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With the global quest for improved sustainability, partially
realized through the electrification of the transport and energy
sectors, battery cell production has gained ever-increasing
attention. An in-depth understanding of battery production
processes and their interdependence is crucial for accelerating
the commercialization of material developments, for example,
at the volume predicted to underpin future electric vehicle
production. Over the last five years, machine learning ap-
proaches have shown significant promise in understanding and

optimizing the battery production processes. Based on a
systematic mapping study, this comprehensive review details
the state-of-the-art applications of machine learning within the
domain of lithium-ion battery cell production and highlights
the fundamental aspects, such as product and process parame-
ters and adopted algorithms. The compiled findings derived
from multi-perspective comparisons demonstrate the current
capabilities and reveal future research opportunities in this field
to further accelerate sustainable battery production.

1. Introduction

The lithium-ion battery (LIB) is taking on a prominent role in
the transition to a more sustainable future by facilitating zero-
emission mobility and revolutionizing the energy sector. LIB
technology is still subject to continuous improvement to meet
the industry’s rising demands in terms of performance, costs,
and quality.[1] Efforts are being made to optimize the entire
battery value chain, which consists of different stages from
material to cell production, battery pack, and recycling. Battery
cell production is a crucial part of the value chain, accounting
for 46% of value-creation and macroeconomic opportunities by
2030.[2] The production process chain consists of multiple
interconnected process steps with a large number of parame-
ters that can influence the final cell characteristics. Due to the
complexity of the processes with manifold interdependencies,
the causality between the manufacturing parameters, environ-
mental conditions, and product performance of both the final
cell and its constituent components is still mostly unknown. For
a cost-efficient quality-oriented optimization of the process
chain, an in-depth understanding of the individual process
steps, their interdependencies, and their impact on the cell
properties is deemed to be absolutely imperative.[3] Given the
high complexity of the process chain, along with advancements
in digitalization and information technology, data-driven
approaches have gained attention in battery research over
recent years.[4,5]

While the application of artificial intelligence (AI) and
particularly machine learning (ML) as one of its significant
branches has been profoundly analyzed and reviewed in the
battery material domain[6,7] and the system-level operation,[8–10]

the field of battery cell production has received comparatively
less attention. The major achievements in the interdisciplinary
field of ML and battery research, from material discovery to
microstructure characterization and battery system design,
have been reviewed by Ling.[11] The report highlights the
availability of high-efficacy battery data as the primary
challenge in this domain and describes mitigation strategies
and the relevant existing studies to overcome this barrier.[11] In
a book presenting examples of data-driven approaches across
the battery lifespan, Liu et al.[12] dedicated a chapter to data-
driven battery manufacturing management, including a sum-
mary of common ML tools and four use cases in electrode and
cell manufacturing. Lombardo et al.[13] conducted an extensive
review of ML-focused research activities in the battery
community. The review provides a comprehensive overview of
ML’s working principles, followed by a summary of primary
studies in material design, manufacturing, characterization, and
battery diagnosis and prognosis. The study emphasizes that
the battery community has not given equal attention to all
fields, with manufacturing accounting for only 6% of the 200
analyzed articles.[13]

An in-depth analysis of the ML applications in battery cell
production is desired to foster and accelerate the adoption of
ML in this field and assist the interested battery manufacturing
community with the first steps towards smart, sustainable
battery cell production. This article addresses this demand with
a comprehensive assessment of existing ML-based analysis in
battery cell production. Based on a systematic mapping study,
relevant use cases are identified, and critical information is
extracted and synthesized, with the aim to provide new
insights into the state-of-the-art and deliver instructive guid-
ance for future research. This research work is novel and unique
as it categorizes and evaluates existing studies systematically
based on various evaluation criteria such as production scale,
cell type, process steps, and product and process parameters.

The remainder of this article is structured as follows.
Section 2 provides a short introduction to the terminology
used and outlines the methodology and criteria adopted to
identify and analyze existing studies. Section 3 begins with an
overview of the current use cases, followed by a meta-analysis
of the studied processes and the variables involved in ML
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modeling. Additionally, the adopted algorithms and the
evaluation metrics are reported. The various aspects presented
in Section 3 are accompanied by critical analysis, while
Section 4 elaborates on overarching future research perspec-
tives, followed by concluding remarks in Section 5.

2. Terminology and Methodology

Concerning ML techniques, a distinction can be made between
supervised, unsupervised and semi-supervised learning.[14] In
supervised learning, the algorithm is presented with data
points labelled as input and output variables. The ultimate
objective is to develop a model that can predict or classify the
output for previously unseen input variables. In case of
unsupervised learning, the model aims to identify the under-
lying structure and pattern from the input variables. Semi-
supervised approaches fall between the previously mentioned
categories and are based on a combination of labelled and
unlabelled data.[15] In statistical literature, input variables are
often referred to as predictors or independent variables. The
term feature in the ML domain is also used interchangeably
with the input variable.[16] In particular, in the pattern recog-
nition literature, the feature can be seen as a numeric
representation of an aspect of the raw data.[17] From the
production perspective, various process and product parame-
ters can be used as input variables in ML modeling. Depending
on the type of output variables, the supervised ML can be
further divided into regression and classification. While the
latter evaluates data in classes, the former quantitively predicts
continuous output values.[16] With the common terms in the ML
field briefly introduced, the adopted approach is presented in
the following.

In contrast to a systematic literature review, which is guided
by a specific research question that can be answered empiri-
cally, a mapping study can be used to examine a broader topic
and categorize the primary research in a particular field.[18] To
provide insights into the applications of ML in battery cell
production, a systematic mapping study was undertaken based
on the following five steps, according to Kitchenham et al.;[18]

(i) definition of the research scope, (ii) searching the literature
for primary studies, (iii) screening for inclusion, (iv) classifying
the studies, (v) data extraction and aggregation.

The Scopus database was searched using the search
strategy shown in Table 1. It should be noted that the
indicative keywords employed during the search included but
were not constrained to the ones shown in Table 1, as the
review process is iterative in nature. In total, 215 publications
were retrieved, examined, and shortlisted based on their title

and abstract. In addition, for authors with more than five
relevant articles, an author-specific search was conducted. As a
result, 38 articles were identified as pertinent and subjected to
a comprehensive analysis.

Parallel to the research scope, evaluation criteria were
defined to classify and characterize the studies. These included
the analyzed aspects and processes, investigated material,
production scale, input and output variables of the ML model,
adopted algorithms, evaluation metrics as well as the size of
the dataset employed in the respective study. In the following,
a brief description of the evaluation criteria is presented for
completeness.

From the production perspective and analyzed aspects, a
distinction was made between formulation, mixing, coating,
drying, calendering, cell assembly and finalization, and cell
characterization. The investigated electrode and the active
material were also noted. In terms of scale, material research
and development in battery production are primarily carried
out on a lab scale using partially manual, discontinuous process
stages, whereas production research is conducted on a pilot
scale using semi to fully continuous and automatic processes.
The manufacturing readiness level (MRL) as a systematic metric
can be used to assess the maturity of a production system and
processes.[19] The MRL for the lab scale is between 3 and 4,
while the MRL for the pilot scale is between 5 and 6, with the
ability to produce prototype components in a production-
relevant environment. Furthermore, the amount of material
employed to conduct experiments can be used as an indicator
of the production scale. Based on the information provided, the
studies were divided into lab and pilot scales. Additionally,
from the product perspective, the cell type – coin, pouch, or
prismatic cell – was considered for the studies investigating cell
characteristics.

From the ML perspective, the product and process param-
eters that served as variables and the adopted algorithms were
highlighted. It is beyond the scope of this article to provide
details on the working principle of different ML algorithms; a
detailed description can be found in a number of publications
and handbooks such as Ref.[13,14,16,20–22]. In case of supervised
learning, depending on the model type – regression or
classification – different evaluation metrics are employed to
assess the model’s performance, robustness, and prediction
capability. The reported evaluation metrics were also consid-
ered. Additionally, the sample size, which reflects the number
of unique instances in each study, was analyzed. The results are
presented in the following section.

Table 1. Search strategy for the mapping study.

Conceptualization Operationalization

Keywords used in the query (Lithium-Ion OR Batter* Production OR Electrode Production OR Electrode Manufacturing) and
(Data-driven OR data mining OR machine learning OR Artificial Intelligence)

Field of search Article title, abstract, keywords
Timeline 2018–October 2022
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3. Application of Machine Learning in Battery
Cell Production

3.1. Overview

The 38 studies identified as relevant are listed in Table 2,
categorized based on the type of study. The largest fraction of
these studies (39%) used ML to predict cell characteristics
based on product or process parameters in the production
process chain. Among these, some studies initially developed
models to predict intermediate product properties, followed by
models for cell characteristics.[23–26] 26% of the studies have
only focused on intermediate product parameters by analyzing
single or multiple processes. Within this context, intermediate
product properties include viscosity at specific shear rate,
electrode mass loading, electrode thickness, and porosity.
These studies generally revolved around the mixing, coating,
and calendering process. One unique study showcased ML’s
potential for investigating and optimizing manufacturing
energy demand.[27] 21% of the articles explored the utilization
of simulation models coupled with ML. Among these, some
studies combined experimental data with in silico methods and
ML techniques to analyze the manufacturing process and its
influence on mesoscale electrode properties.[28,29] Lombardo
et al.[30] demonstrated the benefit of ML methods for the
efficient parametrization of a simulation model. Shodiev et al.[31]

developed an ML model to reproduce the electrolyte filling
dynamics in three dimensions using simulation data. Studies
involving deep-learning-based image processing have been
listed separately (see Table 2). While most of these studies used
images as input variables, Rohkohl et al.[32] demonstrated the
application of deep learning to analyze data from eddy current
measurement as an inline method for weld seam inspection,
replicating computer tomography images.

The majority of the studies are based on supervised ML,
aiming to predict or classify an output variable. Duquesnoy

et al.[33] presented an approach combining unsupervised and
supervised ML algorithms to predict the electrode properties
and systematically cluster the produced electrodes concerning
heterogeneity. Primo et al.[34] adopted an unsupervised ML
algorithm in combination with advanced statistical methods to
analyze the interdependencies in the calendering process.

The categorization of the analyzed articles serves to offer
an overview of the possible use cases or methods applied in
ML-based studies in battery cell production, following the
systematic mapping study approach. It is worth noting that
studies may be categorized differently depending on the
overall research objective.

Figure 1 shows a breakdown of the analyzed studies from
different perspectives. The majority of the studies explored the
interdependencies between processes and cell characteristics.
This is followed by process-specific studies analyzing the
intermediate products. Around 60% of the studies analyzed
processes in electrode manufacturing, followed by 24%
investigating processes in cell assembly and finalization.
Among the studies focusing on electrode manufacturing, 62%
investigated cathodes, while 14% only concentrated on
anodes. The remaining 24% studied both cathodes and
anodes. In terms of active material, NMC (mainly 622 and 811)
was the focus of 81% of these studies, while graphite was
investigated as the primary anode material in 33% of the
studies.

Most studies utilized data generated at the pilot scale,
followed by simulation-based and lab-generated data. 18% of
the studies were based on publicly available external datasets.
While the majority of the data were generated on the pilot
scale, around 53% of the studies analyzing the electrochemical
cell characteristics were based on coin cells (in both half-cell
and full-cell formats). This is in line with the fact that most
studies only focused on electrode manufacturing. 40% of the
studies evaluated cell performance on multilayer pouch cells,
and one single study was conducted based on the data
collected from prismatic cells.

Figure 1. Breakdown of the analyzed articles categorized by a) type of the studies, b) type of the electrode analyzed in the electrode manufacturing, c) active
material analyzed in studies focusing on electrode manufacturing, d) production scale and e) cell type.
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Table 2. Overview of the analyzed articles based on the type of study.

Type Publication Main objective Ref.

Analysis of processes
and cell characteristics

Drakopoulos et al., 2021 Analysis of the slurry formulation and electrode manufacturing parameters and their
influence on the cell performance with a focus on the graphite-based anode

[23]

Faraji Niri et al., 2021 Investigating the effects of coating control parameters on the electrode properties and
cell characteristics using different ML models

[26]

Faraji Niri et al., 2022a Quantifying the effect of the N :P ratio on energy capacity and gravimetric capacity at
different C-rates

[35]

Faraji Niri et al., 2022b Analysis of the calendering control variables on the cell impedance and capacity fading
using explainable machine learning

[36]

Faraji Niri et al., 2022c Quantification of the contribution of coating control parameters to predict electrode
and cell properties

[24]

Faraji Niri et al., 2022d Analysis of the slurry properties in combination with different coating parameters and
their impact on final cell characteristics using explainable machine learning

[25]

Kornas et al., 2019 Establishment of a framework to combine domain expert knowledge with data-driven
approaches to analyze the cause-and-effect relations in the LIB production

[37]

Liu et al., 2022a Development of a framework based on interpretable machine learning to analyze the
effects of coating parameters on the prediction of cell properties

[38]

Schnell et al., 2019 Application of data mining approach to analyze interdependencies between parameters
along the process chain and the final cell capacity

[39]

Stock et al., 2022 Early classification of battery cycle life into two groups based on the formation and
impedance data collected in different stages of cell finalization

[40]

Thiede et al., 2019 Application of data mining approach to predict multi-criterial cell properties based on
the parameters collected along the process chain

[41]

Turetskyy et al., 2020a Development of a holistic data-driven concept to acquire data along the LIB process
chain and analyze the product and process interdependencies

[42]

Turetskyy et al., 2020b Establishment of a cyber-physical concept based on quality gates to predict the cell
capacity using the intermediate product properties

[43]

Turetskyy et al., 2021 Development of a multi-output approach for a battery production design to predict the
final cell characteristics based on the intermediate product features

[44]

Wang et al., 2022 Establishment of an interpretable machine learning framework to predict battery
capacity under different C-rates based on the battery component properties

[45]

Energy efficiency Thiede et al., 2020 Development of a systematic ML-based approach to analyze the energy efficiency
potential in a manufacturing system based on a use case from LIB production

[27]

Analysis of processes
and intermediate products

Cunha et al., 2020 Investigation of the interdependencies between slurry parameters and electrode
properties

[46]

Duquesnoy et al., 2021 Assessment of the impacts of electrode manufacturing parameters on the heterogeneity
of NMC811 cathode

[33]

Leithoff et al., 2021 Implementation of signal analysis and ML techniques to monitor the lamination process
concerning missing or misaligned components

[47]

Liu et al., 2021a Development of a classification framework to analyze the effects of product parameters
in the mixing and coating process on the electrode properties

[48]

Liu et al., 2021b Establishment of an interpretable ML-based framework to analyze the interdependen-
cies between porosity and critical parameters in the mixing and coating process

[49]

Liu et al., 2021c Quantification of the importance of intermediate product and process parameters in
mixing and coating processes and their influence on the electrode mass loading

[50]

Liu et al., 2021d Development of a classification framework based on a support vector machine using
different kernels to predict the electrode mass loading

[51]

Liu et al., 2022b Classification of the electrode mass loading and porosity based on the slurry properties
and coating process parameter

[52]

Primo et al., 2021 Analysis of the calendering process parameters and their influence on the electrode
properties, such as porosity and electronic conductivity

[34]

Rohkohl et al., 2022a Development of a data-driven concept to run virtual experiments and identify the
desired product characteristics, with a use case on the extrusion process for slurry
production

[53]

ML and simulation Duquesnoy et al., 2020b Analysis of calendering process on the electrode mesoscale properties using a
combination of ML and simulation models

[29]

Duquesnoy et al., 2022 Development of a data-driven framework for fast prediction of the results of a molecular
dynamics simulation for slurry rheology

[54]

Kim et al., 2022 Establishment of a synthetic-data-based framework for the classification and quantifica-
tion of battery aging mode

[55]

Lombardo et al., 2020 Comparison of data-driven and manual optimization approaches for the parametrization
of a 3D simulation of the slurry

[30]

Quartulli et al., 2021 Development of ML models based on data generated by simulations to predict the
battery performance

[56]

Takagishi et al., 2019 Establishment of a data-driven approach to design the mesoscale electrode properties
using 3D virtual structures and ML technique

[28]

Turetskyy et al., 2019 Introduction of a concept to combine a physical battery model and a data-driven
feedforward network for end-of-line battery cell characterization

[57]
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To a certain degree, the identified studies coincide with the
conventional use cases of the ML in the production domain,[61]

such as quality control. Given the complexity of battery
production, the majority of studies focus on establishing a
foundation for process understanding by analyzing the inter-
dependencies between process parameters and (intermediate)
product properties. A possible next step in this field is enabling
inline process control and optimization using ML-based process
models and optimization techniques such as genetic
algorithms.[62,63]

Considering the cost-intensive production and the high
share of greenhouse gas emissions,[2] ML approaches can be
used for a holistic sustainability assessment in battery
production,[64] particularly from economic and environmental
perspectives. Nonetheless, this aspect has not yet been fully
explored in battery production. Thiede et al.[27] proposed a
framework for analysis of the energy efficiency potentials in
manufacturing processes. The application of the proposed
framework was demonstrated based on the data collected from
a battery pilot production line. Rohkohl et al.[53] developed a
data-driven framework that enables the execution of virtual
experiments to determine the appropriate set of process
parameters, considering economic and ecological targets. For
this purpose, a cost model is included in the framework.[53] The
application of the proposed framework is demonstrated for the
continuous mixing process using an extruder, focusing on the
application of ML to predict the product characteristics based
on the set process parameters. However, the cost model‘s
implementation is considered as future work.

Predictive maintenance is another promising use case in
the production domain that has been overlooked in battery cell
production, particularly in processes such as calendering, which
are subject to wear over time. This shortcoming could be
traced back to the fact that most of the studies are based on
laboratory or pilot line productions with discontinuous oper-
ations, a limited amount of data, a lower level of digitalization
and IT infrastructure compared to industrial mass production.
The latter also hinders the application of methods such as
process mining[65] and its integration in life cycle assessment.[66]

3.2. Processes, variables, and algorithms

A more detailed analysis based on the data pooled from the
evaluated studies is presented in this section. Figure 2 provides
an overview of the analyzed processes, including single-process
investigations and studies considering correlations between at
least two process steps. The electrode coating process is the
most investigated step in the process chain, accounting for
39%, whereas the drying process is in the minority, accounting
for only 5% of the research studies. While several studies
focused on a single process step, 37% looked into cross-
process effects. However, these effects have not been limited
to consecutive process steps; for instance, there are studies
examining coating and calendering processes. Around 35% of
the cross-process studies are based on non-consecutive process
analyses. Such studies are built on the assumption that the
effects of the intervening process – for instance, the drying
step – can be filtered out. Given the high interdependencies of
the subsequent processes, neglecting the effects of an
intervening stage while assessing cross-process effects is
associated with some degree of indeterminacy.

Following the process analysis, the product and process
parameters were examined closely in the next step. One of the
major challenges in battery cell manufacturing is an in-depth
understanding of the cause-and-effect relations along the
process chain that are relevant in determining the quality of
the final product.[37] Hence, Figure 3 underlines the influential
parameters analyzed in association with cell characteristics
using supervised ML. 40% of the studies investigated the
discharge capacity at different C-rates, with the majority (83%)
based on half-cell coin format and 17% on full-cell coin format.
The cell capacity after formation was analyzed in 47% of the
studies. The multilayer pouch cell is the primary cell format in
this category, followed by prismatic and half-cell coin format,
each accounting for 14%. One-third of the studies analyzed the
battery’s cycle life, with 60% focusing on pouch cell format and
the remainder on half-cell coin. It should be mentioned that a
set of studies investigated the capacity loss after a certain
number of cycles as a representation of the cycle life.

The discharge capacity at different C-rates and the cycle life
are the two cell characteristics that have been most studied in
conjunction with a high number of multiple input variables
(see Figure 3). The primary input variables that have been
included in predicting the cell characteristics are the active

Table 2. continued

Type Publication Main objective Ref.

Shodiev et al., 2021 Application of ML techniques to predict electrolyte infiltration using mesostructured of
NMC cathode

[31]

Image-based analysis Badmos et al., 2020 Identification of microstructural defects in battery electrodes based on microscopy
images using a deep learning approach

[58]

Faraji Niri et al., 2022e Development of a framework to quantify electrode structural characteristics via 2D and
3D images using a deep learning approach

[59]

Gayon-Lombardo et al., 2020 Evaluation of a method to generate synthetic 3D microstructures with a use case for the
LIB cathode

[60]

Rohkohl et al., 2022b Application of ML techniques to analyze eddy current measurement data and evaluate
the quality of the weld seam

[32]
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material weight, electrode thickness, and porosity. Although
electrode thickness and porosity can be considered correlated,
the variables were included as reported in the studies. A
detailed list of input and output variables, not only limited to
cell properties, can be found in the supplementary data.

Figure 4 explores the relationship between input variables,
output variables, and adopted algorithms. To provide a concise
overview, the focus has been given to the combination of input
and output variables analyzed in at least two studies. The trend
observed for the main input parameters in combination with
the cell properties can also be confirmed in Figure 4. Addition-
ally, variables such as solid content, coating ratio, coating gap,
and slurry viscosity can be marked as frequently reported input
variables in the modeling. Among the intermediate product
properties, dry mass loading and porosity are the prominent
output variables. In terms of algorithms, tree-based models,
including ensemble tree models, and neural networks, predom-
inantly Artificial Neural Networks (ANN), are the most com-
monly used modeling techniques. The former was deployed in
approximately 68% of the studies and the latter in 50%. For
image-centered studies, neural networks were the only model
type employed due to the complex nature of image analysis.

While some detailed analyses have been carried out on
intermediate products and cell characteristics using supervised
ML, some aspects have not yet been thoroughly investigated or
remain unaddressed. Considering the quality-relevant parameters
in electrode manufacturing,[67] in the mixing process, the majority

of the existing studies focus only on the product parameters of
the slurry, leaving out the relevant process parameters, such as
revolution speed. Rohkohl et al.[53] confirmed that experts identi-
fied 15 process parameters influencing the quality of the
produced slurry in the extrusion process. However, these were not
extensively analyzed and considered in the developed ML process
model. As depicted in Figure 2, the drying process and its relevant
parameters, such as the temperature profile[68] and the drying
speed, have received comparatively limited attention. In terms of
production technology, all ML-based studies involving the coating
process address comma bar or doctor blade technology. As a
result, other industry-relevant technologies, such as slot-die coat-
ing and its associated parameters,[69] or innovative approaches,
such as solvent-reduced electrode production,[70] remain primarily
unexplored. Concerning promising technologies, Leithoff et al.[47]

showcased a unique study on applying ML models for inline
process monitoring during the lamination process based on
acoustic measurements. The environmental conditions, in con-
junction with the manufacturing processes, have an impact on
the electrochemical performance of the battery cell.[71] However,
these factors have not been incorporated into the existing ML-
based studies. In the cell assembly and finalization, the electrolyte
filling process and the formation process are quality-critical steps
that are regarded as bottlenecks in terms of throughput.[3,72]

However, the existing ML-based studies do not thoroughly
represent these processes. Shodiev et al.[31] presented a unique
study demonstrating the use of ML to predict the degree of

Figure 2. Overview of analyzed processes, including studies analyzing aspects between two process steps. The widths of the links are proportional to the
number of studies. The percentages indicate the number of interdependencies related to one process step compared to the total number of
interdependencies analyzed.
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wetting based on a simulation model and electrode mesostruc-
ture.

After a comprehensive analysis of process steps and
variables, the adopted algorithms are briefly reviewed in the
following. There is often a trade-off between the performance
and flexibility of an ML model and its explainability and
interpretability,[73,74] with more complex models typically offer-
ing better performance and a closer representation of the
studied system at the expense of reduced transparency and
ease of understanding. Interpretability can be defined as the
ability to present the cause-and-effect relationships within a
system’s input and output variables in understandable terms to
a human being.[73,75] The selection of a model, with its level of
interpretability and complexity, can be guided by the study’s
overall objective and the data characteristics. For example,
Multivariate Linear Regression (MLR) is a white-box model with
a high degree of interpretability.[16,73] The model is based on the
assumption that there is an underpinning linear relationship
between the input and output variables, or a linear model
serves as a reasonable approximation of the studied system.[16]

Although MLR has a higher degree of interpretability compared
to more complex, black-box ML models, its interpretability
might be hampered by effects such as multicollinearity,[76] a

condition in which the input variables are highly correlated.
The Variance Inflation Factor (VIF) is a common technique that
can be used to identify multicollinearity among the input
variables.[76] A high VIF value indicates a high level of multi-
collinearity. Typically a threshold of 10 is set as the highest
acceptable value.[76] In more conservative cases, a VIF value of 5
is considered as acceptable.[74] If multicollinearity exists in the
dataset and it is not possible to extend the dataset using
methods such as design augmentation[77], alternative techni-
ques such as Principal Component Analysis (PCA) can be used
for dimensionality reduction and improved interpretability.[78]

Despite the high transparency of the MLR, this algorithm has
found relatively limited application in battery production (see
Figure 5), which could be due to the high complexity of the
process chain or the fact that these models require a certain
degree of prior knowledge of the system.

Another main trade-off to consider when selecting ML
algorithms is the one between bias and variance. Variance is
the degree to which a model’s predictions vary, depending on
the changes in the training dataset. A model with high variance
is prone to overfitting to the training data and may not
generalize well to new, previously unseen data. A low-variance
model, on the other hand, is more resistant to changes in the

Figure 3. Sankey diagram with input variables for the ML modeling on the left side and the cell characteristics as output variables on the right side.
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training dataset and may generalize better to new data.[74] Bias
is defined as the error that is introduced by approximating and
simplifying the analyzed system. For example, linear regression
is based on an oversimplified assumption of a linear relation-
ship between the input variables and the output, which may
not be entirely accurate for real-world complex systems.[74]

Hence, using linear regression may introduce some degree of
bias in estimating the output variable. The ultimate objective is
to have ML models with low bias and relatively low variance.

The Mean Squared Error (MSE) can be used to find a trade-off
between these two factors.[74] The trade-off between bias and
variance should also be considered in the validation
approach.[16] While the leave-one-out approach may result in
low bias, it might lead to high variance. To balance these two
factors, k-fold cross-validation can be adopted.[16] The learning
curve can be used to estimate the impact of the size of the
training dataset on the model’s performance. Empirically, k

Figure 4. Sankey diagram illustrating the relationship between major input variables (left), major output variables (middle) and adopted algorithms (right).
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values of 5 or 10 are shown to be suitable, considering also the
computational resources required.[16]

In contrast to MLR, ANN, as a comparatively less interpret-
able ML algorithm, is one of the most frequently used
techniques in battery cell production (see Figure 5). ANN is a
nonlinear technique inspired by the oversimplified neural
network structure of the brain.[21,79] By simulating intercon-
nected nodes known as artificial neurons or units, ANNs
attempt to mimic how neurons in the brain process and
transmit information.[80] The neurons are organized into layers
and can process complex patterns and relationships in data.
Although ANN is recognized as a powerful technique capable
of learning complex interdependencies within a system, this
strength can also be a downfall. ANN models, especially those
with complex architectures and limited datasets, have a
tendency to overfit the training data, which can compromise
their ability to generalize well to previously unseen data.[81]

Another disadvantage of ANN is the large amount of data
required. In addition to the volume of data needed, the data
must also be suitably diverse to facilitate the model’s training.
This latter requirement is often a challenge when intending to
analyze large-scale production due to the cost and limited
flexibility of the equipment employed.

Similar to ANN, Random Forest (RF) is one of the most used
algorithms in the analyzed studies in battery cell production.
RF is a robust ML algorithm based on an ensemble of decision
trees with some desirable characteristics such as high accuracy,
robustness to outliers, and lower variance.[74,82] Given its ability
to reduce overfitting and lower variance, RF can be considered
a favorable choice over ANN in some cases.

Assessing the performance of unsupervised ML models can
be challenging as, unlike supervised ML, there is no established
ground truth that can be served as a benchmark for the model‘s

performance. An overview of possible approaches in this regard
can be found in Ref. [83–85]. In case of supervised ML, the model
performance can be evaluated based on the model type; for
classification problems, metrics such as accuracy can be used,
whereas Root Mean Squared Error (RMSE), R2, or Mean Absolute
Error (MAE) are adopted in regression studies. A brief definition of
different evaluation metrics can be found in Joshi[86] and Liu
et al.[12] Figure 5 provides an overview of the adopted algorithms
and the evaluation metrics used in at least two studies. It should
be noted that 44% of the studies used more than one algorithm
for modeling, and 50% included more than one metric for the
model evaluation. Given that different evaluation metrics can offer
distinct perspectives on the performance of the model, it is
appropriate to use different metrics for a comprehensive
evaluation of a model.[87,88] Considering aspects such as variance,
bias, performance, and complexity, it is also advantageous to
compare different ML algorithms on the same dataset to
determine the most suitable model for the specific use case and
its requirements.

The mapping study included an in-depth investigation of the
publications in terms of the number of input variables and sample
size. While some studies were based on the Design of Experi-
ments (DoE) or explicitly described the design space, others used
historical data collected across the process chain from various
production runs with limited information concerning the coher-
ence of the design space and the unique data points. The latter
could be of interest regarding handling big data; however, such
studies are characterized by certain issues of spuriousness and
statistical biases.[89] Hence, only studies with the reported sample
size indicating unique instances in the dataset, such as the
number of cells built, including the replicates, were considered
and analyzed further. Additionally, studies based on simulation

Figure 5. Percentage distribution of a) the most prevalent algorithms and b) the commonly used evaluation metrics in the analyzed articles.

Batteries & Supercaps
Review
doi.org/10.1002/batt.202300046

Batteries & Supercaps 2023, 6, e202300046 (10 of 14) © 2023 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH

Wiley VCH Freitag, 23.06.2023

2307 / 301369 [S. 13/17] 1



data, deep learning approaches, and unsupervised ML were
excluded, leading to a total of 40% of the publications.

Figure 6 outlines the combination of the number of input
variables and the sample size reported for different algorithms.
Upon initial review, the figure does not reveal any distinctive
patterns or overarching rules concerning the analyzed aspects,
conveying that a trial-and-error approach is often adopted. For
small datasets with a limited number of variables, MLR can be
considered as a suitable choice. However, if there are many
input variables, it is possible to employ dimensionality reduc-
tion techniques such as PCA or adopt regularization methods
to prevent overfitting.[86] A relatively larger dataset allows the
utilization of more complex algorithms such as ANN or RF.

In case of less complex regression models, the 1 :10 rule is a
common guideline in the statistical literature, indicating the
sample size required for a single-variable problem. However,
for use cases with multiple variables, this rule might not apply
as additional factors, such as the complexity of the analyzed
system and the dependencies between the variables, should be
considered.[86] Various studies tried to establish similar guide-
lines for more complex models such as ANN.[90–92] It should be
noted that such guidelines can be seen as heuristic approaches.
Aside from performance, interpretability, sample size, and
dimensionality, additional factors such as acceptable error
margin, training time and computational capacity, model
tuning effort, and robustness to outliers can be considered in
the selection of ML algorithms. These various factors impede
efforts to develop a detailed guiding principle for selecting an

algorithm in battery cell production. Nonetheless, the compiled
findings can serve as a reference point for interested
researchers, elucidating the current capabilities and potential
and revealing future research opportunities.

4. Research Perspectives

The presented mapping study with different use cases in battery
cell production – from in-depth process analysis to prediction of
cell characteristics and energy-efficient production – demonstrates
the potential of ML technology in battery cell production. To fully
exploit this technology’s potential and facilitate its application,
certain challenges still need to be addressed.

Keppeler et al. have highlighted the role of manufacturing
pilot lines as a bridge between fundamental research and
industrial production of LIB.[93] The same is granted regarding
the ML application for LIB’s product and process optimization.
While the DoE can assist in increasing the effectiveness of ML
development,[94] implementing such methods on a mass-
production scale for data generation is impractical due to the
high costs and effort involved. Hence, pilot lines can be
strategically used to investigate factor variability and analyze
the interactions at relatively lower costs. The significance of
ML-focused production research at the pilot scale can certainly
not be neglected. Nevertheless, some aspects demand greater
attention from the research community; these are highlighted
below and serve as the foundation for further work.

Figure 6. Bubble chart displaying the adopted algorithms, number of input variables and sample size for a collection of analyzed studies. The diameter of the
circles indicates the sample size, with the sample size additionally noted.
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Due to the level of information discovered throughout the
mapping study, some of the analyzed articles can be regarded
merely as a proof-of-concept, demonstrating the potential of
data-driven approaches in battery cell production. Although such
exemplary academic implementations are beneficial, they are not
sufficient to accelerate the realization of smart battery cell
production on an industrial scale. Various researchers have tried
to address this issue and provide high-level guidelines in the
engineering field. For example, Banna et al.[95] have highlighted
that little attention has been paid to the practical implementation
of research-based ML techniques. To tackle this issue, they
promoted best practices in the documentation and publication of
the model in a way that others can easily use to build upon or
reproduce their results.[95] Some major software companies, such
as Google[96] or Microsoft,[97] have synthesized best practices in the
large-scale development of data-driven applications. From the
information system research community, Kühl et al.[98] confirmed
the same challenge. Even with full access to data, the researchers
cannot evaluate or replicate the results due to the inconsistency
in the documentation and reporting of ML studies.[98] They
proposed a “Machine Learning Report Card” as a solution to
capture critical decisions and problem characteristics in the
development of the ML model and to guide researchers toward
rigorous, comprehensive analysis and extension. While the article
focuses on supervised ML, the findings can also be adapted for
unsupervised ML. The report focuses on general ML studies and
consists of four main sections (i) model initiation, including
information regarding data quality, data preprocessing, sampling,
and data distribution, (ii) model development, which entails
training and testing for supervised ML, (iii) performance estimation
and (iv) model deployment. Such studies highlight the necessity
of close cooperation between ML and domain, i.e., production
experts.[98]

The above-mentioned inconsistencies in reporting have
also been observed during the conducted mapping study,
leading to a certain degree of uncertainty. For example, a key
aspect that needs to be reported is whether a data point is a
replication or a unique run. While the former considers, for
example, three coin cells for each specific set of parameters,
the latter is based on only one for each particular set of
parameters. Both approaches have their advantages and can be
considered in the modeling, with the former improving the
model’s robustness and the latter widening the scope of the
model. However, the lack of information on this aspect makes
it difficult to gauge the distribution and quality of the data.

Some initiatives have been launched to democratize the
required tools, such as ontology, for scaling up ML models in
battery production.[5,99] The democratization of such tools,
combined with a standard protocol for the documentation and
reporting of the necessary information throughout the entire
procedure, is essential for both researchers and practitioners to
build upon the valuable findings and accelerate ML application
in LIB development and manufacturing.

An in-depth understanding of the LIB as a complex multi-
scale system requires multiscale characterization techniques
and modeling, ranging from micro to meso and macro level.[100]

Based on the available inline characterization techniques, a

coupling of ML models and in silico approaches is required to
bridge the scales and derive holistic optimizations along the
process chain. Some examples of this field are the studies
presented by Gayon-Lombardo et al.[60] and Duquesnoy et al.[29]

Advances in this field of research, combined with close
collaboration with system-level modeling, can highlight new
vistas in battery optimization research.

To accelerate the efficient embedding of ML technology into
LIB mass production for low-latency inline monitoring and
optimization, the interpretability issue needs to be addressed. The
emergence of opaque and complex decision-making systems
such as DNN illustrates this imperative amply. In response to the
need for trustworthy, robust, and powerful models for complex
real-world applications, the field of eXplainable Artificial Intelli-
gence (XAI) has been revived.[101] With the help of XAI, it is
possible to pinpoint how the decisions and predictions of the
system are derived, turning black-box to glass-box models.
Various methods can be used for this purpose.[73] Faraji Niri
et al.[25,35] have showcased the benefits of Accumulated Local
Effects (ALE) and Shapley Additive Explanations (SHAP) as XAI
methods in LIB production. Such methods have not yet been well
established within battery production research, indicating an
untapped potential that needs to be explored.

5. Conclusions

In conclusion, the presented mapping study has highlighted the
current capabilities for the application of ML in LIB cell production.
This article goes beyond a literature review by extracting and
synthesizing the findings, outlining the current focal points in the
state-of-the-art, and pinpointing aspects such as processes,
product and process parameters that have received relatively less
attention within the literature. These include, for example, the
drying process in electrode manufacturing or the electrolyte filling
and formation in cell assembly and finalization. The multi-
perspective comparison serves as a rigorous starting point for
researchers interested in this field. Furthermore, certain over-
arching challenges, such as documentation and interpretability of
the ML models, have been identified, which should be addressed
to accelerate ML’s application in large-scale LIB production. ML
models can be used to enhance the efficiency and efficacy of
manufacturing processes. A holistic integration of data-driven
applications in battery cell production, as a critical phase in the
value chain, will drive a paradigm shift in battery optimization and
the scale-up of novel material generations.
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ALE Accumulated Local Effects;
ANN Artificial Neural Network;
AUROC Area Under the Receiver Operating Characteristic;
CNN Convolutional Neural Network;
DNN Deep Neural Network;
DoE Design of Experiments;
DT Decision Tree;
GBT Gradient Boosting-based Tree;
GLM Generalized Linear Model;
GNB Gaussian Naive Bayes;
GPR Gaussian Process Regression;
KNN K-Nearest Neighbors;
LARS Least Angle Regression;
LFP Lithium Ferro Phosphate;
LIB Lithium-Ion Battery;
LTO Lithium Titanium Oxide;
MAE Mean Absolute Error;
ML Machine Learning;
MLR Multivariate Linear Regression;
MRL Manufacturing Rediness Level;
MSE Mean Squared Error;
NMC Nickel Manganese Cobalt;
PCA Principal Component Analysis;
RF Random Forest;
RMSE Root Mean Square Error;
SHAP Shapley Additive Explanations;
SISSO Sure Independence Screening and Sparsifying Oper-

ator;
SVM Support Vector Machine;
XAI eXplainable Artificial Intelligence.
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