
Technische Universität München
TUM School of Engineering and Design

Developing a Multi–Dimensional Framework for the
Deployment of Free-Floating Shared Mobility Services

Mohamed Besheer Abouelela
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Abstract

The growing urbanization puts unprecedented pressure on the urban environment and
its infrastructure, particularly the urban transportation system. Current means of in-
creasing road capacity to cater to the increased travel demand are not optimal; as stated
by Lewis Mumford, “Adding car lanes to deal with traffic congestion is like loosening
your belt to cure obesity.” Innovative solutions benefiting from the current advancement
of information and communication technologies (ICT) have the potential to mitigate
such problems. Among such solutions, shared mobility services (SMS) can potentially
absorb the increase in travel demand and reduce the current traffic externalities.

SMS is a group of services that give users the option to share rides with other users, or
to access different types of vehicles, and to pay for their actual use; it can be succinctly
described as a pay–per–use system where users are charged based on the time or the
distance they use such services. By doing so, users are relieved from the burdens and
responsibilities of car ownership and increase their travel sustainability as they reduce
overall vehicle idle time, energy consumption, greenhouse gas (GHG) emissions, and
vehicle utilization rate. SMS exists and operates in several forms and schemes. Some
of the most popular ones are free-floating (dockless) services; the popularity of these
services is reflected in their burgeoning demand. However, free-floating shared services
were introduced abruptly to the urban environment without advanced planning, which
created several problems that could negatively impact the urban environment.

A motivation would therefore be to investigate these new services so that they are
better integrated in the urban environment. As to the best of the author’s knowledge,
this has not been yet looked at in previous research. The aim of this dissertation would
therefore be to provide in–depth understanding of the SMS interactions with the different
elements of the urban environment, namely i) the meteorological conditions, ii) the built
environment characteristics, iii) the population’s sociodemographic attributes, iv) the
available modes of transportation , and v) the SMS characteristics and the interaction
within the SMS.

Accordingly, this work looks at different perspectives of SMS, by considering their in-
teractions with aforementioned elements, to facilitate their integration in the urban
environment; this has been explored and validated throughout six research papers. In
the first paper, spatiotemporal demand patterns and factors impacting them were as-
sessed, using shared E-scooter trip data from five North American cities. The findings of
this study showed that the patterns are similar in all cities despite their differences and
reinforced the need to predict SMS demand for more efficient operation. As a result, the
second paper developed a framework to predict SMS demand for a long–time horizon,
based on the concept of transfer learning and using open-source data.
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The third study investigated the synergies between the different SMS, estimating the
expected shift in the number of trips from carsharing to shared E-scooters, and the
resulting savings in energy and vehicle kilometer traveled. In the fourth study, the role
of personality traits and attitudes on carsharing adoption and use were investigated.
Both of these studies utilized different surveys data from Munich, Germany
The fifth study evaluated the relationship between shared E–scooter and public trans-
portation (PT), notably showing the potential of the latter to extend PT accessibility.
The final study assessed the need for SMS, and evaluated its equitable use for differ-
ent population groups, showing that SMS is not always the optimum solution, and the
equitable use problem of SMS might be related to the urban structure and not to SMS.
Finally, the findings of the different studies enabled the development of a five–stage
framework that could be used for the planning and deployment of SMS. The proposed
framework gradually targets the implementation of the services by thoroughly investi-
gating the population’s need for SMS (stage I). If SMS were needed, a pilot project is
adopted (stage II), and if successful, a full deployment of the service is implemented
(Stage III). During the full deployment stage, the service’s interaction with other ele-
ments of the urban environment is monitored (stage IV). Finally, the lessons learned from
the different stages are extracted so that they can be transferred for the implementation
of future projects (stage V).
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Zusammenfassung

Die zunehmende Verstädterung setzt die städtische Umwelt und ihre Infrastruktur, ins-
besondere das städtische Verkehrssystem, unter einen noch nie dagewesenen Druck. Die
derzeitigen Möglichkeiten, die Straßenkapazität zu erhöhen, um die gestiegene Verkehrs-
nachfrage zu befriedigen, sind nicht optimal; wie Lewis Mumford sagte: ”Zusätzliche
Autospuren, um die Verkehrsüberlastung zu bewältigen, ist, als würde man den Gürtel
lockern, um Fettleibigkeit zu heilen.” Innovative Lösungen, die von den aktuellen Fort-
schritten der Informations- und Kommunikationstechnologien (IKT) profitieren, haben
das Potenzial, solche Probleme zu entschärfen. Zu diesen Lösungen gehören die Dienste
der geteilten Mobilität (SMS), die potenziell den Anstieg der Verkehrsnachfrage auffan-
gen und die derzeitigen externen Effekte des Verkehrs reduzieren können.

SMS ist eine Gruppe von Diensten, die den Nutzern die Möglichkeit bieten, Fahrten mit
anderen Nutzern zu teilen oder auf verschiedene Fahrzeugtypen zuzugreifen und für deren
tatsächliche Nutzung zu bezahlen. Sie können kurz als Pay-per-Use-System beschrieben
werden, bei dem die Nutzer auf der Grundlage der Zeit oder der Entfernung, die sie solche
Dienste nutzen, bezahlt werden. Auf diese Weise werden die Nutzer von der Last und
der Verantwortung des Autobesitzes befreit und erhöhen die Nachhaltigkeit ihrer Reisen,
da sie die Leerlaufzeit des Fahrzeugs, den Energieverbrauch, die Treibhausgasemissionen
und die Auslastung des Fahrzeugs insgesamt verringern. SMS gibt es in verschiedenen
Formen und Systemen. Einige der beliebtesten sind Free-Floating-Dienste (dockless);
die Beliebtheit dieser Dienste spiegelt sich in ihrer steigenden Nachfrage wider. Free-
floating-Dienste wurden jedoch ohne vorherige Planung abrupt in das städtische Umfeld
eingeführt, was zu verschiedenen Problemen führte, die sich negativ auf die städtische
Umwelt auswirken könnten.

Es wäre daher wünschenswert, diese neuen Dienste zu untersuchen, um sie besser in
das städtische Umfeld zu integrieren. Nach bestem Wissen und Gewissen des Autors
wurde dies in der bisherigen Forschung noch nicht untersucht. Ziel dieser Dissertation
ist es daher, die Wechselwirkungen zwischen SMS und den verschiedenen Elementen des
städtischen Umfelds, nämlich i) den meteorologischen Bedingungen, ii) den Merkmalen
der bebauten Umwelt, iii) den soziodemografischen Merkmalen der Bevölkerung, iv)
den verfügbaren Verkehrsmitteln und v) den Merkmalen der SMS und der Interaktion
innerhalb der SMS eingehend zu untersuchen.

Dementsprechend befasst sich diese Arbeit mit verschiedenen Perspektiven von SMS,
indem sie deren Interaktionen mit den oben genannten Elementen berücksichtigt, um
ihre Integration in die städtische Umwelt zu erleichtern; dies wurde in sechs Forschungs-
arbeiten untersucht und validiert. In der ersten Arbeit wurden die räumlich-zeitlichen
Nachfragemuster und die sie beeinflussenden Faktoren anhand von Daten zu gemeinsa-
men E-Scooter-Fahrten aus fünf nordamerikanischen Städten bewertet. Die Ergebnisse
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dieser Studie zeigten, dass die Muster in allen Städten trotz ihrer Unterschiede ähnlich
sind und untermauerten die Notwendigkeit, die SMS-Nachfrage für einen effizienteren
Betrieb vorherzusagen. Infolgedessen wurde in der zweiten Studie ein Rahmen zur Vor-
hersage der SMS-Nachfrage für einen langfristigen Zeithorizont entwickelt, der auf dem
Konzept des Transferlernens basiert und Open-Source-Daten verwendet.
Die dritte Studie untersuchte die Synergien zwischen den verschiedenen SMS und schätz-
te die erwartete Verlagerung der Fahrten von Carsharing auf gemeinsam genutzte E-
Scooter sowie die daraus resultierenden Einsparungen an Energie und gefahrenen Fahr-
zeugkilometern. In der vierten Studie wurde die Rolle von Persönlichkeitsmerkmalen und
Einstellungen bei der Einführung und Nutzung von Carsharing untersucht. Für beide
Studien wurden verschiedene Umfragedaten aus München, Deutschland, verwendet.
Die fünfte Studie untersuchte die Beziehung zwischen gemeinsam genutzten E-Scootern
und dem öffentlichen Nahverkehr (ÖPNV) und zeigte insbesondere das Potenzial des
ÖPNV, die Zugänglichkeit zu erweitern. Die letzte Studie untersuchte den Bedarf an
SMS und bewertete deren gleichberechtigte Nutzung für verschiedene Bevölkerungsgrup-
pen. Dabei zeigte sich, dass SMS nicht immer die optimale Lösung ist und dass das
Problem der gleichberechtigten Nutzung von SMS möglicherweise mit der städtischen
Struktur und nicht mit SMS zusammenhängt.
Schließlich ermöglichten die Ergebnisse der verschiedenen Studien die Entwicklung eines
fünfstufigen Rahmens, der für die Planung und Einführung von SMS verwendet werden
könnte. Der vorgeschlagene Rahmen zielt schrittweise auf die Einführung der Dienste
ab, indem der Bedarf der Bevölkerung an SMS gründlich untersucht wird (Stufe I). Wenn
ein Bedarf an SMS besteht, wird ein Pilotprojekt durchgeführt (Stufe II), und wenn es
erfolgreich ist, wird der Dienst vollständig eingeführt (Stufe III). Während der Phase der
vollständigen Einführung wird die Interaktion des Dienstes mit anderen Elementen des
städtischen Umfelds überwacht (Phase IV). Schließlich werden die aus den verschiedenen
Phasen gewonnenen Erkenntnisse ausgewertet, um sie für die Durchführung künftiger
Projekte zu nutzen (Phase V).
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1 Introduction

1.1 Motivation

Our cities are growing at an unprecedented rate; according to the United Na-
tions Population Division, by 2050, 67% of the world population will be living
in cities, as compared to 33% in 1955 [1]. Such an increase in urban population
will significantly impact the urban environment, specifically urban transportation
systems, and will lead to various challenges. Among the expected challenges are:
the increase in traffic externalities, the increase of the strain on the infrastruc-
ture, specifically transportation infrastructure, the increase of the gap between
the transportation supply and demand, the increase in the demand for urban
spaces, such as parking spaces, the increase of safety concerns related to travel,
and finally the inequitable use of transportation systems [2, 3]. Urbanization is
generally coupled with increased vehicles on the road, fuel consumption, travel
time delays, commuters’ frustration, and pollution such as air and noise pollution
[4, 5]. Urban transportation significantly contributes to air pollution and green-
house gas (GHG) emissions, and urbanization exacerbates this problem as more
vehicles are on the road, emitting pollutants and further contributing to climate
change [6, 7, 8].
The expected increase in urban population and travel demand would increase the
strain on the urban transportation infrastructure, which is hard and expensive
to expand to accommodate the growing demand. Urbanization often outpaces
the development of transportation systems, resulting in fragmented or inadequate
networks that might lead to inefficient travel routes, longer commuting times, and
limited access to various parts of the city [9]. Also, public transportation (PT)
supply struggles to keep up with the rising demand, leading to overcrowded ve-
hicles making commuting uncomfortable and time-consuming [10]. Urban space’s
complexity and management also challenge urbanization due to limited land avail-
ability. One side of this problem is the unavailability of parking spaces leading to
illegal parking, congestion, and frustration for residents and visitors [11]. The in-
creased risk of accidents, pedestrian injuries, and cyclist collisions rises when more
vehicles compete for limited road space is another expected outcome of rapid ur-
banization [12]. Finally, urbanization can exacerbate transportation inequities.
Certain population groups, such as low-income communities, may face limited ac-
cess to affordable and reliable transportation options [13], which would hinder these
groups’ access to essential services and opportunities and worsen their economic
situation in the long run.
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On the other hand, technological advancements in recent decades have been un-
precedented, contrasting with historical trends where significant progress took
centuries or even millennia to occur. This acceleration is attributed to the rapid
growth of digital technology and the internet, leading to what is known as the ”ex-
ponential growth of technology” or ”Moore’s Law” [14]. The internet and global
communication networks have facilitated the rapid spread of knowledge, collabora-
tion, and innovation [15]. These networks have fueled swift technological progress,
resulting in transformative improvements and breakthroughs that impact various
aspects of our lives. However, it is essential to approach these advancements re-
sponsibly, considering the potential challenges and ethical concerns that may arise
while ensuring their beneficial impact on humanity [16].

Technological advances have collectively led to the so-called “shared economy” rise.
Shared economy, sharing economy, or collaborative consumption, refers to the eco-
nomic model in which individuals or businesses share access to resources, goods, or
services rather than owning them through digital platforms to facilitate the shar-
ing, renting, or lending of underutilized assets, such as vehicles, accommodations,
tools, or skills, among a community of users [17, 18]. The sharing economy is a shift
away from traditional ownership-based models and their subsequent burdens. The
shared economy promotes efficiency, sustainability, and cost-effectiveness by max-
imizing the utilization of resources and enabling peer-to-peer transactions; also,
it is characterized by increased connectivity, trust, and peer-to-peer interactions,
offering new opportunities for providers and consumers in various sectors [19].

Transportation is a prominent sector within the sharing economy; in this context,
it is called shared mobility services (SMS). It encompasses various services that
enable individuals to share rides or gain access to different types of vehicles based
on their needs. Some examples of SMS are: popular ride-hailing platforms like
Uber (Uber.com), Lyft (Lyft.com), and Didi Chuxing (Web.Didiglobal.com),
which allow people to share rides with others using their private vehicles, car-
sharing services such as Zipcar (Zipcar.com) and platforms like Turo (Turo.com)
enable individuals to share their cars for short periods. Shared micromobility such
as bike-sharing and scooter-sharing services are also part of this sector, allowing
users to rent bikes, E-bikes, mopeds, or standing scooters for convenient short-
distance travel [20], some of the leading providers for shared micromobility are
Lime (Li.me), and Tier (Tier.app). SMS has gained rapid momentum due to its
focus on sustainability and potential social, economic, and environmental benefits.
At the individual level, shared mobility provides convenient on-demand travel,
easy payment systems, perceived safety, and eco-friendliness [21]. On a larger
scale, shared mobility can positively impact cities and society by reducing vehi-
cle idle time, lowering CO2 and GHG emissions, decreasing energy consumption,
alleviating congestion, saving travel costs, and optimizing curbside space utiliza-
tion. It also presents a quick solution to transportation issues, especially in areas
with limited access to public transportation [22, 23]. Therefore, SMS could play a
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1.2 Problem definition and objectives

significant role as a countermeasure for urbanization, as it could act as a quick fix
for rational transportation systems problems and be a sustainable replacement in
some situations under specific conditions.
Expanding the current transportation infrastructure may not always be the opti-
mal solution. Infrastructure projects might face several challenges, requiring huge
investments and lengthy processes to materialize [24, 25, 26]. Innovative mobility
services such as Shared Mobility Services (SMS) supported by the advances in
information and communication technologies (ICT) represent an opportunity and
sustainable solution that would cope with increasing urbanization rates. However,
the introduction and integration of SMS into the urban environment were poorly
planned due to the sudden deployment and incomplete understanding of the ser-
vice characteristics. It came with various challenges, such as but not limited to the
increase in safety concerns, fleet-size control, attracting users from active modes of
transportation towards motorized modes, and inequitable use [27, 28, 29]. There-
fore there is a need to investigate and understand how to plan and deploy SMS
efficiently, effectively, and sustainably in the urban environment considering all
the services’ outcomes, positive and negative, to maximize the positive outcomes
and minimize the negative ones and to make sure that these services and the
opportunities they bring are equally allocated to all the members of the society.

1.2 Problem definition and objectives

SMS are trending popular means of transport, and their exponential demand
growth, e.g., reflect their popularity, ride-hailing [30], bike-sharing [31], and shared
E-scooters [32]. However, in several cases, SMS were introduced without appropri-
ate prior planning, causing several problems and challenges due to the novelty of
SMS and our incomplete knowledge about how to integrate them effectively in the
urban environment. Integrating shared mobility services in the urban environment
faces several challenges, mainly tied to the systems’ governance and management.
These operational problems are more avid and critical for vehicle-sharing systems
(scooter sharing, bikesharing, and carsharing), especially for the subcategory of
free-floating systems (dockless), compared to other forms of shared mobility. Some
of these problems are fleet size management, spatial and temporal demand pre-
diction and estimation, fleet geographical distribution and redistribution, deciding
on the optimal pricing schemes, use equity, accessibility of the service, operational
hours, and geographical limits, zonal fencing [27, 28, 29, 33, 34, 35].
The current level of knowledge required to deploy and integrate SMS, especially
the free-floating systems, which are the main focus of this research, within urban
environments optimally still needs to be completed. The SMS deployment process
is complex and challenging due to its multidimensional nature that should consider:
i) meteorological conditions, ii) built environment characteristics, iii) population’s
sociodemographic attributes, iv) available modes of transportation , v) SMS char-
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acteristics, and interaction within the SMS; the previous dimensions’ relation with
SMS should also be evaluated and considered from different stakeholders’ view-
points to ensure the efficient integration of SMS in urban environments and to
target optimum outcomes for all stakeholders.
Therefore, the main objective of this dissertation is to understand the SMS’ in-
teractions and relationships with the different elements of the urban environment,
including the relationships within the SMS. Therefore, we formulated several re-
search questions (RQ) to address the various objectives (O) as follows:

O-1 Understand how SMS are used and factors impacting their use based on:

O-1.1 Exploring spatiotemporal, hourly, daily, and seasonal demand pat-
terns. Answered by RQ-3.1 .

O-1.2 Exploring the differences in SMS trip characteristics in different lo-
cations. Answered by RQ-3.2 .

O-1.3 Defining exogenous factors impacting SMS demand, including me-
teorological conditions, infrastructure, land use, and residents so-
ciodemographics impacts on the demand. Answered by RQ-3.3 .

O-1.4 Assessing the relationship between SMS, and PT. Answered by RQ-
3.3 , and RQ-7.2 .

O-2 Design a framework to predict the demand for SMS considering based on
the concept of transfer–learning using open source data; this framework
could be used for service operation and management. Answered by RQ-
4.1 , RQ-4.3 , and RQ-4.4 .

O-3 Understand the individual characteristics of SMS user and their preference
and use patterns for SMS:.

O-3.1 Define the differences between user and non-user for SMS. Answered
by RQ-6.1 .

O-3.2 Define factors impacting the adoption of SMS, and the shift from
traditional modes of transport to SMS. Answered by RQ-6.2 , and
RQ-6.3 .

O-3.3 Define factors impacting the choice between SMS; using carsharing,
and shared E–scooter as a case study. Answered by RQ-5.1 .

O-3.4 Define the factors impacting the choice between the different pay-
ment schemes; using carsharing as a proxy for other free–floating
SMS. Answered by RQ-6.4 .

O-4 Understand the synergies between the different SMS, in terms of factors
impacting their choice, and the expected modal shift. Answered byRQ-5.2
.
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O-5 Explore the role of knowledge about SMS on adoption and use. Answered
by RQ-6.5 .

O-6 Assess the equitable use of SMS. Answered by RQ-8.1 .

The fulfillment of these objectives define the interactions and relationships needed
to be understood between SMS and other elements in the urban environment. To
maximize the benefits of the findings and to consolidate them in more practical
way, the following framework was developed:

“A data-driven free–floating–SMS deployment framework based on lesson learnt
from current operation data, users and non-users surveys, and SMS evaluation

methodological frameworks.”

The primary reliance of this dissertation was on open-source data, with the excep-
tion being individual-level information utilized when necessary. The main objec-
tive of using open-source data was to facilitate a decision-making process that is
transparent, reproducible, and informative for all stakeholders involved.

1.3 Contributions

This dissertation summarizes the author’s work [32, 36, 37, 38, 39, 40] that was
done to understand the interactions and relationships between SMS and the dif-
ferent elements of the urban environment. The following contributions were made
throughout the different case studies, and the methodological frameworks, and
they can be split into theoretical, methodological and practical contributions:

• Theoretical contributions:

– Developing the concept of population quarters to identify the transport-
disadvantaged population group [36].

– Developing a concept to estimate the modal shift combining choice model
with real data and weather data [40].

– Designing of two stated preference experiments to estimate the impacts
of introducing new SMS on the existing one, and factors impacting choice
of different SMS payment schemes [37].

• Methodological contribution:

– Using open-source data, developing a methodology to predict the num-
ber of trips per vehicle per day based on transfer learning. This frame-
work could be used to organize the deployment of SMS and fleet control
processes for both operators and authorities [32].
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– Developing a methodology to examine the relationship between the SMS
and PT by exploring the different external factors that impacts the dis-
tance between shared E-scooter and PT stations as an indicator of using
scooters to extend the accessibility of PT [39].

– Developing a framework to evaluate the equitable use of SMS using ac-
cessibility as the center of the methodology and the main indicator of the
equitable use, to ensure planning a just transport system. The frame-
work also evaluates the equity-related outcomes of SMS deployment for
the different population groups, modes replaced by SMS, and geograph-
ical locations [36].

• Practical contributions:

– Understanding and comparing shared E-scooter spatiotemporal demand
patterns in different cities and the factors impacting them, also compar-
ing trip and demand characteristics during pilot projects and complete
deployment projects [38].

– Defining and quantifying the synergies between the different SMS by
estimating the factors that impact the adoption, shift from carsharing
to shared E-scooter [40].

– Estimating the percentage of carsharing trips that E-scooter might re-
place under different scenarios and conditions, and the subsequent saves
in motorized-Kilometer and energy [40].

– Quantifying factors that impact the adoption of carsharing, shifting from
other modes, choice of different payment schemes, and knowledge about
carsharing service [37].

– Understanding the importance of the different aspects of carsharing ser-
vices, such as physical offer bundles and digital platform ratings on car-
sharing use from users’ and non-users’ perspectives [37].

– Understanding the difference in travel behavior between SMS users and
non-users [37].

– Quantifying the percentage of the population that would benefit from
the deployment of SMS and quantifying the percentage of trips for the
different modes that shared E-scooters would replace to gain additional
accessibility to the different opportunities [36].

– Developing a framework that can be used to deploy the SMS building
on the lessons learned from the developed frameworks and case studies
examined in this dissertation, Chapter 9.
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1.4 Dissertation structure

The upcoming chapter of this dissertation, Chapter 2, gives a brief background
of the current research on SMS, the used methods, and the data. Chapter 3 to
Chapter 8 summarizes the three case studies the three frameworks, and the details
of the case studies are shown in the different appendices. Finally, Chapter 9 pro-
vide the overall discussion for the findings, proposed framework to deploy shared
mobility based on the dissertation findings, recommendation for future research,
limitations, and the conclusion. Figure1.1 shows the overall structure of the thesis.
Figure1.1 shows the overall structure of the thesis.

Doctoral Dissertation
Developing a Multi-Dimensional Framework for the

Deployment of Free-Floating Shared Mobility Services

Chapter 1
Introduction 

Chapter 2
Background, data, and methods

Chapter 3
Spatiotemporal demand 

patterns

Chapter 4
Fleet utilization prediction

Chapter 7
Synergies between public 
transportation and shared 

mobility services

Chapter 5
Synergies within shared 

mobility services

Chapter 6
Factors impacting 

carsharing useChapter 8
Equity-based evaluation for shared 

mobility services

Chapter 9
Discussion, future research, limitation, and 

conclusion

Figure 1.1: Thesis Structure

Chapter 1, Introduction: this chapter introduces the research motivation, defines
the problem statement, research objectives, and dissertation structure.
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Chapter 2, Background, data, and methods: this chapter gives an overview on the
current literature related to the study of SMS, and then describe the data sources
and methodologies used in the different case studies.

Chapter 3, Spatiotemporal demand patterns: this chapter focuses on understand-
ing and comparing the spatiotemporal demand patterns and factors impacting
them for shared E–scooter in five North American cities.
The content of this chapter has been published in: Abouelela, M., Chaniotakis, E.,
& Antoniou, C. (2023). Understanding the landscape of shared-e-scooters in North
America; Spatiotemporal analysis and policy insights. Transportation Research
Part A: Policy and Practice, 169, 103602.. The article is presented in Appendix A
[38].

Chapter 4, Fleet utilization prediction: this chapter presents a framework using
open-source data to predict the demand and the daily number of trips per vehicle
(scooter) per day in order to manage the SMS fleet dynamically, building the
framework around the concept of transfer learning.
The content of this chapter has been published in: Abouelela, M., Lyu, C., &
Antoniou, C. (2023). Exploring the Potentials of Open-Source Big Data and Ma-
chine Learning in Shared Mobility Fleet Utilization Prediction. Data Science for
Transportation, 5(2), 5. The article is presented in Appendix B [32].

Chapter 5, Synergies within shared mobility services: this chapter presents the in-
teractions between the different SMS using a stated preference experience, focusing
on factors impacting the shift from carsharing to shared E–scooter and quantifying
the shift in terms of the number of scooter trips that replaces carsharing trips for
the different trip distances.
The content of this chapter has been published in: Abouelela, M., Al Haddad,
C., & Antoniou, C. (2021). Are young users willing to shift from carsharing to
scooter–sharing? Transportation Research part D: Transport and Environment,
95, 102821.. The article is presented in Appendix C [39].

Chapter 6, Factors impacting carsharing use: this chapter presents a stated prefer-
ence experiment that was designed to understand the user’s behavior when choos-
ing between the different operators of SMS, in this case for carsharing services.
The experience tested the impacts of user’s attitudes and personality traits on the
different service use aspects, and the service aspects such as application rating and
offers bundles impacts on the service use were tested.
The content of this chapter is under revision: Abouelela, M., Al Haddad, C., &
Antoniou, C. (2023).Personality and Attitude Impacts on Carsharing Use. Under
revision. The article is presented in Appendix D [37].
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Chapter 7, Synergies between public transport and shared mobility services: this
chapter presents a methodological framework that was built around the Approxi-
mate Nearest Neighbor (ANN) algorithm, which was used to examine the relation
between Shared E-scooter use and public transportation.
The content of this chapter has been published in: Abouelela, M., Al Haddad, C.,
& Antoniou, C. (2021). Are e-Scooters Parked Near Bus Stops? Findings from
Louisville, Kentucky. Findings. The article is presented in Appendix E [40].

Chapter 8, Equity-based evaluation for shared mobility: this chapter presents a
methodological framework to assess the equitable use of SMS, using shared E–
scooter as a case study, and it quantifies the impacts of scooter introduction on
population, and the expected modal shift.
The content of this chapter is under revision: Abouelela, M., Durán-Rodas, D., &
Antoniou, C. (2023). Do we all need scooters? An accessibility–centered spatial
equity evaluation approach. Transportation Research Part A: Policy and Practice.
The article is presented in Appendix F [36].

Chapter 9, Discussion, future research, limitations, and conclusion: this chapter
presents and discusses the findings across the different case studies and the devel-
oped framework for SMS deployment. Additionally, it contains the directions for
future research, and final conclusion.
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2 Background, data, and methods

This chapter overviews shared mobility services background and the current re-
search landscape regarding them. The remainder of the chapter presents the data
used in the following chapters and the procedures followed for data processing. Fi-
nally, the details of the methodologies used in the following chapters are explored.

2.1 Background

2.1.1 Shared economy

The progress in information and communication technologies (ICT) has fostered
the facilitation of sharing goods, skills, space, and services directly between con-
sumers and providers through digital platforms, websites, and smartphone appli-
cations (Apps). This direct exchange occurs between providers and consumers
without the involvement of intermediaries in what is commonly known as the
sharing economy or collaborative consumption. Unlike traditional business mod-
els, digital platforms do not physically possess goods or offer services; instead,
they connect and match individuals, owners, and providers with consumers. By
streamlining coordination processes and sometimes circumventing costly govern-
ment regulations related to obtaining operational licenses, these platforms help
reduce services costs [19, 41, 42]. In addition to financial advantages esteeming
from the cost reduction, social benefits derived from fostering social cohesion and
connecting people, and environmental benefits resulting from increased efficiency
in resource utilization and reduced energy consumption are the main motivations
to participate in the shared economy [43, 44]. However, impacts of shared econ-
omy in a broader context accounting for its entire life cycle and interaction with
the different societal elements are hard to evaluate and quantify [45]. Also, it is
necessary to highlight that the motivations for participating in the sharing econ-
omy may vary across different sectors, sociodemographic groups, and among users
and providers. Also, benefits gained might not be equally distributed among the
different members of the society, and several inequitable outcomes might result,
e.g., large-size providers might profit more than small-size providers due to their
significant capital assets [46].
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2.1.2 Shared mobility

Definition, potentials, and challenges

Figure 2.1: Shared mobility services

Transportation is one of the main sectors of the shared economy; in this context, it
is referred to as shared mobility. Shared mobility offers travelers short-term access
to various modes of transportation based on their travel needs [47]. The term
shared mobility is an umbrella encompassing a wide range of services, including
but not limited to shared E-scooter, bikesharing, carsharing, and ridesharing using
vehicles of different sizes (such as carpooling and vanpooling, shuttle services, and
microtransit. Furthermore, shared mobility extends its reach to the urban freight
transport sector, where the delivery of parcels can be integrated with people’s
transportation, such as courier network services. [48, 49].
Shared mobility services (SMS) have various business models. These models can
be categorized by the type of provider and the clients, with the two common mod-
els; Consumer-to-Consumer (C2C), also known as the Peer-to-Peer model, and
Business-to-Consumer (B2C). C2C involves individual providers granting access
to others to utilize their underutilized services, and goods, in this case, vehicles;
an example of this model is BlaBlaCar (Blablacar.com) for ridesharing [50]. In
the B2C model, a company owns the assets and provides access to users through
membership fees and usage-based fees. Examples of this model include Lime scoot-
ers (li.me) and shareNow (share-now.com) for carsharing [51]. Other less com-
mon business models such as B2E, business to employee; B2G, business to public
agency; and G2P, public agency to individual, also exist [52].
Figure 2.1 shows the main shared mobility services, which can be grouped into
two main groups, shared ride services and shared vehicle services. Shared vehi-
cle services, which are the focus of this dissertation, have three subgroups based
on their operation schemes; round trip, where the vehicle is booked in advance,
collected from a station, and returned to the same station. The second type is
a one-way station based, where it is picked up from one station and returned to
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Figure 2.2: Shared vehicle use process

another station or a specific location, and finally, the free-floating type, where the
vehicle is used within a geographical area [53]. The general idea of how to use
the free-floating shared mobility services is explained in Figure 2.2, where the user
needs to download an app, which he uses to locate the nearest vehicle of the service
he plans to use, and once the user locates the most convenient vehicle, the user
uses the app to unlock the vehicle, some times unlock fees applies in addition to
the trip cost, and he uses a digital banking option to pay for the trip cost, which
is calculated based on the actual trip cost; per minute of use or kilometer drove,
and finally, the user locks the vehicle using the app.

The utilization of shared mobility has been encouraged by various factors, pri-
marily aiming to achieve sustainability goals and attain social, economic, and
environmental benefits. Positive potential impacts are expected from shared mo-
bility; on the individual level, increase in the convenience of travel based on the
increase of freedom of movement, as they are on-demand service, ease of use, ease
of payment, perceived safe, and environmental friendliness [21, 54]. The benefits
are not limited to the individual level but can be scaled up to the city and societal
levels. Compared to private passenger cars, SMS are considered more sustainable
as they have the potential to reduce vehicle idle time, minimize the environmental
impact by lowering CO2 and greenhouse gas (GHG) emissions, decrease energy
consumption, reduce congestion, save travel costs, and utilize public spaces more
efficiently [22, 23]. Also, SMS could be used as a quick fix for various transporta-
tion problems, such as maintaining, upgrading, and constructing transportation
infrastructure needs significant investments and a long time to materialize, which
is not always a viable solution; one example is extending the transportation sys-
tem’s accessibility to suburban areas with inefficient public transportation’s access
[55, 38]. SMS could also reduce the demand and congestion on roads, as well as the
vehicle kilometer traveled (VKT), such as in the case of pooled rides, but under
specific conditions to be considered, such as not replacing public transportation
trips and replacing low occupancy vehicles [56]. Alonso-Mora et al. [57] concluded
that shared rides could reduce the number of cars on city roads; similar promises
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could be achieved using carsharing services, as private cars are idly parked for
around 90% of the time [58]. Transport for London (TfL) sees carsharing services
as complementary to public transportation services [59], that its use correlated
with the increase in public transportation use [60]. Overall, SMS are attractive
to implement as establishing its infrastructure is considered relatively quick and
economically viable [61]. The attractiveness, popularity, and succession of shared
mobility are reflected by attracting demand from traditional travel alternatives,
which is evident through the substantial growth in ridership, as seen in ride-hailing
services [30], bike-sharing initiatives [31], and the use of shared e-scooters [32].

Challenges related to the introduction of shared mobility must be addressed. An
example of their challenges is the increase of safety concerns, such as the case of
shared E-scooters, as half of the reported accidents related to scooter use involved
severe injuries, and fatal accidents were reported in the USA [62, 63]. Janssen et
al. and Gössling et al. [64, 65] summarized shared mobility deployment problems
as fleet-size control, capping and organization, permit cost, and attracting users
from active modes. Regarding emissions net effects, Moreau et al. [66] performed
a life cycle assessment for a free-floating shared E-scooter (scooters) system and
showed that over their entire life cycle, scooters produce more CO2-equivalent
per passenger-kilometer than the modes they replace. At the same time, scooters
were also found to attract users from environmentally friendly modes [67], such as
walking and biking, generating empty vehicle kilometers traveled (VKT) during
redistribution and maintenance processes [68]. Therefore, integrating shared mo-
bility services into urban environments encounters numerous challenges, primarily
related to their governance and systems management. Among these challenges,
vehicle-sharing systems (such as scooter sharing, bikesharing, and carsharing), par-
ticularly free-floating systems, face more pronounced and critical operational issues
than other forms of shared mobility. The critical problems revolve around fleet size
management, spatial and temporal demand prediction and estimation, fleet distri-
bution and redistribution across geographical areas, determination of optimal pric-
ing schemes, ensuring equity of use, addressing service’s accessibility, operational
hours, and implementing geographical limits (zonal fencing) [27, 28, 29, 33, 34, 35].
While increased mobility and accessibility are expected outcomes of the addition of
shared mobility to the urban environment, this increase in mobility and accessibil-
ity should be equally allocated to all the members of society. According to the first
article of the Universal Declaration of Human Rights, all humans have equal rights
[69]. These rights cannot be acquired or accessed equally for all the members of
the society without the availability of different means of mobility that is accessible
to all the society’s members regardless of their gender, income, ethnicity, or educa-
tion level; otherwise, some groups would be excluded from the participation in the
daily life activities, creating a so-called social exclusion situation. The equitable
use of shared mobility is not always achievable and can lead to social exclusion
situations for specific population groups [70]. The inequitable use of shared mo-
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bility is widely expected from its unique setup as users, in general, should have
digital skills, a smartphone, and digital banking access; otherwise, they will be
excluded from using the service by default [71]. Also, shared mobility might only
be affordable to some population groups, and the spatial coverage of shared mo-
bility might be limited to areas with high demand, primarily near the downtown,
and ignoring areas located in the city’s suburbs [72]. Notably, the aforementioned
challenges directly stem from the travel demand aspect, highlighting the impor-
tance of understanding the factors that influence demand and the need for demand
prediction to enhance shared mobility operations, the evaluation of the equitable
use of the services, understanding the synergies with the different modes in the
urban environment, such as PT and in between the shared services themselves.

Shared mobility study framework

Data sources

The study of SMS relies heavily on data in the diverse analysis, processing, and
modeling stages. Once the study objectives, research questions, and hypotheses
have been defined, the required data to fulfill the research objective is identified,
and the collection process follows. In shared mobility related-studies, the data
collection methods primarily depend on the study’s objectives rather than being
directly related to the service itself. Commonly, five primary data sources are uti-
lized: surveys, open-source data, mobile phone data, GPS data, and combinations
thereof [73].
When collecting specific individual-level information, such as sociodemographic
data, travel patterns, and motivations for using various services, surveys, online
and face-to-face interviews, and travel diaries are commonly employed. For in-
stance, online surveys have examined the demographics of bikesharing users [74, 75]
and carsharing program members [76]. Online surveys have also been used to iden-
tify motivations for using different services, such as ridesharing and carsharing [77].
Face-to-face interviews have been employed in the study of shared mobility as well.
Tirachini and del Ŕıo [54] conducted street interviews to investigate the travel be-
havior of ride-hailing users, and Shaheen et al. [78] explored motivations for using
casual carpooling in the San Francisco Bay Area. Surveys have long been regarded
as valuable tools for investigating user-level information. However, the availability
of such information is not always guaranteed due to increasing concerns about data
privacy. Surveys also have inherent limitations that impact their utility; for exam-
ple, they can be costly, and ensuring the validity of responses can be challenging
[79, 80]. Online surveys, on the other hand, suffer from non-coverage bias as they
may not adequately represent the general population, and marginalized groups,
including households without internet access and the elderly, are often excluded
from such surveys [81]. Moreover, some users may avoid participating in online
surveys out of concern for the potential leakage of their private data.
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The advances of ICT have brought significant positive changes in the field of data
collection, including the incorporation of new sources of information, such as social
media, that were not previously accessible for traditional transportation studies
[82]. Also, ICT expanded the possibilities of collecting and analyzing large quan-
tities of new data types, commonly referred to as big data [83, 73]. The term ”big
data” has gained significant attention and has sparked increased efforts from in-
dustry and research sectors to explore its potential opportunities. Several factors
have contributed to the accumulation of vast amounts of data, including advance-
ments in computational power, decreasing costs of data storage, and the develop-
ment of smart cities platforms, all of which have fueled the interest in big data
[84, 85]. Big data has been extensively examined in various applications within
the field of transportation research, such as estimating origin-destination flows
in transit networks [86], assessing parking availability through sentiment analysis
of location-based social network data [82, 87], enhancing traffic management and
planning [88], and analyzing the impact of pricing scheme changes on bikeshar-
ing usage [89]. Different entities, particularly operators and city authorities, are
openly sharing their data, characterized as big based on its volume, velocity, or
variety. The aim is to encourage innovation, develop new methods and ideas to
enhance the urban environment, foster integration among various transportation
services, and facilitate the regulation and dynamic adjustment of shared mobility
services within urban settings [27, 84].

Modeling framework

Two common approaches generally used when modeling different aspects of shared
mobility are the target of the research are; i) regression models, and ii) Machine
Learning (ML) algorithms. Regression models aim to establish a relationship be-
tween a dependent variable and one or more independent variables [90]. The goal
is to fit an equation that best describes the relationship between the variables and
allows for prediction or inference. Regression models make assumptions about the
distribution and linearity of the data and rely on statistical techniques to estimate
the model parameters. On the other hand, ML models are a broader class of
algorithms that can handle a wide range of tasks. ML models focus on learning
patterns and relationships within the data without explicit assumptions about the
underlying distribution [91]. These models aim to optimize a specified objective or
loss function by adjusting the model parameters based on the training data [22].
ML models can capture complex patterns and non-linear relationships, making
them suitable for classification, clustering, and prediction tasks. While regression
models focus on understanding and quantifying relationships between variables,
ML models emphasize pattern recognition and prediction and often have more
flexibility. They can handle large and complex data but may require more compu-
tational resources and have less interpretability than traditional regression models
[92].
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2.1 Background

Numerous shared mobility studies examined factors that influence the adoption
of shared mobility or the transition from using different modes to utilizing shared
mobility. In such cases, the modeling process involves estimating factors that
affect the choice between two or more mutually exclusive options. Binary and
multinomial probit and logit models are commonly employed in these scenarios.
For instance, the introduction of Uber and Lyft in California was investigated using
a binary logit model [81]; also, a multinomial logit model was utilized to explore
the factors that influenced the shift to ride-hailing from various modes in Boston,
USA [30]. In certain studies, the factors under investigation are characterized by
an ordered nature, such as responses on an ordered scale, the ordered frequency of
use, or satisfaction with specific services. This requires using models that account
for the ordered nature of these factors. Ordered logit and probit models (OLM) are
commonly employed in such cases. Other modeling techniques such as generalized
additive mixed models, multiple regression, structural equation, and partial least
squares structural equation models (PLS-SEM) were used to investigate carsharing
and ridesharing use and motivation to use [93, 94, 95, 77, 96].

ML use was also evident in studies related to SMS; for instance, Yang et al. [97]
proposed a spatiotemporal mobility model for bike-sharing and developed a predic-
tion mechanism for origin-destination (OD) demand using historical bike-sharing
and meteorological data. They employed a probabilistic model for check-in demand
and introduced a random forest (RF) model for check-out demand. Factors such
as time of day, day of the week, holidays, and weather conditions were found to be
significant in predicting demand. Gammelli et al. [98] involved a general method
for modeling censorship-aware demand, accounting for supply restrictions in sim-
ulating realistic scenarios. They devised a censored likelihood function within a
Gaussian Process model to address the issue of biased demand prediction when
supply restrictions are not explicitly considered. This approach was validated us-
ing bike-sharing demand data, highlighting the impact of supply limitations on
transport demand for shared mobility services. Saum et al. [99] combined Box-
Cox transformation, seasonal autoregressive moving average (SARIMA), and the
generalized autoregressive conditional heteroskedasticity (GARCH) models to pre-
dict hourly demand and volatility for scooter sharing at Thammasat University in
Thailand. Deep learning models are also gaining popularity in the field of transport
research, e.g., Gao et al. [100] proposed a moment-based model that combined a
fuzzy C-means (FCM)-based genetic algorithm (GA) with a back–propagation–
network (BPN) to predict bike-sharing rentals. Xu et al. [101] developed a long
short-term memory (LSTM) model incorporating various data types, including
trip, weather, air quality, and land use data, to predict bike-sharing trip gener-
ation and attraction at different time intervals. These studies demonstrate the
growing prominence of ML techniques, including RF, Gaussian Process, LSTM,
and other popular ML models, in enhancing the prediction and understanding of
shared mobility patterns and demand.
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2.2 Data

This section summarizes the data that were used in the next chapters of this
dissertation, showing the data collection and processing stages.

Table 2.1: Summary for data used in this dissertation

Data Chapter

Open source data
Shared E–scooter trips 3, 4, 7, 8
Census Sociodemographic 3, 4, 5,8
Meteorological data 3, 4
Land use 3, 7 ,8
POI 3, 8
Infrastructure 3, 4
GTFS files 3, 7, 8

Survey Data
Carsharing vs. shared E-scooter Survey 5
Carsharing payment scheme choice survey 6

Munich carsharing trip data 5, 6

2.2.1 Open source data

Scooter trip data

Chapters 3, 4, 7, and 8 used shared E–scooter (scooters) trip data retrieved
from four cities located in the USA (Austin; TX, Chicago; IL, Louisville; KY,
Minneapolis; MN), and one city in Canada (Calgary; AB) [102, 103, 104, 105, 106].
These cities made their scooter trip data publicly and openly available. Three
of these cities’ data was based on pilot projects; Minneapolis and Chicago had
three months of pilot projects. Calgary ran a 16-month pilot project, with three-
month-mid-pilot data published for public evaluation. The main target of the
pilot projects was to preliminary evaluate the potential impacts of scooters and
public acceptance before the full deployment of the service. Also, scooter fleet
characteristics and operation schemes in these cities differ regarding the number
of operators and the fleet size. Some cities have imposed limitations on the number
of operators (Louisville, Minneapolis, Calgary, and Chicago), while Austin does,
having eight different operators in July 2019, which increased to ten by 2020 [64].
Regarding fleet size limitations, each city has imposed cap limitations as a function
of the number of operators and ridership rates. For operational hours to use the
scooter, Chicago was the only city that imposed time restrictions between 10 p.m.
and 5 a.m.

18



2.2 Data

Scooters trips data description

The five datasets have almost standard structures with slight variations between
the sets targeting protecting user privacy. All the datasets are in long format,
where each row represents a trip observation. Each observation contains the trip’s
identification code (ID) for each trip, vehicle type (scooter, bike, e-bike), trip, start
and end date, as well as trip duration, speed, and trip distance based on providers’
route data. Additional information, such as the start and end community number,
is provided in the case of Chicago. Different procedures are implemented to protect
the user’s anonymity in all the datasets. Trip start and end locations in Austin
and Chicago are assigned to the corresponding census tract. In Minneapolis, trips
are assigned to the nearest street’s center line. In Calgary and Louisville, trips are
aggregated to a grid, which in the former is based on hexagons with an area of
30,000 square meters and the latter on the block level. The trip starting time is
also aggregated to the nearest 15 minutes in Austin [102] and Louisville [103], to
the nearest hour in Chicago [104] and Calgary [105], and the nearest 30 minutes
in Minneapolis [106].

Trip data cleaning process

Following an exploratory data analysis approach, outliers and false records were
removed by setting a lower and upper bound for all trip characteristics, distance,
duration, and speed based on previous studies and the standard vehicle’s criteria.
For a standard vehicle, one charge can power a scooter for two hours or approxi-
mately 50km. Therefore, we set the upper bound for the trip’s distance to 50 km
and the duration to two hours. The minimum trip distance was set to 100 meters
for the lower bound, while for the duration, it was set to one minute, and the upper
bound for 120 minutes following previous research methods used by [107, 108, 109].
The upper-speed bound was set to (15 mile/hr = 25 km/hr) as per the maximum
allowable speed limit in the four cities in the USA. Although the speed limit in
Austin is 20 mile/hr, there are several areas where the maximum speed was set
to 8 mile/hr, and the number of trips faster than 15 mile/hr when examined was
very limited; therefore, we opted to remove these trips to have consistent criteria
across all cities. The trip’s start and end coordinates were examined in all the
cities, and trips with either false start or end coordinates were removed.

Population sociodemographic characteristics

Population sociodemographic characteristics in the scooter operation zones in the
four cities in the USA were obtained from the American census database retrieved
from the American Census Bureau (census.gov) utilizing their Application Pro-
gramming Interface service (API) through the statistical computing software R
[110], and the processing package tidy-census [111]. The data contains population
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characteristics aggregated to each of the census tracts. The aspect considered in
our analysis obtained from this data set is; age, income level, education level, race,
employment, car ownership, and modes used to work. The obtained population
attributes were aggregated geographically by census tract. This dataset did not
need any cleaning, but it was processed by converting all the aforementioned vari-
ables into percentages of the total population within each census block, which we
used for further analysis and modeling when required. This data was used in the
following research articles [32, 38, 36] summarized in Chapter 3, 4, and 8. In the
German case studies, Chapter 5, the German Census data was obtained from the
German federal statistical bureau (statistikportal.de). The data is available
in (1km x 1km) resolution raster format and contains the average demographics
distribution per zone, such as percentage of population, percentage of females, age
distribution, and household size.

Meteorological data

Meteorological data is the dataset that records weather-related information; such
data is of significant impact on SMS use [32, 38, 40], especially in the case of
micromobility services. This dataset contains the hourly temperature, wind speed,
precipitation conditions, snow depth, humidity, and dew point. For the USA data
used in Chapters 3 and 4, we obtained the data from (visualcrossing.com), and
in the case of Germany, we obtained the data from the German weather service
online archive (dwd.de).

Land use data

These data were retrieved from the cities of Austin; TX, Chicago; IL, Louisville;
KY, and Minneapolis; MN online portals [102, 103, 104, 105, 106], the different
land uses were collected, and it was assigned to the census tract and blocks, which
were the units of spatial analysis and modeling. These data sets were in geo-
graphical information systems (GIS) data format. The only cleaning procedure
for this dataset applied when a census tract block had more than one land use;
the percentage of each land use was calculated based on their area compared to
the overall track area. This data set was used in Chapters 3, 7, and 8.

Point of interest data

Points of interest (POI) are the geographical location of points of activities such as:
leisure, shopping, educational, health, and different services. POIs were grouped
into six main groups, and each of them had different activities as follows:

• Education:

– Kindergarten

– Library

– School

– University

• Food:

– Bakery

– Bar
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– Beverages

– Cafe

– Fast food

– Food court

– Greengrocer

– Pub

– Restaurant

– Supermarket

• Health:

– Clinic

– Dentist

– Doctors

– Hospital

– Optician

– Pharmacy

– Veterinary

• Leisure:

– Art centre

– Cinema

– Community centre

– Nightclub

– Park

– Picnic site

– Playground

– Sports centre

– Stadium

– Swimming pool

– Theatre

– Zoo

– Artwork

– Attraction

– Guesthouse

– Hotel

– Memorial

– Monument

– Museum

• Service:

– ATM machine

– Bank

– Beauty Shop

– Fire Station

– Hairdresser

– Laundry

– Police station

– Post office

• Shopping:

– Bicycle shop

– Bookshop

– Clothes

– Computer shop

– Convenience store

– Department store

– DIY store

– Furniture shop

– Gift shop

– Jeweller

– Mall

– Market place

– Mobile phone shop

– Shoe shop

– Sports shop

– Stationery

– Toys shop

POI data was processed as the summation of the different points of interest within
the spatial aggregation unit, in this case, the census block. This data was used in
Chapter 8.

Infrastructure data

Infrastructure data, in terms of the different elements inside the road right of
way, such as the length of sidewalks within the spatial aggregation unit, and the
lengths of different types of lanes, such as the lengths of the bike lanes within
the spatial aggregation unit. Infrastructure data and POI were obtained from
(openstreetmap.org) in GIS data format. This data was mainly processed as the
summation of the lengths of the different elements within the spatial aggregation
zones, mostly census blocks. This data was used in Chapters 3, 4, and 7.

General Transit Feed Specification Files

General Transit Feed Specification Files (GTFS) are structured data files that
describe public transportation schedules and routes, and it contains information
regarding stops locations, timetables for the different routes, calendar dates, fares,
and rules that apply to the fairs, and operating agency information. This specifi-
cation was developed by Google1 to facilitate the exchange of transit information

1(developers.google.com/transit/gtfs), accessed 10/06/2023
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between different applications. The data was retrieved from (transitfeeds.com)
for the four US cities. GTFS is a rich source of information as it helps understand
the operational schemes of the transit operation in the study area and is available
in text format. We used this data in Chapters 3, 7, and 8.

2.2.2 Survey data

Choice between carsharing and shared E-scooter

Chapter 5 main objective was to understand user’s preferences for E–scooters
compared to carsharing. A stated preference survey was designed and conducted
in Munich, Germany, and it was shared online for two months starting December
2019 using Limesurvey Pro (limesurvey.org). It was distributed through digital
channels of communication, such as Facebook and Instagram, as well as mailing
lists adopting a snowball data collection method. The target population was young
individuals from 18 to 34 years old, as they are most likely the potential users of
scooter–sharing systems [112, 113]. Moreover, by focusing on the target group
that will most probably join scooter–sharing, sampling, and coverage errors were
reduced, as suggested by Efthymiou et al. [114].

The survey contained 31 questions and was structured in four parts.

• The first part included travel behavior questions, such as the main mode of
transport, the ownership of a driver’s license, the access to a car, and the
overall satisfaction with the existing public transport system.

• The second part was a stated preference experiment that introduced carshar-
ing and scooter–sharing as possible alternatives for a fictitious trip of 4km be-
tween two points A and B. Here, nine choice scenarios were given, and respon-
dents had to choose for each one among: “Certainly carsharing,” “Probably
carsharing,” “Indifferent,” “Probably scooter–sharing,” “Certainly scooter–sharing,”
or “none”; the ‘none’ option aimed to cover other modes, and therefore the
bias of not including them in the stated preference study. The SP part was
designed with 11 blocks and 9 scenarios/block, using a random design, as
previous literature did not find strong evidence that efficient design outper-
forms random design [115]. The attributes and levels used are summarized
in Table 2.2. Figure 2.3 illustrates an example of one scenario of the SP
experiment.

• The third part of the survey, questions pertained (but were not limited) to
social media use, comfort with online services, willingness to share a ride,
enjoyment of driving a car, environmental perceptions, and previous involve-
ment in a car crash (with different levels of intensity).
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• The fourth and last part entailed sociodemographics such as age, gender,
income, household size, higher level of education achieved, and main occupa-
tion.

In this part of the survey, you are given 9 scenarios designed to determine how your transportation choices
would change if the attributes of the modes were altered.
You will be asked to choose from two available modes (car-sharing and electric scooter: e-scooter), given a
set of attributes. Please base your evaluation only on the following attributes:

• Travel time: The time spent in the vehicle to go from A to B.
• Access & Egress time: The total amount of time spent in access to the mode (at the beginning of the

trip in reaching your car/scooter) and egress from mode (at the end, from where you park it to your
destination); this is mostly walking time spent outside the vehicle.

• Trip cost: The amount of money you spend on this trip.
• Safety level: The likelihood of having an incident in an e-scooter compared to a car-sharing vehicle

(which is at least as safe as e-scooters).

The travel process is, therefore, as follows: Access to mode (access time), Travel in-vehicle (travel time),
Egress from mode (egress time).

We are aware that the options may be different from the ones that you would like to be offered, but we
would like to know which option you would choose only if the mentioned choices were available.

If you would not choose either of the options, you can choose neither.

The given modes are illustrated below: a car-sharing scheme (such as DriveNow), or an electric scooter
(such as Circ, Lime, etc.)

Certainly A Probably	A Indifferent Certainly B Probably	B None

Scenario	1 Car-sharing	(A) E-scooter	(B)

Travel	time	(min) 11 8

Access	and	Egress	Time	(min) 1 1

Travel	cost	(€) 2.5 3.7

Chance	of	having	an	incident
(compared	to	car-sharing) Reference	level 2	x	more	likely

of	having	an	incident

Figure 2.3: Scenario details and block example

Table 2.2: Attributes and levels used in the survey’s SP part

Variable Unit Levels

Travel time of scooter–sharing min [8, 11, 14]
Travel time of carsharing min [5, 8, 11]
Access time of scooter–sharing min [1, 3, 5]
Access time of carsharing min [1, 3, 5]
Cost of scooter–sharing € [2.5, 3.1, 3.7]
Cost of carsharing € [2.5, 3.5, 4.5]
Scooter accident risk compared to carsharing - [1, 2, 4] * higher
Rain - [Yes, No]
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Table 2.3: Sample sociodemographic summary

Variable Subgroup n (Pct %) Munich Census (2011)

Gender Female 161 (32.0%) 48.3%
Male 337 (67.0%) 51.7%
Other 1 (0.2%) -

Age 18-24 208 (41.3%) 8.1%
25-34 295 (58.7%) 18%

Household size 1 182 (36.2%) 50%
2 80 (15.9%) 29%
3 65 (12.9%) 11%
4 85 (16.9%) 7%
5+ 58 (11.5%) 3%
I prefer not to answer 33 (6.6%) -

Education High school 34 (6.8%) 34.1%
Apprenticeship 3 (0.6%) 40.7%
Bachelor 271 (53.9%)

Bachelor/MS: 22.7%
Masters 179 (35.6%)
PhD 7 (1.4%) 2.5%
No answer 6 (1.2%) -

Employment Full-time employment 175 (34.8%)
Full/Part-time: 87.1%

Part-time employment 52 (10.3%)
Student 240 (47.7%) 2.9%
Self-employed 10 (2.0%) 7.8%
Unemployed 14 (2.8%) 2.2%
Other 7 (1.4%) -
I prefer not to answer 5 (1.0%) -

Income Up to 500 € 87 (17.3%)

Avg: 4220 €/household

500 to less than 1000 € 121 (24.1%)
1000 to less than 2000 € 69 (13.7%)
2000 to less than 3000 € 35 (7.0%)
3000 to less than 4000 € 29 (5.8%) [116]
4000 € or more 45 (9.0%)
I prefer not to answer 117 (23.3%)

N = 503
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Carsharing adoption

Chapter 6 main goal was to investigate the roles of personality traits and attitudes
on the carsharing users in terms of service adoption, shifting from other modes, the
choice between the different payment schemes, and knowledge about the service. A
four parts survey was designed, implemented online platform (Limesurvey.com),
and deployed to different population groups in Munich, Germany, from 20 Jan-
uary to 25 March 2022. We opted to deploy the survey online as it was deployed
during the COVID-19 pandemic, and we wanted to eliminate the chances of in-
fection during the data collection process. The targeted group was young users as
they are most likely users of carsharing services as concluded in many studies in
different locations, e.g., Munich and Madrid [60], and Vancouver, Canada [117].
We collected 1170 completed responses; the average survey completion time was
12 minutes. The survey consisted of four main parts;

• The first part investigated respondent’s general travel behavior; respondents
were asked to specify the different use frequencies for the different urban
modes of transport, availability of public transportation (PT) subscription
ticket, ownership of the bike, e-bike, and private car, and the ownership of
driving license in Germany.

• The second part investigated respondent’s familiarity with carsharing ser-
vices and their service usage; we asked regarding the use of carsharing in
terms of frequency, willingness to walk to a vehicle pickup location, usual
trip purposes for carsharing use, the modes they would have used if they did
not use carsharing in their last carsharing trip, the familiarity of the carshar-
ing services, users evaluation for the different aspects of carsharing services
such as; mobile-application rating on the digital store, application ease of use,
the provider service availability in different cities, service availability in EV,
service availability in the airport, service availability in different size vehicles
(SUV, trucks, etc), and the availability of offers bundles (discounts, e.g., for
all-day rental, and long-distance rentals).

• The third part of the survey was the stated preference experiment; refer to
Figure 2.4 for an example of one scenario and Table 2.4 for the details of
the attributes and levels of the different scenarios. In this experiment, we
assumed that the user had to choose one carsharing service to perform an
11-kilometer trip; the choice was between operator A, where the user pays a
fixed cost per kilometer. The other choice is operator B, where the trip cost
would vary based on actual trip data of carsharing trips collected in Munich,
Germany, discussed in detail in Section2.2.3. The trip cost for operator B
was calculated on the minute of use basis: the minimum cost based on the
fastest speed of the collected trip data, the average cost based on the average
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speed of the collected trip data, and the maximum cost based on the slowest
speed of collected trips data.

Carsharing services are gaining popularity for their ease of use, and their increased availability in our 
cities, especially among the young population. The service was initially priced by the minute of use, but 
now there are new schemes of paying a fixed price per kilometer. The main difference between the two 
schemes is the certainty regarding travel time, as users might encounter delays that would increase the 
trip cost if users are paying per minute of use and not by kilometer traveled. In the following scenarios, 
we ask you to choose the most convenient option to use based on your evaluation of the available options 
based on a hypothetical 11 km long leisure trip in Munich, Germany noting the following:
• Travel cost; fixed if you choose to pay per kilometer and could fluctuate if you pay per minute based on the unknown 
road conditions and unexpected delays.

• Min cost: The minimum expected cost based on fastest speed of previous trips
• Avg cost: The average expected cost based on the average speed of previous trips
• Max cost: the maximum expected cost based on the slowest speed of previous trips

• Access distance in meters: the distance you will need to walk to pick up the carsharing vehicle
• Application rating in store: the used operator app users' rating on the digital store you use

Operator	A	
Payment	by	KM	Fixed	cost

Operator	B
Payment	by	Minute

cost	depends	on	congestion	
conditions

Travel	cost	in	€ 7.34	€
Min	5.6	€
Avg	8.1	€
Max	12.1	€

Access	distance	in	meter 150	m 150	m
Application	rating	on	digital		
stores	(stars) 4	Stars 3	Stars

Engine	type:	Electric Yes No
Certainly	

A
Probably	

A
Indifferent Certainly	

B
Probably	

B None

Figure 2.4: Scenario details and one block example

• The fourth part of the survey investigated the sociodemographic characteris-
tics of the respondent, where respondents specified their age, gender, educa-
tion level, occupation, number of people and children in the household, and
the average monthly income. Also, in this part, we asked the users to spec-
ify their agreement on a five-points-scale (totally disagree, disagree, neutral,
agree, totally agree) with 18 personality traits;

1. optimist

2. adventurous

3. like routines

4. spontaneous

5. like being outdoor

6. risk taker

7. like to stay close to home

8. efficient

9. variety seeking

10. punctual

11. like to be alone

12. independent

13. creative

14. calm

15. anxious

16. like being in charge

17. participative

18. lazy.
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Table 2.4: Stated preference attributes and levels

Levels

Variable Operator A Operator B
(payment by Km) (payment by Minutes)

Travel cost € [7.3, 9.8, 12.2]
Minimum cost [5.6, 7.1, 9.2]
Average cost [8.1, 10.3, 13.2]

Maximum cost[12.1, 15.4, 19.8]

Access distance (Meter) [50, 100, 150] [50, 100, 150]
Application rating (star⋆) [3, 4, 5] [3, 4, 5]
Engine type: Electric Yes / No Yes / No

Table 2.5: Sample sociodemographics summary

Variable Subgroup n (pct%) Munich Census

Age 18-24 415 (35%) (18-29) 27.2%
25-30 521 (44%)
31-35 108 (9.2%) (30-39) 16.7%
36-40 46 (3.9%)
41+ 81 (6.9%) (40+) 51.5%

Gender Female 523 (45%) 51.70%
Male 648 (55%) 48.30%

Education level Masters & PhD 386 (33%) (PhD 2.5%)
Bachelor 657 (56%) Bachelor/MS: 22.7%
High School or less 128 (11%) 66.90%

Monthly income 500€ or Less 140 (12%)
Avg: 4220 AC /household500€ - 2000€ 580 (50%)

2000€ - 4000€ 259 (22%)
4000€ and more 192 (16%)

Occupation Full time 405 (34.6%) full/part-time 87.1%
Part-time 165 (14.1%)
Self employed 43 (3.7%)
Student 510 (43.6%) 4.50%
Other 48 (4.0%) 8.40%

Children No 1,019 (87%)
Yes 152 (13%)

Household size 1 441 (38%) 50.30%
2 296 (25%) 28.80%
3 and more 434 (37%) 20.90%

N =1,170
*Subscription-based tickets; **Valid in Germany

27



2 Background, data, and methods

2.2.3 Carsharing trip data

The carsharing dataset is an hourly carsharing trips dataset from a carsharing
operator in Munich, Germany, for the entire year of 2016, and the dataset contained
972,459 trips. Each trip’s average distance and duration and the starting and
ending zone numbers were provided. A separate shape file containing the geo-
information of the parking zones was also received to locate the trip origins in
reference to the map of Munich. Figure 2.5 shows the carsharing zoning system
compared to the boundaries from the Munich census. Figure 2.6–B, C, and D
show carsharing trips’ characteristics, including trip distance, duration, and speed,
respectively. Also, Figure 2.6-A shows the hourly demand for carsharing for the
different weekdays, and Figure 2.7 shows the daily demand for 2016.

0 1 2	km

Carsharing	zones

Munich	census	zones

Carsharing	zones

Munich	census	zones

Figure 2.5: Carsharing operator zoning system of, and Munich census blocks
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2 Background, data, and methods

2.3 Methods

This section summarizes all the methods that were used in the next chapters.

Table 2.6: Summary of all used methods

Method Chapter

Modeling techniques
Zero-inflated negative binomial model (ZINB) 3
Explanatory Factor Analysis (EFA) 6
Multinomial logit model (MNL) 5
Hybrid Choice model (HCM) 6

Machine learning techniques
Linear Regression (LR) 4
Support vector machine (SVM) 4
Gradient boosting decision tree (GBDT) 4
Long Short-term Memory Neural Network (LSTM NN) 4

Geographical analysis
Local index of transport accessibility (LITA) 3, 7
Approximate neighborhood search algorithm (ANN) 7
Potential mobility index 8
Local Indicators of Spatial Association (LISA) 8
Getis-Ord (G∗

i ) 8

2.3.1 Modeling techniques

Zero inflated negative binomial model

In Chapter 3, RQ RQ-3.3 targeted modeling exogenous factors impacting shared
E-scooter demand. The dependent variable was set as the daily number of trips
per census tract, a count variable exhibiting both high dispersion and a substantial
number of zero counts in low-demand areas. Therefore, a zero-inflated negative
binomial distribution (ZINB) model was utilized. Unlike the standard negative
binomial distribution, the zero-inflated negative binomial distribution does not
impose the constraint that the variance must equal the expected mean, thereby
allowing for additional overdispersion when the variance exceeds the mean. The
underlying hypothesis of zero-inflated negative binomial models (ZINB) is that
there are two latent classes of count data: one that consistently yields zero counts
and another that produces non-zero counts. These models consist of two parts:
the first estimate the probability of encountering zero counts, while the second
accounts for the non-zero counts and the absence of zeros [118, 119]. Typically, a
logit or probit model is suitable for determining the latent class of the data, Equa-
tion 2.1, and (β) represents the parameters vector. The probability of the excess
zero (denoted as pi), and the probability of the other counts is (1 − pi) follow a
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negative binomial distribution, with a mean of (µ), and following a Gamma dis-
tribution (Γ). Once the data class has been determined and when the probability
(pi = 0), the probability mass function for the zero-inflated model is represented
by Equation 2.2 [120].

logit(pi) = xT
i β (2.1)

P (Yi = yij|pi, µij) =

{
pi + (1− pi)(

θ
µi+θ

)θ yi = 0

(1− pi)
Γ(yi+θ)
Γ(θ)y!

µy
i θ

θ

(µi+θ)y+θ yi = 1, 2, 3, ...
(2.2)

The mean of the ZINB distribution E(yi) = (i− pi)µi, and variance V ar(y − i) =
(i− pi)µi(1− piµi + µi/Γ). The ZINB distribution is given by equation 2.2; where
(θ) is the shape parameter that allows for the overdispersion [121, 122].

Factor Analysis

In Chapter 6, one of the main objectives was to model the impacts of attitudes
and personality traits on car-sharing use. A standard method to understand and
estimate the underlying latent construction between the different variables is ex-
planatory factor analysis [123]. EFA captures common factors affecting the vari-
ables and the influence of the variables on each factor [124, 123]. EFA relies on
the covariance between variables, making it well-suited for examining ordinal and
ratio data. The process of obtaining factor analysis involves solving a set of linear
equations for each variable (x), as illustrated in the equation system provided be-
low, Equation 2.3, where (Fi) are the factors, (ℓim) is the factor loadings for factor
(m) and variable (i), (µi) is the population mean and (ϵn) is the associated random
error. In general, (m), the number of factors is smaller than the original number
of variables. Factor loading near to one indicates that the (Xi) is highly influenced
by (Fj). On the contrary, if the factor loading is near zero, this indicates the (Xi)
is less influenced by (Fj)

X1 = µ1 + ℓ11F1 + ℓ12F2 + ......+ ℓ1mFm + ϵ1

X2 = µ2 + ℓ21F1 + ℓ22F2 + ......+ ℓ2mFm + ϵ2
...

Xn = µn + ℓn1F1 + ℓn2F2 + ......+ ℓnmFm + ϵn

(2.3)

Five main assumptions are considered while estimating EFA:

• Random error terms have a mean value of zero; E(ϵi) = 0 for i =1,2,...,n

• Factors means are zero; E(fi) = 0 for i =1,2,...,m

• Common factors have a variance equal to one; σ2(fi) = 1; i =1,2,...,m
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• Specific variance is the variance of the error term; σ2(ϵi) = Ψ, where Ψ is a
diagonal matrix

• No correlation between any of the factors; Cov(fi, fj) = 0 ∀ i ̸= j

Discrete outcome models

Definition: discrete outcome models encompass a group of models used to repre-
sent situations where an agent selects among a set of alternatives, products, or a
sequence of options over time or expresses an ordered response on a scale. These
choices possess a discrete nature, indicating that the selection of one option is
restricted to that specific option due to its countable and distinct characteristics.
Three fundamental properties characterize the discrete nature of these alterna-
tives or choices: i) mutually exclusive options: Selecting one option precludes the
selection of any other options; ii) exhaustive options: The choice set includes all
possible options; iii) limited and countable number of options: The number of
options available is finite and can be counted [125, 126]. The most common forms
of these models are binary and multinomial models. These models were used in
Chapter 5 to answer RQ-5.1 .

Ordered discrete responses models: ordered response models are extensions of
multinomial logit models that account for ordered outcomes, which are not initially
considered in the standard multinomial models [123]. In the case of ordered models,
the assumption of independent errors, as in the logit model, does not hold. Instead,
each alternative is closely related to values near it and irrelevant to alternatives
further away. These models were utilized in Chapter 6 to answer RQ-6.5 .

Hybrid choice models: the Hybrid Choice Model (HCM), or Integrated Choice
and Latent Variables Model (ICLV), is an extension of rational discrete choice
models. Initially proposed by MacFadden in 1986 and Train et al. in 1987, the
HCM integrates latent variable models into choice models [127]. The main ob-
jective of this integration is to enhance the interpretability of the choice process
by incorporating the user’s cognitive behavior, attitude, and psychological factors
into the choice model. Additionally, the integration aims to improve the model’s
goodness of fit when appropriate. This approach combines observed and unob-
served factors to provide a more comprehensive understanding of decision-making
processes in various domains [128]. These models were utilized to answer RQ-6.2
, RQ-6.3 , RQ-6.4 , and RQ-6.5 .

2.3.2 Machine learning techniques

In Chapter 4, we employed the model transfer problem for time series prediction
[129] to predict scooters’ fleet utilization or the number of trips per vehicle per
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day. We compared the prediction results using different evaluation matrices for
four machine learning techniques; Linear Regression (LR), Support Vector Regres-
sion (SVR), Gradient Boosting Decision Tree (GBDT), Long Short-term Memory
Neural Network (LSTM–NN). Given the historical demand data in the source city
(Austin) alongside the first month of the demand data in the target city, Louisville,
a time series model was trained and applied to predict future fleet utilization in
the target city. The source city is the city that provides us with the long-term
patterns of historical demand and fleet utilization changes. In contrast, the target
city only has information on demand changes over a short pilot stage.

The historical data of a city is denoted as D = {di}Zi=1, where (Z) is the number
of census tracts (demand aggregation zones). dc = {tc, zc} is the data of census
tract (c), consisting of both historical time series (tc ∈ RL) and auxiliary census
tract attributes (zc ∈ RN), where (L) is the length of the time series and (N) is the
length of auxiliary attributes. The length of (tc) depends on the available amount
of historical time series data, and (zc) depends on the other auxiliary variables’
length. The data of the source city and the target city can be respectively denoted
by (DS) and (DT ). The two lengths (L) and (N) can be determined based on the
richness of data rather than fixed. For example, longer pilot stage duration and
more accessible land use attributes allow the choice of larger (L) and (N).

An autoregressive formulation was adopted for the time series prediction problem,
transforming it into a supervised ML problem. The raw data was split into two
samples for model training and testing. A sample is described by a vector pair
(xi, yi), where (i) is the index of the sample. The first element (xi = {xj

i}mj=1 ∈ X )
is an (m-dimensional) feature vector, which is comprised of (m) features extracted
through feature engineering from the census tract attributes and the time series

data of (w) consecutive days in a specific census tract (c), i.e., (t
(i:i+w)
c ). The label

(yi ∈ Y) is the succeeding time series value in the census tract (c), i.e., (t
(i+w)
c ).

The ordinary time series prediction problem aims at learning an accurate mapping
(f : X → Y) on future time steps in the same time series as in (DS). However,
the model transfer of the time series prediction problem aims at learning another
mapping (f ′ : X → Y from DS), but still performs well on the time series of
(DT ). The foremost difficulty in model transfer lies in the inconsistency between
the distributions of data in (DS and DT ), also known as the covariate shift. To
address this problem, we proposed a simple yet effective approach to align the
distributions of time series in two cities and minimize the generalization error
of the time series prediction model. Following the standard ML procedures, the
four-step pipeline of (sample construction – feature engineering – model training
– inference) was adopted. Two strategies were used to facilitate the transfer of
the time series prediction model: sample normalization and label difference. Note
that the proposed framework is compatible with various base ML models, which
will be discussed in subsection Base models.
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Feature engineering

Feature engineering is an essential step in ML model development; raw data were
examined and processed before using it in the modeling process. Our model in-
corporated two categories of features, namely time-series features and auxiliary
features. Historical time series characteristics were included in the feature set so
that the model could learn the patterns of time series dynamics from them. Trend
and seasonality should be removed through differencing before applying classical
time series prediction tools like ARIMA [130]. Although ML models do not explic-
itly assume stationarity for time series prediction, a nonstationary time series is not
always suitable for prediction without preprocessing, especially for decision-tree-
based models, which is explained in the following section. Therefore, a first-order
differencing was applied to the demand data as prediction labels. Apart from
time-series features, auxiliary information was proven to help significantly predic-
tion tasks [131]. In the used models, we incorporate four auxiliary features, i)
temporal features, ii) meteorological features, iii) built environment features, and
iv) sociodemographic features. Temporal and meteorological features vary across
different days (dynamic data); built environment and sociodemographic features
are static for each census tract, along with the road network and infrastructure
attributes.

Base models

This subsection introduces the four ML techniques we applied in Chapter 4. We
choose the models based on four different types of ML; linear regression (LR)
depends on the assumptions of the linear relationship between the features and
the outputs; support vector regression (SVR) uses a kernel method to impose the
non-linearity of the data; gradient-boosting decision tree models the data using
an ensemble of if-else rule sets based on tree representation. Finally, we used a
deep learning technique, long short-term memory neural network (LSTM–NN), to
capture the non-linearity of the relationship between the features and the output;
the details of each of these models are as follows;

• Linear Regression (LR): is a classical machine learning model that as-
sumes a linear or affine relationship between input features and output labels.
The simple linear regression takes the following formulation,

f(xi) = w′xi + b, (2.4)

where w ∈ Rm is the coefficient vector, and b ∈ R is the intercept. The
residual yi−f(xi) is assumed to follow a Gaussian distribution assuming the
independence of training samples; the parameters can be estimated through
the least squares method, equivalent to maximum likelihood estimation. It
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aims at minimizing the sum of squared error, formulated as follows,

min
w,b

∑
i

(yi − f(xi))
2 . (2.5)

• Support Vector Regression (SVR): is an extension of an ordinary sup-
port vector machine (SVM) for solving regression problems, originally de-
signed for classification. To make binary classification, SVM adopts a sep-
arating hyperplane (w′x + b = 0) to split the feature space (X ) into two
half-spaces. In the regression case, the hyperplane is turned into a real-
valued function (f(xi) = w′xi + b) resemblant to linear regression. Instead
of least squares, SVR is trained based on the ϵ-insensitive loss, as formulated:

ℓϵ(zi) =

{
0, if |zi| ≤ ϵ,

|zi| − ϵ, otherwise,
(2.6)

where (zi = yi − f(xi)). Unlike squared loss in the least squares, there is no
penalty when the absolute prediction error is not greater than the threshold
(ϵ). The complete optimization objective of SVR is given by,

min
w,b

C
∑
i

ℓϵ(zi) +
∥w∥2
2

, (2.7)

where C > 0 is a trade-off coefficient between the ϵ-insensitive loss and the
regularization term [132].

• Gradient boosting decision tree (GBDT): dcision tree (DT) has a su-
perior prediction performance and good interpretability [133]. Each decision
rule corresponds to an exclusive path from the root node to a leaf node in the
tree, while each leaf node is associated with a group of samples in the training
set. The rule set of a DT actually partitions a subspace (S) of the feature
space (X ) into many sub-regions. For each input feature vector, DT searches
for the sub-region to which this vector belongs, and prediction can be made
based on the samples associated with the leaf node in the corresponding de-
cision rule. The training process of a DT is a search for a satisfactory set
of decision rules, i.e., a partition of (S). It has been proven that finding an
optimal rule set for a DT is NP-Complete [130]; hence a greedy heuristic
algorithm is often used for model training, and the resulting DT is subopti-
mal. But, concerning a DT for regression problems with a determined feature
space partition, the optimal output value of a specific leaf node can be the
average labels of all the associated samples [134].
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Ensemble learning is combined with DT to improve its generalization ability
and reduce the risk of over-fitting, and GBDT is one of the representatives
[135]. The principal idea of Boosting is to express the model as a summation
of multiple base models. There are several improvements made on GBDT
in terms of engineering implementation, including XGBoost [136], CatBoost
[137], and LightGBM [138]. In this research, we adopted LightGBM, a highly
efficient GBDT framework, which utilizes two specially designed techniques,
Gradient-based One-Side Sampling, and Exclusive Feature Bundling, to ease
the computational burden of large-scale data involved in model training with-
out sacrificing the prediction accuracy.

• Long Short-term Memory Neural Network (LSTM–NN): LSTM–NN
is a recurrent neural network (RNN) model for modeling sequential data. In
contrast to most non-recurrent neural networks, RNN allows loop connections
in its architecture, which feed the outputs of a layer to itself as its inputs
in the following time step [139]. An ordinary RNN layer maintains a hidden
state (H) for a long time; in each time step (t), it is fed with the current
feature vector (xt) and the previous hidden state (Ht−1). The hidden state
of the time step (t) is updated by the non-linear transformations of the two
inputs, while another non-linear transformation of the hidden state gives the
output. LSTM improves RNN’s ability to model long-term relationships by
introducing three gated units (i.e., input gate, output gate, and forget gate)
and an additional memory state (C) in the recurrent layer. The three gated
units apply different non-linear transformations on the two inputs, whereby
the memory state and the hidden state are also updated,

It = ϕ(w′
Ixt + v′

Iht−1 + bI),

Ot = ϕ(w′
Oxt + v′

Oht−1 + bO),

Ft = ϕ(w′
Fxt + v′

Fht−1 + bF ),

Ct = Ft ⊗Ct−1 + It ⊗ φ(w′
Cxt + v′

Cht−1 + bC),

Ht = Ot ⊗ ϕ(Ct).

(2.8)

where (ϕ(·)) and (φ(·)) are sigmoid and hyperbolic tangent activation func-
tions respectively; (w), (v) and (b) are parameters; (⊗) is the Hadamard
product. The training of LSTM–NN can be realized via back-propagation
through time, which unfolds the computation steps along time to allow the
use of the chain rule [140].

Model transfer

Time series differencing is used to remove trends from the data (detrend) in re-
sponse to GBDT’s defect in extrapolation. Denote two consecutive time series
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values as (xi−1) and (xi), the first-order differencing yields a transformed label (yi)
as follows,

yi = xi − xi−1. (2.9)

However, differencing alone is inadequate regarding the model transfer problem
due to the uneven distributions between data in (DS) and (DT ). Covariate shift
happens when the probability distributions between training data and test data
differ while the conditional distributions of labels on input data are the same [141].
Nevertheless, an implicit assumption of standard supervised learning models, in-
cluding GBDT, is that the training and test data follow the same probability
[142], refraining from dealing with covariate shift. (DS) and (DT ) denote the dis-
tributions of data in (DS) and (DT ) respectively; denote the actual underlying
functions mapping input feature vectors to labels on the two sets of data as (fS)
and (fT ). Then, following [142], we called ⟨DS, fS⟩ the source domain and ⟨DT , fT ⟩
the target domain. The expected error on the source domain can be obtained by

ϵS(g, fS) = Ex∼DS
[ℓ (g(x), fS(x))] , (2.10)

where g(·) is the model, ℓ(·, ·) is the loss function. Similarly, the expected error on
the target domain can be defined as ϵT (g, fT ).

In general, models are trained to minimize the empirical error on the source do-
main; nevertheless, in the model transfer problem, we minimize the error on the
target domain. One option is transforming the data from (x) to (x′) such that the
corresponding distributions (D′

S) is similar to (D′
T ). Inspired by the batch nor-

malization strategy in deep learning [143], we proposed the sample normalization
strategy to transport the knowledge learned from the source time series to the
target time series. We implicitly assumed that time-series dynamics, irrespective
of the value scale conditional on given features. For each sample, the input time
series segment was normalized to a mean of zero and a variance of one before ex-
tracting time series features. Denote the time series segment as (t), the normalized
segment (t̃) can be obtained by:

t̃ =
t− E (t)

D (t)
, (2.11)

where E (t) and D (t) are the mean and the standard deviation of t respectively.

Sample normalization was adopted to reduce the covariate shift for the studied
model transfer problem. The feature construction procedure with sample normal-
ization was presented in Algorithm 1. Feature vectors are constructed for data
in each census tract following the FeatureConstuction procedure. It should
be noted that a complete training sample consists of a feature vector and a label,
where the label also needs normalization. Recall that sample normalization takes
a time series segment of consecutive (w) days; the label corresponds to the day
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right after this segment and needs to be normalized using the mean and standard
deviation of the previous segment. As the label represents the day the demand is
predicted, it should not be combined with the previous segment when calculating
the normalization parameters, i.e., the mean and standard deviation.

Algorithm 1 Feature Construction (FeatureConstuction) with Sample Normaliza-
tion
1: procedure SampleNorm(t)
2: ▷ t is a time series segment.
3: µ← 1

|t|
∑|t|

i=1 ti

4: σ ←
(

1
|t|

∑|t|
i=1(ti − µ)

)1/2

5: t̃← (t− µ)/σ
6: return t̃
7: end procedure

1: procedure FeatureConstruction(w, t,xtm,xbs)
2: ▷ w is the time window size2, t is a time series.
3: ▷ xtm is the temporal and meteorological information.
4: ▷ xbs is the built environment and sociodemographic information.
5: Initiate s← ∅
6: for i← 1 to |t| − w do ▷ i is the index of day.
7: t̃← SampleNorm(t(i:i+w)) ▷ Normalize the time series segment.
8: r̃ ← FeatureExtraction(t̃) ▷ Extract time series features from t̃.

9: u← r̃ ∪ xbs ∪ x
(i+w)
tm ▷ u is the feature vector of a sample.

10: s← s ∪ {u}
11: end for
12: return s
13: end procedure

2.3.3 Spatial analysis

Local Index of Transport Accessibility (LITA)

In chapter 3 and 7, the relation between SMS and accessibility to PT was under
examination. We used the Local Index of Transport Accessibility (LITA) to indi-
cate the accessibility level to PT. LITA calculations consider three aspects of PT
service characteristics per the geographical aggregation unit; in this dissertation,
the census zone was the unit. The three considered aspects are: i) route coverage
score: the number of public transportation stops per zone; ii) frequency: the daily
number of buses traveling the zone, and iii) mode capacity: seat–miles per capita.
LITA score is calculated as follows:

• The route cover score; the number of bus stops in the geographical zone area
calculated in the square mile

2The window size used for feature extraction is 28 days. In this research, we assume there is only one
month available in the target city; hence the choice of window size is approximately one month.
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• The number of buses traveling the geographic zone in a day

• The capacity score is calculated as the total daily seats on the bus line, bus
capacity multiplied by the number of buses per day multiplied by the length
of the bus route in the zone (in miles), divided by the sum of the total resident
and employed population per zone

The average of the three scores is calculated and added to 5.5 to avoid negative
numbers resulting in the LITA score [144], for which the higher the value, the
better the accessibility per zone.

Approximate Nearest Neighbor (ANN)

In Chapter 7, RQ-7.1 objective was to evaluate the distance between shared E-
scooters and the nearest bus stop. One commonly used algorithm for such a task
is the Approximate Nearest Neighbor (ANN) [145]. ANN algorithms efficiently
find the approximate closest point in a dataset to a given query point. It uses data
structures to guide the search, reducing computational costs in high-dimensional
spaces. The algorithms trade off accuracy for speed by returning an approximate
solution close to the nearest neighbor, refer to 2.

Algorithm 2 Approximate Nearest Neighbor (ANN)

Require: Query point q, dataset D, number of neighbors k
Ensure: k nearest neighbors of q
1: Initialize an empty priority queue PQ
2: for each point p in D do
3: Compute the distance between q and p
4: Insert p into PQ with the distance as the priority
5: if the size of PQ exceeds k then
6: Remove the point with the highest priority from PQ
7: end if
8: end for
9: return The k points in PQ

Potential mobility index (PMI)

In Chapter 8, Potential Mobility Index (PMI) was used to evaluate the efficiency
of the transport network of the different modes of transport. PMI is an aerial
speed measure from one location to another location, considering the direct dis-
tance between the two locations (d) and the network travel time (T ) [146]. PMI
was calculated, for each mode, as the average aerial speed of each census block’s
centroid to all the other census block’s centroids within the study area using the
different modes.
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PMI(i) =
1

N

N∑
i=1

d(i, j...n)

T (i, j...n)
(2.12)

where:

PMI(i) = average aerial speed for zone i

d(i, j...n) = aerial distance between i and j

T (i, j...n) = network travel time between i and j

N = total number of zones

(2.13)

Local Indicators of Spatial Association (LISA)

In Chapter 8, we investigated the spatial distribution of the sociodemographic
characteristics in the study area. We used the Local Moran I index, or Local
indicator of spatial Association (LISA), which is a measure for the spatial auto-
correlation, or spatial similarity within the study area of one variable in compari-
son to the surrounding spatial units, in this case, the surrounding spatial blocks.
Local Moran’s I generates a spatial autocorrelation map, where each location is
classified into four categories based on the mean value of the variable: i) High-
High: Locations with high attribute values surrounded by neighboring locations
with high values (clustered hotspots); ii)Low-Low: Locations with low attribute
values surrounded by neighboring locations with low values (clustered coldspots),
iii) High-Low: Locations with high attribute values surrounded by neighboring lo-
cations with low values (outliers), and iv) Low-High: Locations with low attribute
values surrounded by neighboring locations with high values (outliers). Queen-case
Contiguity-based neighbor was used for calculating the spatial weights.

Ii =
(xi − x̄)∑N

j=1(xj − x̄)2/(n− 1))

N∑
j=1

wij(xj − x̄) (2.14)

where:

N = number of blocks

xi = tested variable for the tested spatial unit

xj = attribute of the neighbour spatial unit

x̄ = mean of x

W =
N∑
i=1

N∑
j=1

wij

(2.15)
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Getis-Ord (G∗
i )

In Chapter 8 , We used the Gi* analysis to identify the trip’s hot spots in reference
to the distribution zones and to see the relation between the trips and the different
POI hotspots. Getis-Ord, also known as the Getis-Ord Gi* statistic [147], is a spa-
tial statistical method used to measure spatial clustering or spatial autocorrelation
of a variable within a geographic area. It helps identify whether values of a par-
ticular attribute or phenomenon are clustered, dispersed, or randomly distributed
across space. The Getis-Ord statistic calculates a z-score for each location in a
given dataset, indicating the extent to which the value at that location is similar
to its neighboring values. The z-score measures how many standard deviations the
observed value is away from the mean value of its neighbors. Positive z-scores in-
dicate clustering (hotspots) of high or low values, while negative z-scores indicate
dispersion (coldspots).
For calculating the local Getis-Ord Gi* statistic:

G∗
i =

∑n
j=1 wij · xj − x̄ ·∑n

j=1wij

s ·
√∑n

j=1 w
2
ij−(

∑n
j=1 wij)2/n

n−1

Where:

xj = value of the variable at location j

x̄ = mean value of the variable across all locations

wij = spatial weight between locations i and j

s = standard deviation of the variable (x)

(2.16)

For calculating the z-score:

zi =
G∗

i − µG

σG

Where:

zi = Z-score for location i

µG = mean of the Getis-Ord Gi* statistic across all locations

σG = standard deviation of the Gi* statistic

(2.17)
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The full details of this chapter can be found in the following article:

Abouelela, M., Chaniotakis, E., & Antoniou, C. (2023). Understanding the
landscape of shared-e-scooters in North America; Spatiotemporal analysis and
policy insights. Transportation Research Part A: Policy and Practice, 169,
103602.
Appendix A

3.1 Introduction and research objectives

Lime (www.li.me) launched one of the world’s first shared E–scooter systems in
Santa Monica, California, in July 2017, signifying the start of a revolutionary era
of shared micromobility. The expansion and proliferation of scooters come with
opportunities and challenges [65]. Efficient curbside space utilization, energy sav-
ings, greenhouse gas (GHG) emissions, and congestion reduction are some scooters’
benefits claimed [148]. At the same time, the challenges related to the introduc-
tion of scooters cannot be overlooked. Scooters’ are significantly raising safety
concerns, as half of the reported accidents related to scooter use involved severe
injuries, while fatal accidents were reported in the USA [62]. Scooters’ deployment
can cause other disturbing effects on cities. Scooter deployment problems can be
summarized as fleet-size control, fleet capping and organization, permit cost, at-
tracting users from active modes, and increased safety hazards [107, 64, 65].
The diverse range of challenges and the potential benefits of the widespread use of
scooters identified in the pertinent literature render the need for further investi-
gating their actual use in different urban contexts. While there is a growing body
of literature on the topic, see, for example, [149, 150], most studies conducted eval-
uate scooter’s use characteristics on data for limited periods of time (for example:
[108] used three months of data; [107] used four months of data, and [151] who
used six months of data), ranging from five weeks to four months or utilizing ex-
periences from just one pilot case, or they do not differentiate or compare between
pilot/early-stage use and regular use after service adoption and users construct-
ing service-familiarity [108, 109, 107]. At the same time, most studies focus on
using data from just one city, with a few exceptions see, for example, [152]. This
omission limits the scope of analysis, preventing the comparison and extraction of
conclusions regarding the potential generalization of the findings.
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3 Spatiotemporal demand patterns

In this research, we leverage scooter trip data from four U.S. cities (Austin, TX;
Chicago, IL; Louisville, KY; Minneapolis, MN) and one Canadian city (Calgary,
AB) to perform a comparative empirical analysis of the spatial, temporal, and de-
mand characteristics of the services, aiming at devising a thorough and informative
investigation of scooter use, demand patterns, and factors impacting the demand.
To be able to generalize the methodology of this study, we use open source data
sources; Meteorological data, census data, infrastructure-related data, land use
data, and general transit feed specification files (GTFS), to come up with an in-
vestigation of factors affecting scooters’ demand, including the use of Local Index
of Transit Availability (LITA) for evaluating the relation between scooter use and
accessibility to public transportation. As a result of the previous objectives, this
research provides answers to the following pertinent research questions:

RQ-3.1 What are the scooter’s demand characteristics, and are there simi-
larities and differences between the temporal and spatial scooter use
patterns across and within different cities?

RQ-3.2 What are the similarities and differences between scooter trip charac-
teristics in different cities?

RQ-3.3 Which exogenous factors affect scooter demand?

3.2 Data and methods

3.2.1 Data

Using the combined –with external data sources– trip data, we investigate spa-
tiotemporal demand patterns and the impact of the exogenous factors on the daily
generated trip demand. Specifically, to answer the posed research questions, we ex-
tract and compare demand patterns to understand the similarities and differences
of trip characteristics in different cities. The used datasets are trip data, daily
meteorological data, infrastructure data, and GTFS files. Refer to Section 2.2.1
for the details of the used data.

3.2.2 Methods

The overall methodology followed is depicted in Figure 3.1. The methodology con-
sisted of three main stages. In the first stage, trip data was cleaned and aggregated
by the different spatial and temporal units to examine the demand pattern. In
the second stage, trip data was combined with the other external source of data,
and they were aggregated by the day and census tract to be used in the modeling
process. Finally, zero-inflated negative binomial (ZINB) models were estimated,
showing the factors that impact the demand.
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Figure 3.1: Research methodology

3.3 Analysis results

3.3.1 Temporal demand

Seasonal demand

At the beginning of the scooter’s deployment, the demand increased rapidly for
about two weeks until it reached a steady trend that exhibited seasonal demand
patterns. In general, the demand during the pilot projects drops near the end
of the project, which is not observed for Austin and Louisville, where scooters
continue to operate to date. Minneapolis exhibited a different trend, which has a
surge in demand one month before the end of the pilot, where the demand almost
doubled in November with no special events observed in the city during this period
and despite the cold weather. Also, Chicago had a different demand trend than the
other cities, where the demand starts from a high value, and it decreased over time
by a steady slope till two weeks before the end of the pilot, where the decreasing
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slope of the demand is steeper, which we believe was resulted or partially aided
by the severe weather conditions during the end of the project period [153].

Hourly and daily demand

We calculated the percentage of the hourly trip in reference to the average daily
demand to normalize the impact of the vehicle supply in the different cities and to
be able to compare the hourly demand trends between the different cities. It is to
be noted that shared mobility demand is a direct impact of the supply [98]. Inter-
estingly, the maximum hourly demand is almost consistent among all the cities,
and it ranges between 8% - 12% of the total demand. The only exception to the
previous finding was in Minneapolis, where the average maximum hourly demand
is high, and it is around 15%. The general hourly demand in the different cities
can be described as a bipolar distribution with two different sizes of peaks; one
minor morning peak (between 8:00-10:00) in Austin, Chicago, and Calgary during
the weekdays, and the prime peak (in general between 16:00 - 18:00). On week-
ends, scooter demand has one peak during the afternoon and a higher percentage
of early morning trips, starting after midnight, compared to the rest of the week.
The only exception is Minneapolis, where the weekend and weekday demands are
almost identical. Still, these observed patterns in Minneapolis could be because
trips’ starting times were coarsely aggregated to the nearest half-hour.

3.3.2 Spatial demand

We performed the spatial demand analysis in two steps. In the first step, we
aggregated all the trips temporally into weekend and weekday trips; secondly, we
aggregated the trips spatially to the census tracts corresponding to their starting
locations. We normalized the difference between the weekend and average weekday
trips per census tract to compare the examined cities’ results. The spatial analysis
of scooter demand reveals other exciting findings. In all cities, spatial demand
exhibits a very similar pattern: during weekdays, the demand is concentrated
outside the downtown area, especially around educational institutes, schools, and
universities. During the weekends, demand is concentrated in downtown areas and
around specific points of interest POIs, areas known for leisure activities, such as
bars and restaurants, recreational areas, parks, and lakes.

3.3.3 Trip characteristics

The overall average trip distance is around 1.7±2 km. Interestingly, the pilot
projects presented a longer average trip distance than those observed in later
use stages in Austin and Louisville. In the discontinued pilot of Chicago, the
average trip distance was longer than in other cities. Similar behavior holds for
trip duration and trip speed, where pilots’ trips are longer and faster than in the
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later use stage. Also, Chicago has the fastest trips on average, and Louisville has
a long trip duration. Also, the trips’ characteristics in the examined five cities are
similar to the trip characteristics of Washington DC analyzed by [154, 109]. It is
worth mentioning that the average trip cost in all cities during the data collection
period was 1$ for unlocking the vehicle and, on average, 0.33$ per minute; the
price in Louisville was slightly lower than the other cities (1$ for unlocking the
vehicle + 0.15$ per minute), which could be a reason for observing longer trips in
Louisville [151].
We had an initial hypothesis that scooter behavior might be different in terms
of trip characteristics at different times of the day. Therefore, we examined the
average speed distribution per hour. Figure 3.2 shows the average speed per hour
per city. All cities exhibit a similar speed trend during the day, with a noticeable
speed increase during the early morning and morning hours between (2:00 - 10:00),
except for Minneapolis and Chicago. Minneapolis shows a slightly different hourly
speed profile that departs from the average between 10:00 and 16:00. Chicago
follows the same trend but with a different speed profile. The speed on average
is around 12 km/hr, but still, it exhibits an increase in the early morning and
morning hours between (2:00 - 10:00) to approximately 15 km/hr. The rise in the
speed during the early morning hours in all the cities might be encouraged by the
low traffic volume, which is a factor that might increase injury probability during
that time of the day.

3.3.4 Demand modeling

To understand factors impacting the demand, trip generation, we developed ZINB
modes, where the dependent variable of the modeling process was the number of
daily trips per census tract zone. Rainy days and snowy days reduce the proba-
bility of scooter use. On the other hand, warmer days increase the likelihood of
scooters’ use, except in Chicago, where the average daily temperature coefficient is
not statistically significant. Wind speed has a mixed effect. Also, scooter use in-
creased on weekends compared to weekdays in all cities. Zones with higher transit
accessibility (higher LITA value) generate more trips than other zones; the increase
in the number of shared bike stations and the length of the bike lanes per zone
increases the likelihood of scooters’ use, except in Minneapolis; the coefficient of
bike lanes is not statistically significant. Only in Louisville do the bike lanes have
a negative sign coefficient indicating the reverse impact. This can be attributed
to the geographic distribution of bike lanes in the northwest and southeast of the
scooter operation zones, with fewer trip rates than in the downtown area. Side-
walk length per zone has a mixed impact on the probability of scooter use: in
Austin, where it is permitted to ride on sidewalks, the increase in sidewalk length
increases the trip generation; in other cities, however, it is not allowed to ride on
the sidewalk, it reduced the trip generation rate. Residential land use reduces the
probability of generated trips in the area compared to other land uses.
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Overall Average Speed = 9.82 km/hr
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Figure 3.2: Hourly speed profile

3.4 Discussion, study limitations, and conclusion

3.4.1 Discussion

This study used around nine million scooter trips from five North American cities
to investigate scooters’ demand, trip characteristics, and the factors impacting
their use. Several findings suggest the consistency of scooter use in different cities,
despite their size and population, urban structure, and general travel demand be-
havior. The conclusions revealed could help organize the shared–E–scooter service
in other cities, or they can be used as guidelines before deploying the service in
other cities. The main findings’ impacts on operation policies are discussed in the
following subsections.
Maintenance and redistribution work should consider spatiotemporal demand pat-
terns, and they should be synchronized with maintenance and vehicle redistribu-
tion work to allow the vehicles to be present during peak demand hours. Moreover,
the predefined scooter demand patterns would utilize the vehicle redistribution
work to minimize the empty VKT. Scooter demand shows several individuals’
atypical temporal patterns. For example, in cities that allow late-night operation,
late-night use typically increases during the weekends. This increase in late-night/
early morning hours scooter demand is an indication that scooters could extend the
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temporal accessibility for travel options, especially if the vehicles are available in
high-demand places during these times. Moreover, scooters’ demand increase was
found to be associated with the increase in accessibility to PT, as indicated in the
estimated regression models, and micromobility has received increased attention
as a viable mode for the first/last mile dilemma [39, 152, 155].

Furthermore, seasonal demand trends indicate an increase during warmer months
and a demand drop around January. Such patterns could help dynamically adjust
the fleet size over the year to optimize operating costs and allow vehicle mainte-
nance during low-demand periods. Scooters’ demand is sensitive to special events;
in Austin, the daily demand was around four times the average demand during the
South by Southwest (SXSW) music festival; similar behavior was also observed in
Washington DC during the Cherry Blossom festival [154].

Spatial demand patterns are generally consistent between the examined cities,
regardless of their urban structure differences. Spatial demand is concentrated
around leisure activities, such as restaurants, bars, and parks, during weekends,
while on weekdays, around the downtown area and educational institutes. Also,
the demand is more geographically dispersed on the weekends than the more com-
pact and clustered weekday demand. The distribution and maintenance operations
should consider these locations as hot spots, while after the weekend, the redistri-
bution process should cover more expansive areas to retrieve the scooters.

Average trip speed, distance, and duration are consistent among the five exam-
ined cities. Pilot projects and early use stages exhibited slightly higher speeds and
longer trip distances and duration, possibly due to new users’ excitement. Con-
sidering that accidents are highly correlated with a lesser familiarity with service
use [156], which has a higher probability during the scooter introduction period,
strict monitoring for vehicle speed should be applied. Furthermore, both cities and
operators should provide educational marketing plans to educate the users about
how they would use the service adequately and the rules for using the vehicles,
identifying the hazards that could arise from improper use.

External factors impacting the demand are almost the same in the different cities;
however, their magnitude might differ from one city to another. Meteorological
conditions play a significant role in demand generation, with snow and rain being
decisive factors. Therefore, seasonal maintenance and fleet size control should be
utilized dynamically based on the short and long-term weather forecast to avoid
excessive vehicle deployment, which most likely will be occupying public spaces
that might impair accessibility. Land use, PT accessibility, and infrastructure are
also essential factors impacting the demand, and they are hard to change factors.
The previous factors need long-term high capital investment to alter; therefore,
scooter deployment should be coordinated to utilize scooter use and decrease dis-
turbance for the other elements of the urban environment. For example, scooter
deployment should be reduced in dominantly residential areas. In areas with high
PT accessibility, the supply should be increased to encourage scooters’ use as a first
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and last-mile solution. Finally, sociodemographics such as age and income level
affect scooter demand; therefore, scooter deployment should consider the popu-
lation distribution; for example, areas with a younger population might require
more vehicles than areas with older population groups. Income-level impact on
scooter demand has been observed in different studies [152, 155]

3.4.2 Study limitations

There is no available data reflecting the exact daily number of scooters available in
the public right of way; the only available information is the fleet size for each city,
reflecting the maximum allowable number of scooters. Therefore, when controlling
for the number of vehicles, the exact daily number of scooters was not used, which
might affect the actual number of trips per vehicle rate; however, we do not think
the overall observed demand trend might have been affected by the lack of the exact
number of vehicles. We also did not consider the influence of the re-balancing and
redistribution of the vehicle processes that might impact the demand. There was
no available information regarding these processes. We assumed that scooters are
uniformly distributed through the study area, especially for the datasets where trip
Geo-location was aggregated. We believe that the availability of such information
should enhance our understanding of the demand pattern. The data used are
collected through different periods with no complete overlap, which is expected
due to the nature of such data; however, it still represents a limitation.

3.4.3 Conclusion

This research analyzed scooter trips from four US and one Canadian city to answer
three main research questions regarding the different demand patterns and the
exogenous factors that impact the demand. The answers to the research questions
have helped us better understand and provide insights into the current scooter
use on different levels. Cities and operators may find these insights helpful in
planning the operational schemes for current or future scooter-sharing projects.
Based on the demand patterns, both cities, and users are satisfied with scooter
use, as expressed by the demand increase and the continuation of the pilot projects
in cities like Minneapolis and Chicago. Future research can provide additional
insights into this topic, which is only now gaining momentum.
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The full details of this chapter can be found in the following article:

Abouelela, M., Lyu, C., & Antoniou, C. (2023). Exploring the Potentials
of Open-Source Big Data and Machine Learning in Shared Mobility Fleet
Utilization Prediction. Data Science for Transportation, 5(2), 5.
Appendix B

4.1 Introduction and research objectives

Shared mobility services are an example of the recent innovative solutions that
could cater to the growing increase in travel demand. These services provide com-
muters access to different vehicle types or the ability to share rides based on the
user’s needs [157]. Shared mobility services have many positive potential impacts
on the urban environment, including reducing vehicular traffic [40], reducing en-
ergy consumption, and increasing transport system efficiency by achieving saving
in travel time and travel costs [158]. Notwithstanding the possible positive effects
of shared mobility services, some of them have integration, planning, and policies
challenges following their sudden and novel introduction to the urban environ-
ment, such as the case of shared-E-scooters, we will refer it as scooters in the
rest of the article. Scooters face several challenges, such as the increase of related
injuries [62], defining the optimal fleet size, vehicles optimal redistribution strate-
gies, speed limits enforcement, and equity regulations [159]. In order to further
study these problems and define their causes and factors leading to them, more
data is required. The advancement of information and communication technol-
ogy (ICT) has also opened the horizon for collecting and analyzing new types of
data in large quantities, or so-called big data [83, 73]. Different entities, primarily
operators and cities’ authorities, are currently sharing their data (big based on
volume, velocity, or variety) openly to encourage the innovation of new methods
and ideas to improve the urban environment, to increase integration between the
different transportation services, and to help in regulating and dynamically adjust-
ing the operation of various shared mobility services within the urban environment
[160, 84].
In this paper, we use the publicly available scooter trips data from two American
cities, Louisville, Kentucky, and Austin, Texas, in combination with other open
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data sources, to explore the potential and accuracy of using open source data and
Machine Learning (ML) techniques to predict the scooter daily fleet utilization
(number of trips per vehicle). The main objective of this research is to create
and develop a framework that could help the different stakeholders involved in the
operation, organization, and governance of the micromobility services to integrate
the service in the urban environment efficiently and to facilitate the policy-making
process. The contribution of this work is comprehended by answering the following
research questions:

RQ-4.1 Is using open-source data and ML techniques adequate to predict the
daily scooter fleet utilization (daily number of trips per vehicle)?

RQ-4.2 Is there any differences between the prediction accuracy for differ-
ent level complexity ML techniques; Gradient boosting decision tree
(GBDT), Linear regression (LR), Support Vector Regression (SVR),
and Long Short-Term Memory Neural Network (LSTM-NN) ?

RQ-4.3 Could the proposed methodology predict the demand for long periods,
e.g., more extended than one year?

RQ-4.4 Could the proposed methodology be implemented in real-life scooter
deployment, organization, and governance processes?

RQ-4.5 Could the proposed methodology be used for other cities?

4.2 Data and methods

4.2.1 Data

Four main sources of data were used in this research; all of them are open-source
data that are available publicly. Scooter trip data from the city of Louisville por-
tal [103], Sociodemographic data from the American Census Bureau (census.
gov), built environment data from (Osm.org), and finally weather data from
(visualcrossing.com) for the details of the collected data and data processing
details, refer to Section 2.2.1.

4.2.2 Methods

Figure 4.1 shows the overview of the proposed methodology framework. We em-
ployed in this research the model transfer problem for time series prediction to
predict scooters’ fleet utilization [129]. Given the historical demand data in the
source city (Austin) alongside the pilot stage demand data in the target city,
Louisville, a time series model was trained and applied to predict future fleet uti-
lization in the target city. We considered the first three months of the service
deployed in the source city as a pilot stage, as commuters are generally trying
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4.3 Analysis results

to get familiar with the service, and it is the same period used by other cities to
evaluate scooters’ deployment, such as Minneapolis, MN [38]. The source city is
the city that provides us with the long-term patterns of historical demand and
fleet utilization changes, whereas the target city only has information on demand
changes over a short period of time. An autoregressive formulation was adopted
for the time series prediction problem, such that it was transformed into a super-
vised ML problem. The raw data was split into two samples for model training
and testing.
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Figure 4.1: The used methodological framework

4.3 Analysis results

4.3.1 Model results

The prediction accuracy was evaluated using two metrics; root mean squared error
(RMSE), and mean absolute error (MAE). The proposed framework was applied
to the different used ML techniques. We first compare the performance of the
models as shown in Table 4.1 upper part, and then we compared the performance
of the model after the transfer (label differencing and sample normalization)
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To further improve the transferability of the model, we applied the model transfer
strategies to all the models. We applied the different transfer strategies as shown in
Table 4.1 lower part, which shows the model’s prediction results summary after ap-
plying the different transfer strategies. A time series prediction without treatment
of the covariate shift issue suffers from low RMSE and MAE on the training set.
However, when faced with unseen data in another city, the test set’s performance
suffers considerably because of distinct time series patterns. Firstly, we applied la-
bel differencing, but it did not improve accuracy as the distribution inconsistency
in the input space was not addressed; similarly, only applying sample normaliza-
tion was ineffective. The transfer error was finally reduced when the two strategies
were used simultaneously, which is evident in the best-performing model, Light-
GBM. For LightGBM, The RMSE dropped from 2195.7 to 1845.6, which showed
an improvement of the performance by approximately 15.9%. Meanwhile, a drop in
accuracy on the training set was also observed, indicating a less severe over-fitting
model.
As The LightGBM model was the model with the best prediction performance,
we evaluated the importance of factors influencing the prediction using the num-
ber of node splits corresponding to each feature in the trained LightGBM model.
The more a feature was adopted for a split in the tree, the higher its contribution
to the prediction [161]. To quantify the influence of the different factors groups,
we categorized the features into five main groups. Time series features accounted
for 67.0% node splits in the trees, whereas each category of auxiliary features
accounted for approximately 6–10% node splits. Further experiments were per-
formed to see whether removing specific feature groups would significantly reduce
prediction accuracy. We found that removing every feature group will more or less
negatively impact the model performance. The results are generally consistent
with their relative importance; the removal of time series features — the most
critical group of features — resulted in a performance drop of around 43% in Test
RMSE. Removing auxiliary features did not incur severe impacts, where the accu-
racy reduction caused by removing built environment features or sociodemographic
features was less than 2% per group.

4.3.2 Error analysis

We analyzed the prediction error, its value distribution, temporal distribution, and
spatial location considering the test set Louisville’s dataset. We observed that all
the estimated models captured the overall demand pattern with some shortcom-
ings. The LR model tends to overestimate the utilization rate between (1-1.75)
vehicles per trip, and it underestimates the demand when it is higher than 1.75
trips per day; for the rest of the value, it is somehow able to estimate the fleet
utilization rate. SVR was consistently unable to predict the utilization rate; for
rates below 1.25 vehicle/trip, the model underestimated the results, and for rates
over 1.25 vehicle/trip, the model overestimated the utilization rates. Regarding
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the temporal distribution of the error, SVR was the model with the least predic-
tion capabilities. LSTM could not accurately predict the low utilization rate and
tended to overestimate the utilization below 1.2 trips per day and underestimated
the demand higher than 1.2; also, the model had some incidents where the esti-
mated utilization rates were significantly higher than the actual rate. The LGBM
model had the best performance among the four models. It can be observed that
the prediction results of the proposed model capture most of the demand seasonal
peaks and troughs dynamics without lag except for the several sudden spikes in
the early stage of operation (e.g., the spike in mid-April). However, the model
inclines underestimation regarding peak values, possibly an outcome of model reg-
ularization, as predictions of large values are more likely to be connected with high
errors (error terms are increasingly proportional to the absolute demand value).
Potential solutions include increased training data and additional information like
special events and fine-grained weather forecasts. The conclusion of the error
analysis process, which was done in multiple dimensions, shows that the LGBM
model is superior in prediction accuracy compared to the other used ML models,
including LSTM.

Table 4.1: Models performance metrics

Label Sample
Performance (×10−5)

Differencing Normalization Model Train RMSE Train MAE Test RMSE Test MAE

Models without transfer learning

— — LightGBM 531.6 82.9 2195.7 382.6
— — LR 1017.2 185.5 2164.1 388.3
— — SVR 1064.8 242.9 2092.5 440.4
— — LSTM 1333.8 360.2 2366.2 484.9

Models after transfer learning

✓ ✗ LightGBM 469.3 97.9 2291.9 394.1
✗ ✓ LightGBM 1059.0 174.1 2037.6 390.5
✓ ✓ LightGBM 873.9 130.7 1845.6 346.8

✓ ✗ LR 1017.3 185.7 2168.5 389.6
✗ ✓ LR 1166.8 178.4 2034.7 378.7
✓ ✓ LR 1263.6 185.4 2054.4 381.2

✓ ✗ SVR 1064.0 215.1 2135.6 449.5
✗ ✓ SVR 1212.7 181.4 2200.8 381.4
✓ ✓ SVR 1296.4 177.8 2208.3 371.3

✓ ✗ LSTM 1274.3 284.6 2647.4 515.8
✗ ✓ LSTM 1176.5 182.1 2677.9 480.6
✓ ✓ LSTM 1140.6 179.3 2376.0 436.4
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Figure 4.2: Observed fleet utilization distribution (dark grey) vs. predicted fleet utilization
(colored)

4.4 Discussion, study limitation, and conclusion

4.4.1 Discussion

The used framework shows a simplified and effective way to predict the num-
ber of trips per vehicle (fleet utilization) for one of the rapidly expanding shared
mobility services, shared-E-scooter, depending on open-source data. This frame-
work could be used (after testing) for similar dockless, free-floating micromobility
shared systems, which exhibited similar travel behavior, e.g., free-floating bike-
sharing services [162, 107]. Moreover, similar data characteristics to the one used
in this study should be publicly available for other shared mobility services to
implement the used framework; nevertheless, the data need to be anonymized to
ensure that users’ privacy is not violated. The framework depends on employing
the historical demand data combined with open-source data; therefore, different
stakeholders could use the framework to predict the daily number of trips per
vehicle and deploy the vehicles in the expected locations accordingly. The error
analysis section shows that the increase in the number of days used in the predic-
tion process increases the accuracy of the models; therefore, the continuous use
of such models would improve the model accuracy over time. It is also to be no-
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ticed that we used the ridership (the number of trips per vehicle per day) for the
prediction task for two main reasons; firstly, we wanted to control the fleet size in
both cities to be able to compare the demand and to normalize the impact of the
supply. Secondly, demand is directly tied to supply in the case of shared mobility
services, and estimating absolute demand will lead to a biased estimation [98].

4.4.2 Study limitations

While we used a 28 days data window for the target city demand for the transfer
learning process, other shorter windows, such as seven days of demand data, should
have been investigated to test the absolute minimum amount of data required to
use the same framework. However, this limitation can be covered in future work,
and it does not affect the integrity of the current research.

4.4.3 Conclusion

The methodology and data show a promising approach that the stakeholders could
implement and use to organize scooters and similar shared micromobility vehicle
services. However, the model must be tested for the other service to validate user
behavior differences. Also, publishing the trip booking data publicly by cities
should be further encouraged as it plays a vital role in encouraging researchers
from industry and academia to investigate such services use behavior and discover
innovative methods to enhance service operations without jeopardizing users’ pri-
vacy.
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The full details of this chapter can be found in the following article:

Abouelela, M., Al Haddad, C., & Antoniou, C. (2021). Are young users
willing to shift from carsharing to scooter–sharing?. Transportation Research
Part D: Transport and Environment, 95, 102821.
Appendix C

5.1 Introduction and research objectives

Micromobility has emerged as an attractive concept for modes with low speed,
short–term access, and on–demand trips, including both station–based and dock-
less or free–floating vehicles such as bikesharing and scooter–sharing; the latter
includes both standing electric scooter–sharing and moped–style scooter–sharing
[163]. The increasing demand for standing electric scooters has seen considerable
growth in various cities, particularly in the US, where the market for scooter–
sharing is expected to reach $300B [163]. Interest in micromobility has oriented
research and policymakers to investigate its impacts, understand the needs of
its users/non–users, but also come up with responsible policy-making and guide-
lines for its integration to current systems [163]. Few studies, if any, addressed
the impacts of scooter–sharing on carsharing, despite quite common characteris-
tics mostly pertaining to shared–mobility. Moreover, to the best of the authors’
knowledge, no previous study has conducted a stated preference (SP) experiment
including scooter–sharing as a main mode of transport. Other researchers have
conducted SP studies in an attempt to understand scooter adoption better [164]
or developed scooter choice models, where scooters were introduced as a first–last–
mile transportation mode [165].
In this research, the shift from carsharing to scooter–sharing was particularly in-
teresting as we tried to close the gaps in micromobility research. On the one hand,
fewer studies have investigated scooter users and demand compared to carsharing,
mostly stated preference (SP) studies; on the other hand, studies on micromobil-
ity replacement have not looked at the shift from carsharing but rather focused
on walking and ride–hailing. This was usually done by asking users about the
mode they would have used had scooters not been available for the same trip.
This research attempts to close this gap by i) conducting an SP study to estimate
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a choice model between carsharing and scooter–sharing. ii) Using the estimated
model to predict the demand shift from carsharing using a carsharing dataset from
a Munich operator. For the SP survey, young individuals (18–34 years old) were
targeted, as they are most likely the potential users of scooter–sharing systems
[112, 113]. Or, we can state that the main research questions are:

RQ-5.1 Are young users willing to shift from carsharing to shared E–scooters?

RQ-5.2 What is the expected percentage of carsharing trips replaced by shared
E–scooters?

5.2 Data and methods

5.2.1 Data

Four main sources of data were used to answer the main research question; survey
data, refer to section 2.2.2 for the survey structure and collected data. As the
second research question investigated the percentage of carsharing trips replaced
by scooters, a whole year of carsharing trips, around one million trips, that took
place in Munich for the year 2016 were used, refer Section-2.2.3 to for the details
of trips dataset. Finally, open-source data, namely the hourly weather data for
2016 (since the carsharing data was for 2016) and the German Census data. The
former was retrieved from the German weather service online archive (dwd.de)
and contains the hourly temperature and precipitation. The latter was obtained
from the German federal statistical bureau (statistikportal.de).

5.2.2 Methods

Model estimation

The collected data, the survey, was used to estimate a mode choice model for
the different alternatives. Since the aim is to use the model estimate to predict
carsharing demand shift, responses were regrouped as follows: varying preferences
for carsharing (“Certainly carsharing”, “Probably carsharing”) were grouped un-
der the carsharing choice and varying preferences for scooter–sharing (“Certainly
scooter–sharing”, “Probably scooter–sharing”) were grouped under the scooter–
sharing choice. Moreover, responses with “indifferent” as a choice were removed
following [166], as they could not be attributed to either choice; moreover, these
amounted to less than 1% of the sample size and are therefore not believed to
have an impact on estimation. Accordingly, three alternatives remained and were
regrouped (carsharing, scooter–sharing, and none), and a multinomial logit model
was estimated using the scenario attributes (time, cost, rain, risk of accidents) and
the respondents’ demographics.
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Figure 5.1: Methodology workflow

Model prediction, and sensitivity analysis

To test the attraction of carsharing users to scooters, we developed a number of
scenarios based on different assumptions, with the aim of applying the estimate
choice model to predict the shift from carsharing to scooters. A comprehensive
list of the used assumptions is given below:

• Carsharing trip cost: (0.20, 0.28, 0.36) €/min, based on operator ranges
from 0.19 to 0.36 €/min (share-now.com).

• Route diversion or scooter route/carsharing route: (-30%, -10%, 0%,
10%, 30%).

• Scooter speed: (6,14,22,30) km/hr. Based on scooter trip data in five North
American cities [38].
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• Scooter trip cost: (0.15, 0.20, 0.25)+ 1€ unlocking fees. Based on operator
rates in Munich: (0.15, 0.19, 0.20)€/min + 1€ (https://www.muenchen.de/
freizeit/e-scooter-leihen.html).

• Percentage of carsharing female members: 25%, as reported by a car-
sharing report on users in Munich [167].

• Carsharing access and egress times: (1, 3, 5) min., based on the stated
preference survey levels.

• Scooter accident risks compared to carsharing: (1,2,4) times more,
based on the stated preference survey levels.

• Rain condition based on the real weather data of the given day.

Based on the above assumptions, a combination of scenarios with the different
levels was developed, amounting to 1620 scenarios. These were tested, and a
sensitivity analysis was made to understand better the impact of scooter–sharing
based on different parameter changes.

5.3 Analysis results

5.3.1 Survey data

The collected data led to 503 valid responses, amounting to 4527 observations (9
choice scenarios per response). The survey responses reflected some limitations in
the representativeness compared to Munich. Overall, females are underrepresented
(though not drastically), but the notable difference is in the age representativeness,
where responses reflect a much higher percentage of a young, highly educated
population, mostly students, with a lower income than the average net household
income of 4220€.

5.3.2 Choice model results

Survey data was used to estimate a mode choice model for the preferences between
carsharing, scooters, and none of them, with the aim to use it later for predicting
the modal shift of generated scenarios. Table 5.1 shows the estimated model
results; alternative specific variables that were part of the experimental design,
such as travel time, travel cost, rainy conditions, and accident risk for scooters,
were significant, and only from the demographic characteristics of the population
gender was the only significant variable.
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5.3 Analysis results

Table 5.1: Mode choice model for carsharing and scooter preferences

Scooter Carsharing None

Estimate Rob.t.ratio Estimate Rob.t.ratio Estimate Rob.t.ratio

ASC -0.585 -1.44 - - -2.52 -9.26
In–vehicle travel time (min) -0.0297 -1.70
Total travel time (min) -0.0161 -1.47
Travel cost (€) -0.266 -2.82 -0.123 -2.33
Rain (no-rain as reference) -0.977 -7.68 0.159 1.68
Scooter accident (4*higher) -0.369 -3.57
Female (male as reference) -0.344 -3.55 -0.195 -1.63

Model summary

LL(0) -4973.418
LL(final) -3438.472
Rho-square (0) 0.3086
Adj.Rho-square (0) 0.3064
AIC 6898.94
BIC 6969.54

Only significant attributes(significance level ≥ 90%)are presented in Bold.

5.3.3 Sensitivity analysis

The developed scenarios were used to predict carsharing trip percentage by apply-
ing the parameters of the estimated mode choice models. After running the 1620
scenarios for each of the dataset trips, an analysis was performed by changing
different input parameters, such as trip distance or scooter–sharing accident risk.
Figure 5.2 presents the findings on the shift of carsharing trips to scooters–sharing
by trip distance and scooter risk. However, as previous literature indicated that
for distances above 4km, the share of e–scooters is practically zero [168], only sce-
narios with trip distances ranging to 4 km were taken into account, as presented
in Figure 5.2.
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Figure 5.2: Scenarios sensitivity analysis

Sensitivity analysis of scenario prediction of carsharing penetration up to 4 km: by trip distance,
scooter price, and scooter accident risk. Multiple curves per subfigure indicate different combina-
tions of scenario parameters: car sharing speed, cost, access and egress times, and scooter speed.
Note: y-axis is truncated to 50% and not all x–axis labels are shown for readability.
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5.4 Discussion, study limitations, and conclusion

5.4.1 Discussion

The estimated choice model for carsharing and scooter preferences revealed find-
ings consistent with prior expectations as well as the literature. The model in
Table 5.1 highlighted the significance of travel time, travel cost, rain, scooter acci-
dent risk, and gender on the choice between scooter–sharing and carsharing (with
different levels of significance, but mostly above 90%. Travel time and travel cost
were often cited as significant factors influencing the use of both carsharing and
scooter–sharing [169, 113]; for carsharing, travel times also included access and
egress times into account as mentioned by [169]. Obtained values of time for
scooter–sharing and carsharing (6.7 and 7.9 €/hr) are rather low (possibly due
to the high student percentage and the domination of low-income classes); they
indicate that carsharing users are willing to pay (1.2 €) more to reduce their travel
time in one hour, than scooter-sharing users. It is important; however, to note
that a comparison between these values of time is subject to limitations since, in
the final model specification, the coefficient estimate for carsharing time is that of
the total time (including access and egress), whereas for scooter–sharing, it refers
to the in–vehicle travel time.
Rain and accident risk attributes were also highly significant and higher in mag-
nitude for scooters compared to carsharing; again, this makes sense since scooters
are more likely to be impacted by bad weather and higher accident risks. These as
well are consistent with previous findings pertaining to weather conditions’ impact
on scooters [151, 113]; accident risks or safety, in general, was often mentioned as
a reason for not using scooters [170, 113, 171]. Finally, gender impact, females
being less likely to use either scooters or carsharing, was often mentioned in the
literature; in this model estimate, the gender attribute has an even higher magni-
tude for the scooter utility. This is consistent with city reports indicating that the
majority of scooter users were males [170, 113, 112].
The model application indicated that scooters have the potential to attract up to
23% of carsharing trips in the best case scenario, for a range between 0 and 4 km;
this would drop to about 13% in the worst case scenario; these represent different
scooter risks (equal and four times higher than carsharing, respectively). This shift
in number of trips and the equivalent distance (in kilometers) inevitably poses the
question of the environmental impact this might induce. From a life cycle assess-
ment perspective, a dockless shared scooter system produces more CO2-equivalent
per passenger-kilometer than the modes they replace [66]; in other words, scooters
attract users from environmentally friendly modes, such as walking and biking,
generate empty vehicle kilometers traveled (redistribution and maintenance). On
the other hand, benefits from scooters can be noted every time an e-scooter sub-
stitutes for a personal automobile; it thus saves a significant amount of end-use
energy. One-kilowatt hour of energy could propel a scooter 100 km compared
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to 2 km for a passenger vehicle using the same amount of energy1 [172]. In the
case study presented, this would amount to a saving of roughly 57,850 kWh. Of
course, this is based on the assumptions made and not taking into account the
entire vehicle life cycle.

5.4.2 Study limitations

This study has its own limitations, such as the survey data representativeness of
Munich, which led to lower-than-expected values of time and could have impacted
the model prediction. Moreover, stated preference studies are subject to biases and
might not help capture realistic decision scenarios. For the case study of Munich,
a revealed preference study would be highly beneficial to validate and calibrate
the estimated models. This could be done by using pilot data similar to what
was done in other cities. It is also worth noting that the substitution shares from
carsharing to shared E–scooter are only valid under the assumption that travelers
can only choose between carsharing and scooter–sharing. Finally, while the study
targeted young users as the ones most probably using shared mobility systems, as
suggested by previous research [114], it would be interesting for future research
to further enrich the findings and policy insights by collecting additional datasets
and compare the obtained values of time, but also by extending the current work
to take into account age differences [173]. Further approaches considering machine
learning methods could also be considered for self–learning systems [174] or even
to enhance discrete choice models [175].

5.4.3 Conclusions

The methodology in this paper estimated a choice model for preferences between
carsharing and scooter–sharing. The estimated model was applied to the devel-
oped scenarios with different parameter inputs to predict the shift from carsharing
demand to scooter–sharing. The estimated model findings, on the one hand, re-
vealed the importance of travel time, travel cost, weather, scooter accident risk,
and gender. On the other hand, calculated values of time showed a higher will-
ingness to pay for one minute of carsharing compared to scooter–sharing. For
the case study in Munich, in the best case scenario, scooter–sharing was found
to potentially shift the demand from carsharing by about 23%. This implies a
reduction in total kilometers traveled in motorized travel and the corresponding
energy consumption and CO2 emissions.

1The comparison is between a VW Golf 1.0 TSI (4.8 L Gasoline per 100 KM), and 0.47 kWh battery
Bird scooter
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The full details of this chapter can be found in the following under-review article:

Abouelela, M., Al Haddad, C., & Antoniou, C. (2023). Personality and
Attitude Impacts on Carsharing Use. Under revision.
Appendix D

6.1 Introduction and research objectives

Carsharing is a form of shared mobility that provides easy access to on-demand
car use without the burden of car ownership responsibilities, the need to process
paperwork such as for car rental services, or even the need to return the vehicle
to the pickup points as in free-floating systems or one-way trips [176]. Carsharing
services and other shared mobility services are not only changing the landscape of
urban mobility, but also the traditional idea of a car manufacturer producing, buy-
ing, and selling vehicles. Currently, some leading car manufacturers are promoting
themselves as mobility providers, including Daimler, BMW, Volkswagen, Toyota,
and General Motors [59]. Therefore, there is an essential need to understand in–
depth the different aspects of these services for better operation and integration
within the urban environment. Some of the main aspects of shared mobility that
are important for the different stakeholders are the sociodemographic character-
istics of the users and their general travel behavior to understand their role in
deriving the demand and identifying user target groups [177]. While user sociode-
mographics were well examined and explored in the current literature [178], there
is still much more to investigate in terms of other key factors related to psycho-
logical behavior and use, such as user attitudes and personality traits [60]. Also,
a large number of the carsharing studies have been completed before the services
were even launched or during the early operational and adoption stages, during
which users might have a different use behavior as they are getting familiar with
the service.
The motivation of this research is to contribute to the existing body of research
with more timely case studies in which the operation of carsharing services is on-
going at the time the research is done [179]. Moreover, many aspects of carsharing
services are not under the focus of the current research, such as the digital-related
aspects of the service and service-related features, as well as their impact on service
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adoption and use frequency [180]. The digital dimension of the carsharing services
includes the mobile application friendliness and ease of use, provider’s website
landing page, digital marketing of the service, online marketing campaigns, and
business–to–business offers [181]. Finally, the impact of the payment schemes (per
minute or kilometer as recently introduced by some operators) on user choice of the
different services is another crucial consideration to remember. In this research, we
contribute to the current literature by answering the following research questions
investigating the roles of personal attitudes on the different aspects of carsharing
services.

RQ-6.1 What are the differences between carsharing users and non-users?.

RQ-6.2 Which factors impact the adoption of carsharing?

RQ-6.3 Which factors impact the shift from different modes to carsharing?

RQ-6.4 Which factors impact the choice between the different carsharing pay-
ment schemes?

RQ-6.5 Which factors impact the users’ knowledge regarding carsharing ser-
vices?

6.2 Data and methods

6.2.1 Data

All the research questions were answered using survey data collected in Munich,
Germany. The details of the survey structure and collected sample characteristics
are discussed in Section 2.2.2.

6.2.2 Methods

The first question examines the differences between the users and non-users of car-
sharing in terms of travel behavior and knowledge, which are categorical response
questions; therefore, a Pearson’s Chi-squared test [182] was performed to verify
the significance of the differences between the two groups. Research questions
RQ-6.2 , RQ-6.3 , RQ-6.4 , and RQ-6.5 are mainly concerned with defining
the factor impacting the different aspects of carsharing use, and these aspects are
discrete in their nature. Also, we aimed to examine the impacts of personal at-
titudes and personality traits on these aspects; therefore, we used Hybrid Choice
Models (HCM), which combine the discrete choice model with the latent variable
model, and it is usually used for such situations.
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6.3 Analysis results

6.3.1 Sociodemographic and travel behavior

The collected sample (N = 1170) is skewed in comparison to the city population
in terms of age, education, occupation, number of children in the household, and
income; however, this is a direct result of the sampling strategy targeting young
users, as in general, the sociodemographic characteristics of the shared mobility
users. In terms of age, 89% of the sample is younger than 36 years old, compared
to 40% of the city resident. Also, the users are highly educated, with 85% of the
sample having at least a bachelor’s degree compared to 26% of the city’s residents,
and the number of students in the sample is over-representative in comparison to
the city, as 43% of the sample respondents are students compared to only 4.5%
of the city population. Therefore, the age and occupation of the respondents are
reflected in other aspects, such as income being lower than the city. However, the
differences between the collected sample and the city’s population are justified by
the characteristics of the target group being young. As the focus target group
of this research are users younger than 35 years old, we only considered them in
the following analysis, excluding all the other users (N = 1044). When comparing
carsharing users and non-users, the differences are significant in terms of users
being males, more educated, higher income, full-time occupation, having access to
a car, and owning a driving license that is valid in Germany.

We performed a chi-square test to examine the modes use frequency per gender
with no significant difference found. The sample can be described as active PT
users, with at least 40% of the sample using PT more than once a week, which
is reflected in their ownership of PT subscription tickets. The ownership of a PT
subscription ticket reflects various aspects, such as the user’s loyalty to the service
or the high quality of the PT system. Also, the same observation of the young
population being active users of PT compared to the older population, tending
to use private cars, was observed in other locations [183]. Also, a considerable
percentage of users have access to private car use, reflected in their car usage.
Active travel is evident in the sample, mainly in the form of walking and private
bike, and not much use for the shared micromobility modes. In terms of gender
differences in mode frequency, differences were significant in the case of car use as
a passenger and as a driver, shared bike, and taxi. Males were using cars as drivers
and using more bike sharing compared to females. In terms of mode use differences
between carsharing users and non-users, the differences were more significant; from
the eleven compared modes, only three modes did not have significant differences;
walking, tram, and the underground metro.
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6.3.2 Car sharing usage and familiarity

In this section, we explore user and non-user familiarity with carsharing services.
We asked the users to rank their familiarity with the carsharing service on a four-
point scale ranging from: ”I do not know about them” to ” Very familiar, I know
almost everything about them.” The majority of the users (65%) know about the
service, and around one-fifth are very familiar with the service. We asked this
question as we hypothesized that service use is directly linked to users’ familiarity
with them, and we wanted to test the familiarity impact on the different service use
aspects. There is no significant difference between genders in terms of knowledge,
except that males are very familiar with the service compared to females. In terms
of users and non-users, it is obvious that users have a higher level of familiarity
with the service compared to non-users; for example, almost 88% are familiar with
the service compared to 43% of non-user.

Also, the majority of users use the service as passengers, and they use it mainly
less than once per week. The major trip purposes are leisure, visits, work, and
shopping. Users were asked about the modes they replaced the last carsharing trip
with, and the top five modes are the underground, car as a passenger, suburban
train, E-hailing, and car as a driver. These results show potential for negative
impacts, as carsharing trips replace mainly PT trips which might increase the
vehicle kilometer traveled (VKT) on the roads. We also asked the users to express
their willingness to walk to the nearest carsharing vehicle locations, where 75%
of the users specified that they would walk up to seven minutes for the pickup
location.

6.3.3 Modeling results

Exploratory Factor Analysis (EFA)

In this part, we modeled the latent construct, user’s attitudes, for three question
groups investigating respondent evaluation of carsharing-related aspects, person-
ality traits, and travel behavior to study the impacts of these attitudes on the
different aspects of carsharing use.

Service aspects importance: we asked respondents to rate how important differ-
ent aspects of carsharing services were to them on a five–point Likert [184] scale
that ranges from ( 1 = not important at all, 2 = not important, 3 = neutral, 4
= important, 5 = very important). The top part in Table 6.1 shows the investi-
gated aspects of carsharing service and the factor analysis results with two main
factors representing the main latent constructs and explaining 46% of the total
data variability. Factor one can be described as the physical offers, and the second
factor as the application-related factors. The results of the EFA for the carsharing
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service aspects reflect the important dimensions of the service that operators need
to focus on to achieve a high level of satisfaction.

Personality traits: respondents were asked to specify their agreement with differ-
ent personality types on a five–point Likert scale (ranging from “Totally disagree”,
“Disagree,” “Neutral,” “Agree,” “Totally agree”). Our initial hypothesis for the
EFA of personality traits was that we would estimate five factors representing the
five major personalities: risk-taking, loner, ambitious, organized, and lazy, similar
to what was proposed by [185, 186, 187]. The middle part in Table 6.1 presents the
estimated EFA results for the personality–related questions, for which two promi-
nent personalities were extracted, interpreted as “adventurous” and “organized.”
The two factors explain 39% of the data variability. The results of these factors
were further used to estimate the impact of these two types of personalities on
carsharing use.

Travel behavior: the final set of questions analyzed using EFA focused on the fre-
quency of use of the different available modes. For this question, we hypothesized
three types of users: PT users, private mode users, and finally, shared mobility
users. The bottom part in Table 6.1 presents the EFA results for the mode use
frequency. Two factors were extracted and found to be significant, one for PT
users and the other for shared micromobility users; the two factors explained 51%
of the variance of the data, and the initial hypothesis was partially correct.

Factors impacting carsharing adoption

This model investigates the factors impacting carsharing adoption to answer the
second research question RQ-6.2 . A hybrid choice model (HCM) was estimated
to investigate the examined factors. The dependent variable was coded as a bi-
nary variable considering that responses indicated that they never used carsharing
were coded to zero, and the rest of the users were coded to one. The estimated
model shows that people familiar with carsharing services, have a driving license,
are full-time workers, own bikes, have a high-income level, and have a higher ed-
ucation level are more likely to adopt carsharing compared to other population
groups. These significant variables are aligned with the general profile of shared
mobility users, who are, in general, wealthier and more educated than the average
population. On the other hand, people with access to a car, who live in a small
household and have a subscription to PT tickets, are less likely to adopt carshar-
ing service. Two significant latent variables, adventurous personality and frequent
users of shared micromobility services, indicated carsharing adoption.
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Factors impacting the shift to carsharing

In this model, we investigated the factors that impact the shift from different modes
to carsharing as the answer to the third research question RQ-6.3 . We clustered
the modes that were replaced by carsharing into two groups; the first group is the
low-capacity vehicles, including cars as a driver, cars as passengers, E-hailing, and
Taxis, and the second group was bus, tram, underground, and suburban trains
users. These observations were 478, representing 93% of the total number of
carsharing users, 515 users. The remaining 37 observations were removed from the
sample used to estimate the model. The model’s dependent variable was coded
as a binary variable with the value of one in the case of a low occupancy vehicle,
the first group, and zero otherwise. The estimated model results show that high-
income individuals, who are full-time employed, have access to a car, and are
willing to walk less than five minutes to carsharing pick-up locations are more
likely to shift to carsharing from low occupancy vehicular trips compared to the
rest of the population, which are in line with the profile of shared mobility user.
Only one latent variable was significant, frequent PT users, and it had a negative
sign indicating that these users are less likely to shift from low-capacity vehicle
trips to carsharing.

Factors impacting the choice between different operators

This model’s main target was to model factors that impact the choice between
the two payment schemes, payment per minute or per kilometer, and to answer
the third research question RQ-6.4 . Six choice options were available; indiffer-
ent answers, representing 9.3% of the total responses, were removed, and options
certainly A and Probably A were aggregated to A, and the same aggregation was
done for options B. Option None was kept as the third option following similar
procedures to [39, 188]. Finally, the choices of the remaining scenarios were dis-
tributed as 53.1% for option A, 33.6% for option B, and 4% for Neither option.
Our hypotheses here were that males and people who are adventurous and risk-
takers would always opt for operator B for its possibility of cost savings. Also, we
believe some users would drive faster for the less responsibility carsharing service
provided than car ownership. An HCM multinomial logit model was estimated.
The interpretation of the model results considers the Non-choice option as the
reference level for comparison with other options. The choice experiment tested
the significance of four carsharing-related attributes on the choice between the
two operators; cost, access distance, rating of the app, vehicle type, vehicle engine
type, electric or not. All the variables were significant except the access distance.
Interestingly app rating on the app store was the variable with the highest coeffi-
cient for this group of variables. The cost coefficient for option B (pay-per-minute
option) is based on the average cost shown in the experiment. The cost coefficient
shows that users value the cost of paying per minute to be cheaper than per km;
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we believe this is most likely since there is a chance to pay a lower price when
choosing to pay per minute. Other factors show that app rating is more effective
in choosing option A than option B. Finally, the coefficient of the vehicle being
electric or not is generic for both options. Six user sociodemographic characteris-
tics were significant, showing that users with high-income levels, familiarity with
carsharing services, valid driving licenses, and who have used carsharing before
are more likely to adopt carsharing than other population groups. On the other
hand, people who live in small households and own bikes are less likely to choose
carsharing compared to other groups. Finally, the two latent variables were only
significant for option (B), and they indicate that shared micromobility users are
more likely to choose option (B), and people who value the importance of the app
are more likely to choose option B. We believe the main reason is that shared
micromobility trips are paid per minute of use. Also, they are people who value
the importance of the app in the service users are more likely to be used to the
scheme of paying per minute, which was the original offer for all the shared vehicle
services.

Factors impacting the knowledge about carsharing

This model answers the last research questionRQ-6.5 investigates factors impact-
ing carsharing knowledge. The answer to the question investigating the knowledge
about carsharing was set as the dependent variable, which is ordered in nature,
and an HCM model was estimated. Four variables and two latent variables were
significant and are associated with a higher likelihood regarding more knowledge
about carsharing services: previous use of carsharing, ownership of a driving li-
cense, full-time workers, people who live in small households, adventurous persons,
and frequent PT users. The thresholds between the different knowledge levels are
significant, showing that people understand the difference between the different
levels.

6.4 Discussion, study limitations, and conclusion

6.4.1 Discussion

In this research, we collected data regarding the different aspects of carsharing use,
with an aim to understand the impact of personality traits, attitudes, and travel
behavior on the different service aspects, such as the adoption, the shift from
other modes, the choice between different payment schemes, and the knowledge
about carsharing services. The research was applied to a case study in Munich,
Germany, focusing on young users. The collected data shows that carsharing
users are young, highly educated males with high-income levels, full-time jobs,
living in small size households, and with a valid driving license, which is aligned
with the general profile of shared mobility services and specifically carsharing users
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[189, 117]. Obviously, the characteristics of carsharing users show the potential
for inequitable use problems, wherein population groups, such as low-income and
low-education groups, are not frequent carsharing users, which was evident in the
collected sample, and revealed by the analysis process and the estimated models.

The collected data analysis showed that users and non-users have distinguished
travel behavior with significant differences, which indicates the need for further
investigation into how to adjust carsharing service operations to cater to the differ-
ent travel behaviors and to attract non-users, if possible. Moreover, users reported
mostly (40%) replacing PT (underground, suburban train) and small occupancy
vehicles (35%) (cars as passengers or drivers, and E-hailing), showing that there
is a potential that carsharing might increase the VKT, as it replaces large occu-
pancy vehicles (PT). On the other hand, replacing car and e-hailing trips might
have positive impacts such as reducing the number of vehicles, reducing energy
consumption and CO2 emissions, and requiring parking spaces [190, 191].

The EFA was conducted on the three main question groups (service aspect rating,
personality traits, and travel behavior), and each of these groups showed two fac-
tors. The first question group related to the carsharing service’s important aspects
showed two factors: I) the app-related attributes and II) physical offers. These
estimated factors show the importance of the app-related attributes, which were
not examined in previous research, up to the best of our knowledge, and which
need more investigation to reach the recommended design by users, as it has a
role in impacting service use, as shown in the estimated models. App-related at-
tributes were significant in the preference of paying per minute; however, physical
attributes were not significant in any of the estimated models, confirming the im-
portance of the app-related aspects of the service. The second question group is
the personality trait group, which showed two distinctive personality traits, III)
an adventurous personality and IV) an organized personality. Our hypothesis was
that an adventurous personality would be more likely to use carsharing services
compared to other types of personality due to the higher levels of mobility and
independence provided by carsharing, which fits the characteristics of the adven-
turous personality [187].

The estimated models showed that sociodemographics attributes, knowledge about
carsharing, and personal attitudes and personality traits play significant roles in
carsharing use. The first estimated model, answering the second research ques-
tion, showed that the attributes that increase the probability of carsharing service
adoption are: high familiarity with carsharing service, having a valid driving li-
cense, full-time employment, a high education level, high-income level, owning a
bike, having an adventurous personality, and being a frequent micromobility user.
The results of this model are in line with the general profile of shared mobility
users [192, 193]. It is to be noted that the variable with the highest estimated
coefficient is familiarity with carsharing services, followed by the availability of a
driving license and the (high) level of education. It is clear that knowledge about
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the service is very important in impacting its adoption, which highlights the role
of marketing in service use.
Again, sociodemographic characteristics and attitudes play a significant factor in
the shift from different modes to carsharing, where high-income people who are
full-time employed, willing to walk for a short period (less than 5 minutes) and
have access to a car have a higher likelihood to shift from low occupancy vehicles to
carsharing, while PT frequent users are less likely to do so. This model also shows
the significance of sociodemographics and travel behavior in replacing different
modes with carsharing services. It also aligns with the profile of shared mobility
users.
The fourth research question was answered by estimating the model to examine
the factors deciding the use of the different payment schemes, which showed that
trip cost, rating on the app store, and availability of electric vehicles are significant
factors in choosing between the different operators. App rating was the coefficient
with the highest reported value, showing its importance in the choice between
different payment schemes. Also, people perceive the payment per minute as
cheaper than the payment per km, which is an interesting result showing the
preference of users for the payment scheme per minute (the oldest, more common
scheme for carsharing payment) over the payment per km with all the other factors
being constant. Also, sociodemographics are crucial in choosing between operators,
such as high income, driving license, familiarity, and previous use of carsharing
services.
The answer to the final research question regarding the knowledge about carsharing
services emphasized again the importance of sociodemographics and attitudes on
the level of knowledge; in particular, previous use of carsharing, availability of a
driving license, living in small size households, and full-time employees were more
likely to have a higher level of knowledge regarding carsharing service. Service
adoption and knowledge about the service were found to be significant in increasing
the probability of each other, showing the need to advertise the service to attract
more users and to focus on the different social groups that do not have enough
knowledge regarding the service and subsequently who do not adopt it.

6.4.2 Study limitations

This research tries to update the current knowledge regarding carsharing using a
stated preference experiment, but it faced some limitations that would not impact
the overall research integrity. The main objectives of appraising the limitations are
to have a transparent outcome and for similar studies to avoid or consider them
in the future. The collected sample is balanced regarding users vs. non-users of
carsharing and gender but biased for other sociodemographic characteristics such
as income level and education level; however, shared mobility users are likely to
be young and highly educated compared to the average population. Moreover,
the sample is not representing the city’s population, so the findings should not be
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directly interpolated or carried out on other social groups. Different attitudes were
examined, and their impacts on the various aspects of carsharing use were exam-
ined; However, attitude and personality traits are hard to quantify and measure,
they are essential to understand user preference for the different aspects of shared
mobility use, and they might be more significant and influential in deciding travel
behavior in general and shared mobility use. The used stated preference experi-
ence examined a few numbers of attitudes, travel cost, app rating, electrification of
the vehicle, and access distance to the nearest vehicle; other attributes could have
been used. However, this was done purposefully not to distract the respondent’s
attention and to have a more straightforward experience. The SP experiment as-
sumed that the payment by KM is a fixed cost. However, this can slightly change
in reality, as in case of congestion, users could alternate from the original route,
the shortest path, causing extra travel distance that would increase the trip cost.
However, the variation of the travel cost (±25%) around the average trip value
would cover this possibility. The survey was deployed online, which can create a
responding bias, as groups with no access to the Internet and older populations
might not be represented in the sample. However, as shown in previous studies,
shared mobility users generally are young, highly educated individuals with access
to the Internet. The hybrid choice or ICLV models are not the only way to im-
plement attitudes into discrete models. However, we believe that in this research,
they fit the required methodology to answer the main research questions.

6.4.3 Conclusion

This research investigated the impacts of personality traits and attitudes on the
different aspects of carsharing use; adoption, the shift from other modes, the choice
between different operators, and finally, the knowledge about the carsharing ser-
vices. A large sample (N = 1044) of the young user’s data was used in the analysis
collected from Munich, Germany. The results continue highlighting the importance
of the user’s sociodemographic characteristics in impacting service use and raising
questions regarding inequitable service use and adoption. The findings of the es-
timated econometric models also show the significance of personality traits, travel
behavior, and digital service aspects such as app ease of use and rating on the app
store on using carsharing. These findings also stress the importance of designing
user-friendly apps and maintaining good ratings, which attract more users. Also,
results show that frequent shared mobility users adopt shared mobility in different
service forms, showing the potential of MaaS in increasing shared mobility use and
the possibility of multimodality. Finally, the estimated model could be used as a
part of broader travel demand models that estimate the adoption of carsharing.
It might also quantify the operators’ share based on their payment methods.
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Table 6.1: Factor analysis models

I–Service aspects rating Physical offers Application

App ease of use 0.92
App rating 0.60
Availability in airport 0.71
Availability of different size vehicles 0.62
Service offers bundles 0.56
Availability in other cities 0.53
Availability of EV 0.51

Model diagnostics
Factor loadings 1.82 1.38
Proportion variance 0.26 0.20
Kaiser-Meyer-Olkin factor adequacy: MSA= 0.80
Cronbach’s alpha = 0.73

II–Personality traits Adventurous Organized

Adventurous 0.82
Being outdoor 0.51
Spontaneous 0.61
Risk taker 0.58
Variety seeking 0.50
Efficient 0.70
Punctual 0.46

Model diagnostics
Factor loadings 1.93 0.76
Proportion variance 0.28 0.11
Kaiser-Meyer-Olkin factor adequacy: MSA= 0.75
Cronbach’s alpha = 0.6

III–Travel behavior PT Shared micromobility

Bikesharing 0.75
Shared E-scooter 0.70
Tram 0.68
Underground 0.85
Suburban Train 0.73
Bus 0.69

Model diagnostics
Factor loadings 2.43 1.10
Proportion variance 0.35 0.16
Kaiser-Meyer-Olkin factor adequacy: MSA= 0.78
Cronbach’s alpha = 0.72
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7 Synergies between public transport and
shared mobility services

The full details of this chapter can be found in the following article:

Abouelela, M., Al Haddad, C., & Antoniou, C. (2021). Are e-Scooters
Parked Near Bus Stops? Findings from Louisville, Kentucky. Findings.
Appendix E

7.1 Introduction and research objectives

Scooters could arguably replace motorized trips [40], or at least reduce their neg-
ative impacts, especially if they are well integrated with existing public trans-
portation. This integration can solve the first–last–mile dilemma [194], increasing
accessibility to public transportation [195], but also leading to more sustainable
transportation models [196]. One of the most important but not yet studied as-
pects of scooter integration with public transportation is the distance between the
stops and the scooters, as walking distance willingness could be a significant factor
affecting or determining the use of different transportation services. In this study,
we assessed the distances between bus stops and parked scooters temporally and
spatially. The temporal analysis considered different hours and days of the week,
while the spatial analysis looked at different land uses, distances from the city
center, and accessibility to public transportation (bus). This assessment aimed to
answer the following research questions:

RQ-7.1 What is the average distance between scooter trip starting points (ori-
gins) and the nearest public transportation stops, in this case, bus
stops?

RQ-7.2 How do different temporal and spatial factors influence the distance
between parked scooters and the nearest bus stops?
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7.2 Data and methods

7.2.1 Data

Scooter trip data from Louisville, KY [103], and general transit feed specification
(GTFS) files from (transitfeeds.com) were used in the analysis; the details of
the data collection and processing are explained in detail under Section 2.2.1

7.2.2 Methods

To answer the first research question, we used the Approximate Nearest Neighbor
(ANN) searching algorithm library [197] available in the statistical software pack-
age R [198] in order to calculate the Euclidean distance between trips’ starting
points and the nearest bus stops. To answer the second research question, the
distance was calculated and aggregated for different temporal features, meaning
different hours of the day and different days of the week. For assessing the impact
of spatial features, three metrics were considered: land use (considering the land
use of the trip starting point), distance from the city center, and LITA (for the
different census zones).

7.3 Analysis results

7.3.1 Parking distance

Table 7.1 shows the summary results for the scooter parking distance per the
different variables; time of the day, day of the week, land use, LITA ranges, and
finally, the different distances from the downtown. It is to be noted that the
parking distance did not have any distinguished pattern when disaggregated per
the different categories of the different variables, except in one case, or one-time
interval, between 2 and 3 a.m., where parking distances were statistically different
from the rest of the day and tend to be longer, meaning that scooters tend to be
further from bus stops.

7.4 Discussion, study limitations, and conclusion

7.4.1 Discussion

The obtained mean parking distance was (µ = 115, with a standard deviation
σ = 134m), which answers the first research question. Findings show that for 50%
of the trips, scooters were parked within 70 meters from the nearest bus station,
and for 85% of the trips, the parking distance was less than 200 meters. The
hourly distribution of the distances for the different days (Figure 7.1) shows that
the parking distance has a similar pattern throughout the day, except between 2
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and 3 a.m. Parking distances between 2 and 3 a.m. are statistically different from
the rest of the day and tend to be longer, meaning that scooters tend to be further
from bus stops. One possible reason could be the small share of trips originating
between 2 and 3 a.m. (about 0.6 % of the total daily trips). To investigate whether
this was due to rebalancing and redistribution, distances were calculated between
trip starting and ending points and the nearest bus stops, and their distribution
was compared. Yet, as no statistical difference was found between both, there was
no evidence of the rebalancing and redistribution effect. Longer distances might
indicate that people use scooters from bus stops to travel further distances during
early day hours (between 2 and a.m.), which have no bus temporal coverage;
in Louisville, the service hours for the buses are between 5:30 am and 10:301.
Also, early morning distances tend to be longer during the weekend compared to
weekdays, which could be attributed to an increase in recreational activity during
weekends.
Analyzing the distances according to varying land uses did not reveal any sig-
nificant differences; however, the trip percentages showed that half of the trips
started in commercial and public, and semi-public land uses; this might indicate
that scooters were used for recreational trips (although there is no evidence for
this), as was observed in Washington, D.C. [107]. The distance to the nearest sta-
tion per each category of LITA values showed no significant differences or relation
between the distances and the zonal bus accessibility. However, 40% of the scoot-
ers were parked in highly bus–accessible areas, which could indicate that scooters
complement the use of buses or extend bus accessibility. Also, the distance be-
tween scooters and the nearest bus stop was not affected by the scooter’s locations
away from the city center.

7.4.2 Study limitations

It is to be noted that the trips’ geo-locations (latitude and longitude) were rounded
to the nearest three decimal numbers for privacy reasons, which on average, could
affect the scooter location by 30 meters. While this approximation could have
affected the distance calculations, the methodology used in this research could be
generalized for other datasets with more accurate coordinates.

7.4.3 Conclusion

The findings of this research indicated that scooters could be used to extend the
temporal accessibility of the bus service. On the contrary, there was insufficient
evidence that distance is impacted by any tested spatial features, including LITA
and land use. The methodology presented in this paper could be replicated in
other cities in order to understand scooter parking patterns better, and the results

1https://moovitapp.com/index/en/public_transit-lines-Louisville_KY-1442-11408, accessed
1/7/2021

81

https://moovitapp.com/index/en/public_transit-lines-Louisville_KY-1442-11408


7 Synergies between public transport and shared mobility services

obtained in Louisville would be comparable in other cities in the US and the rest
of the world. The methodology could be used to give insight to service providers
on how to integrate scooters with existing public transportation systems better.
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Figure 7.1: Average hourly distance distribution; error bars in the zoomed view show the hourly standard deviation
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Table 7.1: Parking distance to the nearest bus station summary per different temporal and
spatial categories in meter

Variables Min 1stQ mean Median 3rdQ Max Std Trips (N) Pct
(%)

All trips 1 42 115 70 132 2948 134 379,308 100%

Time of the day

Morning (00:00-06:00) 1 71 116 71 136 1622 135 23,548 6.2%
Before noon (07:00-12:00) 1 70 116 70 133 1731 134 119,665 31.6%
After noon (13:00-18:00) 1 70 115 70 132 2948 133 171,137 45.1%
Night (19:00-23:00) 1 70 115 70 133 2004 133 64,958 17.1%

Day

Weekdays 1 70 115 70 132 2483 133 256,382 67.6%
Weekend 1 70 115 70 132 2948 134 122,926 32.4%

Land–use

Right-of-way 1 70 115 70 132 2192 133 112,501 29.7%
Commercial 1 70 115 70 132 1733 133 91,257 24.1%
Public and semi-public 1 71 116 71 135 2004 133 89,925 23.7%
Residential 1 70 115 70 132 2948 136 52,314 13.8%
Industrial 1 70 114 70 132 1323 132 19,586 5.16%
Parks and open space 1 71 117 71 136 1924 138 11,018 2.9%
Vacant 1 71 115 71 136 1013 130 2,707 0.71%

LITA

4-5 1 72 117 72 135 1193 134 9,256 2.4%
5-6 1 70 115 70 133 2948 134 149,826 39.5%
6-7 1 70 114 70 132 1223 133 27,280 7.2%
7-8 1 70 113 70 132 1731 131 35,006 9.2%
10-11 1 70 115 70 132 2192 134 157,933 41.6%

Distance from downtown (km)

Less than 0.5km 1 70 115 70 132 2192 133 85,119 22.4%
0.5km - 1.0km 1 70 116 70 132 1731 135 58,130 15.3%
1.0km - 1.5km 1 70 114 70 132 1290 132 39,476 10.4%
1.5km - 2.0km 1 70 114 70 132 1731 131 18,808 5.0%
2.0km - 2.5km 1 70 115 70 132 1223 133 13,304 3.5%
2.5km - 3.0km 1 70 114 70 131 1193 134 12,048 3.2%
3.0km - 3.5km 1 70 115 70 132 2004 134 23,053 6.0%
3.5km - 4.0km 1 70 116 70 135 2483 136 51,009 13.4%
More than 4.0km 1 70 115 70 132 2948 133 78,361 20.7%

Land–use description, retrieved from American Planning Association (planning.org)

Commercial Retail and whole sales, business offices
Public and semi-public Public and private schools, municipal buildings, public property

rather than parks, hospital, churches, and golf courses
Residential Residential uses
Industrial Light and heavy industrial uses
Parks and open spaces All public parks, playgrounds, swimming pools, athletic fields
Vacant Includes undeveloped land
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The full details of this chapter can be found in the following under-revision article:

Abouelela, M., Durán-Rodas, D., & Antoniou, C. (2023). Do we all need
scooters? An accessibility–centered spatial equity evaluation approach. Trans-
portation Research Part A: Policy and Practice, 181, 103985.
Appendix F

8.1 Introduction and research objectives

Urban transportation has undergone significant changes in the past decade, thanks
to advancements in technology, the emergence of eco-friendly options, and the
introduction of shared mobility services (SMS) [199]. Shared mobility can be
succinctly described as a pay-per-use system, where users are charged based on
the time or distance they utilize them.[157]. These services are commonly provided
through digital platforms and mobile phone applications and are usually paid using
digital banking services [200]. Several reasons have encouraged the use of SMS;
in principle, SMS are more sustainable transportation options compared to the
private passenger car, as they have the potential to reduce the vehicle idle time,
reduce energy consumption, have a milder impact on the environment, travel cost
saving, and utilize more compact urban space [22, 23, 201, 202].
One main challenge of SMS is their equitable use, which might not always be
achieved and can lead to social exclusion for specific user groups [70]. The in-
equitable use of SMS is widely expected from its unique setup as users, in general,
should have digital skills, a smartphone, and digital banking access; otherwise,
they will be excluded from using the service by default [71]. Also, SMS might not
be affordable to all population groups, and the spatial coverage of SMS might be
limited to areas with high demand, primarily near the downtown, and ignoring
areas located in the city’s suburbs [72]. While there are efforts in the literature to
identify factors behind the inequitable use of SMS, these efforts, especially in the
cases of micromobility and specifically scooters, have focused on the user’s profile,
socioeconomic and demographic characteristics, or availability and proximity of
vehicles to the users as the main reasons causing the inequitable use [203, 204].
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We believe that the issue of inequitable use is not limited to the user’s characteris-
tics or the availability of the vehicles but is extended to the urban forms in terms
of land use, neighborhood design, and the availability of opportunities, points of
interest (POIs), within an acceptable travel distance and travel cost [205, 206].
Therefore, we hypothesize that the observed inequitable use of scooters in terms
of trip density might have resulted from the fact that the scooters’ introduction
did not add significantly to the population’s accessibility to different opportunities
(POIs), especially for the transportation–disadvantaged population groups. This
research contribution comes from verifying the below hypothesis:

The introduction of shared E-scooters does not increase or
poorly increases the accessibility to different opportunities
compared to the available modes of transportation, especially
for the disadvantaged population groups.

Which can be rephrased as a research question stating:

RQ-8.1 Does Shared E-scooter increase population accessibility to opportuni-
ties?

The proposed methodological framework to assess the equitable use of SMS, specif-
ically shared E-scooters, referred to hereafter as scooters, to the best of our knowl-
edge, has not been used or evaluated so far.

8.2 Data and methods

8.2.1 Data

The proposed methodology was based on open-source data to grant transparency
for the different stakeholders and its reproducibility for further use. The research
hypothesis and methodology depended on assessing the added accessibility to the
population after the introduction of scooters, with a close focus on the disad-
vantaged population groups’ gains in comparison to the rest of the population;
therefore, we used five primary sources of data: Sociodemographic data from the
American Census Bureau (census.gov), scooter trip Data from Louisville city
open data portal (data.louisvilleky.gov), POIs data from Open Street Maps
(OSM, openstreetmap.org), road and local street network (OSM), and finally
General Transit feed specifications, GTFS from (transitfeeds.com), which were
used to calculate the accessibility from the different available modes of transporta-
tion to the different opportunities using an online routing engine (conveyal.com),
for more details regarding the collected data refer to Section 2.2.1.
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8.2.2 Methods

Sociodemographic spatial analysis

The main target of this step was to understand the spatial distribution of the differ-
ent sociodemographics, especially the variables that are most likely to be attributed
to the transport-disadvantaged population in reference to the city structure and
in reference to each other. Seven variables were considered in this analysis: low-
income, households with zero cars, population older than 45 years old, less than
a university degree, non-white population, unemployed, and PT-dependent users.
Also, we wanted to examine the impacts of the historical segregation policies and
land use policies on the city’s population distribution. The first measure applied to
examine the spatial distribution patterns of the sociodemographic characteristics
in the scooter distribution zones is the Local Moran I index or Local Indicator of
Spatial Association (LISA) [207].
The next step in the analysis of the sociodemographic characteristics analysis
was to define clusters of the disadvantaged population groups. Disadvantaged
groups or poor communities are generally defined by their income level. National
guidelines define the household’s income thresholds; households below them are
considered poor. This step used two criteria: i) household income level, which
is a common practice to define the poor population, and ii) car ownership per
household, as the main focus of this study was related to travel behavior and
one of the most decisive factors of mode choice and daily travel behavior is car
ownership [208]. These criteria were calculated as a percentage of the number of
households per census block. The US census bureau defines low-income commu-
nities as the community (census block group) with 30% or more of its population
with household income less than 30,000$ per year; according to the US national
equity atlas (nationalequityatlas.org), on average, only 9% of the US house-
holds do not have access to cars. Therefore, census blocks were clustered into four
quarters using a two-dimensional coordinate system. The horizontal axis repre-
sents the percentage of households with income less than 30,000$ per annum per
census block, and the vertical axis is the percentage of households with zero-car
per census block. This technique was used to identify the communities with a high
probability of being transport-disadvantaged and those with a high probability
of forced car ownership [209]. These two population groups should be the prime
target for the policy intervention, and they should be served by SMS in general
and scooters, as in our case study.

Trips and POI hotspots

The next step was to identify scooter trip patterns spatially and temporally, then
the trips and POI significant hot spot using Getis-Ord (G∗

i ) [147]. The analysis was
based on the number of trips and the number of POI concentration spatial zones.
G∗

i statistical significance is evaluated using Z-score. Only spots with Z-scores
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equal to or more than 90% were kept; we used this analysis step to identify the
trip’s hot spots in reference to the distribution zones and to inspect the relation
between the trips and the different POI hots-pots. This step targeted quantifying
the relationship between trips and POI to understand the impact of POI on trip
generation.

Accessibility and PMI calculation

The primary step in this proposed methodology was to compute the accessibility
to the different opportunities using the different available modes of transportation:
walking, private bikes, PT, and Transport Network Companies TNC (E-hailing),
then compare it to the accessibility to the same opportunities using scooters. Ac-
cessibility was measured to all the available opportunities combined as people have
different preference and subsequently different potential to interact with the dif-
ferent opportunities; measuring accessibility to different opportunities address the
multi-dimension nature of accessibility. Also, it is hard to define which activities
are more critical and relevant for the different population groups [210]. A two-
dimensions coordinate system represents the accessibility of the census blocks to
the different number of opportunities, and the other axis is the Potential Mobility
Index (PMI) was used to identify the census blocks with critical, below-average
accessibility and PMI compared to the rest of scooters’ operation area, refer to
Figure 8.2.

Sensitivity analysis

There was uncertainty regarding the exact relationship of the modes substituted
by scooter; therefore, in order to cover the range of all possible trips substituted by
scooter, a sensitivity analysis was considered to cover all the possible combinations
of trip duration and trip speeds for the different modes, to ensure that all the
possible shifted trips from walking, biking, PT, car, and TNC trips to scooter are
captured in this analysis. Table 8.1 shows the assumptions were used to build
the different scenarios and calculate the accessibility of the different modes, and
perform the sensitivity analysis:

After calculating the accessibility and PMI for all census blocks in the study area
using the different modes, 974 main scenarios were obtained. Four accessibility
thresholds, similar to [211, chapter 8] and [212, chapter 3] were calculated for each
scenario: the average accessibility of all blocks, 10%, 30%, and 50% of the average
accessibility, were defined for each of the 974 scenarios, Figure 8.2. The reason
to test the impact of scooters on several accessibility thresholds is that there is
no definition for the sufficiency level of accessibility, or a person might have low
accessibility to the rest of the community and might still be satisfied with this
level. For each scenario, the impact of the scooter replacing the current mode on
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8.2 Data and methods

Table 8.1: Scenarios summary

Mode Speed (Km/hr)
Trip Duration (minutes)

Min Max

Walking 4.4, 4.82 5 15
PT Based on GTFS 5 30
Private Bike 12,14,16 5 15
Car Based on traffic conditions 5 15
TNC* Based on traffic conditions 5 15

Scooter 6,9,12 5 15

* 5 and 10 minutes waiting times were considered for TNC

the level of accessibility and the accessibility threshold is evaluated. Each of these
scenarios was evaluated as follows:

• The census block accessibility using the original mode (walk, PT, bike, TNC,
car) is evaluated, and if it is under one of the four thresholds, it is identified
as problematic.

• For the problematic situations, the scooter accessibility for the same scenario
and the same threshold is evaluated, and if it increases the accessibility of
the block to cross over the problematic threshold, it is considering enhancing
the accessibility, or it has a positive impact.

• If the evaluated scenario scooter accessibility and the original mode accessi-
bility are both below or over a threshold, it is considered to have no impact.

• Finally, if the accessibility of the scooter is lower than a specific threshold
and the original mode accessibility is over the same threshold, the scooter is
considered as decreasing the accessibility of the block

Case study setup

The data used in this study was obtained from Louisville, KY, a mid-size city on
the Ohio River with a population of approximately six hundred thousand. The city
has a long historical problem with racial discrimination and population segregation
based on the residents’ race [213]. Shared E-scooter was introduced to the city
in August 2018 and is still operating; operators follow the city’s guidelines for
managing and controlling the service within the nine operation zones defined by
the municipality, Figure 8.1. We focus hereafter on the regulation related to equity.
Operators should deploy a percentage of their fleet in the zones east of the city
(1,8, and 9) depending on the operator’s fleet size. These zones are identified by
the authorities as poor communities areas.
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8 Equity-based evaluation for shared mobility

Figure 8.1: Study area

8.3 Analysis results

8.3.1 Sociodemographic spatial distribution

Scooter’s distribution zones consist of 252 census blocks that we used for the
sociodemographic analysis. We checked the spatial distribution patterns for the
population’s sociodemographic characteristics that are more likely to impact the
inequitable use of scooters. Seven variables were considered in this analysis: low-
income (households with income less than $30,000 per year ), households with zero
cars, population older than 45 years old, less than a university degree, non-white
population, unemployed, and PT-dependent users. All the examined variables
were significantly clustered except for the old population variable, which showed
a random pattern. The spatial analysis results show a clear segregation between
the wealthy population and the low-income population group; however, this has
been evident historically from the city planning discriminatory practices1.
A two-dimension coordinate system was used to define disadvantaged groups and to
cluster them in a more straightforward way that helps to communicate the results
easier. Hereafter we will refer to them as quarters. The population was split
into four main quarters, where quarter (Q3), 120 census block (47.6%), represents
the severely disadvantaged blocks with low-income and zero car ownership, and
(Q4), 24 census bloc (9.5%), represents the forced car ownership group, or low-

1storymaps.arcgis.com/stories/8cd986b3c5ab4f1c8bedba85f195662f, accessed on 01/06/2023
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8.3 Analysis results

income population with a burden to own a car, mainly for the absence of adequate
transportation options.

8.3.2 Trips and POI

Trips significant hot-spots analysis, considering spots at least 90% significant level,
shows distinctive patterns for weekend and weekday trips. Trips spatial patterns
can be described as trips concentrated in three prominent locations, the downtown
area (zone 2), the north of the distribution zones, the southeast of the downtown
(zone 5), or the Baxter Avenue area, where there is a high concentration of leisure
activities (restaurants, and bars). The third trip concentration area is in the city’s
south (zone 6), around the University of Louisville. These patterns stand when
comparing weekday trips with weekend trips, but with different magnitudes, where
the leisure area (zone 5) and downtown have more weekend trips than weekdays.
Also, the university area (zone 6) has more demand during weekdays compared to
weekends.
POIs are concentrated in four locations, the downtown area (zone 2), where there
is a diversity of activities; the University of Louisville area (zone 6), Baxter Avenue
(zone 5), and Frankfort Avenue (zone 3); both Baxter avenue and Frankfort avenue
are areas with a high concentration of leisure activities. Other smaller hot-spots
areas are found in zones 8 and 4. It is clear that there is a correlation between the
trips hot spots and the POI hot spots, which strongly indicates the importance of
POI existence on demand generation. We calculated the coefficient of correlation
between the number of trips in each significant hot spot and the number of POI
within the same hot spot; Pearson’s correlation coefficient was around 0.55 with a
99% significant level, indicating the correlation between the number of POIs and
the generated trips.

8.3.3 Accessibility sensitivity analysis

The last part of the analysis is the central part of the research, where the impact of
scooter introduction on the accessibility gains for the different population census
blocks compared to the existing modes of transportation was examined. Figure 8.2
shows one example of the evaluated scenarios. Each scenario was evaluated on four
accessibility thresholds; the average accessibility of the mode and the subsequent
10%, 30%, and 50% of the average accessibility of the original census block accessi-
bility as compared to the scooter accessibility on the different thresholds. A total
number of (972 scenarios x 4 thresholds x 252 census block = 981,792) scenar-
ios were analyzed comparing the difference in accessibility between the different
modes and scooters; from these scenarios, only 9% indicated enhancement of the
accessibility of the blocks when replacing one of (walking, PT, bike, car, and TNC)
trips with scooter trip, and in 22% of the scenarios, scooters had less accessibility
to the different opportunities than the existing modes. For the rest, there was no
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8 Equity-based evaluation for shared mobility

impact, or the scooter did not change the level of the accessibility of the block
compared to other modes; in other words, if the scooter and the other mode were
below the threshold or both of the modes were over the evaluated threshold, we
consider it as a no-impact case.
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Figure 8.2: Example of accessibility and PMI comparison between PT and scooters

8.4 Discussion, study limitations, and conclusion

8.4.1 Discussion

In this research, we analyzed the changes in accessibility that might occur when
shared E–scooter replaces existing modes of transportation, walking, biking, PT,
private cars, and TNC, focusing on the impact of scooters on the transport-
disadvantaged population groups. In the first step of the analysis, we tried to
understand the population distribution in the city by examining the spatial dis-
tribution of the disadvantaged groups. This analysis showed a significant pattern
that can be described as disadvantaged groups residing in the areas west of the
city and the other wealthy population concentrated in the east. The concentration
areas of disadvantaged groups west of the city exhibit low to no opportunities.
Therefore, regardless of the scooter use, these areas, in general, are relatively ex-
cluding the disadvantaged population from participating in activities compared to
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the rest of the population, which is mainly a problem of the urban forms in terms
of diversity of land use and proximity to opportunities.
We analyzed 972 scenarios, and from them, only 9% had shown enhanced acces-
sibility; when disaggregated by mode, their majority, 53%, materialized when the
scooter replaced walking, followed by PT by 26%, and bike by 16%. These analysis
results are supported by a similar percentage of the modes displaced by scooters
that were stated by users in several surveys [214]; this gives rise to various con-
cerns related to public health and environmental impacts. When disaggregating
the scenarios by population per each of the replaced modes, on average, 18% of
the population enhanced their current level of accessibility; this 18%, when filtered
by age, physical ability, financial ability, and knowledge to use the service, might
drop to less than 1% of the overall population showing the small portion of the
population that can benefit from the introduction of scooters. Also, we disaggre-
gated the evaluated scenarios by population quarter, and there was no significant
difference between the four quarters. There is no doubt that the introduction of
scooters would increase accessibility as the number of available modes of trans-
portation will increase; however, this increase in accessibility occurs under specific
conditions and for specific scenarios. The analysis purposefully ignored structural
barriers to using scooters, such as affordability and the ability to use the service.
This was done to support our hypothesis that the problem of equitable use is inher-
ited from the urban forms in terms of the building environment. Even if the cost
is not the primary barrier to using the service, scooter use is limited in enhancing
accessibility under strict conditions.
Open-source datasets were used to encourage their use for a transparent decision
process, especially for transport and city planning policies, which generally have
political involvements that the public might need help understanding. We checked
the problem of inequitable use of scooters. However, the city has current policies
that were issued for the service providers, and the results indicated that the current
policies did not allow the service intended equitable use. The policies used in
Louisville are similar to most of the programs in the USA, showing that there
should be a more profound understanding of the city’s urban structure before
generalizing the operation policies for SMS, specifically scooters. The performed
analysis opens the door for investigating the need for SMS before its deployment,
and it raises the question of would extending PT service might be more beneficial
for the disadvantaged population groups rather than the new SMS.

8.4.2 Study limitations

This study examined the replacement of scooters for other modes without consid-
ering multimodality or using scooters as a first and last-mile solution, which could
be the case in some situations. Also, the temporal accessibility to the different
services (working hours) was considered fixed, or all the opportunities would be
available all the time; moreover, people’s ability was considered the same for the
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whole census block, which is not the case in reality. The used accessibility measure,
the cumulative number of opportunities, is a simple measure, and it is clear that
there are other more sophisticated methods to measure accessibility. However,
simple measures are easy to communicate to other stakeholders, and they perform
similar to other sophisticated gravity based models [215]

8.4.3 Conclusion

The proposed methodology and the subsequent analysis focused on the chances
of equitable accessibility of all members of the society to the different activities,
which are more likely to be missed in transport planning processes [211]. The
analysis was based on the enhancement of accessibility level, which is the core
of transport planning; however, we did not find any significant gains that might
lead to sustainable results, but scooters needed to replace sustainable modes to
have a positive impact on accessibility, and definitely, such behavior would not
reduce CO2 emissions, especially for the disadvantaged population groups. Even
so, scooter introduction might lead to a lower life quality for disadvantaged groups.
We attribute the no-gains of scooter accessibility to the urban forms, represented
by the less diverse land uses in poor areas and the limited opportunities. We are
not opposing the deployment of the scooters in this research, but we are highlight-
ing the need to consider their direct and indirect impacts before the deployment
process.
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and conclusion

Shared mobility services (SMS) represent an effective solution to several urban
transportation problems, such as reducing motorized traffic externalities, reduc-
ing travel costs, and increasing the utilization of urban space. These services are
gaining popularity as reflected by their abrupt increase in demand and their expan-
sion and availability almost worldwide. However, the sudden introduction of SMS
without adequate planning and experience in service deployment and operation
created several challenges that, if not treated, might nullify the positive potential
of SMS or even make them a burden on the urban environment.
In this dissertation, several aspects of SMS were explored, mainly focusing on un-
derstanding the relationship and interactions between SMS and other elements of
the urban environment: i) meteorological conditions, ii) built environment char-
acteristics, iii) population’s sociodemographic attributes, iv) available modes of
transportation , v) SMS characteristics and interaction within the SMS. This dis-
sertation’s findings increase the current knowledge regarding free-floating SMS
and, subsequently, the optimum way to deploy them efficiently, maximizing the
benefits of the different stakeholders involved in the process. This research focused
on free-floating SMS, shared E-scooters, and carsharing. However, the findings
could also be extended (after testing) to free-floating bike-sharing systems, which
showed similar travel behavior to shared E–scooters [162, 107].
This chapter will discuss the findings, the proposed framework, recommendations
for future research, limitations, and the conclusion of the different studies per-
formed.

9.1 Discussion

9.1.1 Main findings

Demand patterns

Exploring spatiotemporal demand patterns of free-floating carsharing and shared
E-scooters (scooters) highlighted similarities between the two services, especially
for the hourly and daily temporal demand, despite using data from different cities
having different urban structures. These findings reinforce the proposed idea
of synchronizing the maintenance and redistribution of the SMS fleet with the
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demand patterns targeting reducing the Vehicle Kilometer traveled (VKT) that
might result from the maintenance and redistribution [40, 38].
Seasonal demand showed fluctuation; however, it was not the same for carsharing
and scooters, as scooter demand drops significantly during winter months [38],
which is intuitive as scooters are not all-weather vehicles. It also shows the signif-
icance of the meteorological conditions on demand. Carsharing seasonal demand
also exhibits fluctuation, but to a lesser degree than scooters, Figure 2.7. Similar
impacts for weather were estimated through a stated preference experience, where
the presence of rainy conditions was the most significant factor in the choice process
between carsharing and scooters, increasing the probability of choosing carsharing
[40]. These findings define the likely relationship between SMS and meteorological
conditions. Accordingly, fleet management and control should consider seasonal
demand fluctuation, where the number of vehicles on the streets should not be
fixed all year long, as is in the current case. Adopting seasonal fleet capping
would, therefore, potentially enhance urban space management.
The comparison of the early use stage, pilot projects, demand patterns, and the
later use stages demand showed distinctive differences [38], indicating that while
pilot projects are a good indicator of how SMS are going to be used, but with
expected changes when the service is ultimately deployed. Understanding the
demand patterns and factors impacting it covers research objectives O-1.1, O-1.3,
and partially O-4.

Trip characteristics

Scooter trip characteristics were examined as the average trip speed, distance, and
duration were consistent in the five examined cities [38]. Pilot projects and early
use stages exhibited slightly higher speeds and longer trip distances and duration,
possibly due to new user excitement to use the service. Since accidents are highly
correlated with a lower familiarity with service use [156], which is more likely
to happen during the scooter introduction period, strict speed limit enforcement
should be in place and continuously monitored. Furthermore, both cities and
operators should provide educational marketing plans to educate users on how they
would use the service adequately, in addition to the rules for using the vehicles
and for identifying the hazards that could arise from improper use. These findings
and recommendations cover the research objective O-1.2.

Demand prediction

Demand patterns significantly impact service operation and organization; there-
fore, predicting the demand for a long horizon is critical for an efficient service
operation. The developed demand prediction framework [32] is helpful for service
fleet management as it can be used to deploy the adequate number of vehicles, i.e.,
scooters in the used case study [32], that cater to the expected demand. The de-
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ployment of an adequate number of vehicles will benefit the different stakeholders
as follows: operators would not deploy an excess number of vehicles, so they have
less maintenance and redistribution work, and subsequently, the expected VKT
should be lower than the usual cases, increasing the saving of the overall system
VKT; however, this is under strict conditions of replacing motorized modes trips,
and not attracting users from other sustainable modes such as active mobility.
Also, in this case, authorities will have more urban space, and curb-side man-
agement operations would be efficiently organized. This framework was targeted
through research objective O-2.

Interaction with public transportation

Demand patterns analysis showed that in the cities where late night and early
morning hours operation were allowed, there was an indication that scooters were
used to expand the temporal accessibility of public transportation [38]. This find-
ing was further investigated using a different approach, where the distance between
scooters and the nearest PT station was examined, showing a similar indication
that scooters were used to extend PT accessibility during the early hours of the day
when PT services are not available [39]. Another positive indicator for the inte-
gration of PT with scooters was found through modeling factors impacting scooter
demand, where the increase of the demand was associated with areas with increased
PT accessibility, which could indicate the potential of scooters as a first/last mile
solution [38]. These findings define some of the possible interactions between SMS
and PT and contribute to research objective O-1.4.

Population characteristics

Sociodemographic characteristics were found to significantly impact SMS use, as
revealed using different approaches and data. When examined, the exogenous
factors impacting the scooter demand in North America, areas with high median
income were associated with higher demand, and areas with more male residents
were associated with higher demand [38]. The former approach depended on ag-
gregated data on the census block level. When stated preference experiences were
used, which gives user-level information on the factors impacting choice between
SMS, [40], or the general use of carsharing [37], sociodemographic factors such as
gender, income, and education level, were significant. These findings emphasize
the role of sociodemographics impacts on SMS use. Also, it shows that SMS use
is not equitably possible for all society members. Therefore, equitable use of SMS
should be included in the early stages of service planning and monitored in the
different project stages to ensure equitable service use.
Population attitudes and personality impacts on SMS, specifically carsharing use,
were examined and significantly impacted carsharing use. Also, there were signif-
icant differences in travel behavior between carsharing users and non-users. On
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average, carsharing users were more active travelers than non– users. They were
more likely to adopt and use other SMS, such as shared micromobility. This opens
the door for more investigation of such behavioral impact on adopting Mobility as a
Service (Maas) platforms and how it might increase the potential of multimodality
if well planned. These findings show the impacts of the population’s characteristics
on SMS use, and they contribute to research objectives O-3.1, O-3.2, and O-3.3.

Synergies between shared mobility services

Currently, SMS free–floating fleet size permits issued by authorities to providers
are considered on a stand-alone service basis or without considering other SMS
within the operation area. For example, suppose a city is issuing new licenses to
operate shared E–scooters. In that case, the fact that carsharing or bike-sharing is
available within the same operational area does not impact the fleet size of the new
scooter service. Such an approach ignores the fact that there are synergies between
the different SMS, in the form of modal substitution as proven by the stated
preference experience conducted in this dissertation to quantify the magnitude of
the shift that might happen from carsharing to scooter after the introduction of
scooters [40]. Scooters were found to attract up to 23% of carsharing trips that are
shorter than four kilometers, which shows the potential of saving around 45,000
trips and their equivalent to 118,000 VKT and saving of roughly 57,850 kWh,
ignoring scooter additional VKT resulting from maintenance and redistribution
work [40]. This shift from carsharing to scooters might also help reduce the fleet
size of carsharing, which utilizes more curbside space than scooters. Therefore,
the licensing and planning for the different SMS should consider the availability
and the characteristics of other SMS.

The synergies within the same shared service were also examined when the factor
impacting the choice between the different carsharing payment schemes (pay per
minute or pay per kilometer) of use were investigated [37]. Significant factors im-
pacting the choice can be grouped into two main groups; the first group is related
to the service providers: trip cost, rating of the provider on the app store, and
availability of electric vehicles. The second group of variables is sociodemographic-
related, such as high income, driving license, familiarity, and previous use of car-
sharing services. These findings show that even within the same service, people
do have different preferences for different payment schemes, and other service at-
tributes such as app rating and available vehicle types within the fleet impact the
choice highlighting the fact that not all service providers should have the same
fleet size, which is the current case. Also, these findings show the service aspects
that providers should consider to attract more users.

These findings show some expected interactions and synergies between SMS and
how they would enhance the operation and management process, covering research
objectives O-3.3, and O-4.
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Service marketing

One aspect that was not evident in the literature on SMS is service marketing and
its impact on service uses. The familiarity with carsharing services in terms of
knowledge about the service use was found to positively and significantly impact
the adoption, the choice between operators, and the shift from other modes [37].
Therefore, service marketing in terms of informing prospective users regarding how
to use the service and different offers and options positively impacts service use.
That could be done by incorporating outreach plans in the planning process for the
different services, targeting the different user groups. These findings contribute to
research objective O-5.

Equitable use evaluation

Equitable distribution of resources, in this dissertation, access to SMS is essential
to all members of society to ensure equitable access to opportunity and develop-
ment. While SMS faces serious equity use challenges, as by its definition, several
perquisites are required, such as digital banking access, smartphone access, and
digital skills, other problems, such as affordability and availability of the SMS
within reach, do exist. Inequitable use of SMS, evident in this dissertation, was
highlighted on several occasions using different methodological approaches showing
the persistence of the problem, indicated mainly by the impacts of the population’s
sociodemographic characteristics on SMS use. Therefore, a framework to evaluate
the equitable use of SMS shared E-scooter was developed and centered around
the concept of accessibility to investigate if SMS would increase the population’s
accessibility to different opportunities or not, as compared to available modes of
transportation [36].
The findings of this framework suggest that to increase the current level of acces-
sibility, most of the trips that would be replaced would be active mobility trips,
walking and bike trips, and PT trips. Also, there are no notable gains for disad-
vantaged populations, areas with low-income levels, and low access to the private
car by the deployment of SMS. Moreover, the framework shows that the problem
of inequitable use of SMS is most likely to be inherited from the urban form, which
expands the possibility of the sources of the inequitable use problem of SMS, as the
current research attributed the problem of SMS inequitable use to user sociodemo-
graphic characteristics, and vehicle availability and affordability [36]. The impacts
of the urban forms in terms of land use and available infrastructure on SMS use
were also evident when the exogenous factors impacting shared scooter demand
were examined and were found to be significant [38]. These findings outline the
relationship between SMS and urban forms. These findings also imply the need
for different measures to fight the inequitable use of SMS. The case study used to
validate the proposed equity evaluation framework showed that current measures
adopted by operators, such as vehicle deployment in low-income areas, could not
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help achieve the needed equity; similar measures are implemented in most of the
cities, showing that there is a need for alternative measures to achieve the equitable
use of SMS. This evaluation framework covers research objective O-6.

9.1.2 Proposed deployment framework

The findings of the research papers, and dissertation objectives are consolidated,
and the following framework, shown in Figure 9.1, is proposed for free-floating
SMS deployment. The framework consists of five main stages that are explained
in detail as follows:

Mobility need assessment (Stage I)

The framework developed to evaluate the equitable use of SMS, scooters, showed
three main highlights, among others, SMS might not be the best mobility solu-
tion for all population groups, also mobility need assessment are not a common
practice in SMS planning, and equitable use outcomes of the projects are not al-
ways considered in the planning stage of the project [36]. Therefore, the initial
stage of proposing the deployment of one of the free-floating SMS into a specific
area should be performing mobility needs assessment. Afterward, the assessment
results should be evaluated in terms of their alignment with SMS characteristics
and the added value of SMS to all the members of the society regardless of their
economic situation and residence locations. The following steps of this stage are
proposed :

• The proposal for SMS deployment should be aligned with the overall shared
mobility promises of sustainable transportation systems with environmental,
economic, and social benefits. SMS should also be allocated equitably to all
society’s members without discriminating against specific groups based on
race, gender, or economic abilities. Mobility needs assessment is an often–
overlooked step in the SMS planning process, but it should be mandatory as
it targets empowering communities by increasing citizen involvement in the
process, as it maximizes societal benefits and minimizes the current burdens
of transportation systems.

• Target area characteristics understanding

– Definition of the operation zone, the sociodemographic characteristics of
the residents, the available modes of transportation, the characteristics
of the land use, and the availability of point of interest (POI) and op-
portunities. These factors are significantly impacting the demand [38].

– Identification of barriers to using SMS for the different population groups
in the different geographical locations [36].
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Figure 9.1: SMS deployment framework

– Definition of disadvantaged population groups within the study area to
identify their mobility needs, monitor their future use for the proposed
services, and remove the structural barriers that might stop them from
using the service [36].
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– Investigation of the proposed service affordability for the different pop-
ulation groups to ensure the proposed service does not result in extra
burden on low-income groups and other disadvantaged groups [36].

– Understanding the gaps in the current transportation system to use SMS
to bridge these gaps.

– Understanding the modes of transport that would be replaced by SMS
and impact assessment that should be performed to assess the expected
sustainability outcomes [36].

• Consultation with different stakeholders [36]

– Focus groups with the different representatives of community regarding
their familiarity with the different SMS options.

– Focus groups with the concerned stakeholders regarding their targeted
and expected benefits and how they would measure the success of the
measures in terms of key performance indicators (KPI).

– Focus groups on the convenience factors that might increase SMS use,
such as the willingness to walk, the number of the vehicles in square
kilometer, and operation hours [37, 39, 38].

– The equitable use of the proposed service in terms of additional provided
accessibility by the new SMS to the different population groups in the
different geographical locations should be evaluated, and it should be
the center of the planning process. Accessibility is the center of just
transportation systems.

– Based on the understanding of the project’s area characteristics, the mo-
bility needs of the residents, and the targeted benefits from the different
stakeholders, a second round of consultation with all the stakeholders
should be done in order to conclude the mobility need assessment and
final decide if SMS are suitable for the study or not, and other transport
alternatives to be considered.

– Evaluation for the alignment of mobility needs and SMS. The evaluation
should consider the different aspects of sustainability, social, economical,
and environmental benefits [36].

– If the final decision is to go forward, the next step should be preparing
outreach plans followed by a limited period pilot project [38, 37]. More-
over, if the proposed SMS service expected outcomes are not aligned
with the mobility need assessment, there would be two options; the first
is to cancel the project, and the second option is to redo the mobility
needs assessment study considering the evaluation outcomes, but this
should be decided on a case by case basis.
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• Outreach plans

– Development of outreach plans by operators, targeting disadvantaged
population groups, to increase their knowledge regarding SMS. Author-
ities need to monitor such plans to grant their effectiveness [37].

– Outreach plans should be prepared in different languages to insure in-
clusivity for all the members of the society, especially in areas with high
number of immigrants [36].

– Disadvantaged population groups generally suffer from lack of internet
access, which hinders their possibility to access information regarding
using SMS; therefore, alternative options to digital outreach plans should
be prepared, such as printed maps showing the proposed locations for
SMS, as well as other related information [37].

Pilot project (Stage II)

The second stage is the pilot project and its evaluation stage.

• A pilot project of a limited period should be adopted before the full deploy-
ment. The project would aim to measure the popularity and the acceptance
of the SMS by evaluating the demand and fleet utilization rate, the impact
of the project on user levels of accessibility, the equitable use outcomes of
the service, the reasons for using (or not) the service, and finally the received
complaints if any. The comparison between the pilot projects and full deploy-
ment revealed that pilot projects represent the full deployment well; however,
differences in demand and use patterns were observed [38]. Therefore, pilot
projects are recommended to be conducted before the full SMS deployment,
and the following steps are to be considered:

• Operation rule definitions: clear operation rules and regulations such as but
not limited to operation zone limits, locations to use the vehicle such as al-
lowing the use of sidewalks and roadways, and a definition of parking rules
speed limit, fleet size, operation hours need to be communicated to the differ-
ent stakeholders through different educational means, to reach the different
population groups within the operation area, to increase the resident famil-
iarity and knowledge about the service, which subsequently might lead to
better service usage [37, 38].

• Pilot project monitoring: in order to be able to efficiently and effectively
evaluate the pilot project, the following points need to be monitored:

– Number of trips per vehicle to be monitored by the authorities during
the pilot phase [32].

– Feedback from residents should be collected and further analyzed.
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– Complaints received during the pilot project period need to be evaluated
within the pilot project evaluation process; mitigating those complaints
would also be recommended by taking the necessary actions during the
pilot phase.

– Areas with high conflict incidence with pedestrians need to be defined,
and suitable countermeasures to be adopted, such as but not limited
to excluding such locations from the operation zones or are defined as
low-speed areas [60].

– Vehicle parking hot-spots location to be identified, especially areas with
wrong parking location, which might block sidewalks in case of shared
micromobility.

• Pilot project evaluation

– Authorities should conduct a user satisfaction survey targeting users and
non-users of the different operated services, investigating their feedback
regarding the service at the end of the pilot project. Also, reasons for
not using the service should be investigated [37].

– Analysis for the violation to be conducted, and to be discussed with the
different stakeholders in order to adopt mitigation measures in the next
operation stages.

• Non adoption should be assessed based on the different barriers expected
[216, 72]:

– Spatial barriers: vehicles are not available within a convenient reach-
able distance; there are no opportunities that are nearby to be accessed
through a convenient trip distance, especially for shared micromobility
services.

– Temporal barriers: the case of limited operation hours, congested roads.

– Economical barriers: travel costs, and indirect costs such as smart phone,
internet subscription, and digital banking options.

– Physiological barriers: perceived safety for some modes, especially shared
e-scooter, for old population groups.

– Social barriers: language barriers, crime rates, poor outreach and edu-
cational plans.

• The pilot project evaluation should be based on the three main concepts of
sustainable equitable transportation system that have social, environmental,
and economic benefits.

If the pilot project evaluation results are positive, the next phase should be the full
deployment of the service. Moreover, if there is negative feedback from the pilot
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project, there would be two options; the first is to terminate the project entirely,
and the second option is to redo the mobility needs assessment study; however,
this to be decided on a case by case basis.

Full deployment (Stage III)

The third stage of the SMS project is the full SMS deployment. This stage is
the most dynamic and complex stage of the project, as it is expected to be a
long-duration stage until the project’s end, and the previously identified five main
interactions between SMS and other elements of the urban environment should be
considered. The deployment process has two main interconnected variables: the
fleet size and the spatiotemporal distribution patterns, which are directly linked
to the exogenous factors impacting demand and service use.

• Fleet size

– It is essential to highlight that the current practice of issuing permits of
fixed fleet size per operator for the whole project’s period is not to be
adopted. Fleet size should be dynamic, as temporal demand fluctuation
has been observed in different services in different locations [40, 38].

– If a new SMS is introduced during the full deployment phase, the interac-
tion with the current services should be evaluated. These services might
replace each other, and the fleet size should consider such interaction
and be updated accordingly [40].

– Fleet size to be predicted using the pilot project’s demand data. The im-
portance of this step comes from predicting the exact required number of
vehicles to avoid clattered and idle vehicles and unnecessary occupation
for the right of way [32].

– Currently, SMS fleets are distributed equally between the different op-
erators; however, as shown in the case studies, users might prefer one
of the operators more than the others. Also, operator evaluation by
users impacts their usage; therefore, licensing should consider user pref-
erences and the operator evaluation by the user to increase the operator
efficiency [37].

• Fleet spatiotemporal distribution

– Demand of different SMS has shown distinctive spatiotemporal patterns
that are closely tied to the urban forms, especially on a daily and hourly
basis; therefore, such patterns should be monitored, and fleet distribu-
tion should consider it to minimize the redistribution process and sub-
sequently the empty VKT that might result from redistribution work
[40, 38].
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– The different SMS and public transportation (PT) interactions should
constantly be monitored. SMS could play a role as a complimentary
service for the PT that would extend its spatiotemporal accessibility and
could also be a solution for the first/last mile dilemma. The presence of
the SMS vehicles within acceptable reachable distance from PT station
might increase the likelihood of using SMS as a first/last mile solution,
increase multimodality, and subsequently increase the efficiency of the
overall transport system [39, 38].

– The equitable use of SMS should be checked against demand spatiotem-
poral distribution; such a process might impact the access to the service,
especially in suburban and disadvantaged population areas. Authorities
need to monitor SMS vehicle availability among those groups and areas.
Also, operators must submit periodic reports regarding service use in
disadvantaged areas [36].

Monitoring process (Stage IV)

The fourth stage of the project, the monitoring stage, runs in parallel with the
full deployment stage. The main purpose of this stage is to monitor the service
and operator performance and the user’s feedback to maintain an efficient service.
Several items need to be monitored closely:

• Performance reports must be submitted by the operator detailing their fleet
utilization rates and the equity measure outcomes.

• Any changes in the land use within the project area needs to be evaluated; for
example, if a major attraction such as a new shopping mall is opened in the
operation area, its impact on SMS use and deployment should be considered.

• Safety reports and detailed accident reports need to be submitted by the
operator for the authority evaluation.

• All the reporting should be done periodically.

Knowledge transfer (Stage V)

Finally, after the project’s end, a final report covering all the project stages con-
veying all the lessons learned from the project to the stakeholders should be issued.
Such a report should include all the negative and positive outcomes of the project
to avoid adverse outcomes in the planning of similar projects and to strengthen
all the positive outcomes.
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Data characteristics and requirements

Finally, adequate data should be collected to examine, monitor and generalize the
previous findings and discussion. It is recommended to be publicly available for
a transparent decision-making process. The following requirements were based on
the data used for the different case studies, and Brown et al. recommendations
[72].

• User-related data is to be provided from operators to authorities while pro-
tecting user identities (i.e., anonymizing the data) so that data can be pub-
licly available. If such data can jeopardize user privacy, it is recommended
not to publish it publicly.

– Number of users for the different operators

– Use frequency per user

– Number of enrolled users from disadvantaged groups

– Periodic user survey data controlled

• Trip data can be publicly available, but adequate anonymization to protect
users and operators should be followed. Examples of such practices are the
scooter use data provided by the cities of Louisville, KY [103] and Austin,
[102].

– Trip star and end geographic coordinates

– Trip characteristics: speed, distance, and duration

– Number of trips per disadvantaged group

– Device unique identification to estimate the number of trips per device,
device life cycle, and vehicle idle time

– Trip data provided on a daily basis

• Vehicles related data

– Fleet size, including spare vehicles, and daily number of available vehicles

– Reports of stolen, broken and misused devices

– Maintenance plans

• Public interaction

– Customers complaints in detail and responses to them

– Equity plan outcomes, and follow–up reports

– Work done to promote outreach and education plans

• Accident reports in detail, including time, location, and severity, and the
corresponding hospital reports if applicable.
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9.2 Future research

The findings and discussion of this dissertation highlight the need to answer sev-
eral additional research questions that should be covered in future research to
enhance the process of SMS deployment and their efficient integration into the
urban environment.

SMS fleet control: as highlighted before, the fleet size definition process for the
different free-floating SMS only considers each service separately, without consid-
eration of the existence of other services. Therefore, the fleet sizing for the different
free–floating shared vehicles SMS, carsharing, bike-sharing, and shared E-scooter
should be holistically evaluated and estimated to reach an overall fleet considering
the interactions between such services.

Dynamic fleet sizing policies: examining demand patterns for scooters showed a
significant variation in the demand on an hourly, daily, and seasonal basis, which
suggests the possibility of using dynamic supply. Such consideration would reduce
the empty VKT, the cost of fleet maintenance, and the number of unnecessary
vehicles in the right of way. However, this approach for free-floating SMS has not
been investigated before; therefore, further investigation is needed to develop this
fleet control methodology and define the optimum time unit to consider for the
dynamic fleet supply.

Optimum pricing: travel cost is one of the significant detriments of mode choice,
and it can be used as a pull and push measure from the different modes of trans-
port, including SMS. Moreover, SMS are priced separately or individually without
considering the existence of other services; therefore, there is a need to study the
optimum pricing that would increase the likelihood of multimodality and most
efficient trips, including SMS, in terms of minimizing the expected traffic exter-
nalities. Also, the pricing scheme should consider other extra constraints, such as
the equitable use of SMS.

Impact of travel behaviour: travel behavior is one of the significant factors in user
decision to adopt SMS. However, this is often overlooked in SMS, despite being
fundamental for developing the service in new directions, such as integrating all
SMS in one digital platform or developing Mobility as a Service (Maas) platforms.
While SMS users have shown a distinctive travel behavior, SMS should also con-
sider the current non–user travel behavior so they are attracted to the service
and achieve equitable use for the service without excluding groups based on their
current travel behavior.
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9.3 Limitations

Factors impact the choice between the different operators: one of the most over-
looked aspects of SMS are factors impacting the choice between the different op-
erators for the same service. While we discussed the potential differences, in the
case of carsharing service, the factors impacting the choices between the different
operators for other services, such as scooters and bikesharing, are still vague. Such
factors would help the operators enhance their services to attract more people and
help the authorities issue permits considering such differences.

9.3 Limitations

The limitations of each case study and framework were discussed in detail in
the corresponding chapter and Appendix. However, it is essential to highlight
that some of the case studies were not applied to the three main free-floating
shared modes (car, bike, and E-scooter) due to many constraints, such as the
unavailability of the data for the three modes or even the unavailability of the
modes themselves in all the locations where data was collected. Moreover, for
the survey-based studies, Chapter 5 and 6, designing a survey for each of the
three modes was not an option, as survey data collection was both time- and cost-
consuming. Finally, the surveys presented in Chapter 5 and 6 were collected in
Germany, while the open scooter trip data that the rest of the case studies analyzed
were collected from North America. Undoubtedly, it would be ideal if the surveys
were collected in the exact location from which the scooter datasets were extracted;
however, this was impossible. However, we believe that based on the literature
review, users of SMS have a similar profile globally. Other factors might impact
SMS use, such as but not limited to the city’s urban form, the availability of other
modes of transport, and the accessibility to different opportunities. Therefore, to
generalize the findings and the conclusion of this dissertation in different locations,
the external factors that interact with free-floating SMS should be verified against
the findings of this dissertation.

9.4 Conclusion

This dissertation consolidates the work done by Abouelela et al.[32, 36, 37, 38, 39,
40], where several aspects related to SMS were explored to better understand SMS
and their integration potential within the urban environment. This was done by
answering several research questions fulfilling six main objectives to understand
the interaction between free–floating SMS and different elements of the urban en-
vironment, leading to the development of a framework for the efficient deployment
of free–floating SMS.
Shared mobility planning is a complex multi-dimensional process that should con-
sider the interaction with the different elements of the urban environment, such as
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meteorological conditions, built environment characteristics, population sociode-
mographic attributes, available modes of transportation, SMS characteristics, and
interaction within the SMS. These interactions were investigated throughout six
research papers. The findings of these papers were consolidated into practical
framework for the dynamic deployment of SMS.
It is essential to note that this dissertation does not advocate for or against SMS,
but highlights the need to consider their direct and indirect interactions within the
urban environment for better service integration. SMS is not a one–size–fits–all
mobility solution. Some cases might call for different measures, such as higher
investments in public transport or even changes in land use, resulting in possibly
more plausible mobility solutions.
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[109] Z. Zou, H. Younes, S. Erdoğan, and J. Wu. Exploratory Analysis of Real-
Time E-Scooter Trip Data in Washington, DC. Transportation Research
Record, page 0361198120919760, 2020.

[110] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2023. URL: https:
//www.R-project.org/.

[111] K. Walker and M. Herman. tidycensus: Load US Census Boundary and
Attribute Data as ’tidyverse’ and ’sf’-Ready Data Frames, 2023. R package
version 1.4.1. URL: https://walker-data.com/tidycensus/.

[112] SFMTA. Powered scooter share mid-pilot evaluation. Technical re-
port, SFMTA - San Francisco Municipal Transportation Agency,

120

http://austintexas.gov/department/shared-mobility-services
http://austintexas.gov/department/shared-mobility-services
https://data.louisvilleky.gov/dataset/dockless-vehicles
https://data.louisvilleky.gov/dataset/dockless-vehicles
https://www.chicago.gov/city/en/depts/cdot/supp_info/escooter-share-pilot-project.html
https://www.chicago.gov/city/en/depts/cdot/supp_info/escooter-share-pilot-project.html
https://www.calgary.ca/transportation/tp/cycling/cycling-strategy/shared-electric-scooter-pilot.html
https://www.calgary.ca/transportation/tp/cycling/cycling-strategy/shared-electric-scooter-pilot.html
https://www.calgary.ca/transportation/tp/cycling/cycling-strategy/shared-electric-scooter-pilot.html
http://www2.minneapolismn.gov/publicworks/trans/WCMSP-212816
http://www2.minneapolismn.gov/publicworks/trans/WCMSP-212816
https://www.R-project.org/
https://www.R-project.org/
https://walker-data.com/tidycensus/


BIBLIOGRAPHY

2020. URL: https://www.sfmta.com/sites/default/files/

reports-and-documents/2019/08/powered_scooter_share_mid-pilot_

evaluation_final.pdf.

[113] 6-t. Uses and users of free-floating electric scooters in france. Tech-
nical report, Bureau de recherche, 2019. URL: https://6-t.co/en/

free-floating-escooters-france/.

[114] D. Efthymiou, C. Antoniou, and P. Waddell. Factors affecting the adoption
of vehicle sharing systems by young drivers. Transport Policy, 29:64–73,
2013.

[115] J. L. Walker, Y. Wang, M. Thorhauge, and M. Ben-Akiva. D-efficient or de-
ficient? a robustness analysis of stated choice experimental designs. Theory
and Decision, 84(2):215–238, 2018.

[116] E. International. Munich city review, 2017. URL: http://www.

euromonitor.com/munich-city-review/report.

[117] M. Namazu, D. MacKenzie, H. Zerriffi, and H. Dowlatabadi. Is carsharing
for everyone? understanding the diffusion of carsharing services. Transport
Policy, 63:189–199, 2018.

[118] T. Pew, R. L. Warr, G. G. Schultz, and M. Heaton. Justifica-
tion for considering zero-inflated models in crash frequency analysis.
Transportation Research Interdisciplinary Perspectives, 8:100249, 2020.

[119] T. Loeys, B. Moerkerke, O. De Smet, and A. Buysse. The analy-
sis of zero-inflated count data: Beyond zero-inflated poisson regression.
British Journal of Mathematical and Statistical Psychology, 65(1):163–180,
2012.

[120] S. Washington, M. Karlaftis, F. Mannering, and P. Anastasopoulos.
Statistical and Econometric Methods for Transportation Data Analysis.
Chapman and Hall/CRC, 2020.

[121] G. Rodrıguez. Models for count data with overdispersion.
Addendum to the WWS, 509, 2013.

[122] J. S. Long. Regression models for categorical and limited dependent variables
(vol. 7). Advanced Quantitative Techniques in The Social Sciences, page 219,
1997.

[123] S. Washington, M. G. Karlaftis, F. Mannering, and P. Anastasopoulos.
Statistical and Econometric Methods for Transportation Data Analysis.
CRC press, 2020.

121

https://www.sfmta.com/sites/default/files/reports-and-documents/2019/08/powered_scooter_share_mid-pilot_evaluation_final.pdf
https://www.sfmta.com/sites/default/files/reports-and-documents/2019/08/powered_scooter_share_mid-pilot_evaluation_final.pdf
https://www.sfmta.com/sites/default/files/reports-and-documents/2019/08/powered_scooter_share_mid-pilot_evaluation_final.pdf
https: //6-t.co/en/free-floating-escooters-france/
https: //6-t.co/en/free-floating-escooters-france/
http://www.euromonitor.com/munich-city-review/report
http://www.euromonitor.com/munich-city-review/report


BIBLIOGRAPHY

[124] J. DeCoster. Overview of factor analysis, 1998. URL: http://www.

stat-help.com/notes.html.

[125] K. E. Train. Discrete Choice Methods with Simulation. Cambridge university
press, 2009.

[126] M. E. Ben-Akiva, S. R. Lerman, and S. R. Lerman. Discrete choice analysis:
theory and application to travel demand, volume 9. MIT press, 1985.

[127] K. E. Train, D. L. McFadden, and A. A. Goett. Consumer attitudes and
voluntary rate schedules for public utilities. The Review of Economics and
Statistics, pages 383–391, 1987.

[128] J. Kim, S. Rasouli, and H. Timmermans. Hybrid choice models: princi-
ples and recent progress incorporating social influence and nonlinear utility
functions. Procedia Environmental Sciences, 22:20–34, 2014.

[129] Z. Zhang, C. Wang, Y. Gao, J. Chen, and Y. Zhang. Short-term passenger
flow forecast of rail transit station based on mic feature selection and st-
lightgbm considering transfer passenger flow. Scientific Programming, 2020,
2020.

[130] D. Kwiatkowski, P. C. Phillips, P. Schmidt, and Y. Shin. Testing the null
hypothesis of stationarity against the alternative of a unit root. Journal
of Econometrics, 54(1-3):159–178, 1992. doi:10.1016/0304-4076(92)

90104-Y.

[131] Y. Liu, C. Lyu, Y. Zhang, Z. Liu, W. Yu, and X. Qu. DeepTSP: Deep traffic
state prediction model based on large-scale empirical data. Communications
in Transportation Research, 1:100012, 2021.

[132] B. Scholkopf and A. J. Smola. Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, Cambridge, 2001.

[133] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip, et al. Top 10 algorithms in data
mining. Knowledge and Information Systems, 14(1):1–37, 2008.

[134] C. M. Bishop. Pattern Recognition and Machine Learning. Information
Science and Statistics. Springer, New York, USA, 2006.

[135] J. H. Friedman. Greedy Function Approximation: A Gradient Boosting
Machine. The Annals of Statistics, 29(5):1189–1232, 2001.

[136] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting Sys-
tem. In Proceedings of the 22nd ACM SIGKDD International Conference

122

http://www.stat-help.com/notes.html
http://www.stat-help.com/notes.html
http://dx.doi.org/10.1016/0304-4076(92)90104-Y
http://dx.doi.org/10.1016/0304-4076(92)90104-Y


BIBLIOGRAPHY

on Knowledge Discovery and Data Mining, pages 785–794, San Francisco,
California, USA, 2016. ACM Press. doi:10.1145/2939672.2939785.

[137] A. V. Dorogush, V. Ershov, and A. Gulin. CatBoost: Gradient boost-
ing with categorical features support. In Workshop on ML Systems at the
31st Conference on Neural Information Processing Systems, pages 1–7, Long
Beach, USA, 2017. Curran Associates Inc.

[138] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye,
and T.-Y. Liu. LightGBM: A highly efficient gradient boosting de-
cision tree. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages 3146–3154, Long Beach,
USA, 2017. Curran Associates, Inc.

[139] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–
444, 2015. doi:10.1038/nature14539.

[140] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735.

[141] M. Sugiyama and M. Kawanabe. Machine Learning in
Non-stationary Environments: Introduction to Covariate Shift Adaptation.
Adaptive Computation and Machine Learning. MIT Press, Cambridge,
USA, 2012.

[142] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W.
Vaughan. A theory of learning from different domains. Machine Learning,
79(1-2):151–175, 2010. doi:10.1007/s10994-009-5152-4.

[143] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd
International Conference on Machine Learning, ICML’15, pages 448–456,
Lille, France, 2015. JMLR. doi:10.5555/3045118.3045167.

[144] X. J. Chen. Review of the Transit Accessibility Concept: A Case Study of
Richmond, Virginia. Sustainability, 10(12):4857, 2018.

[145] S. Arya and D. Mount. Approximate nearest neighbor searching. In Proc.
4th Ann. ACMSIAM Symposium on Discrete Algorithms (SODA’93), pages
271–280, 1993.

[146] K. Martens. Accessibility and potential mobility as a guide for policy action.
Transportation Research Record, 2499(1):18–24, 2015.

[147] A. Getis and J. K. Ord. The analysis of spatial association by use of distance
statistics. Geographical analysis, 24(3):189–206, 1992.

123

http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/s10994-009-5152-4
http://dx.doi.org/10.5555/3045118.3045167


BIBLIOGRAPHY

[148] J.-P. Allem and A. Majmundar. Are electric scooters promoted on social
media with safety in mind? a case study on bird’s instagram. Preventive
Medicine Reports, 13:62–63, 2019.

[149] M. Nigro, M. Castiglione, F. M. Colasanti, R. De Vincentis,
G. Valenti, C. Liberto, and A. Comi. Exploiting floating car
data to derive the shifting potential to electric micromobility.
Transportation Research Part A: Policy and Practice, 157:78–93, 2022.

[150] F. T. Kachousangi, Y. Araghi, N. van Oort, and S. Hoogendoorn. Passengers
preferences for using emerging modes as first/last mile transport to and from
a multimodal hub case study delft campus railway station. Case Studies on
Transport Policy, 2022.

[151] R. B. Noland. Trip patterns and revenue of shared e-scooters in Louisville,
Kentucky. Transport Findings, 29(4), 2019. doi:10.32866/7747.

[152] S. Bai and J. Jiao. Dockless E-scooter usage patterns and urban built envi-
ronments: a comparison study of Austin, TX, and Minneapolis, MN. Travel
Behaviour and Society, 20:264–272, 2020.

[153] CDOT. E-scooter pilot evaluation. Technical report, City of Chicago, 2020.

[154] H. Younes, Z. Zou, J. Wu, and G. Baiocchi. Comparing the Temporal Deter-
minants of Dockless Scooter-share and Station-based Bike-share in Washing-
ton, DC. Transportation Research Part A: Policy and Practice, 134:308–320,
2020.

[155] J. Jiao and S. Bai. Understanding the Shared E-scooter Travels in Austin,
TX. ISPRS International Journal of Geo-Information, 9(2):135, 2020.

[156] Austin Public Health. Dockless electric scooter-related injuries study. Tech-
nical report, Epidemiology and disease surveillance unit epidemiology and
public health preparedness division Austin Public Health, 2019.

[157] S. Shaheen, A. Cohen, I. Zohdy, et al. Shared mobility: current practices
and guiding principles. Technical report, United States. Federal Highway
Administration, 2016.

[158] H. Becker, M. Balac, F. Ciari, and K. W. Axhausen. Assessing the
welfare impacts of shared mobility and mobility as a service (maas).
Transportation Research Part A: Policy and Practice, 131:228–243, 2020.

[159] C. Janssen, W. Barbour, E. Hafkenschiel, M. Abkowitz, C. Philip, and D. B.
Work. City-to-city and temporal assessment of peer city scooter policy.
Transportation Research Record, 2674(7):219–232, 2020.

124

http://dx.doi.org/10.32866/7747


BIBLIOGRAPHY

[160] D. Durán-Rodas, E. Chaniotakis, G. Wulfhorst, and C. Antoniou. Open
source data–driven method to identify most influencing spatiotemporal fac-
tors. an example of station–based bike sharing. In Mapping the Travel
Behavior Genome, pages 503–526. Elsevier, 2020.

[161] Y. Liu, C. Lyu, X. Liu, and Z. Liu. Automatic feature engineering for bus
passenger flow prediction based on modular convolutional neural network.
IEEE Transactions on Intelligent Transportation Systems, 22(4):2349–2358,
2020. doi:10.1109/TITS.2020.3004254.

[162] R. Zhu, X. Zhang, D. Kondor, P. Santi, and C. Ratti. Understanding
spatio-temporal heterogeneity of bike-sharing and scooter-sharing mobility.
Computers, Environment and Urban Systems, 81:101483, 2020.

[163] S. Shaheen and A. Cohen. Docked and dockless bike ans scooter sharing.
Technical report, UC Berkeley: Transportation Sustainability Research Cen-
ter, 2019. URL: https://doi.org/10.7922/G2TH8JW7.
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A B S T R A C T

Shared-e-scooters are being introduced in cities worldwide, with their introduction often being
distant from the actual service characteristics understanding, potential benefits, and threats
realization. This research explores scooter use by examining approximately nine million scooter
trips from five North American cities (Austin; TX, Calgary; AB, Chicago; IL, Louisville; KY,
Minneapolis; MN). By investigating the spatiotemporal hourly and daily use, we found that
demand patterns tend to be similar in the different cities. Trip characteristics (speed, duration,
and distance) are almost empirically consistent across the five cities; however, there is evidence
that trip characteristics change over time in the same city. We also examined the impact
of exogenous factors on scooter demand, and found that weather (temperature, wind speed,
precipitation, and snow), day of the week, infrastructure (bike lanes, sidewalks, and shared
bike stations), sociodemographics (gender, age, and income), land use, and accessibility to
transit significantly impact demand. Findings highlight the need for evidence-based examina-
tion of shared-e-scooters and regulatory processes to guide policy decisions by the different
stakeholders.

1. Introduction

Micromobility is commonly defined as the set of small vehicles weighting less than 350 kilograms with a maximum speed of
45 km/h (Santacreu et al., 2020), with the shared version of it refering to the shared use of such vehicles on a pay-as-needed
basis (Shaheen and Cohen, 2019). This group of vehicles encompasses –private or shared– bicycles, e-bikes, skates, self-balancing
unicycles, segways, and scooters (Santacreu et al., 2020; Turoń and Czech, 2019). Shared standing (kick) e-scooters (for matters
of brevity, hereon referred to as scooters) are one of the latest members of the shared-micromobility modes. Lime (www.li.me)
launched the world’s first shared scooter system in Santa Monica, California, in July 2017, signifying the start of a revolutionary era
of shared micromobility. By the end of 2018, an astounding number of 38.5 million trips were completed using scooters in the USA,
representing 45.8% of the total trips completed by micromobility in that year, while in 2019, scooters were available in 109 cities in
the USA. The number of scooter trips in 2019 raised to 88.5 million achieving around 130% increase in scooter trip number compared
to 2018, showing the exponential increase in scooter use before the pandemic (NACTO, 2020). Scooters quickly gaining a share of
micromobility trips shows the magnitude of its success, especially when compared to bike-sharing systems, which were introduced
at least eight years earlier than scooters (NACTO, 2020). At the same time, the use of scooters has also grown globally with the
deployment of new systems in Asia, Europe, and Australia (Santacreu et al., 2020; Heineke et al., 2019; Møller and Simlett, 2020);
the total micromobility market is expected to keep growing to reach between 330$ - 500$ billion by 2030 (Heineke et al., 2019).

∗ Corresponding author.
E-mail address: M.chaniotakis@ucl.ac.uk (E. Chaniotakis).

https://doi.org/10.1016/j.tra.2023.103602
Received 20 May 2021; Received in revised form 17 May 2022; Accepted 25 January 2023



Transportation Research Part A 169 (2023) 103602

2

M. Abouelela et al.

The expansion and proliferation of scooters come with opportunities and challenges (Gössling, 2020). Curbside space utilization,
energy savings, greenhouse gas (GHG) emissions, and congestion reduction are some of claimed benefits of scooter (Allem and
Majmundar, 2019). To give a few examples, scooters occupy 0.3–0.6 m2 for parking space versus 20 m2 for cars (NYC Board of
Standards and Appeals, 2021); one-kilowatt hour of energy could propel a scooter 100 km compared to two km for a passenger
vehicle1 (Agora Verkehrswende, 2019); some operators claim a net-zero emission over e-scooters life-cycle (VOI)2 (Møller and
Simlett, 2020); and scooter’s trip distance on average is around one mile (Schellong et al., 2019; NACTO, 2020), approximately
the distance of 10% of the entire daily car trips in the USA, indicating the potential of scooters to replace a significant amount of
car trips, and their potential to reduce VKT (FHWA, 2014).

At the same time, the challenges related to the introduction of scooters cannot be overlooked. Scooters are significantly raising
safety concerns, as half of the reported accidents related to scooter use involved severe injuries, while fatal accidents were reported
in the USA (Yang et al., 2020; Schlaff et al., 2019; Stephens, 2019; Trivedi et al., 2019; Vernon et al., 2020). Scooters deployment can
cause disturbing effects on cities. McKenzie (2019), Janssen et al. (2020), Gössling (2020) summarized scooter deployment problems
as fleet-size control, capping and organization, permit cost, attracting users from active modes, and increased safety hazards. A
commonly met issue is that users commonly abandon them in the middle of the sidewalk, obstructing pedestrians, while there exist
various reports of vandalism (e.g., scooters thrown in rivers) (Turoń and Czech, 2019). Regarding emissions, Moreau et al. (2020)
performed a life cycle assessment for a dockless shared scooter system and showed that over their entire life cycle, scooters produce
more CO2-equivalent per passenger-kilometer than the modes they replace. At the same time, they are also found to attract users
from environmentally friendly modes (NACTO, 2020), such as walking and biking, generating empty vehicle kilometers traveled
(VKT) during redistribution and maintenance processes (Møller and Simlett, 2020).

The diverse range of challenges and the potential benefits of widespread use of scooters identified in the pertinent literature
render the need for further investigating their actual use in different urban contexts. While there is a growing body of literature
on the topic, see for example (Nigro et al., 2022; Kachousangi et al., 2022; Ziedan et al., 2021; Abouelela et al., 2021a; Luo et al.,
2021; Reck and Axhausen, 2021; Nikiforiadis et al., 2021), most studies conducted evaluate scooter’s use characteristics for limited
periods of time (for example: Liu et al., 2019 used three months of data; McKenzie, 2019 used four months of data, and Noland
2019 who used six months of data), ranging from five weeks to four months or utilizing experiences from just one pilot case, or
they do not differentiate or compare between pilot/early-stage use and regular use after service adoption and users constructing
service-familiarity (Liu et al., 2019; Zou et al., 2020; McKenzie, 2019). At the same time, most studies focus on the use of data from
just one city, with a few exceptions (see for example Bai and Jiao, 2020). This omission limits the scope of analysis, preventing
the comparison and extraction of conclusions regarding the potential generalization of the findings. In addition, demand analysis
in most cases is limited. Bai and Jiao (2020), Noland (2019) examined the factors affecting demand for scooters; however, they
used the average daily trip counts as the dependent variable, which does not reflect the variation in daily trip count. Also, Jiao and
Bai (2020) modeled the total number of trips per each zone (hexagon), and Reck et al. (2021) modeled the total number of trips
per census tract, Hosseinzadeh et al. (2021) used the scooter trip number density per zone; however, these are not capturing the
zero count area. Finally, while the pertinent literature emphasizes the potential of scooters to increase accessibility as a first- and
last-mile solution (Zuniga-Garcia et al., 2022; Yan et al., 2021), very few studies discussed the relation between scooter use and
accessibility (Aman et al., 2021).

In this paper, we leverage scooter trip data from four U.S. cities (Austin, TX; Chicago, IL; Louisville, KY; Minneapolis, MN) and
one Canadian city (Calgary, AB) to perform a comparative empirical analysis of the spatial, temporal, and demand characteristics
of the services, aiming at devising a thorough and informative investigation of scooter use, demand patterns, and factors impacting
the demand. To be able to generalize the methodology of this study, we use open source data sources (meteorological data, census
data, infrastructure-related data, land use data, and general transit feed specification files (GTFS)) to come up with an investigation
of factors affecting scooters’ demand, including the use of Local Index of Transit Availability for evaluating the relation between
scooter use and accessibility to public transportation (PT). As such, the contributions of this study are summarized into (i) assessing
and comparing the scooter trips’ spatiotemporal characteristics in these five cities, (ii) distinguishing among pilot projects, early
use stage, and later use stage, and (iii) investigating the exogenous factors that impact scooter’s demand, using open-access data,
and zero-inflated negative binomial regression models (ZINB). ZINB models have not been previously used in shared micromobility
demand prediction to deal with the issue of excess zeros data, as discussed in detail in Section 5. As a result, this research provides
answers to the following pertinent research questions:

• (RQ1) What are the scooter demand characteristics and are there similarities and differences in the temporal and spatial scooter
use patterns across and within different cities?

• (RQ2) What are the similarities and differences between scooter trip characteristics in different cities?

• (RQ3) Which exogenous factors affect scooter demand?

The remainder of this article is structured as follows. The user data and the methodology utilized for the cleaning, analysis,
and modeling processes follow in Sections 3 and 4 respectively. Section 5 explores the exogenous factors impacting trip generation,
while in Section 6, study limitations, conclusions, and an overall discussion of this research are presented. In the upcoming section,
a literature review is presented in Section 2 to identify the different factors affecting scooter use and the use of shared micromobility
in general.

1 The comparison is between a VW Golf 1.0 TSI (4.8 L Gasoline per 100 KM), and 0.47 kWh battery Bird scooter (Agora Verkehrswende, 2019)
2 www.voiscooters.com, accessed 11 March, 2022
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2. Literature review

The popularity and exponential growth of scooter use and the service’s introduction to different cities globally have encouraged
researchers to explore the service from different perspectives to integrate the service into the urban environment. Scooter-related
research can be grouped into four main areas; (i) safety hazards, (ii) scooter use patterns and comparison with other micromobility
services, (iii) potential to replace other modes, and (iv) demand characteristics, demand prediction, and factors impacting scooter’s
demand.

The first area of research covers the growing safety hazards concerns related to the widespread use of scooters; for example, in
the USA, the growth of scooter-related injuries is significant. In 2018, the number of injuries increased by 140%, compared to 2016,
before introducing the first shared scooter system (Namiri et al., 2020). Studies in other locations, such as Europe, Israel, Canada,
New Zealand, and Singapore, tried to identify the demographics of the users involved in crashes (accidents), as well as crash severity
variability, using crash reports, hospital diagnostic reports, or even media news reports’ mining techniques, concluding that novice
young male users are more prone to injuries compared to other user groups (Puzio et al., 2020; Dhillon et al., 2020; Zagorskas and
Burinskienė, 2020; Störmann et al., 2020; Lin et al., 2020; Uluk et al., 2020; Bekhit et al., 2020; Nisson et al., 2020; Liew et al.,
2020; Basky, 2020; Ishmael et al., 2020; Bauer et al., 2020).

The second research focus area is to extract and analyze the scooter’s demand patterns and compare the defined scooters patterns
with other micromobility services (e.g., bike-sharing) use patterns. In these studies, researchers used distribution techniques to
perform temporal and spatial pattern analysis and geo-statistical methods, such as Moran index, and 𝐺∗ (Younes et al., 2020;
McKenzie, 2019; Moran, 1950; Cliff and Ord, 1969; Fotheringham, 2009). McKenzie (2019) and Younes et al. (2020) compared
scooter use and bikesharing use in Washington D.C. to find that casual bikesharing user used the system temporally quite similarly
to scooter users. On the spatial level, the use pattern of the two systems was different. Both systems’ trips started and ended from
different land use areas showing different purposes of using the two systems. When comparing regular bikesharing member use
patterns to scooter use patterns, the spatial and temporal use patterns differed.

The potential of scooters to replace other travel modes was also examined in the literature. Two studies in Chicago, Il, and New
York used the cities’ current modal split and introduced scooters as a new mode to find that, in Chicago, scooters could replace
47%–75% of private car trips between 0.5 and 2 miles, while in New York, scooters could replace up to 1% of all taxi trips (Lee et al.,
2021; Smith and Schwieterman, 2018). Abouelela et al. (2021b) conducted a stated preference survey in Munich, Germany, among
young users (18–34 years old) that showed that scooters could replace up to 14% of carsharing trips. Several cities conducted user
surveys to investigate which modes are replaced by scooters. Walking, biking and PT are the top replaced modes; with the percentage
of replaced walking trips up to 55% as in Calgary, Canada (ADOPT, 2019), 15% of bike trips as in Brussels, Belgium, and 30% of
PT trips in France (Lyon, Marseilles, Paris) (6-t, 2019). In Arizona, e-scooters are replacing bike and walking short trips for all trip
purposes (Sanders et al., 2020).

Factors impacting scooter demand are another topic of concern to the research, and different statistical modeling techniques
were used to predict the demand. Jiao and Bai (2020), Bai and Jiao (2020) used negative binomial regression to examine factors
impacting trip generation in Austin, Tx, and Minneapolis, Mn. Spatial regression techniques were also applied for the same purpose in
Austin, Tx, where Caspi et al. (2020) used spatial lag and spatial Durbin log–log models to examine the factors impacting scooters’
trip generation. Noland (2019) used ordinary least square regression to predict the average number of trips, average distance,
and average speed per day. Factors impacting scooter demand could be summarized as, but not limited to, distance to downtown,
intersection density, land use diversity, population density, access to PT (Bai and Jiao, 2020; Jiao and Bai, 2020), bike infrastructure
availability (Caspi et al., 2020), temperature, snow, precipitation, and wind speed (Noland, 2019).

In the trip generation and attraction studies, only areas with consistent trip rates were considered in the modeling process. Areas
with low trip generation rates were excluded; in other words, factors impacting low trip rates areas were not examined; in this
study, we apply zero-inflated models to model the low trip demand areas as discussed in detail in Section 5. Other research areas,
such as scooter use policies and recommendations, as well as parking regulation (Gössling, 2020; Janssen et al., 2020; Turoń and
Czech, 2019; Shaheen and Cohen, 2019; Fang et al., 2018), charging and maintenance stations location optimization (Chen et al.,
2018), and customer segments identification (Degele et al., 2018) were also addressed in the literature.

3. Methods

3.1. Data

For our analysis, we used data from five cities. Four of them are located in the USA (Austin; TX, Chicago; IL, Louisville; KY,
Minneapolis; MN), and one in Canada (Calgary; AB). The cities are different in size and population, as shown in Table 1, as well
as the mode split of work trips — Chicago and Calgary have larger transit trip share (28%–16%) compared to the other cities’
transit trips share (2.5% Austin, 4% Louisville, and 8% Minneapolis). The examined cities have all made their shared-e-scooter
trips data publicly and openly available, with their scooters’ operation schemes and setups to differ (see Table 1). Moreover, the
collected trip data was obtained from continuous use operations or pilot projects executed to preliminary evaluate the potential
impacts of scooters and the public acceptance before the full deployment of the service. For example, Minneapolis and Chicago had
limited-time pilot projects of around three months. Calgary runs a 16-month project, with three-month-mid-pilot data published for
public evaluation. Louisville and Austin have scooters regularly. The operation is also different regarding the number of operators
and fleet size. Some cities have imposed limitations on the number of operators (Louisville, Minneapolis, Calgary, and Chicago),
while Austin does, having eight different operators in July 2019, increased to ten by 2020 (Janssen et al., 2020). Regarding fleet
size limitations, each city has imposed cap limitations as a function of the number of operators and ridership rates. When it comes
to times to use the scooter, Chicago was the only city that has imposed time restrictions for scooter use between 10 p.m. and 5 a.m.
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Table 1
Summary of city characteristics, scooter regulations and policies.

City Pop. in
Millions

Operators Number of
vehicles

Speed limit
(mph)

Helmet
regulation

Permitted use Ref.*

Austin, USA 0.95 10 15000 20 Advised;
mandatory for
under 18

Bike lanes and
sidewalk

1

Calgary, CA 1.34 3 1500 12.4 Advised Bike lanes and
sidewalk

2

Chicago, USA 2.71 10 2500 15 Advised Bike lane 3
Louisville, USA 0.62 4 1200; increased

to 1050/operator
15 Mandatory Roadways, and in

bike lanes or paths
4

Minneapolis, USA 3.63 4 2000 15 Advised Bike lanes 5

Reference* 1 = Austin Shared Mobility Services (2022), 2 = Calgary Open Data Portal (2022)
3 = Chicago Department of Transportation (2022), 4 = Louisville Open Data (2022)
5 = Minneapolis Public Works (2022)

Trips data description
The available datasets from the five cities have a standard structure with slight variations between the sets targeting protecting

user privacy. The datasets’ format is longitudinal, with each row represents a trip observation, and each observation contains the
trip’s identification code (ID) for each trip, vehicle identification (scooter, bike, e-bike), trip, start and end date, as well as trip
duration, speed, and trip distance based on companies route data. Additional information, such as the start and end community
area number, is provided in the case of Chicago. Different procedures are implemented to protect the users’ anonymity in all the
datasets. Trip start and end locations in Austin and Chicago are assigned to the corresponding census tract. In Minneapolis, trips are
assigned to the nearest streets’ center-line. In Calgary and Louisville, trips are aggregated to a grid, which in the former is based on
hexagons with an area of 30,000 square meters and in the latter on the block level. The trip starting time is also aggregated to the
nearest 15 min in Austin (Austin Shared Mobility Services, 2022) and Louisville3 (Louisville Open Data, 2022), to the nearest hour
in Chicago (Chicago Department of Transportation, 2022) and Calgary (Calgary Open Data Portal, 2022), and the nearest 30 min
in Minneapolis (Minneapolis Public Works, 2022). If there are few trips in the exact aggregated location in Louisville, the points
are moved 0.5 km randomly without specifying which points were moved.

Other data sources description
To augment the above-described datasets, we collected data from other sources. Specifically, we use (a) meteorological data,

obtained from visualcrossing.com, containing the hourly temperature, wind speed, the precipitation conditions, snow depth,
humidity, and dew point, (b) sociodemographic data from the American census database retrieved from census.gov containing
population characteristics, aggregated to each of the census tracts. The aspects considered in our analysis obtained from this dataset
is; the percentage of the different; age groups, gender, median income, transportation mode used to work, and population of each
tract, (c) infrastructure data obtained from openstreetmap.org containing characteristics such as the length of bike lanes, the length
of sidewalks, and the number of shared bike stations, (d) Land use data (from the cities’ online portals), the different land uses
were collected, and it was assigned to the census tract. If a census tract has more than one land use, the percentage of each land
use was calculated based on their area compared to the overall track area, (e) General Transit Feed Specification Files (GTFS) from
transitfeeds.com, we downloaded the GTFS for the four US cities, and the local index of transit availability (LITA) was calculated
to study the relation between scooter demand and accessibility to public transport.

3.2. Methods

The above-described datasets are used as the basis for the analysis performed. Using the combined –with the external data
sources– trip data, we investigate the impact of the exogenous factors on the daily generated trip demand. Specifically, to answer
research questions, we extract and compare demand patterns to understand the similarities and differences of trip characteristics
in different cities. The process followed (Fig. 1) includes data cleaning procedures collating the datasets, models’ estimation, and
findings and conclusion.

Trip data cleaning process
Following an exploratory data analysis, outliers and false records were removed by setting a lower and upper bound for all trip

characteristics, distance, duration, and speed, based on previous studies and the standard vehicles’ criteria. One charge can power a
scooter for two hours or approximately 50 km. Therefore, we set the upper bound for the trip distance to 50 km and trip duration to
two hours. The minimum trip distance was set to 100 meters for the lower bound, while for the duration, it was set to one minute,
and the upper bound for 120 min following previous research methods used (McKenzie, 2019; Liu et al., 2019; Zou et al., 2020).
The upper-speed bound was set to 15 mph (25 km/hr) as per the maximum allowable speed limit in four of the subject cities for the

3 The data format can be checked from this link data.louisvilleky.gov/dataset/dockless-vehicles/resource/fd252fa3-a829-4d20-9879-c5b4f8b39f7f
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Fig. 1. Research methodology.

trip speed. Although the speed limit in Austin is 20 mph, there are several areas where the maximum speed was set to 8 mph, and
the number of trips faster than 15 mph when examined was limited; therefore, we opted to remove these trips to have consistent
criteria across all cities. The trip’s start and end coordinates were examined in all the cities, and trips with either false start or end
coordinates were removed.

To test the difference between the early use stage –or what can be named the service adoption period–, and the later use stage
–where users establish familiarity with the service–, we split the dataset of Austin and Louisville into two parts. The first part is
the first three months of use, resampling the adoption period (referred to from hereon as the pilot period), and the rest of the use
period, as the other part of the dataset (referred to by the city name). The main reason for choosing three months of the data to
test as an adoption period is that the other three datasets, Chicago, Calgary,4 and Minneapolis, were around a three-month-long
pilot project. The primary purpose for splitting the data was to investigate if there is a change in travel behavior between the early
service use and adoption stage when people are getting familiar with the service and the later, regular-use stage.

Data aggregation and preparation for modeling
The dependent variable was set to the number of daily trips per census tract. We used the census tract as the spatial aggregation

unit for two reasons. First, the delineation rules for all the census tracts are homogeneous for the same country, the USA. Second,
the sociodemographic data for the population are provided from the American census database (census.gov) are provided on the
census tract level.

As explained hereunder, the collected data sources were aggregated and combined temporally or spatially, and in some cases,
both temporally and spatially. Also, it is to be noticed that all the external sources of information can be grouped into two main
categories; (i) time-dependent or time-varying data, such as meteorological and demand data, and (ii) time-independent variables,
such as sociodemographic information, infrastructure information, land use, and GTFS files. The following points summarize the
aggregation and preparation process for the used sources of information;

4 In Calgary the total pilot project period is 16 months; however, only the first three months trips records were published for public evaluation for the project
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• Trips data were aggregated temporally per day of the data collection period and spatially per census tract. So for each tract,
the number of daily trips per day along the data collection period was calculated.

• Meteorological data included the average daily temperature, average daily wind speed, and the presence of precipitation and
snow in our analysis. The meteorological data were the same for the same day and all the tracts of the city. We considered
precipitation as a binary variable, where it was set equal to one if it was a rainy day and zeroed otherwise. Like precipitation,
we considered the snow conditions, where we considered it a binary factor, where snowy days were set equal to one and zero
otherwise. No aggregation was done for the meteorological data.

• Sociodemographic information was collected per census tract. Intuitively, the sociodemographic information is the same
throughout the data collection period.

• Infrastructure information, such as the sidewalk lengths, the bike lanes lengths, and the number of shared bike stations, was
aggregated spatially to each census tract by calculating the lengths or counting the numbers by each census tract.

• Land use information was assigned to each census tract as a proportion of its area to the total area of the census tract. For
example, when a tract had one land use, this land use was assigned as 100% of the tract, and when a census tract had two
land uses, the percentage of each land use was calculated as the proportion of each area to the total area of the tract.

• GFTS data was used to calculate the Local Index of Transit Availability (LITA) to examine the relation and interaction between
PT use and scooter use; therefore, we used the accessibility to the public transit as a proxy for testing this relation. The main
reason to use LITA as a measure of accessibility was that it considers different aspects of the PT service or namely, spatial
availability, headways (temporal availability), and service capacity (Fu and Xin, 2007). LITA is calculated as the bus capacity
(the number of seats per bus) multiplied by the daily number of buses that passes through the tract (the number of buses
per day) multiplied by the bus route length inside the tract and finally divided by the summation of the total population and
employed people within the same tract (Chen, 2018).

Demand models
The dependent variable of interest used was the number of daily trips per census tract zone, a count variable with high dispersion

and high number of zero counts resulted from the low demand areas. Zero-inflated negative binomial distribution allows additional
probability to detect extra zero counts compared to the standard negative binomial distribution. Contrarily to the negative binomial
distribution, the zero-inflated negative binomial distribution does not have the restriction of the variance to be equal to the expected
mean value, which allows for extra overdispersion, which is the case when variance is larger than the mean. The zero-inflated
negative binomial models’ hypothesis that there are two latent classes of count data one that is always zero, and the other class,
which is not always zero. These models consist of two parts the first part predicts the probability of the excess zero, and the second
part account for the non-zero count and the not excess zeros as well (Pew et al., 2020; Loeys et al., 2012). Naturally, the best model
to determine the latent class of the data is a logit or probit model. After determining data class, and when (𝑝𝑖 = 0), the probability
mass function for the zero inflated model is represented in Eq. (2) (Washington et al., 2020).

logit(𝑝𝑖) = 𝑥𝑇𝑖 𝛽 (1)

𝑃 (𝑌𝑖 = 𝑦𝑖𝑗 |𝑝𝑖, 𝜇𝑖𝑗 ) =
⎧⎪⎨⎪⎩

𝑝𝑖 + (1 − 𝑝𝑖)(
𝜃

𝜇𝑖+𝜃
)𝜃 𝑦𝑖 = 0

(1 − 𝑝𝑖)
𝛤 (𝑦𝑖+𝜃)
𝛤 (𝜃)𝑦!

𝜇𝑦𝑖 𝜃
𝜃

(𝜇𝑖+𝜃)𝑦+𝜃
𝑦𝑖 = 1, 2, 3,…

(2)

Eq. (1) presents the model structure for the logit part of the model, where the 𝑥𝑖 represents the covariates vector, and 𝛽 represents
the parameters vector. The probability of the excess zero (denoted as 𝑝𝑖), and the probability of the other counts is (1 − 𝑝𝑖) follow
a negative binomial distribution, with a mean of 𝜇, and following a Gamma distribution (𝛤 ). The mean of the ZINB distribution
𝐸(𝑦𝑖) = (𝑖− 𝑝𝑖)𝜇𝑖, and variance 𝑉 𝑎𝑟(𝑦− 𝑖) = (𝑖− 𝑝𝑖)𝜇𝑖(1 − 𝑝𝑖𝜇𝑖 + 𝜇𝑖∕𝛤 ). The ZINB distribution is given by Eq. (2); where 𝜃 is the shape
parameter that allows for the over dispersion (Rodrıguez, 2013; Long, 1997).

Given a very high number of variable resulting from the use of the above presented datasets, we followed the notion of Duran-
Rodas et al. (2019) for the model building process, to examine variables upon their correlation and used only non-collinear variables
in an iterative process, removing insignificant variable during model structure examination, to reach the most parsimonious models.

4. Analysis

This section presents the analysis performed to compare the demand and trip characteristics on temporal and spatial levels. The
main aim of comparing the different cities’ data is to investigate the differences and similarities of scooter use patterns in the subject
cities and investigate if scooters’ use pattern is similar for the different cities or not.

4.1. Seasonal temporal demand

Descriptive statistics were derived for the seasonal temporal demand (Table 2 and Fig. 2). At the beginning of the scooter’s
deployment, the demand increased rapidly for about two weeks until it reached a steady trend that exhibited seasonal demand
patterns. In general, the demand during the pilot projects drops near the end of the project, which is not observed for Austin and
Louisville, where scooters continue to operate to date. Minneapolis exhibited a different trend, which has a surge in the demand one
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Table 2
Scooter demand summary statistics.

City Mean SD 25th
Percentile

Median 75th
Percentile

Max. Highest
demand day

Start Date End Date

Austin, pilot 1,950 1,400 994 1,708 3,130 5,530 Fr. 03-Apr-18 03-Jul-18
Austin 11,919 6,248 8,427 11,073 14,150 4,6974a Sat. 04-Jul-18 31-Jan-20
Calgary 5,556 2,241 4,566 6,160 6,927 9,952 Fr. 02-Jul-19 30-Sep-19
Chicago 4,749 1,280 4,190 4,780 5,575 7,716 Sat. 15-Jun-19 15-Oct-19
Louisville, pilot 363 140 260 346 433 807 Sat. 09-Aug-18 09-Nov-18
Louisville 794 573 342 644 1,185 2,659 Sat. 10-Nov-18 31-Jan-20
Minneapolis 1,460 759 945 1,330 1,794 3,562 Thu. 10-Jul-18 01-Dec-18

aThe average daily demand in Austin, during SXSW was 38,868 trip per day.

month before the end of the pilot, where the demand almost doubled in November with no special events observed in the city during
this period and despite the cold weather. Also, Chicago had a different demand trend than the other cities, where the demand starts
from a high value, and it decreased over time by a steady slope till two weeks before the end of the pilot, where the decreasing
slope of the demand is steeper, which we believe was resulted or partially aided by the severe weather conditions during the end
of the project period (CDOT, 2020). To compare the demand in the different cities, we controlled for the fleet size by calculating
the number of trips per vehicle (average daily trips/number of vehicles). There was no change in the controlled demand pattern
compared to the total demand, specifically in Minneapolis. Chicago showed a different trend when comparing the absolute demand
with the number of trips per vehicle. The number of trips per vehicle started from a high number, over two trips per vehicle, and
then dropped over time; the absolute minimum is around one trip per vehicle. Austin and Louisville’s regular use demand has similar
trends, with increased scooter demand during the summer and decreased demand during December and January. Comparing pilots
with regular use demand in Austin shows an increase in the average daily use between the two use stages; however, it is not the
case when controlling for the number of vehicles. It is also worth noting that from March 8 to 17, 2019, Austin hosted the South by
Southwest (SXSW) conference and festival, which increased the demand for the scooters almost four times compared to the regular
daily average demand. This showcases that events can significantly impact scooter demand, and scooters are more likely used for
leisure purposes, which was also observed in other studies (McKenzie, 2019). Similarly, in Washington, DC, during the Cheery
Blossom Festival (March 20–April 12, 2019), scooter use demand increased sharply compared to average days (Zou et al., 2020).
Also, average demand tends to increase during Fridays and weekends, consistent with findings from other cities (Zou et al., 2020;
Liu et al., 2019), except for the case of Minneapolis, where Thursday is the day with the highest average demand. The increased
demand during the weekends is another indication that scooters are mainly used for leisure activities, Table 2.

As the exact daily number of available vehicles is not reported in any collected trip datasets, we used the maximum fleet size
during the examined period to control the impact of vehicles available on the number of generated trips per vehicle. Fleet sizes
changed over time in Austin and Louisville, but the fleet size was fixed for the other three cities, primarily due to the short pilot
project duration. Fig. 3 shows the daily number of trips per vehicle trends after controlling the demand for the fleet size in the
five examined cities. The overall number of trips per vehicle trend is almost similar to the absolute demand trend. However, the
average number of trips per vehicle nearly doubled in Austin compared to the pilot period, which is the opposite case in Louisville,
where the pilot period trips per vehicle are almost double the rate in later stages. The maximum utilization of the fleet was found in
Calgary, with an average of approximately four trips per vehicle per day, almost 2–4 times the average ridership in other examined
cities. The examination of the number of trips per vehicle prompts the need to monitor the number of available scooters and their
utilization to avoid unnecessary, unused vehicles in the public right of way. Underutilized scooters can be a hazardous obstacle in
public spaces.

4.2. Hourly and daily temporal demand

In the second stage of the temporal demand analysis, we analyzed and compared the aggregated average hourly demand for
weekdays and weekends. We calculated the percentage of the hourly trip in reference to the average daily demand to normalize the
impact of the vehicle’s supply in the different cities and to be able to compare the hourly demand trends between the different cities.
It is to be noted that shared mobility demand is a direct impact of the supply (Gammelli et al., 2020), which was another reason to
consider controlling for the vehicular supply. Interestingly, the maximum hourly demand is almost consistent among all the cities,
and it ranges between 8%–12% of the total demand as per Fig. 4. The only exception to the previous finding was in Minneapolis,
where the average maximum hourly demand is high and it is around 15%. The general hourly demand in the different cities can
be described as a bipolar distribution with two different sizes of peaks; one minor morning peak (between 8:00–10:00) in Austin,
Chicago, and Calgary, during the weekdays, and the prime peak (in general between 16:00–18:00). On weekends, scooter demand
has one peak during the afternoon and a higher percentage of early morning trips, starting after midnight, compared to the rest of
the week. The only exception is Minneapolis, where the weekend and weekday demands are almost identical. Still, these observed
patterns in Minneapolis could be because trips’ starting times were coarsely aggregated to the nearest half-hour (Fig. 5).
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Fig. 2. Total daily demand, 7 days running average.
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Fig. 3. Average daily trips/vehicle, 7 days running average.
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The explored hourly demand trends suggest that scooters are mainly used for leisure or shopping trips and maybe for commuting
to work outside of the regular 9 am to 5 pm jobs. Zou et al. (2020), Liu et al. (2019) reached a similar conclusion, analyzing the
temporal distribution of trips in Washington DC and Indianapolis, IN, where during weekdays, the demand peaked between 12:00–
17:00 and 16:00–19:00, respectively. The minor morning peak in Austin, Chicago, and Calgary is an indication that, in these cities,
scooters might be used for commuting purposes during the morning hours or as a first and last-mile solution. This finding is consistent
with the fact that, in these cities, the public transport modal share for work trips is high, as in Chicago, it is 28% of the total trips,
which is almost six times the average rate for work trips in the USA.5 Calgary also exhibits a high public transport use share of
16%, which is (40%) higher than the national average of 11.5%.6

Comparing the hourly trip distribution of Austin and Louisville with their pilots period reveals a change in demand pattern
during the weekdays; refer to Fig. 4. The peak hour use in Austin shifts from noon in the pilot to 17:00 in the regular use. The peak
hour shifts from 16:00 during the pilot to 13:00 in the post-pilot stage in Louisville. Interestingly, the overall demand distribution
per hour changes, allowing for more late-night and early morning trips. It is not clear if the lack of late-night and early morning trips
in Louisville’s early stages is due to certain restrictions on operating hours. We did not find any evidence of this in the information
in the operation documents published by the city. It is also worth mentioning that Chicago’s pilot restricted the scooters’ use from
5:00 am to 10:00 pm. The temporal demand analysis answers the first part of the first research question, and it gives additional
insights into the scooter’s temporal demand patterns.

4.3. Spatial demand analysis

In this subsection, we investigated the spatial demand characteristics, the similarities and differences of the demand between
the different cities, and the change in demand over time in the same city. The temporal demand analysis results suggested a
significant difference between the weekdays and weekend travel patterns; we differentiated between the weekdays and weekends
when analyzing the spatial demand. We performed the spatial demand analysis in two steps. In the first step, we aggregated all the
trips temporally into weekend and weekday trips; secondly, we aggregated the trips spatially to the census tracts corresponding to
their starting locations. It is worth mentioning that the delineation of the tracts in the USA and Canada has a similar concept of
being identified by committees of the local expert following visible features and encompass between 2500 to 8000 residents.7 We
normalized the difference between the weekend and weekday average trips per census tract to compare the examined cities’ results.
Figs. 6 and 7 present the results of the spatial analysis showing the geographically dominant areas by weekday. The spatial analysis
of scooter demand reveals other exciting findings. In all cities, spatial demand exhibits a very similar pattern: during weekdays, the
demand is concentrated outside the downtown area, especially around educational institutes, schools, and universities. During the
weekends, demand is concentrated in downtown areas and around specific points of interest POIs, areas known for leisure activities,
such as bars and restaurants, recreational areas, parks, and lakes.

We can describe the spatial demand pattern as, during weekdays, the University of Texas campus in Austin, the University
of Minnesota in Minneapolis, and the University of Louisville in Louisville are the area of trip concentration. The weekdays trips
concentration areas in Chicago are confined by West Harrison Street from the north side and West Taylor Street from the south side,
where there are two ample size schools. In Austin and Louisville, the downtown areas are the main attractions during weekends. In
Louisiana, Baxter avenue, a concentration area for restaurants and nightlife, and Louisville champions park by the Ohio River are
prominent attractions during weekends. Minneapolis also illustrates a similar spatial demand distribution, except that the downtown
area is split into two zones. The first zone is the area around the U.S. Bank Stadium, which generates more trips on weekdays.
The other zone is the north loop neighborhood, a concentration area for restaurants, bars, and nightlife spots, and this area is
an attractive area for weekend trips. The only exception to the previous pattern is Calgary, where the downtown area generates
more trips during the weekdays. We believe that the high demand in Calgary’s downtown area during weekdays is because several
universities’ campuses are located in the downtown area, creating a different spatial demand pattern than the other four cities.

In Minneapolis and Calgary recreational areas play a significant role in attracting trips. In Minneapolis, the area around Lake
Calhoun west of the city, where there are parks and scenic bike trails, generates a significant share of the city’s trips on the weekends
In Calgary, the Inglewood Park area generates more weekend trips than the downtown area, dominated by weekday trips. Also, in
Chicago, the area around Wicker park, where there is a concentration of restaurants, pubs, and bars, is a trip concentration area
during the weekends.

To check if there is a change in the spatial use pattern over time, we compared the early use stage pattern to the later use
pattern in Austin and Louisville. Comparing the generated trips in the pilot period and the latter use stage reveals a change in the
use pattern, as trips are more clustered in the later use stage than in the pilot period, where trips are spread over a larger area. In
Austin, the change in the spatial use pattern over time is noticeable, especially in the downtown area and south of the Colorado
River. Weekdays trips dominated the downtown area, and weekend trips dominated the south of the Colorado River. This pattern
is reversed in the after-pilot period. The weekend trips dominate the downtown area, and the difference between the weekend and
weekday trips almost vanished in the south of the river.

5 censusreporter.org
6 calgary.ca, www12.statcan.gc.ca
7 www2.census.gov and www150.statcan.gc.ca, last accessed 15/03/2022.
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Fig. 4. Daily average hourly demand.
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Fig. 5. Aggregated average hourly demand distribution, weekdays vs. weekends.

4.4. Trip characteristics analysis

In this section, we analyzed the trip speed, distance, and duration distribution in the five cities, as shown in Table 3. The
overall average trip distance is around 1.7±2 km. Interestingly, the pilot projects presented a longer average trip distance than
those observed in later use stages in Austin and Louisville. In the discontinued pilot of Chicago, the average trip distance was longer
than in other cities. Similar behavior holds for trip duration and trip speed, where pilots’ trips are longer and faster than in the later
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Fig. 6. Spatial distribution of the dominance difference between weekends and weekdays trips aggregated by tract (continued).

use stage. Also, Chicago has the fastest trips on average, and Louisville has a long trip duration. Also, the trips’ characteristics in
the examined five cities are similar to the trip characteristics of Washington DC analyzed by Younes et al. (2020), Zou et al. (2020).
It is worth mentioning that the average trip cost in all cities during the data collection period was 1$ for unlocking the vehicle and,
on average, 0.33$ per minute; the price in Louisville was slightly lower than the other cities (1$ for unlocking the vehicle + 0.15$
per minute), which could be a reason for observing longer trips in Louisville (Noland, 2019).
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Fig. 7. Spatial distribution of the dominance difference between weekends and weekdays trips aggregated by tract.

We had an initial hypothesis that scooter behavior might be different in terms of trip characteristics at different times of the
day. Also, Abouelela et al. (2021a) noticed a different parking behavior for scooters based on the hour of the day. Therefore, we
examined the average speed distribution per hour. Fig. 8 shows the average speed per hour per city. All cities exhibit a similar speed
trend during the day, with a noticeable speed increase during the early morning and morning hours between (2:00–10:00), except
for Minneapolis and Chicago. Minneapolis shows a slightly different hourly speed profile that departs from the average between
10:00 and 16:00. Chicago follows the same trend but with a different speed profile. The speed on average is around 12 km/hr, but
still, it exhibits an increase in the early morning and morning hours between (2:00–10:00) to approximately 15 km/hr. The rise in
the speed during the early morning hours in all the cities might be encouraged by the low traffic volume, which is a factor that might
increase injury probability during that time of the day. However, it is not the only contributing factor to the increased likelihood of
crashes and injuries among users; other factors, such as the high intoxication rates and users’ familiarity with the service use, were
reported by the patients (Störmann et al., 2020; APH, 2019).

5. Exogenous factors impacting trip generation

The dependent variable of the modeling process was the number of daily trips per census tract zone, as discussed in detail in
Section 3.2. Tables 5 and 6 show the estimation results for each city’s models, as well as a model estimated on the pooled data.
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Fig. 8. Hourly Speed Profile.

Table 3
Trips characteristics summary statistics.

City Distance (km)

Mean SD Min 25th
Percentile

Median 75th
Percentile

99th
Percentile

Max

Austin, pilot 2.0 2.0 0.1 0.8 1.4 2.5 5.8 31.9
Austin 1.6 1.5 0.1 0.6 1.1 2.0 4.4 45.7
Calgary 1.8 1.9 0.1 0.6 1.3 2.3 5.6 27.0
Chicago 2.3 2.2 0.1 0.9 1.6 3.0 6.8 40.5
Indianapolisa 1.8 2.0 0.0 0.6 1.1 2.2 – 38.8
Louisville, pilot 2.8 2.9 0.1 0.8 1.7 3.6 8.9 26.5
Louisville 2.0 2.2 0.1 0.6 1.2 2.5 6.5 32.2
Minneapolis 2.1 2.3 0.1 0.7 1.3 2.5 6.8 38.1

Duration (min)

Austin, pilot 13.8 15.1 1.0 4.9 8.4 16.5 44.6 120.0
Austin 11.0 11.8 1.0 4.5 7.2 12.9 32.8 120.0
Calgary 12.8 12.9 1.0 5.1 8.5 15.4 38.7 119.9
Chicago 13.2 13.9 1.0 4.8 8.6 16.1 39.9 120.0
Indianapolisa 13.9 16.4 0.1 4.3 8.0 16.0 – 120.0
Louisville, pilot 18.4 18.8 1.0 6.0 11.0 24.0 59.0 120.0
Louisville 15.4 17.1 1.0 5.0 9.0 19.0 52.0 120.0
Minneapolis 14.3 17.1 1.0 4.6 7.7 16.3 50.7 120.0

Speed (km/hr)

Austin, pilot 9.9 4.0 0.1 7.0 9.8 12.7 16.6 25.0
Austin 9.8 4.6 0.1 6.4 9.3 12.7 18.1 25.0
Calgary 9.5 5.0 0.1 5.7 8.8 12.6 18.6 25.0
Chicago 12.0 5.5 0.1 7.9 11.9 15.7 21.2 25.0
Indianapolisa 8.8 4.1 1.6 5.6 8.4 11.5 – 40.2
Louisville, pilot 9.6 4.1 0.1 6.5 9.4 12.4 16.6 24.1
Louisville 9.0 4.5 0.1 5.7 8.5 12.0 17.1 24.1
Minneapolis 10.2 4.2 0.1 7.1 10.3 13.2 17.0 25.0

aIndianapolis summary data were retrieved from Liu et al. (2019).
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Table 4 summarizes the models’ significant variables and their units. Also, it is to be mentioned that all numeric variables were
standardized to compare the magnitude of the different coefficients.

5.1. Coefficient interpretation

Weather and weekdays
Rainy days and snowy days reduce the probability of scooter use. On the other hand, warmer days increase the likelihood of

scooters’ use, except in Chicago, where the average daily temperature coefficient is not statistically significant. Wind speed has a
mixed effect. In Austin, windy days increase the likelihood of scooter use; however, the wind speed coefficient is not statistically
significant in Minneapolis. In Chicago and Louisville, windy days reduce the possibility of scooter use. Also, scooter use increased on
the weekend compared to weekdays in all cities. It is a statistically significant factor in all cities except Minneapolis. The weekday
temporal demand analysis showed the same results. Refer to Fig. 5.

Accessibility, infrastructure, and land use
Zones with higher transit accessibility (higher LITA value) generate more trips than other zones; the increase in the number of

shared bike stations and the length of the bike lanes per zone increases the likelihood of scooters’ use, except in Minneapolis; the
coefficient of bike lanes is not statistically significant. Only in Louisville do the bike lanes have a negative sign coefficient indicating
the reverse impact. This can be attributed to the geographic distribution of bike lanes in the northwest and southeast of the scooter
operation zones, with fewer trip rates than in the downtown area. Sidewalk length per zone has a mixed impact on the probability
of scooter use: in Austin, where it is permitted to ride on sidewalks, the increase in sidewalk length increases the trip generation;
in other cities, however, it is not allowed to ride on the sidewalk, it reduced the trip generation rate. Residential land use reduces
the probability of the number of generated trips in the area compared to other land uses.

Zero count model part
The zero count model part is the part of the model that predicts the excess zero, or –in other words– the factor that results in zero

trips in the different zones. The previously estimated parameters were also significant for reducing trip generation, with opposite
signs indicating the adverse effects, except for population density and bike lanes. These were not significant in all the estimated
models and were thus removed from the zero count part.

6. Discussion and conclusion

This study used around nine million scooter trips from five North American cities to investigate scooters’ demand, trip
characteristics, and the factors impacting their use. Several findings suggest the consistency of scooter use in different cities, despite
their size and population, urban structure, and the general travel demand behavior. The conclusions revealed could help organize
the shared-e-scooter service in other cities, or they can be used as guidelines before deploying the service in other cities. The main
findings’ impacts on operation policies are discussed in the following subsections.

6.1. Demand patterns

Weekdays scooters’ hourly demand has similar patterns in all the examined cities; the hourly demand can be described as a
bimodal distribution exhibiting two peaks, one in the morning and the other in the evening. The weekend demand pattern is
different from the weekday demand, as it has only one peak in the late afternoon. Maintenance and redistribution work should
consider spatiotemporal demand patterns. Demand patterns should be synchronized with maintenance and vehicle redistribution
work to allow the vehicles to be present during peak demand hours. Moreover, the predefined scooter demand patterns would utilize
the vehicle redistribution work to minimize the empty VKT.

Scooter demand shows several individuals’ atypical temporal patterns. For example, in cities that allow late-night operation, late-
night use typically increases during the weekends. This increase in late night/ early morning hours scooter demand is an indication
that scooters could extend the temporal accessibility for travel options, especially if the vehicles are available in high-demand
places during these times. Moreover, scooters’ demand increase was found to be associated with the increase in accessibility to
PT, as indicated in the estimated regression models, and micromobility has received increased attention as a viable mode for the
first/last mile dilemma (Abouelela et al., 2021a; Bai and Jiao, 2020; Jiao and Bai, 2020). That said, micromobility can be used as a
mode that would encourage the concept of multimodality, especially in addition to the previous facts there are a significant amount
of car trips that are shorter than the average scooter’s trip (FHWA, 2014). An initiative such as subsidizing scooters’ trip costs for
PT users and making scooters available in the park and ride facilities should be considered methods for encouraging scooter use and
multimodality. Also, another proposal to increase the integration between PT and last-mile services could be extending the validity
of the PT tickets to include the use of micromobility services. However, encouraging scooter use, approaches should be carefully
planned, as it should consider avoiding attracting users of other active modes, which is already noticed as the majority of scooters;
replaced trips are active mobility trips (6-t, 2019; ADOPT, 2019; Sanders et al., 2020).

Furthermore, seasonal demand trends indicate an increase during warmer months and a demand drop around January.
Considering such patterns could help dynamically adjust the fleet size over the year to optimize operating costs and allow for
vehicle maintenance during the low demand periods. Scooters’ demand is sensitive to special events; in Austin, the daily demand
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Table 4
Independent variable summary statistics.

Variable Unit Austin

Mean SD Min Median Max

Age under 18 pct % 0.17 0.08 0.00 0.17 0.36
Age 18 to 24 years pct % 0.11 0.15 0.01 0.08 0.95
Bike lane length Km 1.14 2.54 0.00 0.00 14.72
Sidewalk length length Km 37.01 18.28 1.67 33.06 125.04
Shared bike station count 0.25 0.97 0.00 0.00 6.00
LITA – 5.50 0.76 4.38 5.40 9.72
Male Pct pct % 0.52 0.06 0.40 0.51 1.00
Median income Thousand U$ 65.24 30.06 8.75 60.88 171.19
Population density person/km2 2,372.16 1,685.12 35.53 2,080.17 11,028.64
Mean daily temperature Fahrenheit 69.4 14.93 33.00 71.18 92.78
Wind Speed mph 5.53 2.45 0.96 5.19 13.50
Land use (Residential) pct % 0.38 0.18 0.00 0.4 0.71
Snowy days pct % 0.00 – – – –
Rainy days pct % 16.00 – – – –

Variable Unit Chicago

Mean SD Min Median Max

Age under 18 pct % 0.23 0.08 0.04 0.23 0.45
Age 18 to 24 years pct % 0.11 0.06 0.02 0.10 0.48
Bike lane length Km 0.62 0.85 0.00 0.34 6.80
Sidewalk length length Km 22.24 12.45 1.51 19.08 87.86
Shared bike station count 5.96 6.49 0.00 4.00 50.00
LITA – 5.50 0.76 4.04 5.42 9.54
Male Pct pct % 0.49 0.05 0.31 0.49 0.90
Median income Thousand U$ 54.90 30.30 13.74 47.78 159.02
Population density person/km2 7,253.87 3,132.64 879.49 7,271.78 16,069.96
Mean daily temperature Fahrenheit 71.0 6.48 47.16 71.42 85.95
Wind Speed mph 7.80 2.53 2.78 7.54 14.37
Land use (Residential) pct % 0.37 0.15 0.00 0.4 0.60
Snowy days pct % 0.00 – – – –
Rainy days pct % 30.00 – – – –

Variable Unit Louisville

Mean SD Min Median Max

Age under 18 pct % 0.11 0.10 0.02 0.09 0.79
Age 18 to 24 years pct % 0.21 0.08 0.04 0.21 0.43
Bike lane length Km 2.79 4.86 0.00 1.84 36.19
Sidewalk length length Km 4.54 7.90 0.00 1.23 45.80
Shared bike station count 0.34 1.91 0.00 0.00 16.00
LITA – 5.51 0.81 4.47 5.37 10.75
Male Pct pct % 0.48 0.04 0.37 0.48 0.62
Median income Thousand U$ 44.49 25.40 9.64 35.62 158.21
Population density person/km2 2,023.63 816.15 492.33 1,953.60 4,019.25
Mean daily temperature Fahrenheit 56 18.04 7.96 53.48 86.51
Wind Speed mph 7.23 3.18 0.97 6.55 19.91
Land use (Residential) pct % 0.42 0.18 0.02 0.45 0.71
Snowy days pct % 2.00 – – – –
Rainy days pct % 22.00 – – – –

Variable Unit Minneapolis

Mean Sd Min Median Max

Age under 18 pct % 0.21 0.10 0.01 0.21 0.43
Age 18 to 24 years pct % 0.11 0.13 0.02 0.08 0.89
Bike lane length Km 2.09 3.98 0.00 0.20 27.96
Sidewalk length length Km 5.57 7.75 0.00 2.39 46.05
Shared bike station count 0.89 1.82 0.00 0.00 12.00
LITA – 5.87 0.91 5.21 5.68 12.30
Male Pct pct % 0.51 0.04 0.38 0.50 0.67
Median income Thousand U$ 62.70 29.67 18.23 57.14 155.11
Population density person/km2 3,697.53 2,129.68 611.81 3,216.84 14,118.84
Mean daily temperature Fahrenheit 55.7 18.90 14.16 61.17 81.12
Wind Speed mph 7.98 2.94 2.45 7.84 15.93
Land use (Residential) pct % 0.20 0.16 0.01 0.15 0.73
Snowy days pct % 6.00 – – – –
Rainy days pct % 19.00 – – – –
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Table 5
ZINB model results-A.

Pooled Austin Chicago

Count model coefficients (negbin with log link):

𝛽 Std. Error Z value 𝛽 Std. Error Z value 𝛽 Std. Error Z value

(Intercept) 2.65 0.01 227.51 2.93 0.01 200.18 3.20 0.03 111.38
Mean Temperature 0.03 0.01 5.17 0.08 0.01 11.76 – – –
Mean Wind speed 0.05 0.01 8.13 0.05 0.01 8.51 −0.03 0.01 −1.94
Precipitation Yes vs No −0.26 0.01 −18.19 −0.25 0.02 −13.69 −0.08 0.03 −2.55
Snow Yes vs No −2.46 0.09 −26.69 – – – – – –
Weekend Vs Weekday 0.31 0.01 24.57 0.35 0.01 24.68 0.09 0.03 2.96
Population Density 0.53 0.01 64.76 0.74 0.01 59.12 0.63 0.02 32.33
Bike lane length 0.23 0.01 26.47 0.43 0.01 38.46 0.52 0.02 23.51
Sidewalk length 0.45 0.01 67.45 0.59 0.01 74.34 −0.04 0.02 −2.04
Shared Bike station 0.29 0.01 45.98 0.22 0.01 28.48 0.17 0.02 9.91
LITA 0.31 0.01 50.05 0.42 0.01 48.19 0.04 0.02 2.17
Gender Male vs Female 0.28 0.01 22.50 0.41 0.01 28.65 −0.79 0.04 −18.84
Age under 18 Pct. −0.59 0.01 −60.37 −0.87 0.01 −67.15 −0.51 0.02 −22.39
Age 18 to 24 pct. 0.08 0.01 9.77 −0.12 0.01 −9.89 −0.09 0.02 −4.96
Median Income 0.06 0.01 6.46 0.24 0.01 18.28 −0.16 0.02 −7.84
Land use Residential vs other −0.85 0.02 −47.53 −1.06 0.02 −51.46 −1.03 0.05 −22.79
Log(theta) −1.09 0.01 −177.60 −0.66 0.01 −79.36 −1.11 0.02 −60.88

Zero-inflation model coefficients (binomial with logit link):

𝛽 Std. Error Z value 𝛽 Std. Error Z value 𝛽 Std. Error Z value

(Intercept) −1.66 0.03 −59.28 −2.21 0.04 −50.32 −1.55 0.08 −19.65
Mean Temperature −0.05 0.01 −4.03 0.50 0.02 29.05 −0.11 0.03 −4.39
Mean Wind speed 0.05 0.01 4.73 −0.03 0.02 −2.11 0.09 0.02 3.75
Precipitation Yes vs No 0.19 0.03 6.89 0.33 0.04 8.22 0.15 0.05 2.82
Snow Yes vs No 2.45 0.14 17.57 – – – – – –
Weekend Vs Weekday −0.02 0.02 −0.97 – – – −0.14 0.05 −2.52
Sidewalk length −0.23 0.02 −14.80 0.24 0.02 13.31 −0.39 0.04 −9.10
Shared Bike station −1.88 0.05 −37.54 – – – −1.50 0.08 −18.90
LITA −1.49 0.02 −66.51 −2.57 0.04 −63.78 −0.26 0.03 −8.54
Gender Male vs Female −0.91 0.02 −37.36 −0.87 0.03 −27.29 0.17 0.06 3.00
Age under 18 Pct. 0.24 0.01 16.26 0.08 0.02 3.34 – – –
Age 18 to 24 pct. −1.12 0.04 −31.81 −2.21 0.08 −27.43 – – –
Land use Residential vs other 0.25 0.03 9.83 0.58 0.04 15.38 −0.53 0.08 −6.72
Median Income −0.60 0.02 −33.31 −1.35 0.03 −43.33 −1.35 0.06 −22.90

was around four times the average demand during the South by the Southwest (SXSW) music festival; similar behavior was also
observed in Washington DC during the Cherry Blossom festival (Younes et al., 2020). Therefore, the supply should be coordinated
to serve such events. A potential advantage of deploying shared-e-scooters versus ‘‘heavier’’ shared mobility system vehicles, such
as carsharing, is that they are easier to transport and deploy, require less infrastructure, contribute less to congestion and take up
less public space. However, the deployment of scooters should also include consideration for supplemental services, such as fleet
redistribution and maintenance. When comparing the daily demand in the Austin and Louisville pilots, there is an apparent change
in the hourly demand distribution with the later use stage. This pattern indicates the dynamic nature of the scooter use, which
requires the operators to continuously re-plan the service design based on monitoring the temporal changes in the demand use
patterns.

Spatial demand patterns are generally consistent between the examined cities, regardless of their urban structure differences.
Spatial demand is concentrated around leisure activities, such as restaurants, bars, and parks during weekends, while on weekdays,
around the downtown area and educational institutes. Also, the demand is more geographically dispersed on the weekends than the
more compact and clustered weekday demand. The distribution and maintenance operations should consider these locations as hot
spots, while after the weekend, the redistribution process should cover more expansive areas to retrieve the scooters.

Chicago, Calgary, and Minneapolis pilot projects have witnessed a drop in demand near the end of the project. The severe
weather justified this drop by the end of the pilot duration in Chicago. At the same time, there is no evidence of why the demand
dropped in the Minneapolis and Calgary cases. The reasons for demand dropping should be widely investigated, as it could have
resulted from the lack of adequate publicity of the project’s period or even the reduction of the provided vehicles by the operators
towards the end of the pilot project; or users’ loss of interest, which might be a negative indicator to further go with the full-service
deployment stages.

6.2. Trip characteristics and service use progress

Average trip speed, distance, and duration are consistent among the five examined cities. Pilot projects and early use stages
exhibited slightly higher speeds and longer trip distance and duration, possibly due to new users’ excitement. Considering that
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Table 6
ZINB model results-B.

Louisville Minneapolis

Count model coefficients (negbin with log link):

𝛽 Std.Error Z value 𝛽 Std.Error Z value

(Intercept) 1.56 0.02 75.14 1.20 0.03 43.23
Mean Temperature 0.49 0.01 44.86 −0.12 0.02 −6.91
Mean Wind speed −0.07 0.01 −6.50 – – –
Precipitation Yes vs No −0.13 0.02 −5.38 −0.15 0.03 −4.44
Snow Yes vs No −0.80 0.12 −6.90 −1.02 0.09 −11.88
Weekend Vs Weekday 0.20 0.02 9.51 – – –
Population Density −0.01 0.01 −1.26 0.03 0.01 1.74
Bike lane length −0.28 0.01 −26.47 – – –
Sidewalk length – – – – – –
Shared Bike station 0.12 0.02 7.20 0.47 0.02 21.39
LITA 0.50 0.02 21.70 0.34 0.02 17.80
Gender Male vs Female −0.07 0.02 −3.07 0.19 0.03 6.18
Age under 18 Pct. −0.62 0.01 −42.25 −0.52 0.01 −35.46
Age 18 to 24 pct. 0.45 0.01 49.85 0.45 0.01 32.05
Median Income 0.20 0.02 10.18 −0.05 0.02 −2.57
Land use Residential vs other −1.28 0.04 −34.70 −0.19 0.05 −3.69
Log(theta) −0.13 0.02 −7.84 −0.10 0.02 −4.66

Zero-inflation model coefficients (binomial with logit link):

𝛽 Std.Error Z value 𝛽 Std.Error Z value

(Intercept) −0.26 0.04 −6.53 −1.79 0.09 −20.46
Mean Temperature −0.81 −0.02 34.87 −0.59 0.04 −14.28
Mean Wind speed – – – −0.11 0.03 −3.18
Precipitation Yes vs No 0.27 0.05 5.36 0.25 0.09 2.90
Snow Yes vs No – – – 2.11 0.19 10.97
Weekend Vs Weekday −0.11 0.04 −2.48 −0.13 0.07 −1.76
Sidewalk length −1.51 −0.07 22.65 – – –
Shared Bike station – – – −1.81 0.11 −16.35
LITA −1.88 −0.05 40.78 −1.64 0.12 −13.57
Gender Male vs Female −1.03 −0.05 20.99 – – –
Age under 18 Pct. 0.50 0.03 16.31 0.58 0.04 14.03
Age 18 to 24 pct. −1.02 −0.05 19.10 −1.36 0.12 −11.54
Land use Residential vs other – – – −1.86 0.46 −4.06
Median Income 0.10 0.04 2.84 0.12 0.04 2.84

accidents are highly correlated with a lesser familiarity with service use (APH, 2019), which has a higher probability during the
scooter introduction period, strict monitoring for vehicle speed should be applied. Furthermore, both cities and operators should
provide educational marketing plans to educate the users about how they would use the service adequately and the rules for using
the vehicles, identifying the hazards that could arise from the improper use.

6.3. Factors impacting the demand

External factors impacting the demand are almost the same in the different cities; however, their magnitude might differ from
one city to another. Meteorological conditions play a significant role in demand generation, with snow and rain being decisive
factors. Therefore, seasonal maintenance and fleet size control should be utilized dynamically based on the short and long-term
weather forecast to avoid excessive vehicle deployment that is not needed to cater to the expected low demand. They most likely
will be occupying public spaces that might impair accessibility. Land use, PT accessibility, and infrastructure are also essential
factors impacting the demand, and they are hard to change factors. The previous factors need long-term high capital investment to
alter; therefore, scooter deployment should be coordinated to utilize scooter use and decrease disturbance for the other elements of
the urban environment. For example, scooter deployment should be reduced in dominantly residential areas. In areas with high PT
accessibility, the supply should be increased to encourage scooters’ use as a first and last-mile solution.

Finally, sociodemographics such as age and income level affect scooter demand; therefore, scooter deployment should consider
the population distribution; for example, areas with a younger population might require more vehicles than areas with older
population groups. Income-level impact on scooter demand has been observed in different studies (Bai and Jiao, 2020; Jiao and
Bai, 2020); that said, the effect of income level raises the question: is scooter use equitable or not? Cities such as Louisville and
Chicago implemented measures to improve scooter use equity. Louisville operators have provided options for cash payment and
discounts for people with no credit cards or smartphones. Also, some operators provided discounts for the people who receive public
aid (Louisville Open Data, 2022). In Chicago, operators were asked to deploy a certain percentage of their scooters in inequitable
access to transportation areas and provide accessibility to scooter use for the unbanked population (CDOT, 2020). There is no
evidence that these measures used to increase equity were successful. Chicago’s pilot program reported that only on average, five
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trips from every 10,000 completed trips (.05%) were made by the unbanked population (CDOT, 2020). Authorities in different
cities should ensure that the recommendations to increase scooter equity are effective using personal interviews and surveys. The
investigation of equity of use should target minority and marginalized groups such as groups with low income, ethnic minorities,
non-drivers, and geographical places with reduced transit accessibility, to investigate the users’ service use pattern and what factors
impact their use, to include them within the system regular users group.

The optimum scooter deployment process is complicated; it should consider multi-dimensions (weather, built environment, and
sociodemographics) holistically and dynamically. However, the scooter can be a policy tool that is used by the city to close the gap
in the transportation system in a spontaneous low-cost fashion.

6.4. Study limitations

There is no available data reflecting the exact daily number of scooters available in the public right of way; the only available
information is the fleet size for each city, reflecting the maximum allowable number of scooters. Therefore, when controlling for
the number of vehicles, the exact daily number of scooters was not used, which might affect the actual number of trips per vehicle
rate; however, we do not think the overall observed demand trend might have been affected by the lack of the exact number of
vehicles. We also did not consider the influence of the re-balancing and redistribution of the vehicle processes that might impact
the demand. There was no available information regarding these processes. We assumed that scooters are uniformly distributed
through the study area, especially for the datasets where trip Geo-location was aggregated. We believe that the availability of such
information should enhance our understanding of the demand pattern. The data used are collected through different periods with
no complete overlap, which is expected due to the nature of such data; however, it still represents a limitation.

6.5. Conclusion

This research analyzed scooter trips from four US and one Canadian city to answer three main research questions regarding the
different demand patterns and the exogenous factors that impact the demand. The answers to the research questions have helped us
better understand and provide insights into the current scooter use on different levels. Cities and operators may find these insights
helpful in planning the operational schemes for current or future scooter-sharing projects. Based on the demand patterns, both cities
and users are satisfied with scooter use, as expressed by the demand increase and the continuation of the pilot projects in cities like
Minneapolis and Chicago. Future research can provide additional insights into this topic, which is only now gaining momentum.
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Abstract
The urban transportation landscape has been rapidly growing and dynamically changing in recent years, supported by the 
advancement of information and communication technologies (ICT). One of the new mobility trends supported by ICT is 
shared mobility, which has a positive potential to reduce car use externalities. These systems’ recent and sudden introduction 
was not adequately planned for, and their rapidly growing popularity was not expected, which resulted in the urgent need 
for different stakeholders’ intervention to ensure efficient services’ integration within the urban transportation networks and 
to grant an effective system operation. Several challenges face shared mobility, including fleet size management, vehicle 
distribution, demand balancing, and the definition of equitable prices. In this research, we developed a practical, straight-
forward methodology that utilizes big open-source data and different machine learning (ML) algorithms to predict the daily 
shared-e-scooter fleet utilization (the daily number of trips per vehicle) that could be used to drive the system’s operation 
policies. We used four ML algorithms with different levels of complexity, namely; Linear Regression, Support Vector 
Regression, Gradient Boosting Machine, and Long Short-Term Memory Neural Network, to predict the fleet utilization in 
Louisville, Kentucky, using the knowledge the models get from the training data in Austin, Texas. The Gradient Boosting 
Machine (LightGBM) was the model with the best performance prediction based on the different evaluation measures. The 
most critical factors impacting daily fleet utilization prediction were temporal time series features, sociodemographics, 
meteorological data, and the built environment.

Keywords Shared mobility · Micromobility · Shared-E-scooter · Machine learning · Demand prediction · Open source data

Introduction

The urban population is rapidly growing at an unexpected 
rate led by the increasing urbanization movement; the UN 
expects that by 2050, 80% of the world population will live 
in urban areas, compared to 49% in 2010 (United Nations 
Department of Economic and Social Affairs 2018). The 
urban population growth is coupled with a substantial 
increase in travel demand, air pollution, accidents, and 

more congested urban networks (Zannat and Choudhury 
2019). Investment in infrastructure and significant land-use 
changes might be required to meet the expected growth of 
travel demand; however, such solutions need significant 
investments and long time processes to materialize, which 
are not always viable solutions (Bhattacharya et al. 2012; 
Estache 2010). Innovative solutions supported by the latest 
advancement in information and communication technolo-
gies (ICT) could represent a smart, efficient way to cater 
to the increased demand. The advancement of ICT already 
supports (fully or partially) the revolutionizing of the urban 
transportation systems; in the main developing areas of 
transportation; electrification, sharing, and automation 
(Sperling 2018).

Shared mobility services are one example of the recent 
innovative solutions that could cater to the expected increase 
in travel demand. These services provide commuters with 
access to different vehicle types or the ability to share rides 
based on the users’ needs (Shaheen et al. 2016; Shared and 
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Digital Mobility Committee 2018). The umbrella of shared 
mobility services covers different service types that can be 
split into two main categories; (i) sharing of rides based on 
different operational schemes such as the case of e-hailing, 
ridesharing, ride pooling, and alternative transit systems. (ii) 
The direct use of the vehicle based on need, such as the case 
of carsharing and micromobility services, e.g., bikesharing 
and shared-e-scooter, which are the focus of this research. 
Shared mobility services have many positive potential 
impacts on the urban environment, including reducing vehic-
ular traffic (Abouelela et al. 2021b, 2023), reducing energy 
consumption, and increasing transport system efficiency 
by achieving saving in travel time and travel costs (Becker 
et al. 2020). Notwithstanding the possible positive effects 
of shared mobility services, some of them have integration, 
planning, and policies challenges following their sudden and 
novel introduction to the urban environment, such as the case 
of shared-e-scooters, we will refer it as scooters in the rest 
of the article. Scooters are one of the youngest members of 
the shared mobility services family, launched in July 2017 by 
Lime (www. li. me) in Santa Monica, California. 38.5 million 
trips were completed by scooters in the USA by the end of 
2018, representing 45.8% of the total micromobility trips for 
the same year. In the following year, 2019, the number of 
scooter trips raised to 88.5 million in 109 cities in the USA, 
representing an exponential increase of 130% of the previ-
ous year’s trips (NACTO 2019). Scooter use and growth 
were not limited to the US, but it was a global phenomenon 
observed in Asia, Europe, and Australia (Santacreu et al. 
2020; Heineke et al. 2019; Møller and Simlett 2020). The 
micromobility market is expected to grow to between $330 
and $500 billion by 2030 (Heineke et al. 2019). However, 
the growth of scooters faces several challenges, such as the 
increase in related injuries (Yang et al. 2020a; Namiri et al. 
2020), defining the optimal fleet size, vehicles optimal redis-
tribution strategies, speed limits enforcement, and equity 
regulations (Janssen et al. 2020). In order to further study 
these problems and define their causes and factors leading 
to them, more data is required.

Recently, the term big data has gained popularity and 
attracted more effort from the industry and the research 
sides to explore the opportunities it can create. The 
advancement of ICT has also opened the horizon for col-
lecting and analyzing new types of data in large quan-
tities, or so-called big data (Stojanović and Stojanović 
2020; Chaniotakis et al. 2020). Other factors have helped 
in the collection of large amounts of data, such as but 
not limited to; the increase in the computational power 
of computers, the decreasing cost of data storage, and the 
exciting direction towards smart cities platforms, have 
also enriched the interests in big data (Iliashenko et al. 
2021; Xin et al. 2020; Torre-Bastida et al. 2018; Zhu et al. 
2018). Big data have been examined in many applications 

related to transportation research, e.g., estimating transit 
network origin–destination flows (Liu et al. 2021a), avail-
ability of parking supply using sentiment analysis of the 
location-based social network data (LBSN) (Chaniotakis 
et al. 2022; Jiang and Mondschein 2021), improve traffic 
management and traffic planning (Haghighat et al. 2020), 
and the impact of pricing schemed changes on bikesharing 
use (Venigalla et al. 2020). Different entities, primarily 
operators and cities’ authorities, are currently sharing their 
data (big based on volume, velocity, or variety) openly to 
encourage the innovation of new methods and ideas to 
improve the urban environment, to increase integration 
between the different transportation services, and to help 
in regulating and dynamically adjusting the operation of 
various shared mobility services within the urban environ-
ment (Durán-Rodas et al. 2020a; Iliashenko et al. 2021).

In this research, we use the publicly available scooter 
trips data from two American cities, Louisville, Kentucky, 
and Austin, Texas, in combination with other open data 
sources, discussed in detail in the methodology sections  to 
explore the potential and accuracy of using open-source data 
and machine learning (ML) techniques to predict the scooter 
daily fleet utilization (number of trips per vehicle). The main 
goal of this research is to create and develop a framework 
that could help the different stakeholders involved in the 
operation, organization, and governance of the micromobil-
ity services to integrate the service in the urban environment 
efficiently and to facilitate the policy-making process.

The main contribution of this research comes from devel-
oping a framework for scooter fleet utilization prediction 
(daily number of trips per vehicle) using different sources 
of publicly available data and how this information is pro-
cessed (including feature engineering) to obtain the optimum 
prediction results in terms of prediction error minimization.

The contribution of this work can be summarized as 
follows:

• Using open-source big data and ML techniques to predict 
the daily scooter fleet utilization (daily number of trips 
per vehicle).

• Compare the prediction results using different ML tech-
niques; Gradient boosting decision tree (GBDT), Linear 
regression (LR), Support Vector Regression (SVR), and 
more complex deep learning techniques such as Long 
Short-Term Memory Neural Network (LSTM-NN).

• The prediction period was more extended than 1 year, 
which is longer than the periods used in most previous 
research, representing a long-term forecast horizon of 
operation.

• The prediction model showed accurate results when used 
to predict the test dataset, discussed in more detail in the 
following sections; therefore, it could be implemented in 
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real-life and the scooter deployment, organization, and 
governance processes.

• The proposed methodology is a practical yet simple1 
method to transfer the scooter fleet size utilization pre-
diction learned from one city to another; which implies 
that same frame work could be used for other cities.

• The developed methodology, with its capabilities to 
be transferred to other cities, is to be used to define the 
daily,2 weekly, or seasonal fleet size based on the pre-
dicted utilization rate for the existing services and the 
planned one, which could help in more efficient system 
operation by dynamically predicting and then deploying 
the number of vehicles needed to cater for the demand 
and not to deploy a fixed number of vehicles that do 
not account for the demand seasonality and fluctuation. 
In addition, deploying the vehicle based on the actual 
demand could reduce the number of ideal vehicles and 
facilitate vehicle re-balancing, distribution processes, and 
the subsequent vehicle kilometer traveled resulting from 
the distribution process.

The rest of this paper is organized as follows; “Literature 
Review” section discusses the current literature related to the 
discussed topic, “Methods, Data, and Case Study” section 
shows the data used and methodology, “Analysis Results” 
section shows the analysis for the collected data and esti-
mated models. Finally,  “Discussion, and Conclusion” sec-
tion discusses the results and the conclusion of the research.

Literature Review

The literature review is organized as follows; in the first part, 
we define the reasons to use shared mobility services, their 
potential positive impacts, factors impacting their demand, 
and challenges shared mobility faces. The second part sum-
marizes the potential of new sources of data and different 
ML techniques used in shared mobility studies, focusing 
on shared vehicle systems (carsharing, bike sharing, and 
shared-E-scooters) and their potential for demand predic-
tion compared to traditional regression models.

Shared mobility is a rapidly growing trend in recent years 
encouraged by many factors such as but not limited to, travel 
time savings, ease of payment, fare transparency, trip cost, 
comfort and security, or even health benefit such as in the 
case of bikesharing (Abouelela et al. 2022; Tirachini and del 

Río 2019; Tirachini 2020; Tirachini and Gomez-Lobo 2020; 
Cerutti et al. 2019; Circella et al. 2018; Nikitas et al. 2015; 
Schaefers 2013), the popularity of smartphones and the 
development of mobile applications, or the general advance-
ment of ICT (Spinney and Lin 2018; Schmöller et al. 2015). 
Moreover, shared mobility supports sustainability goals, or 
at least they can be described as more sustainable transport 
systems than private vehicle use; for example, the use of car-
sharing systems could have the positive potential for reduc-
ing negative traffic externalities (Kostic et al. 2021). Also, 
shared mobility could reduce the vehicular kilometer trave-
led (VKT) as in the case of bikesharing, shared-e-scooter, 
and pooled rides (Ting et al. 2021; Abouelela et al. 2021b; 
Tirachini and Gomez-Lobo 2020; Ricci 2015). Integrating 
shared mobility services in the urban environment faces sev-
eral challenges, mainly tied to the systems’ governance and 
management. These operational problems are more avid and 
critical for vehicle-sharing systems (scooter sharing, bike-
sharing, and carsharing), especially for free-floating sys-
tems, compared to other forms of shared mobility. The main 
problems are; fleet size management, spatial and temporal 
demand prediction and estimation, fleet geographical distri-
bution and re-distribution, deciding on the optimal pricing 
schemes, use equity, accessibility of the service, operational 
hours, and geographical limits (zonal fencing) (Duran-Rodas 
et al. 2020b; Turoń et al. 2019; Liu et al. 2018; Ko et al. 
2019; Shaheen and Cohen 2013; Weikl and Bogenberger 
2013). It is to be noted from the previously mentioned chal-
lenges faced by the shared mobility services that most of the 
challenges are directly linked to the travel demand; therefore, 
understanding factors impacting the demand and demand 
prediction is a must to improve shared mobility operations 
and integration.

Several exogenous factors impact the use of shared mobil-
ity, and they can be categorized into four main groups. The 
first group is related to the shared vehicle’s systems (bike 
sharing, scooter, and carsharing), such as the presence of 
docking stations and vehicles availability (Reck et al. 2021; 
Raux et al. 2017; De Lorimier and El-Geneidy 2013). The 
second group of factors is the infrastructure-related factors, 
including the availability of bike lanes, the density of road 
intersections, and the availability of parking lots (Müller 
et al. 2017; Chen et al. 2018; Hu et al. 2018). Meteorologi-
cal conditions also play a significant role in shared mobility 
use, which is evident in the case of bikesharing, carshar-
ing, and scooters. In contrast, adverse weather conditions 
significantly reduce bike sharing and scooter sharing use; it 
increases the use of carsharing (Yoon et al. 2017; Lin et al. 
2018; Shen et al. 2018; Abouelela et al. 2021b). The last 
group is the land use and built environment and points of 
interest (POI), where different land uses impact the various 

1 Refer to “Methods, Data, and Case Study” section, and  “Model 
Transfer” section, where we explain the used transfer methodology 
namely label differencing and sample normalization.
2 We predicted the fleet utilization rate daily so that it can be aggre-
gated to courser time units, e.g., weekly, monthly, or season based.
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services. For example, mixed land uses are associated with 
carsharing use, commercial land use3 is linked to bikeshar-
ing, scooter sharing and carsharing use (Kim et al. 2015; 
Hu et al. 2018; Abouelela et al. 2021a). Also, POI impact 
the use of shared mobility, where educational institutes, 
schools, and universities, were found to be associated with 
the increased use of carsharing and bikesharing (El-Assi 
et al. 2017; Mattson and Godavarthy 2017; Sun et al. 2017; 
Kim et al. 2012; Sun et al. 2017).

The generation and availability of big data, sometimes 
publicly available, from new sources supported by the 
advancement of ICT, in addition to the advancement in pro-
cessing and data-storing methods, has facilitated data use 
and the further development of applications. Several exam-
ples can be referred to, such as the use of big spatial data to 
evaluate the relation between housing rental and carshar-
ing use in Korea (Choi and Yoon 2017), identifying scooter 
users’ segments from trip data in Germany (Degele et al. 
2018), predicting the demand for bikesharing systems using 
a combination of weather data and bike booking data from 
New York (Cantelmo et al. 2020), the use of smartphone 
applications to understand pedestrian route choice behavior 
(Sevtsuk et al. 2021), and using news report to investigate 
scooters’ crashes (Yang et al. 2020a).

The capabilities of ML with the combination of big data use 
have already been explored in the research related to shared 
mobility use; for the different shared vehicle services. For 
example, shared micromobility, which is mainly praised for 
its potential to solve the last mile problem (Baek et al. 2021; 
Fearnley et al. 2020; Luo et al. 2021), where Yang et al. (2016) 
proposed a spatio-temporal mobility model of bike-sharing 
and present an OD demand (check-in and check-out demand) 
prediction mechanism based on historical bike-sharing and 
meteorological data. They used a probabilistic model for the 
check-in demand, while a random forest (RF) model was intro-
duced for check-out demand. Factors such as time of the day, 
day of the week, holidays, and weather conditions were found 
to be significant in predicting demand. Gammelli et al. (2020) 
proposed a general method for censorship-aware demand mod-
eling by devising a censored likelihood function; censorship-
aware demand is used to simulate reality. Transport demand 
is highly dependent on supply for shared mobility services, 
where services are often limited. Predictive models would 
necessarily represent a biased version of the actual demand 
without explicitly accounting for the supply restriction. The 
censored likelihood within a Gaussian Process model was 
incorporated and validated the limiting effect of supply on 

bike-sharing demand data to counter the previous problem. 
ML was also used in the case of scooter sharing, but not exten-
sively as used for other modes; Saum et al. (2020) combined 
Box-Cox transformation, seasonal autoregressive moving 
average (SARIMA), and family of generalized autoregressive 
conditional heteroskedasticity (GARCH) models to predict 
hourly demand and volatility for scooter demand, for a lim-
ited period in; Thammasat University, Thailand. Deep learning 
models are also becoming more popular and widely used in 
transport. Gao and Lee (2019) propose a moment-based model 
with a new hybrid approach that combines a fuzzy C-means 
(FCM)-based genetic algorithm (GA) with a back propagation 
network (BPN) to predict bikesharing rentals. Xu et al. (2018) 
developed a long short-term memory (LSTM) model based on 
different data types (trip data, weather data, air quality data, 
and land use data) to predict the bikesharing trip generation 
and attraction for different time intervals (10, 15, 20, and 30 
min). They also compared the model with other popular ML 
models, including one-step forecast, ARIMA, optimized gra-
dient boosting algorithm (XGBoost), support vector machine 
(SVM), artificial neural network (ANN), and recurrent neural 
network (RNN).

Also using deep learning, Yang et al. (2020b) focused on 
graph features; they extracted time-lagged variables describing 
graph structures and flow interactions from bike usage data. 
These variables include graph node Out-strength, In-strength, 
Out-degree, In-degree, and PageRank. The results proved 
that different machine learning approaches (XGBoost, MLP, 
LSTM) improve the prediction accuracy when time-lagged 
graph information is included. Zhang et al. (2019) used a deep 
learning model to predict the hourly travel demand using an 
LSTM model and compared it with different ML algorithms 
such as support vector regression (SVR), autoregressive inte-
grated moving average model (ARIMA) for carsharing sys-
tems. The results demonstrated that LSTM performs better in 
terms of performance and precision. Also, Luo et al. (2019) 
predicted dynamic demand based on graph features. The 
model was tested on real-world shared electric vehicle (EV) 
data, showing accurate prediction results. It is worth mention-
ing that, in comparison with traditional regression techniques, 
regression models generally show a poor prediction power 
when compared to ML algorithm; for example, in the case of 
carsharing, Müller et al. (2017) used a negative binomial sta-
tistical model to predict the vehicles demand, and the models’ 
R-squared ( �2 ) were around (0.07). Also, Younes et al. (2020) 
used negative binomial models to predict the average hourly 
trips for bikesharing and shared-e-scooter with ( �2 ) ranging 
between (0.14–0.20). These examples show the poor predic-
tion capabilities of regular regression models compared to 
ML, which supports the potential of using ML techniques for 
further research. Table 1 shows a summary of some selected 
studies and the used ML techniques, used performance evalu-
ation matrices, and the recommended technique if applicable.

3 According to the American Planning Association APA (plann ing. 
org), commercial land use is the land use that contains commercial 
retail and wholesales, business offices; while mixed land use is the 
combination of more than one land use in the same area such as resi-
dential, public and semi-public, and parks and open spaces.
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Methods, Data, and Case Study

Methods

Problem Statement and Framework Overview

Figure 1 shows the overview of the proposed methodology 
framework. We employed in this research the model transfer 
problem for time series prediction to predict scooters’ fleet 
utilization (Zhang et al. 2020). Given the historical demand 
data in the source city (Austin) alongside the pilot stage4 
demand data in the target city, Louisville, a time series 
model was trained and applied to predict the future fleet 
utilization in the target city. The source city is the city that 
provides us with the long-term patterns of historical demand 
and fleet utilization changes, whereas the target city only 
has information on demand changes over a short pilot stage.

The historical data of a city is denoted as D = {di}Zi=1 , 
where Z is number of census tracts (demand aggregation 
zones). dc = {tc, zc}5 is the data of census tract c, consisting 
of both historical time series tc ∈ ℝL and auxiliary census 
tract attributes zc ∈ ℝN , where L is the length of the time 
series and N is the length of auxiliary attributes. The data 
of the source city and the target city can be respectively 

denoted by DS and DT . The two lengths L and N can be 
determined based on the richness of data rather than fixed. 
For example, longer pilot stage duration and more accessible 
land use attributes allow the choice of larger L and N.

An autoregressive formulation was adopted for the time 
series prediction problem, such that it was transformed into 
a supervised ML problem. The raw data was split into two 
samples for model training and testing. A sample is 
described by a vector pair (xi, yi) , where i is the index of the 
sample. The first element xi = {x

j

i
}m
j=1

∈ X  is an m-dimen-
sional feature vector, which is comprised of m features 
extracted through feature engineering from the census tract 
attributes and the time series data of w consecutive days in 
a specific census tract c, i.e., t(i∶i+w)

c
 . The label yi ∈ Y  is the 

succeeding time series value in census tract c, i.e., t(i+w)
c

.
The ordinary time series prediction problem aims at 

learning an accurate mapping f ∶ X → Y  on future time 
steps in the same time series as in DS . However, the model 
transfer of the time series prediction problem aims at learn-
ing another mapping f � ∶ X → Y  from DS , but still per-
forms well on the time series of DT . The foremost difficulty 
in model transfer lies in the inconsistency between the dis-
tributions of data in DS and DT , also known as the covariate 
shift. To address this problem, we proposed a simple yet 
effective approach to align the distributions of time series in 
two cities and minimize the generalization error of the time 
series prediction model. Following the common ML proce-
dures, the four-step pipeline of (sample construction—fea-
ture engineering—model training—inference) was adopted. 
Two strategies were used to facilitate the transfer of the time 
series prediction model, namely the sample normalization 
and the label difference. Note that the proposed framework 

Table 1  Selected examples of ML techniques used in selected studies for different shared vehicle systems from selected studies

* NA refers to no comparison between the different models was performed

References ML technique Performance evaluation metrics Best performing ML*

Micro-mobility
Yang et al. (2016) Check-in: probability model for the 

undocked bikes; Check-out behaviour: 
RF

RMLSE NA

Saum et al. (2020) SARIMA + GARCH and their variation MAE, MSE, MAPE Modified SARIMA (BoxCox-SARIMA and 
SARIMA-PGARCH) outperformed other 
models

Yang et al. (2020b) Feature extraction + XGBoost/MLP/
LSTM

MAPE, RMSE LSTM

Gao and Lee (2019) FCM-based GA with BPN RMSE, MAE NA
Xu et al. (2018) LSTM; HA, ARIMA, XGBoost, SVM, 

ANN, RNN
RMSE LSTM

Car-sharing
Zhang et al. (2019) LSTM; SVR, ARIMA, smoothing MSE, R2 LSTM
Luo et al. (2019) Multi-graph Dynamic GCN RMSE, Error Rate NA

4 We considered the first 3 months the service deployed in the source 
city as a pilot stage, as commuters are generally trying to get famil-
iar with the service, and it is the same period used by other cities to 
evaluate scooters’ deployment such as Minneapolis, MN (Abouelela 
et al. 2023)
5 The length of tc depend on the available amount of historical time 
series data, and zc depends on the other auxiliary variables length.
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is compatible with various base ML models, which will be 
discussed in “Base Models” section.

Feature Engineering

Feature engineering is an important step for ML model 
development. Raw data were examined and processed 
to predict important information before using it in the 
modeling process. Our model incorporated two catego-
ries of features, namely time-series features and auxil-
iary features. Historical time series characteristics were 
included in the feature set so that the model could learn 
the patterns of time series dynamics from them. Liu et al. 
(2020), Zhang et al. (2016) recommend considering; (i) 
neighboring information, (ii) periodical information, and 
(iii) trend information for accurate time series predic-
tion. Neighboring information contains the demand val-
ues on the neighboring days of the target prediction day, 
informing the model of the recent level of demand. In this 
study, the number of neighbors is set as five. Periodical 

information contains historical demand values on a 
weekly basis, as repetitive weekly peaks can be observed 
from Fig. 3. Trend and seasonality needed to be removed 
through differencing before applying classical time series 
prediction tools like ARIMA (Kwiatkowski et al. 1992). 
Although ML models do not explicitly assume stationar-
ity for time series prediction, a nonstationary time series 
is not always suitable for prediction without preprocess-
ing, especially for decision-tree-based models, which is 
explained in the following section. Therefore, a first-order 
differencing6 was applied to the demand data as predic-
tion labels. Table 2 shows the summary of the statistics of 
the time series features. Apart from time-series features, 
auxiliary information was proven to be of great help in 
prediction tasks (Liu et al. 2021b; Lyu et al. 2020; Wessel 

Fig. 1  The used methodological framework

6 First-order differencing refers to computing the difference between 
two consecutive values in the time series. Denote the i-th observation 
of a time series as xi , the transformed label yi will be defined as fol-
lows; yi = xi − xi−1.
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2020). In the used models, we incorporate four auxil-
iary features, (i) temporal features, (ii) meteorological 
features, (iii) built environment features, and (iv) soci-
odemographic features. Temporal and meteorological 

features vary across different days (dynamic data); built 
environment and sociodemographic features are static for 
each census tract, in addition to the road network and 

Table 2  Time series feature 
summary statistics

a We use type N for neighboring information, P for periodical information, and T for trend information

Feature Typea Austin Louisville

Mean StD Mean StD

Demand (previous day) ( ×10−3) N 6.36 33.91 9.67 53.24
Demand (2 days ago) ( ×10−3) N 6.37 33.94 9.69 53.30
Demand (3 days ago) ( ×10−3) N 6.37 33.96 9.71 53.36
Demand (4 days ago) ( ×10−3) N 6.38 33.99 9.73 53.41
Demand (5 days ago) ( ×10−3) N 6.38 34.00 9.74 53.47
Demand (1 week ago) ( ×10−3) P 6.39 34.03 9.78 53.59
Demand (2 weeks ago) ( ×10−3) P 6.43 34.18 9.92 54.00
Demand (3 weeks ago) ( ×10−3) P 6.48 34.35 10.06 54.42
Demand (4 weeks ago) ( ×10−3) P 6.52 34.51 10.21 54.85
Demand (difference between 1 and 2 days ago) ( ×10−3) T/N 0.00 12.18 − 0.02 24.89
Demand (difference between 2 and 3 days ago) ( ×10−3) T/N 0.00 12.19 − 0.02 24.91
Demand (difference between 3 and 4 days ago) ( ×10−3) T/N 0.01 12.20 − 0.02 24.94
Demand (difference between 4 and 5 days ago) ( ×10−3) T/N 0.01 12.21 − 0.02 24.97
Demand (difference between 5 and 6 days ago) ( ×10−3) T/N 0.01 12.22 − 0.02 25.00
Demand (difference between 6 and 7 days ago) ( ×10−3) T/N 0.01 12.23 − 0.02 25.02
Demand (difference between 8 and 9 days ago) ( ×10−3) T/P 0.00 12.24 − 0.02 25.08
Demand (difference between 15 and 16 days ago) ( ×10−3) T/P 0.00 12.29 − 0.02 25.28
Demand (difference between 22 and 23 days ago) ( ×10−3) T/P 0.00 12.35 − 0.02 25.48
Demand (difference between 29 and 30 days ago) ( ×10−3) T/P 0.01 12.41 − 0.02 25.69
Demand (average of the past week) ( ×10−3) T 6.40 31.99 9.72 49.04
Demand (variance of the past week) ( ×10−3) T 0.16 3.10 0.52 6.24
Demand (range of the past week) ( ×10−3) T 6.49 32.93 13.44 61.36
Citywide demand (previous day) ( ×10−2) N 76.95 36.96 80.28 54.56
Citywide demand (2 days ago) ( ×10−2) N 77.02 36.96 80.42 54.53
Citywide demand (3 days ago) ( ×10−2) N 77.10 36.95 80.58 54.49
Citywide demand (4 days ago) ( ×10−2) N 77.16 36.95 80.73 54.46
Citywide demand (5 days ago) ( ×10−2) N 77.21 36.96 80.88 54.42
Citywide demand (1 week ago) ( ×10−2) P 77.29 37.00 81.21 54.32
Citywide demand (2 weeks ago) ( ×10−2) P 77.78 36.93 82.37 53.98
Citywide demand (3 weeks ago) ( ×10−2) P 78.37 36.77 83.49 53.70
Citywide demand (4 weeks ago) ( ×10−2) P 78.92 36.67 84.72 53.27
Citywide demand (difference between 1 and 2 days ago) ( ×10−2) T/N 0.06 25.50 − 0.16 33.54
Citywide demand (difference between 2 and 3 days ago) ( ×10−2) T/N 0.06 25.52 − 0.16 33.57
Citywide demand (difference between 3 and 4 days ago) ( ×10−2) T/N 0.06 25.54 − 0.16 33.61
Citywide demand (difference between 4 and 5 days ago) ( ×10−2) T/N 0.08 25.56 − 0.16 33.65
Citywide demand (difference between 5 and 6 days ago) ( ×10−2) T/N 0.09 25.58 − 0.17 33.68
Citywide demand (difference between 6 and 7 days ago) ( ×10−2) T/N 0.09 25.60 − 0.17 33.72
Citywide demand (difference between 8 and 9 days ago) ( ×10−2) T/P 0.02 25.62 − 0.16 33.80
Citywide demand (difference between 15 and 16 days ago) ( ×10−2) T/P 0.05 25.72 − 0.15 34.07
Citywide demand (difference between 22 and 23 days ago) ( ×10−2) T/P 0.05 25.86 − 0.17 34.34
Citywide demand (difference between 29 and 30 days ago) ( ×10−2) T/P 0.07 26.00 − 0.18 34.62
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infrastructure attributes. Table 3 shows the summary of 
the statistics of the used auxiliary features.

Base Models

This subsection introduces four ML techniques that we 
applied using the proposed methodological framework. We 
choose the models based on four different types of ML. Lin-
ear regression (LR) depends on the assumptions of the linear 
relationship between the features and the outputs. Support 
vector regression (SVR) uses a kernel method to impose 
the non-linearity of the data; gradient-boosting decision tree 
models the data using an ensemble of if-else rule sets based 
on tree representation. Finally, we used a deep learning tech-
nique to capture the non-linearity of the relationship between 
the features and the output. We explain the details of each of 
these models as follows;

Linear Regression (LR) LR is a classical machine learning 
model that assumes a linear or affine relationship between 
input features and output labels. The simple linear regression 
takes the following formulation,

where w ∈ ℝ
m is the coefficient vector, and b ∈ ℝ is the 

intercept. The residual yi − f (xi) is assumed to follow a 
Gaussian distribution. Also assuming the independence of 
training samples, the parameters can be estimated through 
the least squares method, which is equivalent to maximum 
likelihood estimation. It aims at minimizing the sum of 
squared error, formulated as follows,

Support Vector Regression (SVR) SVR is an extension of 
ordinary support vector machine (SVM) for solving regres-
sion problems, which was originally designed for classifica-
tion. To make binary classification, SVM adopts a separating 
hyperplane w�x + b = 0 to split the feature space X  into two 
half-spaces. In the regression case, the hyperplane is turned 
into a real-valued function f (xi) = w�xi + b resemblant to 
linear regression. Instead of least squares, SVR is trained 
based on the �-insensitive loss, as formulated below,

where zi = yi − f (xi) . Unlike squared loss in least squares, 
there is no penalty when the absolute prediction error is not 
greater than threshold � . The complete optimization objec-
tive of SVR is given by,

(1)f (xi) = w
�
xi + b,

(2)min
w,b

∑
i

(
yi − f (xi)

)2
.

(3)��(zi) =

{
0, if |zi| ≤ �,

|zi| − �, otherwise,

Table 3  Variables summary statistics aggregated by census tracts

a For the definition of the different demographics, please refer to the 
United States Census Bureau (ensus. org)
b For the definition of the different land uses categories, please refer to 
the American Planning Association APA (plann ing. org)
c Rainy days coded as (1), and non-rainy days coded as (0)
d Measured from the centroid of each tract

Variable Unit Austin Louisville

Mean StD Mean StD

Demographicsa

Population Count 2372.16 1692.12 2023.63 821.10
Median income 103$ 65.24 30.18 44.49 25.56
High education (%) 0.47 0.20 0.27 0.21
White ethnicity (%) 0.51 0.23 0.58 0.33
Male (%) 0.52 0.06 0.48 0.04
Age under 18 (%) 0.17 0.08 0.21 0.08
Age between 18 

and 29
(%) 0.26 0.16 0.2 0.11

Age between 30 
and 39

(%) 0.20 0.06 0.14 0.05

Age between 40 
and 59

(%) 0.23 0.07 0.25 0.05

Age over 60 (%) 0.14 0.07 0.20 0.08
Modes used to travel to work
Drove alone (%) 0.70 0.09 0.73 0.12
Taxi (%) 0.01 0.01 0.03 0.04
Transit (%) 0.05 0.05 0.07 0.07
Walked (%) 0.03 0.06 0.04 0.05
Work from home (%) 0.08 0.05 0.04 0.03
Bicycle (%) 0.02 0.02 0.01 0.01
Carpooled (%) 0.09 0.06 0.08 0.04
Infrastructure
Census tract area km

2 2.57 2.12 2.10 1.76
Sidewalk length km 37.01 18.36 4.54 7.95
Number of signal Number 8.21 10.97 8.12 12.52
Length of bike lane km 1.14 2.55 2.79 4.89
Bikesharing station Number 0.25 0.98 0.34 1.92
Distance to 

 downtownd
km 7.16 3.77 5.61 2.59

LTAI 5.50 0.76 5.51 0.82
Land useb

Residential (%) 0.43 0.16 0.42 0.18
Civic (%) 0.08 0.12 0.10 0.09
Commercial (%) 0.07 0.07 0.08 0.07
Industrial (%) 0.03 0.07 0.06 0.09
Mixed (%) 0.01 0.02 0.00 0.00
Office (%) 0.04 0.05 0.00 0.00
Parks (%) 0.08 0.09 0.07 0.13
Meteorological
Max temperature ◦

F 70.44 16.17 61.18 19.05
Mini temperature ◦

F 70.44 16.17 61.18 19.05
Precipitationc 0.02 0.13 0.03 0.18
Wind speed km/h 5.70 3.81 6.93 4.39
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where C > 0 is a trade-off coefficient between the �-insensi-
tive loss and the regularization term (Scholkopf and Smola 
2001). In addition to the linear formulation, SVR can deal 
with non-linearity by introducing the kernel trick, which 
projects the input features into a high-dimensional space 
using a kernel function �(⋅) ; thus the prediction function 
becomes f (x) = w��(x) + b . Common kernel functions 
include the polynomial kernel, spline kernel, and Gauss-
ian kernel (Scholkopf and Smola 2001; Wendland 2004). 
Despite the strong expressive power of non-linear kernels, 
the time complexity of model estimation can be worse than 
O(N3) (Platt 1998).

Gradient boosting decision tree (GBDT) Decision tree 
(DT) has a superior prediction performance and good inter-
pretability (Wu et al. 2008). Each decision rule corresponds 
to an exclusive path from the root node to a leaf node in 
the tree, while each leaf node is associated with a group of 
samples in the training set. The rule set of a DT actually 
partitions a subspace S  of the feature space X  into many 
sub-regions. For each input feature vector, DT searches for 
the sub-region to which this vector belongs, and prediction 
can be made based on the samples associated with the leaf 
node in the corresponding decision rule. The training pro-
cess of a DT is a search for a satisfactory set of decision rule, 
i.e., a partition of S  . It has early been proven that finding 
an optimal rule set for a DT is NP-Complete (Kwiatkowski 
et al. 1992); hence a greedy heuristic algorithm is often used 
for model training and the resulting DT is suboptimal. But, 
concerning a DT for regression problems with a determined 
feature space partition, the optimal output value of a specific 
leaf node can be concluded as the average labels of all the 
associated samples (Bishop 2006). Therefore, it is notewor-
thy to mention that the output of a DT is limited between 
the minimum and maximum of labels of its training data. 
Despite the inability in extrapolation, DT is competitive 
over many other machine learning models in interpolation. 
Despite the boom of deep learning research in the recent 
decade, it has been found that deep learning is not a panacea 
for all tasks. For example, Shwartz-Ziv and Armon (2022) 
pointed out that DT outperforms deep models on many tabu-
lar data, which is the case for the auxiliary information in 
our experiment. In addition, according to a research (Bojer 
and Meldgaard 2021) on the winning solutions of forecast-
ing competitions on Kaggle,7 DT is the most competitive 

(4)min
w,b

C
�

i

��(zi) +
‖w‖2
2

,
one over other machine learning models. Similar results can 
be observed from the latest survey conducted by Kaggle8; 
DT is the most popular method among its users on top of 
linear models. To further improve its generalization abil-
ity and reduce the risk of over-fitting, ensemble learning 
is combined with DT, and GBDT is one of the representa-
tives (Friedman 2001). The principal idea of Boosting is to 
express the model as a summation of multiple base models. 
There are a number of improvements made on GBDT in 
terms of engineering implementation, including XGBoost 
(Chen and Guestrin 2016), CatBoost (Dorogush et al. 2017) 
and LightGBM (Ke et al. 2017). In this paper, we adopt 
LightGBM, a highly efficient GBDT framework, which uti-
lizes two specially designed techniques, namely Gradient-
based One-Side Sampling and Exclusive Feature Bundling, 
to ease the computational burden of large-scale data involved 
in model training without sacrificing the prediction accuracy.

Long Short-term Memory Neural Network (LSTM NN) 
LSTM is a recurrent neural network (RNN) model for mod-
elling sequential data. In contrast to most non-recurrent neu-
ral networks, RNN allows loop connections in its architec-
ture, which feed the outputs of a layer to itself as its inputs 
in the following time step (LeCun et al. 2015). An ordinary 
RNN layer maintains a hidden state H along time; in each 
time step t, it is fed with the current feature vector xt and the 
previous hidden state Ht−1 . The hidden state of time step t is 
updated by the non-linear transformations of the two inputs, 
while the output is given by another non-linear transforma-
tion of the hidden state. LSTM improves RNN’s ability of 
modelling long-term relationship by introducing three gated 
units (i.e., input gate, output gate, and forget gate) and an 
additional memory state C in the recurrent layer. The three 
gated units apply different non-linear transformations on the 
two inputs, whereby the memory state and the hidden state 
are also updated,

where �(⋅) and �(⋅) are sigmoid and hyperbolic tangent acti-
vation functions, respectively; w , v and b are parameters; ⊗ 
is the Hadamard product. The training of LSTM NN can be 
realized via back-propagation through time, which unfolds 

(5)

It = 𝜙(w�
I
xt + v

�
I
ht−1 + bI),

Ot = 𝜙(w�
O
xt + v

�
O
ht−1 + bO),

Ft = 𝜙(w�
F
xt + v

�
F
ht−1 + bF),

Ct = Ft ⊗ Ct−1 + It ⊗𝜓(w�
C
xt + v

�
C
ht−1 + bC),

Ht = Ot ⊗𝜙(Ct).

7 A platforms for hosting data science competitions (kaggle. com).
8 https:// www. kaggle. com/ compe titio ns/ kaggle- survey- 2022, 
accessed 25/11/2022.
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the computation steps along time to allow the use of the 
chain rule (Hochreiter and Schmidhuber 1997).

Model Transfer

Time series differencing is used to remove trends from the 
data (detrend) in response to GBDT’s defect in extrapola-
tion. Denote two consecutive time series values as xi−1 and 
xi , the first-order differencing yields a transformed label 
yi as follows,

However, differencing alone is inadequate regarding the 
model transfer problem due to the uneven distributions 
between data in DS and DT . Figure 2 compares the distribu-
tions of average daily trips per vehicle between two cities. 
The demand pattern of Louisville has a more significant dis-
persion than Austin’s. If Austin was used as the source city 
and Louisville as the target city, the trained GBDT model 
might underestimate the demand in Louisville, as the model 
would not learn much information about high daily trip 
demand, and this was the main reason to use Austin, as the 
source city; which is called covariate shift. Covariate shift 
refers to the case when the probability distributions between 

(6)yi = xi − xi−1.

training data and test data differ while the conditional dis-
tributions of labels on input data are the same (Sugiyama 
and Kawanabe 2012). Nevertheless, an implicit assumption 
of standard supervised learning models, including GBDT, 
is that the training and test data follow the same probabil-
ity (Ben-David et al. 2010), refraining from dealing with 
covariate shift.

DS and DT denote the distributions of data in DS and DT , 
respectively; denote the actual underlying functions map-
ping input feature vectors to labels on the two sets of data as 
fS and fT . Then, following Ben-David et al. (2010), we call 
⟨DS, fS⟩ the source domain and ⟨DT , fT⟩ the target domain. 
The expected error on the source domain can be obtained by

where g(⋅) is the model, 𝓁(⋅, ⋅) is the loss function. Similarly, 
the expected error on the target domain can be defined as 
�T (g, fT ).

In general, models are trained to minimize the empirical 
error on the source domain; nevertheless, in the model trans-
fer problem, we minimize the error on the target domain. 
One option is transforming the data from x to x′ such that 
the corresponding distributions D′

S
 is similar to D′

T
 . Inspired 

(7)�S(g, fS) = �x∼DS

[
�
(
g(x), fS(x)

)]
,

Fig. 2  Average A daily, B hourly demand distribution, C and fleet utilization (number of trips per vehicle) daily distribution. Weekend includes 
Saturday and Sunday, weekdays are the rest of the days
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by the batch normalization strategy in deep learning (Ioffe 
and Szegedy 2015), we proposed the sample normalization 
strategy to transport the knowledge learned from the source 
time series to the target time series. We implicitly assumed 
that time-series dynamics irrespective of the value scale con-
ditional on given features. For each sample, before extract-
ing time series features, the input time series segment was 
normalized to a mean of zero and a variance of one. Denote 
the time series segment as t , the normalized segment t̃ can 
be obtained by:

where E(t) and D(t) are the mean and the standard deviation 
of t respectively.

(8)t̃ =
t − E(t)

D(t)
,

Sample normalization was adopted to reduce the 
covariate shift for the studied model transfer problem. 
The feature construction procedure with sample normali-
zation was presented in Algorithm 1. Feature vectors are 
constructed for data in each census tract following the 
FeatureConstuction procedure. It should be noted that a 
complete training sample consists of a feature vector and 
a label, where the label also needs normalization. Recall 
that sample normalization takes a time series segment of 
consecutive (w) days; the label corresponds to the day 
right after this segment and needs to be normalized using 
the mean and standard deviation of the previous segment. 
As the label represents the day when the demand is pre-
dicted, it should not be combined with the previous seg-
ment when calculating the normalization parameters, i.e., 
the mean and standard deviation.9

Data Collection and Processing

We predicted the scooter’s fleet utilization using different 
data sources; we used fleet utilization daily rates (daily 
number of trips per vehicle) of one city to predict the fleet 
utilization in the other city. The primary datasets are the 

scooter trip booking data from Austin; Texas, and Louis-
ville; Kentucky; in Austin, the data spanned from April 
2018 to January 2020, while in Louisville, the collected data 
spanned from August 2018 to January 2020. We used trip 
data in combination with other open-source data, specifi-
cally; (i) census sociodemographics information obtained 

9 The window size used for feature extraction is 28 days. In this 
paper, we assume there are only 1 month available in the target city, 
hence the choice of window size approximately 1 month.
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from the United States Census Bureau10 census data include 
sociodemographic information aggregated per census tract 
including age group, gender ratio, race and ethnicity, marital 
status, education level, household income, house price, and 
modes used to work. (ii) Built environment and infrastruc-
ture data from (opens treet map. org); this data set included 
all the physical features of the built environment and POI, 
such as roads, bike lanes, intersections (both signalized and 
non-signalized), bikesharing stations, shops, banks, and 
educational institutes. (iii) Meteorological data from (visua 
lcros sing. com), and this dataset included hourly atmospheric 
temperature, wind speed, rain, and snow conditions.

The collected data was processed and cleaned in several 
steps. Austin’s data set contained scooter and e-bike trips; 
the latter were removed. Other procedures were similar to 
what McKenzie (2019), Liu et al. (2019), Zou et al. (2020) 
used were implemented to remove false entries and false 
trips; all trips shorter than 100 m and longer than 50 km 
were removed; trips shorter than one minute and more 
extended than 2 h duration were removed. Also, we removed 
trips with speeds higher than 25 mph. Build environment, 
infrastructure, and POI data were aggregated per census tract 
as it is the spatial aggregation unit. It is to be noted that we 
did not observe any problems in the sociodemographic cen-
sus information and meteorological data.

Case Study

Scooter booking data from Louisville, Kentucky, and Aus-
tin, Texas, were obtained from the open city portals (Aus-
tin Shared Mobility Services 2022; Louisville Open Data 
2022). Scooter fleet size in both cities is different, wherein 
Austin, the maximum fleet size is 15,000 vehicles (Austin 
Shared Mobility Services 2022) and in Louisville, it is 1200 
vehicles (Louisville Open Data 2022). Also, the operational 
regulations for shared-e-scooters are slightly different in 

both cities. The speed limit is 20 mph in Austin, while it is 
15 mph in Louisville; helmet use is advised and mandatory 
for under-18 users in Austin, while it is mandatory for all 
users in Louisville.

It is essential to mention that the two cities in this study 
are different in terms of population, where Austin’s popula-
tion (0.98 million) is approximately 1.5 times the population 
of Louisville. Also, Austin has several options for public 
transportation, compared to Louisville, which has only bus 
service; however, they have similarities in terms of modal 
share for work trips, as both cities are car-dependent cities, 
wherein Louisville (89%) of work trips are done in private 
cars, compared to 81.2 % in Austin (census. gov).

Analysis Results

As discussed in the literature review, “Literature Review” 
section, some of the challenges faced by the shared mobil-
ity service are directly linked to the spatial and temporal 
demand pattern; therefore, we start by analyzing the trip 
characteristics and then the demand patterns temporally 
and spatially to recognize the patterns in both cities, and 
compare them to define similarities and differences, after 
that, we show the results of the estimated models and its 
adequacy for fitting the data.

Trips Characteristics

After cleaning the data as discussed in “Methods, Data, and 
Case Study” section, the original 9 million trips in Aus-
tin were reduced to around 7 million trips (78% of original 
trips), and the initial 500,000 in Louisville were reduced 
to approximately 390,000 trips (77% of original trips). We 
analyzed and compared the characteristics of the cleaned 
trips in both cities as shown in Table 4. To investigate the 
differences and similarities between trips characteristics in 
both cities, a t test of the mean of two samples is performed 
for the trip distance, duration, and speed between the two 

Table 4  Summary of trip 
characteristics per city

Number of trips after the data cleaning process is in Austin = 7,038,490 trip, and in Louisville = 389,739 
trip

Mean StD Min Q1st Median Q3rd Max City

Distance (km) 1.57 1.50 0.10 0.64 1.13 1.96 45.71 Austin
Distance (km) 2.07 2.26 0.10 0.64 1.29 2.61 32.19 Louisville
Duration (min) 11.09 11.83 1.00 4.45 7.20 12.92 120.00 Austin
Duration (min) 15.62 17.22 1.00 5.00 9.00 19.00 120.00 Louisville
Speed (km/h) 9.76 4.59 0.06 6.39 9.29 12.68 25.00 Austin
Speed (km/h) 9.05 4.47 0.07 5.79 8.59 12.00 25.00 Louisville
Fleet utilization (trip/vehicle) 0.71 0.40 0.00 0.44 0.69 0.93 2.66 Austin
Fleet utilization (trip/vehicle) 0.91 0.61 0.00 0.42 0.86 1.26 3.23 Louisville

10 ;census.gov, accessed 5 March 2022.
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cities, and it shows that the difference between the two sam-
ples is significant for the three trip metrics ( P < 0.0001 ). 
Louisville trips tend to be longer in distance and duration, 
but Austin trips tend to be faster. We investigated the aver-
age street slopes in both cities using Google Earth Engine 
(Gorelick et al. 2017) to explore if slopes impact the mean 
scooter trips’ speed, with no significant difference found as 
both cities have almost flat terrain except for some localized 
areas. We also removed the demand data for the second week 
of March 2019 from the Austin dataset, as the SXSW music 
festival took place at that time, and the demand was (5–6) 

times the average demand for the rest of the data collection 
period, as extreme outlier removal is essential for improving 
model performance (Saum et al. 2020).

Demand Analysis

Temporal Analysis

To compare the demand trends and patterns in the two cit-
ies, we normalized the demand by scaling the daily demand; 
we divided it by the maximum number of trips for the 

Fig. 3  Daily demand distribu-
tion, scaled demand

Fig. 4  Utilized fleet daily 
distribution, number of trips per 
vehicle per day
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investigated duration for each city, as shown in Fig. 3; simi-
lar to the procedures used by Schmöller et al. (2015). The 
scaled demand shows similar trends in both cities, where the 
demand increases in spring and summer, and it starts to drop 
from October (autumn) and continues to decline until Janu-
ary, when the lowest average of the year is observed. Fol-
lowing the same scaling procedures to control the different 
fleet sizes, we also compared the number of trips per vehicle 
in both cities. Interestingly, the number of trips per vehicle 
fluctuates in a different trend than the demand, with Louis-
ville having higher trips per vehicle than Austin at the begin-
ning of the deployment period, i.e., the first two months, and 

it decreases for the following 6 months. It almost matches 
in both cities for almost 7 months in 2019 (from April till 
November), despite the different fleet sizes in both cities. It 
is necessary to mention that the fleet size was not fixed dur-
ing the data collection period, as mentioned and considered 
from Louisville Open Data (2022); Austin Shared Mobility 
Services (2022). Figure 4 shows the average daily number 
of trips per vehicle in both cities.

We also investigated the hourly and daily demand. In 
general, the demand patterns for weekdays are similar in 
both cities, where the demand per weekday as a percent-
age of the total weekly demand is stable from Mondays 

Fig. 5  Spatial distribution of the 
dominant difference between 
weekends and weekdays trips, 
Austin, TX
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to Thursdays, with a slight increase on Fridays. The peak 
of the demand happens on Saturdays (around 20% of the 
total weekly demand and 50% more than the average week-
day demand). Sundays’ demand is slightly higher than the 
weekdays’ demand, excluding Fridays; refer to Fig. 2. This 
trend in demand distribution shows an increase in scooter 
usage during weekends, which primarily indicates the use of 
scooters for leisure-related activities, which is the principal 
purpose of scooters (Abouelela et al. 2021a).

The last temporal element to investigate was the hourly 
demand. We aggregated the hourly demand for weekdays 
and weekends. We found that the hourly demand in both 
cities follows similar trends. In Austin, the weekday demand 
is a left-skewed Bimodal distribution, with one minor peak 
around 8:00 and the other peak of the day between 12:00 
and 17:00, which is the primary demand peak. The morn-
ing peak (around 8:00) does not exist on weekends, and the 
only demand peak is around 13:00. The morning peak hour 
during the weekdays could indicate that scooters are used 

for commuting trips at this time of the day. It is also to be 
noticed that there is a high demand for trips on the week-
ends’ early morning hours, which might indicate the use 
of leisure trips at these times of the day. In Louisville, the 
trends are similar except that there is no morning peak hour 
demand during weekdays, and there is a low number of early 
morning trips during the weekends; refer to Fig. 2.

Spatial Analysis

We analyzed the spatial demand in the two cities at different 
periods of the day and on different weekdays guided by the 
temporal analysis results. The demand was aggregated per 
each census tract, per weekday v.s. weekend, per time of the 
day. We divided the day into four primary time intervals, 
each 6 h long, as shown in Figs. 5 and 6. We investigated 
the weekday demand dominance by normalizing the dif-
ference between the number of weekday trips and week-
end trips and scaled the difference from ( −1 to +1 ). First, 

Fig. 6  Spatial distribution of the dominant difference between weekends and weekdays trips, Louisville, KY
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we assigned each trip to the starting census tract; then we 
aggregated the trips temporally to the weekend trips that 
happened on Saturday and Sunday and weekday trips for 
the other five days of the week; then we calculated the dif-
ference between the average weekend, and weekday trips 
per week for each tract ( i = number of weeks… 1 − m , 
j = number of tracts… 1 − n ), after this we normalized the 
difference by dividing by the maximum difference for each 
tract;

where i = number of weeks , j = number of tract , and11

The following spatio-temporal trends are observed. In Aus-
tin, the downtown area is mainly dominated by weekend 
trips at different times except before noon hours, where there 
is almost no difference in demand between weekday and 
weekend trips. A similar trend is noticed in the University of 
Texas at Austin area, which is dominated by weekday trips at 
different times of the day. Weekend trips dominate only the 

(9)

Tij = X ⋅

i=m,j=n∑

i=1,j=1

Avg(Weekendij) − Avg(Weekdayij)

max(Avg(Weekendij) − Avg(Weekdayij))
,

(10)

X =

{
−1, if Avg(Weekendij) − Avg(Weekendij) ≤ 0,

1, otherwise.

early morning hours, while the rest of the day is dominated 
by weekday trips by different ratios.

The spatio-temporal analysis shows interesting findings; 
both cities’ downtown and university areas are two major 
attraction areas, and their spatial and temporal demand pat-
terns are the same regardless of their use in the rest of the 
city. In Louisville, similar trends were also noticed. Week-
end trips dominate the downtown area, and the University 
of Louisville area is dominated by weekday trips at all times 
of the day. For the rest of the city, the early morning hours 

Table 5  Models performance 
metrics

Bold value indicates the best-performing models

Label Dif-
ferencing

Sample Nor-
malization

Performance ( ×10−5)

Model Train RMSE Train MAE Test RMSE Test MAE

Models without transfer learning
– – LightGBM 531.6 82.9 2195.7 382.6
– – LR 1017.2 185.5 2164.1 388.3
– – SVR 1064.8 242.9 2092.5 440.4
– – LSTM 1333.8 360.2 2366.2 484.9
Models after transfer learning
✓ ✗ LightGBM 469.3 97.9 2291.9 394.1
✗ ✓ LightGBM 1059.0 174.1 2037.6 390.5
✓ ✓ LightGBM 873.9 130.7 1845.6 346.8
✓ ✗ LR 1017.3 185.7 2168.5 389.6
✗ ✓ LR 1166.8 178.4 2034.7 378.7
✓ ✓ LR 1263.6 185.4 2054.4 381.2
✓ ✗ SVR 1064.0 215.1 2135.6 449.5
✗ ✓ SVR 1212.7 181.4 2200.8 381.4
✓ ✓ SVR 1296.4 177.8 2208.3 371.3
✓ ✗ LSTM 1274.3 284.6 2647.4 515.8
✗ ✓ LSTM 1176.5 182.1 2677.9 480.6
✓ ✓ LSTM 1140.6 179.3 2376.0 436.4

Table 6  Relative feature importance of top-10 features, LightGBM

Rank Feature Relative 
importance 
(%)

1 Demand (previous day) 6.6
2 Elapsed days since operation 6.3
3 Temperature 5.3
4 Day of the week 3.5
5 Demand (average of the past week) 3.1
6 Demand (difference between previous 

day and 2 days ago)
3.1

7 Demand (range of the past week) 3.1
8 Demand (7 days ago) 2.5
9 Distance to downtown 2.1
10 Citywide demand (difference between 

previous day and 2 days ago)
2.1

11 X here is used for plotting positive values on the scale of Figs. 5 
and 6.
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till before noon are dominated by weekend trips, and the 
rest of the day is dominated by weekday trips with different 
ratios. Although the temporal distribution of trips is almost 
the same in both cities, their geographical distribution is dif-
ferent, which we believe is due to the different urban struc-
tures of both cities.

Model Results, and Performance Evaluation

We investigated the effectiveness of the proposed meth-
odology used for the model transfer problem for demand 
prediction. The prediction accuracy was evaluated using 
two metrics; root mean squared error (RMSE), and mean 
absolute error (MAE). The proposed framework was applied 
to the different used ML techniques. We first compare the 
performance of the models as shown in Table 5 upper part, 
and then we compared the performance of the model after 
the transfer (label differencing, and sample normalization), 
Table 5 lower part.

To further improve the transferability of the model, we 
applied the model transfer strategies to all the models. We 

applied the different transfer strategies as shown in Table 5 
lower part, which shows the model’s prediction results sum-
mary after applying the different transfer strategies. A time 
series prediction without treatment of the covariate shift 
issue suffers from low RMSE and MAE on the training 
set. However, when faced with unseen data in another city, 
the test set’s performance suffers considerably because of 
distinct time series patterns. Firstly, we applied label dif-
ferencing, but it did not improve accuracy as the distribu-
tion inconsistency in the input space was not addressed; 
similarly, only applying sample normalization was ineffec-
tive. The transfer error was finally reduced when the two 
strategies were used simultaneously, which is evident in the 
best-performing model, LightGBM. For LightGBM, The 
RMSE dropped from 2195.7 to 1845.6, which showed an 
improvement of the performance by approximately 15.9%. 
Meanwhile, a drop in accuracy on the training set was also 
observed, indicating a less severe over-fitting model; in other 
words, the proposed method was satisfactory in improving 
the generalization ability and robustness of the model in the 

Table 7  Relative feature 
importance of feature groups, 
LightGBM

Feature group Importance (%) Performance after feature removal ( ×10−5)

Train RMSE Train MAE Test RMSE Test MAE

Time series features 67.0 1243.7 199.8 2637.6 457.3
Temporal features 9.8 978.2 146.6 1976.0 362.4
Sociodemographical features 9.6 887.7 133.9 1873.3 350.4
Meteorological features 7.1 1051.2 169.0 2182.9 399.1
Built environment features 6.6 876.4 133.3 1869.3 349.7

Fig. 7  Observed versus pre-
dicted fleet utilization using 
LightGBM



 Data Science for Transportation             (2023) 5:5 

1 3

    5  Page 18 of 26

transfer learning problem. Further error analysis is presented 
in the following section.

As The LightGBM model was the model with the best 
prediction performance, we evaluated the importance of 
factors influencing the prediction using the number of node 
splits corresponding to each feature in the trained LightGBM 
model. The more a feature was adopted for a split in the 
tree, the higher its contribution to the prediction (Liu et al. 
2020). We ranked features by their relative importance, the 
top 10 listed in Table 6. As a time series prediction model, 
lagged demand values and their statistics are essential to 

the prediction, where the one-day lagged demand contrib-
uted the most, accounting for 6.6% of all feature splits in 
the trained decision trees. Among the top 10 features, three 
time-varying and one census tract-related auxiliary features, 
i.e., elapsed days since operation,12 temperature, day of the 

Fig. 8  Observed versus pre-
dicted fleet utilization using 
Linear Regression

Fig. 9  Observed versus pre-
dicted fleet utilization using 
LSTM NN

12 The term “elapsed days since operation” here means the number 
of days from the first operation day of the service to the day corre-
sponding with the sample to be predicted. This feature is used as the 
demand pattern of a shared mobility service can differ between its 
starting stage and later.
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week, and distance to downtown significantly contributed 
to the prediction.

To quantify the influence of the different factors groups, 
we categorized the features into five main groups, refer to 
Table 7. Time series features accounted for 67.0% of node 
splits in the trees, whereas each category of auxiliary fea-
tures accounted for approximately 6–10% of node splits. 
Further experiments were performed to see whether remov-
ing specific feature groups would significantly reduce pre-
diction accuracy. We found that removing every feature 
group will more or less negatively impact the model perfor-
mance. The results are generally consistent with their rela-
tive importance; the removal of time series features—the 
most critical group of features—resulted in a performance 
drop of around 43% in Test RMSE. Removing auxiliary 
features did not incur severe impacts, where the accuracy 
reduction caused by removing built environment features 
or sociodemographic features was less than 2% per group.

Error Analysis Description

We analyzed the prediction error, its value distribution, tem-
poral distribution, and spatial location considering the test 
set Louisville’s dataset. The actual and predicted number of 
trips per vehicle per day were plotted along the temporal axis 
in Figs. 7, 8, 9, and 10.

It can be observed that all the estimated models captured 
the overall demand pattern with some shortcomings. The 
LR model tends to overestimate the utilization rate between 
(1–1.75) vehicles per trip, and it underestimates the demand 
when it is higher than 1.75 trips per day; for the rest of the 
value, it is somehow able to estimate the fleet utilization rate.

SVR was consistently unable to predict the utilization 
rate; for rates below 1.25 vehicle/trip, the model underes-
timated the results, and for rates over 1.245 vehicle/trip, 
the model overestimated the utilization rates. Regarding 
the temporal distribution of the error, Fig. 10, SVR was 
the model with the least prediction capabilities. LSTM 
could not accurately predict the low utilization rate and 
tended to overestimate the utilization below 1.2 trips 
per day and underestimated the demand higher than 1.2; 
also, the model had some incidents where the estimated 
utilization rates were significantly higher than the actual 
rate. The LGBM model had the best performance among 
the four models. It can be observed that the prediction 
results of the proposed model capture most of the demand 
seasonal peaks and troughs dynamics without lag except 
for the several sudden spikes in the early stage of opera-
tion (e.g., the spike in mid-April). However, the model 
inclines underestimation regarding peak values, possibly 
an outcome of model regularization, as predictions of large 
values are more likely to be connected with high errors 
(error terms are increasingly proportional to the absolute 
demand value). Potential solutions include increased train-
ing data and additional information like special events and 
fine-grained weather forecasts. To be able to observe and 
understand the previous prediction trends, we plotted the 
predicted values in comparison to the actual values using 
three different graphs, where Fig. 11 shows the distribution 
of the predicted values in reference to the actual observed 
utilization rate, Fig. 12 shows the distribution of the dif-
ference between the observed utilization rate and the pre-
dicted utilization rate. Finally, Fig. 13 shows the predicted 

Fig. 10  Observed versus 
predicted fleet utilization using 
SVR
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values against the actual values and the corresponding 
regression line.

We also spatially analyzed the difference between the 
predicted and actual fleet utilization rate; we plotted the 
difference between the average utilization rate and the pre-
dicted one per census tract. Figure 14 shows the prediction 
error spatial distribution; it can be observed that for all 
models, except SVR, the errors in most census tracts are 
low or even zero. SVR overestimates the utilization rate 
in all the tracts except the university area, where it under-
estimates the utilization rate. The errors have a distinc-
tive pattern for the other three models, mostly occurring 
around downtown and the university area’s tracts. The high 
demand can explain the relatively high errors in these two 
areas, and error is proportional to the absolute demand 
value and more events that make predictions difficult.

The conclusion of the error analysis process, which was 
done in multiple dimensions, shows that the LGBM model 
is superior in prediction accuracy compared to the other 
used ML models, including LSTM.

Discussion, and Conclusion

Discussion

The observed spatio-temporal scooters’ demand patterns in 
the two examined cities show the demand and fleet utiliza-
tion rate seasonality. The demand is different for the different 
hours of the day and the day of the week; also, the spatial 
demand distribution is different in the two examined cities, 
and it depends on the time of the day. Nevertheless, there is a 
significant spatial common phenomenon in both cities, with 
the demand spatially concentrated around the downtown and 
the university areas. Therefore, system operations such as 
vehicles’ supply management and allocation and redistribu-
tion should consider such patterns in the deployment and 
redistribution process and ensure deploying the number of 
vehicles in the desired locations that are changing according 
to the actual demand. The used framework shows a simpli-
fied and effective way to predict the number of trips per vehi-
cle (fleet utilization) for one of the rapidly expanding shared 
mobility services, shared-e-scooter, depending on open-
source data. This framework could be used (after testing) for 
similar dockless, free-floating micromobility shared systems, 
which exhibited similar travel behavior, e.g., free-floating 
bike-sharing services (Zhu et al. 2020; McKenzie 2019). 
Moreover, similar data characteristics to the one used in this 
study should be available for other shared mobility services 
to implement the used framework; for each trip, trip start-
ing and ending spatial points, starting and ending timings, 
trip speed, and trip distance. As the methodology section 
explains, the framework depends on employing the historical 

demand data combined with open-source data; therefore, dif-
ferent stakeholders could use the framework to predict the 
daily number of trips per vehicle and deploy the vehicles in 
the expected locations accordingly. The error analysis sec-
tion (“Methods, Data, and Case Study” section) shows that 
the increase in the number of days used in the prediction 
process increases the accuracy of the models; therefore, the 
continuous use of such models would improve the model 
accuracy over time. It is also to be noticed that we used the 
ridership (the number of trips per vehicle per day) for the 
prediction task for two main reasons; firstly, we wanted to 
control the fleet size in both cities to be able to compare the 
demand and to normalize the impact of the supply. Secondly, 
demand is directly tied to supply in the case of shared mobil-
ity services, and estimating absolute demand will lead to 
a biased estimation (Gammelli et al. 2020). Moreover, the 
predicted fleet utilization rates should decide the fleet size. 
Table 4 shows that the median and mean daily average num-
ber of trips per vehicle in the two cities are under one trip/
vehicle/day; therefore, more investigating measures need to 
be applied to define the reasons behind the low ridership. In 
addition, cities should study the consequences of making rid-
ership rates a compelling factor for the number of deployed 
scooters. Based on our analysis, we believe fleet size should 
be dynamically decided, if not daily, which needs further 
research to determine its efficiency in vehicle balancing and 
redistribution and the generated additional VKT weekly 
according to the seasons. Special event periods, such as the 
SXSW music festival in Austin, should consider different 
supply and vehicle rebalancing operation schemes due to 
the increased demand compared to regular condition days.

Conclusion

The methodology and data show a promising approach 
that the stakeholders could implement and use to organize 
scooters and similar shared micromobility vehicle services. 
However, the model needs to be tested for the other ser-
vice to validate user behavior differences. Also, publishing 
the trip booking data publicly by cities should be encour-
aged as it plays a vital role in encouraging researchers 
from industry and academia to investigate such services 
use behavior and discover innovative methods to enhance 
service operations.

Appendix 1: Additional Analysis

See Figs. 11, 12, 13 and 14.
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Fig. 11  Observed fleet utilization distribution versus predicted fleet utilization using different ML models

Fig. 12  Distribution of the 
difference between (Actual - 
predicted average daily trips per 
vehicle)
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Fig. 13  Observed average daily fleet utilization versus predicted fleet utilization, the blue line is regression line and the red line is 1:1 slope line
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A B S T R A C T   

Scooter–sharing has recently emerged as the newest trend in shared–mobility and micro-
–mobility; electric standing scooters are seen on the streets of major cities and are perceived as a 
fun, convenient mode of transport. However, there are also concerns regarding scooter safety, 
riding, and parking regulations. A motivation is to understand the impacts of scooters and their 
potential to disrupt existing systems. In this paper, the shift from carsharing to scooter–sharing is 
of particular interest. A stated preference survey targeting young individuals (18–34 years old) 
conducted in Munich was used to estimate a choice model between carsharing and scooter–-
sharing. The model was then applied to scenarios developed based on trip characteristics of a 
carsharing dataset. The model shift was then estimated for the scenarios, followed by a sensitivity 
analysis. In the best–case scenario, scooters were found to attract about 23% of carsharing 
demand.   

1. Introduction 

Transport systems have been recently witnessing unprecedented disruptions including shared mobility, autonomous mobility, and 
other forms of mobility that are shaping the way people move. Among these, micro–mobility has emerged as an attractive concept, for 
modes with low speed, short–term access, and on–demand trips, including both station–based and dockless or free–floating vehicles 
such as bikesharing, and scooter–sharing; the latter includes both standing electric scooter–sharing and moped–style scooter–sharing 
(Shaheen and Cohen, 2019). The increasing demand for standing electric scooters has seen considerable growth in various cities, 
particularly in the US where the market for scooter–sharing is expected to reach $300B (Shaheen and Cohen, 2019). Interest in 
micromobility has oriented research and policy–makers to investigate its impacts, understand the needs of its users/non–users, but also 
come up with responsible policy–making and guidelines for its integration to current systems (Shaheen and Cohen, 2019). Scooter trips 
are often seen as convenient, yet are associated with safety concerns (Sanders et al., 2020). When it comes to mode replacement, 
findings diverged: some argued that scooters have the potential to replace walking (Sanders et al., 2020; SPC on Transportation and 
Transit, 2019; 6-t, Bureau de recherche, 2019; Portland Bureau of Transportation, 2019; Bloomington Planning & Transportation 
Department, 2020), while others highlighted a replacement of motorized vehicles such as taxi, access/egress trips (Lee et al., 2019), 
and ride–hailing trips (Chicago Department of Transportation, 2020b; SFMTA, 2020). Few studies, if any, addressed the impacts of 
scooter–sharing on carsharing, despite quite common characteristics mostly pertaining to shared–mobility. Moreover, to the best of the 
authors’ knowledge, no previous study has conducted a stated preference (SP) experiment including scooter–sharing as a main mode of 
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transport. Other researchers have conducted SP studies in an attempt to better understand scooter adoption (Aguilera-García et al., 
2020) or developed scooter choice models, where scooters were introduced as a last mile transportation mode (Baek et al., 2021). 

This study attempts to close this gap by i) conducting a stated preference study to estimate a choice model between carsharing and 
scooter–sharing1, and ii) using the estimated model to predict the demand shift from carsharing using a carsharing dataset from a 
Munich operator. For the SP survey, young individuals (18–34 years old) were targeted, as they are most likely the potential users of 
scooter–sharing systems (SFMTA, 2020; 6-t, Bureau de recherche, 2019). In other words, the study aims to answer the following 
question: are young users willing to shift from carsharing to scooter–sharing?. 

The remainder of this paper will be structured as follows. First, a literature review introduces research on both carsharing and 
e–scooters, and then concludes with the research gap motivating this study. The methodology is then presented in details including the 
different steps of estimation, prediction, and assumptions used. After that, results are given, including the stated preference results, the 
estimated models, and the prediction scenarios with the sensitivity analysis. This paves the way to a discussion of the main findings and 
contributions with insights for policy–makers. Finally, a conclusion wraps up the study findings and contributions, with a focus on 
possible future research steps. 

2. Literature review 

Since the aim of the paper is to study micromobility and benchmark it against carsharing, a literature on both sharing systems is 
needed, after which a gap analysis is drawn, with a focus on the objectives of this study. 

2.1. Carsharing 

The existing body of literature covers several aspects of carsharing and its impact on transportation systems. This comprises trip 
characteristics, factors affecting the use, and modes that carsharing would replace had it not been available. Already since 2003, a 
study by Cervero (2003) investigated the first carsharing program in the US. The authors found that carsharing could potentially 
stimulate motorized travel, since many users did not own a car, which meant that carsharing possibly replaced walking and biking, 
with trip purposes being mostly for personal business, and recreation. 

More recently though, studies have benefited from rich datasets of carsharing including pilot data (Hui et al., 2017) and booking 
data in order to identify the factors of interest for carsharing demand (Schmöller et al., 2015; Müller et al., 2017). Factors affecting 
demand included weather conditions, time of the week, and socio–demographics. The latter is particularly notable for early adopters of 
carsharing, which according to Namazu et al. (2018) are rather wealthier and younger compared to late adopters. In addition to 
demographics like age and gender, De Luca and Di Pace (2015) identified cost, access time to carsharing parking lots, trip frequency, 
car availability, and trip type as the most significant attributes for carsharing. Trip type was also found to be significant in a study by 
Costain et al. (2012), particularly short trips where transit trips are less attractive. Besides pilot and trip data from real operators, 
carsharing studies often collected data from stated preference surveys to model user and non–user preferences (De Luca and Di Pace, 
2015; Martin et al., 2010; Martin and Shaheen, 2011; Liao et al., 2020). 

In terms of modal shift, carsharing was found to substitute motorized modes, but also complement transit where the latter was not 
efficient (De Luca and Di Pace, 2015). Similarly, a survey on North American carsharing (Martin et al., 2010) indicated that the average 
household car ownership would almost drop by half with carsharing introduction, highlighting as well the potential of private car 
substitution; overall more people increased transit use and non–motorized mode use (Martin and Shaheen, 2011). On the other hand, a 
case study in Montreal revealed that if carsharing was not available, users would have used transit, taxis, and walking instead 
(Wielinski et al., 2015), which goes against the findings of motorized vehicle reduction. 

Findings from previous studies therefore reveal the importance of pilot and survey data to analyze carsharing trip characteristics, 
impacts, and factors affecting its demand; mostly time, cost, but also socio–demographics. Overall, carsharing was found to have the 
potential to reduce motorized modes, but also to complement or replace transit if the latter was inefficient or in poor conditions. 

2.2. Scooter–sharing 

The increasing interest in scooter–sharing has urged cities to better explore this system, understand its users, and the impact it has 
on existing modes of transport. Several cities have therefore conducted pilots to investigate scooter–sharing users and scooter impacts 
(Abouelela et al., 2020). In this section, we present findings from the analysis of city reports in Chicago, Bloomington, San Francisco, 
Portland, Calgary, and France (Paris, Lyon, Marseille). This analysis focused on different aspects including the means of data 
collection, trip purpose, modes replaced by scooters, reasons for using scooters (or not using them), the demographics of users, but also 
other pertinent remarks and learnings from these pilots. 

In an attempt to understand the impact of e–scooters on existing systems, including insights of users and non–users, but also the 
potential they have to replace other modes, cities collected data from a variety of means. Data collected in the above–mentioned cities 
comprised data from pilots where cities introduced e–scooters, including company data (Chicago Department of Transportation, 
2020b; SFMTA, 2020; Portland Bureau of Transportation, 2019), survey data or other stakeholder data (SPC on Transportation and 

1 In this study, the term “scooter–sharing”, “e–scooters”, and “scooters” will be used interchangeably to refer to free–floating standing electric 
scooters. 
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Table 1 
Summary of findings from city pilots on scooter–sharing.  

Study Pilot 
data 

Survey 
data 

Riding and 
parking 
observations 

Trip purpose Mode 
replacement 

Reasons to 
use 

Reasons to not use User 
demographics 

Remarks 

Calgary SPC on 
Transportation and 
Transit (2019) 

✓ ✓  Leisure Walking Access Safety Age: 25 to 44, 
males, high–income  

Chicago Chicago Department 
of Transportation 
(2020b) 

✓ ✓ ✓ Commute, 
access to transit, 
leisure 

Ride-hailing or 
personal vehicles 

Access, 
curiosity, fun 

lack of awareness on 
rules for riding and 
parking 

White, 
high–income, 
educated  

Bloomington Bloomington 
Planning & 
Transportation 
Department (2020)  

✓   Walking, personal 
car, ride–hailing    

Users rarely use it 

Paris–Lyon– Marseille -t, 
Bureau de recherche 
(2019)  

✓  Leisure Walking Fun, 
timesaving 

Price unsafe, weather Age <35, mostly 
men  

Regulations might reduce 
the use of e–scooters 
(parking, speed limit). 

San Francisco SFMTA (2020) ✓ ✓   Ride–hailing 
(Uber, Lyft) 

Convenience Use decreased in 
winter 

Mostly males, 
young: 25–34  

Portland Portland Bureau of 
Transportation (2019) 

✓ ✓ ✓ Access, leisure Walking, personal 
car, ride–hailing  

Discomfort with 
pedestrians and 
safety concerns  

Data from other sources like 
police complaints, hospital 
reports was used.  
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Transit, 2019; Chicago Department of Transportation, 2020b; Bloomington Planning & Transportation Department, 2020; 6-t, Bureau 
de recherche, 2019; SFMTA, 2020; Portland Bureau of Transportation, 2019), and riding and parking observation data (Chicago 
Department of Transportation, 2020b; Portland Bureau of Transportation, 2019). Moreover, in Portland, data was enriched with police 
and hospital reports for complaints and injuries pertaining to e–scooter incidents. Data collection gave insights on trip characteristics, 
where most trips were done for leisure (SPC on Transportation and Transit, 2019; 6-t, Bureau de recherche, 2019), commute or access 
(Chicago Department of Transportation, 2020b; Portland Bureau of Transportation, 2019). The trip average for most pilots showed 
that e–scooters were often used for trips of short duration: the average trip was just under 1 mile (1.6 km) in San Francisco, 1.15 miles 
(1.85 km) in Portland, and 1.5 miles (2.4 km) in Chicago. User characteristics in the different cities reflected similar user profiles: 
mostly young, males (SPC on Transportation and Transit, 2019; 6-t, Bureau de recherche, 2019; SFMTA, 2020), with high income and 
education (Chicago Department of Transportation, 2020b). Users reported to use scooters, often for access (SPC on Transportation and 
Transit, 2019; Chicago Department of Transportation, 2020b), convenience (SFMTA, 2020), or perceived fun (Chicago Department of 
Transportation, 2020b; 6-t, Bureau de recherche, 2019). Non–users often reported safety concerns (SPC on Transportation and Transit, 
2019; 6-t, Bureau de recherche, 2019; Portland Bureau of Transportation, 2019), as well as price (6-t, Bureau de recherche, 2019), lack 
of awareness of rules for parking (Chicago Department of Transportation, 2020b), and weather (6-t, Bureau de recherche, 2019) as 
reasons for not using e–scooters; in San Francisco, the latter was not directly reported, but an observed decrease of e–scooter use is 
notable from November to February (winter season). 

An interesting finding as well is the diverging perceptions when it comes to e–scooter regulations. In San Francisco, the intro-
duction of regulations (on-street enforcement of the parking guidelines) helped reducing the number of complaints about scooters 
(SFMTA, 2020). On the other hand, in France, the enforcement of regulations (such as the obligation to wear a helmet, the regulation of 
parking, a speed limit reduction to 15 km/hr) was reported to reduce the use of scooters (6-t, Bureau de recherche, 2019). 

Finally, pilots and surveys aimed to investigate the impact scooters have on existing modes, by quantifying their replacement of 
other modes; essentially, had scooters not been available for the trip they were used for, what other modes would users have used? This 
was divided among two main modes: walking [Calgary (SPC on Transportation and Transit, 2019), Bloomington (Bloomington 
Planning & Transportation Department, 2020), Portland (Portland Bureau of Transportation, 2019), Paris-Marseille-Lyon (6-t, Bureau 

Fig. 1. Methodology workflow.  
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de recherche, 2019)], or motorized personal vehicles, particularly ride–hailing like Uber or Lyft [Chicago (Chicago Department of 
Transportation, 2020b), San Francisco (SFMTA, 2020)]. 

A summary of findings on scooter–sharing is given in Table 1. 

2.3. Gap analysis 

The above analysis leads to an understanding of the gaps in micromobility research. On the one hand, fewer studies have inves-
tigated scooter users and demand compared to carsharing, mostly SP studies; on the other hand, studies on micromobility replacement 
have not looked at the shift from carsharing, but rather focused on walking and ride–hailing. This was usually done by directly asking 
users about the mode they would have used had scooters not been available for the same trip. Moreover, previous reports did not 
include carsharing, which could serve as a motivation to study the preferences and therefore shift from carsharing to scooter–sharing. 
The estimation of a choice model for preferences between both modes can be then applied to understand scooter–sharing potentials 
based on trip characteristics (distance, duration, etc.). 

3. Methodology 

The overall methodology of this study is summarized in Fig. 1. In the following section, data sources are presented, including 
carsharing trip data, survey data, hourly weather data and German census data. Then, the methodology for the mode choice esti-
mation, in this case the multinomial logit model, is given. Finally, the methods for the model prediction are presented, including the 
used assumptions and the developed scenarios, as well as a thorough sensitivity analysis. 

3.1. Data sources 

3.1.1. Carsharing data 
The carsharing dataset is an hourly carsharing trips dataset from a carsharing operator in Munich, Germany for 2016. The dataset 

contains the average distance and average duration for each trip in addition to the starting zone number. A separate shape file con-
taining the geo-information of the parking zones was also received to locate the trip origins in reference to the map of Munich. Fig. 2 
shows the carsharing zoning system with respect to the boundaries from the Munich census. The carsharing dataset contains 972,459 
trips; only trips within the scooter travel range were kept, to allow for model estimation, where competition with e–scooters is possible. 

Fig. 2. Zoning system of the carsharing operator with respect to the Munich Census.  
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3.1.2. Survey data 
To better understand user preferences for e–scooters compared to carsharing, a stated preference survey was conducted in Munich. 

The survey was shared online for two months starting December 2019 using Limesurvey Pro (limesurvey.org). It was distributed 
through channels of communication such as Facebook and Instagram as well as mailing lists via a snowball data collection method. The 
target population was young individuals from 18 to 34 years old, as they are most likely the potential users of scooter–sharing systems 
(SFMTA, 2020; 6-t, Bureau de recherche, 2019). Moreover, by focusing the target group that will most probably join scooter–sharing, 
sampling and coverage errors were reduced, as suggested by Efthymiou et al. (2013). To increase the response rate, the survey was 
further disseminated in the same social media channels. 

The survey was designed with 11 blocks and 9 scenarios/block, using a random design, as previous literature did not find a strong 
evidence that efficient design outperforms random design (Kladeftiras and Antoniou, 2015; Walker et al., 2018). The attributes and 
levels used are summarized in Table 2. 

The survey contained 31 questions and was structured in four parts. The first part included travel behavior questions, such as the 
main mode of transport, the ownership of a driver’s license, the access to a car, and the overall satisfaction with the existing public 
transport system. The second part introduced carsharing and scooter–sharing as possible alternatives of a fictitious trip of 4 km be-
tween two points A and B. Here, nine choice scenarios were given and respondents had to choose for each one among: “Certainly 
carsharing”, “Probably carsharing”, “Indifferent”, “Probably scooter–sharing”, “Certainly scooter–sharing”, or “none”; the ‘none’ 
option aimed to cover other modes, and therefore the bias of not including them in the stated preference study. Then, in the third part 
of the survey, questions pertained (but were not limited) to social media use, comfort with online services, willingness to share a ride, 
enjoyment of driving a car, environmental perceptions, and the previous involvement in a car crash (with different levels of intensity). 
Finally, the fourth and last part entailed socio–demographics such as age, gender, income, household size, higher level of education 
achieved, main occupation, etc. 

To illustrate the second part of the survey, a survey block is given in Fig. 3. 

3.1.3. Weather and Census data 
In addition to the carsharing trip data and the survey data, external sources were used, namely the hourly weather data for 2016 

(since the carsharing data was for the year 2016), and the German Census data. The former was retrieved from the German weather 
service online archive (dwd.de) and contains the hourly temperature and precipitation. The latter was obtained from the German 
federal statistical bureau (statistikportal.de). The data is available in 1 km × 1 km resolution raster format, and contains the average 
demographics distribution per zone, such as percentage of population, percentage of females, age distribution, and household size. 

3.2. Model estimation 

The collected stated preference (survey) data was used to estimate a mode choice model for the different alternatives. Since the aim 
is to use the model estimate to predict carsharing demand shift, responses were regrouped as follows: varying preferences for car-
sharing (“Certainly carsharing”, “Probably carsharing”) were grouped under the carsharing choice and varying preferences for 
scooter–sharing (“Certainly scooter–sharing”, “Probably scooter–sharing”) were grouped under the scooter–sharing choice. Moreover, 
responses with “indifferent” as a choice were removed following Antoniou et al. (2007), as they could not be attributed to either 
choices; moreover, these amounted to less than 1% of the sample size, and are therefore not believed to have an impact on estimation. 
Accordingly, three alternatives remained and were regrouped (carsharing, scooter–sharing, and none) and a multinomial logit model 
was estimated using the scenario attributes (time, cost, rain, risk of accidents), but also the respondents’ demographics. The model was 
developed by first adding the mode attributes, and then, variables for demographics were added one by one. Cost and time coefficients 
were chosen as mode specific instead of generic, due to the improved model performance under this specification. While attitudinal 
questions could be used to better understand users’ perceptions, they were not used in the model estimate, as the aim was to later use it 
to predict the shift for carsharing trips in Munich and it was not possible to obtain attitudinal data for the population of Munich. Models 
were estimated using Apollo package (Hess and Palma, 2019) under the statistical programming language R (R Core Team, 2020). 

3.3. Model prediction 

3.3.1. Assumptions 
To test the attraction of carsharing users to e–scooters, we developed a number of scenarios based on different assumptions, with 

the aim to apply the estimate choice model to predict the carsharing to e–scooters. Cost and speed values were based on operator 
ranges in the city of Munich (case study). A comprehensive list of the used assumptions is given below:  

• Carsharing trip cost: (0.20, 0.28, 0.36), based on operator ranges from 0.19 to 0.36€/min (share-now.com).  
• Route diversion or scooter route/carsharing route: (− 30%, − 10%, 0%, 10%, 30%). Based on the carsharing trip (from the 

existing trip dataset), a hypothetical trip was created for the model prediction. To calculate the scooter’s trip length for the same 
trip, a route diversion factor was considered. Despite the lack of references in the literature on a similar ratio, we used the diversion 
ratio with bike–sharing, as the closest proxy to scooters. According to Krenn et al. (2014), on average bike trips are 10% longer than 
the shortest path. Winters et al. (2010) found that car and bike trips are around 8% longer than the shortest path. To account for all 
possibilities of scooter to carsharing trip diversion ratios, we considered a conservative range the above–mentioned conservative 
scooters to carsharing ratios, ranging from − 30% to 30%. 
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Table 2 
Attributes and levels used in the survey.  

Variable Unit Levels 

Travel time of scooter–sharing min [8, 11, 14] 
Travel time of carsharing min [5, 8, 11] 
Access time of scooter–sharing min [1, 3, 5] 
Access time of carsharing min [1, 3, 5] 
Cost of scooter–sharing € [2.5, 3.1, 3.7] 
Cost of carsharing € [2.5, 3.5, 4.5] 
Scooter accident risk compared to carsharing - [1, 2, 4] * higher 
Rain - [yes, no]  

Fig. 3. Scenario details and block example.  
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• Scooter speed: (6,14,22,30). Based on scooter trip data in five north American cities, scooter speed is 10±4 km/hr (Austin Shared 
Mobility Services, 2020; Calgary Open Data Portal, 2020; Chicago Department of Transportation, 2020a; Louisville Open Data, 
2020; Minneapolis Public Works, 2020). The scooter speed levels were therefore considered to take the lower operational ranges 
(from the literature) and the upper ones (based on the speeds used in the SP).  

• Scooter trip cost: (0.15, 0.20, 0.25)þ 1€unlocking fees. Based on operator rates in Munich: (0.15, 0.19, 0.20)€/min + 1€ 
(https://www.muenchen.de/freizeit/e-scooter-leihen.html). 

• Percentage of carsharing female members: 25%, as reported by a carsharing report on users in Munich (WiMobil Ergebnis-
bericht, 2016).  

• Carsharing access and egress times: (1, 3, 5) min., based on the stated preference survey levels.  
• Scooter accident risks compared to carsharing: (1,2,4) times more, based on the stated preference survey levels.  
• Rain condition based on the real weather data of the given day. 

3.3.2. Scenarios and sensitivity analysis 
Based on the above assumptions, a combination of scenarios with the different levels was developed, amounting to a total of 1620 

scenarios. These were tested and a sensitivity analysis was made to better understand the impact of scooter–sharing based on different 
parameter changes. 

4. Results 

4.1. Collected data 

4.1.1. Survey data 
The collected data led to 503 valid responses, amounting to 4527 observations (9 choice scenarios per response). The sample 

demographics are presented in Table 3 and benchmarked against the latest Munich Census for reference. The survey responses reflect 
some limitations in the representativeness compared to Munich. Overall, females are underrepresented (though not drastically), but 
the notable difference is in the age representativeness, where responses reflect a much higher percentage of a young, highly educated 
population, mostly students, with a lower income than the average net household income of 4220€. 

Table 3 
Summary of sample demographics and comparison with Munich Census (2011).  

N = 503  Freq (Pct %) Munich Census (2011) 

Gender Female 161 (32.0%) 48.3%  
Male 337 (67.0%) 51.7%  
Other 1 (0.2%) -  

18–24 208 (41.3%) 8.1%  
25–34 295 (58.7%) 18% 

Household size 1 182 (36.2%) 50%  
2 80 (15.9%) 29%  
3 65 (12.9%) 11%  
4 85 (16.9%) 7%  
5+ 58 (11.5%) 3%  
I prefer not to answer 33 (6.6%) - 

Education High school 34 (6.8%) 34.1%  
Apprenticeship 3 (0.6%) 40.7%  
Bachelor 271 (53.9%) Bachelor/MS: 22.7%  
Masters 179 (35.6%)   
PhD 7 (1.4%) 2.5%  
No answer 6 (1.2%) - 

Employment Full-time employment 175 (34.8%) Full/Part time: 87.1%  
Part-time employment 52 (10.3%)   
Student 240 (47.7%) 2.9%  
Self-employed 10 (2.0%) 7.8%  
Unemployed 14 (2.8%) 2.2%  
Other 7 (1.4%) -  
I prefer not to answer 5 (1.0%) - 

Income Up to 500 € 87 (17.3%) Avg: 4220 €/household  
500 to less than 1000 € 121 (24.1%)   
1000 to less than 2000 € 69 (13.7%)   
2000 to less than 3000 € 35 (7.0%)   
3000 to less than 4000 € 29 (5.8%) (Euromonitor International, 2017)  
4000 €or more 45 (9.0%)   
I prefer not to answer 117 (23.3%)   

M. Abouelela et al.                                                                                                                                                                                                    



Transportation Research Part D 95 (2021) 102821

9

4.1.2. Carsharing data 
Carsharing data was cleaned and filtered to keep only trips of interest for the model prediction. According to McKenzie (2019), 

charging a vehicle can propel it roughly for two hours, approximately 50 km at 25 km/hr speed. Therefore, carsharing trips over 2 h 
duration, and 50 km length were filtered from the original dataset and represented 27.2% of the received trips. Fig. 4 shows carsharing 
characteristics for trips by hour of the day, including trip distance, and trip duration, based on which trip cost can be calculated. 

4.2. Choice model estimation 

Survey data was used to estimate a mode choice model for the preferences between carsharing, scooter–sharing, and none of them, 
with the aim to use it later for predicting the modal shift of generated scenarios generated from carsharing to scooter–sharing. A 
multinomial choice model was then estimated with carsharing, scooter–sharing, and none as the three available alternatives (options 
given in the survey); the latter was considered to improve the model predictability, as reported in previous studies (Vermeulen et al., 
2008; Fu et al., 2019). Considered attributes in the utility equations of the different alternatives were alternative–specific attributes 
that were part of the experimental design such as travel time, access time, cost, accident risk for scooter–sharing, and rainy condition. 
After reaching a stable model, user–specific variables like demographics were then added. The model that performed best is presented 
in this section. The utility equations for the different alternatives are grouped under Eq. 1. 

UScooter = ASCScooter + βTimeScooter
× TimeScooter + βCostScooter

× CostScooter
+ βRainScooter

× Rain + βAccident4 × Accident4 + βFemaleScooter
× Female

UCarsharing = βTimeCarsharing
× TimeCarsharing + βCostCarsharing

× CostCarsharing
+ βRainCarsharing

× Rain + βFemaleCarsharing
× Female

UNone = ASCNone

(1) 

In the above equations, alternative–specific coefficients were estimated for each of the attributes. For carsharing, travel time values 
include as well access and egress times; for scooters, access and egress were not significant attributes and travel time values refer only 
to in–vehicle travel times. Moreover, alternative–specific constants (ASC) were estimated for scooter and “none” alternatives; for 
carsharing, no ASC was estimated since it was the reference alternative. Rain variable is a dummy variable referring to whether the 
given choice was a rainy day or not. Similarly, female is a dummy variable and is the only demographic attribute that was found to be 
significant. Finally, the “accident” variable is also a dummy variable, referring to the level of scooter accident compared to carsharing, 
where the accident risk of scooter sharing was four times higher compared to carsharing; accident risk which was twice as high was 

Fig. 4. Carsharing trip data analysis by hour of day.  
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removed as it was highly insignificant to the model. 
The estimated model reflects findings that are consistent with prior expectations. Estimated coefficients for travel time (in–vehicle 

and total) and travel cost are significant and negative in sign, for both carsharing and scooters, with a higher magnitude for scoo-
ter–sharing. In particular, travel cost estimates were found to be extremely significant for both scooter and carsharing (levels of 
significance of 99% and 98%, respectively), whereas travel time estimates were only found to be significant for scooter–sharing (90% 
significance level). Still, the travel time coefficient for carsharing was retained, as the aim is to use the model estimates to predict the 
shift from carsharing, to scooter–sharing. Based on the model estimates, the calculated values of time for scooter–sharing and car-
sharing: around 6.7 and 7.9 €/hour respectively. 

Rain as a condition was also found to be significant and to negatively impact scooter use, compared to carsharing, or none; the rain 
coefficient estimate was extremely significant for scooters (the highest attribute in terms of magnitude and significance for scooters, 
with a 99% level of significance), whereas for carsharing this estimate was positive in magnitude (meaning that rain would most likely 
increase the utility of carsharing with respect to other modes) and significance (level of 90%). Moreover, scooter accident risks was 
also found to negatively impact the choice of scooters, particularly when the risk is four times higher than that of carsharing, for which 
the coefficient estimated was highly significant (99% level). Finally, the coefficient for gender reflected a general lower affinity of 
females, compared to males, to use either scooter or carsharing; this affinity was even lower for scooters, in terms of both magnitude, 
and significance (99% for scooters, compared to almost 90% for carsharing.). 

4.3. Scenario prediction 

The developed scenarios were used to predict carsharing trip percentage, by applying the parameters of the estimated mode choice 
models. After running the 1620 scenarios for each of the dataset trips, an analysis was performed by changing different input pa-
rameters, such as trip distance, or scooter–sharing accident risk. Fig. 5 presents the findings on the shift of carsharing trips to scoo-
ter–sharing, by trip distance and scooter risk. 

However, as previous literature indicated that for distances above 4 km, the share of e–scooters is practically zero (Reck et al., 
2020), only scenarios with trip distances ranging to 4 km were taken into account, as presented in Fig. 6. 

For scenarios where scooters have the same risk as carsharing, scooters have the potential to shift carsharing to 77%, or in other 
words to attract 23% of the carsharing trips; in this case, optimal scooter conditions are as follows: base fare of 0.15€, route diversion of 
0.7, speed of 22 km/h), whereas carsharing has less advantageous conditions (base fare of 0.36€/min, and access time of 5 min). For 
the worst case scenarios, where scooter–sharing have four times more risk compared to carsharing, the share of carsharing drops to 

Fig. 5. Sensitivity analysis of scenario prediction of carsharing penetration up to 24 km: by trip distance, scooter price and scooter accident risk. 
Multiple curves per subfigure indicate different combination of scenario parameters: car sharing speed, cost, access and egress times and scooter 
speed.Note: y-axis is truncated to 40% and not all x–axis labels are shown for readability.. 
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87% for a range between 0 and 4 km), or the equivalent of a 13% attraction of carsharing trips. 

5. Discussion 

The estimated choice model for carsharing and scooter preferences revealed findings consistent with prior expectations as well as 
the literature. The model in Table 4 highlighted the significance of travel time, travel cost, rain, scooter accident risk, and gender on the 
choice between scooter–sharing and carsharing (with different levels of significance, but mostly above 90%, as elaborated in Section 
4). Travel time and travel cost were often cited as significant factors influencing the use of both carsharing and scooter–sharing (De 
Luca and Di Pace, 2015; 6-t, Bureau de recherche, 2019); for carsharing, travel times also included access and egress times into account 
as mentioned by De Luca and Di Pace (2015). Obtained values of time for scooter–sharing and carsharing (6.7 and 7.9 €/min) are 
rather low (possibly due to the high student percentage and the domination of low income classes); they indicate that people are 
willing to pay roughly 1.2€more per hour for carsharing compared to scooter–sharing. It is important however to note that a com-
parison between these values of time is subject to limitations, since in the final model specification, the coefficient estimate for car-
sharing time is that of the total time (including access and egress), whereas for scooter–sharing, it refers to the in–vehicle travel time. 
This is due to the model significance and implies that these are not directly one–to–one comparable. 

Rain and accident risk attributes were also highly significant and higher in magnitude for scooter compared to carsharing; again, 
this makes sense since scooter is more likely to be impacted by bad weather and higher accident risks. These as well are consistent with 
previous findings pertaining to weather conditions impact on scooters (Noland, 2019; 6-t, Bureau de recherche, 2019); accident risks 
or safety in general was often mentioned as a reason for not using scooters (SPC on Transportation and Transit, 2019; 6-t, Bureau de 
recherche, 2019; Portland Bureau of Transportation, 2019). Finally, gender impact, females being less likely to use either scooter and 
carsharing, was often mentioned in the literature; in this model estimate, the gender attribute has an even higher magnitude for the 
scooter utility. This is consistent with city reports indicating that the majority of scooter users were males (SPC on Transportation and 
Transit, 2019; 6-t, Bureau de recherche, 2019; SFMTA, 2020). 

The model application indicated that scooters have the potential to attract up to 23% of carsharing trips in the best case scenario, 
for a range between 0 and 4 km; this would drop to about 13% in the worst case scenario; these represent different scooter risks (equal 
and four times higher than carsharing, respectively). 

This being said, in the best case scenario, for optimal scooter conditions (speed, cost, risk), and comparatively less advantageous 
carsharing attributes (speed, cost), the introduction of scooters has the potential to attract about 23% of carsharing trips, considering 

Fig. 6. Sensitivity analysis of scenario prediction of carsharing penetration up to 4 km: by trip distance, scooter price and scooter accident risk. 
Multiple curves per subfigure indicate different combination of scenario parameters: car sharing speed, cost, access and egress times and scooter 
speed.Note: y-axis is truncated to 50% and not all x–axis labels are shown for readability.. 
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short distances; for trips between 0 and 4 km, scooter–sharing could replace about 44,624 trips, or the equivalent of 118,060 km 
without taking into account the kilometer-travel produced from scooters’ distribution, recharging, and maintenance. 

This shift in number of trips and the equivalent distance (in kilometers) inevitably poses the question of the environmental impact 
this might induce. From a life cycle assessment perspective, a dockless shared scooter system produces more CO2-equivalent per 
passenger-kilometer, than the modes they replace Moreau et al. (2020); in other words scooters attracting users from environmentally 
friendly modes, such as walking and biking, generate empty vehicle kilometers traveled (redistribution and maintenance). On the 
other hand, benefits from scooters can be noted every time an e-scooter substitutes for a personal automobile; it thus saves a significant 
amount of end-use energy. One-kilowatt hour of energy could propel a scooter 100 km compared to 2 km for a passenger vehicle using 
the same amount of energy2 (Agora Verkehrswende, 2019). In the case study presented, this would amount to a saving of roughly 
57,850 kWh. 

Of course, this is based on the assumptions made, and not taking into account the entire vehicle life-cycle. Energy efficiency and 
power plant emissions are only a first step in assessing e-scooter impacts. Modal shift, fleet management, manufacturing, and dura-
bility impacts are all key elements in assessing the overall sustainability of e-scooters. Therefore, it is difficult to really know the exact 
savings in energy, but it would be fair to say that a replacement of personalized vehicles with e-scooters is likely to save considerable 
amounts of energy. The equivalent reduction also depends on durability, the use, and other assumptions. Moreover, it is worthy to note 
that while scooter trips are mostly for one passenger, carsharing trips are not exclusively for one person. In the presented case study, if 
the occupancy of each trip was known, we could calculate the equivalent person trips, in which case it would be interesting to see 
whether or not group trips can be shifted to scooter trips (a priori not expected), and what is the replacement of person trips resulting 
from the introduction of scooters. However, this information is not available from the carsharing dataset, and the SP study did not have 
an input variable for the number of passengers, meaning that it assumed a one person trip. These, of course, are part of the study 
limitations. 

Still, the highlight of the study is that scooters have the potential to reduce motorized trips, and their introduction could disrupt the 
existing patters of transport. Shaheen and Cohen (2019) highlighted the need for an operational model with an emphasis on infra-
structure (curb space and rights–of–way), but also guidelines to take into account stakeholder interests, equity policies, enforcement 
procedures, data sharing guidelines. Gössling (2020) discussed problems like space, speed, and safety management; the authors advise 
urban planners to introduce policies regarding speeds, mandatory use of bicycle infrastructure, and dedicated parking, and a limited 
number of licensed operators. In the case of Munich, responsible policy-making is of utmost importance to ensure a smooth integration 
of scooter–sharing within the existing transport systems, but also to account for the very needed infrastructure requirements, parking 
policies, and guidelines facilitating operation. 

6. Conclusions 

The developed methodology in this paper allowed to develop a choice model for preferences between carsharing and scooter–-
sharing. The model estimate was then applied to a set of developed scenarios, with different parameter inputs, to predict the shift from 
carsharing demand to scooter–sharing, according to different inputs. The estimated model findings on the one hand revealed the 
importance of travel time, travel cost, weather, scooter accident risk, and gender. On the other hand, calculated values of time showed 
a higher willingness to pay for one minute of carsharing compared to scooter–sharing. For the case study in Munich, in the best case 
scenario, scooter–sharing was found to potentially shift the demand from carsharing by about 23%. This implies a reduction in total 

Table 4 
Mode choice model for carsharing and scooter preferences.   

Scooter Carsharing None  

Estimate Rob.t.ratio Estimate Rob.t.ratio Estimate Rob.t.ratio 

ASC − 0.585 − 1.44 - - − 2.52 − 9.26 
In–vehicle travel time (min) − 0.0297 − 1.70     
Total travel time (min)   − 0.0161 − 1.47   
Travel cost (€) − 0.266 − 2.82 − 0.123 − 2.33   
Rain (no-rain as reference) − 0.977 − 7.68 0.159 1.68   
Scooter accident (4*higher) − 0.369 − 3.57     
Female (male as reference) − 0.344 − 3.55 − 0.195 − 1.63   

Model summary 

LL(0) − 4973.418      
LL(final) − 3438.472      
Rho-square (0) 0.3086      
Adj.Rho-square (0) 0.3064      
AIC 6898.94      
BIC 6969.54      

Only highly significant attributes (> 90%) are presented in Bold. 

2 The comparison is between a VW Golf 1.0 TSI (4.8 L Gasoline per 100 KM), and 0.47 kWh battery Bird scooter 
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kilometers travelled in motorized travel and the corresponding energy consumption and CO2 emissions. Yet, this study has its own 
limitations, such as the survey data representativeness of Munich, which led to lower than expected values of time, and could have 
impacted the model prediction. Moreover, stated preference studies are subject to their own biases and might not help capturing 
realistic decision scenarios. For the case study of Munich, a revealed preference study would be highly beneficial to validate and 
calibrate the estimated models. This could be done by using pilot data similarly to what was done in other cities. It is also worth noting 
that the substitution shares from carsharing to scooter–sharing are only valid under the assumption that travelers can only choose 
between carsharing and scooter–sharing. 

Finally, while the study targeted young users as the ones most probably using shared mobility systems, as suggested by previous 
research (Efthymiou et al., 2013), it would be interesting for future research to further enrich the findings and policy insights, by 
collecting additional datasets and compare the obtained values of time, but also by extending the current work to take into account age 
differences, as indicated by Herrenkind e al. (2019b). Further approaches considering machine learning methods could also be 
considered for self–learning systems (Herrenkind e al., 2019a) or even to enhance discrete choice models (Sifringer et al., 2020). 

The increasing demand in scooters is not only an indication of the potentials of this emerging mode, but also that guidelines for 
responsible scooter operations is essential for the smooth integration of scooters in existing transport modes. 
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Schmöller, S., Weikl, S., Müller, J., Bogenberger, K., 2015. Empirical analysis of free-floating carsharing usage: The munich and berlin case. Transport. Res. Part C: 

Emerg. Technol. 56, 34–51. 
SFMTA, 2020. Powered Scooter Share Mid-Pilot Evaluation. Technical Report. URL: https://www.sfmta.com/sites/default/files/reports-and-documents/2019/08/ 

powered_scooter_share_mid-pilot_evaluation_final.pdf. 
Shaheen, S., Cohen, A., 2019. Docked and dockless bike and scooter sharing, URL: doi: 10.7922/G2TH8JW7. 
Sifringer, B., Lurkin, V., Alahi, A., 2020. Enhancing discrete choice models with representation learning. Transport. Res. Part B: Methodol. 140, 236–261. 
SPC on Transportation and Transit, 2019. Shared e-Bike and e-Scooter Mid-Pilot Report. Technical Report City of Calgary. URL: https://pub-calgary.escribemeetings. 

com/filestream.ashx?DocumentId=117290. 
Vermeulen, B., Goos, P., Vandebroek, M., 2008. Models and optimal designs for conjoint choice experiments including a no-choice option. Int. J. Res. Mark. 25, 

94–103. 
Walker, J.L., Wang, Y., Thorhauge, M., Ben-Akiva, M., 2018. D-efficient or deficient? a robustness analysis of stated choice experimental designs. Theor. Decis. 84, 

215–238. 
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Abstract

Carsharing services have a significant potential for improving urban mobility by increasing the indepen-
dence and freedom of travel and reducing traffic externalities. Although carsharing has been used for over
a decade, several aspects need further investigation, such as the impact of user’s psychological factors on
service use, as well as the factors impacting users’ choices between different carsharing operators, in par-
ticular their preferences for different payment schemes, and their perceptions of the operators’ application
rating. Accordingly, four hybrid choice models (HCM) were estimated to investigate factors impacting (i) the
knowledge about carsharing services, ii) carsharing adoption, (iii) the shift from other modes to carsharing,
(iv) the choice between carsharing operators with different payment schemes, using a large survey sample
(N =1044 responses 9,469 SP observation) from Munich, Germany. The models showed the significance of
sociodemographics, such as income level, education level, household size, employment status, ownership of a
bike, access to a car, the availability of a driving license, and public transport subscription-based tickets on
the carsharing use directly and indirectly, and four psychological factors encompassing different personality
traits (i.e., adventurous), travel behavior, and attitudes were found to be significant in the various models;
the latter covered service–related attitudes (perceived carsharing app importance) and travel behavior at-
titudes or profiles (frequent public transport user and frequent shared micromobility user). This research
raises questions regarding the inequitable use of carsharing, the impacts of mobile applications on using the
service, and the potential of integrating carsharing in mobility as a Service (Maas) platforms to increase the
potential for multimodality.

Keywords: Shared mobility, carsharing, choice model, attitudes, personality

1. Introduction

In the past ten years, there has been a significant increase in the acceptance, utilization, development, and2

improvement of app-based shared mobility services. This growth has been made possible by revolutionary
advancements in information and communication technologies (ICT). Shared mobility services encompass4

various options, including schemes, services, vehicles, and business models. Examples of these services
include ridesharing and carpooling, in which people share or split a ride, as well as carsharing and shared6

micromobility options such as bikesharing and e-scooter-sharing, in which vehicles can be rented based on
time or distance (Narayanan & Antoniou, 2022; Gilibert & Ribas, 2019). These new mobility services have8

changed the landscape of urban mobility by introducing the concepts of on-demand services and pay-per-
use, which increases the attractiveness of such services for users due to their ease of use, ease of payment,10

convenience, but also as they are perceived to be convenient, safe, and environmentally friendly (Arteaga-
Sánchez et al., 2020; Tirachini & del Ŕıo, 2019; Watanabe et al., 2017; Rayle et al., 2016).12

The benefits of shared mobility services are not only limited to the individual level but could also be
beneficial for cities and could be an attractive solution for various transportation problems as they do not14

need large infrastructure investments and are quick to implement in most of the cases (Abouelela et al.,

∗Corresponding author at Technical University of Munich, Arcisstrasse 21, Munich, Germany E-mail address: Mo-
hamed.abouelela@tum.de

Preprint submitted to Transportation March 6, 2024



2022). Maintaining, upgrading, and constructing transportation infrastructure generally needs significant16

investments and a long time to materialize, which is not always a viable solution; one example is extending
the transportation system’s accessibility to suburban areas with inefficient public transportation’s access18

(Burghard & Dütschke, 2019; Abouelela et al., 2022). Shared mobility services could reduce the demand
and congestion on roads, as well as the vehicle kilometer traveled (VKT), such as in the case of pooled rides;20

this would, however, require specific conditions to be maintained, such as not replacing public transportation
trips and replacing low occupancy vehicles (Tirachini et al., 2020). Alonso-Mora et al. (2017) concluded22

that shared rides could as well reduce the number of cars on city roads. The same promises of reducing
the number of vehicles on the streets could be achieved using carsharing services, as private cars are idly24

parked for around 90% of the time (Zhang et al., 2015). Transport for London (TfL) sees carsharing services
as complementary to public transportation services (Akyelken et al., 2018). Carsharing use could even be26

correlated with the increase in public transportation use (Aguilera-Garćıa et al., 2022). Overall, the system
is attractive to implement as establishing its infrastructure is considered relatively quick, and its market28

has the potential to grow in the future; however, its economic viability is rather challenging, , as the North
American experience has already demonstrated (Nansubuga & Kowalkowski, 2021; Golalikhani et al., 2021;30

Poltimäe et al., 2022).
Carsharing is a form of shared mobility that provides easy access to on-demand car use without the32

burden of car ownership responsibilities, the need to process paperwork such as for car rental services, or
even the need to return the vehicle to the pickup points as in free-floating systems or one-way trips (Liao &34

Correia, 2022). Carsharing services and other shared mobility services are not only changing the landscape
of urban mobility, but also the traditional idea of a car manufacturer producing, buying, and selling vehicles.36

Currently, some leading car manufacturers are promoting themselves as mobility providers (Akyelken et al.,
2018), including Daimler, BMW, Volkswagen, Toyota, and General Motors. Daimler has two carsharing38

services (Car2go1, and Croove), acquired two taxi services (myTaxi2, and Hailo), is investing in two ride-
hailing services (Via3, and Blacklane4), and starting its own mobility platform moovel5 (Akyelken et al.,40

2018). Therefore, there is an essential need to understand in–depth the different aspects of these services
for better operation and integration within the urban environment.42

Some of the main aspects of shared mobility that are important for the different stakeholders are the
socio–demographic characteristics of the users and their general travel behavior, as well as their impacts44

in deriving the demand and identifying user target groups (Jochem et al., 2020). Moreover, psychological
factors such as attitudes, perceptions, and personality traits play a significant role in individual travel46

behavior and mode choices (Kroesen & Chorus, 2020). The importance of understanding the impact of
psychological factors on travel behavior and mode choice lies in their ability to facilitate encouraging the48

use of the modes of interest, as they could be described as the underlying motivation for specific mode use
(Bhagat-Conway et al., 2024). Previous research has shown that attitudes were found to have a significantly50

higher impact on the use of shared mobility as compared to sociodemographics, such as in the case of pooled
rides (Abouelela et al., 2022). Still, there is a gap in terms of existing research on attitudes and personality52

traits in the scope of carsharing and shared mobility in general, mostly when comparing it to studies focusing
on sociodemographics, which have been well examined and explored in the literature (Monteiro et al., 2023;54

Efthymiou & Antoniou, 2016; Efthymiou et al., 2013). Several of these psychological factors are still under
exploration and their roles in the mode choice travel decision (Rahimi et al., 2020a) in general, and shared56

mobility use in particular, are being assessed. Moreover, and to the best of the authors’ knowledge, many
aspects of carsharing services have not yet been studied, such as the perceived service and feature offerings58

by different carsharing operators, including digital operator aspects (often reflected in the operator rating
on the app store), as well as their impact on service adoption and use frequency (Monteiro et al., 2022). The60

digital dimension of the carsharing services has also not been investigated in–depth, and includes the mobile

1share-now.com, car2go is now unified with BMW service DriveNow under the new name ShareNow
2free-now.com, now the service is a joint venture between Daimler and BMW
3info.ridewithvia.com
4blacklane.com
5moovelus.com, the platform is one of the Mobility as a Service (MaaS) providers
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application friendliness and ease of use, the service provider’s website landing page, the digital marketing of62

the service, the online marketing campaigns, and the business–to–business offers (Janasz & Schneidewind,
2017). Another service feature to consider is the operator payment schemes (per minute or kilometer as64

recently introduced by some operators). The impact of the above–mentioned features on the operator choice
still needs to be investigated. Finally, carsharing research on adoption and use has not yet been totally66

understood due to the novelty of the services; a large number of the carsharing studies have been completed
before the services were even launched or during the early operational and adoption stages, during which68

users might have a different use behavior as they are getting familiar with the service. Another motivation
of this paper is therefore to contribute to the existing body of research with more timely study in which70

the operation of carsharing services is ongoing at the time the research is done (Le Vine & Polak, 2019a;
Hjorteset & Böcker, 2020).72

We therefore contribute to the current literature by updating the knowledge regarding carsharing use, using
user-level information through a large online survey, and answering the following two research questions (RQ)74

investigating the roles of users’ psychological factors: personal attitudes, travel behaviour, and carsharing–
related features on the different aspects of carsharing services.76

• RQ1) How do users’ psychological factors impact carsharing adoption and use?

• RQ2) What factors impact the choice between different carsharing operators?78

The rest of the article is organized as follows; section 2 summarizes some of the selected studies related
to user factors and attitudes impacting carsharing use and the different service-related characteristics that80

impact user’s choices. Section 3 explains the methods used in the research and the case study setup used for
the analysis and modeling. Section 4 spans across two parts that answer the research questions (RQ1 and82

RQ2); first, we analyze the collected data, second, we model the different factors that impact carsharing
adoption and use, with a special focus on personality traits and attitudes. We also model and extract the84

factors impacting users’ choices between different carsharing operators. Finally, section 6 discusses the study
findings, highlights the policy implications, and summarizes the conclusion.86

2. Literature review

2.1. The benefits of carsharing88

Sustainability is one of the many benefits associated with carsharing; it is considered a sustainable mode
of transportation that has a wide array of positive impacts on the urban environment, such as the reduction90

in household car ownership and, subsequently a reduction in Greenhouse Gas (GHG) emissions that could
reach up to 30%-54% as a consequence of reduced Vehicle Miles/Kilometers Travelled (VMT/VKT) (Shaheen92

et al., 2019; Nijland & van Meerkerk, 2017; Martin & Shaheen, 2011a). Also, electrification of the carsharing
fleet was proven to be environmentally advantageous (Luna et al., 2020) and was able to yield more than 30%94

reduction on carsharing users’ GHG even if there was no change in VKT (Namazu & Dowlatabadi, 2015).
Several examples of the previous positive potentials of carsharing use were observed; in Germany, evidence96

associated with the reduction of car ownership and the number of station-based carsharing in the same area
were present (Kolleck, 2021); in China, in 2017, carsharing has caused a significant reduction of energy used,98

and CO2 emissions, with the expectation of higher savings by 2025 (Te & Lianghua, 2020). Shaheen et al.
(2019) and Martin & Shaheen (2016) observed a decline in the average VKT of carsharing users ranging100

from 6% to 63% in North America, considering several conditions such as giving up car ownership, and the
type of the service one-way or round trip. These tendencies were further corroborated by studies in Palermo,102

Italy (Migliore et al., 2020), the Netherlands (Nijland & van Meerkerk, 2017), and London, UK (Wu et al.,
2020). Also, Wu et al. (2020) noted that in London, higher satisfaction with the proximity to carsharing104

vehicles contributed to a larger reduction in VKT. Interestingly, carsharing users who live in suburban
areas tend to drive fewer kilometers than their counterparts in dense urban areas (Clewlow, 2016), which106

could be attributed to the lower density of available vehicles in the suburbs, resulting in carsharing users
canceling the non-essential trips. Other environmental-related positive impacts, such as saving materials and108

reducing wastes, were observed (Harris et al., 2021). However, the environmental impacts of carsharing and
their total magnitudes are heavily dependent on the occupancy rate, the used vehicle and fuel type of the110
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fleet, the modal share of carsharing, the modes replaced by carsharing, and the vehicle’s lifespan (Poltimäe
et al., 2022; Harris et al., 2021; Jung & Koo, 2018). On the other hand, adverse environmental impacts of112

carsharing were observed; in Palermo, Italy, the fleet only contains diesel and natural gas vehicles, and it
was found to increase the CH4 and NOx emissions of the city (Migliore et al., 2020).114

Impact related to infrastructure and built-environment were also observed, as carsharing use can help in
reducing car ownership rates, which promotes more positive impacts on curb-side management, minimizing116

the space uptake for car parking (Golalikhani et al., 2021). A study among students in Ithaca, New York
by Stasko et al. (2013) found that since the introduction of carsharing in the area, student parking permit118

sales had declined despite a continuous increase in enrollment. The causality of these occurrences, however,
was not investigated or verified. Another survey in France investigated carsharing use impact on parking120

derived that for every carsharing vehicle on the street, between 1.6 to 4.2 on-street parking spaces, 0.3 to
0.6 public parking spaces, and 2.1 to 4.2 private parking spaces could be eliminated (6t-Bureau de recherche122

& ADEME, 2016). Diana & Chicco (2022) analyzed the spatial distribution of changes in parking demand
related to carsharing and found that more relieved parking spaces could be anticipated for central areas,124

while more negative impacts might be imposed on the parking in peripheral areas.
Integrating carsharing with public transportation would yield more benefits by extending the spatiotem-126

poral accessibility of public transportation. Some examples of this integration are the decentralized mobility
hub (Czarnetzki & Siek, 2022), implementation of dedicated carsharing facilities (Engel-Yan & Passmore,128

2013) and unbundled parking (Schure et al., 2012) in residential buildings, and appropriate financial and
policy backing from the authorities in forms of aids to the low income-groups (Rabbitt & Ghosh, 2013;130

Bocken et al., 2020). Note that the extent of carsharing impacts could highly vary depending on the re-
gion, built environment (Clewlow, 2016; Jain et al., 2022), accessibility of public transportation, and the132

carsharing replaced modes (Shaheen et al., 2019; Jain et al., 2022; Kolleck, 2021; Duncan, 2011). Other
positive potentials for carsharing use were observed. However, they were less explored, such as benefits134

associated with the B2B carsharing model capabilities of reducing work trip cost as the car can be used
without bearing ownership–related costs and duties, increasing thereby not only trip sustainability, but also136

the workplace attractiveness, which could now subsidize carsharing trips for their employees (von Wieding
et al., 2022). Moreover, carsharing trips were found to encourage multimodality, physical activities, and138

a healthier lifestyle (Kent, 2014; Shaheen et al., 2019; Harris et al., 2021). Also, carsharing was found to
increase access to cars for car-less households (who do not own private vehicles), providing them thereby140

with more independence and equitable access to opportunities (Stasko et al., 2013; Kent, 2014; Shaheen
et al., 2019). This in turn improves the mobility of lower-income groups by increasing the number of avail-142

able travel options (Kumar Mitra, 2021), and strengthening the sense of community among users (Hartl &
Hofmann, 2022; Harris et al., 2021).144

2.2. Factors impacting the adoption and use of carsharing

Several factors impact the adoption and use of carsharing services; these factors could be categorized146

into three main groups; i) service-related factors, ii) exogenous factors, and iii) user-related factors. The
first group of factors included the number of available vehicles in the stations, and vehicle age; in a study148

by (De Lorimier & El-Geneidy, 2013), this encouraged carsharing use in Quebec, Canada. In metropolitan
Vancouver, lowering the membership fees was found to attract more users (Namazu et al., 2018). The150

difference between the trip cost, and the mode carsharing replaced was found to be the most significant
factor impacting carsharing use in Beijing, China (Yoon et al., 2017). Personalized use incentives were also152

found to attract more users (Feng et al., 2023). In Shanghai city, electrical vehicle battery charging level
and the number of available vehicles in stations impact the user choice for the vehicles (Hu et al., 2018b).154

Secondly, exogenous factors are also key such as adverse weather conditions (Yoon et al., 2017), availability,
accessibility of public transportation station (Balac et al., 2015; Hu et al., 2018a; Khan & Machemehl,156

2017), land–use (Kim et al., 2012; Stillwater et al., 2009), intersection and road density, and the availability
of parking (Chen et al., 2018; Yoon et al., 2017; Hu et al., 2018a).158

Thirdly, several studies focused on investigating the sociodemographic characteristics influencing carshar-
ing use. The findings of these studies have identified users as young, male, well-educated, with high-income,160

and full-time employment (Le Vine & Polak, 2019b; Martin & Shaheen, 2011a; Alemi et al., 2018; Ahmed

4



et al., 2021; Luo et al., 2019). However, the role of other important personal drivers to the service is less162

known, and here we mean the personal attitudes and personality traits, despite the fact that there is ev-
idence suggesting the significance of attitudes on the use and adoption of carsharing services, noting that164

understanding personal attitudes is claimed to enhance the models predictability (Pronello & Gaborieau,
2018). For instance, carsharing users are more likely to own ”greener” vehicles (Clewlow, 2016) and exhibit166

more eco-friendly behavior (Jung & Koo, 2018), hinting at higher concerns towards environmental issues.
Li & Kamargianni (2020) found that carsharing advocacy attitude increased the adoption of carsharing168

compared to other modes. In the realm of carsharing, research on the role of personal attitudes has yielded
mixed conclusions. Zhang & Li (2020) and Li & Zhang (2021) discovered that subjective/social norms had170

the biggest influence on the intention to use carsharing, and attitudinal variables, including environmental
concerns, imposed a much more limited impact, while a study in Taiwan (Buschmann et al., 2020) reported172

the complete opposite. Varieties also exist within the range of behavioral constructs that were found to
be significant in carsharing familiarity and adoption. Aguilera-Garćıa et al. (2022) found that high sharing174

propensity, variety-seeking lifestyle, and preference for driving positively impacted familiarity, and that pro-
environmental behaviors reduced carsharing usage. On the other hand, Thurner et al. (2022) concluded that176

people who were believers of science and technology, who were generally early adopters of novel technology,
and those with self-expressive social values tended to be carsharing adopters. The previous discrepancies178

are unsurprising, considering the virtually unlimited spectrum of attitudes that humans might have. Yet,
researchers are constrained to investigate only a select few, along with behavioral indicators which vary180

across the board. Furthermore, cultural context might play a role in moderating the effects of other sociode-
mographic variables. For instance, society could be more concerned about conforming to the norms than182

their individual expressions, leading to subjective norms being more influential in their decisions. Moreover,
there is a complex interrelation between these attitudinal constructs, which is hard to interpret. This is well184

demonstrated by Zhang & Li (2020); Burghard & Scherrer (2022); Li & Zhang (2021); Acheampong & Siiba
(2020) in which environmental attitudes imposed no direct impact or even negative impact on carsharing186

intentions, while simultaneously being positively correlated with another construct which in turn positively
impacted the carsharing intention (i.e., positive indirect impact). This shows how the role of attitudes in188

human decision is a complex topic and requires further research with a possibly wider range of attitude
constructs. For example, Hjorteset & Böcker (2020) further differentiated the resulting attitude towards190

carsharing into general interest, anticipated intention, and actual decision to utilize the service. Another
part of human attitudes is personality traits, which are the main drivers of travel demand (Mokhtarian192

et al., 2001). Different personality traits are hypothesized to impact travel behavior differently; while the
adventure-seeker personality was found to be likely to travel and drive faster than other personalities, are194

prone to have and create more elements of danger (Furnham & Saipe, 1993). Redmond (2000) concluded
that people with adventure-seeking personalities are more likely to enjoy leisure trips over work trips and196

may also prioritize them. Another personality associated with the preference for using private cars over pub-
lic transport is the organizer personality (Redmond, 2000). A summary of the factors impacting carsharing198

use is presented in Figure 1 below.

2.3. Synergies between carsharing use and travel behavior200

Carsharing might play a significant impact on travel behavior and users’ long and short-term travel
decisions. It can impact the decision to give–up a car and forego/delay the decision to acquire a new one202

(Ko et al., 2019; Seo & Lee, 2021). Although varying conclusions exist across case studies, the general
consensus suggests a decline in the level of car ownership, with studies quoting four (Migliore et al., 2020;204

Shaheen et al., 2018) to twenty-three (Lane, 2005) private vehicles being replaced for every carsharing vehicle
in operation. This conclusion is consistent with Le Vine & Polak (2019b) findings, which highlighted, based206

on a survey in London (N = 347 responses), that as much as 37% of respondents had their car ownership
decisions impacted by using carsharing, as users opted to drop the decision of buying a car or dispose of208

their currently owned car. Factors affecting a user to dispose or forego buying a car include income level,
age, housing type, satisfaction towards the carsharing service, access time to carsharing station, fuel type,210

and the price or cost of the service(Jung & Koo, 2018; Ko et al., 2019). However, simultaneity bias can
also be a concern as Jain et al. (2020) found within their case study; carsharing mostly acted as an enabler212
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Figure 1: Summary of factors impacting carsharing adoption and use (own illustration)
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of mobility lifestyle change but was not the primary cause of households shedding their private cars, as life
events had a stronger influence.214

Furthermore, carsharing’s overall impact on sustainability depends on the modes it replaces, whether
they are ”greener” and more active modes such as walking, cycling, and public transportation (Chicco &216

Diana, 2021). The impact of carsharing on the general car use is less conclusive as some studies reported that
the majority of carsharing users drove less frequently (than before carsharing adoption) (Martin & Shaheen,218

2011b; Shaheen et al., 2018), while others studies claimed the contrary (Stasko et al., 2013; Martin &
Shaheen, 2016). This is due to the fact that the effect of those who dispose of private cars is counterbalanced220

by the impact of those who gain access to cars through carsharing (Lane, 2005). While such studies often
relied on user surveys, the latter have often been criticized as they focus on carsharing users and therefore222

create self-selection biases, which might impact the conclusions.

2.4. Modeling techniques224

Attitudes are often treated as latent variables derived from stated behavioral statements. To capture
these latent attitudes and determine the indicating constructs, several methods have been used in the past,226

including Structural Equation Models (SEMs) (Yazdanpanah & Hosseinlou, 2016; Aguilera-Garćıa et al.,
2022; Rahimi et al., 2020b; Zhang & Li, 2020), Principal Component Analysis (PCA) (Queiroz et al.,228

2020; Thurner et al., 2022), and Latent Class Analysis (LCA) (Olaru et al., 2021). Subsequent regression
analysis (e.g., Bivariate Logit (Queiroz et al., 2020), and Hybrid Choice Model (HCM), or Integrated Choice230

and Latent Variable models (ICLV) (Sun et al., 2021)) incorporating the latent attitudinal variables in
models is frequently conducted to assess the causality between attitudes and other variables in question232

(e.g., acceptance of carsharing). The main objective of this integration is to enhance the model’s ability to
understand the choice process by incorporating the user’s cognitive behavior, attitude, and psychological234

factors into the choice model. This integration also aims to improve the model’s goodness of fit where
applicable (Vij & Walker, 2016; Temme et al., 2007; Ben-Akiva et al., 1999). ICLV models were, for instance,236

used to quantify the factors impacting the frequency of pooled-rides uses in Mexico City, Mexico (Abouelela
et al., 2022). Moreover, the Theory of Planned Behavior (Jain et al., 2021; Zhang & Li, 2020; Li & Zhang,238

2021), Rogers et al. (2014)’s Theory of Innovation Diffusion (Jain et al., 2021; Burghard & Scherrer, 2022),
and the Theory of Reasoned Action (TRA) along with its extensions (Buschmann et al., 2020) are often240

incorporated in assessing the role of personal attitudes. Further scientific frameworks that are prevalent in
this research topic are the Technology Acceptance Model (TAM) (Al Haddad et al., 2020; Schlüter & Weyer,242

2019; Buschmann et al., 2020) and its modifications, such as the Unified Theory of Acceptance and Use of
Technology (UTAUT) (Fleury et al., 2017).244

2.5. Gap analysis

The review of the current research shows that a significant portion of carsharing-related studies was246

developed before the implementation of the service or during the early deployment stages, and accordingly
there is a pressing need to update the current literature with more recent case studies, especially for users248

who are already familiar with the service and used it for a long period of time (Hjorteset & Böcker, 2020;
Le Vine & Polak, 2019a). Moreover, studies investigating the impact of carsharing-related features, such as250

operator offering and the used mobile app, on service use, adoption, and choice between different operators
are still scarce in the existing body of the literature (Monteiro et al., 2022). Finally, the impacts of personal252

attitudes and personality traits on the use and adoption of carsharing services are not well established
(Aguilera-Garćıa et al., 2022), despite their importance in deciding on our travel behavior in general and254

carsharing in particular. This study aims, therefore, to address the above–mentioned gaps, by testing the
impacts of the different personality traits and latent variables, as well as the importance of service–related256

features, on carsharing, answering thereby the research questions formulated in Section 1.
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3. Methods and study set–up258

3.1. Methods

3.1.1. Survey design260

The main goal of this research is to understand the impacts of attitudes, travel behavior, and personality
traits on the use of carsharing services; therefore, we designed a survey in four parts, which was implemented262

online using Limesurvey platform (Limesurvey.com), and disseminated to different users group in Munich,
Germany, during the period of 20 of January to 25 of March 2022. We opted to deploy the survey online as264

it was deployed during the COVID-19 pandemic, and we wanted to eliminate the chances of infection during
the data collection process. As carsharing users are likely young, we targeted them in our data collection266

process. Young users are commonly adopters of shared mobility in general and carsharing in particular, as
highlighted in studies in different locations, such as in Munich and Madrid (Aguilera-Garćıa et al., 2022), in268

Vancouver, Canada (Namazu et al., 2018), in Puget Sound region in the state of Washington, USA Dias et al.
(2017), and all over Germany (Burghard & Dütschke, 2019). Moreover, we collected data from non-users to270

check the different reasons for not adopting the service, as well as to evaluate the differences between the
two groups. Overall, we collected 1170 completed responses, and the average survey completion time was272

12 minutes. The survey consisted of four main parts;
• In the first part, general travel behavior was investigated, where users were asked to specify their274

usage frequency for different urban modes of transport, whether they had a public transportation
subscription ticket (such as a monthly ticket), whether they owned bikes, e-bikes, a private car, and276

whether or not they had a valid driver’s license in Germany. The modes that their use frequency was
investigated are:278

1. Bus
2. Car as a passenger280

3. Car as a driver
4. E-hailing282

5. Personal bike
6. Shared bike/E-bike284

7. Shared E-scooter
8. Suburban train286

9. Taxi
10. Tram288

11. Underground metro
12. Walking290

• In the second part, we investigated user familiarity with and usage of carsharing services; we focused
on usage frequency, willingness to walk to the vehicle pickup location, trip purpose. Respondents were292

also asked about the modes they would have used instead of carsharing for their last carsharing trip.
Finally, respondents were asked to evaluate the importance of different aspects of carsharing services,294

such as mobile-application rating on the digital store, application ease of use, service availability in
different cities, service availability in EV, service availability in the airport, service availability in296

different size vehicles (SUV, trucks, etc.), and the availability of offers bundles (discounts, e.g., for
all-day rental, and long-distance rentals).298

• The third part of the survey was the stated preference experiment; refer to Figure 2. In this experiment,
respondents had to choose one carsharing service to perform an 11-kilometer trip; the choice was300

between operator A, where the user pays a fixed cost per kilometer. The other choice was operator B,
where the trip cost would vary between a minimum cost, an average cost, and a maximum cost based302

on congestion conditions. The latter (cost range) would vary based on speeds (maximum, average,
and minimum, respectively) of previous trips (previous trip distribution).304
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Carsharing services are gaining popularity for their ease of use, and their increased availability in our 
cities, especially among the young population. The service was initially priced by the minute of use, but 
now there are new schemes of paying a fixed price per kilometer. The main difference between the two 
schemes is the certainty regarding travel time, as users might encounter delays that would increase the 
trip cost if users are paying per minute of use and not by kilometer traveled. In the following scenarios, 
we ask you to choose the most convenient option to use based on your evaluation of the available options 
based on a hypothetical 11 km long leisure trip in Munich, Germany noting the following:
• Travel cost; fixed if you choose to pay per kilometer and could fluctuate if you pay per minute based on the unknown 
road conditions and unexpected delays.

• Min cost: The minimum expected cost based on fastest speed of previous trips
• Avg cost: The average expected cost based on the average speed of previous trips
• Max cost: the maximum expected cost based on the slowest speed of previous trips

• Access distance in meters: the distance you will need to walk to pick up the carsharing vehicle
• Application rating in store: the used operator app users' rating on the digital store you use

Operator	A	
Payment	by	KM	Fixed	cost

Operator	B
Payment	by	Minute

cost	depends	on	congestion	
conditions

Travel	cost	in	€ 7.34	€
Min	5.6	€
Avg	8.1	€
Max	12.1	€

Access	distance	in	meter 150	m 150	m
Application	rating	on	digital		
stores	(stars) 4	Stars 3	Stars

Engine	type:	Electric Yes No
Certainly	

A
Probably	

A
Indifferent Certainly	

B
Probably	

B None

Figure 2: Scenario details and one block example

Table 1 shows the attributes and their corresponding levels that were used for the experiment. We
opted to use travel cost, as it is a decisive factor in travel mode choice, and we wanted to investigate306

two new factors that were not investigated previously, which are the access distance users needed
to walk to the nearest available vehicle and the service rating on the digital application store. The308

attribute levels were calculated as follows:

– Travel cost:310

∗ Operator A, payment by km scheme, the average cost per km is 0.89 AC/km, obtained from
the operator’s online website and is similar to values used by Abouelela et al. (2021). A312

variation of this level (-0.25%, 0%, +25%) would result in a range of (0.66, 0.89, and 1.11)
AC/km.314

∗ Operator B, based on actual carsharing speed distribution. Essentially, minimum, average,
and maximum costs were calculated using the same carsharing trips in Munich, Germany,316

for 2016, as described in Abouelela et al. (2021). The trip cost was calculated based on the
speed distribution and multiplied by the cost per minute. The minimum cost was calculated318

based on the average speed for the first speed quartile distribution. The average speed was
calculated based on the average speed, and the maximum cost was calculated based on the320

third-speed quartile average speed. For each speed, subsequent cost (-0.25%, 0%, +25%)
values were calculated.322
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∗ Operator B, costs per minute were obtained from operators’ online websites and similar to
the values used by (Abouelela et al., 2021).324

• The levels of access distance calculated for this experience considered that the walking speeds are
around 4-6 km/hr (Bohannon & Andrews, 2011), and that more than 50% of pooled ride users opted326

to walk less than ten minutes for the ride pick up location (Abouelela et al., 2022).

• Application rating on the digital application store was created specifically for this experiment, as no328

similar attributes were not investigated before.

• Engine type was used to check the impact of the electric engine type on the user’s choice, and it was a330

binary attribute with two levels: yes, and no. A similar attribute was used by Monteiro et al. (2022).

Table 1: Stated preference attributes and levels

Levels

Variable (unit) Operator A (payment by km) Operator B (payment by minutes)

Travel cost AC [7.3, 9.8, 12.2]
Minimum cost [5.6, 7.1, 9.2]
Average cost [8.1, 10.3, 13.2]

Maximum cost[12.1, 15.4, 19.8]

Access distance (meter) [50, 100, 150] [50, 100, 150]
Application rating (⋆) [3, 4, 5] [3, 4, 5]
Engine type: electric Yes / No Yes / No

The fourth part of the survey investigated the sociodemographic characteristics of the users, where we332

asked users to specify their age, gender, education level, occupation, number of people and children in the
household, and average monthly income. Also, in this part, we asked users to specify their agreement on334

a five-points-scale (totally disagree, disagree, neutral, agree, totally agree) on how much they identify with
each of the 18 personality traits below, as used by (Queiroz et al., 2020; Mokhtarian et al., 2001; Redmond,336

2000):

1. Optimist338

2. Adventurous
3. Like routines340

4. Spontaneous
5. Like being outdoor342

6. Risk taker

7. Like to stay close to home344

8. Efficient
9. Variety seeking346

10. Punctual
11. Like to be alone348

12. Independent

13. Creative350

14. Calm
15. Anxious352

16. Like being in charge
17. Participating354

18. Lazy.

3.1.2. Modeling framework356

The main target of this research is to model the impact of attitudes and personality traits on carsharing
use, using the collected survey data. The survey consists of answers to attitudinal and personality eval-358

uation, revealed preference, and stated preference questions. The different parts of the survey were used
to answer the research question related to investigating factors impacting adoption, the shift from other360

modes, the choice between operators, and finally, the knowledge or awareness level regarding carsharing
service (essentially the research questions RQ1 and RQ2). In investigating the examined factors, Hybrid362

Choice Models (HCM) were estimated. The main purpose of estimating HCM models was to integrate
and investigate the impacts of user cognitive behavior, personality, and attitudes on the service adoption364

(Abouelela et al., 2022; Bolduc & Alvarez-Daziano, 2010; Ben-Akiva et al., 2002), but also to get a more
realistic choice behavior, as pointed out in Raveau et al. (2010); Bolduc & Alvarez-Daziano (2010).366

The first step in HCM is to estimate the latent constructs of the data (namely attitudes, travel behavior,
and personality) using Exploratory Factor Analysis (EFA). We started the analysis by performing a scree368

test (Cattell, 1966) to decide on the optimum number of factors. The test showed two factors as the desired
number, and we kept attributes with factor loading 0.4 or larger, based on the sample size and following370
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Hair et al. (1998). Varimax rotation was applied to obtain an orthogonal structure between the different
factors, and the polychoric correlation was used as it suits the ordered nature of the data better than other372

correlation methods (Holgado-Tello et al., 2010). After deciding on the estimated factors for each of the
question groups, the corresponding discrete outcome model was first estimated, and the latent variable374

model was added afterward. Four HCM models were estimated using Apollo package (Hess & Palma, 2019)
under the statistical software R (R Core Team, 2023).376

3.2. Study setup

Munich is the third largest city in Germany, with a population of around one and a half million and378

six million inhabitants in the metropolitan area (Aguilera-Garćıa et al., 2022). The city has a strong
transportation infrastructure network reflected in many aspects of the inhabitants’ daily travel behavior,380

where 80% of the population owns at least one bike, served by a 1,200 km long bike lanes network and
28,000 bike parking spaces. Also, the overall city modal shift reflects the solid public transportation culture,382

where 33% of the trips are made by cars, 23% by public transportation, and 44% of daily trips are done by
active mobility, walking and biking6. The city-shared mobility landscape is vibrant, with different options384

for carsharing, bikesharing, shared e-scooters, moped scooters, and e-hailing. Munich City demonstrates an
excellent example of a case study for carsharing use city, with the free-floating carsharing service starting in386

2011. In 2019, there were around 2,100 shared cars on the city streets. Different operators adopt different
pricing schemes, such as pay per minute, hour, and day, and lately, some operators are calculating trip prices388

based on trip length (Aguilera-Garćıa et al., 2022).

4. Analysis results390

4.1. Summary of sociodemographic and travel behavior characteristics

The survey resulted in 1170 valid and complete responses. Table 2 shows the collected sample demo-392

graphic characteristics compared to the city of Munich. The collected data is skewed in comparison to the
city population in terms of age, education, occupation, and income; however, this is a direct result of the394

sampling strategy targeting young users. In general, the sociodemographic characteristics of the shared
mobility users, are different from the ones of the average population as discussed in Section 2.396

In terms of age, 89% of the sample is younger than 36 years old, compared to 40% of the average city
residents age; also, users are highly educated, with 85% of the sample having at least a bachelor’s degree398

compared to 26% of the city’s residents. The number of students in the sample is over-representative in
comparison to the city, as 43% of the sample respondents are students compared to only 4.5% of the city400

population. Therefore, the age and occupation of the respondents are reflected in other aspects, such as
income being lower than the city average and the low number of children in the households. As the focus402

target group of this research are users younger than 35 years old, we only considered them in the following
analysis, excluding all the other users (N = 1044). When comparing carsharing users with non-users, using a404

Perason’s Chi-square test (χ2) (Pearson, 1900), the differences were found to be significant in terms of users
being males, more educated, with higher income, compared to the average population, full-time occupation,406

having access to a car, and owning a driving license that is valid in Germany. This profile of the carsharing
user is similar to other shared mobility services in other locations, such as the United States, Canada, Great408

Britain, and Australia (Howe & Bock, 2018; Degele et al., 2018; Raux et al., 2017; Shaheen & Martin, 2015;
Kim et al., 2015)410

Travel behavior is an important factor that impacts users’ adoption of shared mobility services (Abouelela
et al., 2022); therefore, we asked respondents about the frequency of their use of twelve modes of transport.412

The majority of the sample can be described as active PT users, with at least 40% of the sample using
PT more than once a week, which is reflected in their subscription to PT weekly and monthly tickets. The414

subscription to PT services reflects various aspects, such as the users’ loyalty to the service or the high

6(civitaS.E.u/cities/munich, last accessed 30/05/2023
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quality of the PT system. Also, younger respondents more actively using PT than their older counterparts,416

who tend to use more private cars, was observed in other locations as well (Chaisomboon et al., 2020).
A considerable percentage of users have access to private car use, as reflected in their car usage. Active418

travel is evident in the sample, mainly in the form of walking and personal bike, and not much use of
shared micromobility modes. We further analyzed the modes used by users vs. non-users and also made an420

assessment by gender; see Figure 3, Table A.2 and Table A.3. The differences in travel behavior between
the genders are well established, where women generally tend to utilize slower transportation modes like422

public transport and walk more frequently than men. They generally travel shorter distances and have
more complex trip arrangements. Moreover, women are more likely to travel accompanied by children or424

dependents, facing more challenges related to physical accessibility, safety, and security (Pourhashem et al.,
2022; Xu, 2020; Tilley & Houston, 2016). Moreover, gender is a decisive factor in shared mobility use, and426

specifically in the case of carsharing, as discussed in Section 2. Therefore, we considered the travel behaviour
analysis per gender to further investigate these differences and test their impacts on the carsharing use.428

Figure 3 shows the frequency of using the different urban modes for users and non-users; to assess the
significance of these differences, we performed a chi-square test. From the twelve compared modes, nine430

were found to have significant differences, and only three modes did not have significant differences, namely
walking, tram, and the underground metro. Carsharing users were, on average, more frequent users of all432

other modes than non–users (of carsharing services), except for bus(es). In terms of gender, differences in
mode frequency were limited and were significant in the case of car use as a passenger and as a driver,434

shared bike, and taxi; in particular, males used, on average more bikesharing systems and were more often
car drivers, as compared to their female counterparts.436
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Table 2: Summary of sample demographics and travel behavior and comparison with the Munich Census (2011)

Variable Subgroup n (pct%) User Non-User Munich Census

Age 18-24 415 (35%) 175 (30%) 240 (40%) (18-29) 27.2%
25-30 521 (44%) 272 (47%) 249 (42%)
31-35 108 (9.2%) 68 (12%) 40 (7%) (30-39) 16.7%
36-40 46 (3.9%) 29 (5%) 17 (3%)
41+ 81 (6.9%) 34 (6%) 47 (8%) (40+) 51.5%

Gender Female 523 (45%) 241 (42%) 282 (48%) 51.70%
Male 648 (55%) 337 (58%) 311 (52%) 48.30%

Education
level

Masters & PhD 386 (33%) 219 (38%) 167 (28%) (PhD 2.5%)

Bachelor 657 (56%) 309 (53%) 348 (59%) Bachelor/MS: 22.7%
High school or less 128 (11%) 50 (9%) 78 (13%) 66.90%

Monthly in-
come

500AC or Less 140 (12%) 40 (6.9%) 100 (17%)
Avg: 4220 AC /household

500AC - 2000AC 580 (50%) 259 (45%) 321 (54%)
2000AC - 4000AC 259 (22%) 159 (28%) 100 (17%)
4000AC and more 192 (16%) 120 (21%) 72 (12%)

Occupation Full time 405 (34.6%) 258 (45%) 147 (25%) full/part-time 87.1%
Part-time 165 (14.1%) 81 (14%) 84 (14%)
Self employed 43 (3.7%) 14 (2.4%) 29 (4.9%)
Student 510 (43.6%) 208 (36%) 302 (51%) 4.50%
Other 48 (4.0%) 17 (3%) 31 (5%) 8.40%

Children No 1,019 (87%) 491 (85%) 528 (89%)
Yes 152 (13%) 87 (15%) 65 (11%)

Household
size

1 441 (38%) 200 (35%) 241 (41%) 50.30%

2 296 (25%) 174 (30%) 122 (21%) 28.80%
3 and more 434 (37%) 204 (35%) 230 (38%) 20.90%

PT ticket* Yes 859 (73%) 407 (70%) 452 (76%)
No 311 (27%) 171 (30%) 141 (24%)

Own bike or
E-bike

Yes 595 (51%) 335 (58%) 260 (44%)

No 575 (49%) 243 (42%) 333 (56%)

Car access Yes 451 (39%) 243 (42%) 208 (35%) 44%
No 719 (61%) 335 (58%) 385 (65%) 56%

Driving li-
cense**

Yes 523 (45%) 343 (59%) 180 (30%) 88.90%

No 647 (55%) 235 (41%) 413 (70%) 11.10%

NTotal = 1, 170 NUser = 578 NNon−User = 593

*Subscription-based tickets; **Valid in Germany
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Figure 3: Urban modes use frequency for users and non-users of carsharing services
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4.2. Familiarity with carsharing and carsharing use

In this section, we explore the respondent familiarity with carsharing services, and the way they use438

the service. We asked the users to rank their familiarity with the carsharing service on a four-point scale
ranging from: “I do not know about them” to ” Very familiar, I know almost everything about them.” Most440

users (65%) knew about the service, and around one-fifth were very familiar with the service. We asked
this question as we believed carsharing use is correlated with user familiarity with them, and we wanted to442

test the familiarity impact on the different service use aspects as explained in detail in section 4. Table A.1
shows the summary statistics for the familiarity with carsharing services for each user and non-users, per444

gender. Results indicated that users generally had a higher level of familiarity with the service compared
to non-users; 88% of users were familiar with the service as compared to 43% of non-users. It is important446

to highlight that the 12% of the users who were unfamiliar with the service reported that they had used
carsharing mainly as passengers. When assessing by gender, there was no significant difference in terms of448

knowledge, except that males were very familiar with the service, as compared to females.
Table A.1 shows the summary statistics of the different aspects of use and familiarity of carsharing services450

for the different groups; Chi-square tests were used to test the significance of the differences between the
different subgroups. The majority of users used the service as passengers, and they used it mainly less than452

once per week. The major trip purposes are leisure, visits, work, and shopping. Users were asked about the
modes they replaced the last carsharing trip with, and the top five modes were the underground, car as a454

passenger, suburban train, e-hailing service, and car as a driver. These results show potential for negative
impacts, as carsharing trips replace mainly PT trips which might increase the vehicle kilometer traveled456

(VKT) on the roads and, subsequently GHG emissions. We also asked the users to express their willingness
to walk to the nearest carsharing vehicle locations, for which 75% of the users specified that they would458

walk up to seven minutes to the pickup location. We also tested the impact of frequency of use on the
willingness to walk, for which no significant results were found. Users’ willingness to walk was uniformly460

distributed among the different use frequencies. Similar results were observed in fixed-route commercially
organized pooled rides (Abouelela et al., 2022).462

5. Modeling results

In this section, we first present the exploratory factor analysis results, after which we present the findings464

extracted from the four developed hybrid choice models. The aim was to first extract the latent constructs
on both user and service–related aspects to carsharing, to then incorporate them and assess their impact466

on carsharing. In particular, the impact of personality traits and attitudes on knowledge about carsharing,
carsharing adoption, and use, was assessed. Moreover, the importance of service–related attributes on the468

choice between carsharing operators with different payment schemes was also explored.

5.1. Exploratory factor analysis470

In this sub–section, the exploratory factor analysis (EFA) results are presented, based on which the
latent constructs have been extracted, notably for user attitudes; the impact of the extracted factors on472

carsharing use was then studied. In particular, the factor analysis was conducted for three question groups
relating to carsharing operator–related features (Section-5.1.1), personality traits (Section-5.1.2), and travel474

behavior (Section-5.1.3).

5.1.1. Carsharing operator–related features476

For the first questions group, we asked respondents to rate how important different aspects of carsharing
services were to them, on a five–point Likert (Likert, 1932) scale that ranges from ( 1 = not important478

at all, 2 = not important, 3 = neutral, 4 = important, 5 = very important). Table A.2 presents the
summary statistics for the ratings of the seven examined aspects of the carsharing service characteristics.480

The rating summary shows no significant difference between gender groups in the evaluation rate; however,
a slight difference in the ranking of the importance of each aspect was observed. Application ease of use was482

selected as the most critical aspect, while the availability of EVs in the carsharing fleet was rated as the least
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important factor as per the evaluation order for both genders; the latter was found to be less than neutral484

for male users with an average evaluation score being less than 3. The rest of the operator–related features
were almost the same for both gender groups, with women’s evaluation scores (in terms of importance)486

generally consistently higher than males; however, without any statistically significant difference.
When comparing user and non-user groups, interestingly, non-users had, on average higher evaluation488

scores for the different aspects, except for the availability of different size vehicles, which was the second
to last least important aspect based on their rating. Also, application ease of use was the most important490

service aspect, with a significant difference in rating compared to the next important aspect, app rating.
The differences between users and non-users were significant and evident in all aspects, except for service492

availability in different cities and for app ease of use.
The top part in Table 3 shows the factor analysis results with two main factors representing the main494

latent constructs and explaining 46% of the total data variability. Factor one can be described as the physical
offers, and the second factor as the application-related factors. The results of the EFA for the carsharing496

operator–related features could possibly reflect on the important dimensions of the service that operators
need to focus on to achieve a high level of satisfaction among users.498

5.1.2. Personality traits

Understanding personality traits is essential for understanding human travel behavior; however, the500

impact of such traits on travel behavior is still not well comprehended (Jani, 2014). Also, personality might
not be a direct influence on travel behavior, but it dictates a certain pattern of behavior (Revelle, 2007),502

and it is more likely to be associated with different levels of mobility; for example, having an adventurous
personality might be associated with a higher level of mobility (Redmond, 2000). The middle part in504

Table A.2 presents the summary statistics for the answers pertaining to personality traits for different
respondent groups (users, non–users, males, and females). In particular, respondents were asked to specify506

their agreement with different personality types on a five–point Likert scale (ranging from “Totally disagree”,
“Disagree”, “Neutral”, “Agree”, “Totally agree”). After conducting Chii–square tests for assessing the508

statistical significance in personality traits between different respondent groups (see Table A.3 middle part),
we found significant differences in personality traits between users and non-users than between the different510

gender groups (i.e., males and females).
Our initial hypothesis for the EFA was that we would estimate five factors representing the five major512

personalities, namely risk-taking, loner, ambitious, organized, and lazy. The middle part in Table 3 presents
the estimated EFA results for the personality–related questions, for which two main factors were extracted,514

interpreted as “adventurous” and “organized”. The two factors explain 39% of the data variability. The
results of these factors were further used to estimate the impact of these two types of personalities on516

carsharing use.

5.1.3. Travel behavior518

The final set of questions that were analyzed using EFA techniques focused on the frequency of use of
the different available modes. For this question, we hypothesized three types of users: PT users, private520

mode users, and finally, shared mobility users. The bottom part in Table 3 bottom part presents the results
of the EFA for the mode use frequency. Two factors were extracted and found to be significant, one for PT522

users and the other for shared micromobility users; the two factors explained 51% of the variance of the
data, and the initial hypothesis was partially correct.524

16



Table 3: Factor analysis model results

I–Carsharing operator–related features Physical offerings Application

App ease of use 0.92
App rating 0.60
Availability in airport 0.71
Availability of different size vehicles 0.62
Service offers bundles 0.56
Availability in other cities 0.53
Availability of electric vehicles 0.51

Model diagnostics
Factor loadings 1.82 1.38
Proportion variance 0.26 0.20
Kaiser-Meyer-Olkin factor adequacy: MSA= 0.80
Cronbach’s alpha = 0.73

II–Personality traits Adventurous Organized

Adventurous 0.82
Being outdoor 0.51
Spontaneous 0.61
Risk taker 0.58
Variety seeking 0.50
Efficient 0.70
Punctual 0.46

Model diagnostics
Factor loadings 1.93 0.76
Proportion variance 0.28 0.11
Kaiser-Meyer-Olkin factor adequacy: MSA= 0.75
Cronbach’s alpha = 0.6

III–Travel behavior Frequent PT user Frequent micromobility user

Bikesharing 0.75
Shared E-scooter 0.70
Tram 0.68
Underground 0.85
Suburban Train 0.73
Bus 0.69

Model diagnostics
Factor loadings 2.43 1.10
Proportion variance 0.35 0.16
Kaiser-Meyer-Olkin factor adequacy: MSA= 0.78
Cronbach’s alpha = 0.72

5.2. Factors impacting knowledge about carsharing

This model investigates the factors impacting user’s knowledge regarding carsharing. The answer to the526

question investigating the knowledge about carsharing was set as the dependent variable, which is ordered
in nature. The answers to this question were ”I do not know about them ”; ”I have heard about them”; ”528

know about them, but not much details”; ”Very familiar, I know almost everything about them”. Ordered
HCM model was estimated, and Figure 4, and Table 4 show the full path diagram and the estimated model530

results.
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Figure 4: Full path diagram for the ordered HCM for knowledge about carsharing

Four variables and two latent variables were significant with positive estimated coefficients (+β), which532

show that these variables are associated with a higher likelihood regarding higher knowledge about carsharing
services: previous use of carsharing, ownership of a driving license, full-time workers, people who live in small534

households, adventurous persons, and frequent PT users. The thresholds between the different knowledge
levels are significant, showing that people understand the difference between the different levels.536

The latent variable models can be interpreted as follows: for the measurement model adventurous per-
sonality, the positive sign for the estimated coefficient (ζ) for the measurement model part shows that the538

more the person agrees with the statement, the more likely is this personality type, and the more likely he
is to be an adventurous person. The signs of the coefficients of the Structure model part (γ) for males and540

bike owners show that these variables increase the probability of being an adventurous person compared
to the other population group. The other latent variable is the PT frequent user, and the measurement542

model positive coefficient (ζ) sign shows that the higher the answer the more frequently the person uses PT,
and the negative sign for the high-income coefficient (γ) shows that high-income people are less likely to be544

frequent PT users. The estimated model partially answers the first research question (RQ1).
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Table 4: ordered HCM results for knowledge about carsharing (ordinal variable)

Variable β S.E. P-value

Carsharing use (yes vs. no) 2.09 0.15 0.00
Driving license (yes vs. no) 0.68 0.14 0.00
Occupation (full–time vs. other) 0.34 0.14 0.01
Household size (1-2 vs. 3 and more) 0.21 0.13 0.10
LV1: PT user (λ1) 0.20 0.08 0.01
LV2: Adventurous (λ2) 0.29 0.08 0.00

Threshold
I do not know about them – I have heard about them -0.93 0.13 0.00
I have heard about them – I know about them, but not details 0.63 0.12 0.00
I know about them, but not details – very familiar with them 3.73 0.17 0.00

Number of observations = 1044

Latent variable Model

Structure model (Frequent PT user) γ S.E.. P-value

Income (2,000 AC or more vs. less than 2,000 AC) -0.44 0.08 0.00

Measurement model (Frequent PT user) ζ S.E.. P-value

Tram 1.68 0.12 0.00
Underground 2.68 0.25 0.00
Suburban train 2.00 0.15 0.00
Bus 1.62 0.13 0.00

Latent variable Model

Structure model (Adventurous personality) γ S.E.. P-value

Gender (male vs female) 0.14 0.07 0.06
Bike or E-Bike ownership (yes vs. no) 0.12 0.07 0.10

Measurement model (Adventurous personality) ζ S.E.. P-value

Adventurous 2.61 0.24 0.00
Spontaneous 1.37 0.11 0.00
Outdoor 1.13 0.11 0.00
Risk taker 1.43 0.11 0.00
Variety seeker 1.03 0.10 0.00

5.3. Factors impacting carsharing adoption546

This section presents the model results for the model investigating the factors that impact the adoption
of carsharing services, and partially answers RQ1. A binary choice and latent variable HCM was estimated548

to investigate the examined factors. For the subject model, the dependent variable was coded as a binary
variable considering responses indicating that they never used carsharing as zero, with the rest of users being550

coded as 1.
Figure 5 and Table 5 present the full path diagram and the estimation results for the hybrid choice552

model for carsharing adoption. The estimated model shows that people familiar with carsharing services,
with a driving license, who are full-time workers, owners of bikes, with a high-income level, and with a higher554

education level are more likely to adopt carsharing services compared to other population groups. These
significant variables are aligned with the hypothesized profile of shared mobility users, who are in general,556

wealthier and more educated than the average population. On the other hand, people who have access to
a car, live in a small household, and have a subscription to PT tickets are less likely to adopt carsharing558

services. The two latent variables, frequent shared micromobility users (λ1) and adventurous personality
(λ2), were found to be significant predictors impacting the adoption of carsharing. This model shows that560
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Figure 5: Full path diagram for the binary HCM for carsharing adoption

users with adventurous personality have a higher probability of adopting carsharing; such personality was
previously (in previous studies) associated with a preference for higher levels of mobility, being outdoor, and562

disliking routine (Gao et al., 2017; Redmond, 2000), which might be the utility provided by carsharing. The
other latent variable shows that frequent micromobility users are more likely to adopt carsharing services564

in comparison to other population groups. This behavior was also observed in the adoption of other shared
mobility services, such as in the case of pooled rides (Abouelela et al., 2022).566

The lower part of Table 5 shows the structural equation model of the HCM. The estimation of the latent
variable model for the personality part shows that the coefficients of the measurement model part (ζ) is568

positive, which indicates that the higher the level of agreement with the personality statement questions,
the more likely the person to be adventurous. Coefficients of the Structure model (γ) are positive, showing570

that each of males and bike owners (as opposed to females and non–bike owners) are more likely to be
adventurous. The estimation of the second latent variable model shows that the coefficients of measurement572

models (ζ) are positive, indicating that the higher the frequency of using bike–sharing and/or shared e–
scooters, the higher the likelihood to be a frequent shared micromobility user. Finally, the (γ) coefficient574

for the Structure model part shows that users who are familiar with carsharing use are more likely to be
users of shared micromobility, and car owners are more likely to use micromobility in comparison to other576

population groups, which matches the general profile of shared mobility users. For both latent models,
we did not show the estimation results of the thresholds between the different indicators, as they have no578

meaning by themselves and only indicate the order of the thresholds.
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Table 5: Binary HCM results for carsharing adoption

Variables (β) S.E. P-value

Intercept -2.40 0.36 0.00
Carsharing familiarity (high vs. low) 2.03 0.17 0.00
Access to car (yes vs. no) -0.46 0.20 0.01
Driving license (yes vs. no) 1.10 0.17 0.00
Occupation (full-time vs. other) 0.47 0.20 0.01
Education (Ph.D. & Masters vs. less than uni degree) 0.60 0.29 0.02
Education (bachelor vs. less than uni degree) 0.49 0.27 0.04
Household size (1-2 vs. 3 and more) -0.21 0.16 0.10
Bike or e-Bike ownership (yes vs. no) 0.25 0.16 0.06
PT subscription (yes vs. no) -0.27 0.21 0.10
Income ( 2,000 AC or more vs. less than 2,000 AC) 0.32 0.20 0.05
LV1: Frequent micromobility user (λ1) 0.28 0.11 0.00
LV2: Adventurous (λ2) 0.10 0.09 0.13

ρ2 = 0.291 ρ2Adjusted = 0.287
Number of observations = 1044

Latent variable model
Structure model (adventurous personality) γ S.E.. P-value

Gender (male vs. female) 0.15 0.07 0.02
Bike or E-Bike ownership (yes vs. no) 0.10 0.07 0.08

Measurement model (adventurous personality) ζ S.E.. P-value

Adventurous 2.67 0.25 0.00
Spontaneous 1.34 0.11 0.00
Outdoor 1.11 0.10 0.00
Risk taker 1.42 0.11 0.00
Variety seeker 1.02 0.1 0.00

Latent variable model
Structure model (Frequent micromobility user) γ S.E.. P-value

Carsharing familiarity (high vs. low) 0.34 0.09 0.00
Bike or e-Bike ownership (yes vs. no) 0.35 0.08 0.00

Measurement model (Frequent micromobility user) ζ S.E.. P-value

Shared E-scooter 3.76 1.28 0.00
Bike sharing 1.30 0.16 0.00

P-values are based on the robust standard errors used to control for heteroscedasticity
that might exist.

5.4. Factors impacting the shift to carsharing580

This model investigated factors impacting the shift from different modes to carsharing. We grouped the
modes replaced by carsharing into two groups; the first one being the low-capacity vehicles groups (including582

cars as a driver, cars as passengers, E-hailing, and Taxis) and the second group being the PT group (with
bus, tram, underground, and suburban trains). These observations amounted to 478 users who shifted from584

the previous specific modes, representing 93% of the total number of carsharing users (515 users). The rest
of the observations (37) were removed from the sample used to estimate this model. The dependent variable586

of the model was coded as a binary variable with the value of one in the case of the shift taking place from
a low capacity vehicle (cars as a driver, cars as passengers, E-hailing, and Taxis), the first group, and zero588

otherwise, similar to the approach adpoted by Abouelela et al. (2022). Table 6 shows the model estimation
results, and Figure 6 shows the model’s full path diagram.590
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Figure 6: Full path diagram for the binary HCM for shift to carsharing

Table 6: Binary HCM results for the shift from different modes to carsharing

Variable β S.E. P-value

ASC 1.04 0.27 0.00
Willingness to walk to carsharing (less than 5 min vs. more than 5 min) 0.32 0.19 0.06
Income (2,000 AC or more vs. less) 0.45 0.24 0.05
Access to car (yes vs. no) 0.66 0.21 0.00
Occupation (Full–time vs. other) 0.46 0.23 0.05
LV1: Frequent PT user (λ1) -0.30 0.12 0.01

ρ2 = 0.155 ρ2Adjusted = 0.147
Number of observations = 478

Latent variable Model

Structure model (Frequent PT user) γ S.E.. P-value

Bike or E-Bike ownership (yes vs. no) -0.21 0.11 0.05
Carsharing familiarity (high vs. low) 0.27 0.17 0.09

Measurement model (Frequent PT user) ζ S.E.. P-value

Tram 2.06 0.21 0.00
Underground 2.57 0.32 0.00
Suburban train 2.26 0.25 0.00
Bus 1.76 0.20 0.00

P-values are based on the robust standard errors used to control for heteroscedasticity that might exist.

The estimated model results show that high-income individuals, who are full-time employed, have access
to a car, and are willing to walk less than five minutes to carsharing pick-up locations, are more likely to592

shift to carsharing from low–occupancy vehicles as compared to the rest of the population, which are in line
with the profile of shared mobility users. Only one latent variable was significant in this model, namely the594

frequent PT users. The negative sign for the latent variable, LV1 (λ), showed that PT frequent users are
less likely to shift from low-capacity vehicle trips to carsharing. Similar results were found in the case of596

pooled rides, where PT frequent users were less likely to adopt shared mobility in the form of pooled rides
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(Abouelela et al., 2022). The latent variable model shows that for the measurement model part, all the598

coefficients (ζ) are positive, showing that the higher the use frequency, the more likely it is to be a frequent
PT user, which is intuitive. The Structure model part shows that people who are familiar with carsharing600

services are more likely to be frequent PT users, and people who own bikes are more likely to use PT in
comparison with those who do not own bikes. The estimated model answers the the remaining part of RQ1.602

5.5. Factors impacting the choice between carsharing operators

This model targeted factors impacting the choice between the different operators with different payment604

schemes, namely payment per minute or payment per kilometer, which answers the second research question
(RQ2). As shown in Figure 2, six options were available; certainly-A and probably-A, indifferent, probably-B,606

certainly-B, and ”None”. Options certainly-A and probably-A were aggregated to A, the same aggregation
was done for options B, the indifferent option was deleted, and option ”None” was kept as the third option,608

following similar procedures to Abouelela et al. (2021); Fu et al. (2019); Vermeulen et al. (2008).
The indifferent options represented 9.3% of the total answers, and the choices of the remaining aggregated610

scenarios were distributed as 53.1% for option A, 33.6% for option B, and 4% for the none option. Our
hypotheses for the model-building process were that males and people who have adventurous personalities612

might opt for operator B for its possibility to have cost savings; also, we believe that adventurous users
would opt for option B as they were expected to drive faster for cost saving.614
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Figure 7: Full path diagram for the multinomial HCM for carsharing operator choice

Figure 7 shows the full path diagram and Table 7 and Table 8 show the estimated model coefficients
and parameters for the HCM of the payment schemes. The interpretation of the model results considers the616

“non-trip” option as the reference level for comparison with other options. The choice experiment tested
the significance of four carsharing-related attributes on the choice between the payment schemes; trip cost,618

access distance, rating on the app, and vehicle engine type, electric or not. All the variables were significant
except the access distance. The cost coefficient for option B (pay-per-minute option) was based on the620

average cost shown in the experiment, and the coefficient of the vehicle being electric or not was generic for
both options. Interestingly, app rating was the variable with the highest absolute coefficient value for this622

group of variables.
The cost coefficient shows that users value the cost of paying per minute to be cheaper than paying624

per km; we believe that this is most likely due to the fact that there is a chance to pay a lower cost when
choosing to pay per minute. Other factors show that app rating is more effective in the choice of option626

23



A, compared to option B. Six user characteristics were significant, showing that users with high-income
levels, familiarity with carsharing services, valid driving licenses, and who have used carsharing before, were628

more likely to adopt carsharing compared to other population groups. On the other hand, people who live
in small size households and who own bikes were less likely to choose car sharing in comparison to other630

groups. Finally, the two latent variables were only significant for option B, and they indicated that shared
micromobility users were more likely to choose option B, and people who value the importance of the app632

were more likely to choose option B. We believe that the main reasons for this are that shared micromobility
trips are paid per minute of use; besides, people who value the importance of the app in the service users634

are more likely to be used to the scheme of paying per minute, which was the original offer for all the shared
vehicle services.636

Table 7: MNL model results for the choice between different carsharing operators

Variable Operator A (per
km)

Operator B (per
min.)

None

β S.E. P-
value

β S.E. P-
value

β S.E. P-
value

ASC -4.77 0.20 0.00
Cost (AC) -0.37 0.01 0.00 -0.32 0.01 0.00
Access distance (Meter)
Rating on the app. store ( ⋆) 0.41 0.02 0.00 0.30 0.02 0.00
Electric Vehicle (yes vs no)* 0.16 0.03 0.00 0.16 0.03 0.00

Income 2,000AC or more (vs. less) 0.34 0.13 0.01 0.41 0.13 0.00
Driving license (yes vs. no) 0.57 0.13 0.00 0.43 0.13 0.00
Carsharing familiarity (high vs. low) 0.64 0.11 0.00 0.38 0.11 0.00
Carsharing use (yes vs. no) 0.79 0.13 0.00 0.83 0.13 0.00
Household size = 1-2 (vs. 3+) -0.19 0.12 0.10 -0.26 0.12 0.03
Bike ownership (yes vs. no) -0.38 0.11 0.01 -0.46 0.11 0.00
LV1: Frequent micromobility user (λ1) 0.13 0.03 0.00
LV2: Carsharing app feature (λ2) 0.14 0.03 0.00

ρ2 = 0.344 ρ2Adjusted = 0.343
Number of observations = 9469

P-values are based on the robust standard errors used to control for heteroscedasticity that might exist.
* Generic coefficient for both options

Table 8 shows the latent variable models. The first latent variable model, the importance of app-rating,
can be interpreted as the coefficient (ζ) for the measurement model being positive, showing that the higher638

the rating for the importance of app ease of use and the higher the rating on the app store, the more
likely the person is to be in this user group. The structural part of the model shows that males and high-640

income individuals are less likely to be in this group in comparison with the rest of the population. In the
second latent variable model, frequent shared micromobility users, the measurement model part coefficients642

(ζ) shows that the more frequently shared micromobility used, the more likely to be in this group. The
structural model part shows that male users are more likely to increase the use of shared micromobility in644

comparison to female users, which is usually observed in the case of shared mobility services.
It is important to highlight that our initial hypotheses were not significant and personality traits did not646

impact the choice for the payment scheme; however, gender indirectly impacted the choice between payment
schemes through the latent variable.648
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Table 8: Latent variable model results for the choice between different carsharing operators

Latent variable Model

Structure model (Frequent micromobility user) γ S.E.. P-value

Gender Male (vs female) 0.291 0.032 0.000

Measurement model (Frequent micromobility user) ζ S.E.. P-value

Shared E-scooter 1.973 0.131 0.000
Bike–sharing 1.825 0.093 0.000

Latent variable Model

Structure model (Perceived app importance) γ S.E.. P-value

Gender: male (vs. female) -0.112 0.025 0.000
Income: 2,000 AC or more (vs less than 2,000 AC) -0.056 0.027 0.041

Measurement model (Perceived app importance) ζ S.E.. P-value

App ease of use 4.052 0.377 0.000
App rating on app store 1.471 0.046 0.000

P-values are based on the robust standard errors used to control for
heteroscedasticity that might exist.

6. Discussion, limitations, and conclusions

6.1. Discussion650

In this research, we collected user and carsharing–related data to understand the impact of psychological
factors including personality traits, travel behaviour, and attitudes on the knowledge about carsharing, its652

adoption, and use on the one hand, as well as examine the factors impacting the choice between different
carsharing operators.The research was applied to a case study in Munich, Germany, focusing on young users.654

The collected data shows that carsharing users are young, highly educated males with high-income levels,
with full-time jobs, living in small size households, and with a valid driving license, which is aligned with the656

general profile of shared mobility services and specifically carsharing users (Liao et al., 2020; Namazu et al.,
2018). Obviously, the characteristics of carsharing users show the potential for inequitable use problems,658

wherein population groups, such as low-income and low-education groups, are not frequent carsharing users,
which was evident in the collected sample, and revealed by the analysis process and the estimated models.660

Shared mobility needs a smartphone, digital banking options, and knowledge about the app use to use the
service. Such conditions are not always available and add to the inequitable use situation that might result662

from other conditions, such as service unavailability within reach and service unaffordability (Abouelela et al.,
2024). Digitalization therefore becomes a concern as it is often highlighted as a key enabler to sustainable664

development of cities (Balogun et al., 2020) in general, and to shared mobility in particular Goehlich et al.
(2020). Several strategies could help mitigate this, such as subsidizing the service and offering an alternative666

to digital access and digital banking options; however, these solutions do not always guarantee success. For
example, in Chicago, IL, only 0.05% of shared e-scooter trips were made with non-digital banking options668

that were provided to help solve the inequitable use problem for shared e-scooter use (Abouelela et al.,
2023). While providing alternatives to digital solutions might be plausible in the short–term, addressing670

concerns of digital literacy and access might be the only viable long–term solution, so that all population
groups can have access to the service and its digital platform.672

The collected data analysis showed that users and non-users have distinguished travel behavior with
significant differences, which indicates the need for further investigation into how to adjust carsharing674

service operations to cater to the different travel behaviors and to attract non-users, if possible. Moreover,
most users (40%) indicated that their last carsharing trip replaced PT (underground, suburban train),676

showing that there is a potential that carsharing might increase the VKT, as it replaces large occupancy
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vehicles (PT). On the other hand, 35% of users reported carsharing as a replacement for low–occupancy678

vehicles, including private cars as passengers or drivers and e-hailing, which may reduce the total VKT. The
latter could have positive impacts such as reducing energy consumption and resulting CO2 emissions, and680

required parking spaces (6t-Bureau de recherche & ADEME, 2016; Baptista et al., 2014). However, more
information is required, including the access and egress modes, and the vehicle capacity and occupancy, to682

better quantify the impacts of carsharing on the VKT; this, however, was not investigated, as it was not the
focus of this research. The responses to the questions regarding familiarity with carsharing services show684

that there is a proportional relation between carsharing use and knowledge about the service, indicating that
to increase the use of such services, more marketing and reach-out plans should be conducted by providers to686

increase people’s knowledge and awareness regarding the service, mainly to target non-users. The EFA was
conducted on the three main question groups (service aspect rating, personality traits, and travel behavior),688

and each of these groups showed two factors. The first question group related to the carsharing service’s
important aspects showed two factors: I) the app-related attributes and II) physical offers. These estimated690

factors show the importance of the app-related attributes, which were not examined in previous research,
up to the best of our knowledge, and which need more investigation to reach the recommended design by692

users, as it has a role in impacting service use, as shown in the estimated models. App-related attributes
were significant in the preference of paying per minute; however, physical attributes were not significant694

in any of the estimated models, confirming the importance of the app-related aspects of the service. The
second question group is the personality trait group, which showed two distinctive personality traits, III)696

an adventurous personality and IV) an organized personality. Our hypothesis was that an adventurous
personality would be more likely to use carsharing services than other types of personality due to the higher698

levels of mobility and independence provided by carsharing, which fits the characteristics of the adventurous
personality (Redmond, 2000). The estimated model showed the significance of the adventurous personality700

in adopting carsharing services and the higher level of knowledge regarding the service. For the last question
group, travel behavior, two estimated attitudes were related to travel behavior; V) PT frequent user and VI)702

shared micromobility user. Both factors indicate a distinguished travel pattern that shapes the adoption
and use of carsharing services. Shared micromobility users are likelier to adopt the service and prefer to pay704

per minute of use, while frequent PT users are less likely to shift from low-capacity vehicles to carsharing.
The impacts of the travel behavior latent construct on the use of shared mobility use were evident in the706

case of pooled rides (Abouelela et al., 2022), showing the importance of accounting for the different travel
preferences when planning new services or even integrating them with current services such as PT, and other708

shared services that could increase the potential of multimodality. Moreover, frequent shared micromobility
users, in this case, shared e-scooter and bikesharing, are more likely to adopt other shared mobility services,710

which highlights the question of the impacts of shared mobility frequent use on Mobility as a Service (MaaS)
platforms adoption or would the availability of all the shared service within one platform increase the use712

of these services, and increase the possibilities of multimodality, which could be a sustainable outcome.
Multimodality is one of the expected positive potential outcome of MaaS, and subsequently increasing the714

sustainability of the transport system (Ho & Tirachini, 2024). It is also to be noticed that carsharing service
plays a significant role in MaaS use and utilization, which was observed in the aces of the Augsburg, Germany716

MaaS trial, where customers of the Maas bundle utilized their full carsharing allowance and subsequently
increase their carsharing use showing the pivotal role for carsharing in MaaS use and utilization (Reck et al.,718

2021). Also, Keller et al. (2018) observed that carsharing user have higher intention to use MaaS platforms
then the rest of the population.720

The estimated models showed that sociodemographics attributes, knowledge about carsharing, and per-
sonal attitudes and personality traits play significant roles in carsharing use. The estimated model showed722

that the attributes that increase the probability of carsharing service adoption are: high familiarity with
carsharing service, having a valid driving license, full-time employment, a high education level, high-income724

level, owning a bike, having an adventurous personality, and being a frequent micromobility user. The
results of this model are in line with the general profile of shared mobility users (Le Vine & Polak, 2019b;726

Martin & Shaheen, 2011a; Alemi et al., 2018; Ahmed et al., 2021; Luo et al., 2019). It is to be noted
that the variable with the highest estimated coefficient is familiarity with carsharing services, followed by728

the availability of a driving license and the (high) level of education. It is clear that knowledge about the
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service is very important in impacting its adoption, which highlights the role of marketing in service use.730

Also, shared mobility users are more likely to use such services in different forms. On the other hand, users
who have access to a car, users with PT subscription-based tickets, and living in small size households are732

more likely not to use the service, showing that there is a need to investigate the potential of integrating
carsharing services in the PT subscription to increase the service use.734

Again, sociodemographic characteristics and attitudes play a significant factor in the shift from different
modes to carsharing, where high-income people who are full-time employed, willing to walk for a short period736

(less than 5 minutes) and have access to a car have a higher likelihood to shift from low occupancy vehicles
to carsharing, while PT frequent users are less likely to do so. This model also shows the significance of738

sociodemographics and travel behavior in replacing different modes with carsharing services, and it is also
in line with the profile of shared mobility users.740

When looking at factors impacting the choice between operators with different payment schemes, trip
cost, rating on the app store, and availability of electric vehicles were found to be quite significant. App742

rating was the coefficient with the highest reported value, showing its importance in the choice between
different payment schemes. Also, people perceive the payment per minute as cheaper than the payment per744

km, which is an interesting result showing the preference of users for the payment scheme per minute (the
oldest, more common scheme for carsharing payment) over the payment per km with all the other factors746

being constant. Also, sociodemographics are crucial in choosing between operators, such as high income,
driving license, familiarity, and previous use of carsharing services. On the other hand, having a bike and748

living in a small size household reduce the likelihood of carsharing use. The highest estimated coefficient
in this model related to user characteristics is the previous use of carsharing, showing that people who750

have experience with the service are more likely to choose to pay per minute if all other factors are kept
constant. Attitudes also played a significant role, wherein respondents who valued the importance of the752

app and shared micromobility frequent users are more likely to use the service and choose to pay per minute
of use. These findings highlight the preference for the payment per minute and could be used by operators754

to increase their demand by focusing on app development and rating.
The answer to the final research question regarding the knowledge about carsharing services emphasized756

again the importance of sociodemographics and attitudes on the level of knowledge; in particular, previous
use of carsharing, availability of a driving license, living in small size households, and full-time employees758

were more likely to have a higher level of knowledge regarding carsharing service. Service adoption and
knowledge about the service were found to be significant in increasing the probability of each other, showing760

the need to advertise the service to attract more users and to focus on the other social groups that do not
have enough knowledge regarding the service and subsequently who do not adopt it. Also, frequent PT762

users and people with adventurous personalities were more likely to have a higher knowledge regarding the
service. Two highlights from these findings are that frequent PT user knowledge about the service should764

be coupled with encouraging carsharing use as a first-last mile solution that could increase multimodality.

6.2. Study limitations and future research needs766

This research tries to update the current knowledge regarding carsharing services, using a mix of revealed
answer questions and a stated preference experiment. However, the study comes with limitations, which768

we believe do not impact the overall research integrity. The main objectives of appraising the limitations
are to have a transparent outcome and to help similar studies avoid or consider them in the future. The770

collected sample was balanced in terms of users vs. non-users of carsharing services and in gender; however,
it was unbalanced for other sociodemographic characteristics, such as income level and education level. On772

the other hand, shared mobility users are likely to be young and highly educated compared to the average
population, which makes the sample acceptable for the purpose of the study. Moreover, the sample was not774

representative of the city’s population; the findings should, therefore, not be directly interpolated or carried
out on other social groups. Different attitudes were examined, along with their impacts on the different776

aspects of carsharing use; however, attitude and personality traits are hard to quantify and measure. They
are essential to understand user preferences for the different aspects of shared mobility use, and they might778

be more significant and influential in deciding travel behavior in general and shared mobility use.
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The used stated preference experience examined only a number of attitudes, travel cost, app rating,780

electrification of the vehicle, and access distance to the nearest vehicle; other attributes could have been
used as well. However, this was done on purpose, not to overload the respondents with information that782

might distract their attention, and to have a simpler experience. The stated preference experiment assumed
that the payment by KM is a fixed cost, although this can slightly change in reality, such as in the case of784

congestion; users could alternate from the original route, the shortest path, causing extra travel distance
that would increase the trip cost. However, the variation of the travel cost (±25%) around the average786

trip value would cover this possibility. The survey was deployed online, which can create a response bias,
as groups with no access to the internet and older populations might not be represented in the sample.788

However, as shown in previous studies, this would not be the case for younger groups, shared mobility
users, and highly educated individuals with access to the internet. The hybrid choice models are not the790

only way to implement attitudes into discrete models, but we believe that in this research, they fit the
required methodology to answer the main research questions. The personality traits that were estimated792

via EFA were what the people report, their self-perception on their own personality, but might not be how
they are if they had done real psychometric tests. Finally, the assessment of the impact of modal shift (to794

carsharing) on VKT was not conclusive (see Section 6.1), as in most cases carsharing trips replaced PT
(likely increasing VKT), however they also often replaced small occupancy vehicles such as cars (possibly796

reducing thereby VKT). To further investigate this and better quantify the impact, more information would
be needed regarding the trips replaced, such as trip distance, vehicle occupancy, but also the modes used798

to access and egress the carsharing services. Moreover, to project the findings on a larger scale, additional
travel behavior data would be essential, so that the modal shift analysis does not only rely on the last800

trip made, but rather go beyond it to take into account a longer time frame which would encompass the
frequency at which such modal shift would occur. As the above was not part of this study, a further in-depth802

exploration for the VKT analysis is recommended for future research.
As currently carsharing only accounts for a small portion of the total modal share compared to private804

cars, the magnitude of its impacts is limited (Migliore et al., 2020). Future research could also focus on how
extending the service coverage areas, fleet size, and ideally electrifying the fleet could help cities reap the806

optimum benefits of carsharing (Migliore et al., 2020; Harris et al., 2021; Ye et al., 2021).
It is important to highlight that the survey data was collected during the last waves of the COVID-19808

pandemic, and it should be noted that the pandemic conditions inevitably impacted carsharing use and
safety perception on different levels. However, lessons from previous studies on the pandemic impact on810

carsharing use has been inconclusive. For instance, in Madrid, Spain, carsharing has been perceived by
some users as a means to avoid public transport (and therefore as a safer mode), while for others less812

so, as they replaced it with walking and biking (Alonso-Almeida, 2022). A study in Poland showed other
findings, in which the pandemic was not a challenge for carsharing users, as it did not hinder their overall814

use (Gorzelańczyk et al., 2022).

6.3. Conclusions816

This research investigated the impacts of personality traits and attitudes on the different aspects of
carsharing use: adoption, the shift from other modes, the choice between different operators, and finally,818

the knowledge about the carsharing services. A large sample (N = 1044) of young user data was used in
the analysis collected from Munich, Germany. The results continue to highlight the importance of the user820

sociodemographic characteristics in impacting service use and raise questions regarding inequitable service
use and adoption. The findings of the estimated econometric models also show the significance of personality822

traits, travel behavior, and digital service aspects (such as app ease of use and rating on the app store) on
carsharing use. These findings also stress the importance of designing user-friendly apps and maintaining824

good ratings, which can attract more users. Findings also showed that frequent shared mobility users adopt
shared mobility in different forms of the service, showing the potential of MaaS in increasing shared mobility826

use and increasing the potential of multimodality. Finally, the estimated models could be used as a part of
broader travel demand models that could estimate the adoption of carsharing and which might be used to828

quantify the share of the operators based on their payment methods.
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Appendix A. Additional analysis

Table A.1: Usage and familiarity with carsharing service summary statistics

Familiarity with carsharing services Male Female Non-user User

I do not know about them 13% 13% 24% 2%
I have heard about them 20% 23% 33% 10%
I know about them, but not much details 49% 50% 39% 60%
Very familiar, I know almost everything about them 18% 13% 4% 28%

Willingness to walk

Less than 2 minutes 12% 13% 14% 11%
2 minutes – 4 minutes 29% 22% 22% 29%
5 minutes – 7 minutes 34% 35% 34% 36%
8 minutes – 10 minutes 21% 15% 20% 17%
More than 10 minutes 10% 7% 10% 8%

Type of use

Yes, as a driver 16% 9%
Yes, as a passenger 24% 31%
Yes, sometimes as a passenger, and sometimes as a driver 11% 8%
Never 49% 53%

Frequency of use

Never 49% 53%
Less than once a month 37% 34%
1 – 3 times per month 12% 11%
1 – 3 times a week 1% 1%
4 or more times per week 1% 0%

Replaced Mode (top 5 modes representing 75% of the users)

Underground (U-Bahn) 24% 26%
Suburban train (S-Bahn) 15% 14%
Car as a driver 14% 11%
E-hailing (Uber, and similar) 11% 9%
Car as a passenger 11% 12%

Trip purpose (top 4 purposes representing 80% of users who used Carsharing

Leisure (Restaurants, bars, parties) 40% 41%
Visiting someone 19% 18%
Work 13% 10%
Shopping 7% 11%
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Table A.2: Attitudinal questions summary statistics

Service rating User Nonuser Female Male

App ease of use 4.20±0.94 4.21±0.95 4.25±0.97 4.17±0.91
App rating 3.54±1.03 3.74±1.05 3.68±1.06 3.61±1.03
Service offers bundles 3.65±1.19 3.81±1.03 3.81±1.08 3.67±1.15
Availability in other cities 3.52±1.18 3.7±1.16 3.63±1.19 3.60±1.16
Availability in Airport 3.60±1.29 3.71±1.17 3.82±1.21 3.52±1.23
Availability of different size vehicles 3.50±1.20 3.45±1.12 3.60±1.15 3.37±1.16
Availability of EV 3.02±1.16 3.23±1.15 3.30±1.13 2.98±1.16
Personality traits User Non user Female Male

Adventurous 0.83±0.85 0.61±1.01 0.66±0.97 0.77±0.92
Anxious -0.05±1.04 0.05±1.08 0.2±1.03 -0.16±1.06
Being in Charge 0.72±0.83 0.57±0.89 0.68±0.86 0.62±0.88
Being outdoor 1.06±0.83 0.84±0.98 0.99±0.89 0.91±0.92
Calm 0.68±0.98 0.71±0.95 0.54±0.98 0.81±0.94
Creative 0.74±0.95 0.74±0.93 0.86±0.88 0.64±0.97
Efficient 0.88±0.85 0.81±0.83 0.91±0.83 0.80±0.85
Independent 1.10±0.75 0.99±0.83 1.03±0.79 1.06±0.8
Lazy -0.13±1.10 -0.12±1.07 -0.17±1.04 -0.09±1.12
Like to be alone 0.15±0.99 0.16±1.11 0.11±1.02 0.2±1.09
Optimistic 0.91±0.85 0.72±0.95 0.76±0.89 0.86±0.92
Participating 0.92±0.72 0.79±0.81 0.85±0.77 0.86±0.77
Punctual 0.66±1.14 0.78±1.05 0.7±1.09 0.74±1.10
Risk taker 0.14±1.02 0.05±1.08 -0.02±1.02 0.19±1.07
Routines 0.47±0.97 0.45±1.00 0.50±0.98 0.43±0.99
Spontaneous 0.65±0.96 0.54±0.92 0.57±0.94 0.61±0.94
Stay close to home -0.09±1.04 0.25±1.05 0.11±1.06 0.06±1.06
Variety Seeker 0.78±0.79 0.73±0.86 0.72±0.8 0.78±0.85
Mode use frequency User Nonuser Female Male

Bus 2.49±1.28 2.71±1.27 2.6±1.27 2.6±1.28
Car as driver 1.47±1.44 0.9±1.35 0.98±1.31 1.34±1.49
Car as passenger 1.70±1.05 1.42±1.19 1.71±1.17 1.44±1.08
Personal Bike 1.67±1.54 1.19±1.48 1.3±1.51 1.53±1.54
Suburban train 2.23±1.26 2.2±1.37 2.17±1.32 2.25±1.31
Shared E-Scooter 0.7±0.97 0.42±0.81 0.5±0.87 0.61±0.93
Bike sharing 0.54±0.89 0.43±0.84 0.39±0.8 0.56±0.91
Taxi 0.69±0.87 0.5±0.77 0.68±0.9 0.52±0.75
Tram 2.16±1.33 2.11±1.4 2.13±1.38 2.14±1.35
underground 2.97±1.29 3±1.37 3.01±1.34 2.97±1.33
Walking 3.63±0.82 3.63±0.78 3.62±0.82 3.64±0.78
E-hailing 0.94±0.94 0.54±0.81 0.81±0.94 0.68±0.85
Personality question levels were coded as Totally disagree = -2,Disagree = -1,
Neutral = 0, Agree = 1, Totally agree = 2

Mode use frequency levels were coded as Never = 0, Less than once a month = 1,
1 – 3 times per month = 2, 1 – 3 times a week = 3, 4 or more times per week = 4
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Table A.3: χ2 test results for personality traits

Users vs. Non-User Male vs. Female
Service aspect rating χ2 ‘P-value‘ χ2 ‘P-value‘

Service availability in other cities 6.36 0.17 3.60 0.46
Offers bundles 15.40 0.00 * 4.81 0.31
App rating 17.70 0.00 * 6.62 0.16
Different size vehicles availability 13.4 0.01 * 10.46 0.03 *
EV availability 14.80 0.01 * 22.00 0.00 *
Airport availability 16.40 0.00 * 25.73 0.00 *
App ease of use 1.68 0.80 11.77 0.02 *

Personality χ2 ‘P-value‘ χ2 ‘P-value‘

Efficient 6.20 0.18 5.54 0.24
Independent 6.72 0.15 5.57 0.23
Routines 2.57 0.633 1.94 0.75
Punctual 7.38 0.11 3.35 0.50
Variety Seeking 4.62 0.32 4.70 0.32
Lazy 2.04 0.72 5.01 0.29
Stay close to home 32.6 0.00 * 3.06 0.55
Being outdoor 20.00 0.00 * 3.26 0.52
Spontaneous 8.77 0.06 * 3.72 0.45
Being in charge 12.6 0.01 * 4.10 0.39
Participative 10.10 0.03 * 5.46 0.24
being alone 12.90 0.01 * 6.02 0.20
Optimistic 12.20 0.01 * 8.29 0.08
Adventurous 20.90 0.00 * 8.29 0.08
Creative 1.48 0.83 15.00 0.00 *
Calm 6.89 0.14 21.90 0.00 *
Risk taker 4.60 0.33 22.70 0.00 *
Anxious 5.52 0.23 31.60 0.00 *

Mode use frequency χ2 ‘P-value‘ χ2 ‘P-value‘

Tram 3.28 0.51 3.37 0.50
Walking 6.23 0.18 6.2 0.19
Underground (metro) 7.10 0.13 1.22 0.88
Bus 9.48 0.05 * 4.98 0.29
Suburban train 12.00 0.02 * 1.5 0.83
Shared-e-Scooter 29.90 0.00 * 6.15 0.19
Personal Bike 31.40 0.00 * 7.38 0.12
E-hailing 64.00 0.00 * 7.41 0.12
Shard Bike 9.97 0.04 * 12.7 0.01 *
Taxi 18.90 0.00 * 14.5 0.01 *
Car as a passenger 43.10 0.00 * 16.2 0.00 *
Car as as driver 71.50 0.00 * 18.2 0.00 *

* Significant difference with minimum 95% significance level.
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Aguilera-Garćıa, Á., Gomez, J., Antoniou, C., & Vassallo, J. M. (2022). Behavioral factors impacting adoption and frequency
of use of carsharing: A tale of two european cities. Transport Policy, 123 , 55–72.852
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Morikawa, T. et al. (1999). Extended framework for modeling choice behavior. Marketing letters, 10 , 187–203.

Ben-Akiva, M., Walker, J., Bernardino, A. T., Gopinath, D. A., Morikawa, T., & Polydoropoulou, A. (2002). Integration of880

choice and latent variable models. Perpetual motion: Travel behaviour research opportunities and application challenges,
2002 , 431–470.882

33



Bhagat-Conway, M. W., Mirtich, L., Salon, D., Harness, N., Consalvo, A., & Hong, S. (2024). Subjective variables in travel
behavior models: a critical review and standardized transport attitude measurement protocol (stamp). Transportation, 51 ,884

155–191.
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Findings 

With the increasing popularity of shared e–scooters, understanding where they 
are parked becomes crucial, especially for integrating them with existing public 
transportation services. In this study, we analyzed the relationship between trip 
origins and the nearest bus stops, using 506,000 shared e-scooter trips from 
Louisville, Kentucky. We examined this relation temporally for different hours of 
the day and different weekdays, but also spatially, using three metrics including 
land use, distance from the city center, and the Local Index of Transit Availability 
(LITA) accessibility index. The temporal analysis showed a different parking 
distance pattern during early morning hours (between 2 and 4 a.m.), whereas the 
spatial analysis showed no impact of spatial features on distances between scooter 
parking (and therefore trips starting points) and nearest bus stops. 

1. Questions 
Scooters could arguably replace motorized trips (Abouelela, Al Haddad, and 
Antoniou 2021), or at least reduce their negative impacts, especially if they are 
well integrated with existing public transportation. This integration can solve 
the first and last-mile dilemma (Fearnley, Johnsson, and Berge 2020), increasing 
accessibility to public transportation (Oeschger, Carroll, and Caulfield 2020), 
but also leading to more sustainable transportation systems (Kager, Bertolini, 
and Brömmelstroet 2016). One of the most important, but not yet studied 
aspects of scooter integration with public transportation, is the distance 
between the stops and the scooters, as walking distance willingness could be 
a factor affecting or determining the use of different transportation services. 
In this study, we assessed the distances between bus stops and parked scooters 
both temporally and spatially. Temporal analysis considered different hours 
of the day and different days of the week, while spatial analysis looked at 
different land uses, distances from the city center, and accessibility to public 
transportation (bus). This assessment aimed to answer following research 
questions: 

1. What is the average distance between scooter trip starting points 
(origins) and the nearest public transportation stops, in this case bus 
stops? 
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2. Methods 
We used the open scooter trips data1 from Louisville, Kentucky, to analyze the 
relation between trips starting points and the nearest bus stops, as buses are 
the only available public transportation services in the city, organized by the 
Transit Authority of River City (TARC, ridetarc.org). We collected 505,993 
trips starting the 9th of August 2018 till the 31st of January 2020.2 

Subsequently, we removed trips outside the operation zones, trips with 
distances less than 100 meters3 or more than 50 km, with durations more than 
120 minutes, or speeds higher than 25 km/hour, resulting in 379,308 trips 
(75% of the original trips). The bus stops locations were defined using GTFS 
files downloaded from the Open Mobility Data platform (transitfeeds.com). 
We retrieved the city’s land use data from the city portal (data.louisvilleky.gov). 
Finally, the census zones limits used for the Local Index of Transit Availability 
(LITA) calculation were retrieved from the USA Census Bureau (census.gov). 

To answer the first research question, we used the Approximate Nearest 
Neighbor (ANN) searching algorithm library (Arya et al. 2019) available in the 
statistical software package R (R Core Team 2021), in order to calculate the 
euclidean distance between trips’ starting points4 and the nearest bus stops. 

To answer the second research question, the distance was calculated and 
aggregated for different temporal features, meaning different hours of the day, 
and different days of the week. For assessing the impact of spatial features, three 
metrics were considered: land use (considering the land use of the trip starting 
point), distance from city center , and LITA (for the different census zones). 
Thereafter, parking distances were assessed spatially. 

LITA calculations consider three aspects of public transportation service 
characteristics per census zone: 

2. How do different temporal and spatial factors influence the distance 
between parked scooters and nearest bus stops? 

• Route coverage score: the number of public transportation stops per 
zone 

• Frequency: the daily number of buses traveling the zone 

• Capacity: seat–miles per capita 

data.louisvilleky.gov/dataset/dockless-vehicles, accessed 30/6/2021 

Noland (2019) analyzed in more details the trip characteristics of a sample of this dataset. 

The removal of short trips, less than 100 meters, was done to avoid GPS multipath errors, as done in McKenzie (2019) for cleaning shared 
e–scooters trips. 

Only starting points or origins were considered to avoid data duplication; each trip origin or starting point is a previous trip destination or 
ending point. 

1 

2 

3 

4 
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Figure 1. LITA map 

Inputs needed for the above metrics, such as the bus stops, number of daily 
buses, length of bus lines, were all calculated using the GTFS files. The average 
of the three scores was added to 5.5, to avoid negative numbers resulting in 
the LITA score (Chen 2018), for which the higher the value, the better the 
accessibility per zone. Figure 1 shows the calculated LITA per zone for 
Louisville, Kentucky. 

It is to be noted that the trips’ geo-locations (latitude and longitude) were 
rounded to the nearest three decimal numbers for privacy reasons, which on 
average could affect the scooter location by 30 meters. While this 
approximation could have affected the distance calculations, the methodology 
used in this research could be generalized for other datasets with more accurate 
coordinates. 

LITA is calculated as the total daily seats on the bus line [bus capacity 
(assumed 36 seat/bus for TARC buses) multiplied by the number of 
buses per day] multiplied by the length of the bus route in the zone 
(in miles), divided by the sum of the total resident and employment 
population per zone. 
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Figure 2. Average hourly distance distribution between parked scooters and nearest bus stops 

3. Findings 
The euclidean distance calculations, along with the impact assessment of 
temporal and spatial features on parking distances between scooters and nearest 
bus stops, are summarized in Table 1. The obtained mean parking distance was 
found to be , with a standard deviation  m, which answers the 
first research question. The overall parking distance distribution is presented in 
Figure 2. Findings show that for 50% of the trips, scooters were parked within 
70 meters from the nearest bus station, and for 85% of the trips, the parking 
distance was less than 200 meters. 

The hourly distribution of the distances for the different days (Figure 3) shows 
that the parking distance has a rather similar pattern throughout the day, except 
between 2 and 4 a.m. Parking distances between 2 and 4 a.m. are statistically 
different from the rest of the day5 and tend to be longer, meaning that scooters 
tend to be further from bus stops. One possible reason could be the very small 
share of trips originating between 2 and 4 a.m. (about 0.6 % of the total daily 
trips). To investigate whether this was due to rebalancing and redistribution, 
distances were calculated between trip starting and ending points and the 

This was found based on a t–test between the mean parking distances between 2 and 4 a.m. and the mean during the rest of the day. 5 
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Table 1. Parking distance to the nearest bus station summary per different temporal and spatial categories in meter 

Min Min 11ssttQ Q mean mean Median Median 33rrddQ Q Max Max Std Std Trips (N) Trips (N) Pct (%) Pct (%) 

All trips 1 42 115 70 132 2948 134 379,308 100% 

Time of the day 

Morning (00:00-06:00) 1 71 116 71 136 1622 135 23,548 6.2% 

Before noon 
(07:00-12:00) 

1 70 116 70 133 1731 134 119,665 31.6% 

After noon 
(13:00-18:00) 

1 70 115 70 132 2948 133 171,137 45.1% 

Night (19:00-23:00) 1 70 115 70 133 2004 133 64,958 17.1% 

Day 

Weekdays 1 70 115 70 132 2483 133 256,382 67.6% 

Weekend 1 70 115 70 132 2948 134 122,926 32.4% 

Land–use 

Right-of-way 1 70 115 70 132 2192 133 112,501 29.7% 

Commercial 1 70 115 70 132 1733 133 91,257 24.1% 

Public and semi-public 1 71 116 71 135 2004 133 89,925 23.7% 

Residential 1 70 115 70 132 2948 136 52,314 13.8% 

Industrial 1 70 114 70 132 1323 132 19,586 5.16% 

Parks and open space 1 71 117 71 136 1924 138 11,018 2.9% 

Vacant 1 71 115 71 136 1013 130 2,707 0.71% 

LITA 

4-5 1 72 117 72 135 1193 134 9,256 2.4% 

5-6 1 70 115 70 133 2948 134 149,826 39.5% 

6-7 1 70 114 70 132 1223 133 27,280 7.2% 

7-8 1 70 113 70 132 1731 131 35,006 9.2% 

10-11 1 70 115 70 132 2192 134 157,933 41.6% 

Distance from downtown (km) 

Less than 0.5km 1 70 115 70 132 2192 133 85,119 22.4% 

0.5km - 1.0km 1 70 116 70 132 1731 135 58,130 15.3% 

1.0km - 1.5km 1 70 114 70 132 1290 132 39,476 10.4% 

1.5km - 2.0km 1 70 114 70 132 1731 131 18,808 5.0% 

2.0km - 2.5km 1 70 115 70 132 1223 133 13,304 3.5% 

2.5km - 3.0km 1 70 114 70 131 1193 134 12,048 3.2% 

3.0km - 3.5km 1 70 115 70 132 2004 134 23,053 6.0% 

3.5km - 4.0km 1 70 116 70 135 2483 136 51,009 13.4% 

More than 4.0km 1 70 115 70 132 2948 133 78,361 20.7% 

Land–use description, retrieved from American Planning Association (planning.org) 

Commercial Retail and whole sales, business offices 

Public and semi-public Public and private schools, municipal buildings, public property rather than parks, hospital, churches, 
and golf courses 

Residential Residential uses 

Industrial Light and heavy industrial uses 

Parks and open spaces All public parks, playgrounds, swimming pools, athletic fields 

Vacant Includes undeveloped land 

nearest bus stops, and their distribution compared with each other. Yet, as 
no statistical difference was found between both, there was no evidence to 
the rebalancing and redistribution effect. Longer distances might indicate that 
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Figure 3. Average hourly distance distribution; error bars in the zoomed view show the hourly standard deviation 

people use scooters from bus stops to travel further distances during early 
day hours (between 2 and 4 a.m.), which have no bus temporal coverage; in 
Louisville, the service hours for bus is between 5:30 a.m. and 10:30.6 Also, 
early morning distances tend to be longer during the weekend compared to 
weekdays, which could be attributed to an increase in recreational activity 
during weekends. 

Analyzing the distances according to varying land uses did not reveal any 
significant differences; however, the trip percentages showed that half of the 
trips started in commercial and public and semi-public land uses; this might 
indicate that scooters could have been used for recreational trips, as was 
supported in Noland (2019), and as observed in Washington, D.C. (McKenzie 
2019). The distance to the nearest station per each category of LITA values 
showed no significant differences or relation between the distances and the 
zonal bus accessibility. However, 40% of the scooters were parked in highly 
bus–accessible areas (LITA = 10-11), which could indicate that scooters 

https://moovitapp.com/index/en/public_transit-line-17-Louisville_KY-1442-11408-240824-0, accessed 1/7/2021 6 
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complement the use of buses or extend bus accessibility. Also, the distance 
between scooters and the nearest bus stop was not affected by the scooter’s 
locations away from the city center. 

Findings indicated that scooters could be used to extend the temporal 
accessibility of the bus service. On the contrary, there was not sufficient 
evidence that distance is impacted by any tested spatial features, including 
LITA, and land use. Of course, a finer spatial resolution of the data could 
lead to a more accurate analysis; however, this might come at the price of 
jeopardizing users’ locations, and therefore privacy. Additional data, such as 
user survey data focusing on trip purpose and multimodality, could 
undoubtedly help in better understanding whether or not scooters are used as 
first and last mile access to and from public transport, in the case of Louisville, 
bus services. 

The methodology presented in this paper could be replicated in other cities, in 
order to better understand scooter parking patterns, and whether the results 
obtained in Louisville would be comparable in other cities in the US, but also 
in the world. This could give an insight to service providers on how to better 
integrate scooters with existing public transportation systems. 
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A B S T R A C T

Shared E-scooters were introduced as a sustainable mode of transport that could help reduce
motorized traffic externalities; however, problems, such as inequitable use, emerged shortly
after the start of their operations. While existing literature has focused primarily on user and
vehicle characteristics as the main drivers of E-scooter inequitable use, it fails to understand or
capture other factors that impact travel decisions, such as urban design and activity accessibility.
This study proposes a framework to evaluate shared (E-)scooters’ equity based on accessibility
or lack of accessibility to different activities compared to other existing modes of transportation.
To test the proposed framework, a sensitivity analysis tested various scenarios using data from
scooter trips in Louisville, Kentucky. In total, 1903 main scenarios and 7612 sub-scenarios were
evaluated, focusing on accessibility gains for different social groups, modes of transport that
could be replaced by scooters, and different locations within the study area. As a result, scooters
have the potential to improve current levels of accessibility in 8% of the examined scenarios,
mostly when replacing uni–modal walking, biking, and public transportation trips. Furthermore,
disadvantaged groups did not gain significant accessibility advantages compared to the rest of
the population. We argue that the observed inequitable use of scooters is inherited from the
urban structure and activity density. In areas with fewer activities, where mostly disadvantaged
social groups live, people use E-scooters less. In order to make E-scooters a competitive mode
of transport in disadvantaged areas, urban structural solutions such as densification of land use
and promotion of different activities should be considered first.

1. Introduction

Urban transportation has undergone significant changes in the past decade, thanks to advancements in technology, the emergence
of eco-friendly options, and the introduction of shared mobility services (SMS) (Shaheen, 2018). Shared mobility is a pay-per-use
system where users are charged based on the time or distance they utilize them (Shaheen et al., 2016; Shared and Digital Mobility
Committee, 2018). These services are commonly provided through digital platforms and mobile phone applications and are usually
paid using digital banking services (Tirachini, 2020).

SMS can be divided into two main categories. The first category involves users sharing the ride with other passengers or the
driver. This group includes ride-hailing, ride-pooling, and alternative transport systems. In the second category, users have direct
access to the vehicles for personal use. The modes included in this group are carsharing and micromobility, such as bike-sharing,
moped, and shared E-scooter sharing (Hu and Creutzig, 2022). Several reasons have encouraged the use of SMS, driven by the three
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E-mail address: Mohamed.abouelela@tum.de (M. Abouelela).
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main goals of sustainability, social, economic, and environmental benefits; in principle, SMS are more sustainable transportation
options compared to the private passenger car, as they have the potential to reduce the vehicle idle time, have a milder impact on
the environment by lowering CO2 and greenhouse gas (GHG) emissions, reduce energy consumption, travel cost saving, and utilize
more compact space (Narayanan et al., 2023; Ruhrort, 2020; Becker et al., 2020; Roukouni and Homem de Almeida Correia, 2020).
SMS are gaining popularity and attracting demand from other traditional travel options; the popularity is indicated by the rapid
ridership growth, e.g., ride-hailing (Gehrke et al., 2019), bike-sharing (Fishman and Allan, 2019), and shared E-scooters (Abouelela
et al., 2023).

While increased mobility and accessibility are expected outcomes of the addition of SMS to the urban environment, this increase
in mobility and accessibility should be equally allocated to all the members of society. According to the first Article of the Universal
Declaration of Human Rights, all humans have equal rights (United Nations, 1948). These rights cannot be acquired or accessed
equally for all the members of the society without the availability of different means of mobility that are accessible to all the
society’s members regardless of their gender, income, ethnicity, or education level; otherwise, some groups would be excluded
from the participation in the daily life activities, creating a so-called social exclusion situation. The equitable use of SMS might
not always be achieved and can lead to social exclusion situations for specific user groups (Lucas, 2019). Social exclusion can be
defined as people’s inability to access different types of opportunities, e.g., economic, political, and social opportunities (Yigitcanlar
et al., 2019). Several reasons can lead to the social exclusion situation, such as but not limited to local transport operation, policies,
regulations, and infrastructure (Turoń, 2022).

The inequitable use of SMS is widely expected from its unique setup as users, in general, should have digital skills, a smartphone,
and digital banking access; otherwise, they will be excluded from using the service by default (Dill and McNeil, 2021). Also, SMS
might not be affordable to all population groups, and the spatial coverage of SMS might be limited to areas with high demand,
primarily near the downtown, and ignoring areas located in the city’s suburbs (Brown et al., 2022). While there are efforts in the
literature to identify factors behind the inequitable use of SMS, these efforts, especially in the cases of micromobility and specifically
Shared E-scooters, have focused on the user’s profile, socioeconomic and demographic characteristics, or availability and proximity
of vehicles to the users as the main reasons causing the inequitable use (Javid and Sadeghvaziri, 2023; Aman et al., 2021). SMS are
often perceived as oriented primarily toward young males with higher incomes, tourists, and students (Duran-Rodas et al., 2020).
However, we believe that the issue of inequitable use is not limited to the user’s characteristics or the availability of the vehicles but
is extended to the urban forms in terms of land use, neighborhood design, and the availability of opportunities, points of interest
(POIs), within an acceptable travel distance and travel cost (Xu et al., 2022; Guo and He, 2020; Levine et al., 2019). Therefore, we
hypothesize that the observed inequitable use of shared E-scooters in terms of trip density might have resulted from the fact that
the E-scooters’ introduction did not add significantly to the population’s accessibility to different opportunities (POIs), especially for
the transportation-disadvantaged population groups. This research contribution comes from verifying the below hypothesis:

The introduction of shared E-scooters does not increase or poorly increase the accessibility to different opportunities
compared to the available modes of transportation, especially for the disadvantaged population groups.

We propose a methodological framework to assess the equitable use of SMS, specifically shared E-scooters, referred to hereafter in
the rest of the manuscript as scooters. To the best of our knowledge, no such approach or hypothesis has been used or evaluated.

The remaining sections of the article are organized as follows: Section 2 reviews the current research, highlighting the methods
employed thus far to evaluate the equitable use of shared micromobility and identifying gaps in the existing literature and practices.
Section 3 presents the various datasets utilized in the analysis and the methodology used. Section 4 presents the analysis results,
while Section 5 offers the final research discussion and conclusion.

2. Literature review

2.1. Mobility, accessibility, social exclusion, and disadvantaged population

Mobility is a crucial part of our daily life; it is essential to fulfill our basic needs (e.g., work, food, health, leisure), i.e., accessibility
to activities outside our homes (Vecchio et al., 2020; Stanley et al., 2019). Accessibility and mobility are generally defined as the
‘‘ease of reaching’’ and the ‘‘ease of moving’’, respectively (Moseley, 2023; Vecchio et al., 2020). Mobility is the measure of the
efficiency of different modes of transportation, and it is reflected in the level of access to the various opportunities for all the
members of society (Martens, 2016). The role of mobility does not stop at increasing commuting levels and the ability to access
more essential opportunities. Still, it extends to improving individual well-being and psychological needs, such as interacting with
distant family and friends (Rambaldini-Gooding et al., 2021; Tao et al., 2020). Population groups that lack participation in various
activities can become socially excluded groups (Luz and Portugal, 2022; Allen and Farber, 2020). Social exclusion from activity
participation might result from different factors such as, but not limited to, the absence of an inclusive transport system, availability
of opportunities, or both (Lucas, 2022; Yigitcanlar et al., 2019; Hine and Mitchell, 2017).

Social exclusion can be described as the alienation of some individuals from the rest of their society in the form of their lack
of participation in everyday normal activities such as jobs and education the other members of the society can do, resulting in
insufficient well-being, which makes it a relative relationship with the surrounding society (Luz et al., 2022; Berg and Ihlström,
2019). Social inclusion is necessary to access social capital, gain from civic engagement, and even for well-being (Chikengezha
and Thebe, 2022; Stanley et al., 2022). Measuring social exclusion resulting from transportation and mobility-related problems is
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difficult; therefore, it is tackled by comparing the different social groups as reduced participation, reduced accessibility, or limited
welfare for a specific group in reference to the rest of the population (Hidayati et al., 2021; Di Ciommo and Shiftan, 2017). Social
exclusion is a relative concept about the place where people live. An example of the concept of the relativity of the exclusion through
measuring accessibility is if an individual who lives in a highly accessible area will travel a shorter distance than a person who lives
in an inaccessible area and is not mobility-impaired when compared to the rest of the population (Cooper and Vanoutrive, 2022; Luz
and Portugal, 2022). Therefore, it is crucial to define the social groups that suffer from inadequate levels of mobility and accessibility
and subsequent social exclusion, and we will be labeling such groups under the scope of this article as transportation-disadvantaged
groups.

Transport-disadvantaged individuals are people who experience a lack of transport options to access different opportunities (Bar-
daka et al., 2022; Cochran, 2020); nevertheless, in different situations, a poor transportation system might be coupled with various
opportunities within reach (Arellana et al., 2021). Also, people have different preferences for different opportunities and abilities
to overcome the barriers to accessing different opportunities (Martens, 2016). So, transportation-disadvantaged groups, or socially
excluded groups, are the groups that suffer from a combination of poor transport and urban accessibility issues. A more inclusive
definition for transportation disadvantaged groups would identify them as people who live in areas with poor transportation systems
and low accessibility to opportunities (Kamruzzaman et al., 2016). Therefore, there is a need to define mobility rights as they
are essential to be established as a citizen right, as it might result from distant, poor transport systems and limited ways of
communication (Stanley et al., 2019). Transport researchers have underscored the importance of mobility rights and access rights to
avoid social exclusion and to make sure that all the members of society can access different opportunities (Allen and Farber, 2020;
Barri et al., 2021), and they can overcome different barriers that might hinder their accessibility (Hine and Mitchell, 2017). It is vital
to conclude that social exclusion is not the absence of opportunities but the lack of access to opportunities. It is also to be noted that
social exclusion is not the product of the different causal factors, such as income, but the interaction between various factors (van
Dülmen et al., 2022). Therefore, identifying disadvantaged transport groups and ignoring the interaction between the different
factors is an over-simplistic approach, and holistic social inclusion requires better mobility and accessibility (Hine and Mitchell,
2017). Reduced mobility is one aspect of social exclusion; other factors might exist, such as the limited physical or psychological
ability to overcome boundaries and access opportunities in more comprehensive spatial content, in addition to depression and
anxiety (Shen et al., 2022; Dharmowijoyo et al., 2020).

One of the possible solutions to measure hard-to-quantify social exclusion is measuring accessibility. Accessibility is an essential
concept of transport planning, and it must be considered to design fair transport systems; it is a strong predictor of travel behavior
and the core of transport-related long-and-short-term travel decisions (De Vos et al., 2023; Martens, 2016). The relationship between
commuters, the used modes of transport, and urban forms can be described as residential density, employment density, and
neighborhood design representing urban form or physical design impact on human behavior regarding long-term decisions such
as location selection of residence and jobs and car ownership, and short-term travel decisions such as mode choice leading to
accessibility to the different opportunities and subsequently activity participation (Straatemeier and Bertolini, 2020). Therefore, we
can conclude that accessibility is the core of our travel decisions leading to activity participation.

Based on the previous, it is vital to understand how accessibility is measured. Several measures are used to quantify accessibility;
these measures can be categorized into two major groups: place-based measures and people-based measures. Place-based accessibility
measures depend on quantifying the potential accessibility in a particular location; for example, these measures capture the number
of job opportunities that can be accessed using a particular mode of transportation from a specific location (Palacios and El-geneidy,
2022). These measures assume that all people within a specific area have equal abilities, which does not consider individual
differences. Also, they can be used to quantify the impact of a new project on the accessibility of specific locations, such as census
geographies (Pereira, 2019; Horner and Downs, 2014). Another widely used measure is the gravity model, a location-based model
where the distance decay function is applied to discount the accessibility to far opportunities (Wu and Levinson, 2020; Palacios
and El-geneidy, 2022). On the other hand, people-based measures account for the unique characteristics of individuals but in an
aggregated manner, which opens the door to the question of remapping the individual characteristics to the place, with no solid
methodology to date, making this a significant limitation for people-based accessibility measures (Wu and Levinson, 2020; Levinson
and King, 2020).

2.2. Micromobility inequitable use

While, in general, introducing new modes of transportation is expected to increase accessibility by increasing the number of
modes available to travel, this is not always the case, especially for SMS. The service nature and setup create structural barriers
for some population groups to access the service, making its use inequitable (Shaheen, 2018). Different methods were employed to
assess the utilization of SMS. Table 1 summarizes several selected studies investigating the (in)equitable use of shared micromobility.
The selected studies focus on two main dimensions of the relationship between user and vehicle use: user characteristics and vehicle
availability. Although different methodologies were used, they were built on the aforementioned dimensions; e.g., economic indices
were used, such as the case of the Lorenzo curve used by Aman et al. (2021) to evaluate equity for bike sharing in Austin, TX,
and the use of opportunity index by Bai and Jiao (2021) to evaluate the equity of using the scooter in the same city. Javid and
Sadeghvaziri (2023), McQueen and Clifton (2022), McQueen (2020) evaluated the socioeconomic/demographic factors impacting
the ridership of bikesharing using regression models for bike sharing in New York and shared scooter in Portland, OR, respectively.
Other research used descriptive statistics, causal analysis, stakeholder interviews, and semi-structured interviews to evaluate the
equity of shared micromobility, but also these methods considered only the user profile or vehicles’ availability or both (Bach et al.,
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Table 1
Summary of some selected studies.

Reference Methodology Location Disadvantaged group Service

Aman et al. (2021) Lorenzo curve and regression models Austin Tx 80% of residents have no access to BS and SS.
transit-dependent people African American population

SS&BS

Javid and Sadeghvaziri
(2023)

Regression models New York, NY • Demand is correlated with high income, employment rate,
males, and high population density
• Racial minorities have fewer trips

BS

Dias et al. (2023) Descriptive statistics Braga, Portugal Access disparities by genders, ages, and income ranges SS
Su et al. (2022) Develop an analytical framework Washington DC • SS enhances accessibility to SMS for disadvantaged groups

• SS increases the access gap in different locations.
• BS is more equitable to use for low-income groups

compared to SS

SS&BS

Bach et al. (2023) Semi-structured interviewing approach Barcelona, Spain Moped-style
scooter

Henriksson et al. (2022) Stakeholders interviews Linköping, Sweden BS attracts users with high levels of accessibility BS
Desjardins et al. (2022) A balanced floating catchment area Ontario, Canada Enhanced accessibility to BS station for the serviced

population; however, the enhancement was not significant for
low-income groups

BS

Frias-Martinez et al. (2021) Causality analysis framework Chicago (CHI), Los
Angeles (LA), New
York City (NYC) and
Washington D.C.
(DC)

Low-income groups SS

Duran-Rodas et al. (2021) heuristic and data-mining to weigh both
Demand And/oR Equity (DARE)

Munich, Germany BS

Bai and Jiao (2021) Opportunity Index Austin Tx • Racial minorities
• Low income
• Physically disabled
• Old population

SS

Yan et al. (2021) Descriptive statistics Washington DC SS enhanced access to PT for the under-served neighborhoods SS
McQueen (2020) Regression models Portland • Racial minorities

• Gender disparities
SS

Laa and Leth (2020) Descriptive statistics Vienna, Austria Gender SS
McQueen and Clifton (2022) Regression models Portland • Racial minorities

• Gender disparities
SS

Qian and Jaller (2020) Regression model Chicago, USA • Employment rate
• Disadvantaged communities generate fewer trips

BS

Caggiani et al. (2020) mapping and descriptive statistics Seattle, Washington BS
Babagoli et al. (2019) Statistical analysis, and World Health

Organization’s Health Economic
Assessment Tool (HEAT)

New York, NY Stations are not distributed spatially inequitable way BS

BS = Bikesharing, SS = Scooter sharing.

2023; Henriksson et al., 2022; Desjardins et al., 2022; Frias-Martinez et al., 2021; Yan et al., 2021; Laa and Leth, 2020; Dias et al.,
2023). The review of the previous research identified the population groups that suffer the most from the inequitable use of shared
micromobility: female users, older population, low income, low education, public transportation (PT) dependent users, people with
a physical disability, racial minorities, low employment rate, and residents of suburban areas, refer to Table 1.

Brown et al. (2022) analyzed the equity provisions of 239 shared micromobility programs in the USA. The study found that
equity programs are more prevalent in the case of shared scooters compared to bikesharing. One possible reason for this difference
could be the relative novelty of scooter programs compared to bikesharing programs. Additionally, concerns regarding the equitable
use of scooters have emerged more recently; however, most recommendations were not mandatory but preferred or encouraged.
A similar situation for the requirement was detected in the case study used in our analysis (Louisville, KY, Section 3.1). Brown
et al. (2022), Riggs et al. (2021) summarized the recommendations for equitable use in the program. They examined six main
requirements, ordered by the number of times they appeared in the different documents: alternative access for smartphones, cash
payment options, reduced fares, geographic distribution requirements, service available in multiple languages, and adaptive vehicles.
These recommendations are loose and hard to materialize in beneficial ways, especially for disadvantaged user groups. One example
is the reduced fares; how much should the reduction be, and what would be the consequences if the operators did not abide by
these rules; are there penalties for operators if they do not follow the equity guidelines?

The analyzed programs and policies indicate that the primary emphasis of these policies is to enhance access to the shared
micromobility service rather than maximizing the benefits derived from the service itself. A meticulous approach is necessary. It is
evident that the demand for shared services, particularly in the case of free-floating systems, is directly linked to the supply level.
Increased supply leads to higher demand; however, this also results in longer vehicle idle time, leading to inefficient utilization of
space and resources (Su et al., 2022). The current regulations and policies of shared micromobility programs are unclear on how they
are monitoring the equitable use goals, if any. Also, it is essential to underline that most of these programs did not investigate the
need for such a service before the implementation, or at least there is no evidence for such a process in the project documentation.
It should be mandatory to check whether shared micromobility suits the city from many aspects, such as their impacts on potential
user accessibility. We are trying to answer this question by validating this research hypothesis.

Based on the review of the existing literature examining the equitable use of shared micromobility, particularly shared E-scooters,
it is evident that the full complexity of the travel decision considering the interaction between the three main elements: commuters,
modes, and urban forms following the introduction of shared E-scooters has not been fully captured. Furthermore, to the best of our
knowledge, there has been a lack of comprehensive assessment of social exclusion using more sophisticated indicators that evaluate
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Fig. 1. Research methodology framework.

the enhanced accessibility for different population groups. Therefore, to address this gap, our research hypothesis was examined
using the proposed framework, which will be discussed in Section 3.

3. Methods, data, and case study

The prime target of the proposed methodology is to evaluate the equitable use of SMS, using added accessibility as a central
measure of SMS equitable use evaluation. Fig. 1 shows the proposed methodology, which consists of three main parts; the first part is
the data collection, followed by data processing; next, we used all the collected data, and performed a sensitivity analysis comparing
scooter accessibility to the accessibility of the available modes within the city, followed by analyzing the sensitivity analysis results
based on replaced modes, population groups, and locations of the different scenarios. Finally, the conclusion and discussion were
based on the performed analysis.

Data collection and processing
The proposed methodology was built around using open source data, mainly for creating a transparent methodology that clarifies

the concluded decisions and ensures a reproducible methodology. The research hypothesis and methodology depended on assessing
the added accessibility to the population after the introduction of scooters, with a close focus on the disadvantaged population
groups’ gains in comparison to the rest of the population; therefore, we used five primary sources of data:

• Sociodemographic data was used to understand the population characteristics in the study area. We obtained the sociodemo-
graphic information for the study area from the US Census Bureau, census.gov, utilizing their API (Application Programming
Interface) service through the statistical computing software R (R Core Team, 2023), and the processing package tidy-
census (Walker and Herman, 2023). The data contained information regarding the population characteristics. In the analysis,
we considered the following population attributes, which are more likely to define the population groups prone to the social
exclusion of scooter use: age, income level, education level, race, employment, car ownership, and depending on PT use. The
obtained population attributes were aggregated by the smallest geographical unit publicly available, the census block; every
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census tract contains multiple census blocks. This dataset did not need any cleaning, but it was processed by converting all
the aforementioned examined variables into percentages of the total population within each census block, which we used for
further analysis.

• Trip data was used to understand the scooter use travel behavior. A dataset containing the trip records between 09-Aug-18 and
31-Jan-20 was retrieved from Louisville city open data portal (data.louisvilleky.gov). The dataset was in long data format; every
row represented a trip, and the available information for each trip was the starting and end point geographical coordinates,
longitude, and latitude. Also, the data contained trip identification code, trip starting and ending time, and date (trip starting
time and ending time were aggregated to the nearest hour quarter by the city authority to protect the user’s privacy), trip
speed, duration, and the total trip distance. The trip dataset was cleaned using the same procedures followed by Abouelela et al.
(2023), Zou et al. (2020). We applied four filtering standards to clean the dataset based on the trip’s duration, distance, speed,
and spatial location by setting minimum and maximum values for all three criteria. For distance, the minimum considered trip
length was 100 m, the maximum was 50 km, the minimum trip duration was one minute, and the maximum was 120 min;
one fully charged scooter battery can propel it for two hours. Finally, trips started and ended outside of the scooter operation
zones identified by the city were removed from the dataset. After applying the data processing techniques, we had around
390,000 trips for further analysis.

• POIs data was used to verify our hypothesis and to assess the accessibility to the different opportunities. We collected the
different points of interest (POIs) geographical locations from Open Street Maps (OSM, openstreetmap.org). The POIs were
grouped into six main groups, and each of them had different activities as follows:

– Education:
∗ Kindergarten
∗ Library
∗ School
∗ University

– Food:
∗ Bakery
∗ Bar
∗ Beverages
∗ Cafe
∗ Fast food
∗ Food court
∗ Greengrocer
∗ Pub
∗ Restaurant
∗ Supermarket

– Health:
∗ Clinic
∗ Dentist
∗ Doctors
∗ Hospital
∗ Optician
∗ Pharmacy
∗ Veterinary

– Leisure:
∗ Art center
∗ Cinema
∗ Community center
∗ Nightclub
∗ Park
∗ Picnic site
∗ Playground
∗ Sports center
∗ Stadium
∗ Swimming pool
∗ Theatre
∗ Zoo
∗ Artwork
∗ Attraction
∗ Guesthouse
∗ Hotel
∗ Memorial
∗ Monument
∗ Museum

– Service:
∗ ATM machine
∗ Bank
∗ Beauty Shop

∗ Fire Station
∗ Hairdresser
∗ Laundry
∗ Police station
∗ Post office

– Shopping:
∗ Bicycle shop
∗ Bookshop
∗ Clothes
∗ Computer shop
∗ Convenience store
∗ Department store
∗ Do it yourself store
∗ Furniture shop
∗ Gift shop
∗ Jeweller
∗ Mall
∗ Market place
∗ Mobile phone shop
∗ Shoe shop
∗ Sports shop
∗ Stationery
∗ Toy shop

There might be an argument that some of the previous activities could be interchangeably located under different opportunities;
the used classification does not impact our results, as we clarify in the methods section.

• Road and local street network (OSM from osm.org), and General Transit feed specifications, GTFS from (transitfeeds.com1)
were used to calculate the accessibility from the different available modes of transportation to the different opportunities using
an online routing engine (conveyal.com).

Data processing

Sociodemographic spatial analysis
The main target of this step was to understand the spatial distribution of the different sociodemographics, especially the variables

that are most likely to be attributed to the transport-disadvantaged population in reference to the city structure. Also, we wanted to
examine the impacts of the historical segregation and land use policies on the city’s population distribution.2 The first measure that
was applied for the sociodemographic characteristics in the scooter distribution zones is the Local Moran I index, or Local Indicator

1 Last accessed on the 15 of June 2023.
2 Discussed in more detail in the case study Section 3.1.
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of Spatial Association (LISA) (Anselin, 1995; Zhang et al., 2008), which is a spatial measure to measure the autocorrelation for
the spatial or the spatial similarity within the study area of one variable in comparison to the surrounding spatial units, in this
case, the surrounding spatial blocks. Local Moran’s I generates a spatial autocorrelation map, where each location is classified
into four categories based on the mean value of the variable: (I) High–High: Locations with high attribute values surrounded
by neighboring locations with high values (clustered hotspots); (II)Low–Low: Locations with low attribute values surrounded by
neighboring locations with low values (clustered coldspots), (III) High–Low: Locations with high attribute values surrounded by
neighboring locations with low values (outliers), and (IV) Low–High: Locations with low attribute values surrounded by neighboring
locations with high values (outliers), only significant relation with 90% or more significance level were kept. The queen-case
contiguity-based neighbors method was used for calculating the spatial weights.

The next step in the analysis of the sociodemographic characteristics analysis was to define clusters of the disadvantaged
population groups. Disadvantaged groups or poor communities are generally defined by their income level. National guidelines
define the household’s income thresholds; households below them are considered poor. This step used two criteria: household
income level, which is a common practice to define the poor population, and car ownership per household, as the main focus
of this study was related to travel behavior and one of the most decisive factors of mode choice and daily travel behavior is car
ownership (Haque et al., 2019). These criteria were calculated as a percentage of the number of households per census block. The
US Census Bureau defines low-income communities as the community (census block group) with 30% or more of its population
with household income less than 30,000$ per year; according to the US national equity atlas (nationalequityatlas.org), on average,
only 9% of the US households do not have access to cars. Therefore, census blocks were clustered into four quarters using a two-
dimensional coordinate system. The horizontal axis represents the percentage of households with income less than 30,000$ per
annum per census block, and the vertical axis represents the percentage of households with zero cars per census block. This technique
was used to identify the communities with a high probability of being transport-disadvantaged and those with a high probability of
forced car ownership (Caulfield et al., 2022). These two population groups should be the prime target for the policy intervention,
and they should be served by SMS in general and scooters, as in our case study.

Trips and POI hotspots
The next step was to identify scooter trip patterns spatially and temporally, then the trips and POI significant hot spot using

Getis–Ord (𝐺∗
𝑖 ) (Getis and Ord, 1992). The analysis was based on the number of trips and the number of POI concentration spatial

zones. 𝐺∗
𝑖 statistical significance is evaluated using Z-score. Only spots with Z-scores equal to or more than 90% were kept; we used

this analysis step to identify the trip’s hot spots in reference to the distribution zones and to see the relation between the trips and
the different POI hot spots. This step is targeted to quantify the relationship between trips and POI to understand the impact of POI
on trip generation.

Accessibility and PMI calculation
The primary step in the analysis was to compute the accessibility to the different opportunities using the different available modes

of transportation: walking, private bikes, PT, and Transport Network Companies TNC (E-hailing), then compare it to the accessibility
to the same opportunities using scooters. Accessibility was measured to all the available opportunities combined as people have
different preference and subsequently different potential to interact with the different opportunities; measuring accessibility to
different opportunities address the multi-dimensional nature of accessibility. Also, it is hard to define which activities are more
critical and relevant for the different population groups (Grengs, 2015). A cumulative accessibility measure was used as the number
of opportunities reached within a specific trip duration, as it is easy to implement, interpret, and communicate for the different
stakeholders (Geurs and Van Wee, 2004). Moreover, the used measure of accessibility depended entirely on publicly available open
data sources, making the decision process transparent for the public (Rawls, 1971). Accessibility was calculated for each of the census
blocks from the geometric centroid point using a routing engine (conveyal.com), which measured the number of opportunities that
can be accessed from the centroid of the block using the specified mode of transportation and for a specific trip duration.

A two-dimensional coordinate system represents the accessibility of the census blocks to the different number of opportunities,
and the other axis is the Potential Mobility Index (PMI). PMI is an aerial speed measure from one location to another location,
considering the direct distance between the two locations (𝑑) and the network travel time (𝑇 ) (Martens, 2015). This research
calculated PMI as the average aerial speed of each census block’s centroid to all the other census block’s centroids within the
study area using the different modes of transportation.

𝑃𝑀𝐼(𝑖) = 1
𝑁

𝑁∑
𝑖=1

𝑑(𝑖, 𝑗...𝑛)
𝑇 (𝑖, 𝑗...𝑛)

(1)

where:

PMI(i) = Average aerial speed for zone 𝑖
d(i, j...n) = Aerial distance between 𝑖 and 𝑗
T(i, j...n) = network travel time between 𝑖 and 𝑗
𝑁 = Total number of census blocks (252)
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Table 2
Scenarios summary.

Mode Access time Egress time Speed (km/h) Total trip
duration (min)

minute minute Min Max

Walking – – 4.4, 4.82 5 15
PT – – Based on GTFS 5 30
Private Bike 0,1,2,3 0,1,2,3 12,14,16 5 15
Car 0,1,2,3,5 0,1,2,3,5 Based on traffic conditions 5 15
TNCa – – Based on traffic conditions 5 15

Scooter – – 6,9,12 5 15

a 5 and 10 min waiting time were considered for TNC.

Scenario-building and sensitivity analysis
There is uncertainty regarding the exact relationship of the modes substituted by scooter; therefore, in order to cover the range of

all possible trips substituted by scooter, a sensitivity analysis was considered to cover all the possible combinations of trip duration
and trip speeds for the different modes, to ensure that all the possible shifted trips from walking, biking, PT, car, and TNC trips to
scooter are captured in this analysis. The following assumptions were used to build the different scenarios, calculate the accessibility
of the different modes, and perform the sensitivity analysis:

• All the travel times were considered based on weekday traffic.
• We calculated the accessibility for all the trip durations between five and fifteen minutes with one-minute intervals for all

modes except for PT, where the upper bound trip duration was thirty minutes. Longer PT trip durations were considered,
as PT trips include access to the station, waiting for the vehicle, and, in some cases, transferring to another line and finally
egressing from the service. The accessibility for the different travel times of the different modes was estimated using the
‘‘r5r’’ package (Pereira et al., 2021), as an interface for the (conveyal.com) routing engine.

• Walking: two speeds (4.4 km/h and 4.82 km/h) were considered in the analysis to cover the young and old population
groups (Bohannon and Andrews, 2011). Also, based on the US 2017 National Household Travel survey, the average walking
trip duration is 11.9 ± 0.2 min (Watson et al., 2021), and 75% of the walking trips are under 15 min (Yang and Diez-Roux,
2012; Agrawal and Schimek, 2007).

• PT: trips included access, egress, and transfer time. Walking was used to access, egress, and transfer between the lines when
needed.

• TNC: two waiting times (five and ten minutes) from when the user hailed a car through the application to the pickup time
were considered (Rayle et al., 2016; Henao and Marshall, 2019).

• Private car: access, egress, and cruising for parking time were included in the trip duration. It is to be noted that trips only
were considered feasible when the in-vehicle time was larger than or equal to the summation of access and egress time. Only
the unique combination of access and egress times were considered.

• Private bike: three speeds were considered for the private bike (12 km/h, 14 km/h, and 16 km/h) to cover all range of user
expertise and age and their impact on the travel speed. We also considered access and egress times and feasible trips when
the in–vehicle time was larger than or equal to the summation of access and egress time, and only the unique combination
of access and egress times were considered.

• Shared E-Scooter, the speed, duration, and the scooter trips considered in the analysis were based on the actual trip data.
One point to clarify here is that scooter trips might be perceived as slower than bike trips; scooter trip duration is calculated
from the time of booking and unlocking of the vehicle from the application till locking the scooter after the trip’s end, which
reduces the overall trip speed, as the trip time calculation is not only limited to the on-vehicle travel time.

Table 2 shows the summary of the assumptions for the routing and accessibility calculation.
After calculating the accessibility and PMI for all census blocks in the study area using the different modes, 1903 main scenarios

were obtained. Four accessibility thresholds, similar to Martens (2016, chapter 8) and Lucas et al. (2019, chapter 3) were calculated
for each scenario: the average accessibility of all blocks, 10%, 30%, and 50% of the average accessibility, were defined for each of
the 1903 scenarios, Fig. 6. The reason to test the impact of scooters on several accessibility thresholds is that there is no definition
for the sufficiency level of accessibility, or a person might have low accessibility to the rest of the community and might still be
satisfied with this level. For each scenario, the impact of the scooter replacing the current mode on the level of accessibility and
the accessibility threshold is evaluated. Each of these scenarios was evaluated as follows:

• The census block accessibility using the original mode (walk, PT, bike, TNC, car) is evaluated, and if it is under one of the
four thresholds, it is identified as problematic.

• For the problematic situations, the scooter accessibility for the same scenario and the same threshold is evaluated, and if it
increases the accessibility of the block to cross over the problematic threshold, it is considered to enhance the accessibility,
or it has a positive impact.

• If the evaluated scenario scooter accessibility and the original mode accessibility are both below or over a threshold, it is
considered to have no impact.

• Finally, if the accessibility of the scooter is lower than a specific threshold and the original mode accessibility is over the
same threshold, the scooter is considered as decreasing the accessibility of the block
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Fig. 2. Study area.

3.1. Case study setup

The data used in this study was obtained from Louisville, KY, a mid-size city on the Ohio River with a population of approximately
six hundred thousand. The city has a long historical problem with racial discrimination and population segregation based on the
residents’ race (Wright, 2004). This segregation still exists, and the city acknowledges the problem that historical land use regulations
and policies have unfairly impacted Louisville’s residents. Up-to-date land use zoning scheme limits racial and economic diversity
and raises housing costs; subsequently, the rising housing cost limits poor communities from accessing opportunities such as schools,
parks, or even jobs and extends to limiting the economic growth of local communities. That said, people of low income and people
of color might have been pushed to live in areas with deteriorating conditions that increase their chances of being sick.3

Historically, the racial segregation ordinance shaped the city’s current land use patterns, which granted racial segregation
between white and non-white residents. In 1914, the city declared that the black population was not allowed to reside in white
majority population neighborhoods, and vice versa; this was followed by the US Supreme Court 1917 racial zoning scheme,
which was used to prohibit the sale, lease, and rent of properties for the non-white population. Louisville’s comprehensive plan
in 1931 depended on the complete separation between the different land uses, e.g., residential and commercial (K’Meyer, 2009).
Unfortunately, redlining, or denying loans for people in some geographic regions, was used to discriminate against non-white
populations, and previous discriminating policies dragged and continued through the 1937 Housing Act (Benns et al., 2020). The
1958 city plan stressed racial discrimination between residents, and the 1967 and 1970 plans were extensions of the previous
plans, keeping the segregation policies in place; however, the 1970 plan started to consider the concept of mixed land use and
acknowledged the problem of a shortage of low to middle-income housing, but it did not address the problems that resulted from
the previous planning malfunction. The city was planned on a car-centric approach without recommendations for sidewalks or
PT and lacking pedestrian networks; however, there is a current effort to eliminate all the previous misconducts in planning that
accumulated over the years.4

Shared E-scooter was introduced to the city in August 2018 and is still operating; operators follow the city’s guidelines for
managing and controlling the service within the nine operation zones defined by the municipality, Fig. 2. We focus hereafter on the
regulation related to equity. Operators need to deploy a percentage of their fleet in the zones east of the city depending on their
fleet size as follows:

• Fleet sizes between 150 and 350 vehicles; 20% of the fleet to be in zones 1 and 9.
• Fleet sizes between 350 and 1050 vehicles; 20% of the fleet to be in zones 1 and 9, and an additional 10% of the fleet in

zone number 8.
• Distribution plans for special zones 1, 8, and 9 are to be submitted for approval to the authorities.

3 Urban.org/zoning, accessed 010/06/2023.
4 The full details for the historical land use and racial segregation in the city can be accessed from https://storymaps.arcgis.com/stories/

8cd986b3c5ab4f1c8bedba85f195662f, accessed on the 01/06/2023.
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• Basic education regarding scooter use for the minority groups (low income, non-English speaking, and zero car population)
is strongly preferred.

• Operators are encouraged to provide non-smartphone options to access the service.
Several points can be observed from the operation plans. First, the proposed 10%–20% of the proposed fleet in areas with

economic hardship are not equivalent to their percentage of area to the total distribution zones area and their population percentage
to the total population percentage, 30%, and 35%, respectively. So, the resources and vehicles are already planned not to be
equally distributed; moreover, the educational programs and the options for non-smartphone and non-banking access are only
recommendations, and nothing is mandatory. It is not clear what would be the case if the operators would not abide by this
recommendation; this is not the case for other operation rule violations, such as the case of vehicles parking outside of the
distribution zones, where the operators will have to pay monetized fines, and may even lose their license.

4. Analysis results

4.1. Data processing and analysis

4.1.1. Sociodemographic spatial analysis
Scooter’s distribution zones comprise 252 census blocks that we used for the sociodemographic analysis. We checked the spatial

distribution patterns for the population sociodemographic characteristics that are more likely to impact the inequitable use of
scooters as concluded in the literature review, Section 2. Seven variables were considered in this analysis: low-income (households
with income less than $30,000 per year), households with zero cars, population older than 45 years old, education level of less
than a university degree, non-white population, unemployed, house price less than $50,000, and PT dependent users. Table A.1
shows the summary statistics of the used variables as a percentage of the total census block population. Fig. 3 shows the Moran I
for the different variables, and all the examined variables were significantly clustered, except for the old population variable, which
showed a random pattern; refer to Fig. A.1 for the numerical correlation matrix for the same variables. It is clear that there is clear
segregation between the wealthy population and the low-income population group; however, this has been evident historically from
the city planning discriminatory practices; refer to Section 3.1. This step of the analysis shows that the impacts of the historical
discriminatory planning laws are still evident to date regardless of the city’s effort to end it.5 We can describe the demographics
spatial distribution as low-income, low education, racial minority, no access to a car, depending on PT for work trips, and more
likely to reside to the west of the city in a clear separation than the rest of the population.

After identifying the spatial distribution of the sociodemographics, the next step was defining the population blocks more likely
to be excluded from using shared scooters. The definition of these blocks was based on two main criteria, low-income and zero
car ownership, noting that all the other variables (low education level, racial minority, low price housing units, high rate of
unemployment, old population, and PT dependent) were correlated with low income and zero car ownership geographical areas.

A two-dimensional coordinate system was used to define these groups and to cluster them in a more straightforward way that
helps to communicate the results more easily, refer to Fig. 4(a). Hereafter, we will refer to them as quarters. The population was
split into four main quarters, where quarter (Q3), 120 census block (47.6%), represents the severely disadvantaged blocks with
low-income and zero car ownership, and (Q4), 24 census bloc (9.5%), represents the forced car ownership group, or low-income
population with a burden to own a car, mainly for the absence of adequate transportation options, refer to Fig. 4. When quarters
were plotted spatially, refer to Fig. 4(b), they were two main clusters; the east of the city contained the wealthy population (Q1), 89
census block (35.3%), and the west of the city contained the poor population Q3; the resultant quarters are in line with the Moran
I analysis that was estimated earlier. It is also evident from the analysis that the city is dually polarized as Q1 (wealthy population)
and Q4 (disadvantaged population) represent 83% of the total population.

4.1.2. Trips analysis
The collected trip data of scooter sharing spanned over 18 months; after applying the data cleaning procedures mentioned before,

the cleaned trip was analyzed temporally and spatially. The temporal demand can be described as normally distributed with the
peak demand in the afternoon period between 12:00–16:00 during weekdays, and this peak is shifted to late afternoon at 15:00
during weekends; several minor differences exist between the weekends and weekdays demand; in weekends there is an increase
in the early day hours demand. This increase in the demand might indicate that scooters used to commute after leisure trips also,
during weekdays, there is an increase in the demand compared to weekends at the early hours of the day, with a minor peak of the
demand between 5:00 and 6:00 that might indicate scooter use for commuting to school or to work; however, this peak demand is
around one-quarter of the maximum daily demand, refer to Fig. 5(d).

Trips significant hot-spots analysis, considering spots at least 90% significant level, shows distinctive patterns for weekend and
weekday trips; refer to Figs. 5(a) and 5(b). Trips spatial patterns can be described as trips concentrated in three prominent locations:
the downtown area (zone 2), the north of the distribution zones, the southeast of the downtown (zone 5), or the Baxter Avenue
area, where there is a high concentration of leisure activities (restaurants, and bars). The third trip concentration area is in the
city’s south (zone 6), around the University of Louisville. These patterns stand when comparing weekday trips with weekend trips,
but with different magnitudes, where the leisure area (zone 5) and downtown have more weekend trips than weekdays. Also, the
university area (zone 6) has more demand during weekdays than weekends.

5 For more details refer to Confronting Racism in City Planning and Zoning Louisville Metro Planning and Design Services https://storymaps.arcgis.com/
stories/8cd986b3c5ab4f1c8bedba85f195662f, accessed on 01/06/2023.
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Fig. 3. Local Moran I clusters for the disadvantaged user groups.
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Fig. 4. Disadvantaged quarters definition.

POIs analysis
Fig. 5(c) shows POIs’ significant hot-spot locations. POIs are concentrated in four locations: the downtown area (zone 2), where

there is a diversity of activities; the University of Louisville area (zone 6), Baxter Avenue (zone 5), and Frankfort Avenue (zone
3); both Baxter avenue and Frankfort avenue are areas with a high concentration of leisure activities. Other smaller hot-spot areas
are found in zones 8 and 4. There is a correlation between the trip hot spots and the POI hot spots, which strongly indicates the
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Fig. 5. Trip temporal demand, and trips and POI significant hot-spots.

importance of POI existence on demand generation. We calculated the coefficient of correlation between the number of trips in each
significant hot spot and the number of POIs within the same hot spot; Pearson’s correlation coefficient was around 0.55 with a 99%
significant level, indicating the correlation between the number of POIs and the generated trips.

4.2. Accessibility sensitivity analysis

The last part of the analysis is the central part of the research, where the impact of scooter introduction on the accessibility
gains for the different population census blocks compared to the existing modes of transportation was examined. Fig. 6 shows one
example of the evaluated scenarios. Each scenario was evaluated on four accessibility thresholds: the average accessibility of the
mode and the subsequent 10%, 30%, and 50% of the average accessibility of the original census block accessibility compared to the
scooter accessibility on the different thresholds. A total number of (1903 scenarios × 4 thresholds × 252 census block = 1,918,224)
scenarios were analyzed comparing the difference in accessibility between the different modes and scooters; from these scenarios,
8% indicated enhancement of the accessibility of the blocks when replacing one of (walking, PT, bike, car, and TNC) trips with
scooter trip. In 26% of the scenarios, scooters had less accessibility to the different opportunities than the existing modes. For the
rest, there was no impact, or the scooter did not change the level of the accessibility of the block compared to other modes; in other
words, if the scooter and the other mode were below the threshold or both of the modes were over the evaluated threshold, we
consider it as a no-impact case. To understand the composition of the scenarios, we further analyzed the scenarios that enhanced
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Fig. 6. Example of accessibility and PMI comparison between PT and scooters.

the accessibility of the different census blocks. We divided the scenario analysis into three main parts: the analysis per mode, the
spatial analysis, and the impacted population.

Scenarios analysis per mode
In order to understand the nature of the scenarios in terms of their impacts on accessibility for each mode replaced by scooters,

we disaggregated the scenarios per mode, Fig. 7. Most accessibility gains scenarios came when scooters replaced walking and PT
trips. However, the positive impacts, in terms of increased accessibility, are not always prevailing, as in the case of all the modes
except walking. Alternatively, the number of scenarios with positive impacts was less than those with the scooter, which had fewer
opportunities reached compared to the other modes. Also, the distribution of the enhanced accessibility within the different modes
is somehow analogous to the percentage of modes replaced by scooters revealed in different surveys conducted in different cities;
refer to Table A.3. The next question to answer was the distribution of the enhanced accessibility scenarios between the different trip
durations to understand the situations where the scooter enhanced the accessibility. Fig. A.3 shows the percentage of the scenarios
that experienced enhanced accessibility per the different modes. Most of the enhancement in accessibility was achieved when long
scooter trips replaced other modes of shorter trips.

Scenarios impacts on population
We calculated the percentage of the total population that would experience an enhancement of the accessibility level for each

scenario; Table A.4 shows the summary statistics per mode. The assessment of the impact on the population was done to quantify
the percentage of the benefited population and subsequently evaluate the equitable use of scooters. For the motorized modes, TNC
and car, average of (2%–8%) of the population is experiencing enhancement of accessibility level when replacing Car and TNC trips;
however, the minimum percentage of population benefiting of the scooter accessibility drops to 0.3%. For walk, bike, and PT, on
average, (22%, 12%, and 17%) respectively, of the population would enhance their current accessibility level when using scooters,
and the minimum population gains drops to 0.1%.

The disaggregation of the scenarios per population quarter is shown in Fig. 8. There is no significant difference between the
accessibility gains in all four quarters when scooters replace walking, private bikes, and PT. The average population percentage
that experiences gains in accessibility is around 20%; this percentage drops around 12% when the scooter replaces cars and 7%
when replacing TNC trips. Such analysis shows that the gains of accessibility are limited to a small portion of the population, as the
percentage of the population gaining accessibility contains all the population groups such as children, older population, and people
with physical disabilities who might not be able to use such a service. The disadvantaged groups (Q3 and Q4) had no significant
advantage compared to the rest of the population in using scooters regarding enhanced accessibility.
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Fig. 7. Breakdown of the enhanced accessibility scenarios per mode.

Fig. 8. Distribution of enhanced scenarios per mode per quarter.

Geographical scenarios analysis
Finally, the scenarios were disaggregated by the nine spatial distribution zones, and no significant difference for zones (1, 9, and

8) was found; this disaggregation was done for two reasons: examine the current equity distribution requirement as the operation
manual of the city indicates these zones to have a fixed percentage of the fleet distributed in them to ensure equitable use of scooters.
The second reason was to test the impact of POI on accessibility gains. This analysis showed that such distribution plans without
considering the locations of POI are ineffective. When we further disaggregated the scenarios by each census block, refer to Fig. A.2,
intuitively, the areas that had the majority of enhancement in accessibility are the areas further from the POIs, considering that
these scenarios considered longer duration scooter trips replacing other short modes trips, refer to Fig. A.3. The spatial scenarios’
analysis showed that historical land use patterns discriminating against special population groups are still evident. The reflection
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of this land use pattern can be seen extending to the SMS deployment, highlighting the seriousness of such a problem in hindering
the possible opportunities to develop the current society.

5. Discussion, study limitations

5.1. Results discussion

In this research, we analyzed the changes in accessibility that might occur when shared E-scooter replaces existing modes of
transportation, walking, biking, PT, private cars, and TNC, focusing on the impact of scooters on the transport-disadvantaged
population groups. The approach of this research was inspired by Martens (2016, chapter 8) and Lucas et al. (2019, chapter 3),
where they evaluate accessibility as an indicator for the problems in the transport-land use system. This approach was used to assess
the impact of replacing the currently available modes with shared scooters using a two-dimensional coordinate system representing
accessibility and PMI. The main advantage of this coordinate system is that it allows us to understand the mobility and accessibility
of the examined population group and the difference between modes of transport in terms of accessibility and potential mobility.

In the first step of the analysis, we tried to understand the population distribution in the city by examining the spatial distribution
of the disadvantaged groups. This analysis showed a significant pattern that can be described as disadvantaged groups represented
by low-income, zero car ownership, education levels lower than a university degree, racial minority, high unemployment rates, and
PT-dependent users residing in the areas west of the city. The wealthy population is concentrated in the east of the city.

Moreover, the concentration areas of disadvantaged groups west of the city exhibit low to no opportunities. Therefore, regardless
of the scooter use, these areas, in general, are relatively excluding the disadvantaged population from participating in activities
compared to the rest of the population, which is mainly a problem of the urban forms in terms of diversity of land use and proximity
to opportunities. In continuation of problems of such areas, when the accessibility of the scooter was compared to the original modes,
no significant accessibility gains were detected.

We analyzed 1903 scenarios, and from them, 8% had shown enhanced accessibility; when disaggregated by mode, their majority,
53%, materialized when the scooter replaced walking, followed by PT by 28%, and bike by 18%. These analysis results are supported
by a similar percentage of the modes displaced by scooters that were stated by users in several surveys (Dibaj et al., 2021); this
gives rise to various concerns related to public health and environmental impacts. Shared scooter use increased safety concerns as
the number of related accidents and injuries substantially increased (Haworth et al., 2021; Bozzi and Aguilera, 2021). Also, scooter-
related accidents are an increased financial burden on society as they impact the labor force in the form of extra sick leaves, increase
the burden on health institutions by increased hospitalization cost, and require extra staff (Sikka et al., 2019). Scooter is mainly
replacing active mobility and PT modes (99%) of the total enhanced scenarios, which would directly impact several aspects, such
as replacing active mobility means reducing the amount of physical effort of the population. Subsequently, inducing more health
issues such as obesity and even reducing the quality of life (Markvica et al., 2020; Koszowski et al., 2019), replacing motorized
trips with active mobility might help people to achieve the recommended level of physical activities (Long et al., 2021). Huang and
Sparks (2023) found that obesity is more evident in low-income groups. As the scope of this study did not include the quantification
of the enhance of accessibility and the corresponding impacts on health and safety, there is a need to investigate further if such an
enhance in accessibility would overcome the negative possible impacts on health and safety.

Moreover, the displacement of active mobility to scooters might be against the environmentally friendly transport planning
practices or the general concept of sustainability (Gargiulo and Sgambati, 2022; Ferretto et al., 2021), scooters on average, increase
the emission of CO2−𝑒𝑞 per passenger-kilometer by 20% in average in comparison to the displaced modes according to Moreau
et al. (2020). Also, the scooters might increase traffic externalities by increasing the overall vehicle kilometer traveled (VKT) due to
vehicles’ need to perform scooter fleet redistribution and maintenance operations. Several studies have found that income inequality
(poor population) is the one that suffers more from traffic externalities, which might even extend to fatalities (Anbarci et al., 2009;
Olabarria et al., 2013). Our analysis shows that the gains in accessibility would occur when scooters replace active modes. Several
studies (Dibaj et al., 2021) show that Scooters are replacing active modes and PT, which is most likely because they compete with
sustainable modes rather than unsustainable modes. Scooter riders use bike lanes, adding extra demand load on such infrastructure,
which was not designed originally to consider scooters. Infrastructure improvement projects are generally long-term projects that
need a large budget and a long time to materialize. However, all of the previous points need further investigation to quantify the
actual impacts of replacing active modes and PT with scooters.

When disaggregating the scenarios by population per each of the replaced modes, on average, 19% of the population enhanced
their current level of accessibility; this 19%, when filtered by age, physical ability, financial ability, and knowledge to use the
service might drop to less than 1% of the overall population showing the small portion of the population that can benefit from
the introduction of scooters. Also, we disaggregated the evaluated scenarios by population quarter, and there was no significant
difference between the four quarters. There is no doubt that the introduction of scooters would increase accessibility as the number
of available modes of transportation will increase; however, scooters and SMS, in general, have structural barriers to using them, such
as the need for smartphone and digital banking access, which is not the case of active mobility and PT. In Chicago, the authorities
found that around 0.05% of scooter trips were performed by the unbanked population (Abouelela et al., 2023). Also, there was
no significant difference in accessibility gains for the different quarters, meaning there are no specific gains for the disadvantaged
population. However, there might be an increase in the accessibility gap between the different population groups, giving advantages
to those who can afford scooters.
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The analysis purposefully ignored structural barriers to using scooters, such as affordability and the ability to use the service, to
support our hypothesis that the problem of equitable use is inherited from the urban forms in terms of the building environment.
Even if the cost is not the primary barrier to using the service, scooter use is limited in enhancing accessibility under strict conditions.
According to Fig. A.3, most enhanced scenarios occurred because a long-duration scooter trip needs to replace a shorter trip done by
another mode to enhance the block’s current accessibility. The average scooter trip duration is around 15 min, and it costs around
3.5$ compared to the average daily or hourly ticket of a bus trip, which is between $1.5 and $1.75 in Louisville; the comparison
of the difference in cost shows the financial burden of scooter costs that might hinder its use in combination with the absence of
nearby opportunities; therefore, there should be an effort to promote diversifying and densifying, and designing the urban forms
to promote activities within reach to reduce trip length rather than promote longer trips with ‘‘new mobility forms’’ (Cervero and
Kockelman, 1997).

Open-source datasets were used to encourage their use for a transparent decision process, especially for transport and city
planning policies, which generally have political involvements that the public might need help understanding. We checked the
problem of inequitable use of scooters. However, the city has current policies that were issued for the service providers, and the
results indicated that the current policies did not allow the service intended equitable use. The policies used in Louisville are similar
to most of the programs in the USA; refer to Section 2, showing that there should be a more profound understanding of the city’s
urban structure before generalizing the operation policies for SMS, specifically scooters. The performed analysis opens the door for
investigating the need for SMS before its deployment, and it raises the question of whether extending PT service might be more
beneficial for the disadvantaged population groups rather than the new SMS.

5.2. Policy recommendations

Based on the previous discussion, the following recommendations were made for a better implementation of scooter projects
based on the analysis and observation from practical experience and literature review. Our policy recommendation for the new
service deployment, scooters, should be done collaboratively between the different stakeholders, in this case, users, legislators (city
authorities), and providers, with a clearly defined role for each of them. Section 2 shows a gap in the current practices of deploying
scooters; projects must start with a mobility need assessment before adopting SMS. A mobility needs assessment study is essential
to be performed by the authorities, paying particular attention to the historical discrimination against any of the population groups,
if any, and understanding the needs of groups who are most likely to be socially excluded from using the new transport modes and
getting their feedback.

After assessing the mobility needs, the authority might opt not to proceed with the project if the proposed service, a scooter in
this case, does not fulfill the population’s needs. Also, fair use should be the project’s focus from the early stage of investigating
the need. It should be inspected regularly by the authorities after implementing the project. After getting the feedback and need
assessment, the providers should prepare market reach-out plans showing their proposed efforts to target the different population
groups and how this would be implemented in line with the equity goals. If the authorities approve or amend these plans, they
should be followed up with a pilot project. The pilot project should be monitored closely by the authorities, and providers should
provide the needed information transparently to the public for the complete evaluation of the project by the authorities, users, and
non-user groups. The feedback should be analyzed, and a public decision should be made based on the consultation between the
different stakeholders for continuing the service deployment process or stopping it entirely based on the outcome of the pilot phase.
Many decisions should be based on the pilot phase, such as the equitable outcome of the service and not only the equitable reach
of the service. Suppose the service is set to be fully deployed. In that case, the authorities must maintain longitudinal follow-up and
monitoring procedures dynamically, considering the rapid changes in technology and user preferences. These recommendations are
shaping the skeleton of the service deployment process based on centering equity; however, more details and studies are needed to
ensure that equity is centered in the design process and that the project should be aligned with the overall sustainability goals.

5.3. Study limitations

This study examined the replacement of scooters in uni–modal trips for other modes uni-modal trips without considering the
cases in which scooter is used in multi-modal trips, such as the case of using scooters as a first and last-mile solution, which could
be the case in some situations. Furthermore, the analysis exclusively focused on opportunities within the designated scooter service
area. Although there might be potential opportunities located outside the operational zones that are closer to the users, we did
not include them in our analysis. This omission was due to the spatial limitations imposed by the operation zones, which prohibit
scooter usage outside of their boundaries. Consequently, these areas are inaccessible for scooter-based exploration in our study.
However, this might have a very low probability due to the spatial structure of the city, where it is bordered by the Ohio River in
the north and the west, and urban extension is limited in the east and south of the operation zones. Also, the temporal accessibility
to the different services (working hours) was considered fixed, or all the opportunities would be available all the time; moreover,
people’s ability was considered the same for the whole census block, which is not the case. However, such an aggregated approach
is generally accepted in accessibility assessment, and it does not jeopardize the privacy of the subject (Martens, 2016). We also
considered that scooters are always available and uniformly distributed in all the study areas, which might not be the case, but
generally, scooter distribution data is not publicly available. Our conclusion validates our hypothesis that the problem is not mainly
related to scooters but rather the built environment. Also, the accessibility measure, the cumulative number of opportunities, is
simple. It is clear that there are other more sophisticated methods to measure accessibility; however, there is no best way to
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do so, and our goal here was to have an indicator for the possible level of participation, noting that the relationship between
accessibility and activity participation is not always clearly defined, as the high level of activity participation might still take place
under low levels of accessibility (Martens, 2016, Chapter 8). Also, other more advanced and complex measures of accessibility, such
as time-geography-based measures, need more individual-level information, which might not be publicly available, and they might
jeopardize the subject privacy (Ilägcrstrand, 1970).

6. Conclusion

The proposed methodology and the subsequent analysis focused on the chances of equitable accessibility of all members of the
society to the different activities, which are more likely to be missed in transport planning processes (Meyer and Miller, 1984;
Martens, 2016). The analysis was based on the enhancement of accessibility level, which is the core of transport planning; however,
we did not find any significant gains that might lead to sustainable results, but scooters needed to replace sustainable modes to
have a positive impact on accessibility, and definitely, such behavior is not expected reduce CO2 emissions, especially for the
disadvantaged population groups. Even so, scooter introduction might lead to a lower life quality for disadvantaged groups; however,
more investigation for the impacts of trip replacement on emission, safety, and health is required. We attribute the no-gains of scooter
accessibility to the urban forms, represented by the less diverse land uses in poor areas and the limited opportunities. We are not
opposing the deployment of the scooters in this research, but we are highlighting the need to consider their direct and indirect
impacts before the deployment process. Also, other modes could be of better use and impact, such as the case in Washington,
D.C., where Su et al. (2022) found that bikesharing promotes more equitable use than scooters. Our analysis highlights that groups
historically have faced a lack of access to opportunities that should be prioritized while planning and introducing new services, as
such historical challenges might still be evident to date.
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Appendix. Additional analysis

See Tables A.1–A.4 and Figs. A.1–A.3.

Table A.1
Disadvantage variables summary.

Variable Low income Zero car Non-White Unemployed

Mean 38.7% 16.8% 38.2% 7.7%
Std.Dev 22.2% 17.1% 34.6% 9.2%
Min 0.0% 0.0% 0.0% 0.0%
Q1 19.8% 2.6% 6.8% 1.4%
Median 36.8% 11.4% 27.0% 4.4%
Q3 55.4% 27.4% 70.9% 11.4%
Max 97.0% 91.3% 100.0% 59.1%

Variable Low-education Low housing 45 and older PT to Work

Mean 59.8% 10.9% 41.5% 6.0%
Std.Dev 24.9% 19.5% 14.0% 9.5%
Min 0.0% 0.0% 0.0% 0.0%
Q1 37.9% 0.0% 32.3% 0.0%
Median 64.0% 0.4% 41.2% 1.9%
Q3 80.9% 12.4% 50.2% 8.2%
Max 100.0% 91.4% 100.0% 77.6%

All variables are calculated as a Pct. (%) of population of each census block.
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Table A.2
Trip characteristics summary.

Variable Mean ± Std.Dev Min Q1 Median Q3 Max

Distance (km) 2.06 ± 2.25 0.1 0.64 1.27 2.6 32.19
Duration (min) 15.6 ± 17.2 1.0 5.0 9.0 19.0 120.0
Speed (km\h) 9.1 ± 4.5 0.1 5.8 8.6 12.0 25.0

Table A.3
Summary for 34 studies investigating modes replaced by scooter.
Source: Data retrieved from Dibaj et al. (2021).
Mode Avg Min Max

Micromobility 12% 4% 59%
Driving alone 16% 3% 46%
PT 16% 1% 59%
Taxi or TNC 24% 5% 51%
Walk 46% 5% 80%

Table A.4
Summary statistics of the percentage of the population gaining enhancement in accessibility.
Mode Mean SD Minimum Median Maximum

Walk 22.0% 14.3% 0.1% 21.0% 59.6%
Bike 11.5% 13.4% 0.1% 5.5% 58.2%
PT 16.8% 14.1% 0.1% 13.4% 59.0%
TNC 2.2% 2.1% 0.3% 1.2% 11.4%
Car 8.0% 8.4% 0.3% 4.8% 36.4%

Fig. A.1. Pearson correlation matrix for disadvantaged population characteristics.
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Fig. A.2. Disaggregated enhanced scenarios per mode and census block, the percentage is calculated as a percentage of the overall number of scenarios per
block.
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Fig. A.3. Disaggregated enhanced scenarios per mode and travel duration.
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