
Received: 31 May 2022 | Accepted: 19 December 2022

DOI: 10.1002/rob.22153

R E S E A R CH AR T I C L E

TUM autonomous motorsport: An autonomous racing
software for the Indy Autonomous Challenge

Johannes Betz1 | Tobias Betz1 | Felix Fent1 | Maximilian Geisslinger1 |

Alexander Heilmeier1 | Leonhard Hermansdorfer1 | Thomas Herrmann1 |

Sebastian Huch1 | Phillip Karle1 | Markus Lienkamp1 | Boris Lohmann2 |

Felix Nobis1 | Levent Ögretmen2 | Matthias Rowold2 | Florian Sauerbeck1 |

Tim Stahl1 | Rainer Trauth1 | Frederik Werner1 | Alexander Wischnewski2

1Technical University of Munich, School of

Engineering & Design, Institute of Automotive

Technology (FTM), Garching, Germany

2Technical University of Munich, School of

Engineering & Design, Chair of Automatic

Control (RT), Garching, Germany

Correspondence

Phillip Karle, Technical University of Munich,

School of Engineering & Design, Institute of

Automotive Technology (FTM), Boltzmannstr.

15, Garching 85748, Germany.

Email: phillip.karle@tum.de

Abstract

For decades, motorsport has been an incubator for innovations in the automotive sector

and brought forth systems, like, disk brakes or rearviewmirrors. Autonomous racing series

such as Roborace, F1Tenth, or the Indy Autonomous Challenge (IAC) are envisioned as

playing a similar role within the autonomous vehicle sector, serving as a proving ground

for new technology at the limits of the autonomous systems capabilities. This paper

outlines the software stack and approach of the TUM Autonomous Motorsport team for

their participation in the IAC, which holds two competitions: A single‐vehicle competition

on the Indianapolis Motor Speedway and a passing competition at the Las Vegas Motor

Speedway. Nine university teams used an identical vehicle platform: A modified Indy

Lights chassis equipped with sensors, a computing platform, and actuators. All the teams

developed different algorithms for object detection, localization, planning, prediction, and

control of the race cars. The team fromTechnical University of Munich (TUM) placed first

in Indianapolis and secured second place in Las Vegas. During the final of the passing

competition, the TUM team reached speeds and accelerations close to the limit of the

vehicle, peaking at around 270 kmh−1 and ms28 −2. This paper will present details of the

vehicle hardware platform, the developed algorithms, and the workflow to test and

enhance the software applied during the 2‐year project. We derive deep insights into the

autonomous vehicle's behavior at high speed and high acceleration by providing a detailed

competition analysis. On the basis of this, we deduce a list of lessons learned and provide

insights on promising areas of future work based on the real‐world evaluation of the

displayed concepts.

K E YWORD S

artificial intelligence, autonomous robot, dynamic obstacle avoidance, unmanned ground
vehicle, vehicle robot

J Field Robotics. 2023;40:783–809. wileyonlinelibrary.com/journal/rob | 783

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2023 The Authors. Journal of Field Robotics published by Wiley Periodicals LLC.

All authors contributed equally.

http://orcid.org/0000-0003-3223-6969
mailto:phillip.karle@tum.de
https://wileyonlinelibrary.com/journal/rob

1 | INTRODUCTION

1.1 | Motivation

Racing has been a platform for innovation since its very beginning.

Safety mechanisms, powertrain, and suspension technology as well as

tires have been improved during the past decades in several

competition formats. Recently, autonomous racing became a proving

ground for autonomous vehicle technology at the limits of its current

capabilities. The most prominent examples include the F1Tenth

racing series, Formula Student Driverless (FSD), Roborace, and the

Indy Autonomous Challenge (IAC). While each of those series has a

slightly different scope and focus, all of them target the improvement

of the used sensors, actuators, and compute platforms as well as the

development of the required algorithms, middleware, and operating

systems. The race track provides a safe proving ground for high‐

speed testing and challenges autonomous vehicles frequently with

complex scenarios.

A research team from the Technical University of Munich (TUM)

decided to participate in the IAC (Figure 1a) and the follow‐up event,

the Autonomous Challenge at CES in Las Vegas (AC@CES, Figure 1b),

in October 2021 and January 2022. Nine teams from international

universities took part in the real‐world events and competed in two

different formats: First, the target in Indianapolis was a combination

of setting the fastest lap on the Indianapolis Motor Speedway (IMS)

and demonstrating dynamic obstacle evasion capability. Second, the

event in Las Vegas was based on a head‐to‐head passing competition

with alternating overtaking attempts of two participants with

increasing speeds for each round. The TUM team finished first at

the inaugural event at the IMS and second at the AC@CES.

The competition focused solely on the development of the

required autonomous racing software stack. Therefore, all the

vehicles were based on the same chassis as well as the same sensors,

actuators, and compute platforms. It started initially with 31 teams

and a series of hackathons built around simulated racing challenges

with increasing complexity, leading up to multiple eight‐

vehicle simulation races in May 2021. Finally, nine teams were asked

to deploy their software on the vehicles starting in July 2021 and

practiced on a small oval race track, Lucas Oil Raceway, before

moving to the larger IMS and the Las Vegas Motor Speedway.

This paper introduces the approach of the TUM Autonomous

Motorsport team to tackle the competition, including the software

architecture, simulation technology, and development workflow

applied. The aim of the paper is to explain the relations and

challenges behind certain design choices within the software stack

and the respective outcomes during real‐world testing.

1.2 | Vehicle platform

The official race vehicle of the IAC is the Dallara AV‐21. It is based on

the Dallara IL‐15, which is used in the Indy Lights Series. It is

equipped with a drive train consisting of a 2.0‐L single‐turbocharged

engine and a 6‐speed sequential semiautomatic gearbox. The

retrofitting of the cars was mainly focused on the autonomous

driving capabilities. Therefore, the basic parts of the drive train and

the aerodynamic setup only received minor changes for the IAC,

resulting in a similar behavior compared with the Indy Lights Series. It

should be mentioned that the hardware platform comprising the

conventional and the automated driving parts are equal for all teams.

As a result, the performance of each vehicle in the competition solely

relies on the implemented functional autonomy software of the

teams. The autonomous driving parts are mounted in the driver's

cockpit. The perception sensors and the computing platform replace

the driver's seat, the actuation system is positioned in the footwell of

the cockpit. The installed components are listed in Table 1 and are

briefly described in the following.

The throttle, brake, and steering actuation is realized by a full

Drive‐by‐Wire‐system (DBW) by Schaeffler Paravan called SpaceD-

rive II. This embedded system consists of an electronic control unit

F IGURE 1 The TUM Autonomous Motorsport racing software driving the AV‐21 on different race tracks (Indy Autonomous Challenge, 2021).
(a) Dallara AV‐21 at Indianapolis Motor Speedway and (b) Dallara AV‐21 at Las Vegas Motor Speedway.

784 | BETZ ET AL.

and servo motors to receive braking and steering signals from the

software and to execute them fulfilling real‐time constraints. The

overlying interface is realized by a New Eagle GCM 196 Raptor unit,

which also handles the communication to the control unit of the

combustion engine and the low‐voltage power management. The

communication on the actuation side is realized via the serial bus

system Controller Area Network (CAN).

The core part of the automated driving hardware is an ×64‐based

computing platform. It is an ADLink AVA‐3501, a modified version of

the DLAP‐8000. It comes with the 8‐core Intel Xeon E‐2278GE

central processing unit (CPU) with 64 GB RAM and the Nvidia

Quadro RTX8000 graphics processing unit (GPU) with 48 GB

memory. Alongside the computing platform, a network switch

establishes the connection to the sensors for perception and

localization via Ethernet. The Global Navigation Satellite Systems

(GNSS) is realized by two dual‐antenna setups using Novatel Pwrpak

7d receivers. The perception sensor system consists of camera, radio

detection and ranging (RADAR), and Light Detection and Ranging

(LiDAR) sensors. In total there are six cameras installed, which are

positioned to enable a full surround view. Similarly, the three LiDAR

sensors are orientated in alignment to the vehicle heading and

rotated around a vertical axis to ±120∘ such that LiDAR setup also

covers in total 360∘‐field‐of‐view (FoV). The RADAR sensors are

placed at the front and on both sides at ±90∘.

1.3 | Related work

Teams with autonomous vehicles have already competed against

each other in the past. The DARPA Grand Challenge (DARPA Grand

Challenge, 2005; Buehler et al., 2007) was the first‐long distance

competition for autonomous vehicles. Participating university teams

needed to build their own vehicle and write respective software

capable of driving the car autonomously. The goal was to drive a

predefined route of over 200 km fully autonomously without human

interaction, and therefore, the vehicles needed to localize them-

selves, detect objects, and plan their path entirely on their own. As a

successor, in 2007 the DARPA Urban Challenge (Buehler et al., 2009)

presented a similar competition setup but now in an urban scenario.

Furthermore, the cars needed to obey traffic rules, negotiate with

other traffic participants to merge correctly, for example, into lanes

and finish the race within 6 h.

Since these events, autonomous driving has become more and

more relevant to the industry. New companies, like, Waymo, Zoox,

and Cruise were established to develop a fully self‐driving vehicle

that operates the car in our transportation systems. At the same time,

researchers began to use high‐performance sports and race cars for

their research purposes. This is because driving autonomously on the

race track creates a variety of challenges for the autonomous

software: localization and object detection at high speeds, trajectory

and behavior planning in an adversarial environment, and control of

the car at the dynamic limits of handling (Betz et al., 2018). The

research in this field is mainly divided into soft‐ and hardware efforts.

1.3.1 | Software

A race track typically consists of a single lane as a driveable area with

inner and outer bounds that are defined by curbs and none‐driveable

areas, like, grass and gravel. In addition, walls consisting of tires or

stone surround the track to keep the car inside the race track in case

of an accident. In the field of perception, researchers use the unique

environment of the race track to demonstrate large‐scale mapping

with fewer features (Nobis et al., 2019) as well as localization at high

speeds (Renzler et al., 2020; Schratter et al., 2021). Since the

FSD competition requires the teams to drive and localize at the same

time, the teams present Graph‐SLAM (Andresen et al., 2020; Large

et al., 2021) and Recurrent Neural Network‐based methods

(Srinivasan et al., 2020) for localization and state estimation of the

FSD vehicle. In addition, the FSD competition provides yellow and

blue cones as the race track and the teams need to detect those

cones at high vehicle speeds. As a result, particular applications of

YOLO‐based methods are used to detect the cones (Dhall et al.,

2019; Strobel et al., 2020).

In the field of path planning, authors focus on global, local, and

behavioral planning. The global planning algorithms provide an

optimal racing line for the whole race track. This racing line is the

fastest trajectory for the vehicle that needs to be followed when

there are no opponents around the car. Under specific optimization

objectives, like, minimum curvature (Braghin et al., 2008; Heilmeier

et al., 2019), minimum time (Christ et al., 2019; Pagot et al., 2020),

and minimum energy (Herrmann et al., 2019) there are a variety of

solutions to this problem. Local planning aims to achieve a high

planning horizon for recursive feasibility while avoiding opponent

TABLE 1 Overview of the automated driving parts for the
AV‐21

Component Manufacturer Model

DBW system Schaeffler Paravan SpaceDrive II

DBW interface New Eagle GCM 196 Raptor

ECU Motec M142

Power management Cosworth IPS‐32

Computing platform ADLink AVA‐3501

Network switch Cisco IE500

GNSS receiver Novatel Pwrpak 7d Receiver

LiDAR Luminar H3

Camera Allied Vision Mako G319C

Side RADAR Aptiv MRR

Front RADAR Aptiv ESR 2.5

Abbreviations: DBW, Drive‐by‐Wire‐system; ECU, electronic control unit;
GNSS, Global Navigation Satellite Systems; LiDAR, Light Detection and
Ranging; RADAR, radio detection and ranging.

BETZ ET AL. | 785

vehicles with evasive maneuvers at high speeds. There are three main

approaches for planning a local trajectory on the race track. First, the

global plan can be adjusted and modified via an additional

optimization (Kapania et al., 2016; Subosits & Gerdes, 2019). Second,

multiple dynamically feasible trajectories are sampled. On the basis of

racing‐specific cost functions, the best trajectory that avoids

obstacles is selected (Liniger et al., 2014; O'Kelly, Zheng, Jain, et al.,

2020). Third, sampling‐based methods provide an efficient but

nonoptimal technique to randomly sample the free space around

obstacles and find a possible trajectory (Arslan et al., 2017; Feraco

et al., 2020). Finally, the work in the field of behavioral planning

covers the task of planning the behavior of the car under high

uncertainty and defining interactions with noncooperative agents.

This type of behavioral planning for race cars is done either by

designing multiple cost functions with weighting and then selecting

the trajectory with the lowest overall cost (Liniger & Lygeros, 2015;

Sinha et al., 2020) or by combining the local planner with game‐

theory methods (Notomista et al., 2020; M. Wang et al., 2021).

Especially the ladder one showed the possibility of advanced cutting

and blocking maneuvers (Liniger & Lygeros, 2020) which is crucial for

the race car to succeed on the race track.

Finally, in the field of control, the goal is to handle the vehicle at

the limits and track a reference trajectory as accurately as possible:

low lateral tracking errors, low heading tracking errors, and low‐

velocity tracking errors. Another goal is to achieve high control

frequencies with the available computation hardware for real‐time

high‐speed driving. Research in this field uses an enhancement of

classical control approaches to maximize the lateral and longitudinal

tire forces (Fu et al., 2018; Kapania & Gerdes, 2015). A big part of the

research applies Model Predictive Control (MPC) methods in some

variations (Gandhi et al., 2021; Verschueren et al., 2016). The MPC

solves a finite‐time optimal control problem (OCP) and computes an

optimal sequence of vehicle state and control inputs (steering and

acceleration) based on a specific vehicle dynamics model (kinematic,

linear single‐track, and nonlinear single‐track model). Lastly, since the

autonomous race car is driving repeatably around the track for

multiple laps, it is suitable for the application of Iterative Learning

Control methods. With these data‐driven approaches, algorithms are

displayed that learn the control gap over time and apply afterward,

for example, corrective steering input, to achieve a faster lap time

(Hewing et al., 2018; Rosolia et al., 2017).

Furthermore, in addition to this classical perception–planning–

control work, many researchers are focusing on full or partial end‐to‐

end approaches that leverage the usage of deep neural networks (DNNs)

or reinforcement learning (RL) methods. The racing task provides a clear

objective function (fastest lap time) for the algorithm training and the race

track provides with its clear driveable area and one class of objects a

perfect proving ground. Researchers in this field displayed partial end‐to‐

end approaches (Lee et al., 2019; Weiss & Behl, 2020) that combine

DNNs with MPC methods to create and follow dynamic trajectories. In

addition, by using algorithms from the field of RL (e.g., Soft‐Actor‐Critic

and Q‐Learning), researchers were able to demonstrate how to train an

agent to drive fast (de Bruin et al., 2018; Jaritz et al., 2018), how to train

an agent to overtake other agents on the race track (Song et al., 2021)

and how to bridge the sim‐to‐real gap with model‐based RL approaches

(Brunnbauer et al., 2021).

1.3.2 | Hardware

Besides pure software development efforts, in the last years, various

hardware platforms for the purpose of autonomous racing have been

displayed. First, small‐scale vehicles based on remote‐controlled cars

are used to test newly developed algorithms quickly. Those vehicles

are equipped with sensors (Camera, LiDAR, and Inertial Measurement

Unit [IMU]) and computation hardware to run the autonomous

driving software. Researchers display hardware in a 1:43 scale

(Liniger et al., 2014), 1:10 scale (Balaji et al., 2020; O'Kelly, Zheng,

Karthik, et al., 2020), and 1:5 scale (Goldfain et al., 2019). The FSD

competition covers a large part of the field of autonomous small‐

scale racing. Here university teams build their own 1:1.5 racing

vehicles (Zeillinger et al., 2017) that need to drive autonomously

around the race track in various competitions. The teams use these

vehicles afterward for additional research and display both full

autonomous driving stacks (Kabzan et al., 2020; Nekkah et al., 2020;

Tian et al., 2018) as well as individual algorithm developments

(Andresen et al., 2020; Large et al., 2021).

Full‐scale vehicles are also used for autonomous racing research,

apart from these small‐scale race cars. In particular, these vehicles are

high‐performance sports cars that are used for autonomous handling

at the limits (Funke et al., 2012; Theodosis & Gerdes, 2012) or

autonomous drifting with high side‐slip angle (Goh et al., 2019;

Hindiyeh & Gerdes, 2014). In 2017, the company Roborace designed

a special autonomous race car based on a LeMans‐Prototype chassis.

This vehicle was equipped with sensors, actuation, and computation

hardware to drive autonomously around the race track. Roborace

gave interested student teams the opportunity to use this race car

which displayed research in the field of localization (Massa et al.,

2020; Zubaca et al., 2020), high dynamic path planning (Caporale

et al., 2018; Stahl et al., 2019b), software development (Betz et al.,

2019; Hermansdorfer et al., 2020), and control (Buyval et al., 2017;

Wischnewski, Betz, et al., 2019). In addition, Roborace organized

different competitions called Season Alpha and Season Beta that

consisted of single‐ and multivehicle events on various race tracks.

Finally, the IAC vehicle is the latest autonomous race car that was

designed for research and competition purposes and is further

explained in Section 1.2.

In summary, we can say that autonomous racing is an emerging

topic in the field of robotics and intelligent vehicles (Betz et al., 2022).

With the rising number of active researchers in this area providing

both software and hardware developments, the community is

constantly growing. With the setup of the IAC we see the first‐

time vehicles competing against each other at high speeds and high

accelerations—entirely autonomously.

786 | BETZ ET AL.

1.4 | Contributions and outline of the paper

In this paper, we present the efforts in the software development of

the TUM Autonomous Motorsport team for participating in the IAC.

This work builds upon (Wischnewski et al., 2022) and has four main

contributions:

1. We provide a holistic view of the software architecture and

design decisions made during the development of the TUM

Autonomous Motorsport software stack for high‐speed autono-

mous racing.

2. We elaborate on the development and testing workflow and their

impact on the achievements made during the both IAC

competitions.

3. We provide an evaluation of all developed software modules in a

full software stack. The results obtained in this full‐stack

evaluation include implications that might be hard to find in

isolated studies and research projects.

4. Finally, we share experimental results of single‐vehicle as well as

two‐vehicle racing scenarios with speeds of up to h270 km −1 and

accelerations up to ms28 −2.

The paper is structured as follows: Section 2 introduces the

software architecture and gives insights into the applied

algorithms and concepts. Section 4 describes the event formats

as well as the results and findings during these experiments.

Finally, Section 5 summarizes the learnings and conclusions from

this project. It outlines streams of future work and potential areas

of technology transfer from the race track to series production

vehicles.

2 | TUM AUTONOMOUS MOTORSPORT
SOFTWARE

This section deals with the software that the TUM Autonomous

Motorsport team developed for participation in the IAC. After the

introduction of the overall software architecture in Section 2.1 the

specific software modules are presented in the order of application in

the overall stack. Additionally, related topics such as middleware and

software latency as well as our development infrastructure consisting

of Software‐in‐the‐Loop (SiL) and Hardware‐in‐the‐Loop (HiL)

simulation are displayed.

2.1 | Architecture

The software architecture (Figure 2) employs a classical separation

into three main areas: perception, planning, and control. The

perception module leverages RADAR, camera, and LiDAR to detect

opponent vehicles. The LiDAR detection is done with two different

strategies to increase the reliability: First, a deep learning‐based

approach is utilized to classify race vehicles in the point‐cloud data.

This algorithm is specifically trained on race vehicles and shows high

detection performance. At the same time, it is prone to overfitting

and will not detect other classes of objects which might appear on

the track due to unforeseen circumstances. The second approach

aims to overcome these deficiencies with a geometric clustering

approach. Even though it takes into account basic geometric

information about the considered objects, it is capable of detecting

arbitrary classes of objects. These two main pipelines are accompa-

nied by a pipeline for camera‐based detection. It uses a bounding box

F IGURE 2 Software architecture of the TUM Autonomous Motorsport team. LiDAR, Light Detection and Ranging; TUM, Technical University
of Munich.

BETZ ET AL. | 787

approach in conjunction with a known‐height assumption for

distance estimation. While this enables large detection distances,

the transformation errors resulting from track banking and different

vehicle orientations lead to greater positional uncertainties than the

LiDAR pipelines. Finally, RADAR detection completes the set of

detection algorithms. Its main strength is the ability to measure the

velocity difference between an object and the ego‐vehicle. This

improves the transient performance of opponent velocity estimation,

which is key for reliable driving performance in highly dynamic

scenarios with limited sensor range.

The detected objects are fed into an object tracking algorithm,

which serves two purposes: The matching of already tracked objects

and incoming measurements as well as the temporal fusion of the

detections. The first task is executed by an algorithm based on the

Hungarian assignment method (Kuhn, 1955). The second task is

achieved via a Kalman‐Filter‐based approach with a constant velocity

and turn rate dynamic model. This filter creates a position history of

the fused observations for each identified vehicle on the track. This

history serves as a basis for the prediction of future behavior, which

has been implemented in two different ways: First, a physics‐ and

track‐informed prediction; second a data‐driven approach. The

resulting predictions are the most likely outcomes for the behavior

of the opponent vehicles and are handed over to the trajectory

planning module.

The trajectory planning module is based on a combination of a

sampling and a graph‐search strategy. This makes it possible to

resolve the combinatorial nature of the multivehicle planning

problem efficiently. The planned trajectory is approximately 5 s long

and has to be updated frequently to take into account new

information about the behavior of other race participants. The target

path and target velocity profile are handed over to the motion control

module which utilizes an MPC algorithm to attenuate disturbances

and optimize the coarse output of the trajectory planning to generate

smooth vehicle behavior. This is enabled via the introduction of a safe

driving tube which is assumed to be collision‐free for approximately

two times the vehicle width. Finally, the state estimation provides a

consistent estimate of the vehicle position and motion state to all

software modules. It leverages multiple localization sources (two

global positioning system [GPS] and one LiDAR localization) as well as

two IMUs to achieve reliable operation and fault tolerance.

2.2 | Localization

High precision and low latency localization is a key challenge of

autonomous racing (Lingemann et al., 2005). The sensors used for

this application are two Novatel GNSS receivers with integrated IMU

and two antennas each. One has the two antennas at the left and

right sidebox and the other has them at the nose and on top of the

main roll hoop.

In Sauerbeck et al. (2022), we introduced a localization algorithm

that uses camera images and LiDAR point clouds for ego pose

estimation. However, real‐world testing showed no benefit over a

redundant differential GNSS setup at open‐sky race tracks. The final

localization and state estimation were mainly based on a fusion of the

two GNSS signals and their IMU units. Therefore, an enhanced

version of the Kalman‐Filter approach presented in Wischnewski,

Stahl, et al. (2019) is used. This approach is based on a two‐

dimensional (2D) point mass model to represent the vehicle

dynamics. Since detailed data of the vehicle setup and the used tires

were not available, this approach can outperform approaches with a

more detailed vehicle model (Wischnewski, Stahl, et al., 2019). The

measurement quality of the two GNSS receivers was determined

empirically and the weighting of the sensors was specified

accordingly. Since the differential heading calculated from the GNSS

receiver by antenna positions does not exhibit reliable behavior, we

use a heading estimation based on the derivation of velocity, which

provides small errors when the vehicle turns. To account for the track

banking (up to 9∘ in Indianapolis and 20∘ in Las Vegas), additional

banking information is used. The used map consists of 2D track

boundaries and a one‐dimensional (1D) banking map along the race

track. Lateral differences in banking can be disregarded because

measurements proved them to be small enough. Moreover, this

avoids numerous exploitation runs. The banking information allows

the compensation of the banking in the measured accelerations and

calculate the Kalman Filter as on a plane. As shown in Equations (1)

and (2), only the lateral acceleration is compensated. a′x and a′y

denote the accelerations used for the state estimation. ax,meas and

ay,meas are the measured accelerations received from the IMU. θ s() is

the banking angle at the corresponding longitudinal track coordinate

s, and g is the gravitational constant.

a a′ = ,x x,meas (1)

a a θ s θ s θ s g θ s′ = [cos(()) + tan(()) sin(())] + tan(()).y y,meas ⋅ ⋅ ⋅

(2)

The 2D track boundaries were generated with laser scans and

known ego‐position. To obtain the 1D banking map, the residuals

from the state estimation Kalman Filter were utilized. The Kalman

Filter for localization and state estimation is implemented in Matlab

Simulink and deployed to the car via C‐code generation. It is executed

in the same process as the vehicle controller at a frequency of

100Hz.

2.3 | LiDAR preprocessing

The first step in the LiDAR object detection pipeline is the

preprocessing to reduce the number of points captured by the three

LiDAR sensors. Each unit sends raw point cloud to the LiDAR sensor

driver, where the point clouds are directly fused and transformed into

the vehicle's coordinate system. The output of the driver is a raw

point cloud covering a horizontal FoV of 360∘ and a vertical FoV of

17.5∘ and 20∘ for the sections of the front and left/right LiDAR

sensors, respectively. The front LiDAR vertical FoV is lower

compared with the left/right LiDAR sensors' vertical FoV to achieve

788 | BETZ ET AL.

a higher resolution, which can be beneficial with distant objects. With

a sensing frequency of 20 Hz, the LiDAR sensors have 32 vertical

layers. The distribution of these layers can be changed at runtime.

We use this feature to dynamically adapt the high‐density layer

region to the region of interest (ROI). Due to the track's banking, the

vertical ROI has different positions based on the location of the

vehicle on the track. On the track's straights, the ROI is centered in

front of the vehicle, whereas in the banked turns, the ROI is shifted to

the top.

The point cloud serves as input for both LiDAR detection

algorithms. Their main task is the detection of objects on the track.

These objects usually consist of only a few points in the point cloud,

and the number of points decreases significantly with increasing

distance between the vehicle and the object. As a result, only a few

points are relevant for the driving task and the rest of the points

within a point cloud should be filtered before it is passed to the

object detection algorithms. This not only increases the algorithm's

performance, but also reduces the computational load, the data

transfer times and lowers the overall latency. Hence, the vehicle can

react faster to the opponent's changes in position and orientation.

However, this comes at the cost of additional computational load and

calculation time for the preprocessing itself. Therefore it is necessary

to employ lightweight and efficient preprocessing algorithms. Since

the number of points per object is low, especially at distances beyond

50m, the preprocessing algorithms should not reduce the point

density of the relevant objects.

Given these initial constraints, we develop a point cloud

preprocessing pipeline consisting of three sequential algorithms:

conditional removal, voxel downsampling, and ground filter (Figure 3).

Each algorithm is described briefly in the following. The order of the

three algorithms is based on the algorithm's ability to handle large

point clouds with low computational load and time. The ground filter

benefits from a lower input point number as opposed to conditional

removal, which can handle an arbitrary number of points without

additional computation time.

Conditional Removal is a method to extract the relevant ROI from

a point cloud. The goal is to remove any points which are outside of

the race track, such as reflections from buildings or the stands, based

on geometric filtering. Points that meet certain criteria are labeled as

not relevant and are therefore removed from the point cloud.

Conditional removal is performed in local vehicle coordinates and no

information on the vehicle's global position is used. Hence,

conditional removal is based on the assumption that the vehicle's

heading is roughly parallel to the direction of the racing line.

Voxel Downsampling is a method to compress the information

about multiple points within a certain area into a single point. The

entire point cloud is divided into a grid with a fixed voxel size by using

an algorithm from the Point Cloud Library (Rusu & Cousins, 2011).

We use cuboid voxels of different sizes for each cuboid side. The

selection of the length, height, and width of the voxels is based on

the expected point cloud shape of the relevant objects, which are

mainly race vehicles. A voxel size of 0.15m/0.1 m/0.05m for x y z∕ ∕

reduces the number of points in close range but keeps the point

cloud structure for objects at higher distances. Beyond a threshold of

150m, the points are not voxelized. For each voxel, the average in

each x y z∕ ∕ of all points within the voxel generates a new output

point representing this voxel. In case no points are found within the

voxel, an output point is not created for this voxel. The resulting

output point cloud resembles the input point cloud with fewer points.

The Ground Filter uses a ground segmentation algorithm to

detect points belonging to the ground and filters these out of the

point cloud. The usage of a neural network trained in a supervised

fashion for this task is not an option due to the lack of a data set.

Data from a race track including banking with pointwise labels

are not available and are not feasible to create due to limited testing

time. Therefore, we employ a ray‐ground filter, based on the

F IGURE 3 Overview of the object detection
pipelines. 2D, two‐dimensional; LiDAR, Light
Detection and Ranging; RCNN, Regions‐based
Convolutional Neural Network.

BETZ ET AL. | 789

implementation of Autoware.Auto (The Autoware Foundation, 2021),

which follows the ideas of Cho et al. (2014).

We test a point cloud distortion correction algorithm based on

pointwise time stamps to remove the distortion originating from the

difference in capture time for all points within a single‐point cloud.

The effect of distortion can be seen especially at higher speeds. For

example, at a vehicle speed of m s60 −1 and a LiDAR refresh rate of

20 Hz, the vehicle moves 3m between the first and last captured

points in a single‐point cloud. Since the relevant objects travel with

roughly the same speed as the ego‐vehicle and the relative speed

difference—and therefore the distortion of these objects—is low, the

effect can be neglected. Hence, we do not actively use distortion

correction during the race.

The performance of the individual LiDAR preprocessing algo-

rithms is depicted in Figure 4. Outliers with a lower number of points,

especially at the raw input point clouds, emerge when only one or

two of the three LiDAR sensors send data, which occurs occasionally

for single time steps. Overall, the preprocessing pipeline reduces the

point cloud size by more than 80% with a total calculation time of

around 22ms, including data transfer between the algorithms.

Figure 5 illustrates the output of the three preprocessing algorithms

on an exemplary point cloud. Although the visual difference between

(b) and (c) is hard to identify, the voxel downsampling step halves the

number of points. The reduced point clouds retain the relevant

information of each raw point cloud and serve as input for the

following object detection algorithms.

2.4 | Object detection—LiDAR deep learning

For the detection of opponent race vehicles, we employ a neural

network that uses preprocessed point clouds (Section 2.3) as input.

Specifically, we select the two‐stage PointRCNN (Shi et al., 2019),

which ranked at the top of the KITTI Benchmark at the time of

selection (Geiger et al., 2012). To fit our needs for detecting race

vehicles, we modify this network as described in the following. First,

we adapt the network configuration to enable a 360∘ horizontal FoV.

Additionally, we move the reference system of the detections from

the front camera (default KITTI Benchmark) to the vehicle rear axle.

Since there is only one type of race vehicle to detect, the network

only has to predict one class. Finally, we manually fine‐tune

parameters, such as detection thresholds, for the best performance

in our use case.

The network is trained in a supervised fashion. Labeled point

cloud data sets with race vehicles were not available until our first

tests on the race track. Therefore, we use initial training data

F IGURE 4 Breakdown of the point reduction
for each LiDAR preprocessing algorithm, based on
32,568 point clouds captured during the final run of
the Autonomous Challenge at CES on January 7,
2022. LiDAR, Light Detection and Ranging.

F IGURE 5 Visualization of the three LiDAR preprocessing steps
on an exemplary point cloud. (a) Raw input 74,302 points, (b) after
conditional removal 66,585 points, (c) after voxel downsampling
29,502 points, and (d) after ground filter 11,995 points. LiDAR, Light
Detection and Ranging.

790 | BETZ ET AL.

generated in our simulator (Section 3.2). Additionally, we manually

label data recorded from the first real‐world multivehicle test

sessions. Once the network's performance reaches a satisfactory

state, that is, it detects the race car in every other point cloud, we use

it to autolabel the recorded data and supervise the results. Both

training and inference are conducted on a GPU to leverage the

benefits of parallel processing. Deployed on the race vehicle, the

network runs at a frequency of around 12 Hz.

2.5 | Object detection—LiDAR clustering

The LiDAR object detection neural network can detect only objects it

has encountered during training. Since we generate a data set

containing race vehicles only, other unstructured objects like debris

cannot be detected by the neural network. Therefore, we employ a

second object detection algorithm that can detect any kind of object

on the race track. Furthermore, this competitive pipeline comple-

ments detections from the neural network. This increases redun-

dancy in case either of the algorithms misses an object. In case both

algorithms detect the same object, even with different extends, the

output is fused in the object fusion and tracking algorithm

(Section 2.8). The pipeline is based on a classical machine‐learning

algorithm. In detail, we employ a grid‐based Euclidean‐cluster‐

extraction algorithm, which operates in two stages.

The first clustering stage is specialized to detect small clusters

within the preprocessed point cloud. Small clusters usually include

parts of a race vehicle, such as the front wing or wheels. Clusters

larger than the dimensions of a race vehicle are disregarded. In the

second clustering stage, the remaining clusters are combined into

larger clusters, ideally returning one cluster per race vehicle or object.

This stage is also followed by a threshold step, in which clusters

larger than race vehicles are not considered. This threshold step

works only as long as there is only one opponent at a time on the race

track, which was always the case during testing and the events.

Three‐dimensional (3D) bounding boxes are calculated based on the

minimum and maximum extends in x y z∕ ∕ of the points in each

cluster. These boxes are oriented in the same direction as the ego

race vehicle. The clustering algorithm runs with a frequency of 20 Hz

on one core of the CPU.

2.6 | Object detection—camera deep learning

Object detection using cameras provides additional redundancy.

However, the projection of the 3D world onto 2D images entails a

loss of information and direct detection in 3D space is not possible.

Our approach to solving this challenge is the detection in the 2D

space and subsequent recovery of the 3D information based on a

priori knowledge. In detail, we use YOLOv5 (Jocher et al., 2021) for

object detection on 2D images. The input is the image recorded by

the front camera and the output are 2D bounding boxes of all

detected objects on the input image. The recovery of the object's 3D

information, that is, the relative x and y distance to the ego‐vehicle, is

based on a pinhole model of the camera. Using the intercept

theorem, the distance dobj of the object to the camera is a function of

the camera focal length f , the 2D bounding box height pixel count n

(assuming a known pixel size), and the real race vehicle height h

d
fh

n
= .obj (3)

We calculate the rotation of the object around its vertical axis

using the ratio of the bounding box width and height and compare

this to the known width‐to‐height ratio of the real race vehicle. The

resulting rotation angle estimate is not unique, that is, the object can

be rotated to the left or right with the same angle. On the basis of the

position of the oval track, one of the two solutions is more likely. We

also experimented with predicting the rotation angle directly using

YOLOv5 with an additional output per predicted bounding box, but

the results were inferior to the rotation estimation from the width

and height ratio.

2.7 | Object detection—RADAR

The RADAR detection pipeline (Figure 3) extends the set of

perception algorithms with an additional and independent object

detection method to further increase the functional safety of the

vehicle. The main benefit of this pipeline is the utilization of the

RADAR sensor's ability to directly measure the relative velocity of the

opponent vehicle via the Doppler effect. In addition, the RADAR

sensor represents the sensor with the highest detection range on the

straights and therefore enables early object tracking with an accurate

speed estimation. However, the RADAR sensor is limited to a

maximum of 64 detections per cycle and is subject to a high number

of false positives. Therefore, a dedicated RADAR processing pipeline

had to be developed to deal with these challenges.

The main purpose of the RADAR processing pipeline is the

filtering of the input data to extract the objects of interest from the

surroundings. The applied filter separates the incoming objects, based

on their absolute velocity, to isolate the dynamic objects from the

static environment. To achieve this, a threshold‐based filter is used

and tuned for a racing application. Finally, the filtered objects are

transformed to the vehicle frame and stored within an object buffer

to supply the downstream modules with a fixed frequency of 20Hz.

2.8 | Object fusion and tracking

This section outlines the software module of object fusion and

tracking. For more detailed information about the fusion and tracking

task, the reader is referred to Z. Wang et al. (2020). The object fusion

handles multiple object lists that originate from different perception

pipelines. Ultimately, this algorithm combines the given information

to output a unified object list. As Figure 2 reveals, the perception

pipelines work independently from each other and output individual

BETZ ET AL. | 791

object lists. This late fusion approach allows us to incorporate a

variable number of perception pipelines without any dependencies.

This is especially beneficial to conduct real‐world tests with basic

perception pipelines in the absence of rich data to train and develop

more comprehensive algorithms. The object tracking addresses the

estimation of the detected objects' dynamic states, which is realized

by the Extended Kalman Filter (EKF; Jazwinski, 1970) based on a

Constant Turn Rate and Velocity (CTRV)‐model. An important feature

to realize this is the matching between previously estimated objects

and new objects provided by one of the perception pipelines.

Figure 6 outlines the module sequence, which is described in the

following.

Input to the module is both the dynamic vehicle ego‐state and the

perception input. The latter one consists of an object list i and a sensor

time stamp Ti per perception pipeline. Our implementation is parame-

trized with m = 4 perception pipelines but is capable to scale up to an

arbitrary number of pipelines. Depending on the applied algorithm and

sensor the object states in the object list contain distinct variables. Due to

the fact that the modules are not synchronized and the individual

perception pipelines have different cycle times, the number of received

objects lists varies. The perception input is processed sequentially,

starting with the object list having the oldest sensor time stamp. The

object list has to be transformed from the local vehicle coordinates to a

global coordinate system, which is used for tracking, prediction, and

trajectory planning. In this step, a yaw estimation based on the orientation

of the track's center line is added in case the heading is not given by the

respective perception pipeline. By this, the state estimation can be

enhanced. The coarse assumption is handled by a high measurement

uncertainty in the EKF update step.

Next, plausibility checks are conducted in two stages. In the first

stage, multiple detections of a single object are merged which

prevents multiple tracks of the same object. This is realized by kd‐

tree clustering (Maneewongvatana & Mount, 1999) and a fixed

distance threshold for the cluster distance. In the second stage, we

reduce the number of false positives with a map‐based filter. This

removes all objects which are outside the global track boundaries and

is necessary due to the reflectivity of the pit and track wall.

The filtered object list is input to the object matching, which is

based on the Hungarian Method (Kuhn, 1955). This combinatorial

optimization algorithm solves the data association problem of the

given old object list from the previous time step and the new object

list. The applied cost function is the pairwise distance between n old

and m new objects, which are assigned in an n m× ‐matrix. With the

constraint of a maximal valid matching distance, the solution of the

assignment problem can result in the following cases:

• New unmatched object: There are more new objects than old

objects (n m<) or matches are classified as invalid and the new

object remains unmatched if the matching distance is above the

threshold. The new unmatched object is assigned with a unique ID

and a status counter is set up. Additionally, the CTRV‐model in the

state estimation module and object storage are initialized.

• Old matched object: There is a valid match between an old and a

new object. In this case, the ID of the old object is assigned to the

new one. The status counter is increased, an update step of the

EKF is conducted and the resulting state correction is added to the

object storage.

• Old unmatched object: There are more old objects than new objects

(n m>) or matches are classified as invalid and the old object

remains unmatched if the matching distance is above the

threshold. The old unmatched object's status counter is decreased

and the object storage is updated with the estimated state as no

measurement update step is possible.

The idea of the status counter is to define the number of

perception inputs without detecting a tracked object before it is

discarded. A status counter is initialized with a positive integer for

each new unmatched object. In case the object is matched by the

next perception input (old matched object), the counter is increased

by X iup, . Otherwise, if the object is not matched (old unmatched

object) the counter is decreased by X ilow, . If the status counter

reaches 0, the object is removed from the storage and is not tracked

anymore. The values for X iup, and X ilow, are positive integers and

depend on the perception pipeline i. The value of the status counter

F IGURE 6 Overview of object fusion and tracking. CTRV, Constant Turn Rate and Velocity; EKF, Extended Kalman Filter.

792 | BETZ ET AL.

is limited by a maximal value Xmax. By this, it is ensured that an object,

which was successfully matched multiple times, is still removed

quickly after it has not been detected anymore. The parameterization

of the counter values depends on the sensitivity and specificity of the

perception pipelines and the trade‐off between recognizing objects

preferably early when they enter the sensor range and discarding

them if they are not detectable anymore.

The state estimation runs with a filter step size of 10ms, which

means that during each cyclic call of the module the forward

integration of the EKF estimation step is executed multiple times. By

this, the linearization error of the EKF remains within the tolerance.

All estimation steps are stored in the object storage to ensure an

equidistant sampling rate. However, the respective entries are

replaced by the corrected position after a successful match and

related EKF update. The CTRV‐model is an appropriate choice for our

use case of autonomous racing. On the one hand, the yaw rate is

essential to accurately estimate the objects' motion in turns at high

speed. On the other hand, the estimation of the acceleration is prone

to oscillations. So we attempt to reflect this trade‐off in the

complexity of the model. The states of the tracked objects are

stored in the object storage, which is a deque of 3 s with 100 Hz

resolution. Each state comprises the 2D‐position (x and y), the

orientation in the global coordinate system (headingΨ), the speed v ,

and the yaw rate Ψ̇.

For reliable object tracking at high speeds the consideration of

delays resulting from the sensors and the perception algorithms is

essential. The implemented delay compensation handles this task

with a backward–forward iteration within the object storage during

the object matching and the update step of the EKF. The backward

iteration occurs before the object matching takes place. On the basis

of the received sensor time stamp, the existence of objects in the

object storage at the given time is checked. These historic object

states including the ego‐state are applied for the transformation and

matching procedure. In case of a successful match, the state

estimation is corrected at the given sensor time stamp and the

corrected state is iteratively predicted up to the ego time stamp. New

unmatched objects, which are initialized at the outdated perception

time stamp are also iteratively predicted up to the ego time stamp.

With this concept, the implemented delay compensation enables the

synchronization of the tracked object states with the ego time stamp

while still considering delayed perception inputs up to 200ms and is

one of the core features to enable high‐speed multiobject racing.

2.9 | Prediction

There are some key aspects in which prediction in autonomous racing

differs from that on public roads: First, the vehicles are in direct

competition with each other. While all participants want to avoid a

collision, they are not necessarily cooperative, but competitive.

Second, there are no intersections, lanes, or traffic rules. While the

absence of intersections or forks initially simplifies the prediction

task, this task is complicated by the absence of traffic rules and lanes.

This ultimately leads to situations where the lateral uncertainties of

predictions take up the entire width of the race track because a wide

variety of driving and behavior patterns are possible with the same

initial situation. Third, multiple laps are run on the race track. So

similar situations appear several times during a race and can be used

as valuable information for future predictions. In the following, we

will briefly present our approach to the trajectory prediction of

adversarial vehicles, returning to these particular aspects. Current

approaches in vehicle trajectory prediction are classified into three

different categories (Karle et al., 2022): physics‐based, pattern‐based,

and planning‐based. Our approach incorporates components from all

three of these categories. The prediction model is based on the

following input data: a tracked object list (Section 2.8), an ego‐state

tracked over time (Section 2.12), and map information (Section 2.2).

As output, a most likely trajectory for each vehicle on the track is sent

to the planning module (Section 2.11) in the form of time‐dependent

x y− positions over a time horizon of 5 s with a sampling rate of 5 Hz.

We also incorporate uncertainties with a bivariate Gaussian distribu-

tion for every local point.

We build our approach on an long short‐term memory (LSTM)‐

based encoder–decoder architecture. This network encodes the

states of the predicted vehicle, as well as the track boundaries with

LSTM layers. Unlike common approaches for road traffic (Messaoud

et al., 2021), we avoid using an image‐based map representation due

to the simple track geometry, and instead make use of a much more

efficient way by processing the left and right boundary similar to the

ego‐state history in a vector representation. The different input

streams are fused by concatenation in the latent space. In contrast to

previous work (Deo & Trivedi, 2018), we do not use LSTM decoders

that generate corresponding time‐dependent points as trajectories.

The use of LSTM decoders has the definite disadvantage that the

predicted trajectories are often physically infeasible and leave the

track, for example. Hence, we extend this purely data‐based

approach to include physical knowledge: We identify basic trajec-

tories that completely cover the output space of predictions by linear

combination. Consequently, the neural network directly learns not

the time‐dependent positions, but weighting factors for the base

trajectories; we call this mixture of data‐based and physical

approaches MixNet, which is discussed in further detail in Török

et al. (2022). Furthermore, to make use of observations from past laps

in similar situations we investigated an additional online‐learning

approach (Geisslinger et al., 2022), which adopts the weights in a

neural network according to an observation loss. However, due to a

lack of robustness (and the inability to recognize specific objects),

eventually, we did not incorporate this online learning in the final

software stack.

We also want to account for interactions on the race track in the

sense that each vehicle's behavior does not depend only on its past

states and the track boundaries, but also on the other vehicles

around. This can be solved by learning interactions from a data set in

the neural network, but the solution requires vast amounts of data

from interactive scenarios. To account for the interaction of different

vehicles (including the ego‐vehicle) in our prediction network, we

BETZ ET AL. | 793

modify the predictions with a subsequent planning‐based approach.

For this purpose, we first predict each vehicle, including the ego‐

vehicle, independently. The predictions are checked for collisions and

only if a predicted collision occurs are the trajectories modified. On

the basis of the racing rules, which are similar to those of Formula (1),

we make the simplifying assumption that the rear vehicle must react

to the leading vehicle and adjust the prediction of the rear vehicle

accordingly. To do this, we utilize fuzzy logic to decide whether an

overtaking event will occur and whether it will occur on the left or

right side.

We also use a priori quality measures of our MixNet predictions,

which are described in Török et al. (2022). Once a quality measure

exceeds a certain threshold we fall back to a simplified, naive

prediction. In this naive prediction, we use a constant velocity profile

originating from the object tracking (Section 2.8) and assume that the

vehicle will hold its line in terms of lateral positioning between the

left and right boundaries. This simple, but effective approach proved

to be sufficient for the passing competition at the AC@CES

(Section 4.2).

2.10 | Global planning

The global planning module builds upon the work of Christ et al.

(2019). Their work describes an OCP to solve a minimum lap time

problem for an autonomous race car, which is transcribed into a

nonlinear program via direct orthogonal collocation. The OCP is

formulated using the CasADi modeling language (Andersson et al.,

2019), and subsequently solved using the Interior Point OPTimizer

(Wächter & Biegler, 2006).

The optimization problem to be solved minimizes the achievable

lap time tl ,

∫ ∫t
t

s
s

nκ

v ξ β
smin =

d

d
d =

1 −

cos(+)
d ,

S S

l
0 0

Σ Σ

(4)

while simultaneously adhering to the constraints stemming from the

driving dynamics of the vehicle, which we describe as a nonlinear

double‐track model. With this, we can ensure that the realistic

vehicle dynamic behavior is captured—especially the nonlinear

behavior of the tires. The traveled distance s along the reference

line is used as the independent variable. The race track geometry is

described by the curvature profile κ v, denotes the velocity on the

racing line, n the lateral distance to the reference line, β the side‐slip

angle, and ξ the relative angle of the vehicle to the tangent on the

reference line. For further details on the formulation of the OCP and

the constraints we refer the reader to our previous work in Christ

et al. (2019).

2.11 | Local planning

The main task of the local planning module is to generate a trajectory

that guides the vehicle through the local dynamic environment. Since

the racing scenario requires the car to adapt quickly to new

circumstances, the local planner should provide an updated trajectory

every 150ms. The trajectory should follow the global racing line from

Section 2.10 whenever possible and be collision‐free in multivehicle

scenarios. The inputs for the trajectory generation are the map of

the race track, the global racing line, the current state estimation, and

the predicted behavior of the surrounding race cars. After generation,

the trajectory is sent to the subsequent control module. Since the

MPC‐based controller reoptimizes the trajectory, the planning module

also provides a collision‐free corridor around the planned path serving

as a constraint for the reoptimization. The state estimation is not

directly used as a starting point for the planning step but is projected

onto the trajectory planned in the previous step. The starting point is

calculated from this projected state by interpolating along the last

planned trajectory to the average calculation time. This interpolation

step avoids jumping trajectories across multiple planning steps and

ensures consistent motion planning.

Our trajectory planning approach is a combination of a sampling

and a graph‐based method. The spatiotemporal graph used is

structured in layers perpendicular to a reference line using the

curvilinear Frenét coordinates s, the longitudinal progress along the

reference line, and d, the lateral displacement (Figure 7b). The spatial

part of the graph is constructed according to Stahl et al. (2019a) and

consists of spatial nodes (black points) distributed on the layers and

spatial edges (gray lines) connecting the nodes. Since a search in the

spatial graph alone cannot solve the combinatorial planning problem,

the spatial nodes are extended by the time and velocity dimensions.

Instead of using discrete values, we cover the reachable times and

velocity with continuous intervals as in McNaughton et al. (2011),

resulting in spatiotemporal nodes (cells of the grids). The spatio-

temporal edges (red, green, and black lines) are trajectory sections

connecting these spatiotemporal nodes within the layers. After

generation, each spatiotemporal edge is associated with a cost.

The planning step consists of two parts depicted in Figure 7: The

short‐term planning step (STPS) and the long‐term planning step

(LTPS). While the STPS creates connecting edges from the start state

(blue point) to the next graph layer, the LTPS performs a subsequent

graph‐search within the successive layers. Due to the update

frequency of the local planning module a trajectory is not driven

completely, so that the part generated by the STPS is mostly the part

driven. Therefore, the main task of the STPS is to generate multiple

finely planned spatiotemporal edges close to the driving limits. In

contrast, the LTPS fulfills the requirement for a sufficient planning

horizon by performing a coarse graph‐search. This enables the

planning module to react earlier to curves and other race cars. With a

long planning horizon, the LTPS thus leads the STPS with a shorter

horizon to ensure recursive feasibility.

Within the STPS, a set of spatiotemporal edges from the start

state to the next layer is created using a polynomial approach and

sampling various end conditions in Frenét coordinates. Similar to the

planning concept for traffic scenarios in Werling et al. (2012), we use

quartic polynomials in both lateral and longitudinal motion, as this

allows for fast computation of variable and finely planned trajectories

794 | BETZ ET AL.

for a short horizon. However, in contrast to the mentioned approach

for traffic scenarios, it is necessary to embed the polynomials in the

graph structure. For the edge to reach the next layer with the

individual heading angle of the spatial node, the longitudinal end

position and both end velocities must be specified accordingly.

Besides these adaptions, the edges must also comply with the more

demanding race scenario in terms of performance. Since an additional

sampling of the end acceleration would increase the computation

time too much, we use an iterative process to determine only one

acceleration end condition for each spatial node and end velocity

combination. A detailed description of the STPS and its impact on the

overall race performance and safety can be found in Ögretmen

et al., 2022.

Beginning at the spatiotemporal nodes connected to the start

state by the edges of the STPS as exemplarily shown for one node in

Figure 7b, the LTPS performs a search in the spatiotemporal graph. It

generates edges connecting spatiotemporal nodes of the following

layers until the desired planning horizon is reached. In general, a

spatiotemporal node can be reached with multiple paths through the

spatiotemporal graph, ending in the time and velocity intervals of the

node (blue squares). Each path has a total cost which is the sum of the

edge costs along the path beginning at the start state. Instead of

expanding all reached states with edges to the next layer, only the

end state of the cheapest path ending within the intervals is used as

an initial state for further expansion from the considered node. This

procedure follows the principle of dynamic programming and not

only reduces the number of nodes by the use of intervals, but also

prevents the exponential growth of the number of edges to be

generated with an increasing planning horizon. As in McNaughton

et al. (2011) we sample constant accelerations along the spatial edges

to create the spatiotemporal edges. This is shown in Figure 7b,

simplified with one acceleration (green) and one deceleration (orange)

profile applied per spatial edge. Instead of an exhaustive search that

proceeds from layer to layer, we perform a search based on Dijkstra's

algorithm (Dijkstra, 1959) which is suited for graphs that are built

during the search and often referred to as uniform‐cost search. This

algorithm makes it possible to go back in layers and expands only the

node with the cheapest path to reach it. While the uniform‐cost

search retains optimality in terms of our cost function, it requires

significantly fewer edges to be generated in our application, reducing

the computation time by a factor of three compared with an

exhaustive search. Another major advantage is that the search can be

interrupted if it approaches an upper calculation time limit. In this

case, we select the—at this stage—cheapest available path through

the graph that satisfies the planning horizon and still obtain a

suboptimal solution. A detailed description of the graph‐search and

the following cost function is provided in Rowold at el., 2022.

The costs of the edges determine the vehicle's behavior and

must be carefully chosen to achieve safe driving on the one hand and

competitive racing on the other hand. Our cost function consists of

four terms, each serving a different behavior. The first term penalizes

the deviation from the global racing line to reach fast laps in single‐

vehicle scenarios. A second term penalizes the deviation from the

target speed provided by the racing line or by rules. For multivehicle

racing, a prediction cost term ensures that certain lateral and

longitudinal distances to other vehicles are kept and that overtaking

maneuvers are initiated in time. Ellipses cover proximity regions to

the predicted opponents to be avoided and provide a fast calculation

for a distance measure. Finally, the fourth term penalizes the

curvature for avoiding abrupt steering at high speeds. The curvature

term especially comes into play in multivehicle scenarios and

smoothes out overtaking maneuvers.

(a) (b)

F IGURE 7 Overview of the short‐term and long‐term planning steps for the local trajectory planning. (a) Short‐term planning step (STPS) and
(b) long‐term planning step (LTPS).

BETZ ET AL. | 795

Besides high costs preventing spatiotemporal edges from being

further considered in the search, edges can be sorted out completely.

First, the edges from both the STPS and the LTPS have to be feasible in

terms of maximum curvature, engine power limits, and velocity‐

dependent combined acceleration limits on the vehicle level so that the

subsequent controller can find a reoptimized solution. Edges that exceed

the limits—stored and accessed with lookup tables—are sorted out.

Second, edges have to be collision‐free. To determine a collision, we

follow a hierarchical approach starting with oriented bounding boxes of

the underlying spatial edge and ending with the exact geometry of the

vehicle. Since the prediction becomes more uncertain with an increasing

planning horizon, we introduce a collision‐checking horizon for which the

prediction is confident. Only edges that collide within this horizon are

sorted out. A sufficient distance to the predictions for the rest of the

trajectory, and thus recursive feasibility, is ensured by the prediction cost

term. Since the edges from the STPS are mainly affected by the hard

collision checks and not many behavioral options are available at this

stage, there is a risk that no collision‐free solution is available. In this case,

we perform soft collision checks and allow colliding edges with an

additional distance cost term to lead the vehicle out of the proximity

region as quickly as possible.

Additionally, the local trajectory planner generates an emergency

trajectory for safety reasons. Both local and emergency trajectories

are sent to the control module in every planning step. The emergency

trajectory decelerates on the path of the actual trajectory to

eventually reach a safe state at standstill. It utilizes the full potential

of the tires in terms of combined acceleration.

2.12 | Motion control

The motion control module is responsible for the determination of

appropriate throttle, steering, and brake commands based on the

planned trajectory. This includes feed‐forward as well as feedback

actions. The controller is structured as a three‐layer concept

(Figure 8a), with the highest layer utilizing a Tube‐MPC with a

limited friction point‐mass model, an extension of a previous work

(Wischnewski et al., 2021). This layer handles deviations in the

position and velocity. The middle layer consists of independent

proportional‐integral like controllers for the lateral and longitudinal

accelerations. They serve the task of matching the vehicle dynamics

with the assumptions in the Tube‐MPC as well as handling model

inaccuracies in the utilized feed‐forward control laws. The third layer

adds a low‐level feedback loop for the steering actuator to ensure

tracking with zero steady‐state error and prevent negative impacts of

this subsystem on the higher‐level control loops.

The second task of the motion control module is the reoptimiza-

tion of the planned trajectories. Instead of applying a classical

tracking control scheme, the cost function of the Tube‐MPC is

designed so that the lateral motion is mainly influenced by the driving

tube constraints (Figure 8b) and not via a tracking target. This enables

smooth driving behavior at the limits of handling, even though the

graph‐based local trajectory planner uses a rather coarse discretiza-

tion to ensure frequent updates to the local target trajectory.

However, this requires some changes to the classical MPC concept: A

nominal MPC would exploit the limits aggressively, which might lead

to constraint violation in the presence of disturbances or uncertain-

ties. The proposed Tube‐MPC replaces the prediction of the nominal

model behavior with a set of predictions of potential uncertain

outcomes (bold orange lines in Figure 8b). This leads to a closed‐loop

behavior that applies caution towards the end of the prediction

horizon, as the optimizer requires that all constraints are fulfilled for

the uncertain predictions rather than for the nominal prediction only.

The motion control software was developed using Simulink and a

custom C‐code integration of the numerical solver OSQP (Stellato

et al., 2020). The deployment was done via code generation from

Simulink and the addition of Robot Operating System 2 (ROS2)

interfaces via a custom wrapper node. The software runs the main

cycle of the module with a frequency of 100Hz and handles

incoming data via asynchronous callbacks. As the AV‐21 does not

have a dedicated real‐time control ECU, we utilized real‐time

scheduling priorities and CPU isolation (to ensure that only specific

processes or threads are scheduled on certain CPU cores) to achieve

reliable execution times on the Ubuntu‐based ×64 computer.

(a) (b)

F IGURE 8 Overview of the motion control algorithm based on Tube‐MPC. (a) Internal motion control structure and (b) driving and
uncertainty tubes. MPC, Model Predictive Control.

796 | BETZ ET AL.

2.13 | Middleware and latency

Our entire software stack is based on the middleware ROS2 Galactic. For

Data Distribution Service (DDS) implementation we rely on the open‐

source Eclipse Cyclone DDS version. For the development and deployment

of the software stack, the principle of virtualization using Docker is

applied. Here, every module corresponds to a Docker image that is

launched via Docker Compose either on the vehicle or in the simulation

environment. The usage of a Docker container is advantageous for

deployment and versioning. The isolation especially ensures that software

dependencies and requirements are not in conflict with other modules.

Each container is based on an operating system (OS) base image, in our

case we use Ubuntu 20.04. The running containers share a kernel with

the OS of the vehicle computer. A CPU isolation was set up to ensure the

computation of time‐critical modules on specific cores. Using Docker

Compose as an orchestrator each module or service can be allocated to a

certain percentage of core usage.

The communication between the software stacks' modules is

designed asynchronous. The default option in ROS2 for the data

history is set to 10. As we work asynchronously, we do not make

use of historical data and only use the most recent message.

Therefore, the queue length of the message buffer is set to 1. The

reliability of the quality of the service profile is set as follows: For

sensor data, recent data are used at the expense of losing some,

to achieve as fast as possible processing. Thus, all communication

interfaces to sensors are set to best effort. Furthermore, it is

necessary to ensure that the communication between modules is

set to reliable, meaning that the whole data package is delivered.

Due to the asynchronous character of the software, small delays

in communication can occur. These delays result from communi-

cation between modules with different cycle times. Nevertheless,

this feature provides a benefit. It enables flexibility within the

development process of the modules, which is of importance for

the overall project progress.

The software stack has no real‐time behavior as the specific modules

have no fixed runtime deadlines. Many modules are developed using

Python, whereas time‐critical algorithms are based on compiled C/C++

code. Table 2 provides an overview of the cycle time of the respective

modules. The average end‐to‐end latency from the sensor output to the

controller output results in 305.21ms with a standard deviation of

36.40ms for the clustering pipeline. For the RADAR pipeline an average

end‐to‐end latency of 177.51ms with a standard deviation of 21.33ms

occurs. Additionally, an actuator latency of 60ms on average needs to be

added to the software runtime, which can be approximated from the

controller's target and actual values. All previously mentioned settings are

based on the final race at the AC@CES.

3 | SOFTWARE DEVELOPMENT

3.1 | Parameter optimization and SiL testing

Important tasks in the development of autonomous race cars

at the handling limits are the validation and testing of the

software stack. To ensure robust vehicle behavior before

testing the software on the real vehicle, two test phases are

introduced: SiL and HiL testing. The SiL simulation environment is

a fast way to test and validate the software stack. The test

environment can be run on the developers' workstations. Some

limitations arise in this environment from the fact that the

perception and localization module cannot be tested. Their

reliability and robustness are examined by the HiL simulator or

by recordings on the real vehicle. SiL is ideally suited for software

stability analysis and the investigation of predictive and planning

behavior. Especially when testing vehicle behavior for rule

consistency, the SiL has shown significant advantages in reducing

the time investment of the developer and in increasing software

reliability. Errors in the setting of race rules can be identified and

corrected. The overall testing workflow concept can be seen in

Figure 9.

In total, there are nine different stages in the test procedure.

Usually, modified software is reviewed by the developer.

As a further verification step, the collaboratively developed

software is tested automatically through our own Continuous

Integration/Continuous Development (CI/CD) pipeline. This

pipeline checks the module for general errors in the code. In

addition, a detailed test run of the entire software is performed

every night. This creates a time‐based performance history of the

software based on defined Key Performance Indicators (KPIs).

Differences, for example, in the computing time of the modules,

can be detected quickly so that they can be addressed in the

development process in a short time. Lap time and success rate

are generally the most important objectives. Predefined scenarios

are tested in the pipeline. Each scenario is evaluated in terms of

successful completion. The further the vehicle gets, the better

the score of the optimization run. In the event of failure, the

scenario provides information about possible weaknesses in the

software.

TABLE 2 Statistical overview about
the main module execution times display
in ms.

module Mean Std Minimum 25% 50% 75% Maximum

Clustering 89.05 22.45 0.33 85.63 94.09 100.64 258.76

Prediction 4.84 2.48 51.86 3.04 4.31 6.31 18.15

Planning 103.80 14.83 71.84 95.66 105.14 109.32 237.46

Control 6.43 2.44 1.43 4.33 6.80 8.83 11.28

BETZ ET AL. | 797

3.1.1 | Testing environment

The scenarios correspond most closely to real driving situations when

opposing vehicles are on the track. Therefore, we use an additional

module in the SiL to generate opponent vehicles. The generated

dummy objects can follow a defined trajectory. For a more realistic

simulation of the objects, it is possible to add noise to the object's

perceived trajectory. A scenario catalog is defined to test the

software under a variety of circumstances automatically. In addition

to the performance tests, the software is also tested for emergency

scenarios. For this purpose, a tool was developed that triggers an

automatic error within a module in random situations. To simulate

this, a single software module is disabled via Docker so that there is

no further communication between that module and the rest of the

software. The software must be able to bring the vehicle to a safe

stop while complying with defined safety criteria.

3.1.2 | Automatic parameter optimization

When the software is working correctly, it needs to be optimized to meet

the requirements of the racing scenarios. For this reason, we have

developed an optimization tool that automatically searches for suitable

module parameters. We use Nevergrad for gradient‐free optimization of

the parameters (Rapin & Teytaud, 2018). The tool has proven to be

particularly helpful in optimizing the parameters of the planning module.

Suitable cost terms of the graph planner can be determined quickly. The

optimization process can be seen in Figure 10.

F IGURE 9 Overall testing workflow. CD, Continuous Development; CI, Continuous Integration; HiL, Hardware‐in‐the‐Loop.

F IGURE 10 Optimization workflow. LRZ,
Leibnitz Rechenzentrum.

798 | BETZ ET AL.

The optimization is executed on the LRZ Compute Cloud

(Leibnitz Rechenzentrum, 2022). Different simulations can be

executed simultaneously. A test‐based population size adaptation

method proved to be a suitable optimization algorithm since we

simulate in a nondeterministic, noisy environment (Hellwig & Beyer,

2016; Liu & Teytaud, 2019). After a few hundred iterations, good

results can be obtained. The gradient‐free optimization leads to fast

results, but due to the noisy nondeterministic environment, no global

minimum can be guaranteed. The target value of the optimization is

the average lap time. The misbehavior of the vehicle, such as

exceeding acceleration limits, is incorporated into the lap time. If the

vehicle leaves the track or causes a crash, the run is considered to

have failed. In this case, the maximum distance traveled within the

scenario can be used to evaluate the performance. In the next step,

the parameters can be confirmed on the (HiL) simulator and the

race car.

3.2 | HiL testing

To allow a quick and agile software development, testing, and

integration workflow, a sophisticated simulation environment

was developed. It enables testing of deployment‐ready software

independent of the vehicles and external factors. The use of such

simulation environment is a crucial element for successful

participation in the challenge. Beyond the SiL simulation intro-

duced in Section 3.1, we developed a HiL simulation fulfilling the

needs of autonomous racing. The setup is shown in Figure 11.

This environment allows simulating one full‐stack AV‐21 includ-

ing perception and sensors and up to nine competitors with the

whole software besides perception (prediction, planning, and

control). The ego‐vehicle computer is a consumer desktop

personal computer (PC) with specifications similar to those of

the computer in the real Dallara AV‐21. The other vehicles are

represented by computers with a comparable CPU and no GPU. A

Speedgoat Performance machine is responsible for calculating the

vehicle dynamics of all vehicles in real‐time. Therefore, a double‐

track model was developed and implemented in Matlab Simulink.

The 3D scene with all vehicles and the track model is calculated

and rendered on a GPU server. With the Unity engine, sensor

models for LiDARs and cameras are realized to enable full‐stack

closed‐loop simulation. All generated data (rosbags and internal

software logs) are automatically saved on a cloud storage. A

visualization and operation PC allows easy access to all compo-

nents of the HiL setup and quick analysis of the runs.

To make the transition and changes from the HiL to the real car

as smooth as possible, the whole ROS2 interfaces and the state

machines of the AV‐21 are integrated into the simulation. During

switching from the real car to the HiL, the only code change that has

to be made is using custom drivers for cameras and LiDARs. This also

allows the integration of the race control and base station interfaces

as on the actual cars.

Basic GNSS and RADAR models are integrated into the vehicle

dynamics simulation and sent to the vehicle computers via user

datagram protocol (UDP). The sensor drivers convert the UDP

streams to ROS2 messages and publish those. For cameras and

LiDARs, more detailed models were developed in the Unity

environment. The virtual cameras are based on a pinhole camera

model to render the environment and other cars from the same

perspective as the real cameras. The LiDAR model is based on

raycasting. Resolution and scanning patterns are adjusted to the

Luminar LiDARs, deployed on the real vehicle, and can easily be

adapted to any other LiDAR. The model incorporates noise, can

handle transparent structures, and calculates intensity based on the

surface color when material information is missing. The implementa-

tion of the scanning pattern also results in motion blur, which is

especially important at higher speeds. Figure 12 shows a real and a

synthetic point cloud from our simulator.

F IGURE 11 Overview of the TUM HiL architecture. GPU, graphics processing unit; HiL, Hardware‐in‐the‐Loop; LiDAR, Light Detection and
Ranging; RDP, remote desktop protocol; SSH, secure shell; TUM, Technical University of Munich; UDP, user datagram protocol.

BETZ ET AL. | 799

4 | EVENT ANALYSIS

4.1 | Indianapolis—Indy Autonomous Challenge

The IAC on the IMS on October 23, 2021 set out to be the first race

showcasing fully autonomous race cars. In the lead‐up to the race

were multiple simulation challenges during the year of 2021 where

multivehicle racing between the software stacks of the different

teams could be shown.

The race format was as follows (Energy Systems Network, 2021):

Each team can show up to two runs. Whether a second run can be

performed depends on the performance in the first run. The first run

is divided into a high‐speed part and an obstacle avoidance part. In

the high‐speed part, the teams were given an out lap, two warm‐up

laps, and two high‐speed laps. The track layout is displayed in

Figure 13. Following the fast laps, two obstacles blocking opposite

sides of the track must be avoided. The obstacles were placed at a

random position on the start/finish straight at a longitudinal distance

of 100m. If the vehicles avoid these obstacles at a speed of ms28 −1,

the run is considered successful. The average lap time over the two

high‐speed laps determined the ranking position after the first run.

The three teams with the fastest averaged lap times and a successful

pass of the obstacles advanced to the second and final run. In the

final run, a total of four warm‐up and two high‐speed laps were given.

The starting order was determined by the ranking of the first run. The

team with the fastest averaged lap time over the two high‐speed runs

wins the competition.

Pushing into new speed ranges for autonomous vehicles brings

both difficulties and learnings. When the speeds were noticeably

increased during test sessions it could be observed that an important

assumption of the used vehicle dynamics simulation could not be

met. In the speed range up to ms60 −1 it proved to be difficult to get

the tires up to their nominal operating temperature. Warm‐up rates

<8°C/lap and maximum tire core temperatures of 50°C showed that

it would be difficult to reach the optimal tire temperature range of

80–100°C. This proved to be challenging since the tire data for fitting

the tire model of the simulation is naturally recorded in warm

conditions. The simulation as a means to estimate the vehicle

performance limit is therefore subject to an unknown uncertainty in

tire data. Therefore, to further increase the speed, an exploratory

approach with small speed increases on the track was chosen. This

example illustrates the advantages of a robust design of the

algorithms to deliver a good performance even under uncertainty

or disturbances. It should also be noted that despite the focus on the

software side in this challenge, conventional vehicle performance

aspects should not be overlooked.

With increasing speed, it could additionally be observed that at

the exit and entrance of the 90∘ turns, there were increasing

challenges in the tracking of the lateral dynamics. The lateral

accelerations required by the trajectory could no longer be built up

F IGURE 12 Comparison of real and synthetic point cloud. (a) Real point cloud from the AV‐21 and (b) synthetic point cloud from the TUM
HiL. HiL, Hardware‐in‐the‐Loop; TUM, Technical University of Munich.

F IGURE 13 Map of the Indianapolis Motor Speedway. The track
length is 4023m with a banking of 9∘ throughout the turns.

800 | BETZ ET AL.

and reduced at the desired rate. Analysis showed that this happened

due to latencies at the steering actuator itself and on the signal path

to the steering actuator, a shortcoming which was partly compen-

sated for the Vegas event with the steering controller proposed in

Section 2.12. Additionally the tire was increasingly operating in the

nonlinear range, and the factors of tire run‐in length and the yaw

inertia of the vehicle became more relevant. To remedy this, the

global trajectory of the vehicle was modified and optimized towards

reduced curvature change rates. With this new global trajectory, the

vehicle no longer arrives at the corner entry on the outer side of the

track, but moves to the center. The vehicle then pulls outward in a

swerve and finally moves towards the apex in a manner comparable

to a classic racing line as shown in Figure 14. This behavior is

mirrored at the exit of the turn. This is similar to a racing line often

chosen by human IndyCar drivers, because it decreases the necessary

yaw accelerations and therefore maximizes the combined usable tire

grip for lateral acceleration.

The test period was essentially completed without the occur-

rence of collisions or loss of control. Internal errors could mostly be

detected by the internal self‐monitoring and safety stops were

initiated. Once a loss of control could not be prevented by the

software and an incident occurred during an attempt to increase the

top speed driven up to that point. At a corner entry speed of ms61 −1,

the car spun 360° at the exit of Turn 1 and came to a stop just before

leaving the track boundary on the short chute betweenTurns 1 and 2.

The analysis found multiple root causes:

• At the beginning of this testing day, the parameterization of the

turbocharger was changed for all the cars to achieve the nominal

engine performance for the event, which noticeably increased the

available boost pressure. The response time of the turbocharger

resulted in the throttle control starting to oscillate up against the

turbocharger inertia. At low speeds, this is not noticeable because

of the lower torque requests, but at speeds around ms60 −1, it

became apparent that the throttle requests oscillated between

40% and 60%, resulting in ECU internal boost requests changes

from 0% to 100%. This was strongly affecting vehicle dynamics

and resulted in longitudinal acceleration oscillations of ms±2 −2

with a frequency of 0.5 Hz.

• Just before the spin, the input of the state estimation did not

receive an update of the GPS position for several cycles. Due to

cumulative integration errors of the estimation by acceleration

sensor data only, a stepwise correction of the lateral error

occurred when the GPS signal was received again.

The cause of the spin can be explained by the combination of the

two reasons. On the one hand, the vehicle is generally closer to a

vehicle‐dynamically unstable state in the phases in which the drive

torque is decreasing. On the other hand, the abrupt correction of the

lateral error caused an additional excitation of the controller, which

increased the steering angle. This led to a situation with lift‐off

oversteer which was favored by the increasing steering request.

Since the software is conceptually not capable of counteracting

oversteer but has the sole goal of fulfilling lateral deviation

constraints, the described situation could no longer be solved

adequately and resulted in a 360∘ spin. For future work, this

highlighted the importance of a control module with the ability to

stabilize unstable driving situations if the vehicle dynamic limit range

is to be further exploited.

Another similar spin occurred on the vehicle of the contending

team of PoliMOVE. As a consequence and in consultation with the

organizer, some setup adjustments were made to all cars. The

aerodynamic and mechanical balance was shifted by adjustments to

wing angles and antiroll bar configuration in favor of improved grip

for the rear axle to provide a greater stability reserve in comparable

situations. In addition, the turbocharger parameterization was

changed to ensure a linear torque delivery across the engine speed

range. On the vehicle software side, the P‐gain of the lower‐level

longitudinal acceleration controller was reduced to decrease the

oscillation tendency of the accelerator pedal request.

On race day, the potential of the car could be shown. At a

temperature of 12°C and cloudy conditions both runs could be

finished successfully. In the first run, an average lap time of 69.7 s

and an average speed of ms58.4 −1 could be reached. This was

F IGURE 14 Comparison of the racing lines. A
classic racing line in blue, replaced by a curvature
change minimized racing line in light blue. Due to
smaller curvature gradients, the necessary rates
of change for lateral acceleration and yaw rate to
run the latter trajectory could thus be reduced
by 38%.

BETZ ET AL. | 801

enough for the provisional second place and thus for a place in the

final. In the second run, an average lap time of 66.2 s was achieved

with an average speed of ms61.5 −1. The speed and lateral

acceleration diagrams of the two runs can be seen in Figure 15a.

The challenge in the trade‐off between speed and risk was, on

the one hand, the unknown tire performance at tire temperatures

below optimum. On the other hand, a limiting factor was the level of

development from a hardware and software perspective achieved up

to that point. This becomes particularly evident in the plot of the

lateral deviation. Especially at the entry and exit of turns, lateral

deviations of up to 1m were reached. This reaches the constraints of

the lateral deviation in the optimization problem of the MPC. If the

lateral deviation increases to more than 1m, the aggressiveness of

the controller behavior increases significantly due to the controller

design as proposed in Wischnewski et al. (2021). A lateral deviation

of >1m is still manageable, but the risk increases disproportionately

above this. In Figure 15b it is shown that the maximum lateral

deviation during the second run was >1.03m.

With additional testing data, higher speeds would have been

possible at the expense of higher lateral deviation. Due to the limited

testing time and the unknown velocity regime, it was decided to go

for a balanced compromise between velocity and risk according to

the motto “To finish first, first you have to finish”. In the end this

secured the first official win of the inaugural edition of the IAC which

came with a Grand Prize of one Million USD.

4.2 | Las Vegas—autonomous challenge at CES

The Autonomous Challenge at the CES 2022 (AC@CES), the second

major event, took place on January 7, 2022 at the Las Vegas Motor

Speedway (Figure 16). The event's focus was the autonomous

overtaking of two competing vehicles, that is, a dual‐vehicle

competition. The race rules were defined as follows: The leading

vehicle was the defender and was obligated to maintain a fixed speed

with a tolerance of ±5%. Besides that, the defender had to stay on

the inner side of the race track to prevent arbitrary blocking

(a)

(b)

F IGURE 15 Analysis of vehicle dynamics and controller performance at the IAC. (a) Speed and lateral acceleration: in the second run, the
speed was set to m s67 −1 on the straights and m s61 −1 during the turns and (b) lateral path deviation: even though the speed in the second run
was faster the lateral deviation did not increase. The reason for this was the higher gains of the low‐level acceleration controller which got
returned in between the runs. IAC, Indy Autonomous Challenge.

F IGURE 16 Map of the Las Vegas Motor Speedway. The track
length is 2410m with a banking of 20∘ in the turns.

802 | BETZ ET AL.

maneuvers. The trailing vehicle, the attacker had the task to conduct

a successful overtaking maneuver against the defender within a given

overtaking sector. To ensure that the attacker had a fair chance to

overtake, some prerequisites must be fulfilled before the overtaking

sector is entered. These were the target speed of the defender and

the maximum distance threshold between attacker and defender at

the start of the overtaking sector. During the overtaking the cars had

to respect an exclusion zone around the vehicles, defined in a lateral

and longitudinal direction. A match between two opponents followed

predefined target speeds starting from ms28 −1 with degressive

steps. The roles of attacker and defender switched after every

successful overtaking maneuver. The target speed was increased to

the next step as long as both vehicles were able to overtake. Hence,

the team that failed first to overtake lost the match. The final event

of the AC@CES was scheduled with single performance runs to

evaluate the seeding based on the fastest single lap time and the

main competition consisting of the described dual‐vehicle challenge

with two semifinals and one final run. From the technical point of

view, the following aspects were our focus in preparation for the

race:

• Adaption of the global map to the new race track with the

challenge of a higher banking angle.

• Improved adaptation of the controller to the vehicle hardware to

enable higher speeds and accelerations.

• Adjustment and fine‐tuning of the perception pipeline for banking

areas and fusion of multiple modalities.

• Optimization of the cost function in the local planning module for

safe but aggressive overtaking behavior.

The global map and the resulting racing line had to be adjusted to

the race track geometry, which provided a higher banking angle. We

could benefit from the experience we made in Indianapolis and by

this could release a first valid draft of the map and racing line before

the first test week. However, we faced again challenges in the ego‐

state estimation due to our 2D representation on a 3D track. By

projecting the acting forces into the plane it was possible to handle

this issue. To implement this transformation, knowledge of the

location‐dependent road banking angle is required. Due to the

significantly higher banking compared with Indianapolis, it turned out

that a precise banking map is required to enable accurate localization.

Since it was not possible to measure road banking directly, such a

banking map could only be obtained by an iterative improvement.

The residuals of the state estimation served as metrics for the

evaluation. In the future, a 4+ degrees of freedom (DOF) state

estimation should be used instead of a 3 DOF one to realize a more

robust estimation.

To mitigate the problems described in Section 4.1 at the entry

and exit of turns, the performance of the steering actuator was

identified as the main cause after examining the data. In particular, a

remaining control deviation in the steering angle and slow dynamics

in the steering angle rates were noticed. The reasons for this were a

missing steering servo which increases the load on the actuator and

that the current controller of the actuator only uses a P‐controller.

This led to the implementation of a cascaded steering angle controller

described in Section 2.12 to mitigate the mentioned problems. The

performance of the steering controller is presented in Figure 17.

The tuning of the perception pipeline together with object fusion

and tracking was another major task in the preparation for the dual‐

vehicle competition. Especially to realize a reliable detection range

along the whole race track with varying banking angles was

challenging as the vertical FOV of LiDAR and RADAR are quite

narrow. In the case of the LiDAR we could solve this issue on the

hardware side by adjusting the vertical high‐density FOV along the

s‐coordinate on the track (Section 2.3). The setup is optimized for

high sensor ranges on the straights with a tight opening angle and a

comprehensive FOV with a bigger opening angle at the entrance and

inside the turns to be able to detect vehicles on parallel lanes. Due to

the high influence of the positioning before the overtaking maneuver,

the ability to measure an object's velocity and a high sensor range of

the RADAR comes into play. Due to the fact of a fixed opening angle,

we optimized the RADAR perception on the software side. To cope

with the high number of false positives we adjusted the filter

algorithm to process the RADAR data as described in Section 2.7.

Additionally, the status counter in the fusion and tracking module

(Section 2.8) was adjusted to count individually per sensor depending

F IGURE 17 The cascaded steering controller in real‐world operation. “target” marks the steering angle that is requested by the controller.
“request” denotes the signal calculated by the steering controller that is sent to the actuator. “actual” shows the sensor signal that is reported
back by the actuator. It can be seen that through the implementation of the steering controller the steady‐state steering angle deviations can be
compensated in order that “actual” matches “target”.

BETZ ET AL. | 803

on the ego‐object‐distance. By this, we could track objects with

higher distances more stable due to the weighted priority of the

RADAR. If the object comes closer and is detectable by the LiDAR,

the weighted counting is changed in the way that the effective

sensitivity of the RADAR is decreased. In combination, the speed

measurement and initialization of an object could be realized at high

distances, but the robustness against false positives within the short

range is not deteriorated.

An overview of the three event runs of the qualification,

semifinal, and final is given in Figure 18. After the qualification run

and a win in the semifinal due to a crash of the competing vehicle, the

final event was held with the pairing of PoliMOVE and TUM

Autonomous Motorsport. In the final event, we achieved a top speed

of ms74 −1 during an overtake maneuver. However, at the next target

speed step as a defender, our software triggered an emergency brake

because the vehicle got unstable and oversteered on the straight at

the moment when the attacker passed us. The reason for the

unstable behavior was a false positive detection that led to an object

predicted to cross our trajectory and a respective maneuver by the

local trajectory planner. The whole combination of events will be

discussed in the following.

The perception input was stable during the initialization of

the overtaking maneuver, that is, when the vehicle was behind

and near us, it was properly tracked over 5 s in total. Some false

positives occurred, but none of them were tracked more than the

single step they occurred. As the attacker advanced on the outer

line at an angular position of −60∘ in relation to the ego‐heading a

high delay of 200 ms occurred in the LiDAR perception pipeline

due to a high amount of reflections. Considering that the

matching is distance‐based it gets worse with high speed and

high delay, which was the case in this step. The estimated

position based on the CTRV‐model had a significant yaw rate and

by this, the position of the vehicle was forward integrated to the

inside of the track such that the maximal matching distances did

not hold anymore. As a consequence, a new object was initialized

on the outer line. However, the old object was still kept in the

object storage and its position was further estimated because its

status counter was at the maximum value. The estimated position

drifted towards the inner racing line of the ego‐vehicle up to the

point that the object was directly at the ego‐position. The

resulting prediction caused high costs due to object collision for

the inner lines of the graph. Hence, an evasion maneuver was

planned to the right, that is, to the outer side of the track. At this

point, another factor came into play. The acceleration limits did

not consider the varying banking angle along the track and

especially did not consider the dependency of right and left turns.

So the evasion trajectory was calculated based on the maximal

positive banking angle in the turns but was indeed executed with

a negative banking angle (right turn) on the straight. In

combination with a slight deceleration, the tire limits at the rear

axle were violated and it got unstable, which led to a spin. To sum

it up, the major factors for the emergency brake were:

1. The perception delay caused by a high amount of reflection in the

LiDAR pipeline.

2. The fix maximal matching distance and the fix status counter

based on number of (non)detections, which did not reflect the

actual uncertainty depending on the object's speed and percep-

tion delay.

3. The missing spatial dependency of the acceleration limits in the

trajectory planning to evaluate the driveability of trajectories

more precisely.

F IGURE 18 Speed and lateral acceleration of the fastest laps and the following half lap at the AC@CES. Run 1 marks the single‐vehicle
qualification run with a constant speed of m s70 −1. After crossing the start/finish line at 2444m the vehicle backs off. The second run was held
with TII EuroRacing as a competitor. Around 500m it can be seen that the vehicle is closing the gap to set itself up for the overtake. The overtake
started inTurn 4 around 1850m as the vehicle increased the speed. Due to a crash of the vehicle of TII EuroRacing at the end of the overtake, no
further speed increase was achieved. The maximum lateral acceleration during the overtake is ms28 −2. Run 3 represents the final run against
PoliMOVE. The vehicle closes the gap at a later stage and the process takes longer because of the higher aerodynamic resistance at higher
speeds. The maximum speed achieved during this overtake is m s74 −1.

804 | BETZ ET AL.

4. The missing consideration of the curvature rate (correlation with

lateral jerk) in the cost function of the trajectory planning to

prevent high curvature changes.

All the factors were known before but were approved to resolve

trade‐offs with other performance indicators. It becomes obvious

that the sum of small weak spots can result in such a situation if the

car is close to its handling limits. However, the collected data of

sensors and ego‐vehicle's interactive behavior are of high value to

further improve the software as the insights serve as specific starting

points for future development steps.

5 | DISCUSSION

5.1 | Evolutionary software stack development

The interdisciplinary research group TUM Autonomous Motorsport

started its participation in autonomous racing events in early 2018

with a demonstration of high‐speed single‐vehicle behavior on the

Berlin Formula‐E circuit in conjunction with Roborace. Afterward, the

software stack and simulation capabilities were extended to multi-

vehicle scenarios and close‐to‐human lap‐time performance on the

same vehicle platform in 2019. On the basis of these developments

and achievements, the software stack displayed in this paper for

participation in the IAC competitions was created. The evolutionary

development of the software stack provided the chance to reuse

modules and rethink some software components that needed to be

developed from scratch again. Furthermore, the evolutionary

development provided the change to replace old software modules

with more powerful ones. For example, while in the Roborace

competition, classical control approaches for path and velocity

tracking were chosen, in the IAC, the more advanced technology of

Tube‐MPC was used. Building upon the previous knowledge allows

the comparison between methods, evaluation of their performance,

the integration of more aggressive algorithms that can handle the car

at the dynamical limits and ultimately leading to the software stack

displayed in this paper.

5.2 | Lessons learned

5.2.1 | Autonomous software design guidelines

This software stack was designed to handle multivehicle racing

scenarios with various opponent vehicles and is scalable depending

on the available computational resources. The primary design

guidelines were: First, a modular and comprehensive software

architecture that can handle racing and other autonomous driving

challenges. Second, early and extensive full‐stack testing in simula-

tion to determine the influence and sensitivity of particular

algorithms on the overall software level and fast iteration through a

solid CI and testing framework. Third, robust real‐world performance

via the proactive consideration of uncertainties and failures in each

algorithm. In addition to achieving those goals, we benchmarked the

proposed architecture and the developed algorithms under realistic

conditions, which led to several important insights shaping our

current and future research strategy. The holistic approach to these

research challenges allowed us to generate further insights and

learnings.

5.2.2 | Autonomous racing as an operational design
domain (ODD)

An important design decision for many developers is the specification

of an ODD. While it allows focusing on specific aspects of the

problem, this strategy often leads to a crucial pitfall: Many algorithms

are prone to complete failure if the assumptions made within the

ODD are slightly violated. Examples of this are hard constraints in

motion planning or model‐predictive‐control algorithms. While this

does not lead to severe issues in isolated applications and bench-

marks, the inherent uncertainties (either caused by sensor input

noise, inaccurate model assumptions, or numerical issues) propagat-

ing through the software stack will almost certainly lead to frequent

issues with algorithms crashing or becoming infeasible. Therefore, it

is of paramount importance to understand the behavior of the

algorithms when the ODD is violated to a certain extent and ensure

that the response remains reasonable, for example, via the introduc-

tion of soft constraints. The violation of predefined domain

assumptions must also be considered during the concept phase by

choosing generic and robust algorithms. Even though a lower module

performance in contrast to more specific and overfitted algorithms

might occur, at first sight, the robustness pays off in the long run

when it comes to real‐world applications with the mentioned

uncertainties and overall software integration. Additionally, a valid

safety concept to handle module failures is essential to ensure safety

on the one hand and on the other hand to enable the integration of

new features while still having a fallback option in case of ODD

violations.

5.2.3 | Model fidelity versus software performance

There exists a counterintuitive relation between increasing model

fidelity and the increase in overall software performance. The low

complexity of the algorithms leads to a software stack that has

difficulties adjusting to the behavior of other vehicles on track or

other deviations from the internal assumptions. There are two ways

to counteract this issue: The first, probably the more common, is the

introduction of more complex models of reality. However, this almost

certainly leads to an increase in computational costs and, therefore, a

decrease in update rate. This might lead to worse overall perform-

ance, even though the utilized model improves accuracy as the higher

latency strongly influences the opportunity to react adequately in

dynamic situations. The second strategy is to keep the complexity

BETZ ET AL. | 805

and related computational costs of particular models low and

optimize the overall software latency. Upgrades to more complex

models are strictly prioritized by the model's influence on the overall

software performance, that is, bottlenecks must be identified a priori.

This strategy has proven promising during our development;

however, it is much harder to measure or evaluate as it strongly

depends on the test cases and performance indicators. This finding

emphasizes the importance of overall software stack performance

rather than measuring KPIs of individual algorithms. Consequently,

early integration and standardized testing are of high relevance to

ensure the compatibility of new features and to track the progress of

the overall software performance.

5.2.4 | Data‐driven algorithms

Data‐driven algorithms are prone to a chicken‐and‐egg problem.

Their use relies on the availability of data, which is hard to acquire

in an autonomous vehicle when the acquisition requires the

desired capability to be available. While this issue is often

circumvented via human test drivers, drones, or other data

collection equipment, this will challenge especially research

groups, and smaller companies as their access to realistic data is

limited. A potential way of tackling this issue is the gradual

introduction of data‐driven strategies with increasing capabilities

of the software stack. When the software stack initially uses

classical algorithms, the utilization of data‐driven algorithms can

increase and improve the software stack with increasing maturity

and data availability. For this, the design of a modular architec-

ture is required to continuously integrate new features but still be

able to run the complete software for testing and data collecting

purposes. In addition, synthetic data generation in a versatile

simulation framework of sensor and vehicle dynamics simulation

is crucial. If these techniques are used, training of deep‐learning

models and parameter tuning of complex algorithms can take

place a priori to real‐world operation and can continue to be

conducted during the development phase.

6 | CONCLUSION AND FUTURE WORK

This paper presented the autonomous racing software stack

developed by TUM Autonomous Motorsport. We displayed the

content of the individual software modules capable of multivehicle

racing at high speeds and high accelerations. It was demonstrated

that the software drives close to the Dallara AV‐21s limit by peaking

at around h270 km −1 and ms28 −2. Furthermore, by developing a

dedicated testing and development pipeline, we created a robust and

advantageous software that is tested in various simulations and real‐

world racing competitions. The experiences and learnings during the

application of this software stack at the IAC allowed us to identify

crucial further research directions to enable safe autonomy in the

future:

First and foremost, the transfer of algorithms and knowledge

among different domains of autonomy has to be improved. While

autonomous racing with one or two vehicles is a reasonable proving

ground, we see a strong need to increase the complexity of these

challenges to align with the problems faced in urban and highway

scenarios. An essential part of this is racing more than two vehicles

simultaneously to prove the algorithms' interaction awareness and

scalability. As this strategy increases the risk of vehicle damage, we

identify a strong need for improved open and freely accessible

resources for virtual development. Open‐source projects like CARLA

are promising but have not been adopted on a wide scale in these

large competitive projects.

Second, the thorough handling of uncertainties (and their

multimodal nature) through the whole software stack will be an

essential part of increasing the safety of autonomous vehicles. While

promising approaches for independent algorithms such as object

detection, prediction, and planning are available, these parts must be

combined and evaluated as a full software stack. This will be

especially challenging from a computational complexity point of view.

It seems necessary that these holistic approaches employ significant

parallelization of their workload, either via an increased number of

CPU cores or the employment of GPU‐based calculations.

Third, the development workflow has to be considered as an

active research direction rather than an industrialization challenge.

The safe and efficient deployment of autonomous vehicles in various

applications will depend heavily on the ability of companies to iterate

quickly to generate learnings on their approach while having safety

requirements complying with all guidelines and highest standards.

This especially includes the software development workflow,

requirements specification, testing scenario design, and holistic

tracking of algorithm performance from a virtual, single algorithm

level up to the full software stack.

Lastly, it remains to keep working towards a free racing format

and increase the complexity of the race situations. The era of

autonomous racing is relatively new, but we already see the benefit

of gaining new insights for research and development, which are

transferable to further autonomous applications. The goal is to enable

multivehicle races on road courses and oval tracks. The required rules

should be minimized such that they ensure the basics of safety and

fairness but should support a dynamic, interactive, and free racing

style. Both the rule format and the track selection led to the

development of generic and robust software stacks highly correlated

to software for autonomous driving on public roads.

ACKNOWLEDGMENTS

We want to thank the Indy Autonomous Challenge organizers, Juncos

Hollinger Racing, and all other participating teams for the countless

efforts to make the Indy Autonomous Challenge and all of those

experiments with multiple full‐scale autonomous racing vehicles possible.

Furthermore, this project was made possible with the generous support

and contributions of the basic research funds of the Technical University

of Munich and several private donors and sponsors. Open Access funding

enabled and organized by Projekt DEAL.

806 | BETZ ET AL.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available

in TUM—Institute of Automotive Technology at https://github.com/

TUMFTM.

ORCID

Phillip Karle http://orcid.org/0000-0003-3223-6969

REFERENCES

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B. & Diehl, M. (2019) CasADi—
a software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, 11(1), 1–36.

Andresen, L., Brandemuehl, A., Honger, A., Kuan, B., Vodisch, N., Blum, H.,
Reijgwart, V., Bernreiter, L., Schaupp, L., Chung, J.J., Burki, M.,
Oswald, M.R., Siegwart, R. & Gawel, A. (2020) Accurate mapping and
planning for autonomous racing. In: 2020 IEEE/RSJ international

conference on intelligent robots and systems (IROS). IEEE.
Arslan, O., Berntorp, K. & Tsiotras, P. (2017) Sampling‐based algorithms

for optimal motion planning using closed‐loop prediction. In: 2017
IEEE international conference on robotics and automation (ICRA). IEEE.

Balaji, B., Mallya, S., Genc, S., Gupta, S., Dirac, L., Khare, V., Roy, G.,

Sun, T., Tao, Y., Townsend, B., Calleja, E., Muralidhara, S. &
Karuppasamy, D. (2020) DeepRacer: autonomous racing platform
for experimentation with sim2real reinforcement learning. In: 2020
IEEE international conference on robotics and automation (ICRA). IEEE.

Betz, J., Wischnewski, A., Heilmeier, A., Nobis, F., Hermansdorfer, L.,

Stahl, T., Herrmann, T. & Lienkamp, M. (2019) A software
architecture for the dynamic path planning of an autonomous
racecar at the limits of handling. In: 2019 IEEE international

conference on connected vehicles and expo (ICCVE). IEEE.
Betz, J. Wischnewski, A. Heilmeier, A. Nobis, F. Stahl, T. Hermansdorfer, L.

Lohmann, B. Lienkamp, M. 2018 What can we learn from autonomous
level‐5 motorsport? Pfeffer P. 9th international munich chassis symposium

2018 Wiesbaden Springer Fachmedien Wiesbaden 123–146
Betz, J., Zheng, H., Liniger, A., Rosolia, U., Karle, P., Behl, M., Krovi, V. &

Mangharam, R. (2022) Autonomous vehicles on the edge: a survey
on autonomous vehicle racing. IEEE Open Journal of Intelligent

Transportation Systems, 3, 458–488. Available from: https://doi.org/
10.1109/OJITS.2022.3181510

Braghin, F., Cheli, F., Melzi, S. & Sabbioni, E. (2008) Race driver model.

Computers & Structures, 86(13–14), 1503–1516.
Brunnbauer, A., Berducci, L., Brandstätter, A., Lechner, M., Hasani, R.,

Rus, D. & Grosu, R. (2021) Model‐based versus model‐free deep
reinforcement learning for autonomous racing cars.

Buehler, M., Iagnemma, K. & Singh, S. (Eds.) (2007) The 2005 DARPA

grand challenge. In: Springer tracts in advanced robotics, 2007 edition.
Berlin, Germany: Springer. CoRR, abs/2103.04909. Available from:
https://arxiv.org/abs/2103.04909

Buehler, M., Iagnemma, K. & Singh, S. (Eds.) (2009) The DARPA urban
challenge, Springer tracts in advanced robotics, 2010 edition. Berlin,

Germany: Springer.
Buyval, A., Gabdulin, A., Mustafin, R. & Shimchik, I. (2017) Deriving

overtaking strategy from nonlinear model predictive control for a
race car. In: 2017 IEEE/RSJ international conference on intelligent

robots and systems (IROS). IEEE.
Caporale, D., Venturini, L., Fagiolini, A., Pallottino, L., Settimi, A.,

Biondo, A., Amerotti, F., Massa, F., Caro, S. D. & Corti, A. (2018) A
planning and control system for self‐driving racing vehicles. In: 2018
IEEE 4th international forum on research and technology for society and

industry (RTSI). IEEE.
Cho, S., Kim, J., Ikram, W., Cho, K., Jeong, Y.‐S., Um, K. & Sim, S. (2014)

Sloped terrain segmentation for autonomous drive using sparse 3d
point cloud. The Scientific World Journal, 2014, 582753.

Christ, F., Wischnewski, A., Heilmeier, A. & Lohmann, B. (2019) Time‐
optimal trajectory planning for a race car considering variable
tyre–road friction coefficients. Vehicle System Dynamics, 59(4),
588–612.

DARPA Grand Challenge. (2005) The grand challenge. Defense Advanced
Research Projects Agency. Available from: https://www.darpa.mil/
about-us/timeline/-grand-challenge-for-autonomous-vehicles

de Bruin, T., Kober, J., Tuyls, K. & Babuska, R. (2018) Integrating state
representation learning into deep reinforcement learning. IEEE

Robotics and Automation Letters, 3(3), 1394–1401.
Deo, N. & Trivedi, M.M. (2018) Convolutional social pooling for

vehicle trajectory prediction. In: IEEE computer society conference

on computer vision and pattern recognition workshops, 2018‐June,
pp. 1549–1557.

Dhall, A., Dai, D. & Gool, L.V. (2019) Real‐time 3D traffic cone detection
for autonomous driving. In: 2019 IEEE intelligent vehicles symposium

(IV). IEEE.
Dijkstra, E.W. (1959) A note on two problems in connexion with graphs.

Numerische Mathematik, 1, 269–271.
Energy Systems Network. (2021) Indy Autonomous Challenge powered

by cisco final competition rule set.
Feraco, S., Luciani, S., Bonfitto, A., Amati, N. & Tonoli, A. (2020) A local

trajectory planning and control method for autonomous vehicles

based on the RRT algorithm. In: 2020 AEIT international conference of

electrical and electronic technologies for automotive (AEIT automo-

tive). IEEE.
Fu, M., Ni, J., Li, X. & Hu, J. (2018) Path tracking for autonomous race car

based on G–G diagram. International Journal of Automotive

Technology, 19(4), 659–668.
Funke, J., Theodosis, P., Hindiyeh, R., Stanek, G., Kritatakirana, K.,

Gerdes, C., Langer, D., Hernandez, M., Muller‐Bessler, B. &
Huhnke, B. (2012) Up to the limits: autonomous Audi TTS. In:
2012 IEEE intelligent vehicles symposium. IEEE.

Gandhi, M. S., Vlahov, B., Gibson, J., Williams, G. & Theodorou, E. A.
(2021) Robust model predictive path integral control: analysis and
performance guarantees. IEEE Robotics and Automation Letters, 6(2),
1423–1430.

Geiger, A., Lenz, P. & Urtasun, R. (2012) Are we ready for autonomous

driving? The KITTI vision benchmark suite. In: Conference on

computer vision and pattern recognition (CVPR).
Geisslinger, M., Karle, P., Betz, J. & Lienkamp, M. (2022) Watch‐and‐learn‐

net: self‐supervised online learning for probabilistic vehicle trajec-

tory prediction. In: 2021 IEEE international conference on systems,

man, and cybernetics (SMC), pp. 869–875.
Goh, J., Goel, T. & Gerdes, J.C. (2019) Toward automated vehicle control

beyond the stability limits: drifting along a general path. Journal of

Dynamic Systems, Measurement, and Control, 142(2). Available from:

https://asmedigitalcollection.asme.org/dynamicsystems/article/142/2/
021004/1066044/Toward-Automated-Vehicle-Control-Beyond-the

Goldfain, B., Drews, P., You, C., Barulic, M., Velev, O., Tsiotras, P. &
Rehg, J.M. (2019) AutoRally: an open platform for aggressive
autonomous driving. IEEE Control Systems, 39(1), 26–55.

Heilmeier, A., Wischnewski, A., Hermansdorfer, L., Betz, J., Lienkamp, M. &
Lohmann, B. (2019) Minimum curvature trajectory planning and control
for an autonomous race car. Vehicle System Dynamics, 58(10),
1497–1527.

Hellwig, M. & Beyer, H.‐G. (2016) Evolution under strong noise: a self‐adaptive
evolution strategy can reach the lower performance bound—the
pcCMSA‐ES. In: Handl, J., Hart, E., Lewis, P.R., Lüpez‐Ibáñez, M., Ochoa,
G. & Paechter, B. (Eds.) & Parallel problem solving from nature—PPSN XIV.
Cham: Springer International Publishing, pp. 26–36.

Hermansdorfer, L., Betz, J. & Lienkamp, M. (2020) Benchmarking of a
software stack for autonomous racing against a professional human
race driver. In: 2020 Fifteenth international conference on ecological

vehicles and renewable energies (EVER). IEEE.

BETZ ET AL. | 807

https://github.com/TUMFTM
https://github.com/TUMFTM
http://orcid.org/0000-0003-3223-6969
https://doi.org/10.1109/OJITS.2022.3181510
https://doi.org/10.1109/OJITS.2022.3181510
https://arxiv.org/abs/2103.04909
https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles
https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles
https://asmedigitalcollection.asme.org/dynamicsystems/article/142/2/021004/1066044/Toward-Automated-Vehicle-Control-Beyond-the
https://asmedigitalcollection.asme.org/dynamicsystems/article/142/2/021004/1066044/Toward-Automated-Vehicle-Control-Beyond-the

Herrmann, T., Christ, F., Betz, J. & Lienkamp, M. (2019) Energy
management strategy for an autonomous electric racecar using
optimal control. In: 2019 IEEE intelligent transportation systems

conference (ITSC). IEEE.

Hewing, L., Liniger, A. & Zeilinger, M.N. (2018) Cautious NMPC with
Gaussian process dynamics for autonomous miniature race cars. In:
2018 European control conference (ECC). IEEE.

Hindiyeh, R. Y. & Gerdes, J. C. (2014) A controller framework for autonomous
drifting: design, stability, and experimental validation. Journal of Dynamic

Systems, Measurement, and Control, 136(5). Available from: https://
asmedigitalcollection.asme.org/dynamicsystems/article/136/5/051015/
370811/A-Controller-Framework-for-Autonomous-Drifting

Indy Autonomous Challenge. (2021) https://www.indyautonomouschallenge.
com

Jaritz, M., de Charette, R., Toromanoff, M., Perot, E. & Nashashibi, F.
(2018) End‐to‐end race driving with deep reinforcement learning. In:
2018 IEEE international conference on robotics and automation

(ICRA). IEEE.
Jazwinski, A. H. (1970) Stochastic processes and filtering theory.

In: Mathematics in science and engineering, 1st edition, Vol. 64. San
Diego: Academic Press.

Jocher, G., Stoken, A., Chaurasia, A., Borovec, J., NanoCode012, Tao Xie,
Kwon, Y., Michael, K., Changyu, L., Fang, J., Abhiram, V, Laughing,

Tkianai, Yx Nong, Skalski, P., Hogan, A., Nadar, L., Alex Wang1900,
Fati, C., Montes, D., Hajek, J., Diaconu, L., Minh, M. T., Marc,
Albinxavi, Fatih, Oleg, and Wanghaoyang0106 (2021) ultralytics/
YOLOv5: v6.0—YOLOv5n ‘Nano’ models, Roboflow integration,
TensorFlow export, OpenCV DNN support.

Kabzan, J., Valls, M.I., Reijgwart, V.J.F., Hendrikx, H.F.C., Ehmke, C.,
Prajapat, M., Bühler, A., Gosala, N., Gupta, M., Sivanesan, R.,
Dhall, A., Chisari, E., Karnchanachari, N., Brits, S., Dangel, M., Sa, I.,
Dubé, R., Gawel, A., Pfeiffer, M., Liniger, A., Lygeros, J. & Siegwart, R.
(2020) AMZ driverless: the full autonomous racing system. Journal of

Field Robotics.
Kapania, N.R. & Gerdes, J.C. (2015) Design of a feedback–feedforward

steering controller for accurate path tracking and stability at the
limits of handling. Vehicle System Dynamics, 53(12), 1687–1704.

Kapania, N.R., Subosits, J. & Gerdes, J. C. (2016) A sequential two‐step
algorithm for fast generation of vehicle racing trajectories. Journal of
Dynamic Systems, Measurement, and Control, 138(9). Available from:
https://asmedigitalcollection.asme.org/dynamicsystems/article/138/9/
091005/384344/A-Sequential-Two-Step-Algorithm-for-Fast

Karle, P., Geisslinger, M., Betz, J. & Lienkamp, M. (2022) Scenario under-
standing and motion prediction for autonomous vehicles—review and
comparison. IEEE Transactions on Intelligent Transportation Systems,
23(10), 16962–16982. Available from: https://doi.org/10.1109/TITS.
2022.3156011

Kuhn, H.W. (1955) The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2(1–2), 83–97.

Large, N.L., Bieder, F. & Lauer, M. (2021) Comparison of different SLAM
approaches for a driverless race car. TM—Technisches Messen, 88(4),
227–236.

Lee, K., An, G. N., Zakharov, V. & Theodorou, E. A. (2019) Perceptual
attention‐based predictive control. In: Kaelbling, L.P., Kragic, D. &
Sugiura, K. (Eds.) Proceedings of the conference on robot learning.

Proceedings of machine learning research. PMLR, Vol. 100, pp.
220–232. Available from: http://proceedings.mlr.press/v100/lee

20b/lee20b.pdf
Leibnitz Rechenzentrum. (2022) Lrz compute cloud.
Lingemann, K., Nüchter, A., Hertzberg, J. & Surmann, H. (2005) High‐

speed laser localization for mobile robots. Robotics and Autonomous

Systems, 51(4), 275–296.
Liniger, A., Domahidi, A. & Morari, M. (2014) Optimization‐based autonomous

racing of 1:43 scale RC cars. Optimal Control Applications and Methods,
36(5), 628–647.

Liniger, A. & Lygeros, J. (2015) A viability approach for fast recursive
feasible finite horizon path planning of autonomous RC cars. In:
Proceedings of the 18th international conference on hybrid systems:

computation and control. ACM.

Liniger, A. & Lygeros, J. (2020) A noncooperative game approach to
autonomous racing. IEEE Transactions on Control Systems Technology,
28(3), 884–897.

Liu, J. & Teytaud, O. (2019) A simple yet effective resampling rule in noisy
evolutionary optimization. In: 2019 IEEE symposium series on

computational intelligence (SSCI). IEEE.
Maneewongvatana, S. & Mount, D.M. (1999) Analysis of approximate nearest

neighbor searching with clustered point sets. CoRR, cs.CG/9901013.
Massa, F., Bonamini, L., Settimi, A., Pallottino, L. & Caporale, D. (2020)

LiDAR‐based GNSS denied localization for autonomous racing cars.

Sensors, 20(14), 3992.
McNaughton, M., Urmson, C., Dolan, J.M. & Lee, J.W. (2011) Motion

planning for autonomous driving with a conformal spatiotemporal
lattice. In: Proceedings of the IEEE international conference on robotics

and automation, pp. 4889–4895.
Messaoud, K., Deo, N., Trivedi, M.M. & Nashashibi, F. (2021) Trajectory

prediction for autonomous driving based on multi‐head attention
with joint agent‐map representation. In: 2021 IEEE intelligent vehicles

symposium (IV). pp. 165–170. Available from: https://doi.org/10.

1109/IV48863.2021.9576054
Nekkah, S., Janus, J., Boxheimer, M., Ohnemus, L., Hirsch, S., Schmidt, B.,

Liu, Y., Borbély, D., Keck, F., Bachmann, K. & Bleszynski, L. (2020)
The autonomous racing software stack of the kit19d.

Nobis, F., Betz, J., Hermansdorfer, L. & Lienkamp, M. (2019) Autonomous

racing: a comparison of SLAM algorithms for large scale outdoor
environment. In: Proceedings of the 2019 3rd international conference

on virtual and augmented reality simulations. New York, NY, USA:
Association for Computing Machinery, pp. 82–89. Available from:
https://doi.org/10.1145/3332305.3332319

Notomista, G., Wang, M., Schwager, M. & Egerstedt, M. (2020) Enhancing
game‐theoretic autonomous car racing using control barrier functions. In:
2020 IEEE international conference on robotics and automation

(ICRA). IEEE.
O'Kelly, M., Zheng, H., Jain, A., Auckley, J., Luong, K. & Mangharam, R.

(2020) TUNERCAR: a superoptimization toolchain for autonomous
racing. In: 2020 IEEE international conference on robotics and

automation (ICRA). IEEE.
O'Kelly, M., Zheng, H., Karthik, D. & Mangharam, R. (2020) F1tenth: an open‐

source evaluation environment for continuous control and reinforcement
learning. In: Escalante, H.J. & Hadsell, R. (Eds.) Proceedings of the NeurIPS
2019 competition and demonstration track. Proceedings of the machine

learning research, Vol. 123. PMLR, pp. 77–89.
Ögretmen, L., Rowold, M., Ochsenius, M., & Lohmann, B. (2022) Smooth

trajectory planning at the handling limits for oval racing. Actuators,
11(11), 318. Available from: https://doi.org/10.3390/act11110318

Pagot, E., Piccinini, M. & Biral, F. (2020) Real‐time optimal control of an
autonomous RC car with minimum‐time maneuvers and a novel
kineto‐dynamical model. In: 2020 IEEE/RSJ international conference

on intelligent robots and systems (IROS). IEEE.
Rapin, J. & Teytaud, O. (2018) Nevergrad—a gradient‐free optimization

platform. GitHub Repository. Available from: https://GitHub.com/
FacebookResearch/Nevergrad

Renzler, T., Stolz, M., Schratter, M. & Watzenig, D. (2020) Increased

accuracy for fast moving LiDARS: correction of distorted point
clouds. In: 2020 IEEE international instrumentation and measurement

technology conference (I2MTC). IEEE.
Rosolia, U., Carvalho, A. & Borrelli, F. (2017) Autonomous racing using

learning model predictive control. In: 2017 American control

conference (ACC). IEEE.
Rowold, M., Ögretmen, L., Kerbl, T. & Lohmann, B. (2022) Efficient

spatiotemporal graph search for local trajectory planning on oval

808 | BETZ ET AL.

https://asmedigitalcollection.asme.org/dynamicsystems/article/136/5/051015/370811/A-Controller-Framework-for-Autonomous-Drifting
https://asmedigitalcollection.asme.org/dynamicsystems/article/136/5/051015/370811/A-Controller-Framework-for-Autonomous-Drifting
https://asmedigitalcollection.asme.org/dynamicsystems/article/136/5/051015/370811/A-Controller-Framework-for-Autonomous-Drifting
https://www.indyautonomouschallenge.com
https://www.indyautonomouschallenge.com
https://asmedigitalcollection.asme.org/dynamicsystems/article/138/9/091005/384344/A-Sequential-Two-Step-Algorithm-for-Fast
https://asmedigitalcollection.asme.org/dynamicsystems/article/138/9/091005/384344/A-Sequential-Two-Step-Algorithm-for-Fast
https://doi.org/10.1109/TITS.2022.3156011
https://doi.org/10.1109/TITS.2022.3156011
http://proceedings.mlr.press/v100/lee20b/lee20b.pdf
http://proceedings.mlr.press/v100/lee20b/lee20b.pdf
https://doi.org/10.1109/IV48863.2021.9576054
https://doi.org/10.1109/IV48863.2021.9576054
https://doi.org/10.1145/3332305.3332319
https://doi.org/10.3390/act11110318
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

race tracks. Actuators, 11(11), 319. Available from: https://doi.org/
10.3390/act11110319

Rusu, R.B. & Cousins, S. (2011) 3D is here: point cloud library (PCL). In:
IEEE international conference on robotics and automation (ICRA).

Shanghai, China: IEEE. Available from: https://ieeexplore.ieee.org/
abstract/document/5980567

Sauerbeck, F., Baierlein, L., Betz, J. & Lienkamp, M. (2022) A combined
lidar‐camera localization for autonomous race cars. SAE International

Journal of Connected and Automated Vehicles, 5(12‐05‐01‐0006),
61–71.

Schratter, M., Zubaca, J., Mautner‐Lassnig, K., Renzler, T., Kirchengast, M.,
Loigge, S., Stolz, M. & Watzenig, D. (2021) Lidar‐based mapping and
localization for autonomous racing. In: 2021 International conference

on robotics and automation (ICRA 2021)—workshop opportunities and

challenges with autonomous racing. IEEE.
Shi, S., Wang, X. & Li, H. (2019) PointRCNN: 3D object proposal generation

and detection from point cloud. In: Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition (CVPR).
Sinha, A., O'Kelly, M., Zheng, H., Mangharam, R., Duchi, J. &

Tedrake, R. (2020) FormulaZero: distributionally robust online
adaptation via offline population synthesis. In: III, H. D. &
Singh, A. (Eds.) Proceedings of the 37th international conference on

machine learning. Proceedings of the research, Vol. 119. PMLR, pp.

8992–9004.
Song, Y., Lin, H., Kaufmann, E., Dürr, P. & Scaramuzza, D. (2021)

Autonomous overtaking in gran turismo sport using curriculum
reinforcement learning. In: 2021 IEEE international conference on

robotics and automation (ICRA). pp. 9403–9409. Available from:

https://doi.org/10.1109/ICRA48506.2021.9561049
Srinivasan, S., Sa, I., Zyner, A., Reijgwart, V., Valls, M.I. & Siegwart, R.

(2020) End‐to‐end velocity estimation for autonomous racing. IEEE
Robotics and Automation Letters, 5(4), 6869–6875.

Stahl, T., Wischnewski, A., Betz, J. & Lienkamp, M. (2019a) Multilayer

graph‐based trajectory planning for race vehicles in dynamic
scenarios. In: 2019 IEEE intelligent transportation systems conference

(ITSC). IEEE.
Stahl, T., Wischnewski, A., Betz, J. & Lienkamp, M. (2019b) ROS‐based

localization of a race vehicle at high‐speed using LIDAR. E3S Web of

Conferences, 95, 04002.
Stellato, B., Banjac, G., Goulart, P., Bemporad, A. & Boyd, S. (2020) OSQP:

an operator splitting solver for quadratic programs. Mathematical

Programming Computation, 12(4), 637–672.
Strobel, K., Zhu, S., Chang, R. & Koppula, S. (2020) Accurate, low‐latency

visual perception for autonomous racing: challenges, mechanisms,
and practical solutions. In: 2020 IEEE/RSJ international conference on

intelligent robots and systems (IROS). IEEE.
Subosits, J. K. & Gerdes, J. C. (2019) From the racetrack to the road: real‐

time trajectory replanning for autonomous driving. IEEE Transactions

on Intelligent Vehicles, 4(2), 309–320.
The Autoware Foundation. (2021) AutowareAuto. https://gitlab.com/

autowarefoundation/autoware.auto/AutowareAuto
Theodosis, P. A. & Gerdes, J. C. (2012) Nonlinear optimization of a racing

line for an autonomous racecar using professional driving tech-
niques. In: Volume 1: Adaptive control; advanced vehicle propulsion

systems; aerospace systems; autonomous systems; battery modeling;

biochemical systems; control over networks; control systems design;

cooperative and decentralized control; dynamic system modeling;

dynamical modeling and diagnostics in biomedical systems; dynamics

and control in medicine and biology; estimation and fault detection;

estimation and fault detection for vehicle applications; fluid power

systems; human assistive systems and wearable robots; human‐in‐the‐

loop systems; intelligent transportation systems; learning con-

trol. ASME.
Tian, H., Ni, J. & Hu, J. (2018) Autonomous driving system design for

formula student driverless racecar. In: 2018 IEEE intelligent vehicles

symposium (IV). IEEE.
Török, F., Karle, P. & Geisslinger, M. (2022) Structured deep neural motion

prediction of opposing vehicles for autonomous racing. In: Second
workshop on opportunities and challenges with autonomous racing—
2022 IEEE international conference on robotics and automation

(ICRA). IEEE.
Verschueren, R., Zanon, M., Quirynen, R. & Diehl, M. (2016) Time‐optimal

race car driving using an online exact hessian based nonlinear MPC
algorithm. In: 2016 European control conference (ECC). IEEE.

Wächter, A. & Biegler, L. (2006) On the implementation of an interior‐
point filter line‐search algorithm for large‐scale nonlinear program-
ming. Mathematical Programming, 106(1), 25–57.

Wang, M., Wang, Z., Talbot, J., Gerdes, J.C. & Schwager, M. (2021) Game‐
theoretic planning for self‐driving cars in multivehicle competitive
scenarios. IEEE Transactions on Robotics, 37(4), 1313–1325. Availa-
ble from: https://doi.org/10.1109/TRO.2020.3047521

Wang, Z., Wu, Y. & Niu, Q. (2020) Multi‐sensor fusion in automated
driving: a survey. IEEE Access, 8, 2847–2868.

Weiss, T. & Behl, M. (2020) DeepRacing: a framework for autonomous

racing. In: 2020 Design, automation & test in Europe conference &

exhibition (DATE). IEEE.
Werling, M., Kammel, S., Ziegler, J. & Gröll, L. (2012) Optimal trajectories

for time‐critical street scenarios using discretized terminal manifolds.
International Journal of Robotics Research, 31(3), 346–359.

Wischnewski, A., Betz, J. & Lohmann, B. (2019) A model‐free algorithm to
safely approach the handling limit of an autonomous racecar. In: 2019
IEEE international conference on connected vehicles and expo (ICCVE). IEEE.

Wischnewski, A., Euler, M., Gümüs, S. & Lohmann, B. (2021) Tube model
predictive control for an autonomous race car. Vehicle System

Dynamics, 60(9),3151–3173. Available from: https://doi.org/10.
1080/00423114.2021.1943461.

Wischnewski, A., Geisslinger, M., Betz, J., Betz, T., Fent, F., Heilmeier, A.,
Hermansdorfer, L., Herrmann, T., Huch, S., Karle, P., Nobis, F.,
Ögretmen, L., Rowold, M., Sauerbeck, F., Stahl, T., Trauth, R.,

Lienkamp, M. & Lohmann, B. (2022) Indy Autonomous Challenge—
autonomous race cars at the handling limits. In: Pfeffer, P. (Ed.) 12th
international munich chassis symposium 2021. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 163–182.

Wischnewski, A., Stahl, T., Betz, J. & Lohmann, B. (2019) Vehicle dynamics
state estimation and localization for high performance race cars.
IFAC‐PapersOnLine, 52(8), 154–161.

Zeillinger, M., Hauk, R., Bader, M. & Hofmann, A. (2017) Design of an
autonomous race car for the formula student driverless (FSD).

Zubaca, J., Stolz, M. & Watzenig, D. (2020) Extended h∞ filter adaptation
based on innovation sequence for advanced ego‐vehicle motion estima-
tion. In: 2020 IEEE 3rd connected and automated vehicles symposium

(CAVS). IEEE.

How to cite this article: Betz, J., Betz, T., Fent, F., Geisslinger,

M., Heilmeier, A., Hermansdorfer, L., et al. (2023) TUM

autonomous motorsport: An autonomous racing software for

the Indy Autonomous Challenge. Journal of Field Robotics, 40,

783–809. https://doi.org/10.1002/rob.22153

BETZ ET AL. | 809

https://doi.org/10.3390/act11110319
https://doi.org/10.3390/act11110319
https://ieeexplore.ieee.org/abstract/document/5980567
https://ieeexplore.ieee.org/abstract/document/5980567
https://doi.org/10.1109/ICRA48506.2021.9561049
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto
https://doi.org/10.1109/TRO.2020.3047521
https://doi.org/10.1080/00423114.2021.1943461
https://doi.org/10.1080/00423114.2021.1943461
https://doi.org/10.1002/rob.22153

	TUM autonomous motorsport: An autonomous racing software for the Indy Autonomous Challenge
	1 INTRODUCTION
	1.1 Motivation
	1.2 Vehicle platform
	1.3 Related work
	1.3.1 Software
	1.3.2 Hardware

	1.4 Contributions and outline of the paper

	2 TUM AUTONOMOUS MOTORSPORT SOFTWARE
	2.1 Architecture
	2.2 Localization
	2.3 LiDAR preprocessing
	2.4 Object detection—LiDAR deep learning
	2.5 Object detection—LiDAR clustering
	2.6 Object detection—camera deep learning
	2.7 Object detection—RADAR
	2.8 Object fusion and tracking
	2.9 Prediction
	2.10 Global planning
	2.11 Local planning
	2.12 Motion control
	2.13 Middleware and latency

	3 SOFTWARE DEVELOPMENT
	3.1 Parameter optimization and SiL testing
	3.1.1 Testing environment
	3.1.2 Automatic parameter optimization

	3.2 HiL testing

	4 EVENT ANALYSIS
	4.1 Indianapolis—Indy Autonomous Challenge
	4.2 Las Vegas—autonomous challenge at CES

	5 DISCUSSION
	5.1 Evolutionary software stack development
	5.2 Lessons learned
	5.2.1 Autonomous software design guidelines
	5.2.2 Autonomous racing as an operational design domain (ODD)
	5.2.3 Model fidelity versus software performance
	5.2.4 Data-driven algorithms

	6 CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

