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Abstract

Estrogen receptor-positive breast cancer is a highly prevalent but heterogeneous dis-

ease among women. Advanced molecular stratification is required to enable individually

most efficient treatments based on relevant prognostic and predictive biomarkers. First

objective of our study was the hypothesis-driven discovery of biomarkers involved in

tumor progression upon xenotransplantation of Luminal breast cancer into humanized

mice. The second objective was the marker validation and correlation with the clinical

outcome of Luminal breast cancer disease within the GeparTrio trial. An elevated mdm2

Abbreviations: BC, breast cancer; BM, bone marrow; DFS, disease free survival; ER, estrogen receptor; FISH, fluorescence in situ hybridization; hPDX, human patient derived xenotransplant;

HSCs, hematopoietic stem cells; HTM, humanized tumor mice; k.d., knock-down; NSG, NOD scid gamma; OS, overall survival; TICs, tumor initiating cells; WGA, whole genome amplification.
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gene copy number was associated with enhanced tumor growth and lung metastasis in

humanized tumor mice. The viability, proliferation and migration capacity of inherently

mdm2 positive breast cancer cells in vitro were significantly reduced upon mdm2 knock-

down or anti-mdm2 targeting. An mdm2 gain significantly correlated with a worse DFS

and OS of Luminal breast cancer patients, albeit it was also associated with an enhanced

preoperative pathological response rate. We provide evidence for an enhanced Luminal

breast cancer stratification based on mdm2. Moreover, mdm2 can potentially be utilized

as a therapeutic target in the Luminal subtype.

K E YWORD S

humanized tumor mice, Luminal breast cancer, mdm2 amplification, tumor engraftment, tumor
progression

What's new?

Breast cancer is extremely heterogeneous, even within subtypes. For best outcomes, therapies

must be tailored to the molecular profile of the particular tumor. Here, the authors searched for

new biomarkers in ER-positive breast cancer using a humanized tumor mouse (HTM) model,

which replicates a functional human immune system. They discovered that amplification of a

gene, mdm2, was associated with tumor progression. Treatment with agents that inhibit mdm2

slowed down cell proliferation, viability and migration of cancer cells in vitro. Clinical testing for

mdm2 status could help improve targeted treatment for these patients.

1 | INTRODUCTION

Humanized tumor mice (HTM) represent a powerful animal model in

cancer research to carry out treatment studies under human-like con-

ditions. Upon xenotransplantation, either based on human cancer cell

lines (HTM) or on patient-derived primary tumors (hPDX), tumor

growth takes place in the presence of a functional human immune

system. Lymphopoiesis and myelopoiesis occurs upon neonatal trans-

plantation of human cord blood-derived hematopoietic stem cells

(HSCs), which ensures a considerable degree of immunological toler-

ance against mouse tissue.1 Tumor transplantation into NOD scid

gamma (NSG) mice can be done, for example, intrahepatically, subcu-

taneously or orthotopically (eg, into the mammary fat pad), which has

an impact on tumor cells and tissues to engraft and to maximally adapt

to a species-foreign environment. Only a successful engraftment and

an efficacious adaption enable the most genuine human tumor growth

and progression in mice, which is an essential basis for relevant pre-

clinical treatment studies.

So called tumor initiating cells (TICs) have been found to come

along with an enhanced capacity to colonize in immunodeficient

mice.2 The initiation of tumor engraftment and tumor growth is evi-

dently associated with stem cell characteristics, that is, the ability of

malignant cells to self-renew, to propagate and to differentiate.

Although, a number of markers are known to be associated with

tumor initiation and propagation, the characterization and identifica-

tion of TICs with an enriched malignant potential is challenging since

tumor initiating and stem cells show a dynamic physiology and varying

genotypes and phenotypes in individual tumor types and subtypes.

Among solid tumors breast cancer (BC) is on the cellular and molec-

ular level a highly heterogeneous disease.3 The description of molecular

portraits of humane BC about 20 years ago4 led to the categorization of

five major subtypes, which are mainly differentiated by their proliferation

activity and the amount of hormone-receptor as well as HER2-receptor

expression. The main taxonomic subtypes include so called “Luminal-A”
and “B,” “Luminal-HER2-positive,” “HER2-enriched” and “triple nega-

tive” (ie, absence of hormone and HER2-receptor expression) BC.3 These

BC subtypes markedly differ in terms of course and outcome of disease

as well as therapy options. In addition, there is a substantial heterogene-

ity even within individual BC categories with respect to disease progres-

sion and treatment response. For example, estrogen-receptor

(ER) positive tumors represent indeed the largest BC subgroup (about

70% of all BCs) from which about 70% of all BCs are being assigned to

the Luminal-A and about 30% to the Luminal-B type.5 While Luminal-A

typically comes with a pronounced ER expression but rather low-

proliferation capacity the Luminal-B subtype is characterized by a lower

ER expression, higher grading (ie, less tissue differentiation) and

enhanced proliferation activity. Based on these symptomatic traits

Luminal-B BC shows better response rates to cytotoxic (ie, antip-

roliferative) treatments while Luminal-A BC shows higher sensitivity to

endocrine (ie, hormone) therapies.3,6,7 Accordingly, complementing an

endocrine treatment of Luminal-A BC by chemotherapy is likely to result

in an overtreatment. Nevertheless, besides generally good treatment

responses of Luminal BC an appreciable number relapses are seen in

both groups,8 but more often in Luminal-B. Thus, further stratification of

Luminal BC will help to render more precisely discrete prognoses for BC

patients and to identify individually most effective treatment modalities.
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Moreover, an enhanced stratification will contribute to therapy

de-escalation wherever possible.

In our study we generated hPDX by xenotransplantation of immuno-

deficient, humanized NSG mice with primary ER-positive BC tissues. We

determined the engraftment efficiency and evaluated tumor growth and

progression. These parameters were correlated to phenotypic and geno-

typic tumor characteristics. We applied immunohistochemistry and flow-

cytometry for tumor and immune cell characterization and used panel

sequencing of BC relevant genes to identify genomic aberrations, which

were potentially associatedwith tumor growth, dissemination andmetasta-

sis. Most strikingly, we identified a gain of mouse double minute-2 and

4 homolog (mdm2/mdm4) gene and/or a mutation of the TP53 locus to be

associated with a higher engraftment efficiency in hPDX. Moreover, we

observed an enhanced tumor progression and formation of lung metastasis

in these mice bearing an mdm2 gain. Remarkably, lung metastasis dissemi-

nated cells in the bone marrow (BM) of tumors with mdm2 amplification

were strongly associated with an elevated c-Met and CD44 expression.

In vitro experiments revealed a reduced cell vitality, proliferation andmigra-

tion capacity of BC cells with inherentmdm2 amplification uponmdm2pro-

tein knockdown (k.d.) or mdm2 inhibition. The assessment of mdm2 gene

copy number via fluorescence-in situ-hybridization (FISH) on ER-positive

BC subcohort derived from the GeparTrio trial,9 retrospectively disclosed a

shortened disease free (DFS) and overall survival (OS) of BC patients who

harbored anmdm2 gain compared to thosewithoutmdm2 alteration.

A prospective validation of mdm2, c-Met and CD44 as prognostic

biomarkers in ER-positive BC can be considered to complement the

clinicopathological diagnostics and thereby might enhance the stratifi-

cation of Luminal BC. Prospectively, mdm2 might not only serve as a

prognostic, but also as a predictive marker and therapeutic target in

Luminal BC, even though further systematic preclinical treatment

studies in vivo are required.

2 | MATERIALS AND METHODS

2.1 | Isolation of hematopoietic stem cells from
umbilical cord blood

In order to humanize mice, CD34+ hematopoietic stem cells (HSC)

were isolated from the umbilical cord blood based on the procedure

described the first time in 2011.1 More information is given in the

Supporting Information Material.

2.2 | Tumor tissues processing for mouse
transplantation

All patient-derived samples included in the study were premenopausal

or postmenopausal women diagnosed with primary or metastatic BC

and underwent surgery at the Department of Gynecology (University

of Regensburg). Fresh, solid tumor material was removed under sterile

conditions by a pathologist upon the Institute of Pathology at the

(University of Regensburg). The tumor was collected in prewarmed

basal medium (DMEM/F12, 1% HEPES, 1% Pen/Strep and 1%

Amphotericin B) in a petri dish and minced into fragments of

2 � 2 mm. The tumor fragments were either transplanted subse-

quently into NSG mice or cryopreserved.

2.3 | Generation of NSG based hPDX

Patient tumor samples were prepared as described above and the

transplantation was carried out in 7 to 8 weeks old, virgin, non-

ovariectomized, humanized female NOD.Cg-Prkdcscid Il2rγtm1Wjl/SzJ

(NSG) mice according to the protocol established by Al-Hajj.10 Briefly,

mice were disinfected at the mammary fat pad and through a small

incision, the tumor fragments were transplanted into the inguinal right

fat pad and 50 μL of Matrigel (R&D Systems, Inc., Minneapolis, Minne-

sota) was added together with a s.c. 0.18 mg 17ß-estradiol pellet

(Innovative Research of America, Florida).

In addition to primary patient-derived tumor tissues three previously

established patient-derived xenograft (PDX) tumors provided by

Dr. Marangoni (Institute Curie, Paris, France) were sent to our laboratory

(PT-S2, PT-S3 and PT-S4) and preprocessed as described above.11-14

Another two PDX tumors (PT-CTC and PT-E2) were provided by Prof.

Andreas Trumpp (HI-Stem, Heidelberg, Germany).2,15 These mice were

transplanted by s.c. neonatal transplantation of 2 � 106 tumor cells

diluted in 20 μL DMEM and 10 μLMatrigel using a BD Safety Glide Insu-

lin syringe. The PDX models were monitored for 12 months and eutha-

nized beforehand if maximum tumor size (15 mm) was reached or any

signs of sickness occurred. The previously established PDX tumors pro-

vided by the collaboration partners were not initially analyzed with

respect to mdm2, mdm4 or TP53 but randomly selected for our study.

Just like the other successfully engrafted tumor samples used here they

were retroactively subjected to panel sequencing.

2.4 | Flow cytometric analyses of immune cell
reconstitution and tumor phenotyping from hPDX

Phenotyping of tumor and immune cells derived from hPDX was done

by flow cytometry using a FACS Canto-II flow cytometer run by the

Diva software v7.0 (BD Biosciences, San Jose, California) equipped

with a blue (488 nm), violet (405 nm) and red (633 nm) laser excita-

tion. Unspecific binding was blocked by incubating the cells in 1%

mouse serum for 10 minutes and appropriate mouse immunoglobulin

antibodies were used as isotype controls for all staining. Antibodies

used for flow-cytometric analyses are specified in the Supporting

Information Material.

2.5 | Embedding of HTM-derived tumor samples
and immunohistochemistry

Tissue specimens (tumor and lung) were fixed with 4% formalin from

which 1.5-μm paraffin sections were prepared. Specimens were
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deparaffinized and pretreated by microwave heating for 30 minutes

at 320 W in 0.1 M citrate buffer adjusted to pH 7.3. The

immunostainings were automatically performed on a Ventana Nexes

autostainer (Ventana, Tucson, Arizona) by using the streptavidin-bio-

tin-peroxidase complex method and 3,30-diaminobenzidine as chro-

mogen. The autostainer was programmed based on the instructions

given by the iView DAB detection kit (Ventana). Antibodies used for

immunohistochemistry are specified in the Supporting Information

Material.

2.6 | mdm2 knockdown and anti-mdm2 (AMG232)
treatment

ZR-75-1 cells (RRID: DVCL_0588, ATCC via LGC Standards GmbH,

Wesel Germany) were incubated under standard culture conditions in

RPMI-1640 medium supplemented with phenol red and 5% FCS (PAN

Biotech, Aidenbach, Germany). mdm2 expression in ZR-75-1 cells was

knocked down using ON TargetPlus smart pool siRNA in

DharmaFECT-1T-2011-02 (Horizon Dharmacon, Lafayette, Colorado).

Untreated cells and cells treated with nontargeting Pool siRNA were

used as control. ZR-75-1 were seeded at a density of 400 000 cells

per T25 tissue flask and cultured in RPMI-1640 medium sup-

plemented with 5% FCS overnight. On the following day, the medium

was replaced with RPMI-1640 medium supplemented with 1% FCS

and the transfection was performed according to the manufacturer’s
protocol. On day four after transfection, the cells were either

harvested with trypsin-EDTA for further experiments or lyzed with

50 μL lysis buffer (100 μL cell lysis buffer, 10 μL PMSF [1 mM], 10 μL

HALT protease inhibitor and 880 μL aqua dest. for protein biochemi-

cal analysis.

For AMG232 treatment studies, ZR-75-1 were seeded at a den-

sity of 400 000 cells per T25 tissue flask and cultured in RPMI-1640

medium supplemented with 5% FCS overnight. The next day the

medium was changed and the cells treated with 0.1 or 1 μM AMG232

inhibitor (Axon Medchem BV, Groningen, The Netherlands). DMSO-

treated cells and cells without treatment served as control. The cells

were exposed for 48 and 72 hours to AMG232 and then harvested

with trypsin-EDTA for further analyses.

ZR-75-1 cells were authenticated by short-tandem repeat profil-

ing at the beginning of the study and within the last 3 years (DSMZ,

Braunschweig, Germany). In addition, all experiments were performed

with mycoplasma-free cells.

2.7 | Migration assay

Determination of tumor cell wound closure and migratory properties

were analyzed by a wound-healing assay. In brief, 80 000 cells were

seeded in each chamber of a 2-Well Culture-Insert (35 mm) (Ibidi,

Gräfelfing, Germany) fixed in a 6-well plate. The cells were allowed to

adhere overnight. Next day the insert was removed, the cells were

washed with PBS to remove cell debris and fresh medium was added

to the well. The cell scratch was visualized at 20-fold magnification by

light microscopy and documented at time intervals between 6 and

216 hours after chamber removal. Closure of the scratch area was cal-

culated by the AxioVision software (Ver. 4.4, Carl Zeiss GmbH,

Göttingen, Germany).

2.8 | Western blotting

Western blotting was performed exactly as described recently.16 A

brief description of the procedure is given in the Supporting Informa-

tion Material.

2.9 | Flow cytometric analysis of cell proliferation
and cellular apoptosis

Upon harvesting by trypsinization and separation the cells were

washed twice with PBS fixed and permeabilized in cooled in MeOH

(70%). After overnight incubation, cells were washed twice with PBS,

incubated for 20 minutes in the presence of RNAase at 37�C and

finally stained with 1 μg/mL DAPI 30 minutes prior to analysis. DNA

histograms were quantified using the ModFit LT 3.2 software (Verity

Software House, Topsham, Maine) upon discrimination of cell dou-

blets, aggregates and debris via pulse processing.

For the analysis of apoptosis, adherent cells and those of the

supernatant were harvested, pooled and suspended in 75 μL Annexin-

V-FITC solution containing 5 μL Annexin-V-FITC and 70 μL binding

buffer. After 20 minutes of incubation on ice in the dark, the cells

were centrifuged and resuspended in 200 μL binding buffer. Prior to

the measurement, the DAPI dye was added to a final concentration of

0.1 μg/mL).

2.10 | Low pass sequencing of DTC

Single cell whole genome amplification (WGA) products were pre-

pared for copy number variant (CNV) analysis by Ampli1 LowPass kit

for Illumina (Menarini Silicon Biosystems, Pennsylvania).17 Briefly,

starting from purified primary Ampli1 WGA product, barcoded librar-

ies compatible with Illumina systems were generated. The libraries

were quantified using the Qubit dsDNA HS reagent kit and the Qubit

3.0 Fluorometer. Additionally, the average fragment sizes of the librar-

ies were assessed using the Agilent High Sensitivity DNA Kit on the

Agilent 2100 Bioanalyzer System (Agilent Technologies, Santa Clara,

California). Subsequently, samples were sequenced on an Illumina

MiSeq device with MiSeq Reagent Kit v3 (150-cycle) (Illumina, San

Diego, California). CNV profiles were generated using an automated

in-house pipeline which contains in brief the following steps: Trim-

ming of raw FASTQ files with BBDuk 38.84 (JGI DataScience, BBtools

software suite 2019 https://jgi.doe.gov/data-and-tools/bbtools), read

decontamination using BioBloom Tools 2.0.1318 mapping with

Burrows-Wheeler Aligner (BWA-MEM algorithm 0.7.17) CNV profile
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generation applying QDNAseq 1.26.0. After each step a quality con-

trol was performed (Table S1).19

2.11 | Panel sequencing

Eight micrometer-thick sections of FFPE primary tumor samples were

analyzed by the Institute of Pathology (Technical University Munich,

Germany) using a three primer pools yielding 617 amplicons covering

mutational hotspot regions located in 353 exons of 59 genes that are

known to be related to breast cancer as previously described.20 Most

relevant steps of the procedure are given in the Supporting Informa-

tion Material. Quality assessment of panel sequencing is given in

Table S2.

2.12 | GeparTrio patients' cohort for mdm2
assessment

The GeparTrio trial (NCT00544765) was a multicenter, prospective,

randomized, phase III trial with the primary goal to evaluate the patho-

logic complete response (pCR) after the treatment with four to six

additional cycles of docetaxel, doxorubicin and cyclophosphamide

(TAC) in patients responding to initially applied two cycles of TAC or

four additional cycles of TAC compared to four cycles of vinorelbine

and capecitabine for nonresponders to the initial two cycles of TAC.

Patients with untreated primary breast carcinoma (T2-4, N0-3 and

M0) were included.21 pCR was defined as the absence of residual

invasive and noninvasive disease in any excised breast or regional

node tissue. For the analysis performed by our study we selected

exclusively tissue specimens previously diagnosed as Luminal, that is,

ER-positive BC. The categorization of Luminal-A and Luminal-B was

based on a 20% Ki67 cut-off.22,23 Overall, 502 Luminal BC specimens

were subjected to our study. Two hundred and forty-five (48.8%)

were attributed to the Luminal-A and 257 (51.2%) to Luminal-B sub-

cohort. Relevant clinico-pathological characteristics of the patients'

cohort are listed in Table S3. In addition, an assignment to samples

with and without an mdm2 gain is given.

2.13 | Selection of tissue samples, preparation of
tissue microarrays and FISH

FISH on tumor tissue samples of the GeparTrio cohort was applied to

tissue microarrays generated by the Institute of Pathology (Philipps-

University Marburg). A ZytoLight SPEC MDM2/CEN12 dual color

probe (ZytoVision GmbH, Bremerhaven, Germany) was used as previ-

ously described and samples from excised from HTM were done anal-

ogously.24 More details are given in the Supporting Information

Material. FISH results were categorized into the following Scoring sys-

tem: Score 1: ≈ 2 mdm2 gene signals, Score 2: ≈ 5 mdm2 hybridiza-

tion signals and Score 3: mdm2 gain of ≥10. The CEN12 marker

signals were disregarded since CEN12 alterations (either gains or

losses) were not observed.

2.14 | Statistical analysis

DFS and OS were defined as the time (in months) from random

assignment to the event; patients without event were censored at the

time of the last contact.9,25 Events for DFS were any locoregional

(ipsilateral breast or local/regional lymph nodes) recurrence of disease,

any contralateral breast cancer, any distant recurrence of disease, any

secondary malignancy or death as a result of any cause, whichever

occurred first. Event for OS was death due to any cause. Statistical

tests applied are described in detail in the Supporting Information

Material.

3 | RESULTS

3.1 | mdm2 (or mdm4) gene amplification or a loss
of TP53 is associated with engraftment in Luminal-B
specific PDX

A total of seven Luminal-B specific humanized PDX were generated

based on defined ER, progesterone receptor (PR) and HER2 expres-

sion patterns as given in Figure 1A. Accordingly, all PDX samples were

ER-positive, four were ER/PR-double-positive and two samples were

ER/HER2-double positive. Twenty-two tumor samples of Luminal-B

patients derived from the Department of Gynecology at the Univer-

sity of Regensburg were transplanted in NSG mice from which two

tumors led to a stable and retransplantable PDX model (PT-S1 and

PT-E1). Overall, we achieved an engraftment rate of approximately

10%. Three previously established PDX models (PT-S2 [alias HBCx3],

PT-S3 [alias HBCx22] and PT-S4 [alias HBCx34]; Institute Curie, Paris,

France12) and two other models established at the German Cancer

Research Center Heidelberg (PT-CTC and PT-E22) were transferred

into humanized mice and further evaluated.

Analysis of genomic alterations in these PDX models by panel

sequencing revealed that all successfully engrafted tumors share

genomic alterations within the mdm2/mdm4/TP53 axis. More specifi-

cally, samples with the capacity for engraftment, harbored either an

mdm2 or mdm4 gene amplification and/or a loss or mutation of TP53

as given in Figure 1A. Two models showed an additional HER2 gene

amplification. mdm2 FISH confirmed mdm2 gene amplifications as ini-

tially determined by panel sequencing and revealed either ≈5 gene

copies (ie, Score 2) or ≥10 copies (ie, Score 3) as defined in Section 2.

Notably, as analyzed by FISH 95.0% (1/20) of not-engrafted tumor

samples had no mdm2 gene amplification (ie, Score 1, data not

shown). Hereinafter, mdm2 amplified PDX models are referred to as

mdm2Amp and “mdm2 wildtype” models are referred to as mdm2WT.

Since the PT-E1 model was unique due to an inherent mdm4 alter-

ation we excluded this model from further analysis.
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3.2 | mdm2 amplified PDX was associated with an
increased tumor volume and enhanced lung
metastases in hPDX

Tumor samples from each PDX model were transplanted into NSG in

the presence of a human immune system resulting in hPDX. The

tumor volume in all four hPDX-mdm2Amp mouse models were signifi-

cantly increased in comparison to hPDX-mdm2WT (Figure 1B,C;

P = .0023). A correlation between the origin of tumor models and

tumor volume could be precluded. Immunohistochemical staining of

cytokeratin 18 (CK18), ER and PR confirmed the origin of the

implanted human tumor and Ki-67 expression represents the prolifer-

ative capacity of the tumor tissue (Figure 1D).

CK18 is highly expressed in epithelial cells of Luminal-B breast can-

cer. It served as a marker to identify tumor cells in distant organs

(ie, metastases in the lung, Figure 1E). In addition, the number of animals

with lung metastasis was determined based on CK18 staining. Besides

an increased tumor growth in mdm2Amp, mdm2 amplification correlated

with a significantly enhanced potential to develop lung metastasis.

Lung metastases were detected in 2 of 12 hPDX-mdm2wt mice

and in 17/22 hPDX-mdm2Amp mice (Figure 1E; P = .0011). Enhanced

lung metastasis is seen in all mdm2Amp mice and does not depend on

individual mouse models or the origin of individual tumors used for

the generation of hPDX mice.

Notably, highly mdm2 amplification (Score 3) seems to be associ-

ated with increased metastases within the mdm2Amp group (Score

3 = 100% metastases; Score 2 = 50% metastases formation;

Figure 1E). mdm2 gene amplification was also detectable in lung

metastases (an example identified by FISH is given in the lower part

of Figure 1E).

F IGURE 1 Origin of seven Luminal-B humanized PDX models used in our study and tumor growth and lung metastases of mdm2WT and
mdm2Amp transplanted hPDX. (A) Nomenclature of seven Luminal-B hPDX models use in our study is listed. In addition, genomic alterations of
HER2, mdm2, mdm4 and TP53 found upon successfully engrafted PDX tumor samples and the respective mdm2 scores are given. CTC, generated
from circulating tumor cells from the peripheral blood; E, generated from metastatic tumor effusion; PT, primary tumor material; S, generated
from solid tumor. (B) Representative tumor samples from mdm2WT and mdm2Amp are displayed. (C) Tumor volume of mdm2WT and mdm2Amp in
hPDX was assessed (π/6 � length � width � height) and significances between both groups were calculated by Student's t-test (P = .0023). The
average days of survival post tumor transplantation of each model are indicated in brackets. (D) Exemplary tumor samples stained for CK18,
estrogen receptor (ER), Ki-67 and progesterone receptor (PR) are shown for PDX PT-S3. (E) Representative images of CK18 and ER expression on
lung metastases in mdm2Amp transplanted PDX PT-S1 are displayed (upper panel). Bars represent 100 μm. Lung tissues from individual hPDX
models were stained with CK18 specific antibodies and the number of mice with detectable tumor cells was counted. The difference in incidence

for lung metastases was calculated using the two-sided Fisher's exact test (P = .0011). An example FISH image of lung metastatic cells (PDX
model PT-S1) with mdm2 gene amplification is shown. (F) Single cells from the lung and the corresponding tumor of mdm2Amp hPDX (PT-CTC,
PT-S1 and PT-S4) were phenotypically analyzed using flow cytometry. Differences were calculated using Sidak's multiple comparisons test
(****P < .0001). (G) CD47+, CD44+ and c-Met+ positive cell populations in tumor and lung tissues of mdm2Amp hPDX were compared and
statistical differences calculated by Student's t-test (*P < .05)
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Single cells isolated from the tumor and the lung of hPDX

mdm2Amp were phenotyped by flow cytometry and revealed a signifi-

cant induction of c-Met and CD44 expression in metastatic tumor

cells in the lung compared to primary tumor cells (P < .0001;

Figure 1F). CD44, CD47 and c-Met were found simultaneously

upregulated in lung metastases of mdm2Amp PDX mice (P = .0252;

Figure 1G).

3.3 | mdm2 gene amplification did not correlate
with the frequency of tumor cell dissemination into
the BM of hPDX

Single DTCs in the BM of mice were detected and quantified based

on a panCK (CK8, CK18 and CK19) staining (Figure S1A). There was

no significant difference in animals with detectable DTCs in the BM

for mdm2Amp and mdm2WT models (P = .2929; Figure S1A) and cells

appeared as single cells or small clusters in both groups. The average

frequency of detectable DTCs in 500,000 BM cells was 3.3 (±0.97

SEM; n = 7). Just like metastatic tumor cells in the lung, DTCs in the

BM showed a significantly increased CD44 and c-Met expression,

which is exemplarily shown for mdm2Amp hPDX “PT-CTC” in

Figure S1B (c-Met: P < .0001; CD44: P < .0001).

DTCs from three different hPDX BM samples and associated sin-

gle cells from the corresponding tumors were isolated and subjected

to low-pass genome sequencing. In contrast to isolated single resident

BM cells, all isolated tumor cells from primary tumor and DTCs

showed copy number aberrations including an mdm2 amplification

(20/20; Figure S1C). However, the mdm2 gene copy number varied in

individual DTCs: One hPDX showed mdm2 amplification also in the

corresponding DTCs, one mouse showed gene amplification in two

out of three DTCs and in one mouse all seven isolated DTCs lacked

amplification (Figure S1C). While CK-negative single cells show a

balanced profile (Figure S1D, upper profile), genomes of all isolated

CK-positive cells have multiple genomic gains (depicted in red) and

losses (depicted in blue). Interestingly, not only the mdm2 gene region

(chromosome 12) showed heterogeneity but also other loci indicated

individual variation in between single cells isolated from the tumor

and the different DTCs from the BM (Figure S1D).

3.4 | mdm2 gene amplification reduced T cell
incidence and maturation in hPDX

Analysis and phenotyping of immune cells was done for the two

mdm2wt and four mdm2Amp models individually (Figure 2). Overall,

Immune cell distribution in mdm2Amp hPDX revealed a significant

reduced T cell fraction (P < .0001) and increased B cell population

(P < .0001) in the spleen (Figure 2A) while variations between individ-

ual hPDX models are visualized. The T cell maturation of CD4+ and

CD8+ was not significantly different within the mdm2wt and the

mdm2Amp group as exemplarily shown for CD4+ T cells (Figure 2B).

Interestingly, mdm2Amp hPDX showed a significantly lower percentage

of PD-1 expression on the CD8+ T cells (Figure 2C, right graph;

F IGURE 2 Human immune cell reconstitution in mdm2WT and mdm2Amp transplanted hPDX. (A,B) Human immune cell distribution of myeloid,
B and T cells, and T cell subsets (naïve, memory, memory effector and terminally differentiated effector memory cells [TEMRA]) in the spleen of
individual mdm2WT and mdm2Amp hPDX models were determined using flow cytometry. (C) Graphs represent the percentage of PD-1 expression
on CD4+ (left graph) and on CD8+ (right graph) T cells in the spleen. The immune subsets (D), T cell subpopulations (E) and PD-1 expression on
CD4+ and CD8+ T cells (F) were analyzed in the tumor. Data are shown as mean ± SEM and significances were analyzed using Sidak's multiple
comparisons test (A, B, D, E) or Student's t-test (C, F). P-values <.05 are indicated in the graphs (*P < .05; ****P < .0001) and numbers of animals in
each group are displayed (n = x) or presented as individual symbol in the graphs
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P = .022) but not on CD4+ T cells (Figure 2C, left graph). The overall

immune cell infiltration in the tumor tissue of ER-positive based hPDX

was low (<1% CD45+ cells; data not shown) and was nearly in the

same low range as the fraction found in the primary tumor tissues of

the tumor patients (Ø 7.83% CD45+ cells ± 1.3 SEM; n = 11; data not

shown). The proportion of human T cells invading into the tumor tis-

sue was also lower in mdm2Amp hPDX compared to mdm2WT hPDX

(Figure 2D; P = .046) while the percentage of naive CD4+ T cells was

significantly higher (Figure 2E; P = .045). No differences could be

detected with respect to CD8+ T cells. Overall, a tendency of reduced

PD-1 expression on CD4+ and CD8+ T cells in mdm2Amp hPDX in the

tumor was seen, especially in the highly amplified (Score 3) hPDX

models PT-S1 and PT-CTC (Figure 2F).

3.5 | mdm2 knockdown and AMG232 based
mdm2 inhibition similarly induced apoptosis and
reduced proliferation in ER-positive BC cells in vitro

The ER-positive cell line ZR-75-1 was treated with anti mdm2 siRNA,

which caused a significant depletion of the mdm2 protein (Figure 3A). In

addition, the FAK activity was diminished upon mdm2 k.d. as indicated

by a reduced phosphorylation, while the total FAK expression was not

affected (Figure 3B). As a consequence of the primary siRNA based

mdm2 k.d. and the mdm2 targeting with 1 μM AMG232 significant frac-

tions of apoptotic cells were observed (Figure 3C, P = .021 and

Figure 3D, P < .0001). Moreover, the cell proliferation capacity was

reduced upon mdm2 k.d. (Figure 3E) as indicated by a reduced S-phase

F IGURE 3 Effects of mdm2 knockdown and mdm2 inhibition by AMG232 in breast cancer cells in vitro. The Luminal-B breast cancer cell line
ZR-75-1 was treated with small-interfering RNA (siRNA) for mdm2 (A, B, C, E, G) or with 0.1 μM and 1 μM AMG232 (D, F, H). (A,B) Western
blotting of mdm2 and FAK/pFAK expression of untreated (ctrl.), no target control RNA (NT ctrl.) or mdm2 specific knockdown by siRNA (mdm2 k.
d.). Significant differences were calculated by Tukey's multiple comparisons test. Apoptosis induction upon mdm2 k.d. (C) and AMG232 treatment
(D) was analyzed by flow cytometry using an Annexin and DAPI staining to allow the differentiation of vital (Annexin� DAPI�) and dead cells

(Annexin+ and/or DAPI+). Data are shown as mean ± SEM and Dunnett's multiple comparisons test was applied. Cell proliferation was analyzed
upon mdm2 k.d. (E) and AMG232 treatment (F) by flow cytometry and S-phase, G1 and G2 fraction were determined. Data are shown as mean
± SEM and Dunnett's multiple comparisons test was applied. A scratch assay was performed upon mdm2 siRNA (G) or AMG232 (H) treatment
and ZR-75-1 with which cell migration capacity was analyzed over time. Data are shown as mean ± SEM and Dunnett's multiple comparisons test
was applied. Representative images show the time point after 144 hours of incubation. Red bars mark the gap after chamber removal at point
0 hour and the gap of mdm2 k.d./AMG232 treatment after 144 hours. All experiments were performed three times and significances are
indicated in each graph (*P < .05; **P < .01; ****P < .0001) [Color figure can be viewed at wileyonlinelibrary.com]
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fraction (P = .0098) accompanied by an elevated fraction of cells in the

G2-phase of the cell cycle (P = .0074). Similar results were obtained by

the AMG232 treatment (Figure 3F), which also caused a reduced

S-phase fraction (48 hours: P = .008, 72 hours: P = .049) accompanied

by a reduced G1-phase after 72 hours (P = .0027) and an elevated frac-

tion of G2 (Figure 3F, P < .0001). Finally, cells with an mdm2 k.d. and

those exposed to mdm2 targeting with AMG232 showed a delayed and

retarded scratch overgrowth in the wound-healing assay (Figure 3G,H),

which is compatible with the reduced FAK activity.

3.6 | DFS and OS of patients suffering from
Luminal BC with an mdm2 gain is poor compared to
those without a gain

Microscopic images of mdm2/cen12 FISH specimens scored 1, 2 or 3 are

exemplarily shown in Figure S2. Patients withmdm2 gain showed a signifi-

cantly poor DFS (Figure 4; HR = 1.80 [95% confidence interval (CI):

1.16-2.79], log rank P = .008) and OS (HR = 1.75 [95% CI: 1.00-3.05, log-

rank P = .047) compared to the patients without mdm2 gain in the entire

Luminal BC cohort. Similar results were observed in patients with

Luminal-A BC (DFS: HR = 2.56 [95% CI: 1.40-4.71], P = .002; OS:

HR = 3.27 [95% CI: 1.51-7.09], log-rank P = .002) but not within the

Luminal-B subcohort (DFS: HR = 1.16 [95% CI: 0.60-2.26], log-rank

P = .653; OS: HR = 0.95 [95% CI: 0.41-2.23], log-rank P = .911). Thus, an

unfavorable impact of anmdm2 gain on survival outcome within the entire

Luminal BC cohort is mainly caused within the Luminal-A BC cohort.

3.7 | Patients suffering from Luminal BC with
mdm2 gain (Score 2 or 3) show a higher complete
pathological response rate but a worse DFS and OS

Overall, 53 (10.5%) of all Luminal BC patients included in our study

experienced a complete pathological response (pCR) rate upon neo-

adjuvant treatment (Table S4). With respect to mdm2, the pCR rate of

F IGURE 4 DFS and OS in patients with mdm2 gain vs no gain (ie, normal). Kaplan-Meier graphs illustrating course and outcome of Luminal
BC disease as a function of mdm2 gene amplification (Score 2 and 3) vs no amplification (Score 1) without and upon separation of Luminal-A vs
Luminal-B BC as annotated. Both, DFS and OS was poor in association with an mdm2 gain in the total cohort (DFS P = .008, OS P = .047). Upon
differentiation of Luminal-A vs Luminal-B cases statistical significance remained present for the Luminal-A cohort (DFS P = .002, OS P = .002)
but not for Luminal-B cohort (DFS P = .653, OS P = .911)

F IGURE 5 Odds ratio of pCR and HRs of DFS and OS of Luminal
BC patients as a function of mdm2 status. Impact of an mdm2 gain on
(A) the pCR, (B) the DFS and (C) the OS of Luminal BC disease with and
without differentiation of Luminal-A vs Luminal-B. P-value less than .05
indicate a significant impact of an mdm2 gain on these parameters and
are typed bold. DFS, disease-free survival; HR, hazard-ratio; OR, odds-
ratio; OS, overall survival; pCR, pathologic complete response
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TABLE 1 Multivariate analysis for pCR, DFS and OS

Multivariate analysis for pCR #

Analysis set/parameter Category Odds ratio (OR) 95% CI P-value

All Luminal

mdm2 mdm2 gain vs normal 3.01 1.36-6.64 .007

Age, years >50 vs ≤50 0.79 0.42-1.51 .480

cT cT3-4 vs cT1-2 0.87 0.42-1.81 .705

cN cN+ vs cN� 0.90 0.47-1.70 .739

Grading G3 vs G1-2 2.02 1.05-3.86 .034

Histotype Nonductal vs ductal invasive 0.56 0.13-2.43 .437

Luminal-A

mdm2 mdm2 gain vs normal 2.02 0.39-10.47 .401

Age, years >50 vs ≤50 0.75 0.23-2.44 .629

cT cT3-4 vs cT1-2 1.03 0.26-4.14 .963

cN cN+ vs cN� 0.94 0.28-3.20 .926

Grading G3 vs G1-2 0.82 0.17-3.93 .800

Histotype Nonductal vs ductal invasive 0.86 0.10-7.15 .891

Luminal-B

mdm2 mdm2 gain vs normal 3.75 1.42-9.87 .008

Age, years >50 vs ≤50 0.80 0.36-1.76 .572

cT cT3-4 vs cT1-2 0.73 0.30-1.74 .474

cN cN+ vs cN� 0.72 0.33-1.57 .409

Grading G3 vs G1-2 2.25 1.02-4.97 .044

Histotype Nonductal vs ductal invasive 0.45 0.06-3.60 .451

Multivariate analysis for DFS #

Analysis set/parameter Category HR 95% CI P-value

All Luminal

mdm2 mdm2 gain vs normal 1.71 1.08-2.71 .022

Age, years >50 vs ≤50 1.38 0.98-1.94 .068

cT cT3-4 vs cT1-2 1.91 1.33-2.74 .000

cN cN+ vs cN� 1.51 1.06-2.15 .022

Grading G3 vs G1-2 0.86 0.58-1.28 .453

Histotype Nonductal vs ductal invasive 1.38 0.78-2.47 .271

Luminal-A

mdm2 mdm2 gain vs normal 2.94 1.55-5.59 .001

Age, years >50 vs ≤50 0.78 0.46-1.34 .370

cT cT3-4 vs cT1-2 1.82 1.00-3.31 .049

cN cN+ vs cN� 1.10 0.63-1.92 .746

Grading G3 vs G1-2 0.98 0.50-1.91 .943

Histotype Nonductal vs ductal invasive 1.48 0.62-3.52 .380

Luminal-B

mdm2 mdm2 gain vs normal 0.99 0.49-2.00 .985

Age, years >50 vs ≤50 2.38 1.50-3.78 .000

cT cT3-4 vs cT1-2 1.90 1.19-3.04 .007

cN cN+ vs cN� 1.64 1.01-2.68 .046

Grading G3 vs G1-2 0.71 0.43-1.17 .174

Histotype Nonductal vs ductal invasive 1.37 0.62-3.01 .437

Multivariate analysis for OS #

Analysis set/parameter Category HR 95% CI P-value

All Luminal

mdm2 mdm2 gain vs normal 1.39 0.77-2.50 .272
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Luminal BC patients with mdm2 gain (Score 2 or 3) was 21.2% vs 9.2%

within the group of patients without enhanced mdm2 (OR = 2.68 [95%

CI: 1.28-5.60], P = .009; Figure 5A). Similarly, the pCR rate was signifi-

cantly higher in the presence of an mdm2 gain for the Luminal-B sub-

cohort (Figure 5A; 28.6% vs 13.4%, OR = 2.56 [95% CI: 1.04-6.30],

P = .042) compared to those with an unaltered mdm2 status. This find-

ing was not significant for Luminal-A BC patients: (Figure 5A; 12.5% vs

4.6%, OR = 3.01 [95% CI: 0.77-11.81], P = .113). The HR for DFS

(Figure 5B) in the presence of mdm2 gain was also higher for all Luminal

(HR [DFS] = 1.80 [95% CI: 1.16-2.79], P = .008) and for Luminal-A

patients (HR [DFS] = 2.56 [95% CI: 1.40-4.71], P = .006). The HR

(OS) for all Luminal patients was 1.75 ([95% CI: 1.00-3.05], P = .047)

and remained significant for Luminal-A patients only (Figure 5C; HR

[OS] = 3.27 [95% CI: 1.51-7.02], P = .001).

In the multivariate analysis for pCR (Table 1), an mdm2 amplifica-

tion remained a significant predictor of pCR in all Luminal BC samples

(ie, cumulated Luminal-A and Luminal-B; OR = 3.01 [95% CI:

1.36-6.64], P = .007) and within the Luminal-B subcohort (OR = 3.75

[95% CI: 1.42-9.87], P = .008). With regards to survival outcomes the

multivariate analysis revealed that an mdm2 gain added a significant

prognostic value to the DFS (Table 1) in all Luminal BC (HR = 1.71

[95% CI: 1.08-2.71], P = .022) and in the Luminal-A only cohort

(HR = 2.94 [95% CI: 1.55-5.59], P = .001). In the multivariate analysis

for OS (Table 1) a significant negative prognostic value of elevated

mdm2 remained in the Luminal-A subcohort (HR = 3.20 [95% CI:

1.35-7.59], P = .008). An impact of patients' age was seen with

respect of DFS in the Luminal-B cohort (HR = 2.38 [95% CI:

1.50-3.78], P = .000). Patients age had a significant impact on the OS

of the total Luminal cohort (HR = 1.94 [95% CI: 1.25-3.01], P = .003)

and upon separate analysis in the Luminal-B cohort only (HR = 2.90

[95% CI: 1.63-5.71], P < .001).

3.8 | A moderate mdm2 gain (≈5 gene copy
numbers) had an unfavorable effect on Luminal-A BC
patients while an enhanced mdm2 gain (≥10 gene
copy numbers) unfavorably affects the long-term
outcome predominantly of Luminal-B BC disease

The impact of a pronounced mdm2 gene dose (ie, Score 3) on the

survival outcome of Luminal BC disease has been separately evalu-

ated (Figure S3). Kaplan-Meyer curves demonstrate that a pro-

nounced gain unfavorably affected both the DFS (HR = 2.83 [95% CI:

1.38-5.80], log-rank P = .003) and the OS (HR = 2.66 [95% CI:

1.08-6.58], log-rank P = .028) of all Luminal BC patients, however,

among Luminal-A and Luminal-B cohorts this effect remained only sig-

nificant for the DFS in Luminal-B patients (HR = 3.16 [95% CI:

1.27-7.88], log-rank P = .009).

The overall differentiation of Luminal-A and Luminal-B BC sam-

ples without (Score 1), with a moderate (Score 2) and with an

enhanced mdm2 gain (Score 3) revealed a significant unfavorable

impact of a moderate mdm2 gain both on the DFS (HR = 2.55 [95%

CI: 1.30-5.00], log-rank P = .004) and OS (HR = 3.22 [95% CI:

1.38-7.55], log-rank P = .005) but only in Luminal-A patients

(Figure S4). In contrast, a pronounced mdm2 gain takes effect only on

the DFS (HR = 3.08 [95% CI: 1.23-7.70], log-rank P = .01) in

TABLE 1 (Continued)

Multivariate analysis for OS #

Analysis set/parameter Category HR 95% CI P-value

Age, years >50 vs ≤50 1.94 1.25-3.01 .003

cT cT3-4 vs cT1-2 2.04 1.30-3.18 .002

cN cN+ vs cN� 1.93 1.22-3.04 .005

Grading G3 vs G1-2 1.02 0.64-1.64 .935

Histotype Nonductal vs ductal invasive 1.05 0.48-2.29 .911

Luminal-A

mdm2 mdm2 gain vs normal 3.20 1.35-7.59 .008

Age, years >50 vs ≤50 1.29 0.64-2.60 .485

cT cT3-4 vs cT1-2 1.94 0.88-4.31 .102

cN cN+ vs cN� 1.40 0.65-3.00 .388

Grading G3 vs G1-2 1.00 0.43-2.33 .997

Histotype Nonductal vs ductal invasive 1.65 0.56-4.91 .365

Luminal-B

mdm2 mdm2 gain vs normal 0.67 0.27-1.70 .400

Age, years >50 vs ≤50 2.90 1.63-5.17 <.001

cT cT3-4 vs cT1-2 1.88 1.07-3.29 .028

cN cN+ vs cN� 2.02 1.10-3.71 .023

Grading G3 vs G1-2 0.81 0.45-1.46 .487

Histotype Nonductal vs ductal invasive 0.75 0.23-2.44 .634
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Luminal-B BC patients. Of note, these results should be interpreted

with caution due to the small number of events.

3.9 | The survival outcome of Luminal-B BC
disease was poor compared to the Luminal-A BC
disease regardless the mdm2 status

Without taking the mdm2 status into account Kaplan-Meyer showed

that both the DFS (HR Luminal-B to Luminal-A = 1.63 [95% CI:

1.16-2.29], log-rank P = .004) and OS (HR Luminal-B to Luminal-

A = 1.95 [95% CI: 1.26-3.00], log-rank P = .002) were poor in

Luminal-B BC patients compared to Luminal-A BC (Figure S5).

4 | DISCUSSION

The differentiation of ER-positive BC cancers to either the Luminal-A

or Luminal-B subtype is useful but insufficient for judging the patients'

individual risk to experience tumor progression and relapse. Thus,

Luminal BC requires further stratification that allows improved indi-

vidual prognosis and therapy. Here we analyzed tumor engraftment,

growth and progression in a human-like preclinical mouse model to

identify biomarkers associated with high-risk Luminal BC disease.

Essentially, we identified that an increased mdm2 gene copy number

was associated with successful tumor engraftment in humanized NSG

mice while nonengrafted tumors had basically an unaltered mdm2.

Moreover, these mice had an increased rate and size of lung metasta-

sis which was characterized by a pronounced c-Met, and CD44

expression.

A CD44high/CD24low phenotype has been repeatedly attributed

to BC stem cells with pronounced resistance to various treatments

and enhanced tumorigenicity.26 However, it is becoming more and

more obvious that this phenotype alone may not appropriately envis-

age the initiation of tumor growth, progression and metastasis.27-30

Moreover, a number of functional studies unambiguously indicate that

an elevated CD44/CD24 expression ratio taken alone is neither suffi-

ciently representative for the colony forming capacity in vitro nor for

the initiating of tumor growth in vivo.15,31,29,32 Thus, a multifactorial

phenotype and genotype that includes a variety of markers known to

be not only involved in but also to be essential for tumor stemness

can be considered more robust to predict onset of tumor growth or

tumor relapse after therapy. c-Met, CD44 and CD47 have been previ-

ously described to be part of an enhanced capacity to initiate metasta-

sis of Luminal BC in a preclinical mouse model.15 The analysis of a

small cohort of metastatic Luminal BC patients revealed that in partic-

ular the presence of CD44/c-Met/CD47 triple positive CTCs correlate

with dismal survival and increased metastasis.2 Engraftment rates of

Luminal tumors in mice (PDX) are generally low.33 Success rates less

than 5% have been reported.11 Interestingly, in our study only tumor

samples from patients with an altered mdm2, mdm4 or TP53 genotype

had the capacity to engraft in humanized mice pointing to the more

aggressive characteristic of these tumors. Moreover, using humanized

NSG based xenotransplants we found here that mice transplanted

with mdm2 amplified tumors not only showed increased tumor

growth than animals transplanted with tumors without mdm2 alter-

ation, but also they had a significantly higher rate of (lung) metastasis

(77.3% vs 16.7%). In addition, CD44 and c-Met were significantly

higher expressed in metastatic cells compared to the primary hPDX

tumor. Thus, we conclude that in addition to a pronounced CD44 and

c-Met expression an mdm2 gene amplification determines an

enhanced malignant capacity of Luminal BC cells in a preclinical

human-like in vivo setting.

Comparative low pass sequencing of DTCs and selected tumor

cells revealed mdm2Amp primary tumors harbored mdm2 amplifications

in all analyzed single cells while a number of corresponding single

DTCs isolated from BM displayed an mdm2WT genotype. Regarding

the complex genomic rearrangements on chromosome 12, it is

unlikely that DTCs have lost the mdm2 amplification after their dis-

semination. Instead, the tumor might also harbor a low frequency of

subclones without mdm2 amplification. Especially the observation in

model hPDX PT-S1, which showed exclusively mdm2WT DTCs in BM

could indicate a parallel progression of tumor cells with different

genotype.34 This suggests that hPDX models could mimic human dis-

ease in which primary tumors and DTCs have been shown to be highly

heterogeneous.35

HTM, based on cell lines or patient derived tumor xenografts

allow the evaluation of immune cell status as a function of treatment.

In our study, human T cell incidence, PD-1 expression, tumor infiltra-

tion, maturation and activation were diminished in mdm2Amp hPDX,

which additionally indicates an mdm2-dependent immune cell regula-

tion. Recent studies demonstrated a potential immune inhibitory

effect of mdm2. It has been reported, for example, that co-targeting

of the aurora kinase-A and mdm2 results in inhibited tumor growth in

a murine melanoma model and four melanoma PDX models, which

was associated with an enhanced infiltration of NK and antigen pre-

senting cells into the murine tumors.36 Thus, targeting mdm2 (eg, with

molecule specific inhibitors) in combination with other treatments

might be a promising strategy to treat Luminal BC with an mdm2 gain.

Moreover, Fang et al detected the synergistic effect of inhibiting

mdm2 with APG115 in combination with a PD-1 blockade, which

resulted in enhanced immune cell activation and infiltration of cyto-

toxic T cells. In addition, they observed polarization of M1 macro-

phages by inhibition of M2 differentiation.37 Alternatively, Zou et al

stabilized mdm2 by the deubiquitinases USP15, which reduced T cell

activation.38

Mechanistically, the interaction of mdm2 and TP53 seems to be

essential too. mdm2 is known as an antagonist to regulate both the

protein content and activity of the tumor suppressor TP53.39 As an

E3 ubiquitin ligase mdm2 induces TP53 degradation but also sup-

presses the TP53 transactivation domain and thereby attenuates the

transcriptional activity of TP53. A reduced TP53 expression and activ-

ity results in a loss of cell cycle control and a reduced ability of prolif-

erating cells to initiate the repair of DNA damages or cell death.40

Thus, the “guardian role” of TP53 becomes impaired by an excessive

presence and activity of mdm2. With view to these molecular
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mechanisms it is not surprising that mdm2 gene amplification and ele-

vated mdm2 expression levels have been formerly associated with

tumorigenesis and an increased incidence of malignant diseases.41-43

A negative prognostic impact in BC has been described as well.44

The transcription factor TP53 is not only an important player in

the regulation of cell-cycle and apoptosis but also has been shown to

manipulate the tumor-immune cell crosstalk. For example, TP53 has

been described to modulate the differentiation of macrophages

towards an antitumor M1 by preventing the immunosuppressive M2

phenotype.45 Previously, Wang et al described the effect of a second

generation mdm2 inhibitor (HDM201) in a murine syngenic mouse

model that resulted in an increased DC population, enhanced infiltra-

tion of T-bet+/Eomes+ CD8+ T cells and raised the CD8/Treg ratio.

These effects were reversed using TP53 knockout tumor cells. Fur-

thermore, the activation marker CD80 was elevated on tumor cells

associated with enhanced IFNγ release and T cell mediated tumor cell

killing.46 In addition, the generation of apoptotic cells by an inhibition

of mdm2 (as shown in our study) might cause the release of tumor

antigens, which might further boost an immunological tumor defense.

Different clinical trials using mdm2 inhibitors such as AMG232 are

ongoing (eg, acute myeloid leukemia NCT04190550; glioblastoma

NCT03107780). Solid tumor entities as ER-positive metastatic BC

with mdm2 overexpression are also being addressed.47 Moreover, the

inhibition of mdm2 and PD-1 (pembrolizumab) is being investigated in

clinical trials (NCT03611868) and novel therapeutic combinations

therapies for ER-positive BC patients are subject to preclinical studies

(anti-CDK4/6 plus anti-mdm2).48 Remarkably, mdm2 does not only

develop TP53-dependent activity but also can potentiate tumor

growth and progression TP53-independently. More specifically,

mdm2 physically interacts with the ER and can enhance its' transcrip-

tional (and thus the proproliferative) activity in an estradiol-dependent

fashion.49 Consequently, mdm2-mediated downregulation and deacti-

vation of TP53 and the mdm2-mediated direct ER-transactivation

have a mutually reinforcing effect that results in a growth advantage

of Luminal BC. Thus, the TP53-dependent and independent activities

affect growth and progression of Luminal BC.

Extending our preclinical in vivo studies on hPDX we cytogeneti-

cally detected an mdm2 gain in 10.5% of Luminal BC patients within

the GeparTrio trial.9 The gain of the mdm2 gene region detected by

FISH can be interpreted as mdm2 gene amplification since in respec-

tive tissue specimens the corresponding centromere 12 region was

never found simultaneously increased. BCs (10.5%) with mdm2 gene

amplification is in agreement with various studies by which an inci-

dence of enhanced mdm2—either on the genomic or the protein

level—in the range of 5.7% to 15.0% has been reported.39,41,50,51

Taken the whole Luminal BC cohort of our study without differentiat-

ing between Luminal-A and Luminal-B both the DFS and OS was

poorer for those patients with mdm2 amplified breast cancer. Upon

separate evaluation of Luminal-A and Luminal-B fraction this finding

remained significant and therefore valid for Luminal-A BC patients

only. In contrast, a pronounced mdm2 amplification (ie, only Score 3)

has a negative impact on the DFS only of BC patients suffering from

the Luminal-B subtype. This observation is based on a Score

3 frequency of 4.0% in Luminal-B BC, which is just slightly higher than

in the Luminal-A cohort (2.4%). Accordingly, the missing significance

of an enhanced mdm2 gain (ie, Score 3) on the course of disease of

Luminal-A BC patients might be due to the low number of those cases

within this subcohort. However, it can be speculated that within the

Luminal-B cohort only an enhanced (but not a moderate) gain has an

extra impact on the course of disease, because this BC subtype inher-

ently comes with a poorer prognosis compared to the Luminal-A patient

group, an observation that has been repeatedly reported formerly.52

The clinical appearance of Luminal-A BC has been frequently associated

to a rather high ER-expression, while the Luminal-B type shows less ER-

expression but an enhanced proliferation activity, typically represented

by higher Ki67 values.3,6 Accordingly, a favorable and unfavorable long-

term outcome of the Luminal-A vs Luminal-B BC subgroups within the

GeparTrio study, which was mdm2 independent, has been confirmed in

our study (Figure S5). However, we here generated evidence that also

an mdm2 dose-dependent effect takes place in Luminal-B BC. One can

assume that the higher the mdm2 protein expression is the more effi-

cient is the deactivation of TP53, which might correlate with an

enhanced tumor cell viability. This consideration is supported by previ-

ous studies that addressed the impact of the mdm2 gene dose, the

extent of mdm2 protein expression and the cellular localization.44,53

The long-term outcome in our study was generally disadvanta-

geous for patients suffering from tumors with an mdm2 gene amplifi-

cation although the pCR rates were significantly higher for these

patients compared to the cohort without an mdm2 gain (Figure 5).

This finding is valid for the total Luminal BC cohort from the

GeparTrio trial subjected to our study and upon Luminal-A/Luminal-B

separation for Luminal-B BC patients. An enhanced primary effect of

cytotoxic treatments in Luminal BC with mdm2 amplification might

again be explained by higher proliferation capacity of responsive

tumors that is further enhanced by an elevated presence of mdm2.

However, an initially better pCR that does finally not result in an

improved outcome (OS) of disease, an observation that might be due

to a very long observation time of the course of disease that was

200 months in our study (Figure 5). However, different therapy regi-

mens were not considered in our study as the treatment adaptation

due to an insufficient response that improved DFS and OS of patients

with hormone receptor positive BC. Both aspects could potentially

explain the individual neoadjuvant treatment response vs long-term out-

come.9,54 Nevertheless, a pronounced mdm2 gene dose (ie, Score 3) is

associated to a better initial treatment response but seems on long-term

to be somehow involved in an unfavorable outcome. Even though

Luminal BC is basically characterized by an advantageous prognosis suf-

fering from this BC subtype it is considered as a long-term disease that

tends to progress by relapse or metastasis rather later not sooner. An

mdm2 activity might contribute to such a late progress of disease.

In conclusion, an mdm2 gene amplification facilitates growth and

progression of estrogen receptor-positive BC growth in a preclinical

xenograft humanized NSG mouse model. mdm2 inhibition in vitro

reduced malignant cell proliferation and migration and induced tumor

cell apoptosis. In addition, an mdm2 gain is strongly associated with

an unfavorable outcome of Luminal BC disease. Prospective studies
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are required to verify the suitability of mdm2 for advanced Luminal

BC stratification and therapeutic targeting.
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