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Toward Intelligent Sensing: Optimizing LiDAR
Beam Distribution for Autonomous Driving

Genghang Zhuang, Zhenshan Bing, Xiangtong Yao, Yuhong Huang, Kai Huang*, and Alois Knoll

Abstract—LiDAR (Light Detection And Ranging) sensors have
been widely used in autonomous vehicles as the main sensors.
According to the specification details of the widely used 3D
LiDAR products in the market, the distribution of vertical beam
channels is set according to a uniform angular resolution, which
is not ideally efficient for specific autonomous tasks. In this
paper, we propose a novel approach to find the optimized
angular distribution of the vertical beam channels for different
application scenarios and installation configurations. The experi-
mental results in a study case suggest that concerning the vehicle
detection task, the optimized LiDARs perform almost two times
better than the ones with the same number of channels in terms
of the detection range, and have perception performances close
to the LiDARs with double channels in the long distance.

Index Terms—LiDAR sensor, LiDAR optimization, auto-
nomous driving.

I. INTRODUCTION

THERE has been increasing interest in development of
autonomous driving vehicles. In most applications, an

autonomous vehicle requires a precise perception of the
surrounding environment. Various sensors including LiDAR,
radar, monocular camera, and stereo camera are successfully
deployed in autonomous vehicles to implement perceiving
tasks such as object detection and classification, as well as
tracking. Among aforementioned sensors, LiDAR has been
widely used in autonomous vehicles as the main sensor. In
particular, 3D LiDAR sensors with multiple beam channels in
vertical direction can accurately represent the surroundings as
a 3D point cloud model by constantly scanning in 360◦. Com-
pared with cameras, LiDAR has an ability to directly obtain the
depth information about objects in the environment without the
necessity to be concerned about changes in illumination. There
are numerous research works attempting to resolve the tasks on
SLAM (Simultaneously Localization And Mapping) [1]–[3],
global localization [4]–[6], lane detection [7], 3D objection
detection [8] and segmentation [9] based on LiDAR sensors.

Currently, 3D LiDARs with multiple beam channels are
still expensive, which in a way prevents the mass production
deployment of autonomous vehicles. Concerning different sce-
narios, additional beam channels can provide higher angular
resolution in the vertical direction. More importantly, it can
be also helpful to collect more surface details of objects.
However, the price of a 3D LiDAR is also proportional to the
number of internal beam channels. Therefore, it is necessary
and important to maximize the efficiency of limited channels.
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According to the specification details of widely used 3D
LiDAR products in the market, the distribution of vertical beam
channels is defined as uniform angular resolution in the verti-
cal range. In the most specific scenarios, the uniform angular
resolution is not ideally efficient for autonomous vehicles for
the two reasons. First, in the case of different perception ob-
jectives including pedestrians, vehicles, and obstacles, uniform
angular resolution does not meet appropriately their specific
requirements, such as for example, the height range of interest.
Second, the uniform vertical resolution and fixed angular range
are inappropriate for diverse installation configurations, such
as the front, roof, and rear one of the vehicles for different
scenarios and intentions. Although several most-recent LiDAR
products introduce the nonlinear vertical angular distribution,
the proprietary distribution pattern and setting basis remain
unknown and are not available for public. Therefore, it is
meaningful to propose an optimization algorithm and proce-
dure for the beam channel distribution of LiDARs.

In this paper, we propose a concept and a corresponding
approach to find the optimized angular distribution of the ver-
tical beam channels intended for different application scenarios
and installation configurations. The main idea of the proposed
approach is to formulate the distribution problem of vertical
channels as a weighted multi-objective optimization targeted to
the essential features of autonomous driving perception. In the
conducted experiments, as a proof-of-concept, a virtual LiDAR
with flexible channels is implemented in the autonomous
driving simulator CARLA [10], to evaluate the performance
in terms of perception tasks of autonomous driving. The
experimental results in simulator indicate that concerning the
specific object detection task, the optimized LiDARs perform
almost two times better than the ones with the same number
of channels in terms of the detection range, and have the
performance close to that of LiDARs with double channels
with regard to the perception tasks in the long distance. The
main contributions of the present work are as follows:

1) We optimize the angular distribution of vertical beam
channels by formulating it into a multi-objective opti-
mization problem, considering various requirements.

2) As a proof of concept, a flexible LiDAR module is
developed in the CARLA simulator to customize the
beam channel distribution and generate annotated points
with the type information.

3) Evaluations on object detection and semantic segmenta-
tion considering different numbers of beam channels are
proposed and conducted to demonstrate and evaluate the
efficiency of the proposed approach. The results show
the superior performance of the optimized LiDARs for
multi-class object detection and lane segmentation.
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Model Channels Vertical Field of View
Velodyne VLP-16 16 +15.0◦to -15.0◦(30.0◦)

Velodyne HDL-32E 32 +10.67◦to -30.67◦(41.33◦)

Velodyne HDL-64E 64 +2.0◦to -24.9◦(26.9◦)

TABLE I
VIEW FIELD SPECIFICATIONS OF COMMON LIDAR PRODUCTS

II. RELATED WORK & BACKGROUND

In the related literature, there is rare research works focused
on optimization of channel beam distribution of 3D LiDAR for
the purpose of autonomous driving, and either the framework
and general evaluation procedure of this channel optimizing
problem. Many existing similar studies were dedicated to
identifying the optimal placement configuration for multi-
sensors. Dybedal et al. in [11] proposed an approach to resolve
the problem of the optimal placement of 3D camera sensors
in a specified volume of interest, where the coverage area
of the sensors is modeled as a cone having the limited field
of view and range. Mou et al. described an optimal LiDAR
configuration approach in [12] proposed for autonomous cars,
in which ROI (Region Of Interest) is segmented into the sub-
spaces bounded by the surfaces of cones. However, the models
and frameworks in aforementioned work are inapplicable for
channel distribution optimization of a 3D LiDAR.

To evaluate the optimization of the proposed approach, we
implement a virtual LiDAR and conduct the experiments in a
high-fidelity simulator. The feasibility of evaluation in simu-
lators is elaborated and demonstrated in several researches.
An open-source driving simulator CARLA was detailed by
Dosovitskiy et al. in [10]. Shah et al. from Microsoft Research
described the Airsim simulator in [13], which provides a
high-fidelity visual and physical simulation for autonomous
vehicles. Most simulators for autonomous driving provide
various urban scenarios and virtual sensors including camera,
depth camera and 3D LiDAR. Researches in [14] [15] [16]
attempted to utilize the sensor data obtained from autonomous
driving simulators to generate the extensive annotated data
for training and testing the neural networks of autonomous
driving tasks. Compared with real LiDARs, virtual 3D LiDARs
can directly obtain point clouds with collision detection in
the physics engine. Experimental results provided in [17]
demonstrated the high fidelity of virtual LiDAR. Therefore,
it is feasible to evaluate virtual 3D LiDARs in autonomous
driving simulators.

III. MOTIVATION

In general, common 3D LiDAR products share the same rota-
tion structure. LiDAR rotates in the horizontal plane. With the
embedded rotation encoder and high-frequency beam ejector,
LiDAR can achieve high horizontal resolution. However, the
vertical resolution of a LiDAR only depends on the multiple
beam channels. Limited by the cost of beam ejectors, the
vertical resolution of common LiDAR products is much lower
than the horizontal resolution.

TABLE I provides specifications of the vertical view field
of the common LiDAR products. The vertical channels of the
listed 3D LiDAR products are distributed evenly in the range.
For autonomous driving tasks, 3D LiDAR have to provide a
sufficient number of surface points on objects. To quantize the
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Fig. 1. Points and beam channels on 1m2 object for different distances.

influence of the channel distribution on the valid casted points,
we model the listed common 3D LiDAR products and compute
the number of valid points, which are casted on the surface of
the target object, in different conditions.

Fig. 1a illustrates the beam casting on a 1m2 object in
distance d1 and d2, in which the beams of small angles β2

and β3 are able to cast on a further object. Fig. 1b and Fig. 1c
represent the numbers of casting points and beams on a 1m2

object for the three different 3D LiDARs with different dis-
tances. Caused by the decline in the casted vertical beams on
the object with distance, the number of casted points decreases
considerably over 20 m. The provided figures indicate the low
density of casted points in long distances, which may affect
the precision of object detection and classification. Therefore,
to use efficiently each beam of a 3D LiDAR, we propose an
algorithm to determine the optimized angular distribution of
the vertical beam channels.

IV. LIDAR FORMULATION

To investigate the influence of the angular distribution of the
vertical beam channels on the performance of the specific
perception tasks, we model and implement a virtual LiDAR
on the CARLA platform. The virtual LiDAR is optimized
accordingly, as detailed in SECTION V.
A. Rotation Model
The LiDAR rotates in the horizontal plane to obtain a 360◦view
of the horizontal field. The LiDAR scans at the same interval
and produces a sequence of endpoints. The values of horizontal
ranging angles can be defined as follows:

rotation =
{
θi, i = 0, 1, ...,m

}
, (1)

where the number of horizontal ranging steps m is determined
by the horizontal resolution, m = 2π/resolution.

Because of the restriction of the mechanical structure and
scanning efficiency, the common 3D LiDARs do not contain
the rotating structure in the vertical plane. Instead, a fixed
number of multiple beam ejectors are equipped in LiDAR, as
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shown in Fig. 1a. The angular distribution of the vertical beam
channels can be defined as the following vector:

c =
(
β1, β2, ... , βj

)T

, (2)

where the j is the number of vertical channels and β is
negative when the beam is heading down. Here, c is the
variable to be optimized in this work.
B. Installation Configuration
Autonomous vehicle platforms generally are equipped with 3D
LiDARs in various positions for different perception targets.
For example, most of autonomous vehicles utilize a 3D LiDAR
on the roof to perform object detection in the medium distance.
In other particular cases, an additional LiDAR can be installed
at the front of the vehicle to detect small objects near to the
vehicle. Therefore, the angular distribution of vertical channels
should consider different intended usages and installation
configuration.

In distribution optimization and evaluation, the installation
height h and the heading angle φ in the horizontal plane of
LiDAR are considered. During the process of optimization, h
is an important influence factor to be considered and h and φ
are required for pre-processing, which are applied to transform
a point cloud into the reference frame of vehicle for further
object detection.

V. OPTIMIZATION

To optimize the channel distribution c, we formulate it as a
multi-objective optimization problem as follows:

F(c) =
∑
k

γk · Fk(c)

c∗ = argmax
c

∑
k

γk · Fk(c) ,
(3)

where the F(c) consisting of weighted sub-objectives is the
overall objective function and c∗ denotes the optimized chan-
nel distribution when F(c) is maximized. The sub-objective is
defined as Fk(c) and its corresponding coefficient is denoted
as γk. The sub-objective in (3) contributes to the overall ob-
jective in terms of different aspects. Their corresponding sub-
problems include the channel dispersal in the short distance,
focusing on the medium and long distances, and blind zone
avoidance in the installation area.
A. Distribution Dispersal for Channels
LiDAR should be able to detect and track objects close to
the autonomous vehicle, including pedestrians, vehicles, and
obstacles. To obtain a wide view in the vertical direction,
the channels should be dispersed within an appropriately
decent range. The objective function of dispersal capacity is
formulated as follows:

Fdis(c) =

∫
δdis(µ) ·Dis(µ, c, h) dµ, µ ∈ ROI , (4)

where the sub-objective function Fdis(c) evaluates the dis-
persal of c over the range of distances µ in a pre-specified
ROI (Region Of Interest). The dispersal in a certain distance
is based on the evaluation value Dis(µ, c, h) and its corre-
sponding weight coefficient δdis(µ). The weight coefficient
function is defined with the distances of interest as follows:

δ(µ) = −
∏
i

(
µ− µinterest i

si
)2 + 1 , (5)

where µinterest i is the i-th distance of interest and si is the
corresponding scaling value. The coefficient function is used
to focus the dispersal in a particular range of the distances
of interest, and δ(µ) reaches the maximum in the distance
µinterest i. Dis(µ, c, h) in (4) corresponds to dispersal eval-
uation on channels distribution c in distance µ:

Dis(µ, c, h) = Range(I(µ, c, h)) , (6)

where I(µ, c, h) is a filter defined to eliminate the channels
in which beams impact on the ground surface at distance µ as
follows:

I(µ, c, h) =
(
βi · step(h+ µ · tan βi), i = 0, 1, ..., j

)T

, (7)

where each angle β of beam in distribution c is filtered with the
step function, in which the filtering is determined by the casted
height at the vertical plane at distance µ. In (6), to describe
the dispersal at µ, Range(I(µ, c, h)), the range of values of
elements in I(µ, c, h), indicating the impacting beams on the
vertical plane at µ, is taken into account. Subsequently, the
value is scaled in optimization implementation.
B. Distribution Focusing for Channels
In medium and long distances, it is difficult to maintain high
precision of detecting or tracking objects due to the low
resolution in the vertical direction. Therefore, the distribution
of vertical channels should focus on the medium and long
distances to achieve better scanning of objects.

For the focusing optimization, a sub-objective is constructed
to evaluate channel focusing as follows:

Ffoc(c) =

∫
δfoc(µ) · Foc(µ, c, h) dµ, µ ∈ ROI , (8)

where the δfoc(µ) defined in (5) is the corresponding coef-
ficient function for the focusing problem. In (8), to evaluate
focusing, the Foc(µ, c, h) is computed and accumulated for
the distribution c over the ROI as follows:

Foc(µ, c, h) = Count(I(µ, c, h)) , (9)

where the Count(µ, c, h) counts the non-zero values of casted
beams in I(µ, c, h) on the vertical plane in distance µ, and the
values are further accumulated for optimization.
C. Blind Zone Avoiding Constraint
In several installation configurations, the vertical view field of
3D LiDAR will be reduced because of the blind zones. For
example, LiDAR installed on the roof of the vehicle is the
most common installing configuration for autonomous driving
vehicle platforms. In such case, several channel beams of the
large pitch angle may have impact on the roof surface, which
will constantly produce a large number of indifferent points.
Consequently, the distribution of channels c should assure that
the beams do not cast on the blind zone. This can be achieved
with the following constraint:

Fblind(c) =

∫
Blind(µ, c, h) dµ, µ ∈ BZ. (10)

The objective accumulates the cost to constrain the violation,
where Blind(µ, c, h) is the penalty cost defined as follows:

Blind(µ, c, h) = −
( j − Count

(
I(µ, c, h)

)
s

)n

. (11)

Blind(µ, c, h) is based on the polynomial approximation of
the constraint to beams impacting on horizontal plane inside
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the blind zone; here, j is the number of channels in (2), and
s denotes the corresponding scaling value and n is for the
polynomial order for approximation.
D. Optimization Implementation
In the present work, optimization for the angular distribution of
the vertical beam channels is implemented through a two-stage
framework. Because of the multiple dimension of the channel
c, optimization can be highly computationally consuming. To
reduce the overall complexity, coarse optimization is proposed
to obtain a coarse result of the optimized channel distribution.
The optimization result in coarse stage is refined in the next
stage.

In the implementation, the objective defined in (3) is firstly
transformed to the least squares problem as follows:

c∗ = argmax
c

∑
k

γk · Fk(c)

= argmin
c

∑
k

(
γk ·

∑
µ

(
1− sigmoid(Fk(c, µ))

)2)
,

(12)

where the values of sub-objective Fk(c) for distances µ are
scaled to (0, 1) and inverted. Therefore, in such way, the prob-
lem can be transformed into a nonlinear optimization problem.
In coarse optimization process, a candidate set of channel
distributions is generated with a specified resolution, upper
bound, and lower bound of the range. All the distributions in
the candidate set are enumerated, and the distribution with the
highest objective evaluation is outputted as the initial estimate
for the refinement. In the process of refinement, the coarsely
optimized channel distribution is further refined. As a result,
the optimized channel distribution c is obtained.

VI. CASE STUDIES FOR AUTONOMOUS DRIVING TASKS
To evaluate the performance of the optimized LiDARs, we
conduct the evaluation on object detection and semantic
segmentation for the original and the optimized LiDARs re-
lying on the proposed optimization. Firstly, an SVM-based
efficient algorithm for vehicle detection is implemented and
applied in the experiments to evaluate the performances of
different LiDARs and reflect the influence of casting points
over distances. Secondly, to further test the optimized LiDARs
in common autonomous driving perception tasks, we utilize
a convolutional neural network model (CNN) to perform
object detection experiments on cars, cyclists, and pedestrians.
Thirdly, we employ a semantic segmentation network to eval-
uate lane segmentation performances for optimized LiDARs.
A. Vehicle Detection Based on Handcrafted Features
In the first evaluation, we applied a method on the basis of the
clustering and classification procedure for the vehicle detection
task based on handcrafted features. In the process of clustering,
the points on the ground plane are first excluded to eliminate
the impact on the point cloud clustering for different objects.
Subsequently, clustering based on the Euclidean distance is
performed on the point cloud.

As the objects of the same type share a similar spatial
distribution in the point cloud [18], it is efficient and feasi-
ble to utilize features so as to represent the distribution of
points in order to distinguish the targets. When extracting
features from clusters, a feature fusion including both local
and global features is adopted. Local features reckoned with

the neighborhood of points are utilized to describe the local
spatial distribution. In this work, the FPFH (Fast Point Feature
Histograms) histogram feature is used, which estimates the
local spatial distribution with the relative angles between the
normal vector and the connection vector in the neighborhoods
of points [19]. Besides local features, global features based on
VFH (viewpoint feature histogram) are extracted to describe
the global distribution of the point cloud, in which the pose
and surface histogram features are taken into account [20].

In the process of cluster classification, Support Vector
Machine (SVM) classification exploiting the extracted features
is implemented to detect the objective clusters, in which the
object detection is conducted as a binary classification for the
point cloud clusters.
B. DNN-Based Object Detection
In order to further evaluate the performance of the optimized
LiDARs for generalized objection detection, we utilize the
LiDAR-based Complex-YOLO [21] CNN model to perform
detection for car, cyclist, and pedestrian. Complex-YOLO is
a widely used and implemented deep neural network targeted
for 3D object detection with LiDAR sensor. The model was
trained and tested on the KITTI dataset [22] and showed its
high performance and efficiency in detecting cars, cyclists,
and pedestrians in the range of 40m. In the evaluation, we
exploit the pre-trained model, which is trained and targeted for
Velodyne HDL-64E, to test and compare the performances of
optimized and original 16- and 32-channel LiDARs. To avoid
the potential overfitting issue and considering that the model
is already well generalized to various scenarios, the neural
model would not be re-trained to adapt LiDARs with different
numbers of channels in the evaluation. The original HDL-64E
is also evaluated to provide a baseline for other LiDARs.
C. DNN-Based Semantic Segmentation for Lane Area
Besides object detection, semantic segmentation is also a
common perception task for autonomous vehicles. In order
to further reflect the performance differences over distance,
we carry out the drivable lane area segmentation in this part
of evaluation. A fully convolutional neural network (FCN) [7],
[23] is implemented in this work to perform lane segmentation
based on LiDAR point cloud. Similarly, the model is trained
with the point cloud data from HDL-64E and utilized to eval-
uate the optimized and original 16- and 32-channel LiDARs.

VII. EVALUATION RESULTS

Experiments on original and optimized LiDARs are conducted
to investigate the performance in the scenario of autonomous
driving. To provide a proof-of-concept, test and evaluate the
proposed approach, we design and implement the virtual
LiDAR and conduct the experiments in the CARLA [10]
simulator. In the experiments, we study the case of perception
with one LiDAR placed on the roof of the vehicle, which is a
common setting in the scenarios of autonomous driving, with
the h=2.0, φ=0. The ROI and blind zone in the experiments
are set as follows: ROI = [5.0, 50.0], BZ = [0, 4.3]. The
domain of β is limited to be negative because of the installation
height h = 2.0 . Concerning the dispersal objective, we adopt
γdis = 1.0, and then we set a typical distance of interest
µdis 1 = 5.0 in δdis(µ) and its scaling sdis 1 = 20.0. For the
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Model Beam Angles
Optimized-16 0.00, −1.00, −2.00, −2.27, −2.54, −2.86, −5.71,

−7.00, −7.59, −9.00, −10.00, −11.00, −11.30, −13.00,
−14.00, −21.80

Optimized-32 0.00, −0.50, −1.0, −1.50, −1.70, −1.86, −2.27, −2.34,
−2.41, −2.54, −2.75, −3.00, −3.81, −5.71, −7.00,
−7.29, −7.40, −7.50, −9.00, −9.24, −9.50, −10.00,
−10.50, −11.00, −11.15, −11.30, −13.00, −13.50,
−14.00, −15.95, −17.90, −21.80

TABLE II
OPTIMIZED LIDAR BEAM DISTRIBUTION

focusing objective, we adopt γcon=5.0, a typical distance of
interest µcon 1=50.0 in δfoc(µ), and its scaling scon 1=20.0.
A. Experimental Setup
The virtual LiDAR module in CARLA does not allow irregular
channel distribution. For experimental purposes, we developed
a new configurable LiDAR module in which the channel
distribution can be customized for given parameters. We can
also directly obtain the semantic labels for the point cloud
from the LiDAR. In the experiments, various actor agents were
placed 5m ahead the autonomous vehicle, and were driven
out of the scan range of LiDAR to test the perception capacity
described in SECTION VI. The scenario is set so as to evaluate
the detection performance of the optimized LiDAR from the
short distance to the medium and long distances. We evaluate
the five settings of LiDAR with the uniform distribution of
16, 32, and 64 channels in specifications of Velodyne, and the
optimized distribution of 16 and 32 channels.

We first list the angle values of the optimized LiDARs in TA-
BLE II. In the distribution of the optimized 16-channel and 32-
channel LiDAR, the overall density of beams increases as the
distribution range shifts from [-15.0, 15.0] and [-30.67, 10.67]
to [-21.80, 0]. Beams are dispersed in µdis 1 =5.0 according
to the typical distance of interest of dispersal set in advance,
which enables the LiDAR to obtain much more details for
the close objects. In addition, the beams are still focused
on the further distance due to the µcon 1 = 50.0 typical
distance of interest corresponding to the beam focusing in
optimization. This adjustment increases the potential of LiDAR
to detect objects in the long distance. The result demonstrates
the ability of the proposed approach to optimize the dispersal
and focusing for LiDAR beams with given settings.
B. SVM-Based Vehicle Detection
In the experiments on the vehicle detection, we report the
results for the detection range, as represented in Fig. 2. The
diagram illustrates the distance range and the median distance

VLP16

Optim
ized-16

HDL-32E

Optim
ized-32

HDL-64E
0

20

40

60

80

D
is

ta
nc

e
(m

)

20.1

33.8 36.1

70.0
76.0

9.2
14.6 16.0

36.2
33.1

Fig. 2. Vehicle detection range

0.0 0.5 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

VLP-16
HDL-32E
HDL-64E
Optimized-16
Optimized-32

Fig. 3. Precision-recall curves

(a) VLP-16 (b) Optimized-16 (c) HDL-32E (d) Optimized-32

Fig. 4. Point clouds on vehicle of different LiDARs in a medium distance

5 10 15 20
0

1000

2000

3000

4000

Po
in

ts
on

V
eh

ic
le

20 30 40 50
0

100

200

300

400
VLP-16
HDL-32E
HDL-64E
Optimized-16
Optimized-32

Distance (m)

Fig. 5. Points on target vehicle over distances (the higher, the better)

of true positive cases of detecting the target vehicles starting
from 5m. The top of the boxes indicate the upper bounds of
the detection ranges. The figure shows that the distribution
obtained by the proposed approach outperforms the uniform
distribution for both 16-channel and 32-channel settings. There
are obvious increases in the range for optimized 16-channel
and 32-channel LiDAR. Given the same number of channels,
the longest detectable distances increase up to 68.0% and
93.9% for 16 and 32 channels, respectively. For the optimized-
32 setting, the longest distance is close to that of HDL-64E.
We also report the precision and recall in Fig. 3. The closer the
curve to the upper-right corner the better is the result. The fig-
ure represents the precision-recall curves of vehicle detection
in the medium distance range (15m - 30m). The clear trend
indicates that the optimized LiDARs have higher precision and
recall compared with the original ones. For the same recall
rate, the precision of the optimized LiDARs increases up to
13.9% for 16-channel and up to 12.1% for 32-channel. For
certain cases, the Optimized-16 LiDAR outperforms HDL-32E,
and Optimized-32 is even better than HDL-64E.

To perform object detection in different distances for the
target vehicle, LiDARs require the sufficient number of points
casted on the object. Fig. 4 shows the points casted on a
vehicle of different LiDARs in a medium distance. As shown
in the figures, the points casted by the optimized LiDARs
are denser compared with those of the original ones. Fig. 5
outlines the number of points casted on the vehicle with
different distances. LiDARs with more channels have higher
vertical resolution and produce more points on the target
vehicle in the long distances, as discussed in Fig. 1. In the
distance range from 5m to 20m, the obtained numbers of
points in aggregate for the optimized LiDARs increase 72.2%
and 88.5% of that for 16 and 32 channels, respectively. For
the range from 5m to 50m, the numbers increase 102.2% and
129.5%. In addition, the number for the optimized 16 channels
is 16.6% better for the range from 5m to 20m, and 34.2%
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LiDAR
Car Cyclist Pedestrian

5-20m 20-40m 5-20m 20-40m 5-20m 20-40m

HDL-64E 89.66 81.87 73.27 58.62 51.01 43.15

Optimized-32 85.40 67.93 61.86 35.21 39.70 35.34

HDL-32E 63.80 35.92 49.38 28.05 35.77 1.4

Optimized-16 44.93 29.22 43.60 3.06 37.31 /

VLP-16 29.57 18.93 27.39 / 29.15 /

TABLE III
AP (%) COMPARISON FOR DNN-BASED OBJECT DETECTION

LiDAR
Pixel Accuracy (%) IoU (%)
2-20m 20-50m 2-20 m 20-50m

HDL-64E 99.03 98.34 95.33 89.74

Optimized-32 98.19 98.37 91.49 89.50

HDL-32E 98.06 97.93 90.83 87.07

Optimized-16 97.25 90.00 86.99 42.23

VLP-16 95.11 85.84 77.60 13.59

TABLE IV
PERFORMANCE COMPARISON FOR DNN-BASED LANE SEGMENTATION

better for 5m to 50m than that of HDL-32E.

C. CNN-based Object Detection

In TABLE III we present the object detection results based on
the Complex-YOLO network for three object types grouped
by different distance ranges. Average Precision (AP) results
are computed to show the average detection performance
for different LiDARs. The DNN model is pre-trained with
the KITTI dataset which is based on a Velodyne HDL-64E
LiDAR. Therefore, in this testing setup, the original HDL-64E
LiDAR as a baseline shows the highest performance among the
evaluated LiDARs. The results show that the optimized LiDARs
generally perform better than the original LiDARs in medium
and long distances, due to the concentrated channel distri-
bution. The performance of optimized-32 LiDAR is close to
HDL-64E in car detection, and optimized-16 LiDAR performs
close to HDL-32E in cyclist and pedestrian detection. Both
optimized and original 16-channel LiDARs barely recognize
cyclists and pedestrians in 20-40m, and there are also very few
positive cases of pedestrian detection in 20-40m for HDL-32E.
Considering the model is trained with the KITTI dataset based
on the 64-channel LiDAR for urban scenes, we presume the
network is trained to tolerate noise and therefore needs denser
point clouds on small objects to distinguish the targets.

D. Semantic Segmentation for Lane Area

TABLE IV shows the performance comparison in the lane
segmentation task. Pixel accuracy and Intersection Over Union
(IoU) are evaluated for different ranges of distance, which
are the most common metrics for semantic segmentation. The
pixel accuracy results are relatively high because the lane area
is small within the scene, which biases the measure to negative
cases to some degree. As shown in the table, optimized 16 and
32-channel LiDARs outperform the original LiDARs in both 2-
20m and 20-50m distance ranges on pixel accuracy and IoU.
Optimized-32 LiDAR has a close performance to the baseline
in 20-50m. Optimized-16 LiDAR outperforms the original 16-
channel LiDAR by 2 times regarding IoU in 20-50m distance.

VIII. DISCUSSION

Because of the limitation of the current LiDAR products, at
present, it is still not practical to customize and implement
the optimized LiDAR products after production. Therefore,
we implemented a configurable LiDAR in the simulator for
evaluation. In the experiments, to reduce the complexity of the
overall procedure, deep neural networks whose architectures
are heavily subject to the changes of input size for different
LiDARs are not introduced in the present study. Instead, the
pre-trained CNN-based and FCN-based networks, which can
adapt to different vertical channels, are employed.

In optimization, although the two-stage optimizing proce-
dure greatly reduces the computing complexity, the whole pro-
cess is still time-consuming, especially, when the dimension
of c increases. Therefore, in the present study, we focus on the
optimization for LiDARs with low beam density, that is, the 16-
channel and 32-channel LiDARs, which can better demonstrate
the differences for the beam channel optimization. The results
of the original 64-channel LiDAR are retained to provide a
performance baseline for the optimized 32-channel LiDAR.

The proposed research can be helpful and intriguing for
LiDAR designing and customization. For LiDARs with limited
channels, the method can be applied to improve the perception
performance by focusing the beams in the range corresponding
to the objects of interest, effectively reducing the deployment
costs of LiDAR by improving the perception efficiency over
channels, while proper tuning can help ensure the necessary
coverage for the short distance. There is also a potential for
high-density LiDARs to benefit from channel optimization. By
introducing a mechanism to selectively retain essential chan-
nels and shut down the temporarily indifferent ones for differ-
ent scenarios, LiDAR will be able to actively save power and
reduce information redundancy with less involved channels,
which is especially beneficial for power-constrained vehicles.
The flexibility can help vehicles in low power mode to further
reduce power consumption and at the same time maintain
necessary perception reliability. Although it is still a high cost
to customize conventional LiDAR products in common cases,
with the rapid development of solid-state LiDAR which can ad-
just the vertical distribution of beams easier [24], the proposed
approach can be easily deployed and applied to potentially
improve the overall performance, power efficiency, and scan
latency. The beam adjustment for solid-state LiDARs can be in
real-time and scenario-oriented, in which the scenario-specific
configurations can be deployed dynamically. By now, there are
rare detailed public specifications or data regarding non-linear
channel distribution LiDAR, nor the research for the related
optimization method and framework. We hope this work can
potentially trigger other related research. In the future, we
plan to conduct additional experiments regarding optimized
LiDARs in comparison with other existing non-linear LiDAR
products. In addition, we intend to conduct experiments on
selective channels to investigate channel significance in regard
to power consumption for high density LiDARs such as 64- and
128-channel LiDARs. Furthermore, we are proposing potential
deployments and experiments on power-constrained embedded
robot platforms, in a combination of other low power con-
sumption approaches for autonomous navigation [25]–[28].
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IX. CONCLUSION

In this paper, we propose an approach to find the optimized
angular distribution of vertical beam channels for specific
application scenarios. We conduct the evaluation of object
detection and semantic segmentation for the optimized 3D
LiDARs in the autonomous driving simulator. The experimental
results suggest that concerning the specific object detection
task, the optimized LiDARs perform almost two times better
than the ones with the same number of channels in the detec-
tion range, and have a performance close to the LiDARs with
double channels in the long distance. At last, the limitations
and prospects of the present study are discussed.
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