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Abstract
This thesis enquires into the mechanisms of energetic particle-driven instabilities in
experimental plasma scenarios, focusing on the dynamics of energetic-particle driven
Geodesic Acoustic Modes (EGAMs) and Alfv́en Modes (AMs). The ability to predictively
simulate the dynamics of energetic particles (EPs) in experimental scenarios is crucial
for the operation of future fusion reactors. EP transport is expected to constitute a
considerable fraction of the total heat transport in future fusion devices, therefore the EPs’
dynamics become fundamental for burning plasma operations. This work is a milestone on
the pathway to predictive, global, reactor-relevant plasma simulations. Experimental-like
distribution functions were employed, including an analytical distribution function whose
phase-space anisotropy has been parametrized and a numerical distribution function
generated from the RABBIT code. The simulations were performed using the ORB5
code, a gyrokinetic particle-in-cell (PIC) global electromagnetic code. We incorporated
experimental equilibrium and profiles from the NLED-AUG case, an experimental ASDEX-
Upgrade case, with experimental relevant anisotropic distribution functions.

The thesis presents a comprehensive analysis of the linear stability of the EGAM
influenced by experimental-like anisotropic EP distribution functions. The simulations
reveal that EGAMs are primarily excited for high anisotropy levels and mid range pitches.
Large scans over the anisotropy parameter-space using the ORB5 code are conducted to
determine the linear stability threshold depending on anisotropy parameters, EP density
fraction and temperature. Furthermore, many analytical models and numerical diagnostics
were employed to study the linear stability characteristics of EGAMs.

Next, non-linear, electromagnetic, multi-mode simulations are performed. The simula-
tions demonstrate the excitation of EGAMs through wave-wave coupling between n = 1
Alfvén Waves (AWs) and n = 0 Zonal Structures (ZS). This excitation dominates over the
linear drive of EGAMs if the EPs cannot drive linearly the instability. This result is more
consistent with experimental findings, furthermore it aligns well with theory and previ-
ous simulations, revealing growth rates depending on specific pitch angles. Additionally,
simulations using numerically calculated neutral beam generated distribution functions
(RABBIT code) show qualitative agreement with experimental measurements.

In conclusion, this thesis presents important advancements in the topic of non-linear
EP dynamics proved by good qualitative agreement between simulations, theoretical
predictions and experiments. This demonstrates the capability of the ORB5 code to
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Abstract

handle experimental-like anisotropic EP distribution functions. We are confident that
with accurate reconstruction of profiles and distribution functions we can reproduce the
non-linear EP dynamics with quantitative agreement with the experiment. Thus, the
findings presented in the thesis provide a foundation for predictive tokamak simulations
and contribute to the understanding of EP dynamics in fusion devices.
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Zusammenfassung
Diese Arbeit untersucht von energetischen Teilchen getriebenen Instabilitäten in exper-
imentellen Plasmaszenarien und konzentriert sich auf die Dynamik von sogenannten
’energetic-particle driven geodesic acoustic modes’ (EGAMs) und Alfvén Moden (AMs).
Die Fähigkeit, die Dynamik energetischer Teilchen (EPs) in experimentellen Szenarien
vorherzusagen, ist für den Betrieb zukünftiger Fusionsreaktoren entscheidend. Der Trans-
port der EPs wird voraussichtlich einen erheblichen Anteil am Gesamtwärmetransport
in zukünftigen Fusionsanlagen ausmachen, weshalb die Dynamik der EPs für den Be-
trieb von eines brennenden Fusionsreaktors fundamental ist. Diese Arbeit stellt einen
Meilenstein auf dem Weg zu prädiktiven globalen, reaktorrelevanten Plasmasimulatio-
nen dar. Experiment-ähnliche Verteilungsfunktionen wurden verwendet, darunter eine
analytische Verteilungsfunktion, deren Phasenraumanisotropie parametrisiert wurde, und
eine numerische Verteilungsfunktion, die aus dem RABBIT-Code generiert wurde. Die
Simulationen wurden mit dem ORB5-Code durchgeführt, einem gyrokinetischen Particle-
in-Cell (PIC) globalen elektromagnetischen Code. Wir haben damit zum ersten mal
experimentelle magnetische Gleichgewichte und Profildaten aus dem NLED-AUG-Fall,
einem experimentellen ASDEX-Upgrade Szenario, mit experimentell relevanten anisotropen
Verteilungsfunktionen kombiniert.

Die Arbeit präsentiert eine umfassende Analyse der linearen Stabilität der EGAM, die
von experiment-ähnlichen anisotropen EP-Verteilungsfunktionen bestimmt wird. Die Sim-
ulationen zeigen, dass EGAMs hauptsächlich bei hohen Anisotropien von einer bestimmten
Klasse von Teilchen im Geschwindigkeitsraum (mittelgrosse pitch-Winkel) angeregt wer-
den. Es wurden umfangreiche Scans über den Anisotropie-Parameterbereich mit dem
ORB5-Code durchgeführt, um die lineare Stabilitätsschwelle abhängig von Anisotropie-
Parametern, EP-Dichtefraktion und Temperatur zu bestimmen. Darüber hinaus wurden
verschiedene analytische Modelle und numerische Diagnostiken eingesetzt, um die linearen
Stabilitätseigenschaften der EGAMs zu untersuchen.

Anschließend werden nichtlineare, elektromagnetische, Multi-Moden Simulationen durchge-
führt. Die Simulationen zeigen die Anregung von EGAMs durch die Wellen-Wellen-
Kopplung zwischen Alfvén-Wellen (AWs) mit toroidaler Modenzahl n = 1 und zonalen
Strukturen (ZS) mit n = 0. Diese Anregung dominiert über den linearen Antrieb von
EGAMs, wenn die EPs die Instabilität nicht linear destabilisieren können. Dieses Ergeb-
nis stimmt relativ gut mit experimentellen Befunden überein und passt zudem gut zur
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Theorie und zu früheren Simulationen, bei denen die Wachstumsraten von spezifischen
pitch-Winkeln abhängen. Zusätzlich zeigen Simulationen mit numerisch berechneten
Verteilungsfunktionen, die durch den RABBIT-Code generiert wurden, eine qualitative
Übereinstimmung mit experimentellen Messungen.

Kurz gefasst präsentiert diese Arbeit wichtige Fortschritte im Bereich der nichtlinearen
EP-Dynamik, die durch eine gute qualitative Übereinstimmung zwischen Simulationen, the-
oretischen Vorhersagen und Experimenten belegt werden. Dies demonstriert die Fähigkeit
des ORB5-Codes, experiment-ähnliche anisotrope EP-Verteilungsfunktionen zu verar-
beiten. Wir sind zuversichtlich, dass wir mit genauerer Rekonstruktion von Profilen und
Verteilungsfunktionen die nichtlineare EP-Dynamik quantitativ mit den Experimenten
in Einklang bringen können. Die in der Arbeit vorgestellten Ergebnisse legen somit eine
Grundlage für vorhersagbare Tokamak-Simulationen und tragen zum Verständnis der
EP-Dynamik in Fusionsanlagen bei.
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1 Introduction

1.1 Nuclear Fusion
Soon after the discovery of nuclear power through fission, since the ’50s, physicists tried
to obtain energy from the opposite principle: nuclear fusion. Such source of energy is
the one that powers the stars of the universe. Being able to control and exploit such
powerful and unlimited [1] source of energy has been pursued for very long time with
great endeavour. In fact, it is hoped to be a compact, renewable, abundant energy
source not only in the next hundreds of years but as far in the future as we can possibly
imagine. Even if this field of study may already seem important enough on its own for
the reasons aforementioned, its importance becomes crucial if lowered in the nowadays
energy ever-craving society [2].

Like fission, also fusion exploits the energy "hidden" in the nuclei of the atoms. Nuclei
of different elements have different binding energy. Such nuclear energy can be released
either with fission or fusion reactions, provided that the binding energy of the products
is lower than that of the reactant. As it is clearly depicted in figure 1.1, we can harvest
energy from splitting heavy nuclei in lighter products. Such process is obtained, for
example, splitting an Uranium nucleus U235, by means of a fast neutron, into lighter
products (Kr92, Sr141). Unlike fission, in fusion two nuclei of light elements are bound
together to obtain a heavier one and deliver energy.

Figure 1.1: Negative binding energy with respect to mass number. Taken from [3]

1



1 Introduction

There are several fusion reactions that can deliver energy. Nevertheless, the reaction
which offers the largest cross section, in other words the most simple reaction to exploit,
is the following one:

D+T −→ α+ n+ 17.6MeV , (1.1)

where D and T are deuterium and tritium, two isotopes of hydrogen with respectively
one and two neutrons, α is an Helium-4 nucleus and n is a neutron. This reaction
delivers 17.6MeV of kinetic energy distributed between the products according to their
mass: 20% of it will go to the α-particle (3.5MeV ) and 80% to the neutron (14.1MeV ).
The idea is exploiting this released energy as a heat source in a thermodynamic cycle.
Electric power is harnessed by dynamos connected to turbines, as done traditionally in
any thermo-electric power plant.

The first attempt to obtain sustained fusion reactions was through beam-target or
beam-beam devices. Physicists thought it was enough to provide particles with enough
energy to overcome the electrostatic potential barrier (in the order of keV ) to let them
react. The power balance would have anyhow given a great energy gain (MeV yielded
against keV needed). Very soon it was clear that this process was useless because of
the losses due to the much more frequent Coulomb collisions. At this point it was clear
that the only sustained fusion process could be achieved only in very hot thermalized
plasmas. Such plasma must be kept at sufficient high temperatures and densities for
a long enough time span in order to let fusion reactions occur. The most important
condition of a fusion reactor is the capability to produce more nuclear power Pfus than
the potentially lost power Ploss. In the D-T case, fusion power can be evaluated as
follows:

Pfus =
1
4nD nT ⟨σv⟩v,DT EDT , (1.2)

where nD,T is the particle density of deuterium or tritium, ⟨σv⟩v is the cross section
for a given fusion reaction, which is a function of plasma temperature T , the operator
⟨...⟩v is an average over a velocity maxwellian distribution function: ⟨...⟩v =

∫
...fsd3v,

EDT is the energy released by a D-T reaction. By definition, the power loss Ploss can
be expressed as the ratio between the energy stored in the plasma and the energy
confinement time τE , which, on the contrary, is the ratio between the energy stored in
the plasma and the heat loss power:

Ploss =
3nT
τE

, (1.3)

where n is the D-T plasma density. In order to achieve the reactor condition the
following equation must be satisfied:
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Pfus > Ploss =⇒ nτE >
12T

⟨σv⟩DT EDT
. (1.4)

Lawson first defined this ignition criterion [4], which is commonly expressed as the
well known "triple product" [5], obtained by multiplying 1.4 by the temperature T and
considering its minimum (D-T reaction cross section is maximised for T ≥ 15 keV , and
approximating ⟨σv⟩ ∝ T 2 in the range T ∼ 15 keV ):

nTτE > 3.5 · 1021 m−3 · keV · s . (1.5)

In figure 1.2, the triple products for three different fusion reactions are shown. As
said before it is easiest to realise a burning fusion plasma based on the D-T reaction.

Figure 1.2: Triple products for different fusion reactions, taken from [6]

Therefore, to achieve such extreme conditions it is necessary to heat a D-T plasma at
very high temperatures for as long time as possible. These temperatures are extremely
harsh (15 keV ≃ 174 million K, the core of the Sun has Tsun = 15 million K), and thus
there cannot be direct contact of this hot plasma with any material. Hence, electrostatic
or magnetic confinement must be adopted to confine this very hot plasma. A number
of devices, exploiting different principles, were developed and tested in the decades
starting from the ’50s. Still today many institutes, research centers and companies
keep studying different concepts to achieve the best confinement. In the section 1.3,
the main concepts are highlighted.
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In the following section the principles of plasma physics are briefly presented. Plasma
physics disciplines the behaviors of ionized gases, and many studies in fusion science
derive from this very important branch of physics.

1.2 Plasma Physics
Plasma is often referred to as the fourth state of aggregation of condensed matter. The
plasma state is characterized by the following main feature: the atoms are partially
or fully ionised and thus positive and negative charged particles are the dominating
constituents. In the core of (magnetic) fusion plasma devices, considered the great
temperatures at play, we can consider all the particles to be fully or partially ionized.
There are two main parameters characterizing a plasma. The first one is the so called
Debye length, the distance within which the particles undergo the Coulomb forces of
other charges:

λD =

√
kB

Te
4πe2ne

, (1.6)

where Te is the electron temperature, e the electron charge, ne the electron density
and kB the Boltzmann constant. Another important plasma parameter is the plasma
frequency, which is the characteristic frequency arising in a plasma if a net charge
separation is applied:

ωp =

√
4πe2 ne

me
, (1.7)

where me is the electron mass. Conventionally an ionized gas can be considered as a
plasma if the following conditions are respected:

L ≫ λD , ωp ≫ vth
L

, (1.8)

where L is the characteristic dimension of the plasma, and vth the thermal velocity of
the plasma particles.

Given the nature of its charged particles, a plasma is affected by magnetic fields B.
In particular the charged particles are affected by Lorentz forces:

FL = q(v × B + E), (1.9)

where q is the charge of the particle, v its velocity, B is the magnetic field vector and E
is the electric field vector. Therefore, particles will gyrate around magnetic field lines
with the cyclotron frequency:
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ωc =
|q|B
mc

, (1.10)

where q and m are the charge and the mass of the particle, c is the speed of light,
while B = |B| is the value of the module of the magnetic field. The radius of such
gyromotion is called Larmor radius:

ρL =
v⊥
ωc

=
v⊥mc

|q|B
. (1.11)

For many thermal particles we have that v⊥ ∼ vth, therefore for such particles it is
useful to define also a thermal larmor radius:

ρL,th =
vth
ωc

=
vthmc

|q|B
. (1.12)

Given these basic characteristic parameters, in the next section we will offer two
approaches to describe the collective behavior of a plasma. Since an exact microscopic
description of all the particles in a reactor is unfeasible we need to introduce some
approximations. We will accept that the particles can be described by some distribution
in phase-space for the kinetic model or we will consider only space dependencies for a
fluid model derived from the former.

1.2.1 Kinetic description

In the kinetic model we assume that the particles can be represented by an s-species
distribution function Fs(x, v, t) in six dimensions: three spatial ones x, three in the
velocity space v, plus the dependency from time t. The evolution in time of such a
distribution function is offered by the Boltzmann equation:

dFs
dt

=
∂Fs
∂t

+ v · ∂Fs
∂x

+ a · ∂Fs
∂v

=

(
∂Fs
∂t

)
coll

, (1.13)

where v and a are the velocity and the acceleration of the species and the right hand
side term is the rate of change of Fs due to collisions. In some cases we can accept the
collisional term to be 0. Considering that the forces exerted on a plasma come from
electric fields E and magnetic fields B (through Lorentz force eq. 1.9), the acceleration
of a plasma species will be

a =
qs
ms

(E +
v × B
c

). (1.14)

Plugging 1.14 into 1.13, and considering the collisional term to be 0, we obtain the
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Vlasov equation [7]:

dFs
dt

=
∂Fs
∂t

+ v · ∂Fs
∂x

+
qs
ms

(E +
v × B
c

) · ∂Fs
∂v

= 0. (1.15)

The charge density ρc and the current density J are given by the 0th and 1st order
moments of the distribution function:

ρc(x, t) =
∑
s
qs

∫
Fs(x, v, t)dv, J(x, t) =

∑
s
qs

∫
vFs(x, v, t)dv. (1.16)

We can then close the system, coupling eq. 1.15 and 1.16 with the Maxwell equations
to solve the electromagnetic fields.

∇ · E = 4πρc (1.17)

∇ · B = 0 (1.18)

∇ × E = −1
c

∂B
∂t

(1.19)

∇ × B =
4π
c

J +
1
c

∂E
∂t

, (1.20)

The above set of equations (1.15 to 1.20) constitute the Vlasov-Maxwell system of
equation. This kinetic description of the plasma is very detailed and computationally
heavy because not only it offers a microscopic description in time and in space of
the plasma but also in the velocity space. Therefore it’s a 6-dimensional (plus time)
problem which incorporates all the times scales typical of plasmas, also those with high
frequencies in the order of the cyclotron frequency (ω ∼ ωci). The complexity and the
presence of so many timescales require a lot of computational power to solve the fully
kinetic description of a plasma.

It’s possible to simplify this problem in different ways. A very well known one is
obtaining fluid equations from the Vlasov-Maxwell set by considering moments of the
distribution function. We will get a set of equations depending only on (x, t) which
neglects the velocity space or kinetic effects. Nevertheless, such approach is extremely
useful and powerful to find equilibrium and stability conditions for plasma configurations
[8–10]. Such description goes under the name of MagnetoHydroDynamics (MHD) and
will be briefly presented in the next section.

Another approach to simplify the Vlasov-Maxwell set of equation can be found doing
some considerations on the plasmas we are interested in. The fast gyromotion of the
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particles around the magnetic field (eq. 1.10) is included in the kinetic treatment shown
above. In magnetized plasmas we can find many instabilities on very small timescales,
at frequencies comparable to the cyclotron frequency ω ∼ ωci. However, in fusion
plasmas most of the phenomena of interest happen in a timescale much larger than
the gyration period ∂t ≪ ωci. Typically, also ρL ≪ LB with LB = B/∇B is assumed
as a spatial ordering, i.e. strongly magnetised plasmas. Hence, we can use a new
framework where fast timescales are averaged and the fast gyromotion around the B
field lines is neglected in order to reduce the number of dimensions and the complexity
of computations and to neglect the small timescale phenomena. Such approach is called
Gyrokinetic Theory and will be explained more in detail in section 2.1.

1.2.2 Fluid description: Magnetohydrodynamics

Magnetohydrodynamic or MHD theory is a powerful tool to describe the dynamics of
electrically conducting fluids with or without external magnetic fields. MHD theory
was first proposed by Alfvén [11, 12]. Such theory can be derived considering kth order
moments of eq. 1.15 [13]:

∫
v · v · ... · v︸ ︷︷ ︸
kthorder

(
∂Fs
∂t

+ v · ∂Fs
∂x

+
qs
ms

(E + v × B) · ∂Fs
∂v

)
dv =

∫
v ·v · ... ·v

(
∂Fs
∂t

)
coll

dv.

(1.21)
For each species s, the 0th order momentum of the Vlasov equation will yield the

mass continuity equation, the 1st order one the momentum balance equation and the
2nd order one the energy balance equation. Closing the system with Maxwell equations,
we can derive a two-fluid MHD model [9, 14, 15]. Such set of equation can be further
simplified into the one-fluid MHD model [8], generally known as MHD model:

Continuity equation: ∂n
∂t

+ ∇ · (nu) = 0 (1.22)

Momentum equation: ρ∂u
∂t

+ ρ(u · ∇)u = −∇p+ J × B
c

(1.23)

Energy equation: ∂p
∂t

+ (u · ∇)p+ γp∇ · u = (γ − 1)ηJ2, (1.24)

where ρ is the density of the plasma, u is the plasma velocity, p the pressure, γ the
adiabatic constant (for a plasma γ = 5/3), J is the absolute value of the current density
J = |J| and η = meνe/(e2ne) is the electric resistivity of the plasma. Equations 1.22
through 1.24 coupled with Maxwell equations 1.17 through 1.20 together with the
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generalized Ohm’s law:

E +
u × B
c

= ηJ, (1.25)

constitute a closed system of equations that can describe the dynamics of a resistant
plasma. In some cases it’s possible to approximate the plasma resistivity to be η = 0,
in this case we can talk about ideal MHD.

As said this theory even if relatively simple is very useful for many applications.
Solutions of the stationary MHD equations are the starting point of any device design
[8] and can be evaluated with MHD, finding solutions to the momentum equation 1.23.
For example, in Tokamaks this corresponds in finding solutions to the Grad-Shafranov
equation [8, 16, 17] which is the poloidal component of eq. 1.23. Another application
of MHD is studying the stability of small perturbations [8–10]. In fact, a magnetic
configuration is never universally stable. Plasma equilibria are always affected by
a huge variety of instabilities, this very thesis also inquires into two peculiar kinds
of instabilities. Through various models derived from MHD it is possible to study
threshold values, growth rates, frequencies of such modes.

Because of their combination between fluid dynamics and electromagnetic fields,
plasmas are affected by an extremely large number of waves. For example, as it will be
shown in section 2.4, a magnetized plasma is a medium for magnetic and magneto-sonic
waves, where the local displacement of the plasma is coupled with the perturbation
of the equilibrium magnetic field. These are the so called Alfvén Waves (section 2.4)
and the magneto-sonic waves. The complexity of the geometries used for plasma
confinement makes the variety of waves even richer, since in the same machines we
observe an incredibly various range of plasma states and conditions. Some of these
waves can be driven unstable by plasma characteristics as temperature, density and
current profiles, or by kinetic effects of certain plasma populations as in the case of the
present thesis. In fusion research, the study of these instabilities has been proved to be
crucial. In fact, some of these instability, if not correctly mitigated, can lead to the
disruption of the equilibrium state and the termination of the plasma.

Furthermore, MHD theory is used also to describe a variety of astrophysical plasmas
[18] or other laboratory plasmas as for plasma thrusters [19]. In the next section we
give a brief description of plasma confinement. It will be soon clear the importance of
MHD theory to design such configurations and to evaluate their performances.
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1.3 Magnetic Plasma Confinement

In this section the basics of magnetic plasma confinement will be briefly presented.
Equation 1.5 is the condition to be achieved in order to reach reactor conditions.
Considering that this equation is maximized for T ∼ 15 keV and therefore it can be
considered as a fixed value, we can adjust the density or the confinement time to increase
the triple product. The so called magnetic confinement exploits magnetic bottles and
fields B, often coupled with drift or induced currents J, to generate Lorentz forces on
the particles, 1.9. If E = 0 Lorentz force affects only the perpendicular motion of the
particles and forces them to orbit around the magnetic field lines confining them. Such
machines operate at relatively low densities in the order of n ∼ 1020 m−3 and relatively
long confinement times τ ∼ 0.1 − 1 s.

Magnetic confinement approaches are the most used for fusion studies worldwide
[20]. As mentioned above, such configurations have to somehow solve the momentum
equation 1.23. In particular, if we assume stationary equilibria (∂t = 0) and the plasma
to stand still (u = 0), the equilibrium condition reduces to:

∇p = J × B
c

. (1.26)

From 1.26 we can infer that ∇p is perpendicular to both B and J, therefore the B
and J lines lie on surfaces along which the pressure is constant. If we consider the
stationary version of Ampére equation 1.20 and use it to substitute J in 1.26, we get:

∇

p+ B2

8π

 =
B2

4π k̂ , (1.27)

where k̂ = (b̂ · ∇)b̂ is the magnetic field curvature vector, b̂ is the normalized magnetic
field vector. From eq. 1.27 we notice that in order to counterbalance the plasma pressure
a magnetic pressure and a magnetic curvature have to be applied. Furthermore, we
notice that in case of a cylindrical configuration k̂ = 0 we get p+B2/8π = const., so
throughout the radius of the cylinder the plasma pressure p has to be counterbalanced
by the magnetic pressure B2/8π. Finally, we can introduce the kinetic to magnetic
pressure ratio parameter:

β =
p
B2
8π

. (1.28)

The β parameter, often averaged over the control volume ⟨β⟩V , is a figure of merit of
the confinement, where ⟨...⟩V is a volume integral. The higher β the better we exploit
the confinement properties of B lines.
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Given these basic tools of plasma equilibrium, we can move to the description of
machines that can realize this equilibrium.

Pinches

One of the most basic ideas to confine a plasma is driving an axial current through a
plasma. For example this can be achieved by applying a voltage to electrodes facing
the plasma. The magnetic field that arise from the current via Ampére equation 1.20
couples with the current itself and drives a forces that confine the plasma according
to 1.26. Such configuration is called z-pinch and has been studied thoroughly in many
varieties [21, 22]. Z-pinches are intrinsically unstable due to m = (0, 1) sausage or
kink modes [8, 21].Even though pinches have been discarded long ago as valid fusion
device, the screw-pinch shape is often referred to as a simplified geometry to explain
parameters and properties of tokamak plasmas.

In the event that magnetic lines terminate at a wall (as in the case of pinches), the
plasma will come into contact with the wall, resulting in the dissipation of its energy.
This occurs because the Lorentz force can not align parallel to the magnetic field, thus
failing to prevent the collision between the plasma and the wall. This results into very
low confinement times τe for pinches. To avoid this issue, the solution lies in creating
magnetic lines that form closed loops and do not intersect the material wall. This
configuration leads to a toroidal topology of magnetic field lines, which will be analyzed
more thoroughly in the next section.

Toroidal machines

The fundamental concept is that a toroidal geometry enables magnetic field lines to be
geometrically closed on themselves, leading to longer confinement times. In principle,
particles could orbit indefinitely along the B lines. However, a simple configuration
consisting solely of a toroidal axisymmetric field cannot maintain plasma equilibrium
with the magnetic field [23]. This is due to the opposite velocity drifts experienced by
electrons and ions produced by the gradient of the strength of the magnetic field (figure
1.3). In fact, in a purely toroidal configuration the magnetic field will be stronger closer
to the rotation axis of the torus and weaker in the farther part of the torus. As the
particles girate around magnetic lines they will be affected by a varying magnetic field
resulting in differential Larmor radii in different point of the orbit. In particular the
velocity drift produced will be:

v∇B =
µ

qs

B × ∇B
B2 , (1.29)
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where µ = mv2
⊥

2B is the magnetic moment of the particle. This causes the positive and
negative charged particles to separate vertically and accumulate at opposite vertical
ends, as displayed in fig. 1.3. As a result of these charge separations, an electric field is
generated, inducing an E × B drift, similar to that explained above, that affects both
ions and electrons alike:

vE×B =
E × B
cB2 , (1.30)

in fact, in equation 1.30, the direction of vE×B doesn’t depend on the charge sign as in
eq. 1.29. This particle drift causes the entire plasma to move outward, away from the
axis of symmetry, resulting in the loss of plasma confinement. To achieve equilibrium
where plasma pressure is balanced by magnetic forces, it is also necessary to incorporate
a poloidal magnetic field.

Figure 1.3: Purely toroidal axisymmetric field and consequent drifts. Adapted from [23]

The combined toroidal and poloidal magnetic fields result into a helical magnetic
field, like in a "loop-screw-pinch", which generate opposing ∇B drifts for the same
particle and prevents the loss of the plasma [5, 24]. Ultimately, in order to mitigate
pressure and current-driven instabilities within the plasma and thereby enhance its
confinement and stability, the implementation of a shear in the helical magnetic field
becomes imperative [5]. A magnetic shear is produced by a radial variation of the
inclination of the magnetic field lines. A more accurate definition of this will be given
with the definition of safety factor profile in section 1.4.

There are two possible approaches to generate the poloidal component of the helical
magnetic field within toroidal devices. The first method involves inducing a current in
the plasma using Faraday’s principle (as expressed in eq. 1.19). This is achieved by
driving a current through a solenoid positioned at the center of the torus, effectively
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utilizing the plasma as a one-loop secondary winding in a transformer. Consequently,
the poloidal magnetic field is internally generated by the current flowing within the
plasma itself. The machine adopting this principle is called Tokamak, a russian acronym
which stands for "toroidal chamber with magnetic coils". This machine is axis-symmetric
with respect to the toroidal axis. The details of this machine will be better described
in section 1.4.

Alternatively, the poloidal component, as well as the rest of the helical B field, can be
entirely generated externally by non-axisymmetric coils around the torus, eliminating the
need for plasma current and enabling potentially steady-state plasma operations. This
concept has been called stellarator. Although the stellarator is a potential candidate for
future fusion reactors, its current performance, measured by the triple product (eq. 1.5),
trails that of tokamaks [25, 26]. For a more complete description and understanding of
the stellarator concept, the interested reader may refer to [27].

1.4 The Tokamak
The Tokamak was firstly introduced in Russia in 1958 [28]. In 1969, the russian
tokamak T-3 was proved to have achieved an electron temperature up to Te = 1 keV
and confinement times up to tens of ms [29]. Such performances were a full order
of magnitude higher than any other fusion device at the time. Tokamak technology
spread quickly and, ever since, it is regarded as the most promising tool to achieve
sustainable controlled fusion. In fact, the highest triple product has been achieved in
tokamak machines [5, 30]. Being at the forefront of magnetic fusion research, today,
two prominent tokamaks, ITER [31] and SPARC [32], are currently under construction.
These ambitious projects aim to achieving D-T (deuterium-tritium) ignition, that is
satisfying eq. 1.5, not yet achieved by any other magnetic fusion device, and conducting
critical experiments with burning plasma. Both experiments are planned to start
operation and produce relevant results within a decade.

Many other experimental tokamaks all over the world were or are being operated for
scientific purposes. They play a crucial role in demonstrating feasibility of sustained
fusion reaction, optimizing fusion reactor design, testing materials and components,
and driving fusion technological development in general. The tokamak that will be
referred to throughout this thesis is ASDEX-Upgrade [33], operated by Max Planck
Society (MPG) in Garching, Germany. The ASDEX-Upgrade (AUG) tokamak leads in
the development of plasma scenarios for future reactors due to its remarkable heating
power-to-machine size ratio [34]. In some configuration, which is better described in
sec. 3.2, this high power available to the plasma make the machine physics relevant for
future burning plasma scenarios, in particular for Energetic Particles (EP) studies.
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1.4.1 Tokamak components
As shown in 1.4, the main components of a tokamak are the central solenoid, for the
generation of the plasma current, the toroidal field coils, for the generation of the
toroidal magnetic field, and additional external poloidal coils, for the shaping of the
plasma cross section and the control of the plasma. Additional components include:

• Heating systems:
usually they include Electron Cyclotron Resonance Heating (ECRH), Neutral
Beam Injection (NBI), and Ion Cyclotron Resonance Heating (ICRH). In AUG
the NBI boxes have different orientations, allowing power release at various radial
positions, including both on-axis and off-axis heating. This capability has been
used in the thesis to explore the physics EP driven instabilities, see Chapter 4 and
5. The ECRH system utilizes metallic mirrors to change the heating positions
by deflecting the beam angle. The ICRH antennas have fixed positions, with the
location of heating power deposition varying based on the wave frequency and
the magnetic field.

• Diagnostic systems:
tokamaks employ several diagnostics to measure plasma parameters and per-
formances. Thomson Scattering (VTA) [35] is the primary diagnostic for elec-
tron temperature measurement. Charge-Exchange Recombination Spectroscopy
(CXRS) [36] is employed to measure ion temperature profiles through charge
exchange reactions between injected neutral atoms and plasma ions. Electron
cyclotron emission (ECE) is used to measure electron temperature from the
cyclotron radiation produced by the gyration of electrons around magnetic field
lines. Interferometry systems measure the plasma density computing the shift
of phase in lasers due to the different plasma densities. Magnetic probes are
essential diagnostics in a tokamak, providing information on the magnetic field
and allowing the reconstruction of magnetic flux surfaces. Equilibrium codes use
magnetic probe measurements to solve the Grad-Shafranov equation and derive
plasma current, shape and stored energy.

• Control systems:
tokamaks need sophisticated control systems which coordinate measurements and
actuators to control plasma evolution and optimize its behavior. They include
feedback controllers for parameter corrections and a pulse supervisor to handle
exceptional situations. The control system and pulse supervisor dynamically
adjust experimental conditions to achieve physical goals and reproduce expected
parameter trajectories during a discharge.
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• Vacuum, pumping and fueling systems:
in tokamaks there’s the need to pump out of the machine impurities or, in
the future, fusion products and keep feeding in the plasma the reactants. To
these purpose, vacuum and crio pumps are installed to achieve the extremely
low vacuums needed for the correct functioning of these machines (∼ 10−6 Pa).
Meanwhile, puffing and pallet injection systems are installed to fuel the plasma
with reactant species (D, H or He in experimental devices and D-T mixtures in
reactors).

Figure 1.4: Tokamak scheme with coils, taken from [37]

major radius, R0 1.65 m
minor radius, a 0.5 m

plasma current, Ip < 1.2 MA
toroidal magnetic field, Bt < 3.2 T

heating power, Pin < 30 MW
electron density, ne <1020 m−3

ion temperature, Ti <8 keV

Table 1.1: Typical plasma parameters of AUG
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1.4.2 Tokamak geometry

The size of a tokamak is characterized by a major radius, R0, and a minor radius,
a, which can be used to calculate the inverse aspect ratio, ϵ = a/R0. Given the
toroidal geometry of the tokamak, two angular coordinates can be used to describe it,
a toroidal angle ϕ and a poloidal one θ (fig. 1.5.a). The magnetic field is made up of
two contributions along these directions: a dominant toroidal one, Bϕ, produced by
external coils, and a poloidal component, Bθ < Bϕ, generated by an induced toroidal
plasma current (fig. 1.5). The shape of the poloidal cross-section of the magnetic
equilibrium can have a degree of elongation, k ≥ 1 quantifying its numerical definition.
The combination of these magnetic fields gives rise to nested surfaces, with field lines
following a helical path along these surfaces. The helicity of the field lines is quantified
by the safety factor profile q, which indicates the average of the change rate of the θ
angle with respect to ϕ along a field line at different radial points:

q(r) =
1

2π

∫ 2π

0

B · ∇ϕ
B · ∇θ′dθ

′, (1.31)

in a simplified screw-pinch geometry, this can be approximated by: q = rBϕ/(R0Bθ)
[5, 8].

In a realistic non-circular geometry, the exact equilibrium is numerically calculated
by solving the Grad-Shafranov equation. This equation finds an ideal equilibrium
(neglecting resistivity) between the plasma pressure p and the magnetic field, with field
lines lying on nested toroidal surfaces (magnetic surfaces), as previously shown in eq.
1.26. An alternative way to describe the geometry of a tokamak is through the poloidal
magnetic flux function [8]:

Ψ =
1

2π

∫
SΨ

B · dS (1.32)

figure 1.5.b clearly shows how this integral is obtained. Usually Ψ is used as a
radial coordinate. This function remains constant on the magnetic surfaces at constant
pressure. For completeness we can also define a toroidal flux function [8], as represented
in fig. 1.5.a:

Φ =
1

2π

∫
SΦ

B · dS (1.33)
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Figure 1.5: a) J and B lines surfaces of constant pressure. The toroidal magnetic flux Φ
determined by the integral of the toroidal magnetic field Bϕ on the Sϕ area. b) The poloidal
magnetic flux Ψ is defined by the integral of the poloidal magnetic field Bpol on the SΨ area.
The magnetic axis is denoted as R0. Taken from [24]

After discussing the significance of nuclear fusion research in tokamaks, we can now
approach the specific research area addressed in this thesis, which is the study of energetic
particle instabilities in tokamaks. Charged particles interact electromagnetically with
each other and with the fields in a tokamak. These interactions can give rise to collective
behavior among the particles, leading to both microscopic and macroscopic plasma
instabilities. The focus of this thesis is on two kind of macroscopic instabilities that are
commonly measured in reactor-relevant tokamak experiments, where large populations
of EP are observed. EPs generated from NBI systems have characteristic velocities
close both to the thermal speed and the Alfvén velocity. Therefore they can resonate
and excite both an acoustic instability: the Geodesic Acoustic Mode (GAM), and a
magnetic one: the Alfvén Wave (AW).

Furthermore, it is of capital importance to notice that the toroidal geometry, simply
because the coils are disposed in a "denser" way near the axis of the machine, as clearly
shown in figure 1.4, generates a 1/R dependence of the toroidal magnetic field Bϕ.
Therefore a particle, orbiting along a magnetic field line will experience a gradient in
parallel magnetic field due to this toroidicity effect. Considering that for an unperturbed
trajectory, a particle will conserve its energy ε:

ε =
v2

∥ + v2
⊥

2 = const , (1.34)

and its so called magnetic moment µ:

µ =
mv2

⊥
2B = const , (1.35)
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as the particle travels along the magnetic line going toward the inner part of the torus it
will experience an increase in the module of B, according to the conservation of eq. 1.35,
v⊥ needs to increase too. Subsequently, according to expression 1.34, if v⊥ increases
then v∥ must drop. In some cases particles don’t have enough energy to overcome
this magnetic well and get reflected backwards along the magnetic line. The particle
which cannot travel to the high field side (HFS) of the tokamak are called trapped. On
the contrary, if they have enough parallel velocity they will go all around the poloidal
direction (even if slowing down in the HFS) and will be called passing. More details
about these populations of particles can be found in [38].

An example of such orbits is shown in figure 1.6. It is interesting to observe that the
trapped particles exhibit a particular orbit shape called banana orbit, red trajectory
in fig. 1.6. This shape is due to the conservation of a third quantity called toroidal
momentum [38]:

Pϕ = mRvϕ − qsψ = const . (1.36)

We see that if the toroidal velocity vϕ varies, as we have seen, along the trajectory
then the radial coordinate of the particle ψ has to change in order to maintain eq. 1.36
true. The consequence is that we see a radial displacement in both the trapped and
passing orbits as they go around the poloidal angle.

Figure 1.6: Passing (in blue) and trapped (in red) particles trajectories in toroidal configuration
(left) and in a poloidal plane projection (right). Adapted from [39]
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Finally, a last distinction in the particle populations is between the bulk plasma and
energetic particles. Energetic Particles (EPs) are an ion species with suprathermal
velocities vth,EP ≪ vth,i, where vth,EP is the thermal velocity of EPs and vth,i is the
thermal velocity of bulk ions. We will se more details about this plasma species in
sections 1.5 and 2.2.

1.5 Energetic Particle Instabilities and Motivation
Study and confinement of energetic particles (EPs) is crucial for the development
of future fusion reactors. In the burning plasma regime, fusion products are the
primary source of plasma heating. Therefore, confining EPs for long enough times
is fundamental for energy transfer to bulk species [40]. As described in the previous
section, current machines use ICRH or neutral beam injectors NBI to generate EPs,
which have different anisotropic non-Maxwellian phase-space distribution functions
due to their low collisionality and exist far from thermal equilibrium [41, 42]. Such
distributions are also very different from those originating from fusion products, anyhow
they can still drive the above mentioned EP instabilities. Our long-term goal is to
predict the self-organisation of a burning fusion plasma, considering cross-scale and
mode coupling phenomena. Thus we can use present day experiments to validate the
models to predict non-linear EP dynamics related to experimental-like EP distribution
functions. In the present work we develop and test numerical tools to analyze physical
phenomena characteristic of burning plasmas which can be reproduced on different
scales in present day machines which are not yet reactors (refer to section 3.2 for details
about this EP study relevant experimental set-up). As it will be clear from the present
section, it is very important to validate numerical codes, including step by step more
phenomena and experimental relevant features to advance in the capabilities to simulate
such scenarios.

In this section we preliminary introduce the nature of the instabilities we are going
to study in the present work (section 1.5.1), then we present the complexity of the
problem and the effort done in the past to reconstruct the EP dynamics (sec. 1.5.2).
Finally we explain the relevance of the work presented in this thesis in the framework
of EP dynamics studies in section 1.5.3. After it we will outline the goals of the thesis
and its results (section 1.6).

1.5.1 EP instabilities
EP-driven modes, which are formed by Alfvén Waves (AW) [43] and Energetic-particle
driven Geodesic Acoustic Modes (EGAM) [44], can be excited by EPs and harm
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confinement by redistributing them in velocity and real space [45, 46]. Linear excitation
of EGAMs (n = 0 mode) exclusively requires velocity-space gradients of the distribution
functions F0, so that the mode can be driven by inverse Landau damping [47]. Hence,
anisotropic EP F0 are needed to linearly drive EGAMs unstable [48–50]. EGAMs can
redistribute particles in phase space [46], representing a valid mechanism to exchange
energy between EPs and bulk ions [48, 51, 52] and can be used to regulate turbulence
[53]. A detailed explanation of the physics behind this kind of instability is offered in
section 2.3 in Chapter 2. Whereas Alfvén Waves can be excited both by anisotropic and
isotropic distribution functions. In fact, radial gradients in EP F0 can also represent
a driving force for n > 0 modes [47]. AWs can redistribute particles before their
thermalization with the bulk plasma, leading to severe heat losses and eventually to
damaging the machine. In particular, they are believed to be the cause for the so called
abrupt large-amplitude events (ALE), observed in JT-60U [54–56]. The details of the
physics of AWs is presented in section 2.4 in chapter 2. Furthermore, AWs and EGAMs
are coupled non-linearly via EP non-linear response [57–59]. For details about this
non-linear wave-wave coupling refer to section 2.5. The work hereby presented shows
that such physical mechanism is fundamental to reconstruct experimental observations
of AWs and EGAMs in ASDEX-Upgrade [50, 59].

1.5.2 State of the Art
Understanding the EP dynamics is a great challenge in the pathway to effective and
efficient nuclear fusion reactors. The large EP Larmor radius and drift orbit width
and the expected pressure contribution related to EPs in burning plasma scenarios
(βEP ∼ βth,i) make EPs a very important topic for reactor confinement. Because of these
characteristics, EPs are crucial in the coupling between microscopic and macroscopic
plasma phenomena [60, 61]. Furthermore, saturated EP-driven instabilities (such as
AWs) will produce anomalous EP radial transport, potentially harming severely the
confinement [45]. As we see, EPs have multiple channels to reach non-linear saturation,
either through wave-particle or through wave-wave interactions. The goal is to determine
what phenomena are dominant in which scenario.

In fact, in order to study all these phenomena we need models which necessarily
retain the following features:

• Electromagnetic physics: in order to capture the magnetic nature of many phe-
nomena (e.g. AWs).

• Non-linear physics: this is needed to study the coupling among different cross-scale
instabilities (e.g. meso-scale AWs with meso-scale ZS or micro-scale drift wave
turbulence) and the transport associated with the saturation of the modes.
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• Global perspective: needed to correctly evaluate the impact of the realistic mode
spatial structures on the non-linear wave-wave interactions or on the self-consistent
radial transport associated with the wave-particle saturation channel.

• Kinetic treatment: needed to capture the kinetic nature of most of this EP-
mediated phenomena and the crucial phase-space effects of distribution functions
on the drive of modes. It is, therefore, compulsory the use of fully gyrokinetic
(GK) or GK-MHD hybrid codes with realistic distribution functions.

Not only, in order to evaluate a correct hierarchy of these phenomena and produce
consistent and valid reduced models, we need to consider all this physics at the same
time on very different times scales, characteristic of the different phenomena we want
to study (e.g. the high frequency dynamics of meso-scale instabilities as AWs and the
low frequency of micro-scale turbulence).

So far the development of these models was focused on only one phenomena at a
time, limiting the simulations only to certain time scales, or mode numbers or running
single flux tube simulations. For example, so far, in this EP framework, previous studies
focused only either on the linear drive of EGAMs by double bump-on-tail distribution
functions [48, 49] or study on linear dynamics or non-linear saturation of AWs alone
[62, 63].

In order to achieve the goals mentioned above we have to run these GK, global,
electromagnetic, non-linear codes over very long periods. The code ORB5 has a
prominent importance in the development of these tools. Only recently, work was
started to enquire into the non-linear coupling mechanisms [50, 58, 59]. In reference
[58] we have an example of this attempt. The work presented in this thesis is a more
experimental relevant case of this multi-mode simulation effort, see details in chapter 5.
With the results obtained in this thesis we paved the way to the possibility of advancing
in the integration of multiple instabilities in the same simulation. As already said, the
final goal is to reach the capability of global simulations of burning plasmas.

A very interesting method is currently being elaborated to overcome the challenges
of current numerical frameworks when dealing with long-time- scales and non-local
behaviors. This is a Phase-spaze zonal structure (PSZS) transport theory [64–67]. This
theory generalizes the concept of plasma transport into the phase-space by offering the
definition of the plasma non-linear equilibrium distribution function considering slowly
evolving structures in phase-space. In the future, with this method, it will be possible
to reconstruct evolving non-linear equilibria and implement them in GK codes (like
ORB5), enabling them to run simulations over long time-scales with little noise. The
idea is to integrate the GK codes, which yield a description of the non-linear global
perturbations and their saturation mechanisms, into a reduced EP transport model
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based on PSZS theory for the analysis of present experimental measurements and the
fully predictive simulation of future burning plasmas.

Finally, it’s very important to remind that for all these non-linear phenomena we can
use the theory developed in literature for the interpretation of the numerical results. In
some cases, we also can have dedicated experiments (as in this work) to which we can
refer for the validation of our codes. It is only in this on-going comparison between
theory, numerical simulations and experimental observations that we will be able to
develop models capable of fully reconstruct the dynamics of EP in a burning plasma
scenario. On a small scale, this is what has been done in this thesis as it is more clearly
state in the next section.

1.5.3 Motivation

Because of the importance of EP dynamics for future reactors, it is crucial to develop
and experimentally validate models that are able to reconstruct these phenomena
[68]. Gyrokinetic tools (see Chapter 3) are particularly suitable to enquire into such
studies [68, 69]. Also, in present day machines, and in particular in ASDEX-Upgrade,
experiments can be set up to maximize the EP physical effects, as in the so called
NLED-AUG case [70, 71]. It is possible to detect frequency and spatial information
from experimental observations of EP driven modes [72], this allows to do comparisons
between observations and simulations. The purpose of this thesis is to advance in the
predictive capability of the gyrokinetic code ORB5 [69] to simulate this non-linear
EP dynamics in experimental relevant scenarios [50, 58, 59, 68, 73]. In particular,
we aim to do so by studying and trying to reproduce the experimental EP dynamics
from the NLED-AUG case. Particularly in this case, as elaborated in in section 3.2
and Chapter 5, our objective is to determine the predominant phenomenon within
the given experimental scenario. This implies determining whether it is the linear
driving mechanism of GAMs or the non-linear interaction between AWs and ZS to
regulate the EP dynamics observed in ASDEX-Upgrade (see section 3.2), utilizing a
distribution function that closely represents the EP experimental like conditions. As
previously highlighted in section 1.5.2, this attempt represents a novel challenge. Until
now, the focus within the ORB5 code framework has predominantly been on studying
single instabilities, often disregarding the use of experimentally relevant EP distribution
functions. This endeavor marks a significant step toward understanding the intricate,
non-linear, multi-mode, multi-scale and global nature of EP dynamics. To this goal the
present work compares ORB5 simulations of NLED-AUG case in ASDEX-Upgrade [50,
58, 59] with the available analytical theory and experimental measurements.
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1.6 Thesis scope and outline
This thesis enquires into the consequences of using different EP distribution functions
in gyrokinetic simulations to analyze the linear and non-linear behaviour of two insta-
bilities (EGAMs and AWs) and their coupling in ASDEX-Upgrade. This case involves
investigating the linear driving of EGAMs and the complex, non-linear interaction
between AWs and ZS. This research also aims to determine which of these phenomena
is dominant in the given experimental context. In particular, we study the effect of
adopting experimental-like, anisotropic EP distribution functions, both analytical and
numerical ones, which is a novel approach.

The structure of the thesis is as follows: in Chapter 2 we provide the reader with the
main theoretical background. First of all, gyrokinetic theory is introduced in section 2.1.
In sec. 2.2 EP features and dynamics will be outlined. After that, the GAM dispersion
relation and the linear drive mechanism are presented in sec. 2.3, as well as the AW
dispersion relation and characteristics in sec. 2.4. Finally, non-linear interactions
between AWs and EGAMs are discussed in sec. 2.5.

In Chapter 3, we present the numerical tools and framework used for the simulations.
In sec. 3.1 the gyrokinetic model for ORB5 used for our calculations is briefly introduced,
consequently, an overview of the features of the code is offered. In section 3.2 we describe
the experiment in ASDEX-Upgrade from which we derived our numerical setup for our
simulations. We then show the newly implemented anisotropic distribution functions in
sec. 3.3.

Chapter 4 produces the results of linear excitation studies for EGAMs using the new
F0. The results for the analytical F0 are presented in sec. 4.3, those for the numerical
F0 in sec. 4.4. A first comparison with experiments is offered in sec. 4.4.4.

In Chapter 5, we show the non-linear, electromagnetic simulation results, where AWs
were included in the simulations and allowed to interact with EGAMs. Firstly, the
results for the analytical distribution function were shown in sec. 5.2, and then for
the numerical one in sec. 5.3. In sec. 5.4 a new, more accurate, comparison between
non-linear simulations and experimental observation is performed.

Finally, in Chapter 6, a summary, conclusions and open issues of the thesis will be
presented. A glimpse on future perspectives will be given.
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After having shown the importance of the field and having pointed out the relevance of
the topic hereby treated, we provide the reader with the basic tools to understand the
theoretical basis of the work carried out in this thesis. To this purpose we will introduce
the gyrokinetic theory (section 2.1), backbone of the code we used for our simulations,
ORB5, and main pillar for studies of the kinetic plasma dynamics. Afterward we will
describe the general behavior of energetic particles (section 2.2). Subsequently, we
introduce the two EP driven instabilities we will discuss in this thesis (sections 2.3, 2.4).
Finally, we describe the non-linear interaction phenomena which regulate the coupling
between Alfvén Waves and Zonal Structures (section 2.5).

2.1 Gyrokinetic theory

Gyrokinetic theory is a simplified kinetic description of a magnetized plasma, that
allows for faster computations. In fact, the aim of the gyrokinetic transformation is
to bring the 6-dimensional motion of a charged particle in a magnetized plasma to a
5-dimensional one, conserving the drifts and the effects of field perturbations up to a
certain order. The description of the whole procedure and derivation of this theory
goes beyond the scope of this thesis, the interested reader may refer to [74–76]. Usually
the gyrokinetic framework can be obtained as a two steps derivation. First, starting
from the single-particle Lagrangian, the so called guiding center transformation is
performed [77]. That brings the actual particle position to the instantaneous guiding
center, considering zero perturbations in the external fields and retaining only the
spatial geometry and gradients of the magnetic field. This is obtained by subtracting
the gyroradius from the particle position as shown in fig. 2.1.
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Figure 2.1: Visualization of the transformation from the exact orbit of the particle to the
guiding center: the fast gyromotion around the magnetic field line is averaged

The position of the guiding center will follow primarily the parallel motion along the
magnetic field lines, but, at higher orders, it will also follow directions perpendicular to
the field lines due to the well known drift motions and the finite Larmor radius effects.
Therefore, the new set of coordinates is wanted to be independent of the gyroangle
variable:

Z = (x(θ), v∥(θ),µ(θ), θ)︸ ︷︷ ︸ −→ Zgc
local coordinates

= (R(
�
�θgc), v∥,gc(�

�θgc),µgc(��θgc), θgc)︸ ︷︷ ︸
guiding center coordinates

, (2.1)

where the gc pedex indicates that the coordinates are the guiding center coordinates,
R is the guiding-center position of the particle such that x = R + ρ(θ), v∥ is the
parallel velocity of the particle, µ is the magnetic moment of the particle. Whereas
zα = zα(θ), in the guiding center system we have zαgc ̸= zαgc(θgc). If we manage to
find a transformation capable of realizing 2.1, the dynamics of the set of the first five
coordinates will be solvable independently of the last one θgc, the gyroangle. This
transformation is obtained by writing the Lagrangian of a charged particle, under the
hypothesis of a magnetized plasma: ϵB = ρL/LB ≪ 1, with ρL Larmor radius and
LB = |∇B/B|−1

max. We will make use, at different orders of ϵB, of the Lie Transform
methods: Γ = eGzγ+ dS [75], where γ is the 1-form Lagrangian, Gz the generating field
and S an arbitrary scalar for the gauge invariance. By introducing and assigning the free
variables we can decouple the dependency of the coordinates from θ and conserve energy
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and momentum. By applying all these transformations we yield the guiding-center
Lagrangian [77] (the gc pedex is dropped for simplicity):

Lgc(R, v∥,µ, θ) = (
qs
c

A +mv∥b) · Ṙ +
msc

qs
µθ̇−

mv2
∥

2 + µB

 , (2.2)

where A is the magnetic vector potential: ∇ × A = B. We can obtain the characteristic
of the particles and therefore the tools to write the guiding center Vlasov equation by
writing the action of the Lagrangian and taking the derivative of it with respect to
the coordinate. The explicit passages to do this are shown below for the gyrocenter
transformation, since the two processes are very similar. Alternatively, we could also
write the 2-form Lagrangian and evaluate the Poisson-bracket of this new system and
then apply it to the coordinates to obtain their characteristics [78].

As a second step, the time fluctuations of the electric potential δφ and the magnetic
one δA are introduced in the model [75, 79]. The smallness parameter associated with
these fluctuations is ϵδ = eδφ/T ∼ δB/B, such that ϵB = ϵ2δ , which is a common
approach in many gyrokinetic codes (see sec. 3.1). As previously, we want to find a
transformation as in 2.1, but this time to the gyrocenter coordinates, which take into
account the aforementioned electromagnetic perturbations:

Z = (x(θ), v∥(θ),µ(θ), θ)︸ ︷︷ ︸
local coordinates

−→ Zgy = (R(��θgy), pz(��θgy),µgy(��θgy), θgy)︸ ︷︷ ︸
gyro center coordinates

, (2.3)

This can be accomplished as before taking in account in the Lie Transformations the
perturbations in the electromagnetic potentials. The pedex gy will be dropped from
now on for simplicity sake. We hypothesize that the perpendicular vector potential is
zero: A⊥ = 0, leaving δA ≃ δA∥b. The electromagnetic perturbations break the time
conservation of µ. In order to restore it similar Lie-transforms are applied and using
the Hamiltonian representation at the second order the following gyrocenter particle
lagrangian is yielded [75, 79]:

Lgy(R, pz,µ, θ) = qs
c

A∗(R) · Ṙ +
msc

qs
µθ̇−H0 − ϵδH1 − ϵ2δH2, (2.4)

where pz is the canonical gyrocenter momentum:

pz = mv∥ +
qs
c

⟨δA∥(θ)⟩θ, (2.5)

The gyro average over the fast gyromotion is represented by the notation ⟨...⟩θ. It can
be defined for a general function dependent on the gyroradius and consequently the
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gyroangle F (R + ρ(θ)) in order to cancel its dependence on the gyromotion:

⟨F (R + ρ(θ))⟩θ =
1

2π

∫ 2π

0
F (R + ρ(θ))dθ . (2.6)

In the so called drift-kinetic approximation, the gyroaverage is not computed for
the particle: the quantity is approximated to be the one computed at the guiding
center position. In other words: ⟨F (R + ρ(θ))⟩θ,dk = F (R). The extended magnetic
potential A∗ is defined as:

A∗ = A +
c

qs
pzb. (2.7)

We can consequently also define an extended magnetic field:

B∗ = ∇ × A∗ = B +
c

qs
pz∇ × b . (2.8)

The particle Hamiltonian H is decomposed in its different orders: H = H0 +H1 +H2,
where, in the long wavelength approximation, each of them is defined as:

H0 =
p2
z

2m + µB , (2.9)

H1 = q

(
⟨δφ⟩θ − pz

msc
⟨δA∥⟩θ

)
, (2.10)

H2 =
q2
s

2msc2
⟨δA∥⟩2 − msc

2

2B2 |∇δφ|2 . (2.11)

Integrating the particle Lagrangian (eq. 2.4) multiplied by the distribution function
Fs over velocity space dW and real space dV and summing it to the field Lagrangian∫
(δE2 − δB2)/8πdV , discarding the electric field perturbation because of the quasi-

neutrality approximation [79], we yield the total gyrokinetic Lagrangian of the system
up to O(ϵ2δ) contributions:

L =
∑
s

∫ (qs
c

A∗(R) · Ṙ +
msc

qs
µθ̇−H0 − ϵδH1

)
Fs − ϵ2δH2F0,s

 dW dV − ϵ2δ

∫ |∇δA∥|2

8π dV .

(2.12)
In equation 2.12 we decomposed the total distribution function of a particle species

into an equilibrium distribution function and a perturbation distribution function, this
also has a smallness parameter ϵδ associated to it: Fs = F0,s + ϵδδfs. Therefore, in eq.
2.12, we discarded the ϵ3δH2δfs term because of third order O(ϵ3δ).
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We can find the characteristic and field equations using a variational approach [80, 81].
We can define a gyrokinetic action functional, integrating in time the total Lagrangian
from eq. 2.12:

A(Z, δφ, δA∥) =
∫ t2

t1
L(Z, δφ, δA∥)dt. (2.13)

In order to get the gyrokinetic characteristic and field equations we can consider the
minimization of a functional derivative of the action A in eq. 2.13 with respect to a
certain function η multiplied by an arbitrary test function ψ̂:

∂A
∂η

ψ̂ =
d

dϵ

[∫
L(η+ ϵψ̂, ∇η+ ϵ∇ψ̂)dW dV dt

]
ϵ=0

= (2.14)

=
∫ (

∂L
∂η

ψ̂+
∂L
∂∇η

∇ψ̂
)
dW dV dt = 0. (2.15)

The equations of motion of a particle can be found by minimizing the action integral
with respect to the particle phase-space coordinates Z = (R, pz,µ, θ) [80, 81]. From
such minimization we can obtain the Euler-Lagrange equations for the particle [81]:

d

dt

∂Lgy
∂Żα

=
∂Lgy
∂Zα

. (2.16)

Substituting every gyrokinetic coordinate in equation 2.16 we get the particle charac-
teristic equations:

Ṙ =
B∗

B∗
∥

∂

∂pz
(H0 + ϵδH1) +

cb
qB∗

∥
× ∇(H0 + ϵδH1), (2.17)

ṗz = −B∗

B∗
∥

· ∇(H0 + ϵδH1), (2.18)

µ̇ = 0, (2.19)

θ̇ = ωc, (2.20)

where B∗
∥ = B∗ · b. Again because of the third order generated by FsH2, the

dependence from H2 is lost. As imposed, the magnetic moment µ becomes an adiabatic
invariant again. We can rewrite equations 2.17 to 2.20 extensively, expliciting the
values of the Hamiltonians H0 and H1 from equations 2.9 and 2.10. We can do that by
splitting the different contributions from the different orders:
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Ṙ = Ṙ(0)
+ ϵδṘ

(1) , (2.21)
ṗz = ṗz

(0) + ϵδṗz
(1) , (2.22)

µ̇ = 0 . (2.23)

The 0th-order derivatives are the so called unperturbed trajectories:

Ṙ(0)
=
pz
m

b︸ ︷︷ ︸
=v∥

+
(
pz
m

)2 mc

qB∗
∥

b × ∇B
B︸ ︷︷ ︸

=vcurvB

+
cµB

qB∗
∥

b × ∇B
B︸ ︷︷ ︸

=v∇B

−
(
pz
m

)2 cm

qB∗
∥

b ×
(

b × ∇ × B
B

)
︸ ︷︷ ︸

=v∇p

,

(2.24)

ṗ(0)z = −µB∗

B∗
∥

· ∇B = −µm
pz
(v∥ + vcurvB + v∇p) · ∇B, (2.25)

in 2.24 v∥ is the 0th order component of the velocity parallel to B. The other con-
tributions are perpendicular to B: vcurvB and v∇B are the drift velocities due to
the curvature and the gradient of the magnetic field and, in general, account for the
drifts due to the magnetic geometry. Finally, v∇p is the so-called diamagnetic drift
caused by the gradient of the pressure. In fact, combining equation 1.20 and 1.26 we
yield: b × (∇ × B)/B = −4π∇p/B2. The 1st-order derivatives are the perturbed
components due to electromagnetic time perturbations:

Ṙ(1)
=

cb
B∗

∥
× ∇

(
⟨δφ⟩θ︸ ︷︷ ︸

=vE×B

− pz
m

⟨δA∥⟩θ
)

− qs
cm

⟨δA∥⟩θ
B∗

B∗
∥

, (2.26)

ṗ(1)z = −qB∗

B∗
∥

·∇
(

⟨δφ⟩θ − pz
cm

⟨δA∥⟩θ
)
= −qm

pz
(v∥ +vcurvB +v∇p) ·∇

(
⟨δφ⟩θ − pz

cm
⟨δA∥⟩θ

)
,

(2.27)
where vE×B is the drift due to electric fields, by definition it must be a 1st order
perturbation. In the electrostatic case, all terms ⟨δA∥⟩θ are put to 0. In such a
condition, for Ṙ(1), we see that the only 1st order term to survive is the ExB drift. In
linear simulations, when solving equations 2.22 and 2.23 the characteristic will just
retain the 0th order components (2.24 and 2.25) neglecting the terms proportional to ϵδ
(2.26 and 2.27). In the non-linear case, the non-linear wave-particle interactions (Ṙ(1)
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and ṗ
(1)
z ) are retained in the characteristic equations allowing the particles to follow

the perturbed trajectories and redistribute in phase-space.
If we consider the derivative of the Action (eq. 2.15) with respect to the electromag-

netic perturbations δφ and δA∥, we obtain the field equations. Taking as test function
the electrostatic perturbation δφ we get the gyrokinetic Poisson equation:

∂A
∂δφ

δφ = 0 =⇒ −ϵδ
∑
s
ms

∫
∇ ·

c2F0,s
B2 ∇δφ

 dW =
∑
s
qs

∫
⟨Fs⟩∗

θdW . (2.28)

Considering instead the derivative with respect to the parallel magnetic potential
perturbation we yield the gyrokinetic Ampére equation:

∂A
∂δA∥

δA∥ = 0 =⇒ ϵδ
∑
s

∫ µs
B

∇2δA∥ +
q2
s

c2ms
δA∥

F0,sdW + ϵδ∇2A∥ =

=
∑
s

qs
ms

∫
pz⟨Fs⟩∗

θdW .
(2.29)

In equations 2.28 and 2.29, the operator ⟨...⟩∗
θ is the adjoint of the gyroaveraging

operator. Fianally, it is possible to rewrite the gyrokinetic Vlasov equation to reproduce
the evolution of distribution functions in the gyrokinetic approximation:

dFs
dt

=
∂Fs
∂t

+ Ṙ · ∂Fs
∂R

+ ṗz
∂Fs
∂pz

= 0 . (2.30)

Combining the characteristic equations 2.17 to 2.20, the field equations 2.28 and 2.29
with the gyrokinetic Vlasov equation 2.30, using appropriate boundary conditions, it is
possible to reproduce the approximated kinetic behavior of a certain plasma geometry.

The theory hereby outlined is at the base of many girokinetic codes, as XGC, GENE
and ORB5 [69, 82, 83]. In particular we will present in section 3.1 the principles of the
PIC code ORB5. Furthermore, we will make use of this theory to derive the gyrokinetic
dispersion relations of GAMs (section 2.3.2). Before moving to the physical theory of
such instabilites we give an overview of the EPs dynamics in fusion devices.

2.2 Energetic Particles dynamics
Energetic Particles (EPs) are an ion species with suprathermal velocities vth,EP ≪ vth,i,
where vth,EP is the thermal velocity of EPs and vth,i is the thermal velocity of bulk ions.
Given the high energies, EP species is very weakly collisional and therefore can exist

29



2 Theoretical background

far from thermal equilibrium, as anisotropic non-Maxwellian distribution functions F0.
In a tokamak, such particles are generated by the heating systems (section 1.4), in
particular ICRH and NBI. In this thesis we limit our studies to the EPs generated by
NBI systems, therefore from now on any reference to EPs will be to NBI-generated
EPs. NBI systems are characterized by the injection energy, this is the velocity at
which neutral particles are injected in the plasma by this heating device. Typical
tokamak NBI injection energies are below 100 keV , in ASDEX-Upgrade (AUG) NBIs
have energies ranging from ∼ 60 keV to ∼ 93 keV [84]. As it will be defined in section
2.4, such velocities are sub-alfvénic (namely they have a velocity lower than Alfvén
velocity). Nevertheless, NBI systems in JT-60 SA and ITER are planned to have
very powerful neutral injection systems, respectively at 500 keV [85] and 1 MeV [86],
reaching super-alfvénic velocities. Plasma species, in general, can resonate with waves
propagating through the plasma, provided they have thermal velocities comparable
to the phase velocity of the wave. In particular, EPs are able to interact with AWs
and GAMs. The details of such interaction mechanism are explained in the following
section.

2.2.1 Inverse Landau Damping and wave-particle resonant
interaction

Waves propagate with a phase velocity: vph = ω/k, where ω is the frequency of the
mode and k is the wave number. If a particle has a characteristic velocity close to
vph, then it will experience the same phase of the wave for prolonged times. Therefore,
the particle will coherently feel the electromagnetic forces generated by the wave
perturbation over long enough times to be accelerated or decelerated. This mechanism
goes under the name of Landau damping [87].

In particular, if a particle has v < vph, it will be accelerated by the wave, and the
energy will be transferred from to the particle from the wave, damping it. Otherwise, if
v > vph, the particle will be decelerated and the energy ceased to the wave, exciting
it. Therefore, the net exchange of power between a particle species and the wave is
dependant on the velocity-space gradients of the distribution function F0. As we can
see in fig. 2.2, if the phase velocity is located at a point in phase space of the F0 which
has a negative gradient ∂F0/∂v|vph,1 < 0 (dashed green line in fig. 2.2), there will
be more particles accelerating than those decelerating. Hence, globally, the species
will gain energy from the wave, damping it. On the other hand, if ∂F0/∂v|vph,2 > 0
(dashed red line in fig. 2.2), more particles at higher energies are slowed down than
those accelerated, the mode acquires energy from the particles.
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2.2 Energetic Particles dynamics

Figure 2.2: Visualization of two different waves propagating at different phase velocities vph

and interacting with the F0 at points with different velocity space gradients.
The wave with vph,1, green line, interacts with the particles around this velocity. Because
∂F0/∂v|vph,1 < 0, more particles at lower energy v < vph,1 are displaced toward higher energies
than those with v > vph,1 slowed down. The particle species gains energy and the wave is
damped.
The viceversa happens for the wave with vph,2, red line. Given ∂F0/∂v|vph,1 > 0, there are
more particles at higher energy v > vph,2, which are slowed down, than those with v < vph,2.
Consequently, in this case, the net exchange of energy is negative for the particles and positive
for the mode.

We showed conceptually that the linear growth rate of these EP driven instabilities
is proportional to the phase space gradient of the distribution function: γ ∝ ∂F0/∂v.
A more detailed analysis of the linear growth rate γL can be found in [88]:

γL =
π

2ω
ω2
p

k2
∂F0
∂v

∣∣∣∣∣
v=vph

, (2.31)

where ω is the real frequency of the instability and k is the wave number defined as the
inverse of the wave length: k = 2π/λ.

Better elaborated calculations regarding the growth rates of EP instability, with a
particular focus on AWs, can be found in [47]. It is important to notice that the exciting
mechanisms of these modes can involve radial pressure gradients as well. Specifically,
the pressure gradient ∇p is crucial in inducing particle drifts perpendicular to the
magnetic field. The frequency of such drifts can be defined as in [47]:
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ωD =
n

q

∂ε

∂ψ
, (2.32)

where q is the safety factor at a given radial position, ε is the kinetic energy of the
particle, ψ the radial coordinate as defined in eq. 1.32 and n is the toroidal mode
number of the instability. The poloidal mode number is represented by m, so that the
Fourier characteristic of a mode can be determined by the set (m,n):

δG = Ĝei(nϕ−mχ+...) . (2.33)

After some calculations a new evaluation for the growth rate follows as shown in
reference [47]:

γL ∝ ω
∂F0
∂ε

− n

q

∂F0
∂ψ

. (2.34)

equation 2.34 not only shows that modes are excited by positive gradients in velocity
space, as in equation 2.31, but also, in the case of AWs (n ̸= 0), by negative radial
gradients of density.

As mentioned above, EP populations have thermal velocities comparable to the phase
velocity of two important instabilities, the GAM and the AW. Therefore, the EPs can
resonate with these modes through the mechanism explained above. In conclusion,
anisotropic distribution functions can drive EGAMs unstable (see sec. 2.3 for details).
Whereas, AWs can be destabilized both by anisotrpy in phase space and density profile
gradients (sec. 2.4). In the following sections, we are going to provide the reader with
some general information about GAMs and AWs, their analytical derivation from MHD
and gyrokinetic approaches and their dispersion relations.

2.3 Geodesic Acoustic Mode Theory

The geodesic acoustic mode (GAM) is a finite-frequency, toroidally-symmetric (n = 0)
acoustic perturbation of density and electric potential in tokamaks [44]. There is also
another family of toroidal instabilities called Zonal Flows (ZFs) [89]. ZFs can be only
driven unstable non-linearly [90] interacting with AWs [57, 58] and turbulence [53,
66, 91], in particular with the so-called ion temperature gradient (ITG) instability
[92]. The GAMs can be considered finite-frequency, mainly electrostatic ZFs, with a
(m,n) = (0, 0) perturbation of electrostatic potential and (m,n) = (1, 0) perturbation
of density as shown in fig. 2.3.
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(a) (b)

Figure 2.3: a) Poloidal cross section in AUG of (m,n) = (0, 0) potential perturbation
(δ̃φ) driven by a GAM. b) AUG poloidal cross section of a GAM (m,n) = (1, 0) density
perturbation (ρ1).
The density perturbation plot has been obtained TGAM /4 (with TGAM period of the GAM)
after the potential perturbation one, as prescribed by equation 2.48. The GAM shown in this
plot has been taken from a simulation of those shown in Chapter 4

Unlike ZFs, they can be driven linearly by EPs. GAMs and ZFs together can be
referred to as Zonal Structues (ZS). ZS are of great interest because of their capability
of regulating turbulence and the corresponding transport [52, 53, 93]. Theoretical
description of GAMs was first offered by Winsor et al [94] through a purely ideal MHD
approach, yielding a valid estimate of the mode frequency, a similar derivation will be
offered in section 2.3.1. Nevertheless, lacking kinetic considerations, like the Landau
damping, evaluating the growth rate proves impossible for this model. Later, the
dispersion relation of GAMs was derived using a gyrokinetic approach [95–97], enabling
to the possibility of evaluating the growth rate. An example of this derivation is offered
in section 2.3.2. It is found that GAMs are stabilized by collisionless Landau damping
with thermal ions [98, 99]. On the other hand, EPs can excite this mode, producing
the so called energetic-particle driven GAM or EGAM [48, 100–104]. EGAMs can be
linearly driven by inverse Landau damping with the resonant EPs, that, unlike the
bulk ions, have positive velocity gradients in F0, see section 2.2. Consequently, EGAMs
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qualify to be an effective mechanism for transferring energy from high-energy species
to colder ones, as the wave-particle power exchange implies opposite contributions
from EPs (which cede energy and drive the mode) and bulk ions (which absorb energy
and damp the mode) [48, 105]. The inverse Landau damping provokes a phase-space
redistribution of EPs from higher to lower velocities [106]. Linear drive mechanisms
of EGAMs have been studied with either passing EPs [100, 102], as well as trapped
particles [102], using a deeply trapped particle model [107, 108].

Experimental measurements found that the frequency of EGAMs is approximately
50% of the typical GAM frequency [103]. Analytical evaluations of the GAM disper-
sion relation and numerical simulations have provided supporting evidence for these
observations [48, 49, 109, 110]. Nevertheless, it has also been discovered that various
unstable branches exist at different frequencies [109].

The growth rate of GAM/EGAM is affected by many plasma parameters. Among
them, the density of EPs (nEP ) plays a crucial role. Simulations and analytical
derivations have demonstrated that an increase in EP concentration yields a higher
growth rate of the mode. In fact, there exists a threshold value of the energetic particle
fraction with respect to electron density (nEP/ne) which marks the transition from a
damped mode to an excited one [49, 91, 100–102, 109, 110]. Moreover, the frequency
of the GAM/EGAM typically decreases as the EP density fraction increases, due to a
transition from a higher frequency GAM to a lower frequency EGAM. The safety factor
profile q also affects the GAM growth rate, usually determining its radial position within
the plasma [99, 111]. Finally, theoretical hints have indicated that plasma elongation
impacts the growth rate [112]. Eventually, this hypothesis has been confirmed through
numerical simulations [91, 111], demonstrating that both the frequency and growth
rate decrease as elongation increases.

The growth rate of EGAM is greatly influenced by the velocity-space shape of the
distribution function of EPs. First of all, as shown in eq. 2.31 and 2.34, anisotropies in
velocity space are needed to drive the mode [47]. In particular, as explained in section
2.2, positive velocity gradients of the F0 are necessary to drive EGAMs and result in the
redistribution of a certain portion of EPs to lower energies [46]. Previous studies have
used different analytical distribution functions with anisotropic properties, including
bump-on-tail [46, 48, 102], slowing down with pitch dependency [100, 102, 104, 110]
and single pitch Maxwellian [102]. The reader should notice that the pitch-dependent
slowing down distribution function used so far was described through the parameter
Λ = µB/ε, where µ represents the magnetic moment of the particle, ε denotes the total
kinetic energy, and B represents the background magnetic field. In the present work,
see section 3.3, the anisotropic slowing down F0 are substantially different. In particular
the analytical one will be defined as a function of the pitch angle and not the normalized
perpendicular momentum, see section 3.3 for details avout the newly implemented
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anisotropic EP distribution function. More realistic distribution functions have been
implemented and tested, analytically and numerically to get closer to experimental
cases [50, 59]. Indeed, it’s the aim of this work to enquire into the effects of realistic
distribution functions on EP dynamics.

In the next sections we show the MHD estimate of the GAM frequency and the
gyrokinetic derivation of GAM dispersion relation.

2.3.1 MHD derivation of GAM frequency
Using MHD theory it’s possible to derive GAM’s frequency [94, 113] by linearization of
the MHD equations (sec. 1.2.2). That is writing the physical quantities as a sum of an
equilibrium and a perturbation contributions:

ρ = ρ0 + ρ1 , (2.35)
u = u0︸︷︷︸

0

+ u1 = u , (2.36)

p = p0 + p1 , (2.37)

where, the background velocity u0 has been assumed to be 0. Additionally, given the
nature of the GAM, we can consider only electrostatic perturbations. Therefore, the
perturbations of current and magnetic field can be considered to be 0: J1 = 0, B1 = 0.
Using these considerations, if we take only the first order contributions of equations
1.23 and 1.24, we yield the following:

ρ0
∂u
∂t

= −∇p1 , (2.38)

∂p1
∂t

= −Γp0∇ · u , (2.39)

where Γ is the adiabatic index of plasma.
Furthermore, again because of the electrostatic nature of this phenomenon, the only

perturbed velocity is the one arising from the perturbation of the electric field, the so
called E ×B drift:

u = uE = c
E × B
B2 . (2.40)

The electric field is considered to be generated by an electric "zonal" potential δφ.
With "zonal" quantity is meant that it is constant (or averaged) over a flux-surface.
This means that it is constant along the poloidal and toroidal directions, implying that
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its (m,n) = (0, 0) Fourier component is different from zero. Hence, the only electric
field is radially oriented:

E = Er = −∇δφ = −∂δφ

∂r
er. (2.41)

Plugging eq. 2.41 into 2.40, we yield that the velocity of the plasma equals u =
cB × ∇δφ/B2. If we plug this last expression into equation 2.38 and we apply the
operator ∇ · (B/B2 × ...) we yield:

−∇ ·
(
cρ0
B2

∂

∂t
∇δφ

)
= −∇ ·

(
B
B2 × ∇p1

)
, (2.42)

where we made use of the vector identity B × (B × ∇δφ) = (B · ∇δφ)B −B2∇δφ,
discarding the first term of the right hand side, because ∇δφ ⊥ B. Also, we let B
be constant with respect to the derivative operator ∂t, consistently with the initial
hypothesis of electrostatic perturbations. If we apply another time derivative to eq.
2.42, we let the derivative operator commute with the spatial differential operator using
the small inverse aspect ratio approximation (ϵ = a/R0 ≪ 1) and we substitute the
expression for ∂p1/∂t from eq. 2.39, we yield:

c
ρ0
B2

∂2

∂t2
∇2δφ = −cΓp0

∇ ·
(

B
B2 × ∇

)2

δφ . (2.43)

The operator in eq. 2.43 can be rewritten as follows:

∇ ·
(

B
B2 × ∇

)
=

(
b
B

× 2k
)

· ∇, (2.44)

where k = b · ∇b is the magnetic field curvature. If we consider eq. 2.41, we can
rewrite the differential operator ∇ = er∂r. We can define the geodesic curvature ks as
the surviving part of the operator in eq. 2.44:

ks = (b × k) · er =
sinχ
R0

. (2.45)

If we plug eq. 2.45 into 2.43 and average on a magnetic flux-surface, we get the
relation for the natural frequency of the GAM: ∂2

∂t2
+ ω2

GAM

 ∂2δφ

∂r2 = 0, (2.46)

with ωGAM =
√

2Γp0⟨k2
s⟩/ρ0, and ⟨k2

s⟩χ = 2/R2
0. What we got from MHD theory
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is an estimate of the GAM frequency. As theorized in reference [114], the GAM
frequency should be adjusted with respect to the elongation of the plasma kδ by a
factor

√
2/(1 + k2

δ ).
If we use the linearized form of the continuity equation (1.22):

∂ρ1
∂t

+ ρ0∇ · u = 0, (2.47)

it is possible to study the density perturbation dynamics and compare it with the one
from the potential. In fact if we plug the velocity expression (2.40), equation 2.44
and 2.45 into eq. 2.47, using the Fourier transformation for the time derivative from
equation 2.46 (∂t = iωGAM ), we yield:

ρ1 = −i 2ρ0 sinχ
ωGAMR0B0

∂δφ

∂r
. (2.48)

From eq. 2.48 we infer that the density perturbation will be located in the same
radial position of the electric field (∂rδφ), it will be out of phase by π/2 with respect
to the potential perturbation and will present a poloidal dependency, making it a
(m,n) = (1, 0) mode, as mentioned above (fig. 2.3).

The MHD theory used so far, was helpful to give an approximate estimate of the
frequency of the mode. Nevertheless, missing the kinetic effects, such as the Landau
damping (sec. 2.2), it was unable to offer an estimate of the growth rate. To do so
we need a kinetic derivation of the GAM dispersion relation. In particular in the next
section we will use a gyrokinetic approach starting from the concepts presented in sec.
2.1

2.3.2 Gyrokinetic description and dispersion relation
In the present section we will derive the general dispersion relation for GAMs using a
background Maxwellian distribution function for the ion species i:

F0,i =
1

(2π) 3
2v3
th

exp

−
v2

∥ + v2
⊥

v2
th

 , (2.49)

with vth =
√

2Ti/mi, following the steps outlined in [98, 115, 116]. In order to yield
the GAM dispersion relation, we will make use of the gyrokinetic formulas (sec. 2.1)
and some other hypotesis highlighted in Appendix A to yield the gyrokinetic equation
(eq. 2.50):

In order to obtain the dispersion relation of GAM, we will utilize gyrokinetic formulas
(section 3.1.1) and specific assumptions outlined in Appendix A, where the passages to
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yield the GK equation (2.50) are shown. These considerations will allow us to derive
the ion gyrokinetic equation where we will start from for our derivation:

(ωtr∂χ − iω̂)δKi = −iω̂F0,iq

Ti

(
δ̃φ− ωd

ω̂
δφ
)

, (2.50)

where ωtr = v∥/qR0 is the transit frequency of the particle, ∂χ is the poloidal derivative,
ω̂ is the complex frequency of the GAM, consisting both of the real frequency ω and
the growth rate γ: ω̂ = ω+ iγ. The perturbation of the ion distribution function was
split in an adiabatic term and a non-adiabatic one [117]:

δfi = − q

T
F0,iδ̃φ︸ ︷︷ ︸

adiabatic component

+ δKi︸︷︷︸
non-adiabatic component

, (2.51)

where the adiabatic component is the part of the ion distribution function perturbation
which adjust according to the potential perturbation while the non-adiabatic one is the
rest of the distribution function, corresponding to something like an inertial term, for
details refer to Appendix A. The perturbation of the electrostatic potential furthermore
has been splitted in a flux averaged (zonal) component δφ and a non-zonal one δ̃φ.
Finally, the magnetic drift frequency is:

ωd =
krcm

qBR0
(
v2

⊥
2 + v2

∥)sinχ . (2.52)

The following ordering has been used to obtain eq. 2.50. The gyroaverage operator
is considered to be one ⟨...⟩θ = 1. The smallness parameter ϵ ≪ 1 is introduced, such
that ωd/ω̂ ∼ kr/ρL ∼ ϵ. We also assign the non-zonal component of the electric
potential perturbation to be much smaller than the zonal one δ̃φ/δφ ∼ ϵ. A similar
ordering applies to the non-adiabatic part of the distribution function: δKi/F0,i ∼ ϵ.
Furthermore, electrons are hypothesized to be adiabatic, see Appendix A for details, and
in eq. 2.50 only the deeply passing particle dynamics has been taken in consideration
(ωtr terms). We can split the non-zonal quantities in sine and cosine components:
δ̃φ = δ̃φccosχ+ δ̃φssinχ and δKi = δKi,ccosχ+ δKi,ssinχ. Substituting this into
eq. 2.50 remembering that ωd = ωd,ssinχ we can get the expression of the non-zonal
distribution perturbation of the ions:

δKi,c =
iF0,iq

Ti

ω̂

ω2
tr − ω̂2

(
iω̂δ̃φc + ωtrδ̃φs − ωtr

ωd,s
ω̂
δφ
)

, (2.53)

δKi,s =
iF0,iq

Ti

ω̂

ω2
tr − ω̂2

(
iω̂δ̃φs − ωtrδ̃φc − iωd,sδφ

)
. (2.54)
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To find δ̃φ we can utilize the simplified form of the quasi-neutrality condition, which
derives from Poisson equation 2.28 (see Appendix A for details):(

1 + 1
τe

)
δ̃φ =

Ti
q

⟨δKi⟩v, (2.55)

where ⟨...⟩v is velocity space integration: ⟨...⟩v =
∫

...d3v. If we split δ̃φ and δKi

into the sine and cosine contributions, from eq. 2.55 we yield:

(
1 + 1

τe

)
(δ̃φccosχ+ δ̃φssinχ) =

Ti
q
(⟨δKi,c⟩vcosχ+ ⟨δKi,s⟩vsinχ) . (2.56)

In order to get the dispersion relation we can find the ⟨δKi,c,s⟩v using the expressions
from equations 2.53 and 2.54 and integrating them in phase-space. First of all, we can
simplify them noticing that ωtr is an odd function with respect to v∥, unlike ωd and
F0,i (2.49) which are even by definition. This means that integrating in velocity-space
all the terms proportional to ωtr will cancel out. Additionally, we can simplify the
integration switching to cylindrical coordinates:

⟨...⟩v =
∫ +∞

−∞
... d3v = 2π

∫ +∞

−∞

∫ +∞

0
... v⊥ dv⊥ dv∥ . (2.57)

The first term of the right hand side of eq. 2.56 can be obtained using eq. 2.53 and
2.57 with the considerations above:

⟨δKi,c⟩v = − qω̂δ̃φ

Ti(2π)
3
2v3
th

〈exp
(

−
v2

∥+v
2
⊥

v2
th

)
ω2
tr − ω̂2

〉
= − qω̂δ̃φ

Ti2
3
2
√
πvth

∫ +∞

−∞

exp(−v2
∥/v2

th)

ω2
tr − ω̂2 dv∥ .

(2.58)
In order to solve the integral in the right hand side of eq. 2.58 we can utilize the so

called plasma dispersion function (PDF) [118]:

Z(z) =
1√
π

∫ +∞

−∞

exp(−y2)

y − z
dy = −

√
π exp(−z2)(Erfi(z) + i) , (2.59)

where Erfi is the imaginary error function. Other relevant integrals can be evaluated
with the PDF:

1√
π

∫ +∞

−∞

exp(−y2)

y2 − z2 dy =
Z(z)

z
, (2.60)
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1√
π

∫ +∞

−∞

y2 exp(−y2)

y2 − z2 dy = 1 + zZ(z) , (2.61)

1√
π

∫ +∞

−∞

y4 exp(−y2)

y2 − z2 dy =
1
2 + z2 + z3Z(z) . (2.62)

By mean of equation 2.60 and the following normalizations: y = v∥/vth, ω0 =
vth/qR0 and z = ω̂/ω0 we can find the explicit expression of the integral in eq. 2.58:

∫ +∞

−∞

exp(−v2
∥/v2

th)

ω2
tr − ω̂2 dv∥ =

vth
ω2

0

∫ +∞

−∞

exp(−y2)

y2 − z2 dy =
√
π
vth
ω2

0

Z(z)

z
. (2.63)

Inserting 2.63 in 2.58 we yield:

⟨δKi,c⟩v = − qδ̃φ

23/2T
zZ(z) . (2.64)

With a similar derivation, using the definition of ωd and eq. 2.61, we yield the sine
component of δKi:

⟨δKi,s⟩v =
q

2(3/2)T

−zZ(z)δ̃φs +
krcmv

2
th

qB R0ω0
N(z)δφ

 , (2.65)

N(z) = z + (1/2 + z2)Z(z) . (2.66)

Inserting equations 2.64 and 2.65 into 2.56 and solving separately for the sine and
cosine components we get the following results:

δ̃φc = 0 , (2.67)

δ̃φs =
krcm v2

thN(z)

2(3/2)qB R0ω̂D(z)
δφ , (2.68)

with D(z) = (1+ 1/τe)/z+Z(z). To get the dispersion relation we need higher order
terms from the flux-surface averaged ((...) operator) equation and the gyro-averaged
quasi-neutrality equation (the combination is the vorticity equation):

q⟨⟨δKi⟩θ⟩v =
mic

2

B2 k2
rδφ , (2.69)

ω̂⟨⟨δKi⟩θ⟩v = −⟨ωd⟨δKi⟩θ⟩v . (2.70)
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Combining equations 2.69 and 2.70 we can obtain a simplified first-order form of the
vorticity equation:

ω̂
mc2k2

r

qB
δφ = −⟨ωd⟨δKi⟩θ⟩v . (2.71)

Dividing the sine and cosine components, considering the definition of ωd and
performing the flux average we get:

ω̂
mc2k2

r

qB
δφ = −⟨ωdδKi⟩v , (2.72)

whose last term can be integrated in phase space using eq. 2.62. Substituting eq. 2.72
into 2.68 we get the GAM dispersion relation:

z + q2

F (z) − N2(z)

D(z)

 , (2.73)

with F (z) = z(z2 + 3/2) + (z4 + z2 + 1/2)Z(z). By taking a value of the safety factor
q at a given radial position and establishing the plasma temperatures, it is possible to
numerically solve equation 2.73, for example finding the poles of the inverse of 2.73
[49]. Alternatively, we can find explicit expressions for the GAM frequency ω = Re(ω̂)
and growth rate γ = Im(ω̂) from eq. 2.73, assuming moderate values of safety factor
(usually 1.5 < q < 3) and low values of wavenumber:

ω = qω0

√
7
4 + τe

√√√√1 + 2(23 + 16τe + 4τ2
e )

q2(7 + 4τe)2 , (2.74)

γ = −
√
π

2 q4ω0

√
7
4 + τe

 exp(−Re(z)2)(Re(z)2 + 2τe + 1)+

+
q2

4 k
2
rρ

2
i exp

(
−Re(z)2/4

)Re(z)4

128 + f1Re(z)
2 + f2


 ,

(2.75)

where f1 = (1 + τe)/16 and f2 = 3/8 + 7τe/16 + 5τ2
e /32, and z as defined above. It

is clear that both the frequency and the growth rate depend on the safety factor and
the plasma temperatures, while γ is being strongly influenced also by the radial wave
number kr. It is interesting to notice that the growth rate γ can be only negative,
because of the maxwellian distribution function, which is isotropic in parallel velocity
(eq. 2.31, 2.34) [47]. It possible to derive dispersion relation for F0 that actually drive
GAMs linearly unstable like double bump-on-tails [49]. A similar derivation for the
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asymmetric slowing down will be offered in sec. 4.1.
After having given an overview of the analytical theory concerning the GAM we can

move on to the theory concerning the other EP driven instability treated in this thesis:
the Alfvén Wave.

2.4 AW Theory
In MHD, Shear Alfvén Waves [43] are a perturbation that travels along magnetic field
lines causing a perpendicular perturbation of the magnetic field δB ⊥ B0. As it will be
shown in sec. 2.4.1 they don’t cause any perturbation of pressure and density, therefore
they are of non-compressible nature. They can have different mode numbers n ̸= 0 and
can be excited both by velocity-space and real-space gradients [47] (eq. 2.34). Hence,
unlike GAMs, also velocity-isotropic distribution functions as Maxwellians or isotropic
slowing down with a radial profile can drive them unstable [73, 119]. The radial position
of such modes changes with the profile of EP density [45, 120]. In fact, on-axis profiles
trigger Alfvén modes (AMs) in the outer radial domain, while, off-axis peaked EP
profiles excite AMs in the core [58, 62]. The eigenvalue code LIGKA [121] can evaluate
the nature of the AW, by calculating the local kinetic shear Alfvén continuum (see next
sections for details). LIGKA can therefore determine if the mode lies in the continuum
Alfvén spectrum, if it is an energetic particle driven mode (EPM) [45, 120], or if, lying
in the gaps of the Alfvén continuum due to toroidicity, it is an eigenfunction of the
system, namely a toroidal Alfvén eigenmode (TAE) [119]. An example of a poloidal
scalar potential perturbation caused by an AW is shown in figure 2.4, in particular in
this case the perturbation is a EPM located close to the core. We will give an overview
of these different natures of AWs in section 2.4.1.

2.4.1 MHD treatment of AWs

It is possible to derive the characteristic of Alfvén Waves starting from the MHD set of
eqation (1.22 to 1.25 in section 1.2.2). Using a linear perturbation approach, we can
split all the quantities in an equilibrium component (constant in time) and a first-order
perturbation component: y(x, t) = y0(x) + δy(x, t) + o(δy). Assuming v0(x) = 0,
and introducing a displacement vector ξ(x, t) such that: δv = ∂ξ/∂t, we can find a
linearized version of the momentum (1.23), energy (1.24) and the combined Ohm and
Faraday’s laws (1.25), (1.19) [9]:

ρ0
∂2ξ

∂t2
= −∇δp+ 1

4π ((∇ × δB) × B0 + (∇ × B0) × δB) , (2.76)
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2.4 AW Theory

Figure 2.4: Poloidal cross section in AUG of (m,n) = (2, 1) potential perturbation (δ̃φ)
caused by a EP-driven AW (EPM). The AW is taken from one of the simulations shown in
Chapter 5

δp = −ξ · ∇p0 − γp0∇ · ξ , (2.77)

δB = ∇ × (ξ × B0) . (2.78)

Substituting equations 2.77 and 2.78 into 2.76 we get the force-operator equation of
linearized MHD [9]:

ρ0
∂2ξ

∂t2
= F(ξ) , (2.79)

Assuming that the time dependency of the displacement vector can be written as
follows: ξ(x, t) = ξ(x)e−iωt, we can recast eq. 2.79 into:

−ρ0ω
2ξ = F(ξ) . (2.80)

As F(...) is a self adjoint operator [9], the eigenvalues ω2 of the systems are real,
therefore ω can be purely real or imaginary, originating oscillating or exponentially
growing modes. Secondly, another consequence of this is the fact that the modes
will be orthogonal to each other. Solving the system 2.80 can be very difficult, given
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the arbitrarily complex magnetic field geometry. Nevertheless, if we pick a simplified
geometry with a uniform magnetic field, and assume the displacement vector to be
ξ = ξ̂e−i(ωt−k·x), where k is the wave vector, the Fourier transform of the operator
F(ξ) simplifies into:

−ρ0ω
2ξ = γp0(k · ξ)k +

1
4π

(
k × [k × (ξ × B0)]

)
× B0 . (2.81)

Furthermore, if we hypothesize B = B0êz, and k = k⊥ey + k∥ez we can recast
equation 2.81 in matrix form:

ω2 − k∥v
2
A 0 0

0 ω2 − k2
⊥v

2
s − k2v2

A −k⊥k∥v
2
s

0 −k⊥k∥v
2
s ω2 − k2

∥v
2
s

 · ξ = 0 , (2.82)

where vA =
√
B2

0/µ0ρ0 is the Alfvén speed and vs =
√
γp0/ρ0 . By setting the

determinate of the matrix to 0 we yield three possible solutions:

ω2
A = k2

∥v
2
A , ω2

F ,S =
k2

2 (v2
s + v2

A)

1 ±

√√√√1 − 4
k2

∥
k2

v2
sv

2
A

(v2
s + v2

A)
2

 . (2.83)

The first solution of the system 2.82, ωA, is the Shear Alfvén Wave (SAW), the second
and third ones ωF ;S represent respectively the fast and slow magneto-sonic waves. The
details of such magneto-sonic waves go beyond the aim of this thesis, in fact SAWs are
more easily destabilized by EPs, the interested reader may refer to [9]. SAW are purely
transverse waves with δB and ξ both perpendicular to B0. They only bend magnetic
field lines and a transversal displacement of the plasma, without compression of the
plasma.

Cylindrical configuration

If we adopt a cylindrical configuration, called the straight tokamak, a configuration
similar to the screw-pinch described in Chapter 1, the magnetic field will be non-uniform:
B(r) = Bχ(r)eχ +Bz(r)ez. Therefore, it allows a safety factor profile to be defined,
q(r). Finally, assuming a periodicity both in the poloidal direction χ and the axial one
z the perturbations can be written in the form:

ξ =
∑
m,n

ξm,n(r)e
i
(
n z

R0
−mχ−ωt

)
, δφ =

∑
m,n

δφm,n(r)e
i
(
n z

R0
−mχ−ωt

)
, (2.84)
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where m,n are the poloidal and the "axial" mode numbers. If we use this representation
and plug it into the linear Vorticity equation for SAWs [43] we get the so called
Hain-Lüst equation [43, 122]:

1
r2

∂

∂r

r3
(
n− m

q

)2
− r3R

2
0

v2
A

ω2

 ∂

∂r

(
δφm,n
r

)
=

=
m2 − 1
r2

(n− m

q

)2
− R2

0
v2
A

ω2

 δφm,n +

 ∂

∂r

R2
0

v2
A

ω2
(
δφm,n
r

)
.

(2.85)

The solutions to this equation are [43]:

ωm,n = k∥,m,nvA(r) , k∥,m,n =
1
R0

(
n− m

q(r)

)
. (2.86)

A visualization of eq. 2.86 is presented in figure 2.5 (left). From eq. 2.86 and fig. 2.5
we can infer that the frequency spectrum is continuous across the radial direction of
the plasma cylinder, in fact, vA(r) and q(r) change continuously with the radius r. As
a consequence of this inhomogeneous configuration we have that a wave packet on a
finite radial section will disperse. This phenomenon is called phase mixing, for details
refer to [62, 123]. Furthermore, we notice that the spectra of different waves intersect
in some points where the following condition is met:

k∥,m,n = −k∥,m+1,n =⇒ q(r) =
2m+ 1

2n =
m+ 1/2

n
. (2.87)

In the next section, we will see that in the toroidal geometry these are the points
where the continuum spectrum, (fig. 2.5 left), opens in gaps where automodes of the
system are, the so called toroidal alfven eigenmodes (TAEs) [119, 124]. It is interesting
to notice from eq. 2.87 that the intersection points, or the TAEs, are not located on
the rational surfaces q = m/n but rather exactly in between them. We can imagine
each mode to be sitting on a rational surface and they will superimpose constructively
in the middle of the two adjacent surfaces.

Toroidal Geometry

If we adopt the toroidal geometry, with the coordinate set (r,χ,ϕ), we can set the
magnetic field to be B(r,χ) = Bχ(r,χ)eχ+Bϕ(r,χ)eϕ. Assuming the periodicity also
in the toroidal direction ϕ we can define the perturbations as:
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ξ =
∑
m,n

ξm,n(r)e
i(nϕ−mχ−ωt) , δφ =

∑
m,n

δφm,n(r)e
i(nϕ−mχ−ωt) . (2.88)

If we use this ansatz in the SAW vorticity equation, we get a new eigenmode equation
for SAWs very similar to eq. 2.85 but with the contributions from the dominant poloidal
modes (m,m± 1) [125]:

1
r2

∂

∂r

r3
(
n− m

q

)2
− r3R

2
0

v2
A

ω2

 ∂

∂r

(
δφm,n
r

)
=

=
m2 − 1
r2

(n− m

q

)2
− R2

0
v2
A

ω2

 δφm,n +

 ∂

∂r

R2
0

v2
A

ω2
(
δφm,n
r

)
+

+
∂

∂r

ϵR2
0

v2
A

ω2 ∂

∂r
(δφm+1,n + δφm−1,n)

 ,

(2.89)

where ϵ is the inverse aspect ration, as defined in sec. 1.4. The Alfvén wave contiunuum
can be obtained by setting the determinant of the coefficients of the second order
derivatives to zero, yielding the following frequency spectrum branches[125]:

ω2
m,n =

k2
∥,m,nv

2
A + k2

∥,m+1,nv
2
A ±

√
(k2

∥,m,nv
2
A − k2

∥,m+1,nv
2
A)

2 + 4ϵ2 + r2

a2
0
k2

∥,m,nv
2
Ak

2
∥,m+1,nv

2
A

2
(

1 − ϵ2 r
2

a2
0

) ,

(2.90)
where k∥,m,n is defined as in eq. 2.86. When the influence of toroidal effects is taken into
account, the continuum spectrum of the SAW undergoes changes, as can be observed
by comparing figure 2.5 on the left with figure 2.5 on the right. In figure 2.5 (left),
which corresponds to the screw-pinch limit and is calculated based on equation 2.86 for
modes with adjacent poloidal harmonics (m,n) and (m+ 1,n), the two branches of
the continuum intersect where the condition 2.87 is satisfied, namely in between the
resonant surfaces q = m/n and q = (m+ 1)/n.

Nevertheless, when taking into account the toroidicity, as shown in the right panel
of figure 2.5, a gap appears in the continuum spectrum at the very position where
the cylindrical continuum of modes m and m+ 1 crossed (dashed, opaque lines in fig.
2.5 (right)). Within this gap, a mode called the Toroidal Alfvén Eigenmode (TAE)
[43, 119, 126] can exist. Referring to the description provided in [43], the sum of the
eigenfunctions making up a TAE, δφ̂m,n and δφ̂m+1,n, is peaked at the radial position
where the TAE gap is located. The two eigenfunctions propagate in opposite direction
(condition 2.87) and since they are poloidally close to each other their phases can
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2.4 AW Theory

superimpose constructively (on the low field side LFS) and let the TAE arise as a
standing wave, which has weak coupling to the continuum. As a consequence, TAEs
are less affected by the usual damping mechanisms associated with SAWs, like the
continuum damping mentioned above.

TAEs are marginally stable but can be destabilized through resonant interaction
with EPs, as discussed in section 2.2. Once excited, they interact with EPs, causing
their radial transport from the plasma core of the tokamak and resulting in the loss of
EPs [127]. For their capital role in the EP dynamics, and their capability to interact
non-linearly with GAMs, these modes have been investigated in this thesis.

a) b)

Figure 2.5: a) AW continuum spectrum for cylindrical geometries (equation 2.86), b) AW
spectrum in a toroidal geometry with TAE gaps (equation 2.90). In the right image we see
the original cylindrical AW continuum (dashed lines).
The plots have been obtained from equations 2.86 and 2.90 considering arbitrary values:
q = 2 + 0.8r2, n = 2, m = 4 and ϵ = 0.5.

As a final remark about TAE, it is worth to mention that in addition to the TAEs, other
gap Alfvén eigenmodes exist due to asymmetries in the equilibrium such as ellipticity and
triangularity in the poloidal cross-section. These asymmetries create coupling between
higher mode numbers harmonics, for example, (m,m± 2) or (m,m± 3). These gaps
open in the continuum at higher frequencies and are referred to as the ellipticity-induced
Alfvén eigenmode (EAE) [128, 129] and the triangularity-induced Alfvén eigenmodes
(NAE or non-circularity-induced Alfvén eigenmode).

We have now provided the reader with the basic theory regarding the two EP driven
instabilities studied in this work. We can now proceed to present the non-linear wave-
wave mechanisms that exist between these two modes in the next section. As we will
see in Chapter 5, such non-linear interactions are able to strongly influence the growth
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rate and dynamics of both the modes. It is therefore very important to introduce the
theoretical basis of such phenomenon.

2.5 AW and EGAM non-linear interactions
The aim of this section is providing the reader with an analytical introduction to the
non-linear interactions between the Alfvén Waves (n=1) and the Zonal Structures (ZS)
(n=0). This is a phenonemenon which has been explained theoretically [57, 58] and
simulated on computer [58]. In this work we try to determine if this phenomenon is
at the base of the EP dynamics observed experimentally in the NLED-AUG case [59,
70], eventually its effects will prove to be crucial for the reconstruction of experimental
observation for our case, see Chapter 5. In particular, Toroidal Alfvén Eigenmodes
(TAE), driven unstable by EPs in the gaps of the SAW spectrum, can interact non-
linearly via wave-wave coupling with Zonal Flows (ZF) [58, 130, 131].

In order to present a summarized thoeretical background, we briefly summarize
here the steps presented in Ref. [57]. As before, we consider δϕ and δA∥ as our field
perturbation variables, namely the electrostatic potential and the parallel component
of the vector potential. We assume the electrostatic potential to be the sum of the two
different contributions (ZS and TAE): δϕ = δϕZ + δϕT . When deriving the vorticity
equation it will be useful to consider that the TAE component can be divided again into
the pump TAE and its complex conjugate: δϕT = δϕ0 + δϕ∗

0. We write the well known
non-linear vorticity equation for ZF [43, 45, 132] in order to find the ZF behaviour:

e2

Ti
⟨(1 − J2

k )F0⟩vδϕZ︸ ︷︷ ︸
IT

−
∑
s

⟨es
ω
JkωdδK⟩v,Z︸ ︷︷ ︸
CCT

=

= − icΛZ

ωZB0

c
2k′′2

⊥ ∂lδψk′∂lδψk′′

4πωk′ωk′′︸ ︷︷ ︸
MX

+ ⟨e(JkJk′ − Jk′′)δLk′δKk′′⟩v︸ ︷︷ ︸
RE

 .

(2.91)

Eq. 2.91 consists of the following terms: the inertia term (IT), the curvature coupling
term (CCT), the Maxwell (MX) and Reynolds (RE) stresses. In eq. 2.91 the field
line bending (FLB) term, which is normally present in the GK vorticity equation is
missing because, being the case for ZF, it lacks electromagnetic contributions. In the
equation Jk = J0(k⊥ρ) is the zero-order Bessel function accounting for the finite Larmor
radius effect (FLR), which comes from the exact gyroaverage operator ⟨...⟩θ. δK is
the non-adiabatic response of the distribution function of the the species s, as defined
in eq. 2.50. The subscripts Z and k are used in both δϕ and δK to differentiate the

48



2.5 AW and EGAM non-linear interactions

ZS contribution from the components of the various waves involved in the three-wave
interaction. In fact, k refers the wave number associated with the ZS, while k′ and
k′′ correspond to the pumping waves, namely the TAE and its complex conjugate.
Λk =

∑b · k′′ × k′, the operator ⟨...⟩v refers to velocity-space integration, l is the
coordinate along the magnetic field line. It implies that ∂l is the derivative along the
field lines and other notation is standard. According to the three wave theory [90]:
k = k′ + k′′. As MX and RE contributions to eq. 2.91 are negligible, we can find the
solution for δϕZ considering the expression of the non adiabatic EP response from the
non-linear gyrokinetic equation [117]:

(−iω+ v∥∂l + iωd)δK = −ies
m
QF0JkδLk − c

B0
ΛkJk′δLk′δKk′′ , (2.92)

where QF0 = (ω∂ε − ω∗)F0, with ε = v2/2 and ω∗F0 = k · b × ∇F0/Ω, δL =
δϕ − v∥δA∥/c. Considering the non-linear EP response in terms of the drift orbit
center coordinates δKNL

Z = eiλdZδHNL
dZ , with λdZ = λ̂dZcosχ = kZ ρ̂dcosχ. Using this

notation, it is possible to recast eq. 2.92 in a new form. We can divide it into the surface
averaged and the poloidally varying components. Being ωd = ωtr∂χλdZ , the surface
averaged component of δKNL

Z equals 0 in the CCT component (eq. 2.91). Hence, we
use the modified varying component of eq. 2.92 and plug it into the CCT component
of eq. 2.91:

CCT = −π

4 Ĥ
c

B0

e2

m

n0E
ωZ

k2
⊥
ω2

0
Ĝ|Â0|2

∑
m

|Φ0|2, (2.93)

where Ĥ = kθ(kr,0 + kr,0∗) and Ĝ = ⟨ω∗,E v̂
2
d,E(F0E/n0E) × (δ(ω0 − k∥v∥ − ωtr) +

δ(ω0 − k∥v∥ + ωtr))⟩v, in this expression the FLR effects have been neglected (⟨...⟩θ ≃
Jk ≃ 1). Assuming that the contribution of MX and RE stresses in eq. 2.91 are
negligible, plugging eq. 2.93 into the non-linear vorticity equation 2.91 and doing some
algebra we yield:

∂tχ̂iZδϕZ = i
π

4
k2

⊥
kZ
D̂Ĝ|Â0|2

∑
m

|Φ̂0|2e2γLt , (2.94)

where χ̂iZ = χiZ/(k2
Zρ

2
i ) ≃ 1.6q2/

√
a/R0, with χiZ being the neoclassical polariza-

tion, D̂ = cnETikθ/(B0n0miρ
2
iω

2
0). Performing a straightforward integration, it can

be determined that a pumping TAE destabilizes a ZS with a growth rate twice that of
the TAE.

δϕZF ∼ e2γLt =⇒ γZF = 2γL . (2.95)

The outcome shown in 2.95 has been observed in both hybrid simulations [131] and
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gyrokinetic simulations [73]. Additionally, Vannini et al. demonstrated an interesting
inverse driving mechanism, as outlined in their gyrokinetic study [58]. In this study, a
strong ZS, in that case an EGAM, can non-linearly induce instability in an Alfvenic
Mode (AM).

The theoretical framework adopted by Vannini et al. follows the pattern employed by
Qiu [57], wherein the starting point is the non-linear vorticity equation. Since this case
involves electromagnetic modes, the field line bending (FLB) term becomes significant
and must be retained, unlike eq. 2.91. As before, Maxwell and Reynolds stresses can be
disregarded, and the mode subscript, previously represented by k, is explicitly denoted
by the mode number in the form (m,n), which characterizes the non-linearly driven
AM.

c2

4πω2
m,n

B0∂t
k2

⊥
B0
∂tδψm,n︸ ︷︷ ︸

FLB

+
e2

Ti
⟨(1 − J2

0 (Γm,n)F0⟩vδϕm,n︸ ︷︷ ︸
IT

−
∑
s

⟨es
ω
JkωdδK⟩v,m,n︸ ︷︷ ︸
CCT

= 0.

(2.96)
Following the steps presented in [58], and assuming similar hypothesis as those above,

we can recast the CCT term in the following form:

CCTm,n = −iqsp
ω
J0(Γm,n)e

i(nϕ−mθ)
〈

1
4π2

∫ 2π

0

∫ 2π

0
e−inϕ′

eimθ
′
eiλd,m,nωtr∂θ′δKNL

m,ndϕ
′dθ′

〉
v

.

(2.97)
To know the solution to eq. 2.97, we need to know how EPs are redistributed in

phase-space by the AM. Consequently, we make use again of the non-linear gyrokinetic
Vlasov equation as in eq. 2.92, where, again, the non-linear non-adiabatic response of
EPs is δKNL

m,n.

(∂t + ωtr∂θ)δK
NL
d,m,n = − c

B0
e−iλd,m,nΛm,nJ0(Γk′)δLk′δKL

k′′ . (2.98)

In equation 2.98 the mode coupling term Λm,n establishes a connection between
the excited mode with helicity (m,n) with the two pumping modes with helicities
(m′,n′) and (m′′,n′′). This coupling imposes the following constraints: n = n′ + n′′

and m = m′ +m′′. Solving eq. 2.98, plugging the result into eq. 2.97, and subsequently
inserting both into eq. 2.96, we find that the growth rate of the non-linearly driven
AW can be expressed by the following relation, as shown in [58]:

γNLAM = γAM + γEGAM . (2.99)
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2.5 AW and EGAM non-linear interactions

So far, theory has foreseen two scenarios: firstly, when a ZS is driven non-linearly
by an AW in the case where the growth rate of the ZS is less than that of the Aw
(γZS < γAW ) [57]; and secondly, when an AW is driven by a pump EGAM in the
situation where γZS > γAM [58].

It is worth to notice that the theory mentioned above was developed without assuming
a specific nature of the EP distribution function, as it solely dealt with perturbations
of the distribution function δf . The derivations obtained for the variational quantities
remain valid regardless of the initial F0 chosen.

One of the purposes of this thesis is to demonstrate that the theories above are also
applicable to the case of experimental like distribution function [50], trying to push the
simulations to more realistic scenarios [59] (see Chapter 5). Finally, this theoretical
description does not involve estimates of threshold values for the EP density that make
the non-linear interactions between AWs and ZSs possible. Furthermore, the agreement
between theory and simulation results is jeopardized by the complex experimental
equilibrium and the very steep q profile (fig. 3.2). Consequently, we do not expect a
perfect quantitative match of numerical results with the predicted values of growth
rates, we rather aim for a qualitative agreement (see Chapter 5).

Before moving to the results, we give a brief description of the numerical framework
we used for our studies. We will give an overview of the functioning of the non-linear
gyrokinetic code ORB5 (sec. 3.1). Subsequently, we will introduce the experimental
equilibrium and parameters of the case adopted for our simulations (section 3.2). Finally
we will introduce the reader to the two new experimental like EP distribution functions
used in our simulations (sec. 3.3).
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3 Numerical Model

So far, we have provided an explanation of the fundamental theoretical background
necessary for understanding of the physical phenomena investigated in this work. In
this chapter, we will focus on the implementation of the previously discussed theoretical
models into a computational framework, whose purpose is reconstructing the observed
EP physical phenomena within a specific experimental setup in ASDEX-Upgrade.

Firstly, we will provide an overview of the numerical implementation of the gyrokinetic
model (discussed in section 2.1) into the particle-in-cell (PIC) code ORB5 [69] (section
3.1). Subsequently, we will present the plasma parameters and framework utilized in
our ORB5 simulations. These parameters have been measured from an experimental
equilibrium in ASDEX-Upgrade, known as the NLED-AUG case [70, 71]. The NLED-
AUG case represents an experimental setup specifically designed to maximize the
phenomena of non-linear EP dynamics (sec. 3.2).

Finally, we will introduce the two new anisotropic EP distribution functions de-
signed to reproduce experimental distribution functions originated from NBI (sec. 3.3).
These distribution functions are used throughout this thesis to enhance the numerical
reconstruction of the experimental setup considered in this work.

3.1 Numerical tool: ORB5
ORB5 [69, 133, 134] is a gyrokinetic, global, non-linear, electromagnetic, particle in
cell (PIC) code. It solves the Vlasov-Maxwell system of equations [75, 76, 81] sampling
distribution functions with markers, using a Monte Carlo method. Electromagnetic
fields are solved with a finite element method (FEM). The details about the code
implementation can be found in [69, 81], here only the main aspects will be outlined.
As in all the gyrokinetic codes, the ordering of the different terms plays an important
role in the implementation of the gyrokinetic theory as outlined in sec. 2.1. In
ORB5, the spatial perturbations caused by the stationary magnetic field geometry are
considered to be an order of magnitude smaller than the time-varying perturbations
of the fields. The smallness parameter associated with the geometric variations is
referred to as ϵB = ρth/LB, where ρth represents the thermal Larmor radius and
LB = |∇B/B|−1 the characteristic scale of the spatial gradient of the magnetic field.
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On the other hand, the smallness parameter associated with time perturbations is
denoted by ϵδ ∼ |B1|/B ∼ c|E1⊥|/(Bvth) ∼ (k⊥ρth)eδφ/Ti, where E denotes the
electric field, vth represents the thermal velocity, k⊥ the perpendicular wave number,
and δφ represents the perturbation of the electrostatic potential. Similarly to other
gyrokinetic codes, in ORB5, the relationship ϵB = ϵ2δ holds. As a consequence, the
equations in ORB5 consider spatial perturbations up to the first order, O(ϵB), and
temporal perturbations up to the second order, O(ϵ2δ).

The set of spatial coordinates used in ORB5 is as follows.

• Radial coordinate: s =
√

ψ
ψedge

, where ψ is the poloidal flux (eq. 1.32),

• toroidal coordinate: ϕ,

• poloidal coordinate: χ = 1
q(s)

∫ χgeo
0

B·∇ϕ
B·∇χ′

geo
dχ′

geo, where χgeo is the poloidal
geometrical angle.

ORB5 can simulate multiple particle species. Usually two (ions and electrons) or
three (ions, electrons, and fast ions, as in our cases) species are involved, but many ion
or fast ion species can be included too, to study different plasma scenarios (H, D, T,
He and different combinations) or impurities.

The code ORB5 is designed to solve the gyrokinetic Vlasov equation, which rules
the evolution of the particle distribution function in a plasma. In addition, ORB5
also solves the gyrokinetic field equations (sec. 2.1), such as the polarization equation
(Poisson equation, eq. 2.28) and, in the electromagnetic model, the parallel Ampère’s
law (eq. 2.29).

The gyrokinetic model implemented in ORB5 describes the behavior of the plasma
species without considering collisions or sources. This is expressed as total derivative
(d/dt) of the species distribution function Fs set to zero:

dFs
dt

= 0 , (3.1)

The total distribution function is divided into a background component, referred to
as F0,s, which satisfies the unperturbed Vlasov equation, and a perturbed distribution
function, denoted as δfs. The Vlasov equation 3.1 then becomes:

dδfs
dt

= −dF0,s
dt

. (3.2)

This formulation allows to study the dynamics of the perturbations in the plasma.
In eq. 3.2 F0,s, is usually written as a function of the kinetic energy, the adiabatic
invariant µ, and the gyrocenter position R.
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3.1 Numerical tool: ORB5

The full theoretical derivation of the GK model implemented in ORB5 can be found
in [79, 135]. Further details about ORB5 model and implementation are provided in
the following sections.

3.1.1 ORB5 gyrokinetic model

As mentioned above, the distribution function of each species, denoted as Fs, is split
into a time-independent distribution function F0,s, also called initial or background
distribution function, and a time-dependent part δfs. Under the assumptions that
dF/dt = 0 and ∂F0,s/∂t = 0, the kinetic Vlasov equation 2.30 is solved for the time-
dependent δfs by utilizing the characteristics of the particles (see sec. 2.1), we will use
the so called mixed variable approach [136, 137]:

d

dt
δfs =

∂δfs
∂t

+ Ṙ · ∇δfs + v̇∥
∂δfs
∂v∥

+ ε̇
∂δfs
∂ε

= −Ṙ · ∇F0,s − v̇∥
∂F0,s
∂v∥

− ε̇
∂F0,s
∂ε

, (3.3)

where R are the gyrocenter coordinates, ε = v2
∥/2+µB and µ = v2

⊥/(2B). Equation
3.3 holds in the general case for non-Maxwellian distribution functions, as for the
distribution functions introduced in this thesis (sec. 3.3). As shown in sec. 2.1, the
gyrokinetic characteristics of the particles can be written as summation of different
orders contributions: Ṙ = Ṙ(0)

+ εδṘ
(1), v̇∥ = v̇∥

(0) + εδv̇∥
(1), ε̇ = ε̇(0) + εδ ε̇

(1), µ̇ = 0.
For the ORB5 equation description hereby presented, we use the formulation in v∥
rather than the momentum pz. The 0th-order derivatives are the so called unperturbed
trajectories and are similar to those in eq. 2.24 and 2.25 :

Ṙ(0)
= v∥b∗ +

µ

qsB∗
∥

b × ∇B , (3.4)

v̇∥
(0) = − µ

ms
b∗ · ∇B , (3.5)

ε̇(0) = 0 , (3.6)

where b∗ = ∇ × A∗/B∗
∥ Whereas, the 1st-order components are the trajectory derivative

perturbations due to electromagnetic time-perturbations of electrostatic potential
φ and parallel electromagnetic potential A∥. In this mixed variable approach we
split the electromagnetic parallel potential in a Hamiltonian and a symplectic parts:
A∥ = Ah∥ +As∥. The equations we get for the first order contributions are similar to
equations 2.26, 2.27:
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Ṙ(1)
=

b
B∗

∥
× ∇⟨ϕ− v∥A

s
∥ − v∥A

h
∥⟩ − qs

ms
⟨Ah∥⟩b∗ , (3.7)

v̇∥
(1) =

qs
ms

[
b∗ · ∇⟨ϕ− v∥A

h
∥⟩ + ∂

∂t
⟨As∥⟩

]
− µ

b × ∇B
B∗

∥
· ∇⟨As∥⟩ , (3.8)

ε̇(1) = v∥v̇∥
(1) + µ∇B · Ṙ(1), (3.9)

where

B∗
∥ = b · (∇ × A∗) and A∗ = A +

msc

qs
v∥b . (3.10)

In the fully non-linear terms we also have contributions of multiplied perturbed fields
(2nd order terms) and we can write the magnetic potential as follows:

A∗ = A +

(
msc

qs
v∥ + ⟨As∥⟩

)
b . (3.11)

In the linear limit, when solving eq. 3.3 the characteristic will just retain the 0th
order components neglecting the terms proportional to εδ. In the non-linear case,
instead, the non-linear wave-particle interactions are computed letting the particles to
follow the perturbed trajectories, otherwise retaining the 1st order components. From a
physical point of view, in order to evaluate the wave-particle (WP) non-linear dynamics,
sometimes it is sufficient to retain the non-linearities only for the EP species. This
approximation can save some computational time.

In order to have a closed system of equation we need to introduce closures for the
fields quantities. To this purpose, Poisson and Ampére equations are derived from a
variational formulation of the problem [76] and are coupled to the systems of equation
previously shown:

−∇ ·


 ∑
s=i,f

q2
sns
Ts

ρ2
s

∇⊥ϕ

 =
∑
i,e,f

qsn1,s, n1,s =
∫

⟨δfs⟩dW , (3.12)

∑
i,e,f

βs
ρ2
s

− ∇2
⊥

Ah∥ = µ0
∑
i,e,f

j∥,1,s + ∇2
⊥A

s
∥, j∥,1,s = qs

∫
v∥⟨δfs⟩dW , (3.13)

where ns =
∫
F0,sdW , with dW = B∗

∥dv∥dµdα being the phase space volume,
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3.1 Numerical tool: ORB5

βs = 4π kBnsTs

B2
0

is the fluid to magnetic pressure ratio, ρs =
√
msTs/(qsB) is the

gyroradius of the particles at thermal velocity.
The code ORB5 adopted a mixed variable formulation in order to solve the so called

cancellation problem [137]. It prescribes to use both the variables pz and v∥ and then
applying a pull-back procedure to the weights of the particles [138]. The idea is to split
the parallel vector potential A∥ into a the symplectic part As∥, which is found with the
ideal Ohm’s law:

∂

∂t
As∥ + b · ∇ϕ = 0 , (3.14)

and a Hamiltonian part Ah∥ , solved via the mixed-variable Ampére law (eq. 3.13):(∑
s

βs
ρs

− ∇2
)
Ah∥ = µ0

∑
s
δJ∥ + ∇2As∥ . (3.15)

At the end of every time step, we assign As∥ to be equal to the total A∥: As∥,2 =

A∥,1 = As∥,1 +Ah∥,1, and we put Ah∥,2 = 0. Subsequently, in the linear case, the weights
are reassigned according to the pullback transformation so that the distribution Fs is
not affected by this change of variables:

δfs,2 = δfsympls = δfs,1 +
qs⟨Ah∥,1⟩θ
ms

∂F0,s
∂v∥

. (3.16)

Adopting this mixed variable formulation, we can take longer time steps generating
the same numerical error of smaller times steps without the formulation.

3.1.2 Numerical implementation
In ORB5 all the quantities use normalized units. Normalizations are based on: the
main species ion mass mi, the ion charge qi, the magnetic field on axis B0, the electron
temperature at a certain radius (usually s = 0) Te(s = 0) and the volume averaged
electron density ne. In particular, lengths are normalized with respect to the ion sound
Larmor radius: ρs =

√
miTe/qiB0, and times with respect to either the cyclotron

frequency ωci = qiB0/mic or the Alfvén frequency ωA = vA/R0.
As mentioned above, the perturabtion of the distribution function δf is discretized

with markers p. To every marker a weight wp and a volume Ωp are assigned. The fields
are discretized using a FEM with B-Splines. The modes of our interest are mainly
aligned along the magnetic surfaces where m ≃ nq(s). Hence, a Fourier filter is applied
to retain only the modes within the interval n ∈ [nmin,nmax] for the toroidal and
m ∈ [−nq(s) ± ∆m] for the poloidal mode number.
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The code collects many values from the simulation, sampling various quantities,
for our case mainly electromagnetic potentials are used, at regular intervals. The
electromagnetic data collected is usually in Fourier components, this allows to involve
less data for a complete 3D representation of the fields and to effectively represent the
waves in Fourier components, highlighting the contributions from the different toroidal
and poloidal mode numbers,

3.2 Numerical framework: NLED-AUG case in
ASDEX-Upgrade

In this section we introduce briefly the experimental-relevant set used to run the
simulations for this work with the code ORB5. The so called NLED-AUG [70] case
is based on the ASDEX-Upgrade (AUG) shot #31213 at 0.84 s. This experimental
setup is the base case of the Non-Linear Energetic particle Dynamics (NLED) project
[70]. This is supposed to be an enabling case to study the non-linear EP dynamics for
reactor relevant conditions.

In this experimental setup of AUG, EPs with an energy of 93 keV were introduced
into the plasma through an off-axis NBI with an injection angle of 7.13◦ with respect
to the magnetic axis. The electron temperature profile is very low and was designed
to maximize the EP dynamics. In fact, as it can be notice from fig. 3.2, the Te(s) is
very low in the core (∼ 0.7keV on axis) and it’s peaked off-axis close to s ∼ 0.3. The
reason for this is twofold. Firstly, all the drift waves instabilities, such as the ITG, are
minimized, letting the EP dynamcis become dominant. Furthermore, the ion Landau
damping is minimized by the low ion temperature. Secondly, the temperature ratio
is approximately TEP/Tbulk,i ∼ 102, a condition which will be present in reactors (in
a burning plasma α particles are generated at 3.5MeV , while the background plasma
temperature is around 30keV , the temperature ratio is similarly ∼ 102). The magnetic
equilibrium of the system is shown in figure 3.1 (left), the corresponding safety factor
q(s) profile is shown in figure 3.1 (right). The tilted NBI produces an off-axis peaked
density profile of the EPs, presented in figure 3.2. As it is clear from fig. 3.1 this
equilibrium configuration presents a weakly reversed shear in the plasma core, as well as
a steep gradient of the q value in the outer region (s ∼ 1). Moreover, the EP pressure
is taken into account when determining the equilibrium state.

As we mentioned above, the NLED-AUG case was specifically designed to enquire
into the EPs dynamics. The EP pressure too is relatively high, reaching a magnitude
similar to that of thermal ions. The EP pressure ratio βEP is on the same order of
magnitude as the thermal ion beta βEP ∼ βth,i. This very peculiar characteristic of the
NLED-AUG case allows a rich variety of nonlinear instabilities driven by EPs to develop
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during the experimental shots, making it exceptionally interesting for our research
targets. Table 3.1 provides an overview of some of the key parameters that characterize
ASDEX-Upgrade shot #31213.

Further information about the NLED-AUG case can be found in reference [71].

Figure 3.1: (Left): NLED-AUG case magnetic equilibrium, with flux surfaces equispaced in s;
(Right): safety factor profile q(s)

Figure 3.2: NLED-AUG case, shot #31213 in AUG, temperature and density profiles [50]
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‘

a0 [m] R0 [m] B0 [T ] Ωci [rad/s] ωA [rad/s]
0.482 1.666 2.202 1.054×108 4.98×106

Te|s=0 [keV ] Ti|s=0 [keV ] ne|s=0 [m−3] ni|s=0 [m−3] nEP |s=0 [m−3]
0.709 2.48 1.672×1019 1.6018×1019 6.98×1017

Table 3.1: Parameters of NLED-AUG case [50]

Magnetic instabilities from the NLED-AUG case were measured using Mirnov coils
positioned at the ASDEX-Upgrade chamber wall. The collected data can be presented as
frequency plots. The toroidal disposition of the probes also allows for the determination
of the toroidal mode number n. As an example, figure 3.3 shows the frequency spectra
observed during shot #31213 in AUG. The green lines in the plot prove the presence
of Alfvénic activity, specifically an n = 1 EPM-TAE, within the frequency range
of 100 − 200kHz. Additionally, EGAM (n = 0) activity is observed around 50kHz.
Throughout this thesis, we will often refer to figure 3.3 as it serves as our reference case
for comparing simulation results with experimental measurements gathered from the
NLED-AUG case.

Figure 3.3: Frequency spectrogram in time of Mirnov (pick-up) coil measurements from AUG
shot #31213. We can distinguish n = 1 AW contributions at ∼ 100 − 150kHz and n = 0
EGAM contribution at ∼ 50kHz, adapted from [62]

In particular, we want to focus our attention on the EPM-TAE burst at t = 0.84 s
which subsequently triggers an EGAM. This phenomenon is clearly visible in fig. 3.4,
which provides a closer view of the previous spectrogram around t = 0.84 s and
highlights the presence of this complex non-linear dynamics in NLED-AUG case. The
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main objective in this thesis is to reproduce this phenomenon through simulations using
a numerical setup that closely resembles experimental conditions. To achieve this, we
utilize the experimental equilibrium, temperature and density profiles, as well as the
EP distribution function from the NLED-AUG case in our simulations [50, 59] (refer to
Chapters 4 and 5 for more details).

Figure 3.4: Detail of figure 3.3 close to t ∼ 0.84 s. We can notice the rich non-linear dynamics
emerging from the coupling of the EPM-TAE burst and the EGAM, adapted from [139]

3.3 Experimental like distribution functions
In this section we will present to the reader the two new equilibrium distribution
functions which were implemented and tested in ORB5 during the work for this thesis.
The results presented in Chapter 4 and 5 are produced using and modulating the
parameters of these distribution functions. As explained in the previous Chapter,
distribution functions have a strong impact on GAM/AW behaviour. As the EP
instabilities growth rates are determined by the phase space gradients (as seen in sec.
2.2), the initial phase space distribution function has a crucial role in the dynamics of
such instabilities. The investigation of EGAM/AW stability is motivated by the desire
to understand the effect of different phase space shapes on the behavior of these modes.
To this purpose, we have introduced two new anisotropic distribution functions, whose
aim is to reproduce closely the experimental distribution function of EP produced
by NBIs in the NLED-AUG case. In particular, we implemented a novel analytical
distribution function that accounts for pitch-angle dependent slowing down particles.
This distribution function will be presented in detail in section 3.3.1. Furthermore, we
inserted as input in ORB5 a numerical experimental-like distribution function derived
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from RABBIT [140], a Fokker-Plank solver for EP slowing down distributions generated
by NBI, details in sec. 3.3.2. Following, in section 3.3.3 the two distribution function
structures will be compared qualitatively and quantitatively. This comparison will
provide valuable insights into the influence of phase space shapes on mode stability of
the two distribution functions, and will be fundamental for the interpretation of the
results in Chapters 4 and 5.

3.3.1 Analytical anisotropic EP distribution function

The new analytical distribution function which was implemented during this work is
different from any previous distribution function studied for such cases. Being anisotrpic,
it is fundamentally distinct from the isotropic distributions: Maxwellian or isotropic
slowing down. In fact, as mentioned in section 2.2 we need anisotropy in parallel velocity
to trigger an EGAM linearly. It is also different from the other anisotrpic distribution
functions like the double-bump-on-tail F0. Which is a well known distribution function
used to study the linear stability of EGAMs [48]. In order to have an anisotropic
pitch-dependent slowing down F0 we have to design a function of energy and parallel
velocity, both are normalized with respect to the sound speed vs =

√
Te/mi. The

equilibrium distribution function, as presented in eq. 3.2, was written as follows:

F0,s(v, ξ,ψ) = nval(ψ)︸ ︷︷ ︸
radial density

2
√

2
π

σξ[erf( ξ0+1√
2σξ

) − erf( ξ0−1√
2σξ

)]︸ ︷︷ ︸
gaussian normalization term

exp
−(ξ − ξ0)2

2σ2
ξ


︸ ︷︷ ︸

gaussian term

×

× 3 Θ(vα − v)

4π(v3
c (ψ) + v3)︸ ︷︷ ︸

slowing down term

1

ln
(

1 + ( vα
vc(ψ)

)3
)

︸ ︷︷ ︸
slowing down normalization term

.

(3.17)

The analytical Anisotropic Slowing Down (ASD) distribution function (eq. 3.17)
was obtained as a product of a slowing down in energy, characterized by the absolute
value of velocity v =

√
2ε (4th and 5th right hand side (RHS) terms of eq. 3.17), and a

Gaussian in the normalized parallel velocity ξ = v∥/|v| (ξ can range only from -1 to
1) centered in ξ0 (2nd and 3rd RHS terms in eq. 3.17), characterized by a width σξ.
The ASD distribution function depends radially on the magnetic flux coordinate ψ,
normalized with respect to its value at the separatrix, through the normalized species
radial density profile n(ψ). In eq. 3.17, Θ(vα − v) is the Heaviside function. This
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function equals 1 for values of v < vα and 0 elsewhere, where vα is the injection velocity
of the NBI, and vc(ψ) is the critical velocity of plasma, which is calculated from bulk
plasma parameters (especially Te) hence depending again on the radial coordinate ψ.
The function erf is the error function: erf(z) = 2/

√
π
∫ z
0 e

−t2dt.
This distribution function was constructed on purpose to create a versatile tool

to study the physics of anisotropy through a simple analytical parametrization of
anisotropy itself through the two parameters ξ0 and σξ. The parameters range between
values that have a precise physical meaning. The preferred pitch ξ0 range between:

• -1/+1: the preferred pitch of the EPs ξ0 is completely antiparallel/parallel to the
magnetic field. Therefore, particles will be mainly deeply passing.

• 0: the EPs are injected mainly perpendicular to the magnetic axis. The generated
particles are mainly trapped. This configuration is unphysical for NBI injection
devices. In fact, injection angles are usually closely parallel to the magnetic field
lines because the NBI is oriented tangentially with respect to the magnetic axis
in order to maximize the path of the beam through the plasma and hence the
particle deposition and consequently minimize the damage to the wall opposite
to the NBI.

As in ASDEX-Upgrade the NBI beams are oriented in the direction opposite to the
magnetic field lines, in our simulations we let ξ0 range between −1 and 0 (Chap. 4).

The other parameter σξ is the standard deviation of the Gaussian in normalized
parallel velocity and is representative of the width of the scattering of particles around
the preferred pitch ξ0. This value can range between:

• −→ 0: all the particles tend to be focused closely around the main pitch ξ0. The
lower limit 0 (single pitch) is unphysical to be reached by NBI generated F0. For
our simulations the lower limit is set to be 0.1 (Chap. 4, 5). Such value already
creates a strong anisotropy in v∥ and is well below the value of σξ measured
from the experimental-like F0 generated from RABBIT (∼ 0.2, see sec. 3.3.3 for
details).

• −→ ∞: the particles tend to distribute isotropically with respect to v∥, the
anisotropy of F0 is lost as we get closer to this limit. For simplicity, in our
simulations we used σξ = 0.6 as upper limit for this value. As it will be shown in
Chap. 4, this value is already very close to an isotropic slowing down case.

An example of this parametrization of the anisotropy of the distribution function
through ξ0 and σξ can be observed in fig. 3.5. In this case the values were ξ0 = −0.6 and
σξ = 0.4. ORB5 distribution functions are represented in the phase space used in fig.
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3.5. The two coordinates used in the figure are a parallel velocity v∥, normalized with
respect to the sound velocity vs =

√
Te/mi, and a normalized energy ε = v2

∥/2 + µB.
In this representation (v∥, ε), all the points lying under the µ = 0 =⇒ ε = v2

∥/2
parabola are non physical, as such points have µ < 0. Hence, the code will not consider
them when sampling the F0 with markers. Furthermore, it is interesting to notice the
intrinsic difference between v∥ and ξ. The first parameter is normalized with respect
to a constant value vs, while the latter is normalized with respect to the modulus of
velocity |v| which varies with energy ε. This causes the characteristic curvature in the
analytical ASD F0 and implies a reduction in the width scattering of F0, measured in
v∥ units, as we move to lower values of energy (or equivalently |v|).

In particular, in the picture, the pitch is highlighted by a red line. Because of the
units of the axes (v∥, ε), a constant normalized parallel velocity ξ appears as a parabola.
The scattering of the particles σξ, as aforementioned, represents the width of this
distribution in parallel velocity, in the picture in orange.

ξ0
σξ

Figure 3.5: Analytical asymmetric slowing down (ASD) with pitch angle dependency defined
by equation 3.17 (ξ0 = −0.6,σξ = 0.4), ξ0 and σξ are qualitatively represented on top of the
F0 plot

Part of the results presented in this thesis is a study of the physical effects of the
anisotropy through this analytical F0 parametrized by the values ξ0 and σξ. The other
results will be obtained using the numerical experimental-like distribution function
obtained from RABBIT [140] (see sec. 3.3.2). Therefore, using the ASD F0 it is possible
to demonstrate how simple parameters affect the growth rates of the modes (Chap. 4).
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This will also provide additional confidence when it comes to studying simulations with
more realistic distribution functions, as those obtained from RABBIT. Finally, this
ASD distribution function is not a solution of the equilibrium Vlasov equation, because
of the explicit dependence on the parallel velocity (eq. 3.17). This distribution function
represents a further step in the direction of the experimental-like distribution functions
with respect to the isotropic slowing down presented in [73] or the double-bump-on-tail
from [58]. Meanwhile, it is also the step before moving to more realistic, numerical
distribution functions (see next section).

3.3.2 RABBIT distribution function
In this section we will present the most realistic distribution function available to ORB5
so far. It is a fully numerical distribution function obtained from the Fokker-Planck
solver RABBIT (for details refer to [42, 140, 141]). RABBIT solves the collisions for
these EP beams in tokamak configurations and gives as output a numerical 3D matrix.
The dimension are radius, energy and Legendre coeffiecients (for the v∥ dependency).
A numerical tool converts the Legendre coefficients into samples of the F0 in parallel
velocity and scales all the units accordingly to ORB5 normalizations. The matrix
obtained from this numerical tool is then fed as input into ORB5, which has been
equipped to read numerical distribution functions for the species. RABBIT has been
run to reproduce the EP distribution functions generated by NBIs in NLED-AUG case,
namely discharges #31213-6 in AUG [70] at t = 0.84 s. The four different distribution
functions are shown in figure 3.6. As the ASD, they show a strong anisotropy in v∥,
and this shape is what ispired us to build an analytical distribution function defined
in section 3.3.1. In section 3.3.3, we will attempt a comparison between the two
distribution functions, even though, as it will be clear expecially from the results (Chap.
4 and 5), a direct parallelism between the two is not possible. Furthermore, the RABBIT
distribution functions consist of three different injection velocities E, E/2, E/3, as
typical for positive NBI injectors, as these are the different ionization states that the
hydrogen molecule can have. The reader should notice that in fig. 3.6 the injection
velocities appear to be different from shot to shot. This is due to the normalization
with respect to the electron temperature which varies from shot to shot. On an absolute
scale all the injection velocities are equal. These distribution functions were generated
in the four different AUG shots using three different NBIs angles with respect to the
axis of the machine. Shot 31213 has the most off-axis angle (7.13◦), shot 31214 the most
on-axis (6.07◦) and 31215-6 a mid-range angle (6.65◦). Shot 31216 has an additional
on-axis NBI beam blip needed to measure the temperature profile. RABBIT was setup
to calculate the steady state solution of F0, in order to guarantee well defined gradients
(as explained in [141]) which is an important feature for ORB5.
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Figure 3.6: Realistic distribution functions generated from RABBIT, NLED-AUG case shots
# 31213-6

To achieve experimental relevant conditions in our simulations, we provided ORB5
with the above described distribution functions and experimental radial profiles of
density and temperature from the four various shot configurations. Figure 3.7 shows
the EP density profiles derived from the four shots. These profiles were used for the
normalization of the numerical 3D F0 at each radial position.
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Figure 3.7: Realistic EP density profiles, NLED-AUG case shots # 31213-6, as function of
s =

√
ψ with ψ magnetic flux coordinate

After having presented the main feature of both the new anisotropic distribution
functions, we can move on to present a more detailed comparison between the two
distribution functions.

3.3.3 Comparison of analytical ASD and RABBIT F0

The newly implemented ASD distribution function with pitch angle dependence is able
to analytically model the distribution of particles along a preferred pitch angle. This
characteristic is also present in the realistic RABBIT F0 (refer to sec. 3.3.1 and 3.3.2).

The term "realistic" here has relative meaning. In fact, when comparing the RABBIT
F0 with the model described in equation 3.17, where ξ0 and σξ are arbitrary parameters,
the former is evidently more realistic. This is because the RABBIT F0 has been
purposefully computed to faithfully reproduce the slowing down distribution functions
resulting from NBI injections in tokamak plasmas. On the other hand, the analytical
ASD distribution function serves as a relatively simple analytical reconstruction, which
aims (though not necessarily achieves) to imitate the phase-space shape exhibited by
the RABBIT F0. Nevertheless, it accomplishes this goal using only a few parameters,
allowing for the study of their effects by running simulations with varying values for ξ0
and σξ, as it will be shown in Chapters 4 and 5.

We developed a mathematical tool to attempt to measure the similarity between
the ASD and the RABBIT F0. This tool consider the RABBIT distribution function
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at a given radius ψ1, so that F0(v∥, ε)|ψ1 . This plane is then cut at different values
of energy ε so that we get 1D plots of the F0(v∥)|ψ1,ε1 as the blue line in figure 3.8
(right) shows. Then two fits are performed. The Gaussian fit (dashed black line), which
provides the values ξ0 and σξ, was obtained by taking a least squares approach to fit a
Gaussian (Caruana algorithm). The Gaussian "moments" (dashed purple lines) were
calculated by taking the ξ0 as the mean, and σξ as the square root of the variance of
the RABBIT slice. By performing these fits for all the energy levels of the F0(v∥, ε) we
can plot the values of ξ0 and σξ from these fits as shown in figure 3.8 (left). If we take
the RABBIT distribution function from shot #31213 at a radius ρtor = 0.525 the fits
give the following values of ξ0 and σξ:
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Figure 3.8: Left: trends of ξ0 and σξ in energy (|v|) fitting RABBIT F0 slices with a Gaussian
defined by ξ0 and σξ; right: comparison of a RABBIT F0 slice with a Gaussian defined with
certain parameters ξ0 and σξ

The vertical lines in fig. 3.8 (left) correspond to the injection energies E0 = 93 keV ,
E0/2, and E0/3. Figure 3.8 (right) shows an example of the Gaussian fits applied in
figure 3.8 (left) at an energy E0/2 < E < E0. As we can see from fig. 3.8 (left) we get
good constant values for ξ0 and σξ at higher energies. Above E0/3 we get an average
pitch ⟨ξ0⟩ > around -0.8, and a σξ around 0.2, these being functions of energy and
radius. At lower energies instead the fitted values diverge and it becomes very hard to
find an agreement between the RABBIT F0 (the fitted data) and the ASD F0 (the fit
Gaussian). At low energies, this is mainly due to the fact that the RABBIT F0 shows
an isotropization phenomenon (due to the collisions) as we move to lower values of
ε (see fig. 3.6). In fact, as we can see in the left plot of figure 3.8, the orange lines
(representative of σξ) both diverge to higher values (as mentioned in sec. 3.3.1, high
values of σξ correspond to high isotropy in the F0). Since in the ASD F0 the pitch is
normalized with respect to the absolute value of velocity, this isotropization effect is
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neglected and the distribution pitch and deviation is constant in energy by definition.
Furthermore, we note that even at a single large energy (as plotted in fig. 3.8, right),

the pitch is not exactly represented by the Gaussian, but nonetheless a Gaussian can be
considered a proxy for the more realistic RABBIT distribution function. As said above,
from the figure it is clear that the anisotropic slowing down with pitch dependency
is not always the best match with realistic distribution functions. Nevertheless, the
simple analytical parametrisation with just two parameters is a very useful and versatile
tool that offers a reasonable approximation to the key features of realistic distribution
functions.

The evaluation of the distribution function in RABBIT involves some approximations,
the most significant one being that it only calculates the flux-surface average of the
distribution function, neglecting the poloidal dependency. Moreover, orbit effects during
slowing down are neglected, this approximation is less severe because the first orbit
(after ionization) is considered.

In contrast, other Monte Carlo-based models such as NUBEAM [142, 143] and
ASCOT [144] do not have these limitations and can provide a distribution function
depending on the horizontal, vertical spatial coordinates and the energy and pitch
velocity-space coordinates (R, z, ε, ξ). However, these models are subject to Monte Carlo
noise, which makes it difficult to calculate gradients and complicates their integration
into codes like ORB5. Therefore, they are not straightforward choices as a source for
ORB5.

A comparison between RABBIT and NUBEAM has been performed, the relevant
moments of the distribution function (e.g. density, current, heating, pressure, neutron
emission) from the two codes were compared. Good agreement was found [140, 141],
and we note that the current is a good proxy for comparing the average pitch of two
distribution functions. However, a direct comparison of the distribution functions has
not been performed.

In conclusion, many differences have been found existing between the analytical ASD
and the RABBIT distribution functions, so we refrain from inviting direct comparison
of the results obtained with them. Nevertheless, we will look at the results from
the simulations with the two different F0 and we will highlight the similarities and
differences. The details of this will be shown clearly in the result chapters (4, 5).

Using the analytical distribution function defined above (equation 3.17), we can also
proceed to derive a stability analysis from the dispersion relation of EGAMs (see section
4.1), before showing numerical results obtained from ORB5 simulations. The effects of
the new ASD distribution function are analyzed as a function of the two parameters
which characterize the new slowing down distribution of energetic particles, ξ0 and σξ,
along with the stability studies with the realistic RABBIT F0.
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In this chapter we will present both analytical and numerical studies on the linear
excitation of EGAMs. As outlined in sec. 2.3, EGAM is a very important EP instability
which is being widely investigated for its importance in redistribution, confinement,
transport of EPs in tokamak plasmas [106] and for its capability of regulate turbulence
[52, 93]. The findings presented in this chapter, along with the other results in this thesis,
are important steps toward the prediction of non-linear EP dynamics in experimentally
relevant scenarios of burning plasmas [68].

To refine our numerical tool, the gyrokinetic code ORB5, we have tested it with
experimentally relevant cases such as the NLED-AUG case (sec. 3.2). This test involved
using both analytical and numerical anisotropic EP distribution functions. As a first
step in this test we have studied the linear stability of EGAMs by varying the parameters
of the ASD F0 and also exploring different RABBIT F0 distributions specific to the
NLED-AUG case [50]. In both cases, we ran scans of simulations while varying the
EP concentration, as this parameter is relevant for the stability of EGAMs [100, 101].
As it will be explained in more detail in sec. 4.2, we ran sets of linear electrostatic
simulations with ORB5 [69], because the EGAM is a purely electrostatic mode (sec.
2.3).

The NLED-AUG case has already been studied using isotropic and anisotropic EP
distribution functions. Namely, it was tested using isotropic slowing-down F0 [73]
and anisotrpic double bump-on-tail F0 [48, 58, 145]. In the former case, isotropic EP
distribution functions are unable to drive the GAM unstable and in the latter case they
are very excited because of the shape of the double bump-on-tail which is purposefully
designed to trigger the EGAM. In both cases, we are very far from the experimental
condition which presents an anisotrpic distribution functions which originates from
NBI deposition into the plasma. To this purpose, in this work the new distribution
functions presented in sec. 3.3 are implemented in the gyrokinetic code ORB5 [69] to
try to reproduce numerically the most faithful reconstruction of the experiment.

The content of this chapter is as follows. We will first present theoretical analysis
of the newly implemented analytical distribution function, following the dispersion
relation studies carried out in [100, 102, 109] (section 4.1). After that, we will briefly
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introduce the ORB5 setup for the linear electrostatic simulations shown in this chapter
(sec. 4.2). Subsequently, the numerical results of the simulations using analytical ASD
are presented, with varying ξ0 and σξ parameters. In order to analyze which areas
of the EP distribution function destabilize the EGAM we will use a diagnostic which
measures the power exchange between the particles and the mode [48]. Along with the
effects of the shape of the distribution function in phase space, we report and discuss
the effects of other plasma parameters like ion temperature or EP concentration (section
4.3). Finally, experimental relevant distributions functions from Fokker-Planck solver
code RABBIT [140] are introduce in ORB5 trying to reproduce realistic simulations
of NLED-AUG case with experimental density and temperature profiles. Results are
qualitatively compared with NLED-AUG case experimental data [70] and then discussed
(section 4.4).

4.1 Linear dispersion relation
In this section we provide an analytical explanation to the results shown in section 4.3.
We will derive the dispersion relation for EGAMs using the analytical ASD distribution
function for EPs following closely the steps presented in Ref. [50, 100, 102]. As we did
in section 2.3, we start from splitting the perturbed EP distribution function δf in an
adiabatic and a non-adiabatic parts:

δf = qs
∂f0
∂ε

δϕ

ms
+ exp i mc

QB2 k × B · vδKg , (4.1)

where the adiabatic response depends on the perturbed scalar potential δϕ and the
non-adiabatic part is δKg. The latter satisfies the linear gyrokinetic equation [95]
(already discussed in section 2.3):(

ω − ωd + iωtr
∂

∂χ

)
δKg = − qs

ms

∂f0
∂ε

J0(k⊥ρL)ωδϕ . (4.2)

In eq. 4.2 the transit frequency is ωtr = v∥/qR0, the particle drift frequency is
ωd =

∧
ωdsinχ = −kr(v2

⊥ + 2v2
∥)/(2ΩR0), χ is the poloidal angle coordinate, k⊥ is the

perpendicular wave number, in GAMs k⊥ ∼ kr, ρL = mcv⊥/QB is the Larmor radius.
Ω = qsB/msc is the gyrofrequency, J0 is the first kind Bessel function accounting
for the finite Larmor radius (FLR) effects, Q is the charge of the particle and the
mass-normalized energy of the particle is ε = (v2

∥ + v2
⊥)/2. Considering adiabatic

electrons (ω/ωtr,e ∼
√
me/mi ≪ 1), that is the electrons redistribute accordingly with

the electric field perturbation having little inertia, and ignoring the FLR effects of
electrons, eq. 4.2 can be trivially solved for electrons and the quasi-neutrality condition
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can be written as [100]:

e

Te
(ne+nh)(δϕ− δϕ) = − e

Te
ncδϕ+ ⟨J0(k⊥ρL,c)δKg,c⟩v+ ⟨ e

ms

∂f0,h
∂ε

δϕ+J0(k⊥ρL,h)δKg,h⟩v ,
(4.3)

where the bar (...) is representative of a magnetic surface average and the operator
⟨...⟩v =

∫
...dv3 is a velocity space integration, the subscripts c,h refer to thermal (cold)

and energetic (hot) ion species, respectively.
The ordering is crucial for a correct solution of the equations with different order

contributions. We define δ = nh/nc ≪ 1 as a smallness parameter and assume
Tc/Th = O(δ) which implies βh/βc ∼ 1, with β being the fluid to magnetic pressure
ratio. We hypothesize ω ∼ ωtr,h, ωd,h/ω ∼ krρd,h ∼ O(δ1/2) and krρL,h ∼ O(δ), with
ρd,h radial drift, in order to maximize the resonance drive for fast particles. For isotropic
distribution functions ρd ≈ qρL,th, where ρL,th is the thermal Larmor radius and q the
safety factor value. For the thermal ion species: the radial drift is krρd,c ∼ O(δ) and
the Larmor radius effects are of higher order: krρL,c ∼ O(δ3/2). We can then expand
the perturbed electrostatic potential as a power series of δ1/2:

δϕ = δϕ+ δ̃ϕ
(1/2)

+ δ̃ϕ
(1)

+ δ̃ϕ
(3/2)

+ ... , (4.4)

and we can do the same for the non-adiabatic response of the particles δKg:

δKg = δKg + δ̃Kg
(1/2)

+ δ̃Kg
(1)

+ δ̃Kg
(3/2)

+ ... . (4.5)

Using this power expansions, eq. 4.2 can be rewritten for all the orders presented
in equations 4.4 and 4.5 as in eq. (3-9) of [100]. Such system can be combined with
quasi-neutrality eq. 4.3 and solved order by order (up to the 3rd order) we yield the
EGAM dispersion relation (see [100] for details):

−1 + ω2
G

ω2 +
δnh
δϕ

mΩ
enek2

r
= 0, (4.6)

where ωG =
(√

7
4 +

Te
Ti

)
vth
R0

is the GAM frequency (sec. 2.3) and vs,i is the ion thermal
velocity. In the left hand side of eq. (4.6) the last term contains the averaged EP
density which is the integral in velocity space of the non-adiabatic component of the
perturbation of the EP distribution function. If we write the integral in velocity space
coordinates (ε, ξ) we yield:

δnh =
∫
δK

(3)
h dv3 = 2π

∫ 1

−1

∫ ∞

0
δK

(3)
h (−

√
2ε)dεdξ. (4.7)
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If we assume EPs are passing particles, we can recast the non-adiabatic EP response
in the following way:

δK
(3)
h = −

∧
ω

2
d

(
e
ms

∂F0
∂ε

)
2(ω2 − ω2

tr)
δϕ . (4.8)

Being
∂F0
∂ε

=
∂F0
∂ε

+
∂ξ

∂ε

∂F0
∂ξ

, (4.9)

considering the F0 in eq. 4.9 to be the analytical ASD distribution function defined in
eq. 3.17, the full derivative yields:

∂F0
∂ε

= F0(ε, ξ)
−δ(εα − ε) − 3

2
ε

1
2

ε3/2 + ε3/2
c

+
ξ

ε

(ξ − ξ0)

2σ2
ξ

 , (4.10)

If we substitute expression 4.10 into 4.8 and that into 4.7, we yield the explicit
integral of eq. 4.7 in terms of our coordinates as:

δnh = 2πk
2
rδϕq

2e

4Ω2m

∫ 1

−1

∫ ∞

0

√
2ε (ε(1 + ξ2))2

q2R2
0ω

2 − 2εξ2
∂F0
∂ε

dεdξ =

=2πA
∫ 1

−1

∫ ∞

0

ε
5
2 (1 + ξ2)2

q2R2
0ω

2 − 2εξ2 exp

−(ξ − ξ0)2

2σ2
ξ

 Θ(εα − ε)

ε3/2 + ε3/2
c−δ(εα − ε) − 3

2
ε

1
2

ε3/2 + ε3/2
c

+
ξ

ε

(ξ − ξ0)

2σ2
ξ

 dεdξ ,

(4.11)

where the constant A equals:

A =
√

2
2
√

2
π

σξ[erf(
ξ0+1√

2σξ
) − erf( ξ0−1√

2σξ
)]

0.75 nval
π

1
ln(1 + ( εα

εc
)3/2)

k2
rδϕq

2e

4Ω2m
. (4.12)

Explicit integration of expression 4.11 in velocity space (ξ, ε) as in [100] is not possible
due to the absence in the distribution function of a characteristic structure like the
Dirac function. For the same reason, not even an explicit integration as in [109] is
possible, because of the absence of the of the characteristic plasma dispersion function
(eq. 2.76) in equation 4.11.

Nevertheless, it is still possible to investigate the stability of the EGAM examining
the imaginary part of the complex frequency ω (namely the growth rate of the mode).
In fact γ = Im(ω) in equation 4.6 is positive if the imaginary part of δnh is positive
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[102]. Without integrating explicitly eq. 4.11, we can plot the integrand function for
some values of energy and parallel velocity, assuming the ω inside eq. 4.11 to equal
its value computed numerically from the simulations (see section 4.3). If we vary the
parameters ξ0 between 0 and -1 and σξ between 0.1 and 0.6 (see section 3.3.1), we can
study the stability of the EGAM looking at the sign of the integrand function for each
set of parameters (ξ0 and σξ). In particular, if we do so, we observe that the integrand
sign is mostly positive at most of the energy levels as we pick values of ξ0 ∼ 0.5 and
σξ ∼ 0.2. Moreover, we observe that the integrand is mostly negative or mixed (both
positive and negative depending on the parallel velocity) for values of ξ0 and σξ different
from those specified above. This result is consistent with the numerical results obtained
from linear electrostatic simulations and shown in section 4.3.

Some figures representing the imaginary part of the integrand in eq. 4.11 computed at
ε ∼ 30keV and left as function of ξ are shown below in fig. 4.1. The only case showing
positive values (hence positive growth rates [102]) is the case where the ASD parameters
are ξ0 = −0.5 and σξ = 0.2 (fig. 4.1 a). The other cases (ξ0 = −0.5, σξ = 0.6) and
(ξ0 = −0.1, σξ = 0.2) show a negative integrand and therefore the GAMs from the
simulations using these ASD parameters will be damped (see section 4.3). As it was
already discussed, in the (ξ0 = −0.5, σξ = 0.6) case, this negative growth rate is due
to the fact that when σξ −→ ∞ the ASD distribution function becomes isotropic in
phase space and, hence, unable to excite n=0 modes (fig. 4.1.b). In fact, as mentioned
in the sec. 2.3, n=0 modes need F0 gradients in velocity space to be linearly triggered
[47]. Meanwhile, low values of ξ0 correspond to the case where most of the particles
are perpendicular to the magnetic field. Therefore, most of them will have trapped
trajectories, mitigating the effects of inverse Landau damping. In fact, the so trapped
particles will be unable to resonate with the GAM hindering the excitation of the
mode; this is the case of the simulation whose ASD has ξ0 = −0.1, σξ = 0.2 (fig.
4.1.c). We observe a specular effect for values of ξ0 close to -1. In this case, most of
the energetic particles are deeply passing and hence are too fast to resonate with the
GAM. Therefore, EPs are unable to exchange energy with the mode at v∥,res, hindering
again the excitation of the mode. These results will be also found again numerically
(as shown in section 4.3), demonstrating the validity of the theory hereby presented.

75



4 Linear electrostatic simulations of EGAM

Figure 4.1: Plot of the integrand of eq. 4.11 computed at ε ∼ 30keV as function of normalized
parallel velocity ξ for the following ASD parameters: ξ0 = −0.5, σξ = 0.2 (a); ξ0 = −0.5, σξ =
0.6 (b); ξ0 = −0.1, σξ = 0.2 (c)

This analytical method can be used to theoretically validate the numerical results for
extreme cases (strongly excited/damped modes), because such cases present integrands
whose sign is constantly negative or positive for any value of ξ or ε. On the contrary,
it’s very hard to use it for an evaluation of an excitation threshold limit in terms of
nEP/ne, ξ0 or σξ. In fact, for not strongly excited or damped modes, the integrand
is partially negative and positive for different values of ξ and ε. In order to evaluate
threshold values we have to consider the results obtained from ORB5 simulations
presented in section 4.3.

The plots shown in fig. 4.1 are also useful to evaluate the main resonance velocity.
Setting the growth rate (the imaginary part of the frequency ω) to 0, the denominator of

the term ε
5
2 (1+ξ2)2

q2R2
0ω

2−2εξ2 will go to 0 where the resonant condition for the power exchange
between particles and the mode is matched. For example, for ξ0 = −0.5, σξ = 0.2,
considering as before the real frequency from the simulation, the first resonant velocity is
v∥ =

√
2εξ2 =

√
q2R2

0ω
2 = 1.36 · 105 m/s. This value is comparable to the result from

the Mode-Particle-Resonance (MPR) diagnostic [48], obtained from ORB5 simulations
(see section 4.3.4 for details).

4.1.1 Simplified dispersion relation

Simplified dispersion relation can be obtained if we consider the distribution in ξ to be
close to δ(ξ − ξ0), in which case we have

F0 =
nh

2
√

2π ln(εc/εα)
δ(ξ − ξ0)Θ(1 − ε/εα) . (4.13)

Following the derivations envisaged in Refs. [100, 102] we yield the following dispersion
relation:
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−1 + ω2
G

ω2 +Nb

3
2(1 − ξ2

0 + 4ξ4
0) ln

1 − ω2
ts

ω2

+

(
1

1 − ω2
ts/ω2 − 1

) = 0 . (4.14)

Here, ωts =
√

2εα ξ0/(qR0) is the EP transit frequency andNb = q2/(4ξ2
0 ln(εα/εc)) nh/nc.

The GAM frequency with Landau damping due to thermal ions ωG can be found as a
solution of the equation (from [115]):

ω = −q2ωT i
(
F (ω/ωT i) +N2(ω/ωT i)/D(ω/ωT i)

)
,

with F (x) = x(x2 + 3/2) + (x4 + x2 + 1/2)Z(x), N(x) = x+ (1/2 + x2)Z(x) and
D(x) = Z(x) + (1 + Ti/Te)(1/x) [97]. Eq. 4.14 is strictly valid for deeply passing
ions, i.e. ξ0 ∼ ±1. The logarithmic term in this equation, for ω < ωts has complex
values and gives a drive if the constant in-front of it is positive, which is always the
case here. This shows there is no threshold in ξ0 related to the distribution function,
however some drive is necessary to overcome the finite Landau damping. The last term
in eq. 4.14, along with the real part of the logarithmic term is responsible for shifting
the frequency of the mode below the GAM frequency, as explained in Sec 2.3, this is
the case for the EGAM. Eq. (4.14) can be easily solved numerically to obtain the modes
frequency and growth rate. A rough estimate of the growth rate can be given in the
limit ω ≫ ωT i and γ/ωr ≪ 1, where the GAM frequency can be approximated with

ω2 = q2ω2
T i

(
7
4 +

Te
Ti

)
− i

√
πq2 ω

5

ω3
T i

e−ω2/ω2
T i , (4.15)

giving a growth rate with respect to the real frequency:

γ/ωr ≈ q2

 3π
16 ln(Eb/Ec)ξ2

0

nh
nc

(1 − ξ2
0 + 4ξ4

0) −
√
π

2
ω3
r

ω3
T i

e−ω2
r /ω2

T i

 , (4.16)

with ωr being the real frequency of the mode. This equation shows a threshold in the
density ratio nh/nc, as well as dependence of the growth rate on the safety factor q [100,
102]. Given the previous considerations, the growth rate given here can be considered
as the upper limit of this distribution with maximal anisotropy, namely a dependence
from the pitch ξ0 as a Dirac function (δ(ξ − ξ0)).

After these theoretical considerations about the stability of the GAM and the influence
of various plasma parameters on it, using an analytical ASD EP distribution function,
we will now proceed to show the numerical results. We firstly introduce to the numerical
setup used for the ORB5 simulations, subsequently we present the results obtained
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running the ASD F0, and finally the results using the numerical RABBIT F0.

4.2 Numerical setup

Before presenting the numerical results using the newly implemented anisotropic dis-
tribution functions we briefly present the numerical setup used in ORB5 for these
simulations. As mentioned in section 3.2, the magnetic equilibrium and the profiles
(see fig.s 3.1 and 3.2) are those from the NLED-AUG case in ASDEX-Upgrade, in
particular from shot #31213 in AUG. Plasma parameters are reported in Table 3.1.
The simulations included three species, deuterium ions, electrons and energetic particles.
As aforementioned, the simulations were run linearly (otherwise, considering only the
unperturbed trajectories for the particles of all the species, see sections 2.1 and 3.1).
The fields equations were solved electrostatically, this means that only Poisson equation
(eq. 3.12) was considered while the magnetic perturbation δB was set to 0 throughout
the whole simulation. Being interested only in the GAM/EGAM contributions we
could filter out all the modes with n ̸= 0. The ∆m was set to 5. A realistic electron
to deuterium mass ratio was used: me/mD = 0.000272. Furthermore, we adopted the
approximation of adiabatic electrons since we wanted to focus on an electrostatic mode
studying the kinetic effects only of energetic particles. Adiabatic electrons allow to
run faster simulations, while the dynamics is not greatly affected. Considering kinetic
electrons would contribute slightly to the damping of the mode but this effect is not
dominant. Other numerical parameters as the time step, the (s,χ,ϕ) grid resolution
and the number of markers for the different species are reported in Table 4.1.

∆t[ω−1
ci ] Ns Nχ Nϕ Np,i Np,e Np,EP

10 512 256 32 108 108 108

Table 4.1: Numerical simulation parameters: ∆t is the time step, N(s,χ,ϕ) are the grid resolution,
Np the total number of markers for each species

In the following section, the results from ORB5 simulations will be shown. In
all these simulations the background plasma will have the same configuration and
parameters, hereby described. We will change the ASD parameters ξ0 and σξ to check
how the anisotropy shape affects the stability of the GAM/EGAM. We will also vary
the temperature and the EP density fraction to study how these parameters affect
stability (sec. 4.3.5).
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4.3 Numerical results from NLED-AUG case
In this section we will describe the results of ORB5 simulations of the NLED-AUG
case [70], shot #31213 in AUG, performed varying the parameters ξ0, σξ and nEP .
Excitation threshold values will be found numerically for these parameters.

The threshold values which will be presented in the following sections are not directly
comparable to RABBIT distribution function cases. In fact, as already discussed in
sec. 3.3.3, RABBIT distribution functions are not directly related to the analytical
case obtained from eq. 3.17 for some value of its parameters. RABBIT distributions
presents isotropization effects at lower energies, something missing in the analytical
slowing down. Additionally, the analytical slowing down does not include the three
injection velocities at E0, E0/2 and E0/3 as in the RABBIT F0. Nevertheless, keeping
in mind these differences, we may expect some similarities in the behaviour between
the simulations run with RABBIT F0 and the ASD F0 with ξ0 ∼ −0.8 and σξ ∼ 0.2.
Furthermore, the trends of growth rate with respect of the f0 parameters that will
be found in the next sections will be observed also in the linear simulations for the
RABBIT distribution functions. A comparison of the results using the ASD and the
RABBIT F0 will be presented in section 4.4.3.

In the next sections we will distinguish and analyze the effects obtained varying
together or independently the two parameters ξ0 and σξ. To this purpose the following
sections are organized as follows: firstly we focused our attention to the effects of the
variation of each parameter independently from the other one. Hence, in section 4.3.1,
growth rate trends with respect to σξ are presented and, subsequently, in section 4.3.2
the trends with respect to ξ0 are analyzed. Finally, a general scan in both the two
parameters (ξ0 and σξ) is presented (section 4.3.3).

4.3.1 Stability effects of σξ and threshold values
In this section we show a set of simulations as described above along a scan of values of
σξ ranging from 0.1 to 1. The value of ξ0 will be kept constant at -0.5. Furthermore, an
isotropic slowing-down was run as a reference case. As it was described in section 3.3.1,
σξ represents the scattering of the particles around the preferred pitch ξ0. Therefore, it
is representative of the anisotropy degree of the distribution function: the lower σξ the
more anisotropic the F0, the higher the more isotropic. A distribution function F0 is
said to be isotropic in v∥ when its derivative with respect to v∥, computed at constant
energy ε, is zero:

∂F0
∂v∥

∣∣∣∣∣∣
ε=const.

= 0 . (4.17)
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If σξ approaches ∞, pitch-dependent slowing down (ASD) becomes equivalent to
isotropic slowing-down distribution function. It can be shown analytically that such
isotropic distribution functions in v∥, provided they have everywhere negative gradients
in energy (∂f/∂ε < 0), cannot excite EGAMs [47]. Furthermore, we expect such
behavior also from the analytical observations from sections 2.3 and 4.1. The aim
of this section is therefore to prove numerically that such analytical expectations are
correct. Results are shown in figure 4.2. The left 4.2 plot presents the radial peak
of scalar potential for the n = 0 modes in time, the right plot instead is a trend of
growth rate γ and frequency ω as a function of σξ. The left 4.2 plot shows that the
ASD EP distribution functions, whose σ −→ ∞, don’t trigger any EGAM, along with
the isotropic slowing down (solid red line). On the other hand, small values of σξ are
able to drive EGAMs with higher growth rates since the gradients of F0 are steeper. In
conclusion, we can state that the growth rate quickly decreases and eventually becomes
negative as σξ values approach ∞. In particular, starting from values of σξ ∼ 0.5 we
see that the results are closely comparable to those of isotropic slowing down F0. This
trend is particularly clear in fig. 4.2 (right), where the growth rates and the frequencies
have been reported as function of the ASD standard deviation σξ. Accordingly to the
theoretical expectations (sec. 2.3), we notice that an increase in growth rate is usually
matched by a drop in frequency.

The growth rates shown in fig. 4.2 (top right) were computed through a linear fit of
the logarithm of the envelope of the electrostatic potential signals in time (shown in
fig. 4.2 (left)). For purely linear growing modes the whole array of values in time was
considered in the fit. Whereas, for stable modes just the part of the mode showing a
decreasing behavior was considered, discarding the rest of the mode where the damping
rate goes to zero, as the modes’ amplitude gets overtaken by noise. For modes which
present irregular behavior, especially at the beginning of the simulations, only the purely
linearly growing parts of the modes were considered. Initial phases, where multiple
frequencies may superimpose, were discarded and not included in the fit.

For this set of simulations where ξ0 = −0.5 and nEP/ne = 0.09, we found the
excitation threshold value at σξ ≃ 0.4. As we can observe from fig. 4.5, this value
is relevant, because the highest growth rates are found for mid-range ξ0 values. It
will be observed in section 4.3.3 that high values of ξ0 present a non-monotonic trend
with σξ and therefore will have slightly higher threshold values for σξ (see section 4.3.3
for details). Anyhow, as σξ −→ ∞, the modes are always damped because of the
isotropization of the distribution function.
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4.3 Numerical results from NLED-AUG case

Figure 4.2: Scan with varying σ for ξ0 = −0.5 in NLED-AUG case. Plot on the left shows the
amplitudes of the scalar potential field in time. Plot on the right shows the growth/damping
rate (top) and frequency (bottom) dependence on σξ. The red dots in the plots on the right
represent the correspondent γ and ω from the simulations in the left plot. The green dashed
line in the top right figure represents the γ = 0 threshold

These results are crucial to prove one of the theoretical assumptions we made in
sections 2.3, 3.3.1 and 4.1, namely that we can directly correlate the linear growth rate
of GAM/EGAMs with the degree of anisotrpy of the EP distribution function. In this
case, modeled by the parameter σξ. In the next section we will analyze the dependence
of the growth rate on the other parameter: ξ0, this time keeping σξ constant.

4.3.2 Stability effects of ξ0 and threshold values

In this section, a scan has tested pitch-dependent slowing down with constant σ = 0.25
over ξ0 ranging from 0 to -0.9. The results are plotted below. In figure 4.3, the mode
amplitudes are shown in time. We observe a clear dependence of the stability on the
pitch. Figure 4.4 shows the growth rate and the frequency trends with respect to the
varying ξ0.
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Figure 4.3: EGAM amplitudes in time from a scan of simulations using ASD F0 with ξ0
ranging from 0.0 to -0.9, at constant σ = 0.25 in NLED-AUG case configuration

a)

b)

Figure 4.4: Growth rate γ a) and frequency ω b) of the simulation scan with varying ξ0
shown in fig. 4.3. The red dots in the plots represent the correspondent γ and ω from the
simulations in fig. 4.3

From both the plots in figures 4.3 and 4.4 we can observe an evident increase of
growth rate for mid-range values of ξ0 ∈ (−0.3, −0.7), while the mode is constant or
damped for values of ξ0 < −0.8 ∨ ξ0 > −0.2. A theoretical model was proposed in
references [100, 104] that predicted that the preferred pitch (ξ0) must be greater than a
certain value to trigger an EGAM. In reference [49], instead, a theory was advanced
according to which both extremes values of ξ0 (-1,0) have to be avoided in order to
trigger an EGAM. It is important to remember that both these references obtained such
conditions in a different phase space, where the normalized parallel velocity was replaced
by the perpendicular energy fraction Λ = µB/ε. Nevertheless, the results shown in
figure 4.3 and 4.4 and discussed in this section confirm the analytical predictions made
so far.
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In fact, the theoretical analysis proposed in section 4.1 offered an analytical explana-
tion to such behavior. Figure 4.1, where the integrand of eq. 4.11 is plotted, predicts
the behavior of these numerical simulations in function of both parameters ξ0 and σξ.
Furthermore, using the considerations done in section 3.3.1, we can offer a simple
physical explanation for this behavior. As we stated above, ASD distribution functions
with ξ0 ∼ 0 correspond to EPs distributed mainly perpendicularly to the magnetic field,
implying that most of them are trapped and unable to resonate with the mode leading
to the damping of the GAM. Specularly, this happens with ξ0 ∼ −1 too, where most of
the particles are deeply passing at velocities higher than the resonant velocity of the
EGAM (see sec. 2.3), leading to the damping of the mode again. The only way for
EPs at such energies (93 keV in AUG), to resonate with the mode is having a pitch
angle that would let their parallel velocity be similar to the resonant velocity, otherwise
having pitch angles close to the mid-range pitch ξ0 ∼ −0.5. This is actually what we
observe in our simulations.

Finally, we also note that, as the growth rate increases for mid-range values of ξ0,
there is correspondent decrease of frequency (fig. 4.4,b). This results is similar to
that obtained in the previous section and respond to the theoretical predictions (sec.
2.3). The frequencies shown in the plot in fig. 4.4 are Lorentzian fits of the frequency
spectrum. In reality, in these simulations two modes (the GAM and the EGAM, which
differ by a factor 2 in frequency) co-exist at the same time. For excited mode cases, the
EGAM contribution is dominant, decreasing the Lorentzian fit of frequency values and
vice versa. As already discussed, this is again in accordance with theoretical, numerical
and experimental evidence [49, 103, 109].

As we will see in detail in section 4.3.3, the excitation threshold is crossed at different
ξ0 values for different σξ and nEP/ne. Nevertheless, from the results reported in fig. 4.5,
4.3 and 4.4, it is clear that, whatever the other parameters are, the EGAM is excited for
values of ξ0 included in a certain interval (ξ0,1, ξ0,2), where usually −1 ≤ ξ0,1 ≤ −0.5
and −0.5 ≤ ξ0,2 ≤ 0. For our reference case, shown in figures 4.3 and 4.4 (σξ = 0.25
and nEP/ne = 0.09), the ξ0 threshold interval is (ξ0,1, ξ0,2) ≃ (−0.9, −0.3) (fig. 4.4).

4.3.3 Simulation scan varying ξ0 and σξ

In this section we present the results of the EGAM growth rate of all the simulations
from a scan in both ξ0 and σξ. As before, the scan has been yielded running ORB5
with the NLED-AUG case configuration (sec. 3.2). The code has been run linearly, elec-
trostatically, considering adiabatic electrons [69, 146] in all the simulations considered.
The ASD EP distribution function, used as input, was obtained implementing equation
3.17 picking ξ0 and σξ from a mesh of these two parameters with ξ0 ranging between 0.0
and −0.9 and σξ ranging between 0.1 and 0.6. The energetic particle concentration was
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kept constant for all the cases, namely nEP/ne ≃ 0.09. The profiles used, as before, are
taken experimentally from shot #31213 in AUG [50]. Figure 4.5 shows the qualitative
behavior of the growth rate γ depending both on ξ0 and σξ. Clearly, as outlined in
sections 4.3.1 and 4.3.2, both parameters influence γ. As expected, the growth rate
is decaying for EP distributions with larger σξ, while it is positive for values of ξ0
included between -0.2 and -0.9. In figure 4.5, the magenta box is a scan with higher
resolution. In fact, this area is particularly relevant because it is the part of the 2D
plane (ξ0,σξ) where the stability threshold of the scan is located. We note that the
highest growth rate for every σξ level moves toward higher ξ0 as σξ increases (fig. 4.5).
At the same time, we also note that for high values of ξ0, as σξ increases, we get a
weak increase in growth rate before the isotropization effects prevail and the mode gets
damped. This behavior is not observed for low values of ξ0, for which the growth rate
decreases monotonically as σξ increases. It will be explained in detail in Sec 4.3.4 that
for such high pitches, as σξ increases, the positive gradient of F0 in parallel velocity
move in the area where the most unstable modes get most of their drive. This could
be the reason that causes the excitation of the EGAMs in simulations where the ASD
F0 had high ξ0 and σξ ∼ 0.5 as we can note from fig. 4.5. Anyhow as σξ −→ ∞ the
isotropization effects prevail and all the modes get damped no matter what ξ0 they
have.

Figure 4.5: EGAM growth rate (γ/ωci) as function of ξ0 and σξ (NLED-AUG case)

In the previous subsections we found threshold values for the ASD parameters σξ and
ξ0. As a reference, the two dashed lines in fig. 4.5 represent the sections along which
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the scans in ξ0 (red dashed line) and σξ (orange dashed line) have been performed and
shown respectively in section 4.3.2 and 4.3.1. In next section we will offer an insight
on the evaluation of which areas of the EP distribution functions contributed to the
excitation or damping of the GAM [48]. The tools presented in section 4.3.4 will enable
us to determine why some ASD distribution function trigger the EGAM instability, and
other do not, helping us to find the areas of F0 with positive v∥ gradients, which drive
the EGAM, and resonant velocities crucial for a deep comprehension of the phenomenon
of the destabilization of the EGAM. After that we will also move to a scan in EP density
concetration aiming to find a threshold value also for this parameter (sec. 4.3.5).

4.3.4 Phase space analysis
In this section we present an analysis of the mode-particle power exchange measured
through a particular diagnostic in ORB5 which is able to measure the power exchange in
electrostatic modes between the plasma species and the electrostatic perturbation. The
so called mode-particle-resonance (MPR) diagnostic for ORB5 was developed in order
to analyze at which velocities the particles of a distribution function were contributing
the most to the excitation or damping of the mode [48]. The resonance velocity can be
analytically evaluated using eq. 41 of [48]:

v∥,res = qR0ωGAM , (4.18)

where the frequency of the GAM is ωGAM , q is the safety factor and R0 the major
radius of the tokamak. We yielded such an expression of the resonance velocity also
in section 4.1 (see denominator of eq. 4.11). Plugging into eq. 4.18 the parameters of
the NLED-AUG case, being q ≃ 2.3 (which is the average value of q where the EGAM
is peaked betweeen s ∼ 0.4 − 0.6, fig. 3.1 right), R0 = 1.66 m, ωGAM = 35560 rad/s,
from the ξ0 = −0.5, σξ = 0.2 simulation, we yield the first resonant velocity:

v∥,res = qR0ωGAM = 1.36 · 105 m/s . (4.19)

If we normalize eq. 4.19 with respect to the sound speed vs =
√
kBTe/mi = 1.88 · 105

m/s, we yield:

v∥,res,norm =
v∥,res
vs

= 0.723 . (4.20)

Using the MPR diagnostic in ORB5 [48], we can save its values (saved on a phase-
space grid) and plot them superimposed to the ASD distribution function as in fig. 4.6.
It will be shown that this is a very convenient way to represent the MPR diagnostic
because it will show which particles of the distribution in phase-space contribute to
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the excitation or damping of the mode. We note that the parallel velocity at which
most of the power is exchanged between the particles and the mode is approximately
at v∥,norm ≃ 0.8 (red cross in figure 4.6) very close to the analytical estimate from eq.
4.20, proving the accordance between the theory and the numerical simulations.

As the MPR power exchange is computed as the time derivative of the plasma kinetic
energy, see eq. (1) in [48], the growth rate can be estimated from this kind of diagnostic
according to eq. (5) and (6) of [48]:

γ =
∑
sp
γsp = −1

2Re
〈P

ε

〉 , (4.21)

P =
∑
sp
Psp =

∑
sp

∫
Jsp · E dV , (4.22)

with Jsp calculated as in equation 3.13 being the current of the species and E the
electrostatic field computed from the Poisson equation 3.12. Equation 4.22 offers the
definition of P as the work done by the electrostatic field on the plasma. This definition
implies that negative MPR power contributions P (v∥, ε) < 0 (the majority in fig. 4.6)
corresponds to the case where plasma kinetic energy decreases because the energy is
transferred from the particles to the field. Therefore, P (v∥, ε) < 0 represents a local
positive power contribution for the mode, leading to the excitation of it. In fact, in
4.21 γ has the opposite sign with respect to P . Subsequently, for excited modes we
will observe most of MPR diagnostic plots (as in fig. 4.6) to be rather negative and in
damped ones to be positive.

As expected from the considerations in sections 2.3, 3.3, 4.3, we observe that the area
of the distribution function contributing to the excitation of the mode has a positive
gradient of the distribution function F0 in v∥ (red contour lines in figure 4.6). Meanwhile,
we see also damping contributions on the left of the graph, in correspondence of negative
gradients of F0 with respect to v∥. In general we can state:

∂F0
∂|v∥|

> 0 =⇒ Psp = J · E < 0 =⇒ γ > 0 =⇒ excitation contribution , (4.23)

∂F0
∂|v∥|

< 0 =⇒ Psp = J · E > 0 =⇒ γ < 0 =⇒ damping contribution . (4.24)

All the previous considerations can be observed in the following plot (fig. 4.6). It
represent the MPR diagnostic from the simulation using the ASD F0 with ξ0 = −0.5
and σξ = 0.2 superimposed to the same ASD F0 in phase-space representation. In
this plot the power exchanged between the mode and the particles (eq. 4.22) has been
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integrated over time and normalized with respect a reference value of power.

Figure 4.6: MPR diagnostic data (J · E) superimposed to F0(s = 0.5, v∥, ε) taken from
NLED-AUG case simulation with ASD F0 (ξ0 = −0.5, σξ = 0.2). A red cross is added to
mark the location of the most negative value of the MPR. MPR diagnostic is measured in
ORB5-normalized units

Other examples of this diagnostic will be used throughout this Chapter 4, for example
in section 4.4, where we will use it to compare the ASD F0 effects in phase space on
the mode compared to those from the RABBIT F0.

In next section we will present the results from numerical simulations using two
different ASD distribution functions (ξ0 = (−0.5, −0.9), σξ = 0.2) and varying the EP
concentration to study the dependence of the growth rate and frequency on this plasma
parameter. Threshold values for this parameter are found numerically.

4.3.5 Scans in energetic particle concentration and threshold
values

In this section we scanned with respect to the volume averaged fast particle concentration
⟨nEP/ne⟩ two of the previous simulations, namely the one using ASD with ξ0 =
−0.5, σξ = 0.2 and another one with ξ0 = −0.9, σξ = 0.2. Analyzing the two scans,
we infer how the ξ0 parameter influences the threshold values of EP concentration.
Again, we ran the scans using the NLED-AUG case configuration described in section
3.2. Results are reported in figures 4.7 to 4.9. The former shows the modes in time for
the two values of ξ0 as ⟨nEP/ne⟩ varies between between (0.02, 0.095) for ξ0 = −0.5
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and (0.02, 0.20) for ξ0 = −0.9. The latter shows the trends of γ and ω with respect
to the EP concentration. It is well known that as the EP particle fraction increases
the growth rate γ increases too [44, 91, 100–102, 109, 110]. Our results confirm this
hypotesis, yielding steadily growing growth rates as ⟨nEP/ne⟩ raises. Nevertheless, as
we can see from both figures below, the γ = 0 threshold value is found at different EP
fractions for the two cases. The simulations with ξ0 = −0.9 are all more stable with
respect to the ξ0 = −0.5 ones, consistently with previous results. Infact, the density
threshold value for ξ0 = −0.9 is higher:, ⟨nEP/ne⟩thr ≃ 0.045, while for ξ0 = −0.5:
⟨nEP/ne⟩thr ≃ 0.025. It was difficult to precisely establish the exact threshold value
because modes from the simulations near marginal stability show a decreasing behavior
before a weakly linear growing phase.
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88



4.3 Numerical results from NLED-AUG case

a)

b)

Figure 4.8: Growth rate (a) and frequency (b) dependence on nEP
ne

for EGAMs using an ASD
with ξ0 = −0.5 in NLED-AUG case. The red dots in the plots represent the correspondent γ
and ω from the simulations in fig. 4.7(left). The green dashed line in the top figure represents
the γ = 0 threshold

a)

b)

Figure 4.9: Growth rate (a) and frequency (b) dependence on nEP
ne

for EGAMs using an ASD
with ξ0 = −0.9 in NLED-AUG case. The red dots in the plots represent the correspondent
γ and ω from the simulations in fig. 4.7(right). The green dashed line in the top figure
represents the γ = 0 threshold

Such scans will be proposed also for the RABBIT distribution function in section
4.4. Before moving to the simulations with numerical EP distribution functions from
RABBIT, in the next section we show a scan over ion temperature for a simulation of
the previous set.
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4.3.6 Effects of ion Temperature

Among the plasma parameters that can affect the growth or damping rate there’s
plasma temperature [44]. Bulk ions get heated by GAMs while damping them through
the Landau damping (sec. 2.2). This is the reason why GAMs are believed to be a quite
useful tool to transfer energy from the EP species to the bulk plasma [48]. The direct
Landau damping also depends on resonant velocities and varying the temperature of
thermal ions can move the gradients of the ion distribution function closer to these
resonant velocities, enhancing the damping of the mode. Therefore, changing the
temperature of the bulk ions strongly affects their damping effect on the EGAM. If we
take eq. 4.18 and consider that GAMs can have higher poloidal sidebands with m ≥ 1,
we can infer that the resonant velocity has different values according to the different
sidebands [48]:

vm∥,res =
qR0ωGAM

m
. (4.25)

In spite the fact that we can have multiple resonant velocities, numerical computations
proved that the energy transfer between mode and thermal particles occurs mostly
at the first resonant velocity [48]. The full width at half maximum (FWHM) of the
Maxwellian distribution function of thermal ions is proportional to the square root of
temperature:

FWHM ∝
√
Ti
mi

. (4.26)

This can be seen qualitatively also in fig. 4.10.

Figure 4.10: Distribution functions of thermal ions represented in (v∥,µ) velocity space with
Ti/Te = 2.5 (left) and Ti/Te = 4.5 (right), red vertical lines highlight resonant velocities as
computed from eq. 4.25
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As we observe in the figure 4.10, v∥,res intersect the ion distribution function in
denser areas of the distribution function for higher values of τ = Ti

Te
, and viceversa for

lower values of τ . This implies that the GAM mode can redistribute more energy to
the thermal ion species if Ti is higher leading to a stronger damping effect by the bulk
ions. It is interesting to note that the resonant velocities for higher temperatures are
also higher, the resonant velocity is, in fact, depending on ωGAM which is:

ωGAM =
vth
R0

√√√√(7
4 +

Te
Ti

)
, (4.27)

where vth =
√

2Ti/mi. So the final dependence of v∥,res is:

v∥,res ∝

√√√√ Ti
mi

(
7
4 +

Te
Ti

)
. (4.28)

Comparing equation 4.28 to 4.26, we see that the FWHM grows faster than the v∥,res
enabling the process for increasing Ti that was previously described and depicted in fig.
4.10.

In order to analyze the effects of ion temperature, a scan of simulations varying τ in
a range of values has been permormed using the NLED-AUG case configuration with
an ASD F0 characterized by ξ0 = −0.5 and σξ = 0.3. Figure 4.11 and 4.12 clearly
present the effect of ion temperature. Accordingly to theoretical expectations [44], in
fig. 4.11 the fastest growing modes are those with lower values of τ . In figure 4.12, the
growth rates are plotted as function of τ and we can see the γ trend is monotonically
decreasing with τ . Meanwhile, the frequency shows the opposite behaviour, in fact, it
increases with τ . Again, this is due to the transition from strongly growing EGAMs
with low frequency to weakly growing EGAMs with higher frequency, getting closer to
the frequency of damped GAMs. Moreover, the EGAM frequency can be written as
in equation 4.27. Therefore, higher values of Ti correspond to higher values of GAM
frequency.
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Figure 4.11: EGAM mode amplitudes in time of a scan in τ , ranging from 2.5 to 4.5, for
NLED-AUG case

a)

b)

Figure 4.12: Growth rate γ/ωci (a) and frequency ω/ωci (b) of the scan in τ shown in fig.
4.11. The red dots in the plots represent the correspondent γ and ω from the simulations in
fig. 4.11. The green dashed line in the top figure represents the γ = 0 threshold

In this section 4.3, we analyzed the dependence of the EGAM growth rate on the two
parameters of the analytical ASD distribution function: ξ0 and σξ. Furthermore, we
studied the influence on the stability of the GAM of relevant plasma parameters such
as EP density concentration and ion temperature. We have found sensible influence
from all these parameters. Moreover, we made use of the MPR diagnostic to enquire
into the driving mechanisms of EGAMs generated by anisotropy. We have now the
tools to investigate the linear stability of GAMs using the most realistic distribution
function available to ORB5, namely the RABBIT F0.
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4.4 Numerical results using the RABBIT
distribution functions

In this section we will show the results obtained running NLED-AUG case simulations
as those shown in section 4.3. The only difference in the input was the distribution
function. We used the four different distribution functions of the NLED-AUG case
(shots #3123-6 in AUG) with the correspondent density and temperature profiles
shown in section 3.3.2. As already explained, these distribution functions were produced
changing the injection angle of the NBI with respect to the magnetic axis of the machine.
Therefore not only we will have slightly different distribution functions, but also the
radial density profiles will be peaked at different radial positions. Shot #31213 has
the most off-axis angle (7.13◦) and the most off-axis profile, peaked at s ∼ 0.4, shot
#31214 the most on-axis (6.07◦) NBI and the radial peak at s ∼ 0.3. Shots #31215-6
have a mid-range angle (6.65◦) and density profiles. For clarity we show again the four
RABBIT distribution functions in figure 4.13, details in section 3.3.2.

Figure 4.13: Realistic distribution functions generated from RABBIT, NLED-AUG case shots
# 31213-6

The ORB5 linear electrostatic simulations’ results using the different EP RABBIT
distribution functions are plotted in figure 4.14. We immediately note that the modes
are all damped, yielding negative growth rates, in spite the different injection angles.
In fact, as we found in section 4.3, such NBI angles correspond to high pitch ξ0 ∼ −0.9
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values which yield rather stable modes. Nevertheless the frequencies are still in in the
range of ω ≃ 0.04ωA, which are the frequency found in section 4.3 for the damped
GAMs (figure 4.4 b) ). We will see in next sections why the RABBIT distribution
function has such negative growth rates if indirectly compared to the analytical ASD
distribution function We will find EP density concentration thresholds for the different
injection angles as done in section 4.3, finally a comparison with the experimental
measurements will be offered.

Figure 4.14: NLED-AUG case n = {0} modes in time for the four shots, using the four
different RABBIT distribution functions showed in fig. 4.13

4.4.1 MPR diagnostic from RABBIT distribution functions
In this section we offer a new phase space analysis as done in section 4.3.4, this time
applied to the linear ORB5 simulation using the RABBIT F0 from AUG shot #31213
(sec. 3.3.2). We present the MPR plot superimposed to the RABBIT distribution
function in figure 4.15, in a similar fashion to what shown in figure 4.6. As in equation
4.10, we calculate the theoretical estimate for the normalized parallel resonant velocity,
being q ≃ 2.3, R0 = 1.66 m and ωGAM = 2.04 · 105 rad/s:

v∥,res
vth,i

=
qR0ωGAM

vth,i
= 4.15. (4.29)

The results represented in figure 4.15 offers much more complex structure than that
shown in image 4.6. In the plot below, there are many peaks, both negative and positive,
positioned in different points of the phase space correspondent to different point of
the RABBIT F0. In Fig 4.15, we observe that the highest negative peak, at which the
positive contribution to the mode excitation takes place, is located in the middle of a
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positive gradient area of the F0 (see eq. 4.23) at v∥ ≃ −4.85. This v∥ value is very close
to the main resonant velocity found in eq. 4.29. Moreover, according to eq. (42) of [48],
there can be many resonant velocities due to the exchange of energy taking place at
higher poloidal harmonics (|m| ≥ 1). Hence, we can find other resonant velocities using
the following formula:

v
(m)
∥,res =

qR0ωGAM
m

. (4.30)

In fact, observing closely figure 4.15, we notice a smaller negative peak located near
to another resonant velocity at v∥ = −1.34. If we consider m=3, and plug it into eq.
4.30, v(3)∥,res ≃ 1.38, very close to the secondary resonant velocity, found by the MPR
diagnostic, at which a peak of the power exchange is found (fig. 4.15). In the figure we
can find also other negative peaks either near the main resonance velocity (eq. 4.29) or
the other poloidal mode velocities (eq. 4.30), at higher energies.

Furthermore, it is interesting to note the position of the positive peaks too, those
causing the damping of the mode according to equation 4.24. In fact, most of these are
located just above each of the three injection velocities (E0, E0/2, E0/3). This result
agrees with the theory [47]. According to the general Landau damping mechanism
(equation 2.31) the areas of the distribution function where ∂F0/∂ε < 0 damp the
mode. In fact, in correspondence of the injection velocities we have very steep negative
gradients in energy (or absolute velocity |v|) which damp the mode. In other words,
the largest part of particles in these discontinuities can be only accelerated, gaining
energy from the mode and, therefore, generating a damping effect on the GAM.
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Figure 4.15: MPR diagnostic (J ·E) superimposed to RABBIT F0(s = 0.5, v∥, ε) of NLED-
AUG case shot # 31213. The MPR diagnostic as well as the distribution function have been
represented in ORB5-normalized units

In figure 4.16 we present a zoom of figure 4.15. In this plot, it is possible to
observe more closely the position of the positive peaks of the MPR diagnostic along the
steep negative gradients in energy (almost discontinuities) of the distribution function
∂f0/∂ε < 0. Such negative gradients are due to the different injection velocities of
the NBI caused by the different ionization states of the NBI fuel (deuterium). We
immediately note that this RABBIT feature causes strong positive power exchange
from the mode to the particles (eq. 4.24), causing the mode to be more damped than
excited. This feature and, subsequently this strong negative drive in the GAM, was not
present in the analytical ASD F0. A more thorough comparison between the results
using the RABBIT and the ASD distribution function will be offered in section 4.4.3.
So far, we limit our observations to the fact that this injection velocities seem to cause
substantial differences to the drive of the GAM between the analytical and numerical
EP distributions.
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Figure 4.16: MPR diagnostic (J ·E) superimposed to RABBIT F0(s = 0.5, v∥, ε) of NLED-
AUG case shot # 31213 (zoom of figure 4.15)

In this section we analyzed the MPR diagnostic measured from the NLED-AUG case
simulation using the numerical RABBIT distribution function from shot #31213. We
could see that the steep negative gradients in ε cause the mode to be rather damped. In
the next section we will run scans in EP density concentration for the different injection
angles of NLED-AUG case, as in section 4.3.5.

4.4.2 Results and threshold values for RABBIT distribution
functions

In order to evaluate if and which effect the different injection angles of the NBI have on
the stablity of the GAM, it is of interest to study the EP concentration threshold values
for the RABBIT distribution functions #31213-4-6. Therefore, for these distribution
functions, scans in the EP fraction have been run as in section 4.3.5. We have set
⟨nEP/ne⟩ to different values comprehended between 2% and 50%. It is important to
mention that such high value of EP concentration is not realistic. In fact, as it will be
shown in the next section, such high EP concentrations could easily lead to non-physical
conditions. It is just an arbitrary value chosen for the purpose to clearly identify the
threshold values and show that the growth rate of the EGAM increases along with EP
concentration.

The results have been plotted and analyzed for the different distribution functions.
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We analyze case by case the three shots, in order: #31213,4,6.

EP density threshold values for shot #31213

We performed with ORB5 a scan with the distribution function and the profiles from
shot #31213. The scan was run with EP concentration up to ∼ 50%. As aforementioned,
such a high concentration is a sort of upper limit in this kind of scans. In fact, ⟨nEP/ne⟩
is a volume-averaged values and for higher concentrations than this, there is a serious risk
of encountering local values of EP concentration that exceed the electron concentration
in the ORB5 code. This situation can lead to non-physical results, in fact in such cases
we would break quasi-neutrality. Additionally, in such extreme cases, various quantities
that rely on bulk plasma parameters lose their significance. For instance, the GAM
frequency, which is dependent on Ti, becomes unreliable in these scenarios.

Figure 4.17 present the various modes, generated by the different ⟨nEP/ne⟩ values,
in time on the left. On the right the figure shows the growth rates and frequencies
of the modes as function of ⟨nEP/ne⟩. A continuous increase of growth rate γ with
the EP fraction is observed, in accordance with literature [44, 91, 100, 102, 109]. On
the other hand, as expected, measured frequencies drop as the modes transition from
damped GAMs to excited EGAMS. From the plots in figure 4.17, we can infer a EP
concentration threshold value for simulations with EP distribution function from shot
#31213: ⟨nEP/ne⟩thr = 0.23.

a)

b)

Figure 4.17: ⟨nEP /ne⟩ scan for NLED-AUG case shot #31213 simulations, modes in time
(left), modes’ growth rates (a) and frequencies (b) as function of nEP

ne
(right). The red dots in

the plots on the right represent the correspondent γ and ω from the simulations in the left
plot. The green dashed line in the top right figure represents the γ = 0 threshold
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EP density threshold values for shot 31214

We perform the same scan in ⟨nEP/ne⟩ for simulations of NLED-AUG case shot #31214.
In this shot the NBI angle was the most on-axis one (see section 3.3.2). Again, the
upper limit of our scan was ⟨nEP/ne⟩ = 0.5. The results are reproduced in figure 4.18
which is structured as fig. 4.17.

Based on these results, we observe the usual behavior of the growth rate and frequency
depending on EP concentration. The former increases, the latter decreases as ⟨nEP/ne⟩
is increased. In the simulations of AUG case, shot #31214 (fig. 4.18), we find that
the threshold value, indicating the transition to instability, is higher compared to case
#31213. This implies that case #31214 is more stable, with the energetic particle
beam being more on-axis with respect to shot #31213 (6.05◦ against 7.15◦). This
observation aligns with the discussions in section 4.3, as the more on axis cases (pitches
ξ0 ∼ −1) have lower growth rates and higher threshold ⟨nEP/ne⟩ values than off-axis
cases (ξ0 ∼ −0.5). By analyzing the plots in figure 4.18, we can determine a threshold
value for case #31214 at approximately ⟨nEP/ne⟩thr ≃ 0.32.

a)

b)

Figure 4.18: nEP
ne

scan for NLED-AUG case shot #31214, modes in time (left), modes’ growth
rates (a) and frequencies (b) as function of nEP

ne
(right). The red dots in the plots on the right

represent the correspondent γ and ω from the simulations in the left plot. The green dashed
line in the top right figure represents the γ = 0 threshold

EP density threshold values for shot 31216

For case #31216, the simulation scan varying EP concentration was repeated, and as
before, we reached ⟨nEP/ne⟩ = 0.5. We didn’t ran a scan using the shot #31215 F0
because the NBI injection angle for this case was the same of shot #31216 (6.65◦).
The results are shown in fig. 4.19. The trend observed is consistent with the previous
cases: an increasing fraction of energetic particles leads to an increase in growth rate
γ and a decrease in frequency ω (fig. 4.19). Since the injection angle is 6.65◦ (in
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between the two previous NBI angles), we can estimate that the growth rate threshold
would be found between the threshold values obtained for shots #31213 and #31214.
Remarkably, our findings align with this expectation, and we can measure that in this
case ⟨nEP/ne⟩thr ≃ 0.27, as depicted in fig. 4.19.

a)

b)

Figure 4.19: nEP
ne

scan for NLED-AUG case shot #31216, modes in time (left), modes’ growth
rates (a) and frequencies (b) as function of nEP /ne (right). The red dots in the plots on the
right represent the correspondent γ and ω from the simulations in the left plot. The green
dashed line in the top right figure represents the γ = 0 threshold

As we have observed, at nominal EP fraction ⟨nEP/ne⟩ = 0.09 all the GAMs from
linear electrostatic simulations using realistic RABBIT EP distribution functions are
damped (fig. 4.14). In order to appreciate the different influences of the NBI angles, we
ran scans in ⟨nEP/ne⟩, looking for threshold values for this quantity. Referring to the
findings in 4.3, we can expect the most off-axis F0 (shot #31213) to have the lowest
threshold ⟨nEP/ne⟩ value and the most on-axis one (shot #31214) to have the highest
threshold value. The simulations presented in this section validate such hypotesis, along
with the theory presented throughout this thesis. In the next section we will perform a
qualitative, indirect comparison between the simulations run with the analytical ASD
EP distribution functions and those with the numerical RABBIT one.

4.4.3 Comparison with analytical ASD results
In this section we want to offer to the reader an indirect, qualitative comparison between
the linear electrostatic results obtained running ORB5 set with the NLED-AUG case
configuration using the analytical ASD and the numerical RABBIT EP distribution
functions. To this purpose, we pick the #31213 F0 and we need to pick an analytical
ASD F0 which resembles the RABBIT one. From the observations done in section 3.3.3,
we see that the best fit of the #31213 RABBIT F0 is an ASD with ξ0 ∼ −0.8 and
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σξ ∼ 0.2. Nevertheless, for this comparison we will pick the ASD with ξ0 = −0.9 and
σξ = 0.2, being this a lower limit for the growth rate (sec. 4.3.3) and not being too
different from the ξ0 = −0.8 case in terms of growth rate and frequency.

If we compare the threshold values from section 4.4.2 with those from section 4.3.5,
we immediately note the very large difference between the threshold values obtained
in the #31213 RABBIT case and the analytical slowing down whose parameters are
ξ0 = −0.9 and σξ = 0.2.

As stated in the respective sections, the RABBIT case presents a threshold value of
⟨nEP/ne⟩thr ≃ 0.23, while the analytical slowing down case has ⟨nEP/ne⟩thr ≃ 0.07.
This large discrepancy is caused by the significant difference in phase-space gradients
between the two distribution functions, which strongly affects the driving and damping
of the modes. This effect is clearly demonstrated with a comparison between fig.
4.15 (displaying the MPR diagnostic for RABBIT case 31213) and fig. 4.20 (plotting
the MPR diagnostic for the analytical slowing down with ξ0 = −0.9 and σξ = 0.2,
superimposed to the ASD F0 in phase space). The main region of the drive is shared
by both distribution functions (highlighted by the red-colored contour plot) and, in
both cases, corresponds to areas with positive gradients of the distribution function
in parallel velocities, as discussed in the previous sections. These positive gradients
are capable of driving EGAMs unstable through inverse Landau damping (equation
2.31). Nevertheless, in the case of the RABBIT distribution function (fig. 4.15), this
driving mechanism is hindered by the steep negative gradients in energy, as discussed
in section 4.4.1, whose location coincides with the main region where the analytical
distribution function simulation finds the peak and hence the highest contribution to
the drive (figure 4.20).
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Figure 4.20: MPR diagnostic for the analytical slowing down with ξ0 = −0.9 and σξ = 0.2,
superimposed to its F0 in v∥, ε phase space

Additionally, we must consider the pitch angle scattering effect present in RABBIT
distribution functions, particularly at lower energies where the majority of particles are
concentrated. This isotropization effect, which is not accounted for in the analytical
ASD distribution, leads to much less steep gradients in parallel velocity for the RABBIT
F0, thus hindering higher growth rates. When considering these combined effects, they
could potentially explain the differences in growth rates observed in fig. 4.21 between
the two distribution functions. Figure 4.21 shows the growth rates trends of the two
scans of simulations of NLED-AUG case using in one case the ASD F0 with ξ0 = −0.9
and σξ = 0.2 (blue dots in fig. 4.21) and in the other one the shot #31213 RABBIT
F0 (red crosses in 4.21). The figure is basically the superimposition of figure 4.9 a)
and figure 4.17 a), enabling us to compare directly how the EP density concentration
⟨nEP/ne⟩ affects the growth rates of simulations using the different EP distribution
functions. Despite the divergence in growth rates observed at low EP concentrations,
the simulations exhibit a similar trend for higher concentrations, suggesting a common
dependence on the EP fraction, foreseen by literature [44].
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Figure 4.21: Growth rate comparison from the EP density scans using the RABBIT (red
crosses) and ASD with ξ0 = −0.9 and σξ = 0.2 (blue dots) distribution functions

In conclusion, these results found in this whole section show that the linear drive
of the RABBIT distribution functions is not enough to destabilize the EGAMs in the
NLED-AUG case (at nominal ⟨nEP/ne⟩) as it will be explained in the next section,
which will offer a comparison between the numerical results obtained running the NLED-
AUG case in ORB5 with the RABBIT distribution functions and the experimental
measurements of magnetic probes in AUG.

4.4.4 Comparison with experimental measurements
The results shown in the previous section are highly interesting and are consistent with
the theoretical and numerical behaviors discussed in sections 4.1 and 4.3 regarding the
dependencies of the GAM growth rate γ on ξ0 and nEP/ne. The results also align with
theoretical considerations from sections 2.3 and 2.2. However, when analyzing the data
from the magnetic Mirnov (pick-up) coils that capture the magnetic perturbations in
NLED-AUG cases (fig. 4.22), it is self-evident that the EGAM (green lines at around 50
kHz) is excited in everyone of the four cases. Observing the experimental measurements
and consistently with our expectations, the most unstable case is the EGAM in the
most off-axis case, shot #31213 (top left in fig. 4.22), while shot #31214 (top right
in fig. 4.22), the most on axis EP distribution, exhibits the least instability. This
observation agrees with the analytical and numerical findings from 2.3, 4.1 and 2.2,
as well as numerical evidence from 4.3, which indicate that as ξ0 approaches -1, the
growth rate diminishes (sections 4.4.2, 4.3.2, 4.1).

We observe a rough agreement concerning the frequency between the simulations
and the experimental measurements. In shot #31213 simulations, as depicted in figure
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4.17 (right), the frequencies range from 17.5 to 38.5 kHz. This does not perfectly
match the experimental measurements, nevertheless such result is comparable to the
approximately 50 kHz measured in ASDEX-Upgrade and shown in figure 4.22 (top-left).

In our simulations we also managed to establish a stability ranking for the different
NLED-AUG case shots, thus a stability ranking for the different NBI injection angles.
This ranking could not be established comparing the growth rates of the mode at nominal
EP concentration (⟨nEP/ne⟩ = 0.09) because in such conditions all the modes using
RABBIT distribution functions were stable (fig. 4.14). Nevertheless, we could establish
a stability order based on the scans in EP concentration. The RABBIT EP distribution
which yields the lowest threshold EP concentration level can be considered to be the
one causing the most unstable conditions for the GAM. According to this principle,
as shown in section 4.4.2, the most destabilizing shot is #31213, the most stable is
#31214 and shots #31215-6 are in between. Such results is matched qualitatively by
the experimental measurements (fig. 4.22). In fact, we can observe that, as expected
from theory, the most off-axis case (#31213) is causing the most intense EGAM signal,
the most on-axis one (#31214) the least intense and mid range shots (#31215-6) an in
between intensity of the signal.

However, despite we found a qualitative agreement in the dependence of growth rate
trends on the EP concentration (section 4.4.2) and on the NBI injection angle, there is
a quantitative difference. In the numerical simulations with experimental conditions
and F0, where the EP fraction is approximately 9%, all modes are damped. In contrast,
in the experiments, the modes are all excited, even if with different growth rates. The
threshold values for excitement in simulations with RABBIT F0 are found at much
higher EP fractions (sec. 4.4.2). This suggests that there must be a nonlinear effect,
not accounted for in the electrostatic linear simulations, that drives EGAMs unstable
even with such a small EP density concentration.

One possible explanation for this mismatch, as proposed in [57], is the nonlinear
interaction between n=1 Alfvénic modes and EGAMs. In the same experiment, Alfvén
modes such as TAE and EPM are present, as seen in figure 4.22 where such signals are
observed at approximately 100-150 kHz. The excitation of these modes in the NLED-
AUG case has been extensively studied in References [58, 73]. The contemporaneousness
of EGAMs and TAEs, as observed in experiments, supports for the hypothesis of
nonlinear interactions between these modes. Reference [57] demonstrated that Alfvén
modes can trigger EGAMs, and conversely, EGAMs can nonlinearly excite Alfvén waves
[58].

It is important to acknowledge that certain experimental uncertainties exist and could
be involved in the observed damped behavior of GAMs in the simulations using RABBIT
F0. Firstly, among the shots analyzed, only shot #31216 had direct measurements
of Ti through beam blips, while the Ti profiles of the other shots (#31213-4-5) were
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reconstructed based on the data from shot #31216. It is possible that the actual
Ti values in shots #31213-4-5 were smaller, leading to higher growth rates in the
simulations (sec. 4.3.6). Secondly, tokamak discharges often produce impurities, the
effects of which are not accounted for in these simulations. Neglecting the presence
of impurities can have an impact on the plasma characteristics and the stability of
modes. Additionally, the poloidal dependence of distribution function is neglected in
both RABBIT and analytical ASD distribution functions.

Furthermore, it should be noted that the RABBIT distribution functions do not
consider velocity diffusion effects. Including such effects would generate less steep
negative gradients at the injection velocities, thereby reducing the damping effect
caused by these discontinuities in F0 (section 4.4.1).

Finally, there may be uncertainties in the q profiles, as the GAM damping is propor-
tional to e−q2 , this can sensibly shift the stability boundary for the EGAM. Considering
all these factors, including the nonlinear interactions discussed earlier, it is expected
that a more accurate estimation of the growth rate of EGAMs can be obtained for the
NLED-AUG cases.

In conclusion, we can state that anisotropy is a crucial feature for distribution
function for the linear stability of EGAMs. We found that analytical slowing-down
with pitch dependency distribution functions can linearly excite EGAMs (section 4.3).
Nevertheless, when using realistic distribution functions in ORB5 for simulations of
the NLED-AUG case, such as those obtained from RABBIT, which present really
high correspondent pitches (ξ0 ∼ −1), the linear stability thresholds values of EP
concentration are found at much higher values than those observed in the experiment.
From the experimental observations, weak EGAMs are found in phases without much
Alfvenic activty (e.g. #31215), whereas when AWs are present, they reach considerably
higher amplitudes (e.g. #31213). It is evident that both uncertainties in the linear
parameters, such as q and F0, as well as the non-linear electromagnetic effects discussed
previously, play crucial roles in achieving quantitative agreement between simulations
and experimental observations. These findings emphasize the complexity of the NLED-
AUG case and highlight its importance for both linear and non-linear code validation
excercises.

In the next chapter we will include non-linear electromagnetic physics into these
simulations, aiming to achieve a better agreement between the ORB5 simulations and
the experimental measurements. Such studies have already been started with simple
distributions functions in ref. [73].
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Figure 4.22: Experimental data from NLED-AUG case from magnetic Mirnov (pick-up) coils
(in order top-left, top-right, bottom-left, bottom-right: 31213,5,4,6)

4.5 Discussion and chapter summary
This chapter investigated the influence of anisotropic EP distribution functions on the
linear stability of Geodesic Acoustic Modes in tokamak plasmas, using the NLED-AUG
case as the plasma configuration. As a first step for this study, a new analytical
anisotropic and asymmetric distribution function, parametrized by ξ0 and σξ, was
implemented (section 3.3.1). Theoretical analyses were performed to derive the stability
conditions for extreme cases of ξ0 and σξ by examining the dispersion relation of EGAMs
(section 4.1). These theoretical studies found that EGAM are excited for low values of
σξ and values of ξ0 ∼ −0.5. This method could not evaluate threshold values for the
parameters. Therefore, numerical simulations were necessary to determine threshold
values, and scans were conducted using the gyrokinetic code ORB5 to explore the
stability of EGAMs over the parameter space of ξ0, σξ, and the EP density fraction
⟨nEP/ne⟩ (section 4.3). The results revealed that the modes become unstable for low
values of σξ and within the range of ξ0 between -0.9 and -0.3. This stability region
widens with decreasing σξ and increasing EP fraction. The threshold value for ⟨nEP/ne⟩
varied depending on the specific ξ0 and σξ configuration, resulting in different values
for different cases (section 4.3.5).

The power exchange structures (MPR) for different simulations were also investigated,
in order to establish which populations of EPs were contributing to the excitation
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and damping of the modes. It was found that, accordingly to theory (sec. 2.2), the
particles of the distribution function with ∂F0/∂v∥ > 0 were ceding energy to the mode
exciting it and viceversa (section 4.3.4). The effects of ion temperature was also studied
showing that the growth rate decreases with increasing thermal ion temperature (sec.
4.3.6). Additionally, it was found that the main resonance velocity, at which most of
the power is exchanged between the mode and the particles, agrees with the theoretical
expectations from section 4.1.

Furthermore, experimental-like numerical distribution functions were obtained from
RABBIT and were fed as input in ORB5 to simulate the different NLED-AUG cases
#31213-6, incorporating the experimental temperature and density profiles from the
four different shots (sec. 4.4). The simulation results indicated that all modes were
damped when using the RABBIT distribution functions, and the MPR analysis was
carried out specifically for case #31213 to find out why this was the case. A more
complex power exchange structure emerged from this simulations if compared to the
analytical distribution function cases, in particular, the steep negative gradients at
the different injection velocities seemed to be the cause for such negative growth rates
for the RABBIT cases (sec. 4.4.1). This analysis also suggested that interactions
between EPs and the mode occur even at higher mode resonant velocities. Scans
varying the EP concentration were performed for the three shots #31213, #31214,
and #31216, corresponding to three different injection angles of the NBI systems.
As expected, different EP concentration threshold values were found for the different
injection angles (section 4.4.2), following the trend expected from theory and the results
of the simulations with analytical anisotropic F0.

Finally, a qualitative comparison was made between the analytical F0 results and
the RABBIT F0 results (section 3.3.3) and between the RABBIT simulation results
and experimental measurements obtained from magnetic pick-up coils (section 4.4.4).
In the experimental cases with the nominal EP concentration (around 9%), EGAMs
were found to be excited in all the AUG cases, even though with different growth
rates. However, when simulating the numerical experimental-like distribution functions
and profiles at the same EP fraction, no unstable mode was found. This discrepancy
hinted the need to consider nonlinear, electromagnetic physics in order to achieve fully
predictive simulations of EGAM dynamics. A crucial nonlinear effect, neglected in
these simulations, is the interaction between n=1 Alfvén waves and EGAMs [57], which
have been observed in the NLED-AUG case and investigated in previous studies [58].
We found that the numerical realistic anisotropic distribution function alone is unable
to linearly drive EGAMs unstable at such low EP fractions.

Overall, the good agreement between simulations, analytical expectations, and
theoretical predictions in this chapter demonstrates that the gyrokinetic code ORB5
is capable of handling experimental-like anisotropic EP distribution functions, both
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analytical and numerical. In the next chapter non-linear studies, addressing these, so
far neglected, effects will be presented.
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simulations of EGAMs and AWs

The study and comprehension of energetic particle (EP) dynamics and their confinement
is crucial for future fusion reactors [68]. As previously declared, this thesis is a validation
exercise on this path. Its ultimate goal is to predict the non-linear dynamics of EPs
using experimental-like distribution functions. In the previous chapter 4 we studied the
linear stability of GAMs using anisotropic distribution functions. In this Chapter we
will introduce in our ORB5 simulations the non-linearities and n = 1 electromagnetic
modes (AWs), keeping the same plasma parameters (NLED-AUG case, see section 3.2)
and the newly implemented anisotropic distribution functions for the EPs (see section
3.3). This will allow us to advance in the reconstruction of the non-linear dynamics of
the NLED-AUG case.

Alfvén Waves (AWs), along with EGAMs, can be excited by EPs and affect plasma
confinement (see section 2.4). Unlike EGAMs, AWs can be linearly driven unstable
by isotropic distribution functions with real-space gradients, the studies with these
characteristics are abundant [47, 73, 119]. Nonlinear interactions between AWs and
EGAMs have been observed in ASDEX-Upgrade [70], motivating the interest for the non-
linear driving effect of pump AWs on EGAMs using experimental-like EP distribution
functions in the NLED-AUG scenario. The ORB5 gyrokinetic code was therefore set to
run such nonlinear, electromagnetic, multi-mode simulations.

To the path of predictive simulations of experimental scenarios previous, the efforts
made so far are the following. In chapter 4 [50] an analytical ASD distribution
function was developed, and its parameters ξ0 and σξ were varied. The growth rate of
EGAMs was found to depend on the phase space shape of the distribution function.
Numerical simulations using experimental-like distribution functions obtained from
RABBIT showed no positive growth rates for tested cases, contradicting experimental
measurements. Non-linear interactions with n = 1 Alfvén waves were suggested as a
possible cause. The non-linear interactions between AWs and EGAMs in NLED-AUG
case were already studied in reference [58]. In these simulations a double bump-on-tail
distribution function was used for the EPs. As aforementioned, this case is too far
from the experimental truth. In fact, this distribution function was peculiarly designed
for the linear excitation of EGAMs. In order to bridge the gap between theory and
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experiments, we are going to analyze the dynamics of the NLED-AUG case using the
analytical and numerical experimental like distribution functions introduced in section
3.3, this time adopting a much more complete numerical physical description than those
offered in Chapter 4 (see sec. 5.1 for details).

This Chapter is structured in the following way. In section 5.1 we present the
numerical set up used for the ORB5 simulations. Starting from section 5.2 we present
the non-linear electromagnetic simulation results for the analytical ASD EP F0 and in
section 5.3 the results with the RABBIT numerical distribution function. The non-linear
coupling between higher mode number instabilities (AWs) and EGAMs is proved to be
fundamental for the excitation of the latter in the experimental scenario. Finally, in
section 5.4 we compare the numerical results using the realistic RABBIT distribution
function with the experimental observations. In section 5.5 we draw our conclusions
and outline the path for future work.

5.1 Numerical setup
Before moving to the numerical results obtained from ORB5 non-linear simulations
we will briefly describe the input sheet used to run them. Once again, attempting to
achieve the most experimental relevant case, we use the magnetic equilibrium (fig. 3.1),
the temperature and density profiles (fig. 3.2) from NLED-AUG case (see section 3.2 for
details), or shot #31213 in AUG (for the simulations using the RABBIT distribution
functions from shots #31214-6, we used the profiles from those shots). The main plasma
characteristics are listed in Table 3.1. The simulations included three species, ions
(deuterium), electrons and EPs (fast deuterium). This time the simulation was run
non-linearly. In order to retain the non-linearities for the EP dynamics it’s enough
to consider in the characteristic of the particles the first order non-linear corrections
(as show in equations 3.7 to 3.9) only for the EP species, as specified in section 2.1
and 3.1. The non-linearities will allow the particles to redistribute in phase space.
Therefore, at different time steps we will yield a distribution function different from
the initial one (FEP (t) ̸= FEP ,0). Not considering non-linear effects for electrons and
ions will have a slightly stronger damping effect on the modes, nevertheless, as said
previously, this effect is not dominant with respect to the phase space effects of EP
distribution. Furthermore, not considering non-linearities for bulk species allows us to
run much fast simulations. This time the electrons were run kinetically, thus dropping
the adiabaticity hypotesis which was possible in the linear electrostatic case (see section
4.2). The electron to ion mass ratio was set to me/mi = 0.002, an approximation that
allows for faster simulations. The fields equations were solved using both Ampere and
Poisson equations 3.12 and 3.13, allowing both electrostatic δφ and electromagnetic δB
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fluctuation to develop. The Fourier mode filter was set to consider only n = 0 and n = 1
modes, filtering out all the modes with n > 1. The ∆m filter was set to 5. Numerical
resolution parameters as the time step, the spatial grid (in s,χ,ϕ coordinates), and the
number of markers used for the three species (e, i,EP ) are listed in Table 5.1.

∆t[ω−1
ci ] Ns Nχ Nϕ Np,i Np,e Np,EP

1 256 128 32 107 4·107 5·107

Table 5.1: Numerical simulation parameters: ∆t is the time step, N(s,χ,ϕ) are the grid
resolution, Np the total number of markers for each species.

Provided the numerical settings that were used in the non-linear simulations, we can
move forward and focus our attention on the results obtained in these simulations. We
will present first the results using the analytical ASD distribution function for the EPs
(section 3.3.1), and then the results using the realistic numerical RABBIT one (sec.
3.3.2).

5.2 Non-linear simulation results using ASD
distribution function

In this section we will show the results from ORB5 running sets of simulations similar to
those presented in section 4.3. We are interested in analyzing the effects of anisotropy of
realistic distribution functions on the non-linear excitation of n=0 modes via wave-wave
coupling with AWs. To this purpose we ran non-linear simulations using the analytical
pitch-dependent anisotropic slowing down (ASD) F0 for the EPs, defined as in equation
3.17 [50]. The numerical simulations were run using the equilibrium and the profiles
of NLED-AUG case, shot #31213 in ASDEX Upgrade, as mentioned in the previous
paragraph. We ran scans varying the preferred pitch ξ0 and the scattering of the
particles σξ around that pitch.

The purpose of adopting a richer and more accurate physics, as described in the
previous section 5.1, is to be able to reproduce the experiment more faithfully than it
was previously done in the linear case using experimental like F0 [50], as presented in
Chapter 4, or in the non-linear case using non experimental like anisotropic distribution
functions as in reference [58]. Hence, according to the analytical theory presented
in section 2.5 [57, 58] we expect to yield positive n = {0} ZS growth rate also for
anisotropic EP F0 that yield damped GAMs in the linear simulations. This is the case,
for example, of the ASD F0 with ξ0 = −0.9 and σξ = 0.2 (sec. 4.3.3) or of the RABBIT
distribution functions (sec. 4.4). In fact, we expect the n = {1} EPM to be excited by
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the radial gradient of the off-axis peaked EP density profile, and through the non-linear
wave wave coupling mechanism this should be able to drive a ZS with γZS = 2 · γAW
[57].

If our expectations are correct, we will be able to reproduce the experimental scenario
in an unprecedented way. Enabling us to reach a very important fidelity degree for our
PIC code ORB5.

In particular, in this section we will focus on the results from a particular case of
the ASD F0 (ξ0 = −0.9, σξ = 0.2). We will analyze the differences with the linear
simulation and draw some considerations. After that, as in section 4.3.3, we will give the
results from a full scan varying the parameters ξ0 and σξ. We will try to described the
trends observed and give an explanation for it and the issues arising from performing
and interpreting such a simulation scan. Finally, we will focus on the pitch dependency
of growth rates and saturation levels. In this way, we will be ready to study the
RABBIT cases which offer (only) slightly different injection angles.

5.2.1 Results using ASD F0 with ξ0 = −0.9 and σξ = 0.2
For this reference case, we performed simulations either retaining only n = {0} or
n = {1} modes, as well as both n = {0, 1} modes coupled together in the same
simulation, for a total of three simulations. This allows us to compare the growth
rates of the decoupled different modes (ZS, GAM, AWs) and examine the impact of
non-linear interactions on their behavior as they are coupled together. Specifically, we
focus on the case where the EPs’ ASD F0 was defined with ξ0 = −0.9 and σξ = 0.2.
This choice is not a coincidence. In fact, it’s worth to remind that this case closely
resembles the experimental like distribution function reconstructed by RABBIT, giving
some experimental relevance to the results shown below. Furthermore, as outlined in
section 4.3, this distribution function in the linear case yields a marginally stable GAM.
Therefore, it will be clear if the non-linear pumping mechanism of AWs will have an
effect on the non-linear drive of n = {0} modes.

The results obtained are shown in fig. 5.1, here the different modes from three
different simulations have been plotted. The plot shows the radial peak of the scalar
potential signal in time of the dominant m mode from either the n = 0 or the n = 1
modes. The red line represents the AW from the only n = 1 simulation, the green the
GAM from the only n = 0 one, and the blue and orange lines are respectively the ZS
and the AW from the simulations were modes n = {0, 1} were let interact with each
other. These result demonstrate a significant impact of non-linear interactions with
AWs on the growth rate of the zonal structure (ZS), confirming previous predictions and
findings in [57, 58]. When considering only the n = 0 mode without retaining the AWs
(green line in fig. 5.1), the GAM exhibits a marginally stable behavior, consistently with
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the linear case [50] (see section 4.3). However, when both modes interact non-linearly,
the ZS (blue line) is pumped by the EP non-linear response to the AW (orange line)
during the linear phase, resulting in a growth rate of γZS ∼ 2γAM as indicated by
equation 2.95. In particular, in this case, we yield:

γZS = 5.8 · 10−2ωA = 1.75γAM ≃ 2γAM , (5.1)

with γAM = 3.31 · 10−2ωA, considering the time interval t = [7300, 9300]ω−1
ci . The

growth rates are computed as described in section 4.3. The growth rate of the AW does
not appear to be significantly influenced by the non-linear interaction with the ZS:

γAM ,n=1 ≃ γAM ,n=0,1 . (5.2)

The frequency of the damped GAM in the only n = 0 simulation is ωGAM = 0.03ωA.
On the other hand, the AW alone has a frequency of ωAW = 0.078ωA. The frequencies
of the modes in the simulation including both EGAM and AM are similar: ωZS,n=0,1 =
0.082,ωA ≃ ωAW = 0.076,ωA. This frequency corresponds to approximately 65 kHz,
which is in reasonable agreement with the measured GAM frequencies in the NLED-
AUG case (green lines near 50 kHz in fig. 5.13). This finite frequency of the ZS makes
it a EGAM rather than a zero frequency zonal flow (ZFZF), which, as self evident
from the name, is a zero frequency (non fluctuating) n = 0 mode due to the radial
redistribution of EPs.

In non-linear simulations it is of interest analyzing the saturation levels too. These
are the amplitude levels at which the modes turn from an exponential to a purely
oscillatory steady state behaviour. The saturation levels are very similar for the n = {1}
and the n = {0, 1} Alfvèn waves: in ORB5 normalized units SATAW ,n={1} ≃ 6.3 and
SATAW ,n={0,1} ≃ 1.15. The saturation level for the ZS in the n = {0, 1} case is
slightly lower than the Alfvèn wave one in the same simulation: SATZS,n={0,1} ≃ 1.5.
Furthermore, we notice that there is a second linear phase for the growing modes in fig.
5.1. This seems to be rather a numerical instability which, anyhow, does not affect the
parts we are interested in: the first growing phase and the first saturation phase.
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Figure 5.1: Modification of ZS growth rate in presence of AMs, the plot shows the radial peak
of the amplitude of the dominant m mode for each of the n = {0}, {1}, {0, 1} modes in time.
These simulations used the ASD F0 with ξ0 = −0.9 and σξ = 0.2

It is interesting noting the radial structures of the two interacting modes. Similarly to
references [58, 62], the dominant AW mode exhibits a (m,n) = (2, 1) structure located
in the core region around s ≃ 0.25 (fig. 5.2, left panel), where the EP density profile
exhibits the highest positive gradient (fig. 3.2). Similarly, the (m,n) = (0, 0) GAM
shows the highest electric field (∂φ/∂r) in a region outside the core region around
s ≃ 0.2 (fig. 5.2, right panel). This highlights the interplay between the AW and the
EGAM.

Figure 5.2: Radial profiles for n = {1} AM (left) and n = {0} ZS mode (right) m-modes in
the linear phase of the multi-mode n = {0, 1} simulation with ξ0 = −0.9 and σξ = 0.2 at
t = 9500 ω−1

ci
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Morover, the nature of the AW can be analyzed by overlaying the LIGKA Alfvén
continuum [121] on top of the simulation spectrogram (fig. 5.3). We can see that the
mode is located at its radial peak (s ∼ 0.25) at a frequency very close to the Alfvén
continuum (red lines in fig. 5.3). This hints that the AM, during the linear phase,
is actually an energetic particle mode (EPM) in the BAE (beta-induced) gap. Note
that the mode does not peak at or close the BAE continuum minimum at s=0.47, but
further inside at s=0.25. Thus the mode properties are mainly determined by the radial
EP gradient, justifying the identification as an EPM.

After the saturation, the frequency of the Alfvén mode increases to ωAW ,NL = 0.12ωA.
This suggests that even experimental distribution functions can capture frequency
chirping phenomena observed in the NLED-AUG case [73]. However, this phenomenon
will not be extensively analyzed in this thesis, it will be investigated in future studies.

Figure 5.3: Frequency spectrogram of the AW in the linear (left) and non-linear (right) phases
of the simulation with n = {0, 1} modes, LIGKA Alfvén continuum [121] for n = {1} mode
in AUG shot #31213 is superimposed with red lines to the spectrogram

When comparing the single simulations either the n = 0 or the n = 1 mode ran
independently from one another, it is evident that the non-linear coupling between
the ZS and the AW has a minimal impact on the structure of the AW. In fact, the
electrostatic potential level of the AW remains nearly unchanged in both the n = {0, 1}
simulation (fig. 5.2 left) and the n = {1} simulation (fig. 5.4 left). However, in the
n = {0} simulation (fig. 5.4 right), the mode transforms from a damped GAM to
a non-linearly excited ZS or EGAM (given the finite frequency) in the n = {0, 1}
simulation (fig. 5.2 right). We notice that the damped (m,n) = (0, 0) GAM survives
closer to the edge. In fact, as mentioned in sec. 2.3, the damping is proportional
to exp(−q(r)2) so it will be mostly damped in the core as we see from the figure.
Furthermore, we notice that a strong m = 1 mode is of a magnitude comparable to
the m = 0 GAM. A thorough analysis of this mode goes beyond the aim of this work,
however it may be a global Alfvén Eigenmode (GAE) which is marginally stable. We
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do not exclude the possibility that it is also a marginally stable numerical instability.
In both cases, this mode does not affect the physical results highlighted above.

Figure 5.4: Radial profiles for n = {1} AM (left) and n = {0} GAM mode (right) m-modes
in the linear phase of the decoupled n = {0} and n = {1} simulations with ξ0 = −0.9 and
σξ = 0.2 at t = 9500 ω−1

ci

These results are extremely relevant for our research. In fact, we proved that
through non-linear interactions we can excite also EGAMs where the linear drive of
EP was not enough to destabilize them linearly (sec. 4.3). The hypothesis drawn
at the end of Chapter 4 is correct, as we now see, the mismatch previously observed
with experimental measurements is due to an incomplete physical description in our
model (sec 4.5). Furthermore these results from the ASD F0, suggest that also using
experimental-like numerical F0 we will be able to better reproduce the experimental
finding, see section 5.3 for details.

In the next section we will perform a scan varying the two ASD F0 parameters (ξ0
and σξ), similarly to what done in section 4.3.3. Our purpose for the next two sections is
to study how the phase space, and the pitch of the ASD distribution function, influences
the growth rates and the non-linear dynamics of AWs and ZS.

5.2.2 Simulation scan of ASD with varying ξ0 and σξ

In this section we want to study the effects of the two ASD parameters on the charac-
teristic of AW and ZS modes in non-linear ORB5 simulations. In figure 5.5, the growth
rates of n = 0 modes in the linear phase of non-linear simulations, where both n = 0
and n = 1 were retained, are shown as a function of ξ0 and σξ. Similarly the growth
rates of GAMs with linear single mode simulations were shown in section 4.3.3. A
notable difference from the linear results, where only the n = 0 modes were retained
(figure 4.5), is that all modes in the non-linear simulations exhibit γZS > 0, whereas
in the linear case there were many cases of modes with γZS < 0 (Chapter 4). This
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positive growth rate is a result of the non-linear wave-wave coupling with the Alfv’en
waves, as explained in section 2.5. In fact, in all these cases also AWs are excited.

In the region with ξ0 ∼ 1 (left part of the plane in figure 5.5), the growth rates of
the ZS modes are primarily influenced by the growth rates of the AW modes. This
happens because the Alfvén modes are particularly excited by deeply passing EPs. This
condition is met for low pitch angles relative to the magnetic field (values of the parallel
velocity close to ξ0 ∼ −1). As in the case of the simulations shown in fig. 5.1, for all
the simulation with high values of ξ0 the AW is more unstable than the n = 0 mode.
As a result, the non-linear wave-wave coupling leads to the excitation of ZS modes
through the interaction with pump TAEs, with γZS ∼ 2γAM [57].

For low ξ0 values, even though the AWs are weakly excited, the ZS modes can still
become unstable through wave-wave coupling. Instead, for low values of both σξ and ξ0,
we observe cases where the EGAMs are more unstable than the AW modes, as depicted
in fig. 5.5. These cases correspond to the conditions where the linear drive of EGAMs
is most unstable [50] (as shown in the previous chapter in fig. 4.5). In these scenarios,
the EGAM modes retain their growth rates, while it is the AM mode that becomes
more unstable due to the influence of the EGAM mode.

It should be noted by the reader that caution is required when interpreting the
simulation results for values of ξ0 close to 0. Numerical errors may arise due to a
singularity in the computation of gradients near v∥ ∼ 0 for the anisotropic asymmetric
EP distribution functions. Consequently, the results in these cases may not be entirely
reliable. Specifically, in the bottom right area of the plot where ξ0 and σξ are close to
0, the effective growth rate (γZS) could potentially be lower than what is displayed in
figure 5.5. Furthermore, it is important to note that such low values of pitch physically
correspond to a configuration where an NBI is directed radially with respect to the
plasma (ξ0 ∼ 0 =⇒ vEP ≃ v⊥). This experimental configuration is unfeasible
for structural, ionization and plasma-deposit problems. The consequences are two
folded: firstly, we are actually simulating an unusual plasma configuration, whose
effects could involve instabilities not considered in this thesis, which would deserve their
own dedicated studies. Secondly, since there is no physical experimental configuration
corresponding to such low pitches, we cannot directly compare these results with
experimental cases, unlike the comparison possible for high pitches (as explained in
section 3.3.1).
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Figure 5.5: Growth rate (γ/ωci) scan in ξ0 and σξ of n = {0} modes in growing phases of
n = {0, 1} simulations

Summarizing, the dependency of the non-linearly driven ZS on the phase space is of
much more difficult interpretation than the linear excitation mechanisms explained in
Chapter 4 (section 4.3.3). In fact, in this section we saw that the growth rate is mostly
dominated by the AW dynamics due to the non-linear interactions between the modes,
but there are cases where this is not true: for example for those EGAMs that present
a linear growth rate equal or higher than the linear growth rate of the AWs. Unlike
the linear electrostatic case, we don’t have a tool to evaluate the exchange of power
that happens non-linearly between the modes, therefore it is even harder to determine
which are the driving mechanism that generate the trends we observed in figure 5.5.

5.2.3 Dependency of ZS growth rate and saturation level on
the pitch angle

In this section, we explore the growth rates and saturation level trends of AWs and
ZS through non-linear simulations, and we compare among them the different results.
We investigate three cases of scans: simulations that include only n = {0} modes,
simulations that include only n = {1} modes, and simulations that include both
n = {0, 1} modes. These simulations make use of an anisotropic slowing-down (ASD)
EP distribution function, with a fixed parameter of σξ = 0.2 while varying ξ0 from
its minimum value of -1 to its maximum value of 0, see section 3.3.1 for details. The
results hereby obtained provide an important insights into the observed phenomena
and outlined in the previous section 5.2.2.
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If we observe the growth rate trend in the n = {0} simulations (represented by blue
crosses in figure 5.6), we observe a similarity to the linear results obtained in section
4.3.2 [50], in particular in figures 4.3, 4.4 and 4.5. Notably, the highest growth rates are
yielded around ξ0 ∼ −0.4, while for ξ0 ∼ 0; −1, the growth rates are negative. In these
latter cases, the EPs are unable to resonate with the characteristic velocity of the GAM,
which is approximately vth,i (for details refer to section 2.3). This lack of resonance is
due to the particles being either trapped (ξ0 = 0) or deeply passing (ξ0 = −1) (sections
2.3, 4.3.2). This highlights once again that the decoupled physics of the n = {0} modes
is unable to reproduce the experimental findings, which, as we will state in section 5.4,
can be matched only by non-linear multi-mode simulations. On the other hand, the
growth rates of AWs in the only n = {1} simulations (represented by red crosses in
figure 5.6) are consistently positive for all the pitches. In fact, as we know from theory
(section 2.4), AWs can be driven both by gradients in phase-space as well as in real
space.

When we examine the radial structure, we observe that values of ξ0 ≥ −0.4 lead
to the excitation of an n = 1 mode, which corresponds to a TAE. Conversely, values
of ξ0 ≤ −0.4 result in the excitation of an Energetic Particle Mode (EPM). Notably,
the growth rates of EPMs tend to be higher, the closer proximity of ξ0 to -1 results in
higher growth rates (as shown in figure 5.6). This is due to the fact that deeply passing
particles resonate more effectively with the Alfvén velocity : for ξ0 = −1, we yield:

vEP ,th,∥ ∼ 3 · 106m

s
≲ vA ∼ 8.3 · 106m

s
. (5.3)

Furthermore, analyzing the simulations with both modes n = {0, 1}, we observe
that the growth rates of AWs (represented by red dots in fig. 5.6) exhibit minimal
differences compared to the n = {1} simulations (red crosses). In fact, red crosses and
red dots are barely distinguishable in figure 5.6. Nevertheless, ZS growth rates are
significantly affected, particularly in cases where the growth rate of n = {0} mode was
considerably lower than that of the AWs. We note that for ξ0 ≥ −0.6, the growth rates
of the non-linearly excited ZS approach the growth rate of the AWs. We remind again
that such low values of ξ0 can generate the numerical and physical problems addressed
in section 5.2.2. Conversely, for ξ0 ≤ −0.6, starting from a certain threshold value of
the AW growth rate, the γZS begins to align with the trend predicted by Qiu et al.
in [57]. In particular, in fig. 5.6, we observe that the blue dots (γZS,n=0,1) start to
approach the dashed black line representing Qiu’s prediction for non-linearly driven ZS
by EPM-dominated pump AWs [57]: γZS,n=0,1 ∼ 2 · γAW ,n=0,1.
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Figure 5.6: Growth rate trends of ZS and AW modes in n = {0}, {1}, {0, 1} simulations, with
ASD F0 with σξ = 0.2 and varying ξ0

The interpretation of these results as said in the previous section can be challenging.
For this case, we can split the ξ0 domain in 3 areas with different dynamics. For values
−1 ≥ ξ0 ≥ −0.6, we observe that the ZS dynamics is dominated by the non-linear
interactions with AWs (EPMs), with growth rates for the ZS well aligned with the
theoretical predictions from Qiu et al. according to formula 2.95 (dashed black line
in fig. 5.6). For −0.6 ≥ ξ0 ≥ −0.3, the growth rates of linearly driven EGAMs are
comparable with those of AWs, therefore the non-linear interactions are not dominated
by AWs anymore. For −0.2 ≥ ξ0 ≥ 0.0, we incur in too many physical and numerical
problems to accurately determine the nature of the EP driven modes in such conditions.
Dedicated studies are needed to understand the feasibility of such simulations. We can
now move to the study of the saturation level dependency on ξ0

The saturation levels, their modification through non-linear mode coupling and their
dependency on ξ0 are shown in figure 5.7. The saturation level has been determined
localizing the point in the simulation where the mode deviates from its exponential
behavior. Overall, we observe that the difference in saturation levels between the
n = {0} AW (red crosses in figure 5.7) or n = {1} ZS modes (blue crosses) and their
n = {0, 1} (respectively blue and red dots) counterparts is consistently less than a
factor of 10. This suggests that non-linear interactions have a small impact on the
saturation level change. Of course, it is worth noting that the non-linearly excited ZS
modes exhibit saturation levels different from the zero value of the damped modes.

We can observe a dependency of these levels on ξ0, which seems to affect primarily the
AW saturation levels and, consequently, the non-linearly excited ZS levels. Specifically,
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for ξ0 ≥ −0.4, the saturation levels are generally more than one order of magnitude
higher compared to ξ0 < −0.4 cases. This can be caused by the dominance of TAEs in
the former case, allowing the AWs to reach higher saturation levels. Nevertheless, we
remind once again that these cases may be overly excited for unforeseen numerical and
physical instabilities (see section 5.2.2). On the other hand, simulations with ξ0 < −0.4,
which are predominantly governed by EPMs in the linear phase, achieve saturation at
lower levels.

Figure 5.7: Saturation level trends of ZS and AW modes in n = {0}, {1}, {0, 1} simulations,
with ASD F0 with σξ = 0.2 and varying ξ0

In this section we studied the effects of non-linear interactions with AWs on the
dynamics of ZS and EGAMs in n = {0, 1} mode simulations on NLED-AUG case,
varying the analytical ASD distribution function over the parameter space determined
by ξ0 and σξ. We have seen a completely different behavior of the ZS growth rate
with respect to ξ0 and σξ if compared to the behavior yielded in the linear simulations.
Furthermore, the interpretation of it is very complex. Nevertheless, according to the
pitch we identified three areas, one dominated by the AW dynamics at high ξ0, one
where EGAMs and AWs interact with each other but where none prevails on the other
one, and one for ξ0 ∼ 0 which may hide numerical instabilities and phenomena which go
beyond the aim of this thesis. Finally, we performed a similar analysis for the saturation
levels of the different modes.

Enriched by the observations obtained from simulations employing the analytical
ASD distribution function for EPs, we are now ready to test this advanced physical
model with the most experimental-relevant EP distribution function, that obtained
from RABBIT.
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5.3 Non-linear simulation results using RABBIT
distribution functions

We previously showed the results from non-linear electromagnetic NLED-AUG case
simulations using the ASD F0. The growth rate was found to be dependent on ξ0
according to the superimposition of different physical effects (see section 5.2 for details).
In this section we will use the more realistic RABBIT distribution functions [50, 140,
141]. Feeding them as input in ORB5 NLED-AUG case non-linear simulations, we will
obtain the most experimental relevant scenario simulated in the whole thesis. Our hopes
are to be able to reproduce the non-linear EP dynamics observed in the experimental
measurements (fig. 5.13).

As before, we can rely only on the little changes in pitch of the NLED-AUG case
RABBIT distribution functions to appreciate the differences in growth rate that this
experimental change in phase space produces. The NBI injection angle, in fact, varied
from 6.05◦ in shot #31214 to 7.15◦ in shot #31213 (in shots #31215-6 it was 6.65◦),
see figure 4.13.

Figure 5.8: EP F0 for AUG shot #31213 obtained from the Fokker-Planck solver code RABBIT
[140]
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5.3.1 Non-linear simulations of shot #31213 in AUG

We ran additional non-linear simulations, using the equilibrium, profiles, and plasma
parameters of NLED-AUG case shot #31213 (described in sections 3.2 and 3.3.2). This
time, we used the RABBIT F0 as the input EP distribution function and performed the
simulations with the retention of either only n = {0}, n = {1}, or both modes. The
obtained results are presented in figure 5.9.

We yielded results very close to the case shown before for the analytical ASD with
ξ0 = −0.9 and σξ = 0.2, as we can observe from a comparison of plots show in figure 5.9
and figure 5.1. The case where only the n = {0} mode was retained yields a marginally
stable GAM (green line in fig. 5.9) with a growth rate:

γGAM ,n={0} = −3.8 · 10−3ωA , (5.4)

consistent with the results yielded in the linear case for the same distribution function
(section 4.4). From the simulation where only the n = {1} modes were retained, the
AW has instead a positive growth rate (red line in fig. 5.9):

γAM ,n={1} = 1.9 · 10−2ωA . (5.5)

Such growth rate is maintained almost identically in the case where both modes
n = {0, 1} were considered (orange line in fig. 5.9 ):

γAM ,n={1} ≃ γAM ,n={0,1} . (5.6)

In the simulation with non-linear interactions with n = {0, 1} modes, the ZS mode
(blue line) is driven unstable via non-linear wave-wave coupling by the growing AM.
The growth rate of such mode is measured to be:

γNLZS = 2.9 · 10−2ωA = 1.52γAM ≃ 2γAM , (5.7)

as foreseen by theory [57, 58]. This result has been obtained in particular for the time
interval t ≃ [17 · 103, 19 · 103]ω−1

ci .
If we analyze the saturation levels we will find that it is almost the same for the AW

in both n = {0} and n = {0, 1} simulations:

SATAW ,n={1} = SATAW ,n={0,1} = 0.36 , (5.8)

in ORB5 normalized units. Whereas, the saturation level for the non-linearly driven ZS
in the n = {0, 1} simulation is almost the same as the AW one: SATZS,n={0,1} = 0.27.
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5 Non-linear electromagnetic simulations of EGAMs and AWs

Figure 5.9: Modification of ZS growth rate in presence of AMs, the plot shows the radial peak
of the amplitude of the dominant m mode for each of the n = {0}, {1}, {0, 1} modes in time.
These simulations used the RABBIT F0 from AUG shot #31213

The results shown in fig. 5.9 provide strong evidence that non-linear electromagnetic
ORB5 simulations with experimental-like distribution functions can successfully recon-
struct the EP non-linear dynamics in an experimental scenario as NLED-AUG case.
This is proved by the good qualitative agreement between the simulation results and
the experimental measurements. As in this example, for NLED-AUG case #31213, as
shown in figure 5.13, an excited n = {0} mode was observed using magnetic probe coils.
As described in section 4.4, linear numerical simulations using experimental-like EP F0
were unable to reproduce this result [50]. The successful numerical reproduction of the
non-linear EP dynamics through these simulations highlights the capability of ORB5
to simulate complex non-linear behavior of EPs in experimental configurations, paving
the way to the possibility of simulation global burning plasmas scenarios.

In the next section we will run the same simulation setup shown in this section but
this time we will use the other RABBIT distribution functions, namely those from
NLED-AUG shots #31214-6. We will analyze the dependency of the growth rates and
the saturation levels of the modes on the NBI injection angle (section 5.3.2) and then
compare them to the experimental observations (section 5.4).

5.3.2 NLED-AUG case simulations of shots #31213-6
Non-linear, electromagnetic simulations were run, retaining either n = {0}, n = {1},
or both n = {0, 1} modes. These simulations used the experimental density and
temperature profiles, as presented in sections 3.2 and 3.3.2, and incorporated the
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5.3 Non-linear simulation results using RABBIT distribution functions

experimental-like EP distribution functions obtained from RABBIT for the aformen-
tioned shots. The simulations were conducted for all four NLED-AUG cases, specifically
shots #31213-6 [70], which correspond to experimental measurements shown in figure
5.13.

The simulation results for the four NLED-AUG shots #31213-6 are displayed in the
following figures. Figure 5.10 shows the time evolution of the n = {0} ZS modes from
the n = {0, 1} simulations. The growth rate trends for both ZS and AWs are plotted in
figure 5.11, while figure 5.12 shows the saturation level trends for these modes. The
simulations were run retaining either n = {0}, n = {1}, or both n = {0, 1} modes, in
order to be able to compare the non-linear effects on the modes.

Figure 5.10: Signals of the radial peak of the (m,n) = (0, 0) ZS modes in time from simulations
retaining both n = {0, 1} modes for the four different NLED-AUG cases (shots #31213-6 in
AUG)

Figure 5.10 shows that the ZS modes are excited for all the four NLED-AUG shots.
It is worthy to note that the electrostatic linear simulations in section 4.4 were unable
to reproduce this result. This fact points out the importance of non-linear interactions
with the pump TAE in driving the ZS modes unstable.

As a matter of fact, figure 5.11 shows that the growth rates of non-linear simulations
with only n = {0} modes are negative (blue crosses in fig. 5.11), the same result
we yielded for the linear RABBIT simulations basically (see section 4.4 for details).
Nevertheless, in simulations where both modes were retained, we observe that GAMs are
initially damped and it is only in a second phase, when the AWs overtake the n = {0}
modes in magnitude, that they begin to grow, triggered by non-linear wave-wave
coupling as described by Qiu in [57].

From figure 5.10 we observe that the non-linear coupling reaches full effect after
some time in the coupled-physics phase (for example between t = 18500ω−1

ci and
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t = 21000ω−1
ci for simulation of shot #31213), here the ZS has a growth rate double

with respect to the growth rates of the pump-TAE, as it is clarly shown in figure 5.11.
This results aligns very well with theoretical prediction explained in section 2.5 and
summarized in equation 2.95 [57].

Moreover, from both plots 5.10 and 5.11, we can note that the ZS growth rate is
maximum for the most on-axis case, shot #31214, where the NBI had an angle of 6.05◦

relative to the magnetic axis. As the NBI angle increases towards the most off-axis case,
namely shot #31213, the growth rate of ZS decreases. This behavior is attributed to
the physics of Alfvén Waves, which are driven by deeply passing energetic particles. In
fact, we observed the same phenomenon in the simulations with the analytical ASD EP
distribution function. In that case (section 5.2), we could explicitly test this dependency
of AW and ZS growth rate on the pitch and it was found an increasing behavior as
the pitch increases. Therefore, when the NBI angle is closer to the magnetic axis, the
Alfvén waves are more strongly driven. This trend is clearly depicted by the behavior of
γAM ,n={1} (red dots) in figure 5.11. Finally, as initially observed, this stability feature
of AWs has an important impact on the growth rates trends of non-linearly driven ZS.
As depicted in figure 5.11, the non-linearly driven EGAMs align with the theoretical
expectations by Qiu et al. [57] (dashed black line), which are determined by the AW
trends, thus explaining the trend of the growth rated of n = {0} modes as depicted in
figures 5.10 and 5.11.

As we already found out in section 5.2.3, in such multi-mode configurations the
non-linear coupled dynamics is dominated by the AWs’ one. Therefore the growth rate
trend of the ZS (blue dots in figure 5.11) follows the same pattern of the AWs (the
dashed black line in the figure represents the estimated growth rate of non-linearly
coupled ZS according to Qiu’s formula: γNLZS = 2 · γAW [57]).
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Figure 5.11: Growth rate trends of ZS and AW modes in n = {0}, {1}, {0, 1} simulations, with
RABBIT F0 from NLED-AUG cases #31213-6

Figure 5.12 presents the saturation levels of all the modes in different cases. We
notice a similar trend as the one described earlier, where the higher saturation levels
are achieved in the most on-axis cases. Self evidently, the damped n = {0} GAM
modes, which have null saturation levels, become unstable in multi-mode n = {0, 1}
simulations, reaching saturation levels close to those of the AWs. To explain this trend
of the saturation levels with respect to the NBI injection angle we may refer to the same
explanations offered above and valid also for the analytical ASD distribution function
case in section 5.2.3.
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5 Non-linear electromagnetic simulations of EGAMs and AWs

Figure 5.12: Saturation level (in ORB5 normalized units) trends of ZS and AW modes in
n = {0}, {1}, {0, 1} simulations, with RABBIT F0 from NLED-AUG cases #31213-6

5.4 Comparison with experimental measurements

The aim of this study is to demonstrate that the gyrokinetic code ORB5 is capable of
reproducing the non-linear dynamics of EPs in realistic experimental configurations,
such as those observed in ASDEX-Upgrade. This is an important validation test for
ORB5 to simulate realistic anisotropic distribution functions, a crucial step on the path
to global predictive simulation of burning plasmas [68]. As discussed at the beginning
of this chapter, previous linear electrostatic simulations [50] (see Chapter 4) could not
yield the observed growth rates in the NLED-AUG case. However, it was shown that
there is a correlation between the growth rate and the phase-space shape in realistic
geometries [50] (Chapter 4).

In section 5.2 we demonstrated that the non-linear coupling between n = {0} and
n = {1} modes can induce the excitation of ZS, which would otherwise remain stable
(see section 4.3), by utilizing experimental-like analytical EP F0. After that, in section
5.3, we employed experimental-like numerical EP F0 distributions obtained from the
code RABBIT to reconstruct the most experimental numerical cases, comparable to
the measurements of NLED-AUG case shown below. The measurements obtained from
Mirnov (pick-up) coils for the four shots of the NLED-AUG case (shots #31213-6 in
ASDEX-Upgrade [70]) are shown in figure 5.13.

The Mirnov coil measurements provide an important insights into the growth rates
behavior of n = {0} modes in all the NLED-AUG shots. The green lines in the plots of
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figure 5.13 at approximately 50 kHz represent the unstable n = {0} ZS (EGAMs) which
exhibit positive growth rates in all the modes. Even though, they display different
values of ω and saturation levels (characteristic of the drive intensity), according to the
different injection angles, the general instability of these modes is evident. Moreover, a
clear dependence of the drive, hence of the growth rate and the saturation level, on
the injection angle of the NBI can be observed. In the NLED-AUG case, as discussed
in section 3.3.2 and above, the four shots varied in terms of the NBI angle relative to
the magnetic axis. Shot 31213 had the most off-axis angle of 7.15◦ (top-left plot in fig.
5.13), while shot 31214 had the most on-axis angle of 6.05◦ (bottom-left plot). Shots
31215-6 had a mid-range angle of 6.65◦ (top-right and bottom-right plots). The plots
of figure 5.13 clearly illustrate that the ZS mode becomes stronger as the NBI angle
increases, in this behavior we noticed an alignment with the theoretical expectations
of linear GAM drive obtained in chapter 4, even though linear physics wasn’t able to
reproduce the qualitative behavior we yield from non-linear simulations.

However, despite using experimental temperature and density profiles along with
experimental-like numerical EP F0, we did not achieve this quantitative agreement with
the experimental results in our multi-mode, non-linear, electromagnetic simulations.
As shown in section 5.3, the trend with respect to the injection angle observed in
the simulations was contrary to the experimental findings. The dominant driving
mechanism for ZS in the multi-mode simulations was the non-linear coupling with AW
(see section 5.3), which is stronger for mainly on-axis beams, as discussed earlier. This
mismatch between the simulations and experimental measurements arises because the
linear driving mechanism, which was found to be stronger for more off-axis beams [50]
(see Chapter 4), is not dominant in the non-linear simulations. Hence, a synthesis of
these two driving mechanisms that aligns with the experimental observations was not
achieved.

As for the linear case (section 4.4.4), a number of aspects may account for this
quantitative difference with the experimental measurements.

Firstly, the reconstruction of the experimental-like EP F0 for the NLED-AUG case
using RABBIT posed certain difficulties and limitations. The representation of F0 on
the phase-space grid provided by RABBIT was not perfectly smooth, particularly in
the v∥ direction. This could have introduced inaccuracies in the representation of the
distribution function.

Furthermore, there may be inherent uncertainties in the measurements of temperature,
density, and safety factor profiles. For instance, the temperature profile was measured
only in the last shot of NLED-AUG case, #31216, using an NBI blip. The profiles for
the other shots were inferred from this measurement and other plasma parameters.

Additionally, the steepness of the q profile in the outer radial domain (s > 0.9)
introduces challenges when representing its gradients in that area. This can potentially
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result in numerical errors and instabilities for the modes hereby studied, particularly in
areas of the magnetic equilibrium with such steep q profiles.

Finally, non-linear simulations are very sensitive to gradients in parallel velocity:
∂F0/∂v∥. The combination of this sensitivity with the inaccuracies in RABBIT’s
representations of the experimental-like F0 in the v∥ direction can account for the
quantitative discrepancies between the simulations and the experimental measurements.

We are confident that by improving the accuracy of the numerical description of the
experiment, including more precise parameters, profiles and better representations of
the experimental F0, we can enhance the quantitative agreement with the experimental
observations. Hopefully, such accuracy will be achieved in future studies using the
numerical tools developed so far in the present work and in the context of the gyrokinetic
code ORB5 [147].

Figure 5.13: Experimental data from NLED-AUG case from magnetic pick-up coils (in order
top-left, top-right, bottom-left, bottom-right: #31213,5,4,6)

5.5 Discussion and chapter summary
In this chapter we showed how we made significant progress toward the capability
of simulating a realistic scenario for a burning plasma fusion scenario. Specifically,
non-linear electromagnetic multi-mode simulations have been proved to have the ability
to reproduce the dynamics of anisotropic EP distribution functions in a manner that is
coherent with experimental findings. These simulations employed new experimental-
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like EP distribution functions to attempt to accurately simulate the experimental
configuration of the NLED-AUG case [70].

In the present chapter, such realistic simulations were run with the gyrokinetic code
ORB5, aiming to reconstruct the experimental, coupled dynamics of GAMs and AWs
[70], which linear studies [50] (see chapter 4) failed to reproduce from a qualitative
point of view.

For the analytical ASD EP distribution function (section 5.2), the non-linear simula-
tions that retained both n = {0, 1} modes, demonstrated the possibility of exciting ZS
through non-linear wave-wave coupling between AWs and ZS. This was found to be true
even for those cases where the linear drive of the EPs on the GAM alone was insufficient
to drive them unstable (sections 4.3.3 and 5.2). These simulations presented good
agreement with theory and previous simulations [57, 58], despite the realistic geometry,
scenario, and safety factor profile which set us away from ideal configurations used in
literature. More specifically, throughout the scan of the analytical ASD F0 for various
ξ0 and σξ values, it was consistently observed that the growth rates of non-linearly
driven n = {0} modes were positive, thanks to the wave-wave coupling with Alfvén
Waves. As described in Subsection 5.2, beyond a certain threshold of γAW ,n=0,1 (e.g.,
for ξ0 < −0.5 at σξ = 0.2), the γZS,n=0,1 followed the theoretical expectations proposed
by Qiu et al. [57] (see section 5.2.3):

γZS,n={0,1} = 2 · γAW ,n={0,1} . (5.9)

Hence, considering that the growth rates of AW were found to be higher for pitch
angles closer to the magnetic axis (ξ0 −→ −1), a similar γZS trend was observed for
non-linearly driven ZS. Depending on the preferred pitch angle of the particles, the AW
could manifest as a TAE (ξ0 ≥ −0.4 at σξ = 0.2) or an EPM (ξ0 < −0.4). As discussed
in section 5.2.3, EPMs exhibited lower saturation levels compared to TAEs.

Furthermore, significant results were also obtained when employing the experimental-
like numerical distribution functions obtained from the heating solver code RABBIT as
input in ORB5. In section 5.3, it was observed that the non-linear drive of AWs could
destabilize ZS in cases where they were previously considered stable considering solely
the linear EP drive.

In the NLED-AUG case, namely shots #31213-6 in ASDEX-Upgrade, ORB5 simu-
lations successfully reproduced the unstable dynamics of n = {0} EGAMs observed
in the experimental findings. The growth rate measurements of the different modes
(AWs, EGAMs) from the simulations also demonstrated a strong agreement with Qiu’s
theory (fig. 5.11). However, the simulations did not fully reproduce the quantitative
trend of the growth rates depending on the injection angle observed in the Mirnov coil
measurements (fig. 5.13). The simulation results showed higher growth rates for lower
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NBI angles, indicating that the dominant driving effect on the ZS is originated from
the non-linear coupling with AWs (see section 5.2 and 5.3 for details). Conversely, the
magnetic measurements displayed present an opposite trend, with the most unstable
cases corresponding to the most off-axis NBI angles (figure 5.13). This suggests that
the linear drive of EGAMs [50], whose effects were analyzed in chapter 4, may also
have a quantitative impact on the growth rate of non-linearly driven modes. Section
5.4 provides further insights and explanations for this quantitative discrepancy. In
this section, an ideal combination of these two driving effects (the linear and the
non-linear ones) is hoped in the future for the accurate interpretation of experimental
measurements from NLED-AUG case.

In conclusion, the implementation of new numerical tools in ORB5 has yielded very
promising results in terms of qualitative agreement between the simulated experimental
NLED-AUG scenarios and the actual experimental measurements. Despite having found
to some extent quantitative discrepancies arising from numerical limitations in profile
and distribution function representations, we are anyhow confident that in this work
and in the recent advancements made in the ORB5 framework we achieved a high degree
of development towards predictive tokamak simulations. These developments represent
a crucial milestone in the prediction of non-linear energetic particle dynamics within
experimentally relevant scenarios, also applicable to burning plasmas configurations.
Moving forward, future studies employing these improved numerical tools will hopefully
be able to achieve a quantitative alignment with experimental measurements and
observations, thereby enabling us to accurately predict the dynamics and transport [65]
of energetic particles in realistic and, eventually, burning plasma scenarios.
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In this thesis we addressed the problem of EP driven instabilities in experimental
relevant plasma scenarios. In future reactors, EP confinement will be crucial for
power plant operations. Such confinement, as demonstrated in literature and in this
work, sensibly depends on the dynamics of EPs through the excitation of EP driven
instabilities such as the Alfvén Waves and the EP driven Geodesic Acoustic Mode
(EGAM). The capability to predictively simulate EP dynamics in experimental relevant
scenarios is fundamental for such operations [68].

As it has been more thoroughly explained in section 1.5, this work is one of the first
attempt to combine different features and numerical tools, together with theory from
literature and experimental observations, in order to investigate how the global, multi-
mode, non-linear physics of EPs, and the subsequent transport, work in experimental
relevant scenarios (section 1.5).

To this purpose we tested experimental like EP distribution functions, attempting
to reconstruct the experimental case of NLED-AUG scenario. We used the non-linear,
global, electromagnetic, gyrokinetic PIC code ORB5 [69] for our multi-mode simulations.
Experimental equilibrium and profiles from the NLED-AUG case [70] were used in
order to reconstruct a realistic scenario for the simulation of EP dynamics.

The novelty of this thesis lies in the analysis of the dynamics of EP instabilities
depending on newly implemented anisotropic EP distribution functions. Furthermore,
this has been done while analyzing the interplay of two different EP-driven modes
(AWs and EGAMs) in an experimental scenario in order to determine which saturation
mechanism was dominant in the experimental observations from NLED-AUG case,
whether the linear wave-particle channel or the non-linear wave-wave coupling channel.
In fact, we introduced two new experimental-like distribution functions as input in
ORB5 [50] (details in chapter 3). We developed an analytical distribution function which
parametrizes phase-space anisotropy as a function of two parameters (section 3.3.1).
We also employed a numerical distribution function generated from the Fokker-Planck
solver RABBIT which represent the closest distribution function to the experimental
one (section 3.3.2). The two distribution functions were compared highlighting their
similarities and differences (section 3.3.3).

We ran many parameter scans of ORB5 simulations using NLED-AUG case scenario
and the aforementioned EP distribution functions. At first we ran these scans linearly
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and electrostatically, retaining only the n = {0} modes. Later, we performed similar
scans analyzing the effects of different distribution functions and parameters on the non-
linear dynamics of both Zonal Structures (ZS) and AWs. The results are summarized
below.

At first, through this thesis we provide a comprehensive analysis of the linear stability
of EGAMs under the influence of anisotropic EP distribution functions. As said, the
study begins by introducing a novel analytical distribution function that incorporates
anisotropic and asymmetric properties, parametrized by ξ0 and σξ. Analytical studies
are conducted to determine stability conditions by examining the dispersion relation of
EGAMs (section 4.1). The findings indicate that EGAMs are primarily excited when
σξ is low, and ξ0 is approximately -0.5. However, precise threshold values for these
parameters necessitate further exploration through numerical simulations.

To determine the threshold values, extensive scans are performed using the ORB5
code, which enables an exploration of EGAM stability across the parameter space
(ξ0, σξ), and the EP density fraction ⟨nEP ⟩/⟨ne⟩ (section 4.3). The simulation results
reveal that modes become unstable for low σξ values within the ξ0 range of -0.8 to
-0.3. Furthermore, we also used the power exchange diagnostic (MPR) to study the EP
contributions to the excitation and damping of EGAMs (section 4.3.4).

After that, we employed the numerical experimental like distribution functions from
the RABBIT code. These distribution functions, combined with temperature and
density profiles from the four different shots of NLED-AUG case, are utilized as input
for ORB5 simulations (section 4.4). The simulation results showed that EGAMs should
be linearly stable in these scenarios, contrary to the experimental observation. We
used the MPR diagnostic to shed light on this result, revealing a more complex power
exchange structure compared to the analytical distribution function cases. Notably, the
presence of steep negative gradients in energy at different injection velocities seem to
cause the observed damping rates in the RABBIT cases (section 4.4.1).

Qualitative comparisons are performed between the analytical F0 and the RABBIT
F0 results (section 4.4.3), as well as between the RABBIT simulation results and
experimental measurements of EP instabilities (section 4.4.4). In experiments with
a nominal EP fraction of about 9%, EGAMs are found to be excited in all AUG
cases, even though with varying growth rates. However, in linear simulations using the
experimental setup no unstable modes are observed. In the thesis we showed that the
neglected interaction between n = 1 Alfvén waves and EGAMs represents a crucial
nonlinear effect for the NLED-AUG case . As a result, it is concluded that the numerical
realistic anisotropic distribution function alone is insufficient to linearly drive EGAMs
unstable at such low energetic particle density fractions.

Overall, in this first part of the thesis, good agreement between simulations, ana-
lytical expectations, and theoretical predictions was found. This demonstrates that
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the gyrokinetic code ORB5 is capable of handling experimental-like anisotropic EP
distribution functions, both analytical and numerical. This work is based on the results
published in reference [50].

The second part of this thesis focuses on non-linear electromagnetic multi-mode
simulations. In this way we reproduced the dynamics of anisotropic EP distribution
functions more consistently with the experimental findings (details in chapter 5). We
ran scans similar to those discussed above this time retaining non-linearities and
n = {1} modes. When employing the analytical ASD distribution function, all non-
linear simulations show the excitation of ZS through wave-wave coupling between AWs
and ZS (section 5.2). This occurs even for those cases where the linear drive of the
energetic particle population alone is insufficient to drive the instability. The simulations
demonstrate good agreement with theory and previous simulations, despite realistic
geometry and non-ideal configurations. The growth rates of non-linearly driven modes
are positive for certain pitch angles closer to the magnetic axis, which particularly
destabilize EPMs, which strongly drive non-linearly ZS unstable.

When using experimental-like numerical distribution functions from the RABBIT, it
is also observed that the non-linear drive of AWs can destabilize ZS. These non-linear
ORB5 simulations of the NLED-AUG case successfully reproduce the unstable dynamics
of EGAMs observed in experiments. The growth rates ratio of different modes from the
simulations align well with theory. However, there are quantitative discrepancies in the
growth rate trends depending on the NBI injection angle when compared to experiments,
possibly due to inaccuracies in experimental measurements of profiles. Ideally, we hope
that with more accurate profiles and numerical F0 representation it will be possible to
reconstruct modes whose growth rate will show a combination of linear and non-linear
drive mechanisms. These results are based on the work presented/published in [59].

As a remark, this work has been developed in ORB5 using local coordinates for
the distribution functions (ψ, v∥, ϵ). This was done for several reasons, including
consistency with previous works done on distribution functions in ORB5, compatibility
with RABBIT, and also for straightforward integration with the Vlasov equation of
ORB5. In recent years, a lot of effort has been made towards representing equilibrium
EP distribution functions in terms of their constants of motion (CoMs), (Pϕ,µ, ϵ,σv∥)
[65, 67]. International efforts towards calculating, handling, and converting distribution
functions in CoMs are ongoing at the time of writing. An extension of the current work
to treat EPs in CoM representation in ORB5 is left for future work, where the first steps
have recently been made [148]. As an aside, in order to do this consistently, particular
effort will need to be made in order to ensure quasi-neutrality of the background profiles.
Although the distributions in this work were not in CoMs, and therefore might not be
expected to be stationary, effort has been made to isolate the effect of the relaxation of
the distribution function, using the method described in [49].
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To summarize, this thesis project focused on studying the physics of ZS and AMs in
experimental ASDEX Upgrade scenarios. Despite the complexity of the simulations, we
successfully gained insights into the linear and non-linear dynamics of these modes. The
implementation of new numerical tools in ORB5 shows promising qualitative agreement
with experimental measurements for the NLED-AUG scenario. It opened the way to
more realistic simulations of experimental cases, eventually leading to the possibility
of global burning plasmas simulations. Despite some quantitative discrepancies due
to numerical limitations, these developments represent significant progress towards
predictive tokamak simulations, encouraging and providing a foundation for predicting
the dynamics of energetic particles in future fusion devices like ITER.

Future studies using these improved tools aim to achieve quantitative alignment
with experimental measurements, enabling accurate predictions of energetic particle
dynamics and transport in realistic and burning plasma scenarios. Furthermore, these
new numerical tools will hopefully be able to match experimental observations, enabling
us to predict EP dynamics and transport [65] also in realistic, and eventually burning
plasma, scenarios. This work could be achieved, for example, integrating the tools
developed and tested in this and other on-going work with the study of Phase Space
Zonal Structures (PSZS) transport theory [65] for these new distribution functions in
realistic scenarios. In fact, in this thesis we proved that ORB5 is capable to analyze
the non-linear, multi-mode, δf physics of EP on short time-scales consistently with
experimental observations. This could be used to derive saturation rules to be used
into PSZS transport theory for effective modelling also over long time-scales.
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Appendix A
Gyrokinetic Equation

In this appendix we derive the gyrokinetic equation 2.50 presented in section 2.3. We
start from the particles characteristics, equations 2.22 to 2.27:

Ṙ = Ṙ(0)
+ ϵδṘ

(1) , (1)

ṗz = ṗz
(0) + ϵδṗz

(1) . (2)

ε̇ = ε̇(0) + ϵδ ε̇
(1) . (3)

We also make use of Vlasov equation (eq. 3.2):

dδf

dt
= −dF0

dt
, (4)

where the distribution functions has been split into a background F0 and a perturbation
δf components: F = F0 + δf . We hypothesize that the background distribution
function is a Maxwellian (as in eq. 2.49), depending only on the energy ε = v2

∥/2+ µB:

F0(ε) =
1

(2π) 3
2v3
th

exp
(

− ε

T

)
. (5)

Plugging equation 5 into 4, and applying a linearization getting rid of all the terms
higher than the first, we yield:

∂δf

∂t
+ Ṙ(0) · ∇δf + ε̇(0)

∂δf

∂ε
= −ε̇∂F0

∂ε
. (6)

Considering that the full time derivative of the kinetic energy is:

ε̇ = v∥v̇∥ + µṘ · ∇B , (7)

and keeping in mind that the kinetic energy must be preserved along the unperturbed
trajectories, we notice that the 0th order time derivative of the kinetic energy is zero:
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ε̇(0) = 0 (eq. 3.6). As a consequence Vlasov equation 6 can be simplified in the following
way:

∂δf

∂t
+ Ṙ(0) · ∇δf = −∂F0

∂ε
(v∥v̇

(1)
∥ + µṘ(1) · ∇B) . (8)

We split the perturbation of the distribution function into an adiabatic part and a
non-adiabatic parts:

δf = − Q
∂F0
∂ε

⟨φ⟩θ︸ ︷︷ ︸
adiabatic component

+ K︸︷︷︸
non-adiabatic component

, (9)

where ⟨...⟩θ is the gyroaveraging operator. The adiabatic component of a species
distribution function represents those particles that immediately respond to the electric
field (as we can see it is directly proportional to the electrostatic potential). This
adiabatic component self evidently does not have any phase shift with respect to
the potential, thus will not lead to any instability excitation. For example, electron
adiabaticity for their low inertia is a reasonable approximation and is very used in GK
codes for electrostatic simulations as those shown in Chapter 4. Using equation 9 we
can recast Vlasov equation 8 in the following form:

∂K

∂t
+ Ṙ(0) · ∇K +Q

∂F0
∂ε

∂⟨φ⟩θ
∂t

= −∂F0
∂ε

[QṘ(0) · ∇⟨φ⟩θ+ v∥v̇
(1)
∥ + µṘ(1) · ∇B] . (10)

Considering the characteristic of the particles and the expressions of Ṙ(0), Ṙ(1) and
v
(1)
∥ from section 2.1 and assuming B∗

∥ ≃ B0, we find that the part of the above equation
between the square brackets is zero. We can rewrite the scalar potential and the non
adiabatic response of the EP in Laplace and Fourier components:

φ −→ φ exp(ikrr+ ikϕϕ− iω̂t) , (11)

K −→ K exp(ikrr+ ikϕϕ− iω̂t) , (12)

where r and ϕ are respectively the radial and toroidal coordinate, kr and kϕ the radial
and toroidal wave number and ω̂ is the complex GAM frequency (as in section 2.3).
Plugging these transformations in equation 10 we yield a new expression for the GK
Vlasov equation:

[ωtr∂χ − i(ω̂+ ωd)]K = −iQω̂
T
F0J0(k⊥ρ)φ , (13)
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with ωtr and ωd as described in section 2.3 (eq. 2.52), and the gyroaveraging operator
⟨...⟩θ has been replaced by the Bessel function of the first kind: J0(k⊥ρ). Here, k⊥ρ
is the normalized perpendicular wave number. Finally, we can split the electrostatic
potential in a zonal (poloidally symmetric or small kχ) component φ and a non-zonal
(poloidally varying or high kχ) one δ̃φ:

φ = φ+ δ̃φ . (14)

The same can be done for the non-adiabatic part of the distribution function:

K = K + δK . (15)

Noticing that the zonal components have zero poloidal derivative: ∂χ... = 0, and
assuming that ωtr ≫ ωd we see that for the zonal component of equation 13 we get:

K =
Q

T
F0J0(k⊥ρ)φ . (16)

Plugging the previous expressions into equation 13 we get the GK equation as
presented in section 2.3 (equation 2.50):

[ωtr∂χ − i(ω̂+ ωd)]δK = −iQ
T
F0
(
ω̂J0(k⊥ρ)δ̃φ+ ωdJ0(k⊥ρ)φ

)
. (17)

In order to get to the expression show in Eq. 2.50 we need to use the ordering
used for the GAM dispersion relation. We hypothesize that the radial wave number is
small krρ ≪ 1. This allows us to consider the Bessel function J0 ∼ 1 at the smallest
order. We introduce the smallness parameter (section 2.3): ωd/ω̂ ∼ kr/ρL ∼ ϵ. We
assume the non-zonal component of the electric field δ̃φ to be much smaller than the
zonal component: δ̃φ/φ ∼ ϵ. From equation 16 we derive that K/F0 ∼ O(1), while
δK/F0 ∼ O(ϵ). For the electrons, because of their low mass, the transit frequency
is dominant over all the other frequencies obtaining ωtr,e/ω̂ ∼ O(ϵ−1), while for ions
ωtr,i/ω̂ ∼ O(1). From the above considerations, for electrons we can rewrite equation
17 at the lowest order:

ωtr,e∂χδKe = 0 . (18)

The meaning of eq. 18 is that electrons don’t have a non-adiabatic response. Therefore,
electrons can be considered fully adiabatic. This approximation, in fact, has been
considered throughout Chapter 4. Considering the O(ϵ) order components of equation
17 for ions and keeping in mind the hypothesis above we get equation 2.50 as presented
in section 2.3:
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Appendix A Gyrokinetic Equation

(ωtr∂χ − iω̂)δKi = −iω̂F0,iq

Ti

(
δ̃φ− ωd

ω̂
δφ
)

. (19)
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