is the dominant contrast of MSOT. Spectra
4 (lipid peak) and 8 have a very low DSC in general, confirming

that spectrum 8 encodes blood contrast in deeper tissue below
the subcutaneous fat, and highlighting the ability of data-driven
unmixing to capture such spectral coloring effects. The low DSC
of spectra 2 and 6 (water peak) shows that spectrum 3 with its
small peak at 970 nm encodes the water contrast in mixtures with
blood instead of the pure water spectrum 6, demonstrating that
the introduced metrics help to interpret unmixing results.

The left side of Figure 5B shows that the PCC values are gen-
erally similar to the DSC values (left side of Figure 2A), showing
that spectral components that often mix do so in stable mixtures,
while competitive components rarely mix. The differences be-
tween the PCCs of nervous and reference tissue show that spec-
trum 1 (oxyhemoglobin) has higher correlations with spectra 2-5
and 7, which relate to blood, lipid, and collagen contrast, repro-
ducing the expected contrast of perfused connective tissue and
lipid-rich fascicles in the nerve. In addition, spectrum 9 (colla-
gen bump) correlates strongly with all decreasing spectra (colla-
gen slope; spectra 2,3, and 7), what suggests a relation to collagen
contrast. The negative correlations of spectra 6 with spectra 2 and
3 show that intraneural water contrast in mixture with blood is
preferably encoded with spectrum 3.

Even though the tissue environments and the depths of the
nerve and reference tissue are different for the three nerves, their
Pearson correlations are very similar. The fact that we performed
the Box-Cox transformation independently for the three nerves
and obtained a power parameter that varies monotonously with
depth hints at a fluence adjusting effect of this transformation.

2.6. Hierarchical Clustering Finds Specific Details of Nervous
Tissue in MSOT Data

Figure 6A–C shows the full complexity of the MSOT data with
a UMAP embedding of the standardized unmixing data (see
Experimental section C.5) of the ulnar nervous and reference
tissue in three versions colored as in Figure 2B–D. The UMAP
algorithm arranges the data in a plane in which every point
represents an OA spectrum in the dataset and seeks to keep the
spatial and statistical relations between points as close to the
original 9D data as possible. Every cluster in this visualization
represents the data from one of the 512 = 29 possible mixtures
of the nine spectral unmixing components (Figure 2A). Due
to this intricate structure of the data set, the correlations in
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Figure 6. Hierarchical cluster analysis and UMAP embeddings of data acquired in ulnar nerves. A–C) UMAP embeddings of the standardized unmixing
coefficients of the ulnar nerve dataset show the complexity of MSOT data. The three versions are colored as in Figure 2. D) Polar dendrogram of the
hierarchical clustering tree. The spectral fingerprints, i.e., the relative number of pixels contained in each leaf, are plotted along the semicircle for the
ulnar nerve data (orange) and the reference data (blue). Six clusters, labeled C1-C6 are highlighted in red, with the mean and standard deviations of the
spectral shape given in the graphs arranged above the spectral fingerprints. E) Pairwise PCC of the four spectral components present in all the six largest
leafs of the clustering tree (called leaf 3.1, 5.1-2, and 6.1-3 according to the clusters they belong to).
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Figure 5B potentially suffer from an averaging effect that cancels
out variations in correlations within the subclusters of the data.

We performed a hierarchical clustering of the unmixing data
(see Experimental section C.5), showing that mixtures of specific
spectral unmixing components are consistently used to represent
similar spectral contrast, allowing to target specific tissue con-
trast via clusters in the data. Analyzing the correlations in leafs
of the clustering tree, we confirm that the correlations shown in
Figure 5 indeed are affected by averaging effects and show that
differences in correlations are specific to leafs of the clustering
tree, i.e., specific to the tissue context.

Figure 6D shows a dendrogram of the clustering tree for the
ulnar nerve data. The height of branchings in the tree indicates
the dissimilarity of the mean spectral shapes in the two subclus-
ters. We found 409 mixtures to be present in the dataset, with a
subcluster of 141 mixtures (34.5% of all leafs) containing most
of the contrast. To arrange the 409 mixtures meaningfully, the
hierarchical clustering was guided by the mean spectral shape,
i.e., the average normalized spectrum. The first two branchings
of the tree divide the data coarsely into spectra dominated by fat
contrast (yellow shading), spectra that belong to the main blood
and perfused tissue contrast (red shading), and spectra of super-
ficial layers with strong water contrast, like skin (green shading).

The relative numbers of pixels contained in each leaf of the
clustering tree are plotted along the semicircle delineated by the
leafs of the tree, both for the segmented nerve data (red line) and
the sampled reference data (blue line). These plots are interpreted
as spectral fingerprints of nervous tissue and reference tissue, re-
spectively. Several regions display clear differences. Six interest-
ing clusters, labeled C1–C6, are highlighted by red boxes in the
clustering tree: the largest clusters (C3–C6), clusters with clear
differences between the ulnar nerve and reference (C1, C3, C4),
and specific contrasts (C1, C2; skin and lipid contrast). The six
small graphs above the spectral fingerprints show the mean spec-
tral shapes and standard deviations of the six clusters, demon-
strating that mixtures are consistently used to represent similar
spectral shapes. This implies that specific tissue contrasts can
be targeted via hierarchical clustering of spectral OA data. For
example, cluster C1 contains specific spectral mixtures of skin
and is therefore not expected in nerve tissue, and cluster C2 con-
tains the pure lipid contrast. Clusters C3–C6 represent the main
MSOT contrast, containing spectral shapes similar to those of
blood vessels, muscle tissue, and nervous tissue (see Figure 2E).
We quantified the information content of the unmixing on the
level of mixtures by computing the entropy of the spectral finger-
prints of the combination of ulnar nerve and reference spectra.
Our unmixing method achieved an entropy of 3.85, compared
to 3.05 for VCA unmixing, which demonstrates that the sparsity
prior on the coefficient vectors maximizes this quantity.

Figure 6E shows the PCCs of the four spectral components
that are present in all of the six biggest leafs in the clustering tree
(left sides, spectra 1, 3, 4, 5) and the difference between the PCCs
of nervous an reference tissue (right sides). The PCC values in
nervous tissue consistently agree with the results in Figure 5B.
However, while leafs 5.1, 5.2, and 6.3 show similar correlation
differences as in Figure 5B, the leafs 3.1, 6.1, and 6.2 show sig-
nificant deviations in PCC. A variation of correlation differences
is expected in different substructures. For example, while the per-
fused connective tissue of the nerve and the fascicles are unique

to nervous tissue, blood vessels will have a similar spectral con-
trast within and outside of nerves. Additional details of the leafs
in clusters C3–C6 are shown in Figure S4 (Supporting Informa-
tion).

3. Discussion

With this pilot study on peripheral nerve imaging using a hand-
held OPUS system, we demonstrate that hybrid OA and US
imaging can access multiple structural and functional parame-
ters of healthy superficial peripheral nerves when combined with
a suitable data processing pipeline. The OPUS images of the vasa
nervorum (Figures 3 and 4) and the connective tissue of periph-
eral nerves (Figure 4) achieve a level of detail that has previously
not been possible with a handheld OPUS system. Moreover, a
dedicated analysis of the data revealed that spectral statistics carry
detailed information about the specific spectral contrast of ner-
vous tissue, thereby building a methodological foundation for
OA radiomics in peripheral neurology and other medical fields.
Since OPUS can be easily integrated into the clinical workflow,
the study confirms that this modality has the potential to become
a routine tool for the assessment of pathological changes in pe-
ripheral nerves.

Peripheral neuropathy, in particular diabetic neuropathy, af-
fects millions of people and can cause serious complications
and disabilities (e.g., amputation).[5,12] Screening for neuropa-
thy, its most prevalent complication, currently does not employ
any imaging method, but consists of physical examination and
questionnaires, which implies that functional loss is already ap-
parent when symptoms are detected. Despite being a worldwide
health issue, the specific mechanisms underlying this polyneu-
ropathy are poorly defined,[31] though vascular and metabolic fac-
tors are thought to play pivotal roles.[5] As demonstrated in this
pilot study, OPUS can assess both vascular and metabolic fea-
tures of peripheral nerves simultaneously in vivo.

The sensitivity of ultrasound Doppler is insufficient to detect
blood flow in healthy nerves.[3] Increased blood flow in sagit-
tal Doppler imaging has been detected mostly in nerve patholo-
gies and is therefore interpreted as nonphysiological.[3,32] The
demonstrated high contrast of the vasa nervorum in MSOT im-
ages (see Figure 3) in healthy volunteers opens the possibil-
ity of investigating early pathological changes in the vascular
supply of nerves. Indeed, ex vivo and animal studies provide
diverse findings regarding the vasa nervorum of diabetic pa-
tients, including IV shunting, vascular occlusions, and endothe-
lial hyperplasia.[5,7] Clinical surveys have also reported reduced
perfusion of the diabetes-affected nerve, a change in microcir-
culation, and endoneurial hypoxia,[5] which correlate with neu-
rophysiological outcome. Some of the abovementioned changes
can be seen in very early stages of disease and precede functional
loss and therefore clinical symptoms.[5] Improved visualization
of the neural vasculature, thus, could give new insights into early
disease pathogenesis. In this regard, in our measurements of
healthy and young individuals, intraneural vessels were visual-
ized with good contrast, and veins and arteries could be distinctly
identified. Therefore, arterio-venous shunting and other patho-
logical changes in nerve vasculature are likely visible in MSOT.
In fact, MSOT-based oxygen saturation estimation has already
been used to detect vascular malformations.[33]
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By accessing the water and lipid contrast in peripheral nerves,
OPUS imaging can potentially identify several further changes
related to diabetic neuropathy. The associated mild nerve en-
largement, might be explained by swelling[4] due to augmented
amounts of osmotically active intracellular sorbitol,[6] whose ex-
cessive metabolism is an important pathogenic mechanism of
diabetic neuropathy.[7,34] Regarding lipid contrast, sural nerve
preparations from patients with diabetes show alterations in
myelin sheaths up to full segmental demyelination[7]; theoreti-
cally this would appear in MSOT as a decrease in OA contrast in
the wavelength range of the lipid peak. Ultimately, OPUS could
uncover potential abnormal changes that precede functional loss
and hence serve as a screening tool and follow-up examination
on diabetic peripheral polyneuropathy.

With increasing sensitivity in diagnostics, OPUS might fur-
ther elucidate or even uncover new aspects in pathological pro-
cesses. It could potentially show abnormal changes that precede
functional loss and hence serve as a screening tool and follow-up
examination on peripheral polyneuropathy. Understanding dys-
functional processes is crucial to find powerful solutions in pre-
vention and treatment, while early therapy can change the course
of most diseases profoundly.

As an imaging tool with additional contrasts that can be added
to the broadly used ultrasound, OPUS could also help clinical ex-
aminers identify nerve tissue. For example, the detection of pe-
ripheral nerves or plexi with ultrasound for surgical or invasive
treatments (e.g., regional anesthesia) is a common clinical proce-
dure. Even without being the structure of interest, visualization
is important to avoid damaging small nerves in the immediate
vicinity during invasive procedures like placing a central venous
catheter. However, in some cases, nervous tissue cannot be visu-
alized with US because of a variation in anatomy, a small size, or
poor contrast. Potential harm can arise due to poor visualization
and a subsequent lack of identification.[2] In this regard, com-
bining the demonstrated ability to extract tissue-specific features
with machine learning methods for nerve detection and segmen-
tation is a very promising approach.

While spectral unmixing of OA data has the potential to quanti-
tatively determine chromophore concentrations in tissue, several
factors limit the feasibility of this task. Spectral coloring due to
light fluence attenuation, the similarity of absorption spectra of
chromophores (e.g., melanin, collagen, and deoxyhemoglobin),
and algorithmic biases can lead to biologically implausible un-
mixing results. In general, the question of whether a contribution
of a spectral component truly indicates the presence of the cor-
responding chromophore is often not addressed in the literature
with sufficient detail. A correlation analysis as shown in Figure 5
can reveal these implausibilities and thereby help to interpret the
results, to optimize unmixing algorithms, and most importantly,
to prevent incorrect conclusions being drawn from spectral un-
mixing results. In addition, our approach to unmix the raw (ini-
tial pressure) spectra data and capture spectral coloring effects in
the unmixing components avoids the problems associated with
the unreliability of current fluence correction methods for clini-
cal optoacoustic handheld systems.

The introduced hierarchical clustering of the spectral data (Fig-
ure 6) shows that a dedicated data analysis pipeline is necessary
to assess the details in spectral contrast. A simple probabilistic
model for the unmixing coefficients allowed us to standardize

the contrasts of different spectral components and analyze their
correlations, even though their contributions to the overall con-
trast varied by orders of magnitude. The clustering in turn gives
access to these correlations on the level of specific tissues. This
rich source of information in clinical OPUS datasets is the ideal
foundation for OPUS radiomics studies.

In this pilot study, we focused on healthy individuals and
our findings suggest the possibility to detect morphological and
metabolic changes in pathologic nerves. This conjecture needs to
be investigated in further studies in patients with pathologically
altered nerve anatomy or function. Moreover, the findings need to
be correlated against existing tools including electrophysiology,
Doppler US, and MRI. A crucial limitation for this application in
neuroimaging is the low penetration depth of OA imaging. The
best contrast by far was obtained for the very superficial ulnar
nerve. While focal neuropathies in nerves that lie deeper, like the
proximal ischiadic nerve, can currently not be accessed with OA
imaging, further advances in the technology that improve image
quality deeper in tissue are anticipated and will expand its appli-
cability.

In summary, we demonstrated that OPUS is a versatile modal-
ity for peripheral nerve imaging. With its tissue-specific label-free
optical contrast of endogenous chromophores, OPUS could im-
prove nerve localization in difficult situations. Moreover, OPUS’
capacity to assess a nerve’s lipid, water and collagen contrast and
its vascular environment potentially expands the field of periph-
eral nerve imaging to a broad range of neuropathies by illumi-
nating features of nerve morphology and function that have been
hidden so far.

4. Experimental Section
Imaging Systems: Two imaging systems were used in this study: a

commercial US system for localization of the peripheral nerves and a hy-
brid OPUS system to acquire the coregistered OA and US data.

The OPUS system is a custom prototype of the Acuity Echo system
(iThera Medical GmbH, Munich, Germany); it has a tunable laser that illu-
minates tissue with laser pulses of ≈8 ns duration with an energy of 16 mJ
and a repetition rate of 25 Hz, thereby staying within the energy exposure
limits defined by the American National Standards Institute. The acous-
tic part of the system consists of a circularly curved linear US transducer
array with a 6 cm radius, 145° angular coverage, and 256 piezo elements,
which were used both for reflection-mode US imaging (≈5 MHz excita-
tion frequency) and OA detection (4 MHz central detection frequency).
The probe is filled with heavy water as a coupling medium. Acoustic sig-
nals are recorded at a sampling frequency of 40 MHz.

Hybrid MSOT and US imaging is realized with a schedule that acquires
OA data at a rate of 25 Hz, cycling through 28 different wavelengths (700–
970 nm in steps of 10 nm), while US data is acquired in between OA acqui-
sitions at a rate of 6.25 Hz. The US system is operated in a synthetic aper-
ture mode, acquiring reflection data from 256 single transducer transmis-
sion events with half the detector array receiving the response. The result-
ing data consist of multispectral data stacks that are acquired at ≈0.89 Hz
with 4 US frames acquired per MSOT data stack.

The wavelength range was selected in the NIR-I window to allow for
optimal penetration of light into tissue, while the uniform sampling in that
range was chosen to provide a good trade-off between high information
content and limited motion artifacts. This scheme was shown to provide
high-quality spectral data.[19,28]

Study Protocol: The three major distal nerves of the brachial plexus (ul-
nar, median, and radial) of 12 young healthy volunteers were investigated
with OPUS. The three nerves were imaged at two different locations of the
arm on both sides ( = 12 acquisitions per person, 144 total). Informed
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Table 2. Study cohort. Basic personal and body composition parameters.

n = 12 (8m, 4f) Age [Year] Height [m] Weight [kg] BMI [kg m−2] Bodyfat [%] Arm diameter [cm]

Mean ± std 29.1 ± 3.2 1.79 ± 0.11 71.8 ± 16.3 22.2 ± 2.9 16.0 ± 4.4 25.9 ± 2.7

Min - max 24–36 1.60–1.93 49.0–107.0 17.6–28.7 7.0–25.0 21.0–30.0

consent was obtained after the nature and possible consequences of the
study were explained. The ethics committee of the Technical University
of Munich reviewed the study and had no objections to the publication
of the data. Basic personal parameters (age, sex, height, and weight) and
data regarding body composition (BMI, body fat, arm diameter) were also
collected. The latter parameters were recorded because the amount of
body fat potentially changes the nerve tissue contrast due to the lipid-rich
myelin sheaths of nerve fibers. To avoid a distortion of the data by
varying absorption in the skin, this study was conducted exclusively with
light-skinned volunteers. For examination, the volunteer lay on a bench
facing the examiner. A summary of the study cohort is given in Table 2.

For localizing the nerves, an experienced examiner (anesthetist)
screened the arm with a commercial US device. The main peripheral
nerves were identified and localized well with US, based on their typical
appearance in US images with a reflecting outline and a honeycomb-like
contrast within. Anatomical landmarks along the progression of the nerve
were used for confirmation. Once the respective nerve was identified, the
region of interest was centered and the location marked. Snapshots of the
ultrasound image at that specific site for a first qualitative segmentation
of the nerve and to help re-identify it on the Acuity Echo US images were
taken.

After locating the nerve with the Acuity Echo US image, OA data were
acquired for ≈10 s (≈10 multispectral frames). The raw US data were ac-
quired for the last 10 recorded US frames. Because of the different features
of the Acuity Echo US and the commercial system, a qualitative segmenta-
tion of the nerve in the Acuity US image by photograph was documented.

After cleaning the data (missing data, strong motion, or other arti-
facts), a total of 135 multispectral frames were available for further anal-
ysis. Quantitative segmentation of nerve tissue was performed in the re-
constructed Acuity Echo US images by an expert using the qualitative seg-
mentations obtained during the measurements for guidance.

Data Analysis: Image Reconstruction: Both OA and US images were re-
constructed in a 4 × 4 cm field of view at the center of the detector ring
and at a resolution of 100 μm, using speed of sound values of 1397 m s−1

and 1465 m s−1 for the coupling medium in the detector cavity and the
imaged tissue, respectively.

The US images were reconstructed from the acquired synthetic aper-
ture data with a delay-and-sum algorithm after preprocessing. The
data were bandpass filtered (3–6 MHz) and processed with a spiking
deconvolution.[35] For the delay-and-sum algorithm, the time-of-flight was
determined and included the refraction of acoustic waves at the interface
between the tissue and detector cavity to achieve a correct coregistra-
tion with the OA data. Finally, the delay-and-sum data was integrated via
a mixed averaging and maximum intensity approach and logarithmically
transformed to obtain the US images.

OA images were obtained from the acquired OA signal data after
bandpass filtering (500 kHz–8 MHz), a deep-learning-based denoising
of the sinograms,[28] cropping the signals according to the field of
view, model-based reconstruction with refraction and impulse response
correction[26,27] that was regularized with both a Tikhonov regularizer to
filter out the noise due to the limited detector coverage, and a Laplacian
regularizer to counteract subresolution artifacts. The regularization pa-
rameters were determined via the L-curve.

Data-Driven Spectral Unmixing: To eliminate the influence of artifacts
(acoustic reflections below bones, noise above the detector membrane, re-
gions with bad coupling, etc.), regions of interest containing meaningful
spectral data were manually segmented, resulting in a dataset of ≈12 M
spectra. To extract the spectral contrast from this dataset, the spectra

were blindly unmixed via a non-negative matrix factorization (NMF)[36]

into nine spectral components, using mixed Frobenius and entrywise L1-
regularization. More precisely, arranging the spectra in a non-negative ma-
trix S ∈ ℝN×28, S ≥ 0, where N is the number of spectra that are consid-
ered and the second dimension contains the values at the 28 different
wavelengths, the following optimization problem was solved

(W, H) : = arg min
(W,H)≥0

1
2
‖S − WH‖2

F + 𝜆1 (‖W‖1 + ‖H‖1)

+ 1
2
𝜆F

(‖W‖2
F + ‖H‖2

F

)
(1)

where ‖M‖F := (
∑

i,j m2
i,j)

1∕2 and ‖M‖1 :=
∑

i,j |mi,j| denote the Frobenius

norm and the entrywise L1-norm of a matrix M = (mi,j)i,j, respectively, and
M ≥ 0 is an entrywise inequality, meaning that M is a non-negative matix.
The matrices W ∈ ℝN×9 and H ∈ ℝ9×28 contain the coefficients and spec-
tral components, respectively. The number of components and regulariza-
tion parameters 𝜆1 = 80 and 𝜆F = 20 were selected via parameter space ex-
ploration and meaningfulness of the resulting spectral components, yield-
ing a relative error ‖S − WH‖2

F∕‖S‖2
F of 0.72%. The strong entrywise L1-

regularization was chosen to promote a maximally sparse decomposition
of the spectra, guided by the fact that the spectral contrast of biological tis-
sue is composed by a small number of dominant chromophores. The un-
mixing was carried out using the scikit-learn implementation of NMF.[37]

To validate the performance of the NMF on initial pressure spectra,
two alternative unmixing methods were implemented: linear unmixing
with a non-negativity constraint for six literature spectra (oxy and deoxy
hemoglobin, water, lipids, melanin, and collagen) and VCA with a non-
negativity constraint for nine components. The linear unmixing was per-
formed with a non-negative linear least squares solver,[38] while the VCA
was carried out using the original algorithm[39] followed by a non-linear
least squares optimization[38] to obtain the non-negative coefficients.

In order to compare the spectral information in the segmented
nerve regions to the tissue environment, reference spectra were
sampled from the ROIs, assuming a bivariate normal distribution
 ((𝜇lat,𝜇ax), diag(𝜎2

lat
, 𝜎2

ax)), where μlat, μax and 𝜎lat,𝜎ax are the pixelwise
lateral and axial means and standard deviations of the locations of the
considered nerves. These reference spectra are sampled for each of the
nerves independently to account for the differences in the spectral envi-
ronment due to fluence at different depths and due to the specifics of the
surrounding anatomy.

Probabilistic Data Model: Based on the sparsity of the NMF, a simple
probabilistic model is proposed for the NMF coefficients that describes
whether each spectral component is present in a tissue or not. This as-
pect is realized by a probabilistic mixture model with two components for
the two corresponding situations where the respective coefficient is either
zero or non-zero. In addition, as the distributions of the non-zero parts
are strongly skewed, Box-Cox power transformations were performed to
increase the comparability of different spectral components and the valid-
ity of metrics like the Pearson correlation coefficient. Since light fluence is
thought to be a major contributor to skewness of the data, this transfor-
mation can also be seen as a partial fluence adjustment that improves the
comparability of spectra at different depths.

In summary, the categorical parts of the mixture models is modeled
for the nine spectral components via Bernoulli random variables mj ∼
Bernoulli(pj), j = 1,… , 9, where pj is the probability that the correspond-
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ing coefficient is non-zero. On the level of the mixture components, the
zero component is a deterministic variable C(0)

j ∼ Det(0), while the non-

zero component C(1)
j follows a distribution that is determined by the Box-

Cox transformation of the non-zero coefficient data with power parameter
𝛽 j, which is determined via a maximum likelihood approach.

In order to compare the coefficients of different spectral components
in an unbiased way (strong OA signal does not necessarily imply high
clinical relevance), a standardization of the mixture models was intro-
duced. Since the Box-Cox transformation results in distributions that are
qualitatively similar to a normal distribution, the variables C(1)

j were stu-

dentized to obtain variables with zero mean and unit standard deviation
C̃(1)

j ≔(C(1)
j − 𝔼C(1)

j )∕𝜎j, where 𝜎 j denotes the standard deviation of C(1)
j .

To keep the relation between very low values of these variables C̃(1)
j and the

zero values, the deterministic components were shifted to the value − 3
following the 3𝜎 rule that states that for a normal distribution, 99.7% of the
distribution lie within 3𝜎. So, the standardized deterministic components
C̃(0)

j ∼ Det(−3) are introduced, which are mixed with the components C̃(1)
j

via the unchanged categorical variables mj.
Correlation Metrics: To compare the different spectral components on

both levels of the model—the categorical and the continuous parts—
correlation metrics are calculated. To see additional differences between
nerve tissue and surrounding tissue, this correlation analysis was per-
formed for the nerve data and the sampled reference data.

As correlation metric for the categorical variables, the pairwise
Sørensen-Dice coefficient was chosen between the variables mj,

DSCj,k≔
2mj ⋅ mk

|||mj
|||
2
+ ||mk

||2
∈ [0, 1] , j, k = 1,… , 9 (2)

where the mj are interpreted as vectors, and v ⋅ w≔
∑
j

vjwj denotes the

scalar product of two vectors. The Sørensen-Dice coefficient describes the
amount of co-occurrences of two spectral components relative to the total
occurrence of the two components. High values indicate that two spectral
components usually appear together, while low values indicate that the
spectral components rarely mix.

To study the pairwise correlation between the continuous variables C̃(1)
j ,

the Pearson correlation coefficients are computed,

𝜌j,k≔

cov
(

C̃(1)
j , C̃(1)

k

)
𝜎j𝜎k

= 𝔼
[
C̃(1)

j C̃(1)
k

]
∈ [−1, 1] , j, k = 1,… , 9 (3)

where cov(X, Y)≔𝔼[(X − 𝔼X)(Y − 𝔼Y)] is the covariance of two random
variables X and Y, 𝜎 j denotes the standard deviation of C̃(1)

j and the sec-

ond equality follows from studentization. The Pearson correlation there-
fore describes how two spectral components mix when they mix: positive
values for mixtures with a more or less fixed ratio, small values for random
mixtures, and negative values for competitive mixtures.

Dimensionality Reduction and Hierarchical Clustering: To visually ac-
cess the full complexity of the spectral data set, and to investigate higher
order correlations qualitatively, the 9D standardized spectral unmixing
data were embedded into 2D space with the uniform manifold approxima-
tion and projection (UMAP) algorithm for dimensionality reduction.[40]

The binary structure of the probabilistic model leads to a hierarchical
structure in a natural way. Two spectra are in the same class if they are
composed of the same spectral components. As a metric to compare the
similarity of these classes, using the Euclidean distance between the mean
L2-normalized spectra of the clusters is proposed, which is a metric for the
similarity of the spectral shape. This approach links the class back to the
original spectral data, making the clustering transparent and interpretable.
For clustering linkage, Ward’s linkage is used that minimizes in-cluster
variance. The agglomerative hierarchical clustering was carried out using
the implementation in the Matlab function “linkage.”

For the collection of nine spectral components, this approach leads to
at most 29 = 512 leaves of the clustering tree. To compare tissues based
on this hierarchical clustering, the distribution of the spectral data of ROIs
over the found clusters was determined. This distribution is called the
spectral fingerprint of a spectral dataset. In particular, this approach gives
a means to spectrally compare nerve tissue to the surrounding tissue.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
The authors thank Robert Wilson, Gabriella Leung, and Sergey Sulima
for proofreading and improving the manuscript, and Magda Paschali for
valuable discussions. This project was received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon Eu-
rope research and innovation programme under grant agreement No
101041936 (EchoLux) and the Horizon 2020 research and innovation pro-
gramme under grant agreement No 694968 (PREMSOT). Funding. Euro-
pean Research Council (ERC), Horizon Europe research and innovation
programme, grant 101041936 (DJ). European Research Council (ERC),
Horizon 2020 research and innovation programme, grant 694968 (VN).
Open Access funding enabled and organized by Projekt DEAL. [Correction
added on July 6th, 2023, after first online publication: Projekt Deal funding
statement was added.]

Conflict of Interest
Vasilis Ntziachristos is an equity owner and consultant at iThera Medical
GmbH.

Author Contributions
D.J. and H.I. contributed equally to this work. Conceptualization: D.J., H.I.,
W.S., and F.H. Methodology: D.J., H.I., F.H., and C.D. Investigation: D.J.,
H.I., W.S., and F.H. Visualization: D.J. Funding acquisition: V.N., G.S., and
N.N. Project administration: V.N. Supervision: D.J., W.S., N.N., G.S., and
V.N. Writing—original draft: D.J. and H.I. Writing—review & editing: D.J.,
H.I., F.H., C.D., W.S., N.N., G.S., and V.N.

Data Availability Statement
The data that support the findings of this study are available on request
from the corresponding author. The data are not publicly available due to
privacy or ethical restrictions.

Keywords
neuropathy, optoacoustic imaging, peripheral nerves, photoacoustic
imaging, spectral unmixing

Received: February 27, 2023
Published online: April 24, 2023

[1] A. Tagliafico, B. Bignotti, C. Martinoli, Semin. Musculoskeletal Radiol.
2016, 20, 453.

[2] F. Mirza, A. R. Brown, Anesthesiol. Res. Pract. 2011, 2011, 579824.

Adv. Sci. 2023, 10, 2301322 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301322 (13 of 14)



www.advancedsciencenews.com www.advancedscience.com

[3] D. W. Frijlink, G. J. Brekelmans, L. H. Visser, Muscle Nerve 2013, 47,
188.

[4] N. L. Gonzalez, L. D. Hobson-Webb, Clin. Neurophysiol. Pract. 2019,
4, 148.

[5] N. E. Cameron, S. E. Eaton, M. A. Cotter, S. Tesfaye, Diabetologia 2001,
44, 1973.

[6] E. Suzuki, K. Yasuda, K. Yasuda, S. Miyazaki, N. Takeda, H. Inouye,
N. Omawari, K. Miura, J. Lab. Clin. Med. 1994, 124, 627.

[7] N. P. Gonçalves, C. B. Vægter, H. Andersen, L. Østergaard, N. A. Cal-
cutt, T. S. Jensen, Nat. Rev. Neurol. 2017, 13, 135.

[8] G. Rangavajla, N. Mokarram, N. Masoodzadehgan, S. B. Pai, R. V.
Bellamkonda, Cells Tissues Organs 2014, 200, 69.

[9] S. B. Raval, C. A. Britton, T. Zhao, N. Krishnamurthy, T. Santini, V. S.
Gorantla, T. S. Ibrahim, PLoS One 2017, 12, e0175629.

[10] G. Barisano, F. Sepehrband, S. Ma, K. Jann, R. Cabeen, D. J. Wang, A.
W. Toga, M. Law, Br. J. Radiol. 2019, 92, 20180492.

[11] S. Ibrahim, N. D. Harris, M. Radatz, F. Selmi, S. Rajbhandari, L. Brady,
J. Jakubowski, J. D. Ward, Diabetologia 1999, 42, 737.

[12] A. J. Boulton, Curr. Opin. Endocrinol., Diabetes Obes. 2007, 14, 141.
[13] R. Li, E. Phillips, P. Wang, C. J. Goergen, J. X. Cheng, J Biophotonics

2016, 9, 124.
[14] J. M. Mari, W. Xia, S. J. West, A. E. Desjardins, J. Biomed. Opt. 2015,

20, 110503.
[15] T. P. Matthews, C. Zhang, D. K. Yao, K. Maslov, L. V. Wang, J. Biomed.

Opt. 2014, 19, 016004.
[16] W. Xia, S. West, D. Nikitichev, S. Ourselin, P. Beard, A. Desjardins,

Proc. SPIE 2016, 9708, 97080C.
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