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Abstract

From an architectural standpoint, folding as a design operation enables the cre-
ation of forms that can deal with different requirements in terms of both space
and programme. Moreover, from an engineering perspective, folding is an ef-
fective strategy to generate efficient structures that withstand the applied loads
through their form. Although these two aspects have been explored extensively
as independent research questions, so far, only a few attempts have been made
to define design methods that can take into account both spatial and structural
opportunities of folding at the same time.

This research presents a new approach to the design of folded plate struc-
tures in architecture. A design method that takes advantage of the interaction
between the spatial and structural features of folding is proposed, which aims
at merging architecture and engineering based on a holistic approach to design.
The proposed method is intended to assist the creation of folded plate struc-
tures since the initial phase of the design development and can be used by both
architects and engineers. The method builds on a process that relies on the
implementation of geometric operations in three dimensions. In particular, a
statically rigid folded plate structure is defined within a kinematically stable ref-
erence grid. While generating the structure, an architectural space is produced
at the same time. Without compromising the topological properties of the folded
plate structure, its form and the distribution of its internal forces can be adjusted
by the designer to meet specific architectural and structural requirements. This
goal is achieved by controlling the position of the nodes of the reference grid
while abiding by a series of designer-defined geometric constraints.

Grounded on 3D graphic statics and the theory of plasticity, a specific strut-
and-tie model for folded plate structures is introduced as the structural basis for
the design method. In this model, the internal forces are transferred via linear
members both along the folded edges and within the folded plates. Based on
the strut-and-tie model, in-plane stress fields in the folded plates can be derived.
The applicability of the proposed approach is facilitated by the implementation
of the design method into a parametric digital toolkit, which can be employed
to create folded plate structures at various scales. The potential of the method
in real design scenarios is demonstrated through a series of experimental designs
as case studies, including full-scale prototypes.
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Zusammenfassung

Operationen mit Faltungen ermöglichen aus architektonischer Sicht die Erzeug-
ung von Formen, welche sehr unterschiedlichen räumlichen und programma-
tischen Anforderungen gerecht werden können. Aus ingenieurwissenschaftlicher
Sicht erlaubt das Entwerfen mit Faltungen äusserst effiziente Strukturen
zu kreieren, welche rein durch ihre Form verschiedenen Beanspruchungen
standzuhalten vermögen. Obwohl diese beiden Aspekte als eigenständige
Forschungsfragen ausgiebig erforscht wurden, gibt es bisher nur wenige Ver-
suche, Entwurfsmethoden zu definieren, welche gleichzeitig die räumlichen als
auch die strukturellen Potenziale des Faltens berücksichtigen.

Diese Forschung präsentiert einen neuen Ansatz für die Gestaltung von
Faltwerken in der Architektur. Die entwickelte Entwurfsmethode zielt da-
rauf, das Wechselspiel zwischen räumlichen und strukturellen Eigenschaften
zu nutzen, um auf effektive Weise das architektonische und ingenieurwis-
senschaftliche Denken in einem ganzheitlichen Entwurfsansatz zu verschränken.
Die vorgeschlagene Methode richtet sich sowohl an Architekten als auch an Inge-
nieure und zielt darauf, die Konzeptionierung von Faltwerken von Beginn weg zu
unterstützen. Der Entwurfsprozess basiert ausschliesslich auf dreidimensionalen,
geometrischen Operationen. Konkret wird eine statisch starre Faltwerkstruk-
tur innerhalb eines kinematisch bestimmten Referenzgitters erzeugt. Mit der
Generierung der Faltwerkstruktur entsteht gleichzeitig ein architektonischer
Raum. Ohne die inhärenten topologischen Eigenschaften aufzugeben, kann
die Form des Faltwerks und die Verteilung der inneren Kräfte vom Planer an
die spezifischen architektonischen und strukturellen Anforderungen angepasst
werden. Dies wird durch die Kontrolle der Position der Gitterknoten als auch
durch die Einhaltung einer Reihe geometrischer Bedingungen, welche vom
Entwerfer definierten werden, erreicht.

Ein spezifisches, räumliches Stabwerkmodell für Faltwerke, welches auf der
dreidimensionalen Anwendung der Grafischen Statik und der Plastizitätstheorie
basiert, wird als strukturelle Grundlage für die Entwurfsmethode eingeführt. In
diesem Modell werden die inneren Kräfte durch lineare Elemente transferiert,
sowohl entlang der gefalteten Kanten als auch innerhalb der Platten. Aus-
gehend vom Stabwerkmodell lassen sich dann ebene Spannungsfelder in den
gefalteten Platten herleiten. Die praktische Anwendbarkeit des Verfahrens wird
durch die Implementierung der Methode in ein parametrisches, digitales Toolkit
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ermöglicht. Mit diesem lassen sich unterschiedlichste Faltwerkentwürfe in ver-
schiedenen Massstäben erzeugen. Das Potenzial der Methode für reale Entwurfs-
szenarien wird durch eine Serie experimenteller Entwürfe, inklusive 1:1 - Proto-
typen, demonstriert.





Introduction
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1. Folding as Integration of
Architecture and Engineering

Architecture and Engineering in the Conceptual Design Phase Towards
the end of the 20th century, thanks to the generalised digitalisation of the de-
sign process within the discipline of architecture, the chance to generate and
control non-standard geometries opened up the possibility for the creation of
new architectural forms (Macdonald 2001). At the beginning of the 1990s, as
soon as computer-aided design tools became widely available within the archi-
tectural community, architects have been granted the opportunity to generate
buildings with unconventional three-dimensional shapes, especially using curvilin-
ear geometries (Lynn 1993b; Carpo 2004; Frichot 2013).

As an immediate consequence of this phenomenon, which has been termed
by Carpo as the Digital Turn (Carpo 2013), a paradigm in architectural design
has been strengthened where the focus was predominantly put on the expressive-
ness of the architectural form. Such an approach gave limited relevance to the
fundamental relationship between the shape of a building and its inherent struc-
tural behaviour (Schwartz 2016a). Structural questions were thus addressed by
the engineer only in the advanced phase of the design process after the archi-
tectural form had been first defined by the architect within the conceptual stage
(Vrontissi et al. 2018). That is, the structural engineer was merely asked to
verify the stability of the structure and to calculate the size of the load-bearing
elements while having limited influence on the design of the actual shape of the
building. This design practice resulted in the contribution of the structural engi-
neer being generally dependent on the one of the architect (Oxman and Oxman
2010), hence establishing a hierarchical relationship between the two disciplines
(Kotnik and D’Acunto 2013). Such an operative model further enhanced the
distinction between the roles of the architect and the engineer within the building
sector (Saint 2007); a separation that had its origin in the 18th century (Addis
2007) and had been officially formalised by the creation of the first polytechnic
universities during the 19th century (Rinke and Kotnik 2013).

As observed by Macdonald (2001), the lack of structural insight during the
conceptual phase of the design process can be regarded as responsible for a
series of shortcomings in several projects of contemporary architecture. Issues
that are often the cause of delays in design development, and that enforce the
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excessive use of material resources in the final built constructions, as already
pointed out by Nervi (1965). In fact, the early stage of the design process
represents the fundamental moment when the initial ideas are outlined, and it has
a relevant influence on all the subsequent design phases. Structural awareness in
the conceptual design phase thus becomes a crucial requirement for the success
of the entire design process (Nervi 1965; Musmeci 1979b; Schwartz 2016a; Fivet
and Meng 2017).

Over the last few years, increased attention has been put on addressing
structural questions at the initial stage of the design. Based on this strat-
egy, the structure has become an essential aspect of the design process and in
some instances, the primary driver for the overall design advancement. This
phenomenon has been evidently revealed by the recently increasing number of
interdisciplinary collaborations between architects and structural engineers, who
started to cooperate from the outset of the design development (Kara 2010;
Nordenson 2010; Kotnik and D’Acunto 2013). Such a paradigmatic shift in the
architectural and engineering design production has been referred to by Oxman
and Oxman (2010) as the New Structuralism.

This new model advocates in favour of crossing the boundaries between the
architectural and engineering disciplines. Unlike the common hierarchical and
sequential exchange between the architect and the engineer, in this emerging
collaborative relationship, the architectural and engineering aspects of the design
are addressed together and developed at once during the entire design process
(Kotnik and D’Acunto 2013). The expertise and creativeness of the engineer
thus encounter the ones of the architect and open dialogue is established between
the two professions (Muttoni 2011). As explained by Flury (2012), this new
model has generated a condition in which the architect and the engineer are
prone to go beyond the boundaries of their own disciplines. Such a relation
between the two professions entails an attitude to building design where both
architects and engineers take on the entire design process and assume authorship
on its outcome (Vrontissi et al. 2018).

In compliance with this new model, the correlation between the architectural
form and its inherent structural capacity is regarded as a fundamental notion for
design (Schwartz 2016a). Such clear relationship between architecture and en-
gineering can be recognised in the past building production only in those projects
developed by architect-engineers such as Dieste, Candela, Torroja, and Nervi,
among others (Kotnik and D’Acunto 2013). In fact, for these master builders
of the 20th century, one of the most relevant components for the success of the
design development was the definition of an explicit static concept already in
the first phase of the design process (Nervi 1956). In this regard, as highlighted
by Schwartz and Kotnik: “Elegant constructions can therefore only arise if the
inner logic of the technical and scientific necessity becomes a unity with the ex-
ternal logic of creative freedom, and if the two mutually condition each other.”
(Schwartz and Kotnik 2010)
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Folding as a Design Operation The notion of folding has a multiplicity of dif-
ferent meanings, which embrace a considerable number of possible applications.
As explained by Lebée (2015), the emergence of the idea of folded surface is
directly related to the tradition of paper folding. This practice has its origin in
the Japanese art of origami, which brings together the notions of oru (fold) and
kami (paper) (Lebée 2015).

In this research, folding is regarded as an abstract design operation applied
to architectural design, which results in the creation of folded geometries. The
interest in folding, being this the main object of investigation of the present
research, relies on the assumption that such a design operation may represent an
effective medium to combine coherently architectural intentions and engineering
thinking within a holistic approach to design (D’Acunto and Castellón 2015). In
this way, referring to the previously described relationship between architects and
engineers, the use of folding in design is here recognised as a way to promote an
exchange between the two disciplines, starting from the early conceptual stage
of the design process. In fact, as clearly highlighted by Iwamoto (2009), the
effects produced by folding allow this design operation to address at the same
time various aspects related to both architecture and engineering:

”Folding turns a flat surface into a three-dimensional one. It is a powerful
technique not only for making form but also for creating structure with
geometry. When folds are introduced into otherwise planar materials, those
materials gain stiffness and rigidity, can span distance, and can often be
self-supporting. Folding is materially economical, visually appealing, and
effective at multiple scales.” (Iwamoto 2009, p. 62)

First, through folding an initially planar geometry is able to enter the third
dimension (Fig. 1.1), thus inherently achieving a spatial configuration. In this
transformation, particularly relevant is the notion of folding acting as a “unitary
gesture” (Sancho 2014a, p. 12), which allows the different constituent parts of
the folded geometry to keep continuity. That is, while the folding operation is
applied, the various components of an initially flat geometry are not individually
transformed, but they follow a coherent global movement, which entails the
existence of spatial interdependences between the parts.

Second, the geometry resulting from the application of folding has not only
spatial connotations but also intrinsic structural properties. In fact, by trans-
forming an initially flat surface into a three-dimensional folded geometry, the
surface implicitly gains static depth. Such a principle is here referred to as struc-
tural folding (Kotnik and D’Acunto 2013). This principle opens up the possibility
of using folding to create efficient structural systems that are able to support
the externally applied loads through form. Thanks to this property, folded ge-
ometries possess their own structural integrity and are generally self-supporting,
hence not requiring the use of auxiliary supporting structures.

Third, the application of folding results in the creation of three-dimensional
geometries whose constituent parts are planar. This aspect is particularly rel-
evant in relation to construction since it allows the use of a large variety of
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Figure 1.1: Transformation of a flat geometry into a three-dimensional one through folding.

materials and relatively simple manufacturing techniques. Moreover, in terms
of visual perception, the planarity of its parts makes a folded geometry clearly
intelligible and immediately understandable, no matter its inherent geometric
complexity.

Finally, being a design operation, folding is generally scale-independent. This
enables the use of folding at different scales and, consequently, to apply it to
diverse design scenarios.

The aforementioned effects of folding as a design operation have great impor-
tance at the scale of architecture. Considering a building as a folded geometry,
thanks to the inherent spatial and structural features of such a geometry, a
clear interdependency between the building’s architectural form and structural
behaviour can be established. Such a correlation is the one that qualifies the
“strong structures” (Schnetzer et al. 2012, p. 194). These are load-bearing con-
structions that do not serve their purpose as frameworks concealed behind build-
ing envelopes, but instead translate the structural demands into an occasion for
the creation of architectural space (Kotnik and D’Acunto 2013). Hence, through
the folded geometry, supporting structure and building envelope are merged into
one single element, and the potential of folding to integrate architecture and
engineering is directly revealed (Buri 2010).
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2. Applications of Folding
to Architecture

This research specifically deals with the use of folding at the scale of architecture.
In this context, one can identify three main applications: deployable structures,
folded developable surfaces, and folded plate structures (D’Acunto and Castellón
2015).

Deployable Structures A structure is deployable if can be unfolded from a
packed configuration to an expanded layout and folded back (Pellegrino 2001).
Deployable structures can be used to generate architectural elements, such as
retractable roofs or façade components, which can be stored in a compact state
and deployed when necessary. Deployable structures that are used at the scale
of architecture include, among others, structural mechanisms made of rigid bars
connected via movable joints (Calatrava 1981; Pellegrino 2001) and foldable
tensegrities, whose transformation can be controlled by changing the lengths of
their constituting elements (Motro et al. 2001).

Folded Developable Surfaces Folded geometries as developable surfaces can
be mapped onto a plane using isometric transformations (Dureisseix 2012) and
are usually designed starting from an initial folding or crease pattern. This pat-
tern is applied to a two-dimensional sheet of material, which is subsequently
deployed into space through physical folding. As described by Buri (2010), ex-
amples of traditional folding patterns derived from origami are the diamond
pattern or Yoshimura pattern (Hunt and Airo 2005), the herringbone pattern or
Miura Ori pattern (Miura 1989), and the diagonal pattern. Each folding pattern
is characterised by a specific configuration of valley folds and mountain folds1

(Fig. 2.1). The definition of more complex folding patterns may be obtained as
free-form variations of the classical origami patterns (Tachi 2010b), generally
using parametric digital tools (Tachi 2009b). Folded geometries as developable
surfaces can also be used to generate deployable structures. In this case, panels

1The application of folding to a flat sheet of material generates a mechanism in which one
part of the sheet can rotate about the other one; the two possible directions of rotation are
commonly defined as valley and mountain folds, whether the final folded geometry is concave
or convex (Dureisseix 2012).
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Figure 2.1: Three different types of folding patterns that can be used for the creation of
folded developable surfaces. (Left) Diamond pattern. (Centre) Herringbone pattern. (Right)
Diagonal pattern. Adapted from (Buri 2010, pp. 42–47).

that can be rigidly folded and unfolded2 are generally employed. At the scale
of architecture, these geometries require the introduction of specific solutions
that can accommodate for the thickness of the panels during the folding and
unfolding transformations (Tachi 2011).

.

Folded Plate Structures Folded plate structures consist of plates rigid in their
planes that are connected in space to generate folded geometries, globally work-
ing as statically rigid structure systems (Fig. 2.2). Folded plate structures are
not necessarily developable, and their construction does not generally imply an
actual process of physical folding. Because of the lack of geometric constraints
imposed by the developability requirement, folded plate structures can be de-
signed in a broader range of geometric configurations in comparison to folded
developable surfaces. That is, other than starting from a two-dimensional folding
pattern, whose mechanism has to be inevitably fixed to generate a kinematically
stable structure (Trautz et al. 2012; Gioia et al. 2012; Lebée 2015), folded plate
structures can also be designed directly in three dimensions.

According to Engel (2013), folded plate structures can be regarded as a sub-
category of surface-active structure systems. These are assemblies of structural
surfaces, which redirect forces in space through their geometry and without
the need for extra supports. At the same time, folded plate structures define
architectural spaces. Because of their inherent structural and spatial potentials,
folded plate structures have been extensively investigated in architectural and
structural design (Trautz and Herkrath 2009; Trautz et al. 2014).

2A folded geometry is rigid-foldable if its parts stay rigid during the folding transformation
(Lebée 2015).
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Figure 2.2: Applications of folded plate structures to architecture. (Top) Physical model of the
roof of Stabilimento Raffo in Pietrasanta by Musmeci as a folded surface structure (Musmeci
1960, p. 711). (Bottom) Physical model of the Chapel in Valleacerón by Sancho and Madride-
jos as a folded volumetric structure (Chapel in Valleacerón - S.M.A.O. ArchDaily, 30.04.2009,
https://www.archdaily.com/20945/chapel-in-villeaceron-smao/, ISSN 0719-8884. Ac-
cessed 25.05.2018. Photos: Sancho-Madridejos Architecture Office).

From a geometric standpoint, a distinction is made in this research between a
folded plate structure as a folded surface structure (Sedlak 1978) and as a folded
volumetric structure. In the first case, the geometry consists in a discrete open
surface, which can be often regarded as an approximation of a double curved
smooth surface; folded surface structures are generally used for the design of
roofs and façades. In the second case, the geometry is a self-connected, often
non-manifold, discrete surface that generates a porous structure; folded volu-
metric structures can be employed as the architectural envelopes of continuous
yet differentiated spaces. On the one hand, a remarkable investigation into the
possibilities offered by folded surface structures is due to the structural engineer
Musmeci (Musmeci 1979a). In this context, exemplary is the roof of the marble
factory Stabilimento Raffo in Pietrasanta (1956) (§ 4.2.2), whose geometry is
a direct manifestation of the flow of the forces within the structure (Fig. 2.2,
top). On the other hand, important examples of folded volumetric structures are
epitomised by those projects of the architects Sancho and Madridejos (Sancho
2001), like the Chapel in Valleacerón (1997-2000) (§ 5.2.2), where folding is
used to modulate diverse spatial conditions (Fig. 2.2, bottom) (D’Acunto and
Castellón 2015).

Thanks to their intrinsic ability to resist the externally applied loads by form
and their possibility to generate space, this research is primarily focused on folded
plate structures and their use in architectural design.

https://www.archdaily.com/20945/chapel-in-villeaceron-smao/
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3. Research Overview

Various methodological approaches to the use of folding in design have been
introduced over the years, particularly in the field of education. In this regard,
one of the first implementations of folding as a design operation is due to the
artist and educator Albers (Buri 2010; Lebée 2015), who in the 1920s developed
a series of exercises based on the use of folding as part of his introductory course
on design at the Bauhaus (Albers 1952).

More recent applications of folding to architectural design involve, among
others, the use of origami techniques (Jackson 2011) for the creation and trans-
formation of folded surface structures, or the morphological exploration of sheet
material folding (Vyzoviti 2003) to generate folded volumetric structures. Within
these design experimentations, however, the fundamental correlation between
space and structure in the folded geometries is not always made evident. As
a result, the designer often deals with this aspect only on an elementary level,
being the structural integrity of the folded geometries generally analysed only
after the architectural design has been first defined. In this way, the structural
and spatial opportunities of folding cannot always be exploited, especially during
the conceptual design phase (D’Acunto and Castellón 2015).

Although the structural and spatial possibilities of folding have been already
extensively investigated in the practical and scientific domains as independent
research fields, up to now, only a few consistent explorations aimed at integrating
these two aspects into the design process have been developed.

Research Focus While promoting a synthesis between the disciplines of archi-
tecture and engineering, the primary aim of this research is to introduce a novel
method for the design of folded plate structures in architecture. In this context,
folded plate structures are regarded as strong structures (Schnetzer et al. 2012,
p. 194; Chapter 1) due to the inherent relationship between their load-bearing
capacity and their space making potential.

Thanks to the proposed approach, the design of folded plate structures is
supported during the entire design development, starting from the initial phase.
In particular, while implementing simple geometric operations, the designer is
guided throughout the creation process of a folded plate structure that forms
the building envelope of an architectural space. The method gives the designer
the opportunity to control the dimensions and proportions of the space and
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thus its qualities. At the same time, the designer is able to assess the load-
bearing behaviour of the structure, with a particular focus on the static rigidity,
the equilibrium of the internal forces, and the stress distribution. As a result,
by promoting the use of spatial and structural features of folding as essential
drivers for the design development, the efficacy of folding as a design operation
is brought to the fore (D’Acunto and Castellón 2015).

Thesis Structure The remainder of this thesis is organised in five main parts:
Research Framework, Structural Model, Design Method, Case Studies, and Con-
clusions.

The first part (Research Framework) gives an account of the theoretical
context within which the proposed design method for structural folding in archi-
tecture has been formulated. Chapter 4 is an overview of a series of historical
examples of folded plate structures, whose design has been especially based on
the search for structural efficiency while taking advantage of the principle of
resistance through form. Particular attention is drawn to the context of the
post-war period in Italy when peculiar applications of structural folding have
been developed by the main protagonists of the structural engineering scene of
that time. Within this domain, the work of the engineer Musmeci is analysed
as a key reference for the development of a strategy to design efficient folded
plate structures. Chapter 5 is devoted to applications of folding to architectural
design, with a particular focus on the context of the 1990s, when folding be-
comes a significant research topic for several architectural practices worldwide.
In particular, the design experimentation of the architecture office of Sancho
and Madridejos is examined as an exemplary case of the use of folding for the
creation of architectural space. Chapter 6 is an overview of current strategies for
the design of folded plate structures at the scale of architecture. Finally, Chap-
ter 7 defines the scope of the present work and highlights the research process
undertaken for the development of the proposed design method for structural
folding in architecture.

The second part (Structural Model) presents the structural basis that is
at the core of the developed design approach. Grounded on considerations of
topology and static rigidity, in Chapter 8 a novel strut-and-tie model for folded
plate structures is delineated. This model represents a combination of the dual
structural archetypes of space, namely the lattice and the plate models, which
are introduced and described in details. Thanks to the use of the strut-and-
tie network, the global mechanical behaviour of a folded plate structure can be
modelled using only linear members, which are placed either along the folded
edges or within the folded plates. Chapter 9 then highlights how vector-based
3D graphic statics could be used to assess and control the external and internal
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equilibrium of the strut-and-tie network. Eventually, in Chapter 10 an approach
to derive in-plane stress fields in the folded plates is described.

The third part (Design Method) is focused on the developed method for the
design of folded plate structures in architecture, which relies on the strut-and-tie
model introduced in the previous part. After a general overview of the main
features of the proposed method in Chapter 11, Chapter 12 outlines a series
of design operations that can be used for the definition of the topology of a
folded plate structure, while addressing both structural and spatial questions at
the same time. Chapter 13 presents those design operations included in the
proposed method that consent to control the dimensions and proportions of
a folded plate structure. Thanks to these operations, both architectural and
engineering aspects can be addressed through the mediation of geometry.

The fourth part (Case Studies) introduces three case studies that have been
regarded as design experiments to test the applicability of the developed design
method. Chapter 14 offers an outlook on the general features of the case stud-
ies, which comprise folded plate structures at various scales. More specifically,
the design experiments include a cantilevering table, a hanging structure, and a
small building. The application of the proposed design method to the develop-
ment of each case study is depicted respectively in Chapter 15, Chapter 16, and
Chapter 17.

The fifth part (Conclusions) includes a discussion on the overall content of
the thesis, with specific reference to the contributions and limitations of the
research and a final overview of future developments.
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4. Folding and the Search for
Structural Efficiency

4.1 Resistance through Form and Structural Folding

Thanks to structural folding (Chapter 1) it is possible to confer to an initial
flat geometry the ability to resist out-of-plane loads by increasing its structural
depth. The application of this principle at the scale of architecture gives rise to
the folded plate structure system (Engel 2013, p. 219), where plates rigid in their
planes generate kinematically stable folded geometries. The correlation between
the form and the internal forces in a folded plate structure delineates an explicit
structural logic. This relationship is expressed by the principle of resistance
through form, as outlined by the architect-engineer Dieste (1917–2000):

”The resistant virtues of the structures that we make depend on their form.
It is through their form that they are stable and not because of an awkward
accumulation of materials. There is nothing more noble and elegant from
an intellectual point of view than this, resistance through form.” (Pedreschi
2000, p. 21)

The application of the principle of resistance through form allows making use
of structural elements in their most effective way and consequently to produce
efficient structures. From the point of view of the feasibility of construction,
the use of folded plates generally enables the production of complex geometries
based on the assembly of simple flat elements. If compared to other types of
form-active structure system such as double-curved shells, thanks to the pla-
narity of their constituting elements, folded plate structures are relatively easy
to fabricate. This aspect is especially true in the case of reinforced concrete, as
the construction of folded plate structures does not generally require the use of
complex formwork.

Among the first applications of structural folding to architecture are the
Hangars at Orly (1921–1923) by the engineer Freyssinet (1879–1962) (Fernan-
dez Ordoñez 1979). Especially because of their inherent structural potentials
and relatively convenience of fabrication, folded plate structures have been sub-
sequently employed worldwide, markedly during the 1950s and 1960s (Meyer
2017), when the search for structural and construction efficiency led to the
production of numerous examples of innovative buildings (Fig. 4.1).
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Figure 4.1: Overview of some of the most relevant folded plate structures built during the
1950s and 1960s worldwide, including churches, conference halls and sports centres.
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4.1.1 Structural Folding in Post-war Italy

The proliferation of folded plate structures is particularly evident in the struc-
tural engineering production of Italy in the post-war period. At the end of World
War II, Italy experienced an important advancement in both fields of architec-
ture and civil engineering. On the one hand, the rapid economic development
of the post-war years supported a dramatic expansion of the building industry,
which resulted in the deployment of many new real estate interventions and in-
frastructural projects (Ingold and D’Acunto 2017). On the other hand, the lack
of availability of new manufacturing techniques and materials of the period pre-
ceding the war, still impaired the building sector (Poretti 2008). To overcome
these limitations, structural engineering was pushed to search for new structural
typologies, mainly experimenting on new uses of reinforced concrete (Iori 2011).
This exploration was supported by the adoption of new building technologies,
such as prestressing and prefabrication, other than the application of the princi-
ple of resistance through form (Poretti 2010; D’Acunto and Ingold 2016).

The resort to structural folding in the work of some of the most prominent
engineers of post-war Italy, such as Nervi (1891–1979), Morandi (1902–1989),
Favini (1916–2012) and Musmeci (1926–1981), bears witness to the search
for structural and construction efficiency of that time. The relatively extensive
collection of buildings designed using folded plates in Italy during the 1950s
and 1960s offers a fundamental occasion to examine the various attitudes to
the topic by the most prominent structural engineers of that period. Based on
the analysis of specific projects of Nervi, Morandi, Favini, and Musmeci, a rich
catalogue of structural solutions emerges, mostly in the form of folded surface
structures (Chapter 2), in which each engineer proposes his own interpretation
of the concept of structural folding.

Structural Corrugation and Prefabrication by Nervi Nervi’s Capannone alla
Magliana in Roma (1946) represents one of the first examples of the application
of structural corrugation in combination with early prefabrication techniques at
the scale of a building. The shed (Fig. 4.2, top) of around 22.0 m by 11.5 m,
which is erected by the Nervi & Bartoli construction company as a storehouse,
gives the engineer the occasion to test for the first time his ferrocementitious
felt for the creation of different types of full-scale building components (Gargiani
and Bologna 2016). This innovative material system patented by Nervi in 1943
(Greco 2008, pp. 287–288), consists of two layers of steel meshes overlaid with
cement mortar through mechanical compression. Hence, the steel meshes work
both as reinforcement and as mould, thus allowing for the fabrication of bespoke
elements. In the Capannone alla Magliana, this material system is exploited by
Nervi to produce 3.0 cm-thick components with corrugated geometries (Fig. 4.2,
bottom) that are able to resist locally the externally applied loads through their
undulated forms (Nervi 1965). Thanks to the overall modularity of the system, a
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Figure 4.2: Capannone alla Magliana in Roma - Nervi (1946). (Top) Exterior view (Nervi 1965,
tav. XIII). (Bottom) Detail of one of the wall components (Gargiani and Bologna 2016, p. 147;
Archivio Pier Luigi Nervi - Università degli Studi di Parma, coll. 268/1).

limited amount of different component types is used for the definition of the walls
and the roof of the building (Gargiani and Bologna 2016). This strategy gives, in
turn, the chance to standardise the manufacturing process of the components.
The tests conducted by Nervi in the Capannone alla Magliana pave the way for
his later applications of ferrocement to larger scale projects.

The Compositional Approach of Morandi The design of the roof of the
Chiesa San Luca in via Gattamelata in Roma (1956, with Studio Passarelli) (Pe-
dio 1959) represents for Morandi an opportunity to put forward his approach to
structural folding. In order to keep an average thickness of the reinforced con-
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Figure 4.3: Chiesa San Luca in Roma - Studio Passerelli and Morandi (1956). (Top left)
Exterior view. (Top right) Interior view. (Bottom) Details (Pedio 1959, pp. 597–599).

crete plates of 12.0 cm, Morandi develops a peculiar structural scheme, where
the folded plate roof is punctually supported by intermediate pillars. The roof
is then pulled down to the ground on its perimeter by a diffuse reinforced con-
crete cable net, which is itself anchored to perimeter walls (Fig. 4.3, top). Due
to this structural composition, the pulling effect of the cable net consents to
counterbalance the self-weight of the roof, thus reducing the deflection of the
roof along its mid-axis. As a result, the folded plate roof can span 17.0m be-
tween the pillars and cantilever for 3.0m on each side (Fig. 4.3, bottom). In
comparison to a conventional solution where the roof is supported directly along
its perimeter, this configuration gives the chance to enlarge the space covered
by the roof. Moreover, the introduction of the cable net on the perimeter of the
church generates a fretwork through which the natural light can penetrate inside
the church (Pedio 1959).

Prestressed Folded Plate Structures by Favini The specificity of the ap-
proach of Favini to structural folding consists in his use of folded plate struc-
tures combined with prestressing technologies. This is particularly evident in the
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Figure 4.4: Chiesa del Sacro Cuore in Ivrea - Oliveri, Nizzoli and Favini (1958). (Top) Exte-
rior views (Fondazione Aldo Favini e Anna Gatta, http://www.fondazionefavini.it/opere/
chiesa-parrocchiale-canton-vesco/. Accessed 15.06.2018). (Bottom) Construction de-
tails (Favini 1962, p. 315).

project of Chiesa del Sacro Cuore in Ivrea, (1958, with Oliveri and Nizzoli). The
church has a rectangular floor plan with overall dimensions of 22.3 m by 28.9 m.
The structure of the reinforced concrete roof consists of seventeen identical
folded plate modules that are pre-stressed and simply supported on longitudinal
corrugated walls (Fig. 4.4, top) (Barazzetta 2004). The folding pattern used is
the typical origami reverse fold. Each module of the roof is symmetrical about
the mid-span and is made of a folded plate profile with a variable cross-section
(Fig. 4.4, bottom). The section has a form of an inverted V-shape at the sup-
port and morphs gradually into a triangular hollow shape at mid-span, with the
structural depth ranging from 140.0 cm to 158.0 cm (Favini 1962). The propri-
etary prestressing technology used in the roof is created by Favini himself, who
patents it in 1951 and employs it in several other projects (Barazzetta 2004).
Four prestressing tendons splitting into twelve cables towards the supports are
allocated within each plate. Because of the variable cross-section and the use of
prestressing, the thickness of the majority of the plates constituting the folded
modules can be maintained constant at 8.0 cm (Favini 1962).

http://www.fondazionefavini.it/opere/chiesa-parrocchiale-canton-vesco/
http://www.fondazionefavini.it/opere/chiesa-parrocchiale-canton-vesco/
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4.2 The Approach of Musmeci to Structural Folding1

Thanks to the experimental nature of his work, Musmeci holds an exceptional po-
sition within the Italian School of Engineering of the post-war period. Musmeci’s
peculiar view on structural design is supported by the search for novel structural
forms, which is initiated by his exploration into structural folding. Contrary to
the other protagonists of the Italian School of Engineering, whose remarkable
experimentation with structural folding is confined to a few designs (§ 4.1.1),
Musmeci explores the topic in an extended series of projects at the beginning
of his professional career. These projects are emblematic of Musmeci’s desire
for experimentation in the field of structural design and give clear evidence of
the evolution in the concept of structural folding within the design approach of
the engineer. Musmeci’s exploration is encompassed within the theory of mini-
mal structures based on his life-long research on structural design involving the
optimal use of materials (Musmeci 1967; Musmeci 1968; Musmeci 1971).

In particular, the engineer investigates structural folding in a series of eight
roof structures in reinforced concrete. Considering the specific significance of
the projects, these can be categorised within three main phases that outline a
clear genealogy (Ingold and D’Acunto 2017).

4.2.1 Musmeci and his Research on Structural Folding

The first phase (Fig. 4.5, top) includes the early design experiments by Musmeci
on the structural properties of folding. The design of the roof of the gymnastic
hall of Scuola di Atletica in Formia (1954, with Vitellozzi) is the first occasion
in which the engineer works with a folded plate structure (Vaccaro 1956). To
minimise the use of materials and achieve the required static height, the engineer
proposes a solution consisting in a typical accordion-like corrugated slab on a
regular rectangular plan; the fold lines are parallel and oriented along the short
side of the rectangle. One year later, while working on the project of Cinema
Araldo in Roma (1955, with Ammannati), Musmeci designs a roof as a network
of equally compressed polygonal arches spanning over a non-regular dodecagonal
plan (Musmeci 1956). Plates are used here to fill the fields in-between the arches
and not as the main elements of the load-bearing system of the roof.

In the second phase (Fig. 4.5, centre), Musmeci introduces a design strategy
to relate the form of the folded plate structure to its static behaviour. The
roofs of Stabilimento Raffo in Pietrasanta (1956, with Calini and Montuori)
(Musmeci 1960) and of Cinema San Pietro in Montecchio Maggiore (1957,
with Ortolani) (Morgan 1961) are designed in relation to the distribution of
the bending moments within the structures. For the project of Cappella dei
Ferrovieri in Vicenza (1957, with Ortolani and Cattaneo), Musmeci proposes
a three-dimensional folded plate structure that is equivalent to a three-hinged

1Contents of this section have been previously published in (D’Acunto and Ingold 2016).
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Figure 4.5: Genealogy of the folded plate structures by Musmeci (Ingold and D’Acunto 2017).

frame. In this case, structural folding is not limited only to the roof, but it is
applied to the entire building.

In the third phase (Fig. 4.5, bottom), which is associated to the roof of
Palestra CONI in Frosinone (1958, with de Plaisant), the ceiling of Ristorante
del Nuoto in Roma (1959, with Vitellozzi and Del Debbio) and the foyer’s ceiling
of Teatro Regio in Torino (1966, with Mollino and Bertone), Musmeci explores
the design of folded volumetric structures (Chapter 2). These roofs are dif-
ferent from the previous ones made as folded surface structures (Chapter 2)
since they are composed of a combination of polyhedral cells. These examples
can be considered as hybrids between folded plate structure systems and spatial
trusses, and directly relate to the later interest of the engineer on antiprismatic
geometries (Musmeci 1979a; Ingold and D’Acunto 2017).

4.2.2 The Design of the Roof of Stabilimento Raffo

Among the various folded plate structures conceived by Musmeci, particularly
relevant is the roof of Stabilimento Raffo in Pietrasanta (1956), for the design
of which the engineer develops a peculiar design methodology that is subsequently
applied to other projects involving structural folding. The roof is a self-supporting
slab on a rectangular plan of around 1000 m2 with a uniform thickness of 10.0 cm
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Figure 4.6: Stabilimento Raffo in Pietrasanta (1956). Interior view (Musmeci 1960, pp. 712).

Figure 4.7: Stabilimento Raffo in Pietrasanta (1956). Interior view (Musmeci 1960, pp. 713).

(Fig. 4.6). The slab consists of a folded plate module that is repeated five times
along the longitudinal axis of the roof. It is supported by two rows of six V-shaped
pillars, with a maximum span of 12.4 m (Fig. 4.7).

Musmeci devises the roof of Stabilimento Raffo in line with his belief that
in the process of structural design the form and not the internal stresses should
be regarded as the unknown (Musmeci 1979b). As pointed out by the engi-
neer himself, it is not because of its dimensions or any construction principle
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adopted that the roof stands out from other contemporary examples of folded
plate structures. On the contrary, the uniqueness of the design solution relies
on the ability of the form to express its static behaviour in an explicit, nearly
diagrammatic way:

”The roof of Stabilimento Raffo had to be built quite quickly and above
all with a low budget. It had to comply with nothing else but the static
requirements, defined by the free spans that had to be realized. Therefore,
it was a good occasion to make a kind of experiment [. . . ]: to see to which
extent a thin vault is able to express its statics through its own form.”2

(Musmeci 1960, p. 712)

The aim of Musmeci is to reach a true integration between structure and ar-
chitecture, where the form predominantly argues for its expressiveness through
the statics; a form whose load-bearing behaviour is explicitly communicated to
the observer (Brodini 2013). In fact, the roof is designed in such a way that
the form follows the internal forces directly. In this way, the engineer proposes
a specific design interpretation of the common principle of resistance through
form and develops an explicit strategy on how to apply it to structural design.
Considering the relevance given by Musmeci to this project, which reflects his
peculiar attitude to structural design, Stabilimento Raffo in Pietrasanta marks a
crucial moment in his research on structural folding.

The Geometry of the Roof in Plan As highlighted in relation to the develop-
ment of other projects (Adriaenssens et al. 2015), also in the case of Stabilimento
Raffo, Musmeci makes use of diverse tools and models, both analytical and phys-
ical. Of particular interest is the topological study of the folded plate pattern of
the roof of Stabilimento Raffo in plan, developed by Musmeci as a hand sketch
(Fig. 4.8). This drawing shows a series of topological variations that share the
same support conditions. By changing the position of the nodes as well as the
number and connectivity of the folded edges, the engineer investigates diverse
configurations, which imply different structural behaviours for the distribution of
the forces within the roof.

One of the main ideas followed by Musmeci for the definition of the global
geometry of the folded plate module is to activate in the roof a specific load-
bearing mechanism where the principal tensile stresses are confined to the folded
edges and the compressive stresses are diffused within the plates:

”In reinforced concrete, the tensile stresses are channelled into the main
reinforcement bars, and considering that these stresses tend to be confined
to specific edges, it is natural to try to keep them as straight and continuous
as possible. These edges are the ones that should connect geometrically the
different parts of the structure, likewise a rigid truss. The intuition that
along them tensile stresses run contributes to fix the form of the vault,
moving away from any sense of arbitrariness. Compressive stresses have

2Translation of the quotation from Italian to English by the author.
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Figure 4.8: Stabilimento Raffo in Pietrasanta (1956). Sketch of design variations of the roof
plan by Musmeci (Archivio MAXXI Musmeci e Zanini, 28843 mirrored).

always been kept in large sections of the slab in order to facilitate their
diffusion and, again, with the intention of expressing this characteristic
structural behaviour in the form.”3 (Musmeci 1960, p. 713)

Among the various tools used by Musmeci, remarkable is the parametric
model developed by the engineer to define the geometry of the folded plate
module in plan (Fig. 4.9, top). The use of this parametric model suggests a
design strategy different from the conventional one, in which the geometry of
a folded plate structure is generated using physical models based on an initial
folding pattern (Chapter 2). Musmeci’s model is built upon a two-dimensional
grid, whose nodes are located at the intersection of three main vertical grid-lines
parallel to the transversal axis of the roof, and four horizontal grid-lines parallel to
the longitudinal axis. The main vertical grid-lines are located at the transversal
axes of the V-shaped pillars, and the distance between them is represented by the
constant i . Various offset distances from the main and secondary vertical lines are
defined with the variables x , y , z , and t. The main horizontal grid-lines coincide
with the two longitudinal axes of the V-shaped pillars and the projections of the
two overhanging roof edges. The distance between the axes of the V-shaped
pillars is described by the parameter b. The two asymmetric overhang lengths
are designated with the variables a and c respectively. An additional variable u
is used to set the distance of two secondary horizontal lines offset from one of
the pillar’s axis; the variable v is used to set the distance of another secondary
horizontal line that is offset from the other pillar’s axis. Grounded on this set-up,
the projection in plan of each edge of the folded plate module is represented by

3Translation of the quotation from Italian to English by the author.
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Figure 4.9: Stabilimento Raffo in Pietrasanta (1956). (Top) Parametric model used by Mus-
meci to describe the geometry of the folded plate module of the roof (Archivio MAXXI Musmeci
e Zanini, 023.F12-7). (Bottom) System of equations used by Musmeci to control the para-
metric model (Archivio MAXXI Musmeci e Zanini, 024.F12-7).

a segment that connects two nodes of the grid. A series of relationships on the
slopes of the segments is then established by Musmeci in an analytical form.
This leads to the definition of a system of eight independent equations in eight
variables and one parameter (Fig. 4.9, bottom). By conveniently reworking the
equations, the variables x , y , z , and t can be expressed as functions of u, v , a,
b, c , and i ; by allowing the parameter b to vary within its domain, the space of
the solutions of the system can be explored.

The Geometry of the Roof in Elevation In parallel, the diagram of the distri-
bution of the bending moments on the transversal section of the roof (Fig. 4.10,
top) is used as a guideline to arrange the folded edges in elevation (Musmeci
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Figure 4.10: Stabilimento Raffo in Pietrasanta (1956). (Top) Diagram of the maximum bending
moments on the transversal section of the roof (Musmeci 1960, p. 710). (Bottom) Construc-
tion of the transversal section of the roof (Archivio MAXXI Musmeci e Zanini, F12-7).

1960), with the aim to achieve a uniform distribution of the bending stresses
within the structure. In the diagram, the transversal section of the roof is out-
lined as a continuous beam on two pin-jointed supports with asymmetric over-
hangs. The position of the supports and the length of the overhangs are related
to the previously described parametric model of the roof in plan.

The diagram shows the envelope of the bending moments generated by a
series of uniformly distributed vertical loads. Giving a design interpretation to
the principle of resistance through form, the engineer adjusts the elevation of
the nodes of the folded plate module in relation to the variation of the bending
moments (Fig. 4.10, bottom). That is, the distance between the portion of the
folded plates under tension and the one under compression is adapted by Musmeci
to relate to the magnitude of the bending moments along the transversal axis
of the roof. As a result, the distribution of bending stresses within the folded
plate structure is kept relatively uniform, allowing the engineer to adopt a plate
thickness of 10.0 cm all over the roof. In fact, this approach could be regarded
as an early example of form-finding based on mathematical models (Ingold and
Rinke 2015).
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Figure 4.11: Stabilimento Raffo in Pietrasanta (1956). Axonometric diagram of the roof
constructed from the projections of the roof in plan and elevation (D’Acunto and Ingold 2016).

The Final Geometry of the Roof Grounded on the projections of the folded
plate module of the roof in plan and in elevation, the geometry of the roof
in three-dimensions can be derived through a series of geometric constructions
(Fig. 4.11). To visualise the complex geometry of the roof in space, Musmeci
eventually makes use of a physical model (Fig. 2.2, top), which is assembled
as a non-developable surface conforming to the geometry generated using the
previously described parametric model.

As shown in the final plan of the roof depicting the layout of the reinforcement
(Fig. 4.12), according to the design intentions of Musmeci, the positioning of
the primary reinforcement bars is directly related to the geometry of the roof.
That is, the tensile stresses of the structure are confined to specific edges of
the folded plate module, while the principal compressive stresses are allowed to
spread on wide sections of the slab. In this way, the form of the roof expresses
its static behaviour explicitly.
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Figure 4.12: Musmeci: Stabilimento Raffo in Pietrasanta (1956). Final plan of the roof with
the main reinforcement layout (Musmeci 1960, p. 711)

A Design Methodology for Folded Plate Structures With the project of Sta-
bilimento Raffo, Musmeci brings forward an approach for the design of folded
plate structures based on parametric models. The folded geometry of the roof is
designed in three dimensions using projections. This is possible considering that
the roof is a modular folded surface structure and thus can be easily described
in plan and elevation. The approach of Musmeci differs from the more conven-
tional one that relies on the use of physical folding. Thanks to this procedure,
unnecessary constraints such as rigid-foldability and developability of the geome-
try can be neglected entirely as not relevant considering the scope and the scale
of the design. Additionally, specific structural and architectural constraints can
be implemented directly and controlled in the parametric model in the form of
geometric relationships. This design methodology can be directly applied to any
folded plate structure whose geometry can be described by means of projections.

Although the design of Stabilimento Raffo achieves an integration between
engineering requirements and architectural expression, due to the simplicity of the
architectural programme, the project does not completely explore the potentials
of folding as a strategy for space making. That is, the systematic repetition of
the same folded plate module along the longitudinal axis of the roof ultimately
generates one single undifferentiated internal space, as typical of any modular
folded surface structure.
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5. The Fold and the Exploration of
Space Making

5.1 The Architecture of the Fold

The use of folding in architectural design implies a wide range of applications,
each of them based on a different understanding and interpretation of the con-
cept of the fold. Folding regarded as a geometric transformation can be used
to generate coherent forms that consent to address various spatial and pro-
grammatic necessities. That is, folding enables the creation of continuous and
differentiated architectural shapes. It is this understanding of folding that pro-
motes its widespread application to architectural design starting from the 1990s.
This renewed interested in folding follows the first explorations on folded plate
structures in the 1950s and 1960s, which as opposed were fundamentally driven
by the search for structural efficiency (Chapter 4). Although these two lines of
investigation are rather dissimilar since they are grounded on entirely different
contexts, both of them still define applications of folding at the scale of archi-
tecture. Therefore, it is crucial to examine the topic of folding from both points
of view in order to comprehend how load-bearing and spatial opportunities of the
fold may be combined in architectural design.

The discourse on the role of folding in architecture is initiated in the early
1990s when the architect Eisenman introduces in the architectural domain the
notion of the fold as a generator of continuity and differentiation (Eisenman
1992). The interest of Eisenman in the fold and its significance in the field of
architecture derives from his reading of Le Pli: Leibniz et le Baroque (Deleuze
1988), published in 1988 by the philosopher Deleuze. After the first explorations
of Eisenman (Eisenman 1991), folding becomes an important research topic for
many architectural practices, as highlighted by the architect Lynn in the seminal
publication Folding in Architecture (Lynn 1993b).

Le Pli: Leibniz et le Baroque In his monograph Le Pli: Leibniz et le Baroque,
Deleuze proposes an original and multifaceted interpretation of the work of the
philosopher and mathematician Leibniz (1646–1716), who is regarded by the
author as the emblematic representative of the Baroque philosophy. As ob-
served by Carpo, the majority of the work of Deleuze can be regarded as a “vast



44 5 The Fold and the Exploration of Space Making

hermeneutic of continuity” that is carried out on the base of the reading of
Leibniz’s metaphysics (Carpo 2004, p. 14). The focus is primarily put on the
concepts of the monads, on Leibniz’s mathematical theory of differential calcu-
lus, and on the various manifestations of the Baroque in the arts (Carpo 2004,
p. 14). Central to the discourse of Deleuze is the notion of variation, which
constitutes one of the pillars of Leibniz’s mathematics of continuity:

”The definition of Baroque mathematics is born with Leibniz. The object
of the discipline is a new affection of variable sizes, which is variation itself
[. . . ] where fluctuation of the norm replaces the permanence of a law;
where the object assumes a place in a continuum by variation.” (Deleuze
1993, pp. 18–20)

According to Deleuze, variation manifests itself in the Baroque in the form of the
fold: “The Baroque refers not to an essence but rather to an operative function,
to a trait. It endlessly produces folds [. . . ] Yet the Baroque trait twists and turns
its folds, pushing them to infinity, fold over fold, one upon the other” (Deleuze
1993, p. 3). Deleuze thus regards the fold as an abstract notion rather than
an actual physical entity. Its relationship to the Baroque and its application to
the sciences and the arts is explicated extensively by the philosopher through a
series of examples. References are found in the fields of philosophy, mathematics,
architecture, music, and poetry.

Based on Leibniz’s supposition that “atoms of matter are contrary to reason”
(Leibniz 2001, p. 142), the world is conceived by Deleuze as a continuum consti-
tuted by folds (Laerke 2010, p. 26). These folds unfold themselves to infinity as
in an endless labyrinth (Deleuze 1993, p. 6). Deleuze’s conception of the world
directly reflects Leibniz’s mathematical assumption that a continuous curve is a
succession of differential relations (dy/dx), each defining the way in which the
curve varies (Laerke 2010, p. 28). In this regard, particularly relevant is the
mathematical notion of point of inflexion, the point of a curve where a change
in the sign of the curvature takes place. This is, according to Deleuze, the “ideal
genetic element” of the fold, the so-called “point-fold” (Deleuze 1993, p. 15). As
highlighted by Cache (1995), contrary to the stationary points of maximum and
minimum, the point of inflexion is independent of any chosen coordinate system,
and therefore it is an inherent property of the curve, an “intrinsic singularity”
(Cache 1995, p. 17). Consequently, the point of inflexion as point-fold becomes
the epitome of variation itself.

This concept, in turn, unfolds the idea of the “objectile” (Deleuze 1993,
p. 20; Cache 1995, p. 88), a new conception of the object related to Leib-
niz’s differential calculus. Instead of representing an instance of an object, the
objectile expresses all its possible variations, like a function that can yield an
infinite number of objects (Carpo 2004, p. 16). Based on these assumptions,
the fundamental operation produced by the Deleuzian fold is thus to generate
differentiation while keeping continuity (Bouquiaux 2005, pp. 43–45).
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Folding in Architecture At the time of the discovery of Le Pli: Leibniz et le
Baroque by the architectural community in the early 1990s, theory and prac-
tice in architecture are still largely dominated by the research on Deconstruction
(Johnson and Wigley 1988). This architectural paradigm is notably marked by
the collaboration between the philosopher Derrida and the architect Eisenman,
and it is reflected in the architectural production of various architects of that
time, including Gehry and Tschumi among others. In this context, the applica-
tion of the Deleuzian fold to architecture, with its “fluid logic of connectivity”,
stands for an appropriate alternative to the “contradiction and conflict” of the
Deconstructivist Architecture (Lynn 1993a, p. 10).

As editor of the publication Folding in Architecture (Lynn 1993b), Lynn
explicitly acknowledges the architecture of the fold as a new pivotal tendency in
the architectural domain of the 1990s (Lynn 1993a, p. 8). In his introductory
essay to Folding in Architecture, Lynn specifically emphasises the possibilities
offered by folding in architecture. The main point of his discourse is the ability of
the fold to produce differentiation through variation while preserving continuity:
“If there is a single effect produced in the architecture of folding, it will be the
ability to integrate unrelated elements within a new continuous mixture” (Lynn
1993a, p. 9).

As observed by Lynn in the revised edition of Folding in Architecture (Lynn
2004), the extrapolation of the Deleuzian fold into architecture passes through
two different phases. The first phase occurs in the early 1990s, and it is reflected
in the projects published in the first edition of Folding in Architecture. In this
phase, if some architects work with metaphors of folding, many others rely on
actual physical models made of folded sheet materials in order to give formal
architectural expression to the abstract notion of the Deleuzian fold (Lynn 2004,
p. 11). That is, many of these first explorations of folding in architectural design
stay confined to “literal foldedness” (Frichot 2013, p. 86).

Following the spreading of the work of Deleuze in the architectural com-
munity, during the second half of the 1990s, various avant-garde architectural
practices start reflecting on the notion of folding as a design operation. In this
second phase, numerous built and speculative projects are thus developed in re-
lation to the concept of folding in architecture. As pointed out by Carpo, this
second phase coincides with the rise of the digital revolution in architecture, the
so-called Digital Turn (Carpo 2013). In this context, folding is mostly used as a
formal device that allows taking advantage of the new emerging computational
tools (Chapter 1). In fact, these tools permit the creation of three-dimensional
shapes that transcend the traditional Cartesian geometries and consent to ex-
plore new forms of architectural space (Carpo 2004, p. 16). As a result, this
phase is mostly characterised by the implementation of folding in the form of
digitally generated curvilinear geometries, as a natural and direct adaptation of
the mathematical notion of differential calculus to architectural design. “As the
design process of ‘folding’ developed and became more nuanced it seemed in-
evitable that its aesthetic qualities would continue to rely on smooth, continuous



46 5 The Fold and the Exploration of Space Making

curvilinearity” (Frichot 2013, p. 87). The architecture of the fold can thus be
regarded as the fundamental theoretical basis that establishes the ground, in the
field of architectural design, for the abrupt transition from an analogue practice
to a digital one (Lynn 2004). As pointed out by Carpo:

”[. . . ] the theory of folding created a cultural demand for digital design, and
an environment conducive to it [. . . ] If we look at Folding in Architecture
now, we cannot fail to notice that digital technologies were then the main
protagonist in absentia. Not surprisingly, they would not remain absent
for long [. . . ] In the process, folding evolved towards a seconda maniera
of fully digital, smooth curvilinearity. Folds became blobs.” (Carpo 2004,
p. 16)

5.2 The Fold in the Work of Sancho and Madridejos

Within the context of folding in architecture, the investigation conducted on the
fold by the architects Sancho and Madridejos represents a notable exception, as
it is not mere formal experimentation. On the contrary, their work on folding
emerges as a rigorous and intellectually driven exploration of the implications of
the fold as the generator of architectural space (García-Abril 2003, p. 1). As
highlighted by the architects (Sancho and Madridejos 2014, p. 6), this configures
itself as actual research in the field of architectural design that eventually leads
to the definition of a specific design proposition for folding in architecture.

5.2.1 The Design Approach of Sancho and Madridejos

According to Sancho and Madridejos, the notion of the fold has a specific cultural
and artistic connotation and thus a significance that goes beyond the generic
operation of physical folding (Sancho 2014a, p. 34). The starting point of
their discourse on the use of the fold in architecture is the distinction made by
Deleuze between organic and inorganic folds (Sancho 2001, p. 118). According
to Deleuze, organic and inorganic matter is defined by two fundamentally dif-
ferent types of folds (Deleuze 1993, pp. 7–10). Hence, two types of forces are
accounted for the transformation of organic and inorganic matter. As observed
by Sancho, these forces are different in relation to their field of action and origin:

”[. . . ] Deleuze proposes on the one hand what he calls the forces that con-
front matter, the terse internal universe of matter with its intrinsic natural
laws [. . . ] These forces give rise to the organic fold, linked to movement,
change and transformation. On the other hand, with the inorganic fold
which has arisen from the subsequent presence of forces based on aims
that are extrinsic to matter [. . . ] we arrive at stable events [. . . ] They
depend on the cultural outlook or the moment in history, that are thus ex-
ternal, variable, changing, diverse, partial but nonetheless richer and simpler
in their action.” (Sancho 2001, p. 118)
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Organic and inorganic folds thus entail two different meanings. The organic fold
depicts the effects of an interior movement guided by natural action, such as the
motion of a body, and it is not mediated by external factors. On the contrary,
the inorganic fold is the result of conscious manipulation of matter to convey an
abstract concept or a specific intention (Sancho 2001, p. 118).

The intellectual investigation on the fold serves to Sancho and Madridejos
as a theoretical basis for the maturation of their personal understanding of the
fold in architecture (Sancho 2001, p. 118). The fold used to create architectural
space from a two-dimensional initial condition can be regarded as the primary ob-
ject of their investigation. Based on these assumptions, Sancho and Madridejos
relate their work to the Deleuzian category of the inorganic fold (Sancho 2001,
p. 118). In this context, architectural space can be recognised as the result of
the application of intentional rules that define how the fold is generated and
deployed from two to three dimensions.

In this way, the exploration of the fold carried out by Sancho and Madridejos
goes in a different direction in comparison to other theoretically informed inves-
tigations, such as the one of Eisenman. In fact, Eisenman regards folding not as
a controlled design operation but instead as an incidental transformation that is
applied to the architectural space as a process of morphogenesis and which “[. . . ]
presents the possibility of an alternative to the gridded space of the Cartesian
order” (Eisenman 1992, p. 149).

The Fold as a Unitary Gesture As acknowledged by the artist Chillida
(Madridejos and Sancho 1996, p. 22), in the process of generating space the
fold keeps unity among the different geometric elements of which it is composed.
That is, the fold acts as a “unitary gesture” (Sancho 2014a, p. 12). In this way,
the operation of folding enables to generate simultaneously a continuous yet
differentiated space. At the same time, the folded geometry resulting from this
space making process has inherent structural properties (Sancho 2014a, p. 34),
which allow the geometry to resist the applied loads through its form (§ 4.1).
As a result, the fold creates both space and structure.

Types of Folds Starting from the second half of the 1990s, the fold is explored
by Sancho and Madridejos in a series of projects that bear witness to the evolution
in the design experimentation of the architects. The investigation of Sancho and
Madridejos is characterised by two intertwined lines of research, the first one
related to the use of straight folds and the second one focused on curved folds
(Sancho 2014a, p. 34). Within these two main categories, five basic types of
folds (Sancho and Madridejos 2014, p. 36) can be identified:

• right fold: Chapel in Valleacerón (1997–2000), Church in Pintu (2000–
2001), Church in Qingpu (2004–2006);

• pleat fold: 14 Viñas Winery Picón (2005–2009);
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• curved fold-cupola: Arts and Technology Centre in Segovia-Artistic Cen-
tre (2008–2014), Technology Centre in Zamora (2012), Madrid Business
School Auditorium (2012).

• curved fold-void: Arts and Technology Centre in Segovia-Entrepreneur
Centre (2008–2014);

• curved fold-dome: Swimming Pool in Cantalares (2006–2014), Chapel in
the forest, Madrid (2012).

The right fold and pleat fold are produced by folding along straight fold lines.
The former implies the generation of actual architectural space in the form of
a folded volumetric structure (Chapter 2); the latter defines a pleated surface
as a folded surface structure (Chapter 2), that can be deployed, for example, to
envelop an architectural space.

The curved folds -cupola, -void, -dome can be regarded as three different
implementations of curved folding, which relies on curved creases in place of
straight fold lines. In the first case, the fold can be used, for example, as a
ceiling that covers an architectural space. In the second case, the fold can be
employed to define the boundary of a spatial void within the solid mass of a
building. In the third case, the fold can be regarded as a surface structure that
encloses an architectural space.

The Design Process of Sancho and Madridejos The design process sug-
gested by Sancho and Madridejos for the creation of their architectural projects
generally relies on the use of physical models made out of initially planar sheets
of material. The initial step of the process consists in the definition of the “base-
fold”, which constitutes for the architects the primary driver for the development
of a project (Sancho 2014b, p. 64).

Among the different types of folds, particularly relevant is the right fold, being
the type of fold that Sancho and Madridejos have employed starting from their
initial investigations on folding. It is produced by defining a series of fold lines
and straight cuts on a single planar sheet of material. Based on this operation, a
series of polygonal faces are created onto the sheet, whose edges are represented
by the fold lines and the straight cuts.

The fold enters the third dimension and gains its spatiality through a rigid
folding transformation of the initially planar sheet, after the application of ex-
ternal forces (Sancho 2014a, p. 35). During this transformation, the fold lines
behave as hinges, around which the initially coplanar polygonal faces of the sheet
rotate rigidly, each of them along a well-defined trail. In this process, the pair
of edges generated by each straight cut, initially aligned, separate from each
other and fold into space to produce the contour of a polygonal opening. As
observed by Sancho, this process implies an original approach to design where
a two-dimensional operation is used to control a three-dimensional form: “So,
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slicing a plane means drawing in space, opening an incision that folds in response
to the external stress” (Sancho 2014a, p. 35). As a result, a partially enclosed
space is created. The enclosure of the space is then completed by combining
the base-fold with additional folds (Sancho and Madridejos 2014, p. 44).

Since the fold is generated out of a rigid transformation, the edges keep
their lengths invariant while folding and their vertices are constrained to follow
specific path curves in space within a single global movement. As outlined by
García-Abril, the result of this folding transformation is a geometry with strong
three-dimensional qualities and unexpected formal connotations:

”The shapes lack intrinsic meaning, though we may subconsciously guess at
associations with artistic models and references that stimulate our imagi-
nation and confront the values of the creative system used. This creative
system is their justification and represents the scientific skeleton of their
architecture. The structure’s lines can be logically deduced as the trail
left by the points as they move through space, releasing the folded planes
from their potent geometry and totally destabilising former conceptions of
handling space.” (García-Abril 2003, p. 2)

The resulting spatial configuration is directly determined by the initial layout
defined on the planar sheet. Therefore, the number and connectivity of fold lines
and straight cuts can be used as parameters to define the topology of the fold.
For a given topology, the lengths of the fold lines and straight cuts and the angles
between them can be used as parameters to control the actual geometry of the
fold, and the space thereby generated, in terms of proportions and dimensions. In
fact, once these parameters are defined, as observed by the architects, a “set of
relationships” among the different elements constituting the fold is established,
which in turn affects the way in which the fold is deployed into space (Sancho
and Madridejos 2014, p. 43).

The creation of an architectural space from a fold is an iterative process
(Sancho 2014b, p. 64). At each iteration, the initial planar layout has to be
adjusted and its deployment in three dimensions tested. Each design instance
is thoroughly evaluated, with regard to the specific spatial qualities produced by
the fold, until the sought architectural aims are achieved. In this process, the
geometric parameters are continuously varied, and a family of different folded
geometries that share the same topology is created.

During the design process, various internal and external variables are taken
into account, such as the materiality, the scale, the relationship with the land-
scape and with the light, all having a crucial influence on the spatial configuration
of the fold (Sancho and Madridejos 2014, p. 50). As pointed out by García-Abril:
“Sancho-Madridejos’ work clearly seeks to be expressive, and this makes it pos-
sible for them to create by using a simple set of rules they have established in
advance [. . . ]” (García-Abril 2003, p. 1). Nevertheless, as acknowledged by
Sancho, this process cannot be formalised in a linear design method and sys-
tematically applied to every design project (Sancho and Madridejos 2014, p. 6).
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It is rather the result of continuous design exploration, in which some ideas are
fully developed into real projects, and other ones are kept in the state of design
experiments in progress, like in a “working laboratory” (Sancho and Madridejos
2014, p. 6).

The Role of the Structure in the Design Development When approaching
the design of folded forms using physical folding, the kinematic stability of the
generated geometries is obtained by fixing the structural mechanism produced
after the folding operation is applied (Chapter 2). The folded forms designed by
Sancho and Madridejos using physical models have evident structural integrity
since they comply with the principle of resistance through form (§ 4.1). Con-
sidering the size and proportions of the individual folds and the loads that they
have to withstand, the folds are classified by the architects according to their
structural capacity (Sancho and Madridejos 2014, p. 52).

The design process put forward by Sancho and Madridejos does not consider
the use of explicit structural variables in the actual definition of the folded ge-
ometries, as seen, for example, in the approach suggested by Musmeci (§ 4.2).
In that case, structural parameters such as the distribution of the internal forces
and their relation to the designed folded forms were part of the initial design
concept. The internal stresses within the folded forms created by Sancho and
Madridejos are assessed after a first instance of the global geometry has been
first set. This analysis is performed using structural simulations based on the
finite element method (FEM) (Sancho and Madridejos 2014, p. 52).

5.2.2 The Chapel in Valleacerón

The right fold is applied for the first time by Sancho and Madridejos in the
design of the Chapel in Valleacerón, Ciudad Real (1997–2000). It is then further
explored and developed for the design of the Church in Pintu (2000–2001) and
the Church in Qingpu (2004–2006).

The Chapel in Valleacerón represents the most emblematic building where
the architects explore the architectural opportunities of folding as an operation
for space making (D’Acunto and Castellón 2015). In fact, the chapel effec-
tively exemplifies all the qualities that Sancho and Madridejos recognise in the
architecture of the fold, among all its inherent spatiality:

”The project at Valleacerón, [. . . ] embodies a desire to draw us into the
architectural space from this constructive sense of the fold, from its spa-
tiality. The chapel unit concentrates this aims in a radical way, almost in
the form of a manifesto.” (Sancho 2001, p. 120)

The chapel, which is part of a series of four buildings,1 is an isolated ar-
chitectural object located at the top of a hill, and it has overall dimensions of

1Other than the chapel, the project includes a villa, a hunting pavilion and the guard’s
residence (Sancho and Madridejos 2003, p. 9).
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Figure 5.1: Chapel in Valleacerón (1997–2000). (Top) Definition of the base-fold using a paper
model. (Bottom) Physical model of the final proposal (Chapel in Valleacerón - S.M.A.O. Arch-
Daily, 30.04.2009, https://www.archdaily.com/20945/chapel-in-villeaceron-smao/,
ISSN 0719-8884. Accessed 25.05.2018. Photos: Sancho-Madridejos Architecture Office).

11.2m by 8.4m in the floor plan and 10.6m in elevation. As explained by the
architects, the chapel is built around the concept of the “box-fold” (Sancho 2001,
p. 121), which consists in a right fold that is inserted within a box. This ap-
proach produces a folded geometry that can be regarded as a folded volumetric
structure (Chapter 2). The connection between the fold and the box establishes
a definite duality between an architecture constituted by edges and planes, and
an architecture defined by volumes (Sancho 2014a, p. 34).

The creation of the base-fold and its correlation to the box are the result of
extensive experimentation developed by Sancho and Madridejos using physical
models (Fig. 5.1). After the topology of the fold is determined, various initial
layouts of the unfolded sheets are tested until the desired relationship among
the different elements constituting the fold is achieved. The physical models are
especially used by the architects to control the space generated by the combina-
tion of the folded geometry and the box. In parallel, a series of three-dimensional
diagrams are employed to define the spatial articulation of the folded geometry
within the box and to specify its overall proportions and dimensions (Sancho and
Madridejos 2014, p. 100).

The Architectural Expression of the Fold The design approach used by San-
cho and Madridejos eventually leads to the generation of a building that presents
fundamentally different formal qualities on its various exterior sides. Based on
the point of view from which the building is observed, the chapel appears either
as a massive enclosed volume, thus suggesting the idea of a static Cartesian

https://www.archdaily.com/20945/chapel-in-villeaceron-smao/
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Figure 5.2: Chapel in Valleacerón (1997–2000). Sections of the building expressing its
spatial differentiation (Chapel in Valleacerón - S.M.A.O. ArchDaily, 30.04.2009, https:
//www.archdaily.com/20945/chapel-in-villeaceron-smao/, ISSN 0719-8884. Accessed
25.05.2018. Diagrams: Sancho-Madridejos Architecture Office).

geometry or as a lightweight open surface articulated in space, which indicates
the presence of a dynamic architectural object (García-Abril 2003, p. 2).

This duality is made explicit to the visitor along the path that gives access
to the chapel. In fact, the path runs around the building and enables the visitor
to experience it from various perspectives (Sancho and Madridejos 2003, p. 11).
The formal differentiation between the various sides of the building, however,
does not entail the idea of disconnection. The negotiation between the antipodal
architectural conditions that are present in the building is due to the unifying
effect of the fold, which connects the different parts of the chapel into one
single architectural system (García-Abril 2003, p. 2).

The continuous variation of the space is reflected in the sections of the
building (Fig. 5.2), which underline highly differentiated spatial conditions due
to the presence of the folded geometry (García-Abril 2003, p. 2). In fact, the
topological articulation of the space and its proportions change dramatically from
one section to another, while preserving the continuity of the building envelope.
The perception of the inner space of the chapel varies constantly based on
the diverse natural lighting conditions that can be experienced throughout the

https://www.archdaily.com/20945/chapel-in-villeaceron-smao/
https://www.archdaily.com/20945/chapel-in-villeaceron-smao/
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day (Sancho and Madridejos 2003, p. 11). The box geometry protects the
inner space of the chapel from the direct sunlight coming from the south. In
this condition, the diffuse light coming from the opening to the north and the
skylight on the ceiling illuminates the individual plates of the folded geometry
in a delicate way, thus contributing to the definition of contemplative interior
space. This state is wholly overturned when the direct sunlight from the west
penetrates the building through its various openings. In this case, the light casts
the shadows of the folded geometry and the window frames directly onto the
interior walls. As a result, space is perceived as fragmented, and the interior
appearance of the chapel is completely transformed (Sancho 2001, p. 121).

Integration of Space and Structure In the Chapel in Valleacerón, architecture
and structure are coincident. In fact, from a structural point of view, the building
complies with the principle of resistance through form. That is, the folded plates
that generate the inner space of the chapel are at the same time the load-bearing
elements in the structural system of the building. The structure is thus not in
the background as a hidden skeleton but actively participates to the definition
of the architectural space. In this regard, the project shows a coherent synthesis
between structural and architectural solutions.



54 6 Current Methodologies of Folding in Architecture

6. Current Methodologies of
Folding in Architecture

The current investigations on the application of folding at the scale of architec-
ture are generally oriented towards the independent analysis of specific aspects
of the topic such as structural efficiency, formal expression, or manufacturing
processes. Moreover, most of the existing research is focused on folded sur-
face structures (Chapter 2), while the spatial and structural potentials of folded
volumetric structures (Chapter 2) are not yet entirely explored.

This chapter presents a brief review of current methodologies for the design
of folded plate structures in architecture. The review is specifically focused on
those approaches where architectural and structural inputs are both used as part
of the design process.

Parametric Design of Folded Plate Structures In his doctoral thesis, Buri
(2010) explores a strategy for the design of folded plate structures that can
be subsequently built with cross-laminated timber panels in the form of folded
surface structures (Chapter 2). Different geometric configurations inspired by
traditional origami folding patterns, including the diamond, herringbone, and
diagonal ones (Chapter 2) are first analysed in terms of structural and spatial
potentials. These configurations are then reproduced within a three-dimensional
digital modelling environment.

Based on the parametrisation of these models, a design tool is put forward,
which extends the scope of the method and consents to generate free-form
folded plate structures. The tool enables to produce complex folded geometries
and adjust in real time various parameters such as the type of folds, the width
of the folds, the number of folded edges, and the dihedral angles between the
folds (Fig. 6.1, top) among others. The structural behaviour of the folded
geometries is then evaluated numerically using the finite element method (FEM).
The parametric tool is specifically used by Buri to design various folded plate
structures as case studies, which are materialised using cross-laminated timber
panels (Fig. 6.1, bottom).

Overall, the research of Buri provides essential findings in the field of folded
plate structures, especially in relation to the use of timber plates. On the one
hand, the parametric tool allows the designer to take easily advantage of the
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Figure 6.1: (Top) Parametric set-up showing the variables used for the modelling of a folded
surface structure based on the herringbone pattern in the design method developed by Buri
(Buri 2010, p. 175). (Bottom) Implementation of the method for the design and construction
of the Chapel of Saint-Loup at Vaud, Switzerland (Buri 2010, p. 269, photos F. Hatt).

formal potentials of folding. On the other hand, the method proposed relies on
a sequential design process in which the folded geometry is first generated and
then analysed structurally with FEM simulations. Because of the use of FEM,
the correlation between form and internal forces may not always be explicitly
revealed.

The work of Samuelsson and Vestlund (2015) aims at exploring the possi-
bilities of structural folding in architecture with the goal of bringing forward a
design method for the creation of folded plate structures. Like in the present re-
search, the starting point of the investigation is the assumption that folded plate
structures represent an effective way to enclose space and create load-bearing
systems at the same time. The work of Samuelsson and Vestlund is focused ex-
plicitly on folded surface structures. The structural properties of different folded
geometries created from various origami patterns are analysed using physical
models. The patterns include the diamond, the herringbone, and the diagonal
ones, as seen in the research of Buri.

By referring to the theory of Wester (1984) on the duality of structures
in space (Chapter 8), the static rigidity of the physical models is intuitively
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Figure 6.2: Evaluation of the static rigidity of a folded geometry generated from a diagonal
pattern with respect to different structure systems. (Left) Combination of lattice and plate
structure. (Centre) Plate structure. (Right) Lattice structure (Samuelsson and Vestlund 2015,
p. 75).

evaluated by analysing them as lattice, plate, or combination of lattice and plate
structures (Fig. 6.2). Detailed structural analysis is subsequently carried out
using FEM to define the stress patterns in the folded plates under various loading
conditions. The physical models are then translated into digital models and used
for the definition of a parametric tool for folded surface structures. The tool is
eventually used to design a full-scale prototype in the form of a corrugated wall.

The work of Samuelsson and Vestlund suggests an effective way to evaluate
the kinematic stability of folded plate structures based on fundamental notions
of static rigidity (§ 8.2.1). As in the case of Buri, the use of FEM for structural
analysis does not generally provide information on how to adjust the shape of
the structure with respect to the internal forces.

Similar to the work of Buri, the research of Meyer (2017) is focused on the
definition of a digital toolkit (Fig. 6.3, top) for the design of pleated structural
envelopes at the scale of architecture (Fig. 6.3, bottom). Like in the case of Buri,
the investigation is specifically focused on the design of folded plate structures
made of laminated timber panels as folded surface structures. The numerical
model elaborated by Meyer is intended to facilitate the control of the geometry
of pleated structures with the aim of integrating engineering requirements and
architectural intentions within the design process, while taking into account also
specific construction constraints.

The design method includes two main phases. In the first phase, the global
geometry of the pleated envelope is set using a reference surface on which a
folding pattern is applied. The reference surface and the profile of the pleating
are defined directly in the three-dimensional digital model. Given a first instance
of the pleated geometry, several evaluations are conducted to test the validity of
the proposal according to various criteria, including structural efficiency, thermal
performance, and acoustic response. The pleated geometry is iteratively modified
until all the criteria are fulfilled. In the second phase, questions related to the
materialisation of the geometry are taken into account. These aspects include
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Figure 6.3: (Top) Parametric model used within the method developed by Meyer for the design
of pleated structural envelopes. Adapted from Meyer (2017, p. 190). (Bottom) Full-scale
prototype of a pavilion (New-Yourte) used by Meyer as a proof of concept of the proposed
design approach (Meyer 2017, p. 129).

the definition of the thickness of the plates, the creation of the nodes, and the
design of the edges of the plates based on the desired type of connection. The
resulting detailed geometry is then re-evaluated and, if necessary, further refined.
The implementation of the numerical model into a digital toolkit allows testing
different design variations.

On the one hand, the toolkit brought forward by Meyer permits to take into
account diverse aspects related to the design of pleated envelopes as folded
surface structures in an interactive way. On the other hand, architectural and
engineering questions are not necessarily addressed simultaneously. The evalu-
ation of the structural effectiveness of the design solution takes place after a
first instance of the global geometry of the folded surface structure is defined.
In turn, such an approach necessitates a sequential procedure until the desired
structural requirements are met.

Constraint-based Design of Folded Architectural Forms The research of
Tachi deals with a broad range of aspects related to origami and its application
to engineering and architecture. These include, among others, the generalisation
of rigid-foldable origami (Tachi 2009a) and their simulation (Tachi 2009b), the
free-form variation of origami (Tachi 2010b), and the design of rigid-foldable



58 6 Current Methodologies of Folding in Architecture

Figure 6.4: (Top) Three-dimensional simulation of free-form origami. (Bottom) Application of
the design strategy developed by Tachi to the construction of an adaptable wall. Adapted from
Tachi (2010a).

thick origami (Tachi 2011). Particularly relevant is the investigation on the
design of architectural forms based on computational origami (Tachi 2010a).
In this work, many of the individual contributions of the research of Tachi are
combined together for the definition of an origami theory for design. One of the
objectives of this work is to enable the design of free-form thick origami models
that still comply with the inherent properties of origami, such as developability,
flat-foldability, and rigid-foldability (Tachi 2010b). The solution put forward by
Tachi consists in a computational tool that relies on an analytical formulation of
the kinematics of origami and that incorporates the previously defined properties
of origami as constraints. The computational tool can be used for the design
of architectural components (Fig. 6.4) or simple architectural spaces that can
be regarded as deployable mechanisms in the form of developable surfaces made
of rigid panels (Chapter 2). As such, these designs are transformable, but they
also perform structurally.

The approach suggested by Tachi represents a fundamental reference in the
development of constraint-based computational tools for origami folding. In the
current state of the research, the direct control of structural parameters is not
yet completely integrated within the proposed method.

Folding as a Morphogenetic Process in Architectural Design The concept
of folding as space generator is the main focus of the design research of Vyzoviti
(2003), conducted as an educational activity with architecture students at the
Delft University of Technology. Built upon the understanding of folding as a pro-
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Figure 6.5: Generation of folded geometries within the design experimentation proposed by
Vyzovity (Vyzoviti 2003, pp. 92–93, photo S. Vyzoviti, student: J. van Boekhold).

cess of morphogenesis in architectural design, the research investigates the topic
through a series of design experiments that rely on a non-linear and bottom-up
strategy. The design process consists of four phases: exploration of matter and
functions; definition of folding algorithms; introduction of explanatory diagrams;
construction of architectural prototypes. In the first phase, the students are
asked to experiment with paper folding to get familiar with the materiality and
the transformations applicable to the physical models. Multiple design opera-
tions, including cutting, are explored in combination with pure folding, leading
to the creation of geometrically complex physical models in the form of folded
volumetric structures (Fig. 6.5). In the second phase, algorithms are defined to
describe the sequence of operations used to generate the physical models. In the
third phase, the paper constructions are regarded as architectural models, and
they are described using spatial, structural, and organisational diagrams. In the
last phase, the previous diagrams are translated into architectural prototypes. In
this context, folding is regarded as a medium to integrate diverse elements into
a continuous but differentiated architectural formal system (§ 5.1).

The goal of the work of Vyzoviti is to formalise an operative approach for
folding in which questions related to space and structure are addressed simul-
taneously. Due to the educational context of the research, these aspects are
explored mainly at a conceptual level.



60 7 Research Scope

7. Research Scope

7.1 Problem Statement

The versatility of the operation of folding consents to design structures and
spaces at the intersection of the disciplines of architecture and engineering. The
analysis of current strategies for the design of folded plate structures in archi-
tecture (Chapter 4; Chapter 5; Chapter 6) has highlighted the strengths and
limitations of such approaches.

Discussion on Existing Approaches On the one hand, the experimentation
with structural folding carried out during the 1950s and 1960s (Chapter 4) has
proved that the use of folding in design allows producing efficient structures at
the scale of architecture. The examined precedents by Nervi, Morandi, Favini,
and Musmeci (§ 4.1.1) clearly demonstrate how folded plate structures can resist
the externally applied load through their form. In this regard, exemplary is the
project of the roof of Stabilimento Raffo in Pietrasanta by Musmeci (§ 4.2.2), for
the design of which the engineer developed a specific methodology to directly
correlate the form of the structure to its load-bearing behaviour. However,
this roof design and the other projects analysed in the proposed precedents
based on folded surface structures do not completely exploit the opportunities of
folding as a strategy for space making. In fact, these designs do not develop full
spatial solutions, where the folded plate structures can modulate and differentiate
various spatial conditions.

On the other hand, the design explorations developed through the 1990s
(Chapter 5) have proved that the use of folding in design consents to generate
architectural forms that can deal with given spatial and programmatic needs.
The analysed design approach of Sancho and Madridejos (§ 5.2.1), in particular,
bears witness to the opportunities of folding to achieve spatial differentiation
within a coherent and continuous architectural formal system. In this context,
the project of the Chapel in Valleacerón (§ 5.2.2) shows explicitly how it is
possible to attain a seamless integration between architectural intention and
structural solution within the same folded geometry. Nonetheless, it has been
observed that in those design processes which are mostly based on the use of
physical models, explicit structural parameters such as the flow of the internal
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forces are not generally taken into account and used to inform the design from
the initial stage.

As highlighted in relation to the current investigations on the application of
folding to architectural and structural design (Chapter 6), only a few attempts
have been made aiming at defining design methods for folding that address
both structural and architectural issues at the same time starting from the early
phase of the design process. Most of the analysed approaches take advantage
of contemporary digital tools for the parametric design of the folded geometries,
including the possibility to integrate additional constraints within the computa-
tional set-up. As demonstrated by the works of Buri, Samuelsson and Vestlund,
and Meyer, the typical strategy in this field is to resort to a sequential process
in which the folded geometry is first generated and then analysed structurally.
This operation is generally executed using computer programmes grounded on
the finite element method (FEM) and the theory of elasticity.

Although FEM may prove to be helpful for the analysis and dimensioning
of structural elements in already defined building designs, its use during the
conceptual stage of the design is somewhat debatable. In fact, the visual rep-
resentations produced by FEM simulations can give at most insights on the
structural performance of the analysed building, but do not explicitly suggest in
which way to modify its global geometry to enhance the load-bearing behaviour
of the structure (Kotnik and D’Acunto 2013). That is, through FEM analysis,
the relationship between the form of a structure and the repartition of its internal
forces is not revealed in a clear and diagrammatic way. As a result, FEM-based
analysis is generally performed by structural engineers only in the advanced phase
of the design process. However, the use of FEM to assess the performance of a
structure, after the design of its geometry has been executed based on criteria
different from structural considerations, is not particularly suitable to promote
a dialogue between the disciplines of architecture and engineering during the
first steps of the design development (Kotnik and D’Acunto 2013). In fact, this
practice implies a hierarchical organisation of the tasks between architects and
structural engineers (Chapter 1).

Research Questions Building upon the above considerations, the main prob-
lem addressed in this research can be stated as follows:

• How can spatial and structural potentials of folded plate structures be
addressed simultaneously, starting from the initial phase of the design pro-
cess, in a consistent design method that is accessible to both architects
and engineers?

On the one hand, the solution to this problem necessitates the development
of a structural model for folded plate structures that can be easily comprehended
by both architects and engineers, and that can stimulate a productive exchange
between the two professions. In turn, this aspect poses the following question:
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• Which formulation of a structural model for folded plate structures conveys
a clear description of the load-bearing behaviour while intuitively showing
the correlation between form and distribution of the internal forces?

From the analysis of the precedents, it can be concluded that for the correla-
tion between the form and internal forces to be made explicit, a formulation of a
structural model for folded plate structures is required that is not based on FEM
and the theory of elasticity. Moreover, to allow the exploration of the spatial
potentials of folding, the structural model has to rely on a geometric set-up that
can be easily adapted to complex spatial configurations.

On the other hand, a design approach intended for the conceptual phase of
the design process has to be flexible enough to permit the exploration of various
solutions, in terms of both space and structure, in a quick an intuitive fashion.
This aspect suggests the following question:

• How can a design method for folded plate structures in architecture allow
testing different design variations in an interactive way in the conceptual
design stage?

The analysed precedents suggest that a design approach exclusively grounded
on the use of physical models may limit the range of design variations that can
be obtained in the context of folded plate structures. In fact, physical models
generated starting from origami or folding patterns generally impose a series of
geometric constraints on the resulting folded geometries (such as developability,
flat-foldability, and rigid-foldability) that are often unnecessary when working at
the scale of architecture. This observation is valid considering that the scope
of the method is the design of folded plate structures, as opposed to deployable
structures or folded developable surfaces (Chapter 2).

7.2 Research Objective and Methodology

With the intention to go beyond the limitations of the existing approaches, the
primary goal of this research is to define a design method that consistently inte-
grates structural folding in architectural design. The scope of the design method
is to promote a non-hierarchical exchange between the disciplines of engineering
and architecture in the context of the design of folded plate structures. In this
regard, the proposed strategy relies on a series of design operations that can be
easily understood by both architects and engineers.

Grounded on the definition of a model for folded plate structures that works
as a structural diagram (Kotnik and D’Acunto 2013), the design method is
intended to benefit from the interplay of the structural and spatial properties
of folding, in order to promote a holistic approach to design where architecture
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and engineering are seamlessly combined. Thanks to its level of synthesis and
intuitiveness, the proposed approach is intended to sustain the design process
starting from the conceptual stage of the design development.

As explained in details in the next parts of this thesis, the formalisation of the
design method has involved a research process grounded on three main pillars:

1. Definition of a structural model that consents to control the load-bearing
behaviour of folded plate structures in a synthetic and intuitive way.

2. Creation of a set of rules for the design of folded plate structures that take
into account both spatial and structural criteria and that are implemented
in the form of a parametric digital toolkit.

3. Design and production of a series of prototypes of folded plate structures
at various scales as case studies to test the applicability of the method to
various design scenarios.

Structural Model: Graphic Statics and Theory of Plasticity A specific for-
mulation of a structural model has been defined that complies with the aims of
the proposed design method in terms of clarity. The approach used in the present
research relies on a graphical representation of the load-bearing behaviour of a
folded plate structure. While focusing only on equilibrium solutions, a strategy
based on the theory of plasticity has been implemented (Chapter 10). Working
as a structural diagram (Kotnik and D’Acunto 2013), the proposed structural
model can be used as an operative medium starting from the initial phase of the
design development.

In particular, a discrete strut-and-tie model for folded plate structures (§ 8.3)
has been developed, which consists of the combination of the dual lattice and
plate structural archetypes (§ 8.1). In compliance with the theory of plasticity,
the folded plate structure is modelled as an assembly of linear members repre-
senting the lines of action of the stress resultants within the structure. Such a
structural model can be easily comprehended by both architects and engineers.

Contrary to a FEM model grounded on the theory of elasticity, such a strut-
and-tie model can directly show the correlation between form and flow of forces
within the structure. In this context, various 3D graphic statics procedures
(Chapter 9) have been formulated as synthetic vector-based graphical applica-
tions to control the three-dimensional force flow within the folded plate struc-
tures. Moreover, a strategy to derive stress fields from the strut-and-tie model
has been introduced to obtain an overview of the distribution of the stresses in
the structure (§ 10.2).

Set of Rules: A Design Method for Structural Folding in Architecture A
method for the design of folded plate structures in architecture both in the form
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of folded surface structures and folded volumetric structures has been formu-
lated and implemented within a software-based computational toolkit (Chap-
ter 11). A set of rules based on simple geometric operations have been defined
to control both spatial and structural questions at the same time. These rules
operate at the level of topology (Chapter 12) and Euclidean geometry (Chap-
ter 13). Hence, using an algorithmic procedure, the systemic interaction between
structure and form within the design operation of folding has been explicitly for-
malised. The set of rules, built around the previously defined strut-and-tie model,
allows the designer, either engineer or architect, to take direct advantage of the
structural and architectural potentials of folding.

Based on the geometrical definition of the strut-and-tie model and in com-
pliance with the theory of plasticity, the computational toolkit is generally free
of scale and material-independent. By taking advantage of graphic statics, the
toolkit enables the designer to modify the geometry of the folded plate structure
interactively while having real-time control on the distribution of the internal
forces in the strut-and-tie model.

Prototypes: Design Experiments at Various Scale Using the computational
toolkit, several design experiments at different scales (Chapter 14) have been
carried out in parallel to the theoretical systematisation of the design method.
This has led to the production of various prototypes, which in turn have been used
to prove the efficacy of the proposed design approach with respect to structural
performance and architectural potentials.
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8. Static Rigidity of
Folded Plate Structures

In this chapter, a structural model for folded plate structures, which is grounded
on a strut-and-tie modelling approach, is introduced. The proposed model is
derived from the lattice and the plate structural models, which are described in
details in the following sections, based on considerations of static rigidity.

8.1 Duality of Lattice and Plate Structures

Structures in space can be generated as assemblies of individual structural ele-
ments. These elements vary according to their corresponding geometric dimen-
sions, such as nodes (0D points), straight bars (1D lines), plates (2D planes),
and rigid bodies (3D volumes). Among the possible structure systems that can
be constructed in space, particularly relevant are the lattice structures and the
plate structures for their relatively common use in the building practice.

The lattice structure model, whose prerequisites have been highlighted by
Culmann for the definition of the ideal planar truss (Culmann 1866, p. 359),
consists of a combination of straight bars that are connected to each other at
common endpoints by means of frictionless articulated nodes (pin-joints). The
bars are statically rigid along their length; that is, no relative motion between
the endpoints of the same bar is allowed along the length of the bar. Moreover,
because of the articulation of the nodes, each individual bar is, in principle,
locally free to rotate around its endpoints. As suggested by Engel (2013), lattice
structures can be regarded as vector-active structure systems; that is, structure
systems in which the bars constituting the structure can transfer normal forces in
the direction of their axes. The redistribution of the internal forces among bars
connected to the same node is achieved by a force-vector repartition at the node.
This description implies that loads in a lattice structure are applied directly to
the nodes or along the direction of its bars. Loading components perpendicular
to the bars can also be taken into consideration by assuming the activation of
a supplementary mechanism of resistance. This mechanism consists in a local
beam action on the loaded bar, which redistributes the perpendicular loading
components directly to the nodes.
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The plate structure model, as described by Wester (1984) and Whiteley
(1987), consists of assemblies of plates, plane polygonal elements that are joined
along common hinge lines. The plates are regarded as statically rigid in their
planes, in such a way that no relative motion among the vertices of the same plate
is permitted on the plane of the plate. Due to the presence of the hinge lines, the
plates are, in principle, locally free to rotate around their edges. According to the
categorisation of Engel (2013, p. 41), plate structures are comprised within the
surface-active structure systems. The main load-bearing mechanism of these
structures is the plate action, which is activated when the applied loads are
parallel to the plates. Loads that are applied directly to the edges are split into
two in-plane components in the two adjacent plates. For loading components
perpendicular to the plates, it can be assumed that the plates are able to mobilise
a secondary load-bearing mechanism in the form of local slab action. As such,
the out-of-plane loads are transferred to the edges of the plates through bending
and then decomposed into in-plane components (Wester 1993; Almegaard and
Hansen 2007; Bagger 2010).

As discovered independently by Wester (1984) and Whiteley (1987), lattice
structures (defined by Whiteley as bar-and-joint frameworks) and plate struc-
tures (defined by Whiteley as hinged sheetworks) are geometrically and statically
correlated to each other, based on the principle of duality (Coxeter 1987, p. 24).
As stated by Wester (2011, p. 229), who regards lattice and plate structures as
the two structural archetypes of space, the properties of one type of structure
can be directly inferred by the other one thanks to their duality. This principle
is valid both at the level of topology and static rigidity (§ 8.2) and at the level
of Euclidean geometry and static equilibrium.

Figure 8.1: Duality between a lattice structure (A), constructed on the geometry of an octa-
hedron and a plate structure (B) as a truncated cube (Whiteley 1987, p. 342).
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Combinatorial Duality From a topological point of view, the correlation be-
tween lattice and plate structures is built upon the principle of point-to-plane
duality (Wester 1996). That is, each node (point) of a lattice structure can
be mapped to a plate (section of a plane) of its dual plate structure and vice
versa. Each set of bars connected to the same node in a lattice structure has a
corresponding set of hinge lines along the boundary of a dual plate in the dual
plate structure. The duality between lattice and plate structures is particularly
evident when the two structures are topologically equivalent to three-dimensional
convex polyhedra (Fig. 8.1). In this case, the nodes, bars, and meshes delimited
by bars in a lattice structure correspond respectively to the vertices, edges, and
faces of a polyhedron. Likewise, the plates, hinge lines, and points of intersection
of hinge lines of a plate structure correspond respectively to the faces, edges,
and vertices of a dual polyhedron. In this way, each vertex of a polyhedron cor-
responds to a face in the dual polyhedron and vice versa, while each edge of
one polyhedron has a dual edge in the dual polyhedron. The topological duality
of convex polyhedra is directly exhibited by Euler’s polyhedral formula (Wester
1996, p. 223):

V − E + F = 2 (8.1)

where F is the number of faces, V is the number of vertices, E is the number of
edges. In fact, in this formula, V and F can be exchanged, without altering E.

Within the context of graph theory, given a convex polyhedron, a polyhedral
graph can be constructed by projecting the vertices and edges of the polyhedron
onto the plane or onto the sphere (Baracs 1975). Based on Steinitz’s theorem,
a polyhedral graph is 3-vertex-connected and planar (Grünbaum 1967). A graph
is 3-vertex-connected if at least three vertices have to be removed to disjoint
it (Crapo and Whiteley 1993). A graph is planar if it is possible to embed
it in the plane or on the sphere. This condition is attained when its vertices
are repositioned so that the edges intersect each other only at their shared
vertices. A planar graph that is embedded in the plane or on the sphere is defined
plane graph (Harary 1969, p. 102). The plane graph of a convex polyhedron
corresponds to its Schlegel diagram, which is the perspective projection onto the
plane of the skeleton of the polyhedron from a point of view just outside the
centre of one of its faces (Coxeter 1989, p. 152). The edges of the plane graph
of a convex polyhedron bound faces, including an infinite exterior face, which
encloses all the other ones. Considering the number of vertices V , edges E,
and faces F of this graph, Euler’s formula (Eq. 8.1) is still valid (Harary 1969,
p. 102). Given the plane graph of a convex polyhedron, its dual graph can be
generated by introducing a new vertex in every face of the given graph, including
one in the infinite exterior face. A new edge is then introduced to connect any
pair of newly inserted vertices, provided their containing faces in the given graph
share an edge (Baracs 1975). In this way, the dual of the given plane graph of a
convex polyhedron represents the plane graph of the dual polyhedron (Fig. 8.2).
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Figure 8.2: (a) Duality between an octahedron and a cube. (b) Duality between the corre-
sponding graphs.

As highlighted by Wester (2011, p. 230), when applied to the Platonic solids
(tetrahedron, cube, octahedron, dodecahedron, and icosahedron), this property
allows relating each of them to its topological dual, which is another Platonic
solid. As a result, the five archetypical Platonic solids can be grouped in dual
pairs: the tetrahedron and its dual tetrahedron, the octahedron and its dual cube
and the icosahedron and its dual dodecahedron (Fig. 8.3).

Figure 8.3: Duality between lattice and plate structures regarded as Platonic solids (Wester
1984, p. 11).
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Projective Duality Within the framework of projective geometry1, regarding
lattice and plate structures as polyhedral surfaces, one can be transformed into
the other and vice versa through the application of a polarity (Konstantatou et al.
2018). This transformation, which is a correlation and an involution (Coxeter
1987, pp. 60–62), maps a point of the projective space into a plane, a plane into
a point and a line into a line. By means of linear algebra and using homogeneous
coordinates, a generic point P (xP , yP , zP , 1), the pole, is mapped into its polar
plane π (pTCx = 0) through the following general polar transformation (Pedoe
1988, p. 370):

[
xP yP zP 1

]
c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44



x

y

z

1

 = 0 (8.2)

where C is a symmetric or anti-symmetric matrix, whether the polarity is gen-
erated with respect to a quadric surface or it is a null polarity (Pedoe 1988,
p. 375).

In particular, in case the matrix C in (8.2) is symmetric (i.e. ci j = cj i), C can
be associated to the following general quadric equation, in Cartesian coordinates
(Smith 1886, p. 46):

c11x
2 + c22y

2 + c33z
2 + c44 + 2c12xy + 2c13xz + 2c23yz + 2c14x + 2c24y + 2c34z = 0

(8.3)
The quadric in (8.3) is the locus of all the self-conjugate points with respect
to the polarity. These are the points that lie on their own polar planes, which
are themselves tangent to the quadric (Coxeter 1998, p. 68). A second matrix
D can be then defined by removing the fourth row and fourth column from D
(Zwillinger 2002, s. 4.18):

D =

c11 c12 c13

c21 c22 c23

c31 c32 c33

 (8.4)

The eigenvalues of D are thus the roots λ of the equation det(D − λI) = 0,
where I is the 3x3 identity matrix, that is:∣∣∣∣∣∣∣

c11 − λ c12 c13

c21 c22 − λ c23

c31 c32 c33 − λ

∣∣∣∣∣∣∣ = 0 (8.5)

1Projective geometry is a branch of geometry that, as opposed to the Euclidean one, does
not deal with the notion of measurement (Coxeter 1987, p. v). The objects of investigation of
projective geometry are those geometric properties that are preserved under projective trans-
formations. In projective geometry, the Euclidean space is extended by adding an ideal point
(point at infinity) to every line in space, as well as an ideal line (line at infinity) to every plane
of space. The set of all ideal lines thus defines an ideal plane (plane at infinity), which together
with the Euclidean space constitutes the projective space (Coxeter 1987, p. 109).
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In the specific case in which det(C) < 0, det(D) 6= 0 and the non-zero eigen-
values of D have the same signs, the equation (8.3) represents a real ellip-
soid (Zwillinger 2002, s. 4.18; Fortuna et al. 2016, p. 49).

Referring to a Cartesian coordinate system the ellipsoid can be described in
its standard form as:

x 2

a2
+
y 2

b2
+
z 2

c2
= 1 (8.6)

As a special case, if a = b = c = r , the ellipsoid is a sphere with centre in the
origin O of the coordinate axes and radius r . Considering its standard form (in
Cartesian coordinates):

x 2 + y 2 + z 2 = r 2 (8.7)

a point P (xP , yP , zP ) is mapped into its polar plane π (Smith 1886, p. 70):

xPx + yPy + zPz = r 2 (8.8)

through the polarity (in homogeneous coordinates):

[
xP yP zP 1

]
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −r 2



x

y

z

1

 = 0 (8.9)

Given a lattice structure, by applying the polar transformation (8.9) to all the
points corresponding to the nodes of the structure, the planes that contain
the dual plates of the dual plate structure can be obtained. The intersections
between the planes then define the hinge lines of the plate structure, which are
dual to the bars of the lattice structures (Fig. 8.4).

Figure 8.4: Polarity between an octahedron as a lattice structure and a cube as a plate structure.
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Figure 8.5: (A) Isostatic sheetwork constructed on the opposite faces of a convex octahe-
dron. (B) Model of (A) as an octahedral framework. (C) Isostatic sheetwork, polar to (A),
constructed on the opposite vertices of a cube. (D) Model of (C) as a tetrahedral framework
(Whiteley 1987, p. 338).

This analytical procedure is equivalent to the geometric construction, firstly
introduced by Monge (Rosenfeld 1988, p. 148), to determine the polar plane
of a given pole with respect to a quadric (Konstantatou et al. 2018). For a
pole outside the quadric, the polar plane is found as the plane containing the
intersection (a conic) between the quadric and the cone tangent to the quadric
and having its vertex in the pole (Coxeter 1998, p. 69).

As a generalisation of the duality between bar-and-joint frameworks (i.e.
lattice structures) and hinged sheetworks (i.e. plate structures), Whiteley intro-
duced a new class of structure, the jointed sheetwork (Whiteley 1987, p. 338).
This structural system is constituted by sheets statically rigid in their planes
(plates) that are connected to each other through frictionless articulated nodes
(i.e. pin-joints). Contrary to lattice and plate structures, the jointed sheetworks
are self-polar, that is the polar of a given jointed sheetwork is itself a jointed
sheetwork (Fig. 8.5, A and C). In fact, through a polarity, a joint in a jointed
sheetwork is transformed into a sheet and vice versa. Within this context, as
highlighted by Whiteley (1987, p. 350), bar-and-joint frameworks and hinged
sheetworks can be regarded as special cases of jointed sheetworks.

A bar-and-joint framework can be converted into a jointed sheetwork by
replacing any plane-statically rigid bar-and-joint assembly (such as a bar-and-
joint triangle) with a plane-statically rigid sheet (Fig. 8.5, A and B) (Whiteley
1987). In the simplest case, this is achieved by replacing each bar with a plane-
statically rigid sheet (Fig. 8.5, C and D).
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8.2 Rigidity of Lattice and Plate Structures

A structure is statically rigid when any relative finite and infinitesimal internal
motion among its constituting elements is prevented; the structure thus behaves
as a rigid body, and it can only be subjected to rigid motions of the entire space
(Crapo 1979)2. As a result, a statically rigid structure is able to support any
external equilibrium loading.

As pointed out by Baracs (1975), one of the most relevant findings of rigid-
ity theory is that the static rigidity of a structure is determined exclusively by
the topological and projective properties of its geometric configuration. In this
regard, neither the metrical properties of the structure, including the dimensions
of its constituting elements, nor the physical properties of it, including the dis-
tribution of the internal forces, are fundamental to its static rigidity. As shown
in the following subsections, different rules can be defined for the generation of
statically rigid lattice and plate structures (§ 8.1).

8.2.1 Rigidity of Lattice Structures

A statically rigid (i.e. kinematically stable) and finite spatial lattice structure
not connected to a rigid foundation (i.e. non-supported) fulfils Maxwell’s rule
(Maxwell 1864; Maxwell 1890; Guest and Hutchinson 2003):

ELS ≥ 3VLS − 6 (8.10)

where ELS is the number of bars, VLS is the number of nodes, 6 is the number of
rigid-body motions of space. In case ELS = 3VLS − 6, the structure is statically
determinate, since any external equilibrium loading on the structure results in a
unique distribution of internal forces. Based on the (8.10), the degree of static
indeterminacy n of a spatial lattice structure connected to a rigid foundation
(i.e. supported) can be defined as follows (Marti 2013, p. 143):

n = ELS − 3VLS + k (8.11)

where k is the number of independent kinematic restraints at the supports (i.e.
support force variables, 6 minimum). In relation to the (8.11), lattice structure
are generally classified as statically determinate if n = 0, statically indeterminate
if n > 0 and kinematically unstable (i.e. statically non-rigid) if n < 0. A structure
is internally statically indeterminate if ELS is higher than the minimum required
attaining the static determinacy. It is externally statically indeterminate if there
are redundant kinematic restraints at the supports (Marti 2013, p. 143). It
should be noted that the conditions expressed by the (8.10) and (8.11) are

2A rigid motion of space is an isometry that can be represented as the composition between
a rotation about an axis and a translation along the same axis (screw motion). Any motion
of a structure that is not a rigid motion is an internal motion. In case the motion is finite, a
mechanism evolves (Crapo 1979).
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necessary but not sufficient, since they rely on a global counting scheme of
the number of edges and nodes of the structure but do not take into account
the specific connectivity of these elements (Laman 1970). For example, lattice
structures exist for which n = 0 but the system is locally statically indeterminate
and locally kinematically unstable at the same time. To address this aspect, the
(8.11) can be reformulated according to the extended Maxwell’s rule (Calladine
1978; Pellegrino and Calladine 1986), to define the number s of independent
states of self-stress and the number m of independent inextensional mechanisms
(i.e. zero-energy deformation modes):

s −m = ELS − 3VLS + k (8.12)

Accordingly, s > 0 for a statically indeterminate spatial lattice structure, m > 0

for a kinematically indeterminate one, s = 0 for a statically not indeterminate
one (i.e. determinate or overdeterminate), and m = 0 for a kinematically not
indeterminate one (Tarnai 2001). The values of s and m can be found based on
the rank r of the (3VLS−k by ELS) equilibrium matrix A of the structure, respec-
tively of its (ELS by 3VLS − k) kinematic matrix B, with B = AT (Crapo 1979;
Pellegrino and Calladine 1986; Pellegrino 1993). In this regard, the following
relationships can be defined (Pellegrino and Calladine 1986, p. 415):

s = ELS − r m = 3VLS − k − r (8.13)

Hence, the rank r of the equilibrium matrix A of a statically determinate struc-
ture is equal to the number of its bars ELS. On the contrary, in a statically
indeterminate structure, the rank r of A is lower than ELS. This is due to the
linear dependency of the column vectors of the equilibrium matrix A (respectively
row vectors of the kinematic matrix B), which in turn reflects the presence of
linear dependency among the bars of the structure (Crapo 1979).

Construction of Rigid Lattice Structures As explained by Baracs (1975),
edges (regarded as bars rigid along their lengths) can be used to create six
different types of kinematically stable linkages between the three structural ele-
ments of space, namely points, lines, and rigid bodies. In this regard, the least
number of edges required to generate rigid connections between these elements
can be defined by the following topological conditions (Baracs 1975):

1. A point can be linked to another point with a single edge (Fig. 8.6.1).

2. A point can be linked to a line with two edges (Fig. 8.6.2).

3. A point can be linked to a rigid body with three edges (Fig. 8.6.3).

4. A line can be linked to another skew line with four edges. Based on (2),
two points on the first line can be linked to the second line each using two
edges (Fig. 8.6.4).
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Figure 8.6: Six different types of rigid linkages to connect the three structural elements of
space (points, lines, and rigid bodies).

.

5. A line can be linked to a rigid body with five edges. Considering the (3),
a first point on the line can be linked to the rigid body with three edges,
while the second point on the line can be linked to the rigid body with two
additional edges (Fig. 8.6.5).

6. Two rigid bodies can be linked to each other with six edges. Considering
that the second rigid body is supported by a line linked to the first rigid
body with five edges as explained at (5), one supplementary edge could be
used to create an overall rigid connection (Fig. 8.6.6).

The respect of the number of edges in the previously described linkages is a
necessary but not sufficient condition to achieve rigid connections. As highlighted
by Crapo (1979), a given linkage is statically rigid if and only if the rank of the
edges of the linkage is no lower than the least number of edges required by that
linkage. This projective geometric condition results in the edges of the linkage
being linearly independent (Baracs 1975). For example, in relation to the linkage
in Fig. 8.6.2, an infinitesimal mechanism evolves if the two edges belong to the
same line. In the case of the linkage in Fig. 8.6.3, in order for the rank of the
edges to be three, these must not belong to the same plane. Likewise, for the
linkage in Fig. 8.6.4, an infinitesimal mechanism is generated if the four edges
lie on the same plane. The linkage in Fig. 8.6.5 is not rigid if, for example, its
five edges are all incident with the same line on the rigid body. For the linkage
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in Fig. 8.6.6, the six edges should not belong to the same line complex (Crapo
1979).

Regarding points as nodes, edges and lines as bars and rigid bodies as rigid
spatial trusses, the linkages described above can be used to assemble statically
and kinematically determinate spatial lattice structures. More specifically, the
iterative application of the linkage defined at (3) leads to the generation of
simple structures (Baracs 1975). That is, starting with a truss in the shape of
a tetrahedron, which is a rigid body, a simple structure can be built by adding
a new node and three new non-coplanar bars at every iteration. For example,
this can be achieved by creating a chain of tetrahedra in which each tetrahedron
shares one of its faces with a preceding tetrahedron in the chain (Coates et al.
1987). The employment of the linkages outlined at (4), (5) and (6) results in
the creation of compound structures (Baracs 1975).

Rigid Lattice Structures as Polyhedra Rigid spatial lattice structures that
are not generated using the aforementioned linkages are denominated complex
structures (Baracs 1975). Among others, belong to this category those spatial
lattice structures that are constructed in the shape of convex polyhedra. As
pointed out previously (§ 8.1), in this case, the nodes, bars, and meshes delimited
by bars in a lattice structure correspond respectively to the vertices, edges, and
faces of the polyhedron.

As outlined by Whiteley (1987), the first consistent study on the rigidity of
convex polyhedra is due to Cauchy (1813), who proved that a convex polyhedron
is rigid if it is constituted by flat polygonal faces that are rigid in their planes.
Cauchy’s work has been subsequently further developed by Alexandrov (1958),
who demonstrated that a convex polyhedron is rigid if it is triangulated with
vertices placed anywhere along its natural edges, but not in the interior of its
natural faces. Moreover, as proved by Whiteley (1984), in a spatial lattice
structure in the shape of a polyhedron, whose faces are made of plane-rigid bar-
and-joint frameworks, substituting a face with another plane-rigid bar-and-joint
framework that is built on the same vertices does not affect the rigidity of the
structure.

As observed by Wester (1984), a statically rigid non-supported spatial lattice
structure in the shape of a convex polyhedron must respect at the same time
both the (8.1) and the (8.10) (Wester 1984, p. 14):{

VLS − ELS + FLS = 2

ELS ≥ 3VLS − 6

These conditions result in (Wester 1984, p. 14):

2ELS ≤ 3FLS (8.14)

where ELS is the number of bars of the lattice structure (i.e. edges of the
polyhedron), and FLS is the number of meshes of the lattice structure (i.e. faces
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Figure 8.7: (Top) The five Platonic solids. (Bottom) The three Platonic solids with 3-valent
faces that are rigid as spatial lattice structures, and the two non-rigid ones without 3-valent
faces (Wester 1984, p. 9).

of the polyhedron). Assuming that the meshes are all delimited by n bars and
that each bar separates two and only two meshes, the following condition can
be defined (Wester 1984, p. 14):

2ELS = nFLS (8.15)

The combination of the conditions expressed by the (8.14) and the (8.15) even-
tually yields (Wester 1984, p. 14):

n ≤ 3 (8.16)

Considering that the minimum number of bars that can delimit a mesh is 3, only
convex polyhedra with triangular faces (i.e. 3-valent faces) can be used as a
base for the generation of rigid spatial lattice structures (Wester 1984).

Based on this observation, if the Platonic solids are built as lattice structures
(Fig. 8.7), only the triangulated polyhedra, whose faces are 3-valent, are rigid
in space. That is, only the tetrahedron, the octahedron, and the icosahedron
can perform as rigid lattice structures. On the contrary, the non-triangulated
polyhedra such as the cube and the dodecahedron prove to be kinematically
unstable if built as a lattice structure (Wester 1984).

The aforementioned conditions for the rigidity of spatial lattice structures as
convex polyhedra can be extended to the case of convex polyhedral surfaces with
polygonal openings, not necessarily planar (Wester 2011). In fact, the rigidity
of these structures is attained by triangulating each opening with additional bars
that are connected exclusively at existing nodes on the boundary of the opening.
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This operation turns the convex polyhedral surface into a convex polyhedron. In
case an opening has n delimiting bars on its boundary, n− 3 supplementary bars
are necessary for its complete triangulation (Wester 2011). If the structure is
supported, according to the (8.11), minimum 6 independent kinematic restrains
are present. Further n − 3 independent kinematic restraints on the nodes along
the border of the opening can then replace the additional bars.

The extension of the condition of rigidity to non-convex polyhedra is generally
not possible. Although Gluck (1977) has demonstrated that almost all triangu-
lated polyhedra, either convex or not, are infinitesimally rigid, cases can be found
of non-convex triangulated polyhedra that are not rigid, such as Steffen’s flexible
polyhedron (Demaine and O’Rourke 2007).

8.2.2 Rigidity of Plate Structures

As proved by Rankine (1856), projective transformations do not modify the static
and kinematic characteristics of a structure, including the infinitesimal rigidity.
Moreover, as later demonstrated by Whiteley (1987), the same properties are
also preserved under polar transformations. That is, considering the requirements
for static rigidity of spatial lattice structures (§ 8.2.1), dual conditions can be
defined for the dual plate structures.

Construction of Rigid Plate Structures A procedure analogous to the one
described in (§ 8.2.1) for the construction of simple lattice structures can be
used for the creation of plate structures. In this regard, as dual to the condition
for rigidity illustrated in (Fig. 8.6.3), a new plate can be connected to a given
rigid plate structure using at least three hinge lines, resulting in (Wester 1984,
p. 16):

EPS ≥ 3FPS (8.17)

where EPS is the number of hinge lines, and FPS is the number of plates. From
a kinematic standpoint, a hinge line behaves like a kinematic restraint at the
supports (i.e. support force variable). Hence (Wester 1984, p. 16):

EPS + k ≥ 3FPS (8.18)

where k is the number of independent kinematic restrains at the supports. Be-
ing six the minimum number of restraints to prevent any rigid-body motion of
space, the following general condition can be defined for non-supported rigid
plate structure (Wester 1984, p. 16):

EPS ≥ 3FPS − 6 (8.19)

As can be observed, the (8.19) is exactly equivalent to Maxwell’s rule for non-
supported spatial lattice structures (8.10), provided the hinge lines are substi-
tuted with their dual bars and the plates are replaced with their dual nodes.
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Rigid Plate Structures as Polyhedra Like spatial lattice structures, also plate
structures can be built in the shape of convex polyhedra. In this case (§ 8.1), the
plates, hinge lines, and points of intersection of hinge lines of a plate structure
correspond respectively to the faces, edges, and vertices of a polyhedron. As
pointed out by Wester (1984) in analogy to what observed in the case of spatial
lattice structures (§ 8.2.1), a non-supported plate structure that is constructed
in this way complies with both the (8.1) and the (8.19) (Wester 1984, p. 18):

{
VPS − EPS + FPS = 2
EPS ≥ 3FPS − 6

These conditions result in (Wester 1984, p. 18):

2EPS ≤ 3VPS (8.20)

where EPS is the number of hinge lines of the plate structure (i.e. edges of the
polyhedron), and VPS is the number of points of intersections of hinge lines of
the plate structure (i.e. vertices of the polyhedron). Assuming that in all the
points of intersection concurs n hinge lines and that each hinge line is incident
with two points, the following equation holds true (Wester 1984, p. 18):

2EPS = nVPS (8.21)

Given the (8.20) and the (8.21), the following general condition can be derived
(Wester 1984, p. 18):

n ≤ 3 (8.22)

Being three the minimum number of hinge lines at a point of intersection, only
convex polyhedra that have vertices with three concurrent edges (i.e. 3-valent
vertices) can be used as a base for rigid plate structures. Hence, regarding the
Platonic solids as plate structures (Fig. 8.8), only those with 3-valent vertices
are rigid in space (Wester 1984), namely the tetrahedron, the cube, and the
dodecahedron (Fig. 8.8).

Figure 8.8: The three Platonic solids with 3-valent vertices that are rigid as plate structures,
and the two non-rigid ones without 3-valent vertices (Wester 1984, p. 9).
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8.2.3 Combined Lattice and Plate Structures

In the general case, the faces of a polyhedron may have an arbitrary number
of boundary edges. Likewise, its vertices may have an arbitrary number of con-
current edges (Fig. 8.9, left). From a static rigidity standpoint, in relation to
the conditions defined at (§ 8.2.1) and at (§ 8.2.2), neither a kinematically sta-
ble lattice structure nor a kinematically stable plate structure could be generally
constructed based on such geometry (Wester 1984).

On the one hand, as observed by Wester (1984), a spatial lattice structure
in the shape of a generic polyhedron (Fig. 8.9, centre top) is generally non-rigid
since some of the meshes delimited by bars (i.e. faces of the polyhedron) may
not be 3-valent and internal finite mechanisms may evolve. A possible strategy
to attain the rigidity of the structure is the triangulation of all the meshes with
more than three edges with the addition of extra bars. This approach, however,
would break the correlation between the number of edges of the polyhedron and
the number of bars of the lattice structure.

On the other hand, a plate structure generated on the geometry of a generic
polyhedron (Fig. 8.9, centre bottom) may not be rigid for the possible presence of
points of intersection of hinge lines (i.e. vertices of the polyhedron) that are not
3-valent. In this case, the rigidity of the structure may be attained by introducing
extra shear bridges across those non-adjacent plates that are connected to the
same points of intersection Wester (1984). Nonetheless, also in this case, the
correlation between the number of edges of the polyhedron and the number of
hinge lines of the plate structure would be altered.

To avoid these inconsistencies, Wester (1984) developed a structural model
for generic polyhedra as a hybrid between the lattice and the plate models
(Fig. 8.9, right). This structural model relies on the combined effects of bars,
nodes, plates, and hinge lines. More specifically, those parts of the structure
with 3-valent faces work as a pure lattice structure; here, if not directly loaded
on their planes, the plates are not active and may be removed together with their
hinge lines without compromising the overall rigidity of the system. The parts of
the structure where the vertices are 3-valent work as a pure plate structure; here,
if not directly loaded, the nodes are not active and may be removed together
with their connected bars.

At the boundary between the two structural parts, the transfer of forces be-
tween a bar and the hinge lines located along the same polyhedral edge gives rise
to buffer forces. Because of the presence of these buffer forces, the difference in
the axial forces at the two nodes of the bar is equivalent to the difference between
the shear forces along the two adjacent hinge lines (Wester 1987). It should be
noted that this structural model could be extended to represent generic poly-
hedral surfaces after the introduction of appropriate support conditions (Wester
1987, 2011).
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Figure 8.9: A generic polyhedron (left) is not statically rigid as a pure lattice (centre top)
or as a pure plate (centre bottom) structure; it is rigid as a combination of plate and lattice
structures (right) (Wester 1984, p. 25).
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8.3 Strut-and-Tie Model for Folded Plate Structures

Various structural models can be found in the literature to describe the behaviour
of different types of folded geometries (Chapter 2). As classified by Lebée
(2015), these models include structures as assemblies of rigid facets, as shells,
as membranes, and as trusses:

1. In a folded geometry as an assembly of rigid facets, the structure is mod-
elled as a combination of rigid panels that are able to withstand both
in-plane loads (i.e. global plate action) and out-of-plane loads (i.e. global
slab action). The panels are connected to each other through hinge lines at
the edges and are in general locally free to rotate around their edges. This
model is equivalent to the structure system of articulated spatial panels
introduced by Baracs (1975).

2. In a folded geometry as a shell, the structure is modelled as a monolithic
system in which individual shell elements resist both in-plane and out-of-
plane loads and are connected to each other by means of elastic hinges. In
general, the elements are not locally free to rotate around their edges, and
the static rigidity of the structure also depends on the rotational stiffness
of the edges (Robeller et al. 2014; Roche et al. 2015; Stitic et al. 2015;
Stitic et al. 2018).

3. In a folded geometry as amembrane, the structure is modelled as an assem-
bly of plates rigid in their planes that are connected to each other through
hinge lines, like in the plate structure system (§ 8.1). In this membrane
model, the global internal stresses are transferred in-plane (i.e. global plate
action), apart from the potential local transfer of out-of-plane loads to the
edges within each individual plate (i.e. local slab action). Contrary to the
plate structure system (§ 8.1), axial forces can be transferred along the
edges.

4. In a folded geometry as a truss, the structure is modelled as an assembly
of bars that are connected to each other by means of nodes working as
pin-joints, like in the lattice structure system (§ 8.1). In case the folded
geometry has non-triangular facets, these are triangulated introducing sup-
plementary bars in the model3.

3Belong to this category the bar-and-hinge models, which are specifically used in origami
engineering to characterise the elastic behaviour of thin sheet origami structures (Schenk and
Guest 2011; Filipov et al. 2015; Filipov et al. 2017). These models can be used to simulate
the kinematic behaviour of complex rigid-foldable origami configurations, such as deployable
structures. In this regard, various effects due to the elastic deformation of the plates are taken
into consideration, including in-plane stretching and shear, out-of-plane bending of the facets
and bending along fold lines (Filipov et al. 2017)
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A folded plate structure consists of individual folded plates as plane polygonal
elements statically rigid in their planes that are combined together along folded
edges, which meet at common vertices. The resulting folded geometry performs
as a statically rigid three-dimensional structure system (§ 4.1). As the topology
of a folded plate structure does not have limitations regarding the number of
plates shared by the same vertex, the structure is not necessarily solely made
of 3-valent vertices. As such, it cannot be generally regarded as a pure plate
structure (§ 8.2.2). Conversely, since the number of folded edges at the border of
a folded plate is not fixed, a folded plate structure does not necessarily consist
entirely of 3-valent faces. That is, it cannot generally be regarded as a pure
lattice structure (§ 8.2.1). From the standpoint of static rigidity, a folded plate
structure thus performs as a combined plate and lattice structure (§ 8.2.3)4.

General Features of the Proposed Structural Model Building upon the pre-
viously introduced notions of static rigidity (§ 8.2), a model for folded plate
structures is here defined that is derived from the structural archetypes of space,
namely the plate and lattice structure systems (§ 8.1). This proposed model
complies with the above membrane structural model. Contrary to the combined
model (§ 8.2.3) suggested by Wester (1984), the model proposed here does
not rely on the simultaneous use of different structural elements such as bars,
nodes, plates, and hinge lines to account for both plate and lattice actions. In
fact, the proposal is grounded on a strut-and-tie5 modelling approach (§ 10.1),
where solely linear members are employed to generate a spatial network in equi-
librium. These members are organized along the axes of the folded edges (edge
members) and on the midplanes of the plates (plate members).

As in the lattice structure model (§ 8.1), the assumption is made that all
the linear members of the strut-and-tie network are connected to each other
through nodes working as pin-joints. Furthermore, the linear members can be
loaded by axial forces only, either in compression (struts) or in tension (ties).
Unlike the lattice structure model, the edge and plate members do not represent
actual bars but rather the lines of action of internal stress resultants within the
geometric boundary of the folded plate structure (§ 10.1).

In compliance with the plate structure model (§ 8.1), the assumption is
made that the out-of-plane loads applied to the surface of a folded plate (i.e.
perpendicular to the plate) are redirected to the folded edges by local slab action

4Similar considerations on the static rigidity of folded plate structures in relation to the
duality of lattice and plate structures suggested by Wester (1984) can be found in the works
of Bagger (2010), and Samuelsson and Vestlund (2015).

5Strut-and-tie models have been initially introduced for the analysis and design of reinforced
concrete structures (Schlaich et al. 1987; Muttoni et al. 1997). Based on the lower bound
theorem of the theory of plasticity (§ 10.1), they have been subsequently employed for general
equilibrium-based analysis and design of structures (Block and Ochsendorf 2007; Lachauer
2014; Rippmann 2016; Ohlbrock and Schwartz 2016; Bahr 2017; Enrique and Schwartz 2017;
D’Acunto et al. 2019).
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(i.e. flexural action), while the ones in-plane (i.e. parallel to the plate) by local
plate action (i.e. extensional action) (Almegaard and Hansen 2007; Bechthold
2008; Bagger 2010; Stitic et al. 2018). As described in details in the following
paragraphs, in the proposed approach, uniformly distributed area loads on the
plates can then be replaced by an equivalent system of point loads applied at
the midpoints of the folded edges. As such, nodes are placed at the midpoints
of every folded edge, the edge being modelled as two edge members. Plate
members are arranged in the model so that each polygonal face representing a
folded plate is entirely triangulated, with the plate members connected to the
midpoints of the folded edges. It is assumed that external point loads are only
applied at the midpoints or at the endpoints of the folded edges6.

In relation to static rigidity, all the considerations concerning the spatial
lattice structures (§ 8.2.1) are directly applicable to the proposed strut-and-tie
model. In case a folded plate structure is globally and locally statically rigid (i.e.
no internal finite or infinitesimal mechanisms are present in the structure), it is
not necessary to mobilise the local bending resistance of the individual folded
edges to secure the overall kinematic stability of the structure. As the proposed
structural model relies on a statically rigid configuration, the local rotational
stiffness of the folded edges is neglected, and the folded edges are treated as
hinges7.

Load Repartition on the Folded Plate Structure The repartition of uni-
formly distributed area loads on a folded plate structure and the generation of
a strut-and-tie network is here exemplified taking the geometry of the roof of
Stabilimento Raffo by Musmeci (§ 4.2.2) as a reference. Given the modularity
of the structure, only a subset of the entire roof is considered. Moreover, in the
geometrical model, the thickness of the folded plates is not taken into account,
and the folded plates are represented as two-dimensional elements located on
the midplanes of the plates. Under the assumption that each folded plate is
statically rigid in its own plane, the structure is kinematically stable for the given
support conditions (Fig. 8.10a). The generation of the strut-and-tie network is
illustrated on one of the modules, which consists of sixteen folded plates. It is
here assumed that the structure is loaded under self-weight.

At first, the uniformly distributed area loads are replaced by an equivalent
system of discrete point loads. This is achieved by applying at the centre of
mass of each plate a point load representing the resultant of the self-weight of
the plate, whose magnitude is thus proportional to the surface area of the plate
itself (Fig. 8.10b). Considering each folded plate as a sub-system in equilibrium,

6A point load applied along a folded edge in a position different from the midpoint or the
endpoints can be taken into consideration by adding an extra node to the model; in this case,
a different triangulation of the folded plates evolves.

7Under the assumptions of the theory of plasticity (§ 10.1), the bending resistance of the
folded edges can be then regarded as an additional local resistance capacity of the structure.
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Figure 8.10: (a) Folded plate structure based on the roof of Stabilimento Raffo by Musmeci
(§ 4.2.2). (b) A module of the roof, regarded as a sub-system in equilibrium: system of point
loads representing the resultants of the self-weight of the plates. (c) Equivalent system of point
loads related to the tributary areas of the folded edges.
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Figure 8.11: (a) Load repartition on a module of the roof based on the tributary areas of the
folded edges. (b) Equivalent system of uniformly distributed line loads along the folded edges.
(c) Proposed complete strut-and-tie model for folded plate structure: every folded edge is
modelled as two linear edge members (brown) while the plates are entirely triangulated using
linear plate members (orange); note the special solution adopted for the free edge.
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through local slab and plate actions, each point load is resisted by a system of
reaction forces applied at the folded edges on the border of the plate. These
reaction forces can be subsequently regarded as action forces that replace the
given point load and are applied to the folded plate structure. Because the plate
is a statically indeterminate structural element, multiple possible configurations
of load repartition can be defined in relation to the sole equilibrium conditions
(Bagger 2010). Each configuration of load repartition entails the definition
of a different system of reaction forces at the folded edges. As long as the
assumptions of the theory of plasticity are fulfilled (§ 10.1), any load repartition
is allowed that generates a system of reaction forces that are in equilibrium with
the given loading (§ 9.2)8.

In the developed approach, a load repartition related to the tributary areas
of the folded edges is assumed. A possible procedure to define these areas is to
subdivide each folded plate, regarded as a sub-system in equilibrium, into trian-
gular panels, which have one side coinciding with a folded edge and one vertex
located at the centroid of the plate. A new system of point loads, equivalent to
the given one, is then generated by applying at the centroid of each triangular
panel a force vector corresponding to the self-weight of that panel (Fig. 8.10c).
Each force vector generates a reaction force that is opposite to the force vector
itself and is applied at the midpoint of the corresponding folded edge. Each
reaction force can be then regarded as an action force applied to the folded
plate structure. At the folded edges, the action forces related to adjacent folded
plates are composed into one resultant force (Fig. 8.11a). In the special case of
a free edge (i.e. an edge that is not shared by two plates but is on the boundary
of one plate only), the single force vector, whose magnitude is proportional to
the tributary area of the free edge, is first decomposed into the in-plane and out-
of-plane components. The in-plane component is placed at the midpoint of the
free edge, while the out-of-plane component is split into two equivalent vectors
that are placed at the endpoints of the edge (Fig. 8.11a). Hence, a new system
of discrete point loads, which is equivalent to the initial uniformly distributed
area loads regarding the global equilibrium (§ 9.2), is eventually defined. In fact,
in terms of global equilibrium, this system of point loads is itself equivalent to
a system of uniformly distributed (i.e. constant) line loads along the individual
folded edges at the boundary of the folded plates (Fig. 8.11b). In the following
procedure, this system of uniformly distributed line loads is assumed replacing
the initial system of uniformly distributed area loads.

8Refined equilibrium solutions for the load repartition based on moment fields can be found
in the literature, especially for the design of reinforced concrete slabs (Hillerborg 1996). In
their simplest formulation, these approaches are mostly suitable for regular slab geometries.
The application of these solutions to more complex geometries, like the ones investigated in the
rest of this work, generally requires the use of the finite element method (FEM). This, however,
would partly preclude the possibility of employing an intuitive structural model (Chapter 7) like
the strut-and-tie model proposed in this work. Thus a simplified, but more generalizable and
yet valid equilibrium-based procedure is put forward.
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The proposed procedure for the repartition of the loads on folded plate struc-
ture can be directly applied to any convex polygonal geometry of the folded plates
and to any orientation of the applied loads in relation to the plane of the plates.
The particular case of non-convex polygonal plates is treated by subdividing the
plates into convex sub-plates. For specific geometric configurations, this ap-
proach might represent an oversimplification of the actual mechanical behaviour
of the structure, and a more appropriate load repartition can be taken into con-
sideration9.

Generation of the Strut-and-Tie Network Once the load repartition is com-
pleted, a statically rigid strut-and-tie network can be generated as previously
described (Fig. 8.11c). As such, vertices are placed at the midpoints and at
the endpoints of every folded edge. Two edge members are introduced along
each folded edge. In case of a free edge, three supplementary edge members
are introduced to stabilise the free edge and remove the out-of-plane degree of
freedom of the node at the midpoint of the free edge. These additional edge
members are placed within the geometric boundary of the plate, on the plane
incident to the free edge and perpendicular to the plate10. Plate members are
then placed on the midplanes of the plates so that the plates are entirely trian-
gulated. For plates with polygonal shapes other than the triangle, any pattern
for triangulation is allowed, as long as the plate members are connected to the
midpoints of the folded edges only11. In this way, any force vector that is applied
at a node of the strut-and-tie network can be decomposed into forces along the
plate and edge members.

Synthetic Strut-and-Tie Network The strut-and-tie model described above
is a complete model, that takes into account both lattice and plate action and
complies with the previously introduced membrane model. An alternative syn-
thetic model, which complies with the aforementioned truss model and employs
a smaller amount of linear members, can also be defined.

For the generation of a synthetic strut-and-tie network, a repartition of the
loads on the folded plate structure different from the one previously described
is considered. For uniformly distributed area loads such as the self-weight, an
equivalent system of discrete forces is applied to the vertices of the folded plate
structure, whose magnitudes are proportional to the tributary areas of the ver-
tices. At first, each folded plate is subdivided into polygonal panels (Fig. 8.12a).

9This is the case, for instance, of plates with overall elongated geometries, for which a
more suitable subdivision of the plates along the long edges can be adopted, as shown in the
example based on the project of Scuola di Atletica by Musmeci (§ 10.2).

10This construction relies on the assumption that any force vector applied to the midpoint
of the free edge is transferred by bending action to the endpoints of the edge.

11As shown in the following section (§ 10.2), in this case, the strut-and-tie network requires
an adjustment before an in-plane discrete stress field within the plate can be derived.



8.3 Strut-and-Tie Model for Folded Plate Structures 91

Figure 8.12: (a) Load repartition on a module of the roof according to the tributary areas
of vertices of the folded plates. (b) Proposed synthetic strut-and-tie model for folded plate
structure: every folded edge is modelled as one linear edge member (brown) while the non-
triangular plates are triangulated using linear plate members (orange).

For each vertex of a given folded plate, its related panel is a polygon built on
the vertex, the midpoints of the connected edges, and the centroid of the given
plate. A new system of point loads, equivalent to the initial one in terms of global
equilibrium (§ 9.2), is defined by placing at the centroid of each polygonal panel
a force vector equal to the self-weight of that panel. Regarding each folded plate
as a sub-system in equilibrium, the force vector applied to each panel produces
a reaction force that is opposite to the force vector itself and is applied at the
vertex of the folded plate corresponding to the panel. Each reaction force can
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be then regarded as an action force applied to the folded plate structure. At the
vertices of the folded plates, the action forces related to adjacent folded plates
are composed into one resultant force.

For this given load repartition, a synthetic strut-and-tie model can be ob-
tained by replacing each folded edge with one edge member. In this case, plates
that are not triangular can be made rigid in their planes by triangulating them
using plate members (Fig. 8.12b). In this model, the folded plate structure is
thus assimilated to a spatial lattice structure (§ 8.2.1), where the internal forces
are mainly present in the folded edges, and the external loads are only applied
to the endpoints of the folded edges. Although this model represents a drastic
simplification of the load-bearing behaviour of a folded plate structure, it still
complies with the above complete model in terms of global static rigidity and
global equilibrium. Because of this reason and considering the simplicity of the
model due to the limited amount of elements included, this can be effectively
used for early conceptual design explorations (§ 13.2).
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9. Equilibrium of
Folded Plate Structures

The previously introduced strut-and-tie model for folded plate structures (§ 8.3),
either in the form of a complete or synthetic network, can be used to assess the
equilibrium of a given loaded folded geometry. As shown in details in the following
sections, this operation can be performed using 3D graphic statics and leads to
the definition of an equilibrium-based solution.

9.1 Graphic Statics and the Third Dimension1

Graphic statics is a geometry-based approach that enables to link the form of
a loaded structure to the distribution of its internal forces. It is built upon a
series of procedures that allows the analysis and design of structures in static
equilibrium. Graphic statics relies on the use of two geometric constructions,
the form diagram and the force diagram, the first one representing the geometry
of a lattice structure (i.e. pin-jointed framework) including the applied external
forces, and the second one the static equilibrium of the individual nodes of the
structure. One of the first implementations of graphical procedures for the solu-
tion of static problems is due to Varignon, who in the 18th century introduced the
notions of funicular polygon and polygon of forces to evaluate the global equi-
librium of forces on the plane (Varignon 1725). During the 19th century, graphic
statics developed into an autonomous discipline (Kurrer 2008). This is mainly
thanks to the contributions of Rankine (1858), who addressed the analysis of
structures through various graphical constructions, Culmann (1866), who firstly
formalised the methodologies of graphic statics, and of Maxwell (1864) and Cre-
mona (1872), who related graphic statics to projective geometry (Konstantatou
et al. 2018).

Within two-dimensional graphic statics, fundamental is the notion of reci-
procity between form and force diagrams. That is, form and force diagrams
are interdependent geometric constructions, and the manipulation of one of the
two diagrams entails a consequent direct transformation of the other one. This
property has been initially researched for 2D structures by Maxwell (1864), who

1Contents of this section have been previously published in (D’Acunto et al. 2019).
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developed a procedure to construct reciprocal form and force diagrams on the
basis of a polar transformation (§ 8.1) induced by an elliptic paraboloid (Kon-
stantatou and McRobie 2016; Konstantatou et al. 2018). This procedure yields
diagrams in which corresponding edges are perpendicular to each other. The
topic has been further investigated by Cremona (1872), who defined a strategy
for the generation of reciprocal diagrams alternative to the one of Maxwell and
based on Möbius’s null polarity (Möbius 1833; Konstantatou et al. 2018). Cre-
mona’s procedure results in reciprocal diagrams with corresponding edges parallel
to each other.

While the early applications of graphic statics were almost exclusively con-
fined to the analysis and design of two-dimensional structures, recent research
contributions have been focused on the development of graphic statics in the
third dimension (Konstantatou et al. 2018). Three general strategies can be
detected in this context, namely the projective, the composite and the full 3D
ones (Jasienski et al. 2014). Within the full 3D approach, two main strategies
have been brought forward, the polyhedron-based and the vector-based ones.

Polyhedron-based approach The polyhedron-based approach is grounded on
the initial investigations on the equilibrium of polyhedral frames by Rankine
(1864). Based on this approach, for a given 3D form diagram as a polyhe-
dral frame in static equilibrium (Fig. 9.1.a), a reciprocal 3D force diagram can
be built out of individual closed polyhedral cells (Fig. 9.1.b), each of them defin-
ing the equilibrium of the forces acting on one specific node of the form diagram.
Several computational algorithms for the construction and manipulation of poly-
hedral form and force diagrams, which operate on a node-by-node basis, have
been developed over the last few years (Akbarzadeh et al. 2015b; Lee et al.
2016; Lee et al. 2018). An alternative direct procedure, which makes use of pro-
jective geometry and four-dimensional reciprocal stress functions, has also been
recently introduced (McRobie et al. 2016; Konstantatou and McRobie 2016;
Konstantatou et al. 2018).

Vector-based approach The vector-based approach has been firstly described
by Maxwell (1864) as a more pragmatic alternative to the polyhedron-based
approach. It has been later further investigated by Crapo (1979), and more
recently by Micheletti (2008), and D’Acunto et al. (2019) among others. Like
in 2D graphic statics, vector-based 3D form and force diagrams are built out
of closed cycles of force vectors (i.e. force polygons) (Fig. 9.1.c), each of
them identifying the equilibrium of the forces applied to one individual node
of the form diagram (Jasienski et al. 2016). Contrary to 2D graphic statics,
in vector-based 3D graphic statics, the cycles of force vectors are not plane
polygons but usually skew polygons. In compliance with the method of Cremona
in 2D, corresponding edges in the two diagrams are parallel. Procedures for the
construction of vector-based 3D force diagrams for a given 3D form diagram have
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Figure 9.1: (a) 3D form diagram F of a self-stressed tetrahedron. (b) Polyhedron-based 3D
force diagram Fp*. (c) Vector-based 3D force diagram Fv* (D’Acunto et al. 2019). Note that
in this thesis the convention is adopted of representing tensile forces in red, compressive forces
in blue and external forces in dark green.

been recently described (Jasienski et al. 2016; D’Acunto et al. 2016; D’Acunto
et al. 2019). These are based on the node-by-node generation of the cycles of
force vectors and on their subsequent assembly into one single diagram following
procedures based on graph theory. Thanks to the use of vectors in place of
polyhedra, 3D vector-based diagrams generally retain the immediacy of 2D form
and force diagrams. In fact, like 2D diagrams, they can be easily built manually
using simple geometric constructions within a 3D software environment, without
the aid of specialised algorithms. Moreover, corresponding edges in 3D form and
force diagrams are usually easily recognisable. Because corresponding edges stay
parallel under parallel projections, the main features of the diagrams are not lost
when these are represented onto a two-dimensional plane.

Owing to its practical advantages over its polyhedron-based counterpart, in
the present work, the vector-based 3D graphic statics approach is used. The
latter is here regarded as a consistent framework for the evaluation and manip-
ulation of the external and internal forces in folded plate structures, which are
defined using the previously introduced strut-and-tie model (§ 8.3). At first, a
geometric procedure for the evaluation of the 3D global equilibrium is described,
and an equivalent algebraic formulation is suggested (§ 9.2). Subsequently, the
evaluation of the equilibrium of the internal forces within the proposed strut-
and-tie model is taken into consideration, following both a geometric and an
algebraic approach (§ 9.3). Based on these equilibrium solutions, the construc-
tion of vector-based 3D force diagrams is explained in details (§ 9.4), and their
transformation is addressed thereafter (§ 9.5).
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9.2 Assessment of the External Equilibrium2

Given the strut-and tie model of a folded plate structure under external loading
(§ 8.3), the first step in the solution of the static problem consists in the eval-
uation of the global equilibrium of the system of applied forces. In this regard,
a procedure is here described that makes use of vector-based 3D graphic statics
and projections (D’Acunto et al. 2016). This procedure can be applied for any
configuration of the external forces, as long as the structure is statically rigid.

The procedure is exemplified on the strut-and-tie network of one of the
modules of the roof of Cinema San Pietro by Musmeci (§ 4.2), which is here
regarded as a standalone structure. As such, an additional plate has been added
to the bottom of the module in order to transform its geometry into a polyhedron.
This polyhedron performs like a rigid body, and it is kinematically stable (§ 8.2)
with respect to the specified support conditions (Fig. 9.2). In the proposed
example, five arbitrary forces ΣΣΣ are supposed being applied as point loads to five
different nodes of the strut-and-tie network.

Figure 9.2: (a) Folded plate structure based on the roof of Cinema San Pietro by Musmeci
(§ 4.2). (b) Strut-and-tie network of one of the modules of the roof (§ 8.3), with a system ΣΣΣ

of five applied arbitrary forces.

2Contents of this section have been previously published in (D’Acunto et al. 2016).
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A system of n applied forces ΣΣΣ can be associated to an equivalent force-
couple system {R,MO} (Marti 2013, p. 44) with resultant force R and resultant
couple MO, being the latter evaluated in relation to an arbitrary reference point
O. The resultant force R is obtained as the vector sum of the individual forces
Fi that are included in the system of forces ΣΣΣ:

R =

n∑
i=0

Fi (9.1)

The resultant couple MO, calculated with respect to an arbitrary reference
point O, can be found as:

MO =

n∑
i=0

pi × Fi (9.2)

where pi is the position vector of an arbitrary point on the line of action of the
force Fi based on the chosen reference point O. Two systems of forces ΣΣΣ and
ΣΣΣ
′′′
are equivalent if their force-couple systems are identical with respect to the

same arbitrary reference point (Marti 2013, p. 44). Moreover, a system of forces
is in equilibrium if its force-couple system is null, that is:

R = 000 MO = 000 (9.3)

The evaluation of the global equilibrium of a given system of external forces
according to specified boundary conditions can be solved following a two-phase
process (D’Acunto et al. 2016). At first, a force-couple system that is equivalent
to the input system of forces is found. Then, a system of reaction forces in
relation to the specified boundary conditions is obtained so that the forces are
in equilibrium with the force-couple system. Based on the properties above, the
system of reaction forces and the input system of forces constitute themselves
a system of forces in equilibrium.

Evaluation of the Global Equilibrium using Graphic Statics and Projections
Two graphic statics procedures can be found in the literature that address the
problem of global equilibrium in three dimensions, and lead to the definition
of vector-based (Schrems and Kotnik 2013) and polyhedron-based (Akbarzadeh
et al. 2015a) form and force diagrams respectively (§ 9.1). A third vector-based
procedure, which is used in this work to assess the global equilibrium of the strut-
and-tie networks (§ 8.3), is grounded on the use of graphic statics and projections
(D’Acunto et al. 2016). This approach has been initially introduced by Culmann
(1866, pp. 141–144) to determine the centre of a system of parallel forces in
space. As explained by Mayor (1910, pp. 103–109), a similar procedure was used
by Cremona to find the equilibrium of concurrent forces in space, and eventually,
Saviotti (1888, pp. 57–58) described an equivalent process to compose arbitrary
forces in space.
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Figure 9.3: Decomposition of the system of forces ΣΣΣ along e111, e222, and e333.

Based on this method, a given system of n forces ΣΣΣ can be represented
by three skew resultants {R111,R222,R333}, which are equivalent to the resultant
force-couple system {R,MO} of ΣΣΣ and which are parallel to three initially freely
chosen unit vectors {e111, e222, e333}. Moreover, the three resultants {R111,R222,R333} can
be further composed into a pair of forces or one force and one couple {R,MO}.

In order to evaluate the global equilibrium of the system ΣΣΣ of five arbitrary
skew forces {F111,F222,F333,F444,F555} applied to the strut-and-tie network of the exam-
ple (Fig. 9.2), in the first step, three unit vectors {e111, e222, e333} not lying on the
same plane are defined (Fig. 9.3); the line of actions of the forces of the sought
triplet of resultants {R111,R222,R333} will be parallel to e111, e222, and e333 respectively.
Based on this set-up, every force Fi of ΣΣΣ is decomposed into its components
{Fi111,Fi222,Fi333} (Fig. 9.3) along the chosen directions:

Fi = Fi111 + Fi222 + Fi333 = Fi1e111 + Fi2e222 + Fi3e333 (9.4)

where the absolute values of Fi1, Fi2 and Fi3 are the magnitudes of the compo-
nents Fi111, Fi222 and Fi333 along e111, e222, and e333 respectively. In this way, the initial
system of forces ΣΣΣ is replaced by three sets of forces ΣΣΣ111, ΣΣΣ222 and ΣΣΣ333, which
are parallel to e111, e222, and e333 respectively. To easily illustrate the process, in the
example the unit vectors {e111, e222, e333} are chosen to be orthonormal.

In the second step, three auxiliary projection planes Π
′ , Π

′′ and Π
′′′ are set to

be parallel to the vector pairs {e222, e333}, {e111, e333}, and {e111, e222} respectively. More-
over, three unit vectors {t ′ , t ′′ , t ′′′} are introduced, which define the directions
of projection onto Π

′ , Π
′′ , and Π

′′′ ; each vector of the triplet {t ′ , t ′′ , t ′′′} can
be freely chosen, provided that it is not parallel to its corresponding projection
plane. For convenience of illustration, in the example the vectors {t ′ , t ′′ , t ′′′} are
chosen to be parallel to {e111, e222, e333} respectively. The forces Fi333 included in the
set ΣΣΣ333, which are all parallel to e333, are then projected onto Π

′ through a parallel
projection in the direction of t ′ , thus generating a new set ΣΣΣ

′

333 of coplanar forces
F
′
i333 (Fig. 9.4.a). In order to find the magnitude and line of action of the resultant
R
′
333 of ΣΣΣ

′

333, the standard procedure for the evaluation of the global equilibrium in
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2D graphic statics is applied. Hence, on the plane Π
′ , an auxiliary funicular

structure is built, and the corresponding force polygons are constructed, thus
generating the form F3’ and the force F3

*’ diagrams. The magnitude of R′333 of
ΣΣΣ
′

333 is then assessed graphically. The position of its line of action is found so that
the moment generated by R′333, with respect to any arbitrary reference point in
Π
′ , is equivalent to the resultant couple of ΣΣΣ

′

333. Likewise, the forces Fi333 included
in ΣΣΣ333 are projected onto Π

′′ in the direction of t ′′ to generate ΣΣΣ
′′

333; by construc-
tion, the magnitude of the resultant R′′333 of ΣΣΣ

′′

333 is equal to the one of R′333 and its
line of action is assessed following the 2D graphic statics procedure described
earlier (Fig. 9.4.a). The forces R′333 and R

′′
333 represent the projections on Π

′ and
Π
′′ respectively of the resultant R333 of ΣΣΣ333. The magnitude of R333 is, therefore,

the same as R′333 and R
′′
333 . The line of action of R333 is the intersection between

the plane containing R′333 and parallel to the vector pair {t ′ , e333} and the plane
containing R′′333 and parallel to the vector pair {t ′′ , e333}. The moment generated
by R333 with respect to an arbitrary reference point O in space is equivalent to the
resultant couple of ΣΣΣ333.

The entire process is then repeated to determine the magnitudes and the lines
of action of the resultant forces R222 of ΣΣΣ222 (Fig. 9.4.b) and R111 of ΣΣΣ111 (Fig. 9.5.a).
As a result, the magnitudes of R111, R222 and R333 and their lines of action are
determined to be equivalent to the resultant force-couple systems of ΣΣΣ111, ΣΣΣ222

and ΣΣΣ333 respectively (Fig. 9.5b). Moreover, considering that ΣΣΣ111, ΣΣΣ222 and ΣΣΣ333

are themselves equivalent to the given system of forces ΣΣΣ, the triplet of forces
{R111,R222,R333} is also equivalent to ΣΣΣ. In fact, the triplet of forces here obtained
represents one of the infinite triplets of forces that are all equivalent to the
force-couple system {R,MO} of ΣΣΣ. By varying the unit vectors {e111, e222, e333} other
triplets can be found. Depending on the specific problem to be solved, one or
more resultants of the triplet {R111,R222,R333} may be null. In this particular case,
the system may also produce a couple M, whose magnitude is invariant to the
choice of the reference point O.

Determination of One Resultant and One Couple The procedure previously
explicated to determine three skew resultants {R111,R222,R333} equivalent to a given
system of forces ΣΣΣ through projections can be used to find a resultant force-
couple system {R,M} of ΣΣΣ directly. In fact, if the unit vectors {e111, e222, e333} are
chosen to be orthonormal and e333 is set to be parallel to the free resultant R∗∗∗

of ΣΣΣ in the force diagram F* (Fig. 9.6), the method of the projections yields
the position of the line of action of the resultant R, which coincides with the
resultant R333 of the set of forces ΣΣΣ333 parallel to e333. Furthermore, the set of
forces ΣΣΣ111 and ΣΣΣ222, which are parallel to e111 and e222 respectively, if not empty,
generate a resultant couple M. This can be represented by a free vector with
two components, M‖ parallel to R and M⊥ perpendicular to R. Likewise, and in
case the forces of the given system ΣΣΣ are decomposed at the intersection points
of their lines of action and a plane parallel to the projection plane Π

′′′ , which
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Figure 9.4: (a) Determination of R333 in relation to R
′
333 on Π

′
and R

′′
333 on Π

′′
. (b) Determination

of R222 based on R
′
222 on Π

′
and R

′′′
222 on Π

′′′
.
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Figure 9.5: (a) Determination of R111 in relation to R
′′
111 on Π

′′
and R

′′′
111 on Π

′′′
. (b) The given

system of forces ΣΣΣ with the resultants {R111,R222,R333}.
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Figure 9.6: Determination of the resultant R and the couple {F ,−−−F} equivalent to ΣΣΣ

itself is perpendicular to e333, the method of the projections is totally equivalent
to the procedure described by Akbarzadeh et al. (2015a). The line of action of
the resultant R, which coincides with the resultant R333 parallel to e333, constitutes
the central axis a of the system ΣΣΣ, and the plane Π

′′′ is the orthographic plane
(Cremona 1872).

If not null, the components of the input forces ΣΣΣ parallel to e111 and e222 generate
a resultant couple M that can be represented by a free vector parallel to R and
perpendicular to Π

′′′ ; hence, the componentM⊥⊥⊥ ofM is null. Furthermore, if the
resultant coupleM is defined in the form diagram by a couple of forces {F ,−−−F}
on Π

′′′ and the line of action of F is made to intersect the central axis, F and R
can be composed into a force Fr . The lines of action of Fr and −−−F are conjugate
lines in relation to a null polarity (Möbius 1833; Pottmann and Wallner 2001),
and the system ΣΣΣ is thus equivalent to the pair of forces {Fr ,−−−F}. Given this
construction, it is immediate to show that the projections of conjugate lines onto
the orthographic plane are parallel lines (Cremona 1872).

Evaluation of the Support Reactions Once the triplet of forces {R111,R222,R333}
equivalent to the given system of forces ΣΣΣ is found, the reactions at the supports
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Figure 9.7: Evaluation of the reaction forces RS000, RS111, and RS222 at the supports.

can be evaluated according to the specified boundary conditions (Fig. 9.2). If
the structure is statically rigid and statically determinate externally (§ 8.2), the
equilibrium between the applied loads and the reactions can be resolved before
the evaluation of the internal equilibrium. In case the structure is statically rigid
and statically indeterminate externally (§ 8.2), those support forces other than
the ones necessary to attain the static determinacy of the system can be regarded
as parameters in the solution of the equilibrium problem.

In relation to the given example, which is statically rigid and statically deter-
minate externally (Fig. 9.2), a simple auxiliary structure can be used to evaluate
the reaction forces RS000, RS111 and RS222 produced by the forces {R111,R222,R333} at the
support points S0, S1 and S2 respectively. As such, an internally statically deter-
minate 3D truss made of three tetrahedra (6 nodes, 12 edges) is constructed
(Fig. 9.7), whose nodes are the three support points S0, S1 and S2 and other
three freely chosen points on the lines of action of R111, R222 and R333 respectively.

Global Equilibrium and Exterior Algebra The global equilibrium of a system
of forces ΣΣΣ can also be assessed by means of exterior algebra (Crapo 1979;
Whiteley 1987, Baniček et al. 2018). As such, forces are treated as 2-extensors,
which can be represented as 6-vectors using Plücker coordinates (Plücker 1865;
Grassmann 2000). As described in details by Whiteley (1987), the composition
of two 2-extensors yields another 2-extensor only if the lines of action of the
corresponding forces intersect each other. In the general case, the sum of 2-
extensors generates a 6-vector, which is defined as wrench and is equivalent to
the previously introduced resultant force-couple system {R,M} of ΣΣΣ.
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9.3 Assessment of the Internal Equilibrium

Once the global equilibrium of the given strut-and tie network has been solved
(§ 9.2), the internal equilibrium of the structure can be evaluated. This opera-
tion leads to the identification of the magnitudes of the forces within the edge
members and plate members (§ 8.3) of the strut-and-tie network.

Assuming that the given structure is rigid and externally statically determi-
nate under the specified support conditions, based on its degree of static inde-
terminacy, the strut-and-tie network is either internally statically determinate or
indeterminate (§ 8.2). In the first case, the equilibrium problem has only one pos-
sible solution, and the assessment of the internal equilibrium can be immediately
performed. In the second case, multiple equilibrium solutions are possible for the
same given static configuration. In compliance with the theory of plasticity, as
long as the hypotheses of the lower bound theorem are fulfilled (§ 10.1), any of
these solutions is admissible. In this case, before proceeding to the evaluation
of the internal equilibrium, the redundant members of the strut-and-tie network
(i.e. the members that can be removed without compromising the kinematic
stability of the structure) have to be identified3, and their internal forces have
to be then treated as parameters in the equilibrium problem.

9.3.1 Evaluation of the Internal Equilibrium using Graphic Statics

As a preliminary step to the solution of the internal equilibrium, the edges of
the strut-and-tie network with zero force can be detected based on simple geo-
metrical rules (Pirard 1950; Coates et al. 1987). Thanks to this operation, the
number of unknown forces in the static problem can be reduced.

Regarding the strut-and-tie network as a form diagram F, the equilibrium of
the internal forces within the structure can then be solved iteratively node-by-
node using vector-based 3D graphic statics (Jasienski et al. 2016).

In particular, each vertex Vi of F is isolated into a free body diagram (Marti
2013, p. 44) together with the forces Fi−−−j in the edge and plate members Ei−j
incident to Vi , and the applied external forces Fi and reaction forces RSi when
present. The unknown forces are then determined so that in the force diagram F*

the F ∗∗∗i−−−j , the applied external forces F
∗∗∗
i , and reaction forces R

∗∗∗
Si generate a closed

cycle of force vectors. Provided that the amount of unknown forces at every
node is no more than three, the closed cycle of force vectors can be constructed
geometrically (Jasienski et al. 2016). At every iteration, the nodes Vi of F are
sorted in ascending order in relation to the number of unknown forces.

3When possible, this operation can be performed by detecting first a statically determinate
sub-system of the given strut-and-tie network and then locating the redundant members. A
more general algebraic procedure involves the singular value decomposition of the (3V − k by
E) equilibrium matrix A of the structure (§ 8.2.1) as described by Pellegrino (1993).
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The procedure described above is here illustrated using a strut-and-model
based on the geometry of one of the modules of the roof of Cinema San Pietro
by Musmeci (§ 4.2; § 9.2). A synthetic strut-and-tie network (§ 8.3) is con-
sidered, which meets the requirement of the geometric procedure4. A supple-
mentary edge has been introduced at the bottom of the structure to generate
a statically determinate configuration in relation to the specified support condi-
tions (Fig. 9.8, top). The structure is loaded with two external forces (F222 and
F444).

After the global equilibrium is evaluated (§ 9.2), the reactions at the supports
(RS000, RS111 and RS222) are found, and the cycle of external force vectors 〈VE〉

∗ is built
in F*. The internal equilibrium of the strut-and-tie network can then be solved,
starting from a vertex with no more than three unknown forces, such as V1. The
equilibrium at the other five vertices is then assessed iteratively considering, for
example, the sequence {V1, V2, V4, V5, V0, V3}. Hence, six cycles of force vectors
{〈V1〉

∗
, 〈V2〉

∗
, 〈V4〉

∗
, 〈V5〉

∗
, 〈V0〉

∗
, 〈V3〉

∗} are generated in F* other than the one of
the external forces 〈VE〉

∗ (Fig. 9.8, bottom).

Internal Equilibrium and Linear Algebra From an algebraic standpoint, the
above geometric procedure is equivalent to the following equilibrium condition
applied at every vertex Vi of F:∑

j

(Fi−−−j) + Fi +RSi = 000 (9.5)

where j iterates on the indexes of the vertices Vj of F connected to Vi . In
particular, for each vertex Vi of F, the unknown force magnitudes µi−j are found
so that: ∑

j

(Fi−−−j) + Fi +RSi =
∑
j

(µi−jdi−−−j) + Fi +RSi = 000 (9.6)

where the unit vector di−−−j is equivalent to:

di−−−j =
pj − pi
‖pj − pi‖

(9.7)

being pi the position vector of Vi and the pj the position vectors of the vertices
Vj of F connected to Vi

5. A more general procedure for the assessment of
the equilibrium of a given structure relies on the solution of a system of linear
equations based on the (3V − k by E) equilibrium matrix A of the structure
(§ 8.2.1), as explained in details by Pellegrino and Calladine (1986), Micheletti
(2008) and Van Mele and Block (2014).

4Note that in case the folded plate structure has only triangular plates and the external
forces are applied only at the endpoints of the folded edges like in the proposed example, the
plate members are not loaded; in this occurrence, complete and synthetic strut-and-tie networks
(§ 8.3) are equivalent.

5The values of the µi−j are positive for tension and negative for compression forces.
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Figure 9.8: Assessment of the internal equilibrium of the 3D form diagram F of the strut-and-
tie model related to the roof of Cinema San Pietro by Musmeci (§ 4.2; § 9.2). The graphical
node-by-node procedure (Jasienski et al. 2016) results in the generation of seven cycles of force
vectors {〈VE〉∗ , 〈V0〉∗ , 〈V1〉∗ , 〈V2〉∗ , 〈V3〉∗ , 〈V4〉∗ , 〈V5〉∗}.
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9.4 Construction of 3D Force Diagrams6

A vector-based 3D force diagram is built out the assembly of closed cycles of
force vectors, each of them representing the equilibrium of a node of the 3D form
diagram (§ 9.1). As a result, each edge of the form diagram corresponds to a pair
of opposite force vectors in the force diagram. In the diagram, these two force
vectors have to be overlapped to define a single edge. Form and force diagrams
are reciprocal if all the pairs of opposite force vectors can be overlapped without
generating any duplicate edge. Conversely, when a pair of opposite force vectors
cannot be directly overlapped (i.e. a pair of non-overlapping vectors) (Jasienski
et al. 2016), an additional pair of opposite vectors have to be introduced in the
force diagram, thus creating a pair of duplicate edges (D’Acunto et al. 2019).
The presence of duplicate edges in the force diagram, other than preventing it
from being reciprocal to the form diagram, reduces its legibility.

In the general case, vector-based 3D force diagrams have one or more pairs of
duplicate edges. The same can also occur for certain two-dimensional structures.
As highlighted by Cremona (1872) and Maxwell (1876), configurations of non-
reciprocal form and force diagrams can be already found in the work of Culmann
(1866).

9.4.1 On the Reciprocity of Vector-based 3D Form and Force
Diagrams

As demonstrated by Whitney (1933) within the domain of graph theory, the
necessary and sufficient condition for a graph to have its dual (§ 8.1), is that
the graph should not contain any of the Kuratowski’s graphs as a subgraph -
i.e. a subgraph that is a subdivision of K5 or K3,3 being the former the complete
graph on five vertices and the latter the complete bipartite graph on six vertices
(Harary 1969). This is equivalent to the condition that the graph is planar 7.
According to Crapo and Whiteley (1993), the necessary and sufficient condition
for a given truss to have a reciprocal on its dual graph is that its underlying
graph is planar and that the structure supports a non-null self-stress state8. The
planarity of the underlying graph of a structure can be tested by using one of the
many algorithms available in the literature, such as the one by Boyer (2001).

In the case of three-dimensional structures, only specific configurations of
lattice structures have underlying planar graphs. Belong to this category, for
example, surface structures made of bars in space (Sauer 1970; Wallner and
Pottmann 2008; Tachi 2012b; Tachi 2012a), some classical tensegrity structures

6Contents of this section have been previously published in (D’Acunto et al. 2019).
7A graph is planar if it can be embedded in the plane, without the edges crossing each

other except at the vertices (§ 8.1). After the embedding, the graph is defined plane graph
(Harary 1969, p. 102).

8This consists in a self-stress that is non-zero on all edges of the structure (Crapo and
Whiteley 1993).
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(Micheletti 2008), or the dependent cube and octahedron (Crapo 1979). The
reciprocal vector-based force diagrams of these structures have been defined
as Cremona Reciprocals (Crapo 1979). However, as in the general case the
underlying graph of a 3D structure is non-planar, reciprocity between 3D form
and force diagrams is generally not achieved (Jasienski et al. 2016). Several
strategies to generate 2D and 3D reciprocal form and force diagrams, when
their underlying graphs are non-planar, can be found in the literature. Particularly
relevant are the strategy of Bow (1873) of introducing a supplementary node at
the crossing of bars in 2D trusses, the proposal of Crapo and Whiteley (1993)
of reciprocals as infinite frameworks and the approach of Micheletti (2008) of
point-symmetric reciprocal diagrams of specific self-stressed structures. When
reciprocal form and force diagrams cannot be constructed, multiple alternative
configurations of the force diagram can be generated for a given form diagram
(D’Acunto et al. 2019).

In the next section, several geometric procedures are described to construct
different vector-based 3D force diagram configurations F* for a given 3D form
diagram F with underlying non-planar graph T (D’Acunto et al. 2019). These
approaches can be regarded as a generalisation to the third dimension of the
conventional graphic statics procedures explicated by Bow (1873) and Saviotti
(1888) for the solution of 2D trusses with underlying non-planar graphs. The
procedures are exemplified using the strut-and-tie model of the roof of Cinema
San Pietro by Musmeci (§ 4.2; § 9.3) as an externally loaded 3D form diagram
F with underlying non-planar graph T (Fig. 9.9).

Figure 9.9: Graph T and 3D form diagram F of the strut-and-tie model based on the geometry
of Cinema San Pietro by Musmeci (Fig. 9.8). Because of the presence of two pairs of crossing
edges in T, the graph is non-planar. Note the presence of the vertex of the external forces vE in
T, to which all the edges of the external forces are connected. This vertex does not correspond
to any node in F.

.
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9.4.2 Vector-based 3D Force Diagrams Configurations

In the following paragraphs, four different vector-based 3D force diagram con-
figurations are presented (D’Acunto et al. 2019). Each configuration is charac-
terised by a diverse organisation of the cycles of force vectors within the force
diagrams, which in turn implies a different number of duplicated edges. The
choice of the configuration depends on the specific design problem to be solved.

Double-layered Configuration For the construction of a double-layered 3D
force diagram (Jasienski et al. 2016), in the first step all the vertices of T,
corresponding to the nodes of F where external forces are applied, are connected
to a newly created vertex of the external forces vE through edges eEi (Fig. 9.9,
left). The vE is an ideal element and does not correspond to any node of F.

Without changing the topology of T, in the second step its vertices are
repositioned in a way that the eEi do not cross any other edge of T. In the third
step, the non-planar graph T (Fig. 9.9, left) is transformed into a plane graph
TP (Fig. 9.10.a, left), without altering the static equilibrium of the structure.
That is, each crossing edge es−t is split into two new edges es and et that are
respectively connected to the vertices vs and vt of es−t and to one newly created
ideal vertex vD, avoiding any crossing between the new edges and the eEi . The
corresponding edge Es−t of F, connected to the nodes Vs and Vt, is substituted by
a pair of opposite force vectors Fs and Ft , representing respectively the internal
forces Fs−−−t and Ft−−−s (§ 9.3). In the fourth step, the cycle of force vectors 〈VE〉

∗

and the 〈Vi〉
∗ are constructed. The sequence of the force vectors in each cycle is

the one of the corresponding edges in TP when following a cyclic order around
the vertex of TP corresponding to that cycle. Note that the order of the force
vectors in 〈VE〉

∗ (e.g. counter-clockwise) is opposite to the one of the force
vectors in the 〈Vi〉

∗ (e.g. clockwise). An additional closed cycle 〈VD〉
∗ is created

out of the force vectors corresponding to the edges of TP connected to vD.
In the last step, the 〈VE〉

∗, 〈Vi〉
∗ and 〈VD〉

∗ are assembled into a force diagram
F* (Fig. 9.10.a, right), based on the connectivity of the corresponding vertices
in TP. That is, any two cycles of force vectors 〈Vm〉

∗ and 〈Vn〉
∗ are connected

to each other if their corresponding nodes vm and vn in TP share the same edge
em−n. The connection between the cycles is attained by overlapping the opposite
force vectors of 〈Vm〉

∗ and 〈Vn〉
∗, which relate to the common edge em−n, into one

single edge E∗m−n in F*. The topology of F* is thus represented by TP
*, which is

the dual graph (§ 8.1) of TP (Fig. 9.10.a, left).
As a result, the external force vectors in the 〈Vi〉

∗ that are overlapped to the
ones in 〈VE〉

∗ generate a closed cycle of external force edges. Likewise, the force
vectors of the cycles 〈Vi〉

∗ that are overlapped to the ones of the cycle 〈VD〉
∗

generate a closed cycle of duplicate edges. 〈VE〉
∗ and 〈VD〉

∗ constitute the first
and second layers of F*. According to the initial repositioning of the vertices in
T, various possible double-layered force diagrams can be produced.
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Figure 9.10: (a) Double-layered configuration: plane graph TP of T (Fig. 9.9) and its dual
graph TP

*; corresponding 3D force diagram F*. (b) Single-layered configuration: plane graph
TP of T (Fig. 9.9) and its dual graph TP

*; corresponding 3D force diagram F*. (c) Multiple-
quads configuration: plane graph TP of T (Fig. 9.9) and its dual graph TP

*; corresponding 3D
force diagram F*.

.
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Single-layered Configuration A single-layered vector-based 3D force diagram
(D’Acunto et al. 2017) can be obtained after modifying the previously described
procedure (Fig. 9.10.b). In the third step, the two new edges es and et that
are generated after splitting each crossing edge es−t, are here connected to vE
(Fig. 9.10.b, left). The edge Es−t of F connected to the nodes Vs and Vt is then
substituted by a pair of opposite external force vectors Fs and Ft . A closed cycle
of external force vectors 〈VE〉

∗ is thus generated in which a pair of non-overlapping
vectors (F ∗s and F ∗t ) is created for each pair of newly introduced external forces
(Fs and Ft). In comparison to other configurations, the single-layered one gen-
erally allows producing a more compact force diagram F* (Fig. 9.10.b, right).

Multiple-quads Configuration To construct a multiple-quads vector-based
3D force diagram, T (Fig. 9.9) is transformed into a plane graph TP (Fig. 9.10.c,
left) through planarization (Buchheim et al. 2014) by adding a new vertex vDi
at every crossing of edges in T. Hence, every pair of crossing edges of T are
split into four edges. Although this strategy does not alter the equilibrium of
the structure, contrary to the 2D case (Bow 1873), the new vertices vDi are not
related to any node in F. In fact, the edges of F corresponding to the crossing
ones in T generally do not intersect in one point in space. For every new vertex
vDi , a new quadrilateral cycle 〈VDi〉

∗ constituted by two pairs of opposite force
vectors is generated in F* (Fig. 9.10.c, right). This force diagram configuration
usually leads to a high amount of duplicate edges. In this regard, specific al-
gorithms can be used to minimise the number of crossing edges in T (Chimani
2008).

Case-specific Configuration As an alternative to the procedures described in
the previous paragraphs, the general strategy of transforming the graph T of F
into a plane graph TP, without altering the static equilibrium of the structure,
can be applied. In this way, T can be transformed into TP by splitting the crossing
edges in T and connecting them to any number of new vertices vDi or to any ex-
isting vertex vi . The equilibrium of the structure is kept unchanged by respecting
the condition that the two edges (es and et) generated after splitting an existing
one (es−t) are connected to the same vertex. Vector-based force diagrams of
this type can always be constructed but they are case-specific: their features
cannot be characterised in the same way as the ones previously described.

To test the applicability of the aforementioned procedures to a more complex
structural configuration, a double-layered vector-based 3D force diagram is con-
structed on the basis of the complete strut-and-tie network of a module of the
roof of Stabilimento Raffo by Musmeci (§ 4.2; § 8.3). The module is here re-
garded as a standalone structure, which is globally statically determinate with
respect to the specified support conditions (Fig. 9.11).
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Figure 9.11: (a) Graph T and plane graph TP based on the complete strut-and-tie model of a
module of the roof of Stabilimento Raffo by Musmeci (§ 4.2). (b) 3D form diagram F. (c) 3D
force diagram F* built according to the double-layered configuration.

.
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9.5 Transformation of 3D Force Diagrams9

This section presents several transformations that can be applied to a vector-
based 3D force diagram without breaking its interdependence to its corresponding
3D form diagram (D’Acunto et al. 2017). These transformations ensure the
parallelism between corresponding edges in the two diagrams and keep their
topology unchanged. The transformations can be applied to any of the force
diagram configurations described earlier (§ 9.4). The possibility of manipulating
the force diagram by means of geometric transformations is particularly relevant
within the design process. Thanks to this opportunity, the designer is able to
control the distribution of the forces within a given structure directly and steer
its load-bearing behaviour towards a desired one. In this way, the adjustment
of the magnitude and the direction of the forces in a vector-based 3D force
diagram can be used as an active operation. Two categories of manipulations
of force diagrams are described: global transformations, which affect all the
elements of the diagram simultaneously, and local transformations, which permit
the manipulation of individual elements of the diagram (D’Acunto et al. 2017).

9.5.1 Global Transformations

In compliance with the classification introduced by Fivet (2016), a series of
global transformations of a vector-based 3D force diagram F* is here presented
that can be applied no matter the presence of duplicate edges in F* (§ 9.4) and
regardless of the static and kinematic determinacy of the structure (§ 8.2.1).

Global Parallel Transformations Global parallel transformations in space are
also known as affine transformations. Apart from Euclidean transformations
(rotation, translation, reflection), these include, among others, spatial uniform
scaling, non-uniform scaling, and shear. Affine transformations are characterised
by three peculiar properties (Pottman et al. 2007): straight lines (planes) are
transformed into straight lines (planes); parallel lines (planes) are mapped into
parallel lines (planes); the ratio of the lengths of two line segments on parallel
lines is invariant throughout the transformation. Based on the first property,
an affine transformation converts F* into a new vector-based diagram F*’; the
same applies to F, which is transformed into F’. Thanks to the second property,
corresponding edges in F* and F stay parallel to each other if the same affine
transformation is applied to both. The third property, which is particularly rel-
evant in the case F* has duplicate edges, ensures that these edges stay parallel
and have the same length after the transformation. The application of global
parallel transformations is exemplified using the multiple-quads 3D force diagram
F* (Fig. 9.10.c, right) related to the 3D form diagram F (Fig. 9.9, right) of the
strut-and-tie network of Cinema San Pietro by Musmeci (§ 4.2).

9Contents of this section have been previously published in (D’Acunto et al. 2017).
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Figure 9.12: (a) Spatial uniform scaling applied to the strut-and-tie network of Fig. 9.9: initial
3D force diagram F* (dashed grey) and transformed one (colours) F*’; corresponding initial F
and transformed F’ 3D form diagrams. (b) Non-uniform scaling along the y -axis: initial F* and
transformed F*’ 3D force diagrams; initial F and transformed F’ 3D form diagrams. (c) Shear
transformation along the x-axis: initial F* and transformed F*’ 3D force diagrams; initial F and
transformed F’ 3D form diagrams.
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Semi-global Parallel Transformations Under specific geometric or static con-
ditions, it is possible to define semi-global parallel transformations that affect
only a subset of the 3D force diagram while leaving the rest unchanged (D’Acunto
et al. 2017). Belong to this category the transformation of the 3D force diagram
of a statically indeterminate structure. In this static condition, to every degree
of static indeterminacy, one infinity of internal forces distribution in equilibrium
can be found (§ 9.3). As shown by Mitchell et al. (2016) and by McRobie et al.
(2016) in 2D, also in the 3D force diagram F* of a statically indeterminate strut-
and-tie network, an offset transformation can be used to modify a subset of the
geometry of F*, while keeping the direction of all the E∗i−j unchanged. Hence,
considering each degree of static indeterminacy as a parameter, the space of all
possible internal forces distribution can be explored (Rondeaux et al. 2017).

The application of this semi-global transformation is exemplified using the
previously defined multiple-quads 3D force diagram F* (Fig. 9.10.c, right) and
the related form diagram F (Fig. 9.9, right). The strut-and-tie network has been
made statically indeterminate to one degree after adding an edge at the bottom
of the structure (Fig. 9.13, right). The external forces are kept constant, and
therefore the nodes V ∗a , V

∗
b , V

∗
c , V

∗
d , and V

∗
e of F* are fixed (Fig. 9.13, left).

The relative position x of the node V ∗x along the line of E∗0−1 is regarded as a
parameter. Given the position of V ∗x , the positions of the remaining nodes of F*’
are unequivocally determined. This parametric transformation can be directly
used for the limit state analysis (§ 10.1) of the given strut-and-tie network
(Rondeaux et al. 2017). As long as the hypotheses of the lower bound theorem
of the theory of plasticity are fulfilled (§ 10.1), an optimisation process can be
used to minimise the length of the longest force edge E∗i−j in F*’, which consents
to determine the limit load factor λu (§ 10.1).

Figure 9.13: Semi-global parallel transformation applied to a strut-and-tie network with one
degree of static indeterminacy, related to the example of Fig. 9.9: initial 3D force diagram F*

(dashed grey) and transformed one (colours) F*’; corresponding initial F and transformed F’
3D form diagrams.
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9.5.2 Local Transformations

Contrary to global transformations, which affect all the elements of the 3D
force diagram F* simultaneously, local transformations allow the manipulation of
individual elements of the diagram while keeping the others unaffected. Thanks
to these transformations, it is possible to adjust the magnitude and direction of
specific forces in F* and assess the corresponding transformation of F (D’Acunto
et al. 2017).

A series of geometric constraints have to be defined to secure the interde-
pendence between F* and F during the transformation. More specifically, cor-
responding edges in the two diagrams (E∗i−j and Ei−j) are kept parallel to each
other, while the duplicate edges in F* are kept parallel and equal in length. Such
a constrained non-linear problem entails the use of a numerical simulation since
it cannot be solved with direct geometric constructions only.

Numerical methods can be effectively used for the solution of specific struc-
tural problems, especially in the case of form-finding. Significant examples of
numerical approaches adopted in this field are the force density method (Schek
1974) and dynamic relaxation (Barnes 1977). In comparison to direct geometric
constructions, like the ones used in all the previously described transformations,
numerical approaches are based on iterative numerical approximations, and they
normally require that computational tools be used. In the approach presented
here, local transformations are applied within the commercial CAD platform Mc-
Neel Rhinoceros 3D10 thanks to the use of customised IronPython11 and C#12

scripts. These scripts make use of the Kangaroo2 library by Piker (2017), whose
solver is built around a specific implementation of position-based dynamics (Ben-
der et al. 2015).

As an example, local transformations are applied to the multiple-quads 3D
force diagram F* (Fig. 9.11.c) and to the related 3D form diagram F (Fig. 9.11.b)
of the strut-and-tie network based on the geometry of the roof of Stabilimento
Raffo by Musmeci (§ 4.2). These transformations have been implemented with
the goal of reducing the magnitudes of the internal forces Fi−−−j in the edge and
plate members of the top pentagonal plate of the structure (Fig. 9.14). Through-
out the transformations, specific constraints have been applied other than the
aforementioned general constraints. In particular, the magnitudes of the exter-
nal applied loads Fi have been kept constant, thus allowing only the reaction
forces RSi to change their magnitudes. Moreover, the geometry of the 3D form
diagram F has been kept symmetrical along its longitudinal axis. Finally, edge
and plate members related to the same plate have been constrained to stay on
the same plane.

10McNeel Rhinoceros: http://www.rhino3d.com/ (Accessed 05.06.2018).
11.NET Foundation IronPython: https://ironpython.net/ (Accessed 05.06.2018).
12Microsoft .NET C# language: https://docs.microsoft.com/en-us/dotnet/csharp

(Accessed 05.06.2018).

http://www.rhino3d.com/
https://ironpython.net/
https://docs.microsoft.com/en-us/dotnet/csharp
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Figure 9.14: Local transformation applied to a strut-and-tie network based on the geometry of
the roof of Stabilimento Raffo by Musmeci (Fig. 9.11). Initial 3D force diagram F* (dashed
grey) and transformed one (colours) F*’. Initial form diagram F and transformed one F’.

.

As can be observed, the transformed 3D force diagram F*’ shows a high
degree of variation in comparison to the initial one F* (Fig. 9.14, top). On
the other hand, by comparing the initial state of the of the 3D form diagram F
with the final state F’ (Fig. 9.14, bottom), the concurrent modifications to the
geometry of the strut-and-tie network are less relevant.
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10. Stress State in
Folded Plate Structures

In this chapter, a strategy to derive in-plane stress fields in folded plate structures
is described. This relies on the equilibrium-based solution of the strut-and-tie
model defined through the application of vector-based 3D graphic statics (Chap-
ter 9). The fundamental concepts of the theory of plasticity, upon which the
presented approach is built, are first introduced.

10.1 Fundamental Concepts of the Theory of Plasticity

At the end of the 19th century, an innovative methodology for the analysis of
statically indeterminate reinforced concrete beams subjected to shear and bend-
ing was introduced by Hennebique (Kurrer 2008), and later further developed
by Ritter (1899) and Mörsch (1908). According to this approach, a reinforced
concrete beam loaded in its own plane develops an internal load-bearing mech-
anism that can be associated to the one of a planar truss, whose elements are
subjected to axial forces of tension or compression. Based on this truss model,
the stress resultants within a loaded reinforced concrete beam can be then found
after solving an equilibrium problem. This method was later extended by Rausch
(1938) to take into account torsion. Further developments in the second half
of the 20th century are grounded on the works of Rüsch (1964), Kupfer (1964),
and Leonhardt (1965), among others (Schlaich et al. 1987; Kurrer 2008). A
major contribution to the application of the truss model to reinforced concrete
structures is due to Thürlimann et al. (1983), who consistently framed the model
within the domain of the theory of plasticity (Prager and Hodge 1951; Drucker
1961).

Strut-and-Tie Models A generalisation of the truss analogy to the analysis and
design of any part of reinforced and pre-stressed concrete structures, including
those with static and geometrical discontinuities, was put forward by Schlaich
et al. (1987). Their comprehensive theory is built upon the use of strut-and-tie
models (STM) to represent the interaction between the compressive stress fields
distributed within the concrete mass (whose resultants are modelled as struts)
and the tensile stress fields in the steel reinforcement (ties). STM can be directly
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used to design the so-called D-regions, parts of reinforced concrete where the
hypotheses of the Bernoulli beam theory are not fulfilled because of the presence
of discontinuities (Schlaich et al. 1987).

A synthetic and complete methodology for the analysis and design of rein-
forced and pre-stressed concrete structures entirely grounded on the theory of
plasticity is due to Muttoni et al. (1997). One of the main advantages offered
by this approach is the possibility to solve, using the proposed unified approach,
analysis and design problems in reinforced concrete at various scales, from the
definition of the global layout of the structure to the detailing of the structural
components. Strut-and-tie models are used to represent the equilibrium of com-
pressive and tensile stress resultants based on the underlying stress field within re-
inforced concrete. Hence, the methodology primarily employs equilibrium-based
tools, such as graphic statics, for the evaluation of the internal forces in the
structural elements (Muttoni et al. 1997).

Limit State Theorems of the Theory of Plasticity While the theory of elas-
ticity can be generally applied to evaluate the serviceability of a structure sub-
jected to elastic deformations1, the theory of plasticity can be used to assess the
ultimate load-bearing capacity of a structure. In the theory of plasticity, only
those material parameters that define the resistance capacity of a structure are
considered (Muttoni et al. 1997). This approach relies on a rigid-plastic formu-
lation of material behaviour. That is, a sufficient ductile capacity of the material
is assumed, which consents to ignore the elastic deformations, being such de-
formations considerably smaller than the plastic ones (Muttoni et al. 1997).
The further assumptions are also observed that the mechanical behaviour of
the structure is not modified by excessive plastic deformations and the loaded
structural members are not affected by instability (Heyman 2008).

Within the context of the theory of plasticity, limit analysis can be used to
evaluate the ultimate capacity of a given externally loaded structure (Greenberg
and Prager 1952; Gvozdev 1960; Drucker 1961; Rondeaux et al. 2017). In
particular, the system of loads {Qu} that induces the collapse of the structure is
obtained by multiplying the limit load factor λu with the intensities of the forces
defining the actual loading {Q} on the structure (Marti 2013, p. 410):

λu{Q} = {Qu} (10.1)

Considering the relation between the value of the actual load factor λ and the
limit load factor λu, the following theorems of limit analysis are established (Mut-
toni et al. 1997; Heyman 2008; Marti 2013):

1In its simplest formulation, the theory of elasticity relies on a perfect linear elastic model
of material behaviour. The solution of a statically indeterminate problem using the theory of
elasticity leads to the identification of one specific configuration of stress distribution. This
requires the simultaneous evaluation of three systems of equations related to static equilibrium,
kinematic compatibility, and constitutive relationships (Marti 2013).
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• Lower bound theorem (static theorem): a load factor λs based on a stat-
ically admissible stress field2, which does not violate anywhere the yield
conditions, is not higher than the limit load factor λu.

• Upper bound theorem (kinematic theorem): a load factor λk based on a
kinematically admissible displacement field3, which transforms the struc-
ture into a mechanism, is not lower than the limit load factor λu.

• Uniqueness theorem: the limit load factor is unique.

The three theorems above can be formulated using the following expression
(Marti 2013, p. 411; Rondeaux et al. 2017):

λk,i ≥ λu ≥ λs,j (10.2)

where λk,i is the load factor related to the i th kinematically admissible collapse
mechanism and λs,j the load factor of the j th statically admissible stress field.

Grounded on the lower bound theorem, static methods of limit analysis can
be defined (Marti 2013; Rondeaux and Zastavni 2018). These methods imply a
successive formation of plasticised sections and a redistribution of the internal
stresses in a given structure under an increment of the load factor λs . When
the full plastic resistance of the structure is reached, the static load factor λs
coincides with the limit one λu. Using static procedures for the evaluation of λu is
in general safe since the determination of only a subset of all possible equilibrium
solutions can only result in an underestimation of the actual load-bearing capacity
of the structure (Rondeaux et al. 2017).

Because of its consistency and direct correlation to graphic statics, the ap-
proach proposed by Muttoni et al. (1997), grounded on the lower bound theorem
of the theory of plasticity, is employed in the present work as a coherent theo-
retical basis for the determination of stress fields within folded plate structures.
In this way, the solution of the static problem can be confined to the sole eval-
uation of the equilibrium of the stress field resultants within the structure and
the fulfilment of the hypotheses of the lower bound theorem.

10.2 Discrete Stress Fields in Folded Plate Structures

The complete strut-and-tie model for folded plate structures (§ 8.3) consists in
a discrete representation of the folded plates entirely made of linear members,
which are arranged along the folded edges (edge members) and within the folded

2A statically admissible stress field requires that the equilibrium and the static boundary
conditions be respected (Muttoni et al. 1997).

3A kinematically admissible displacement field (velocity field) requires that the geometrical
boundary conditions be respected and that the resistances and deformations fulfil the yield
condition and the flow rule (Muttoni et al. 1997).
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plates (plate members). It is assumed that these linear members are connected
to each other at their nodes through pin-joints. Thanks to the overall triangu-
lation of the model and due to the condition that the nodes are placed at the
midpoints and at the endpoints of the folded edges, the proposed strut-and-tie
model is equivalent to its underlying folded plate structure in terms of static
rigidity (§ 8.2). Given the kinematic stability of the structure, the local bending
stiffness of the folded edges can be neglected, and the edges can be treated as
hinges. Placed within the framework of the theory of plasticity (§ 10.1), the
equilibrium solution of the strut-and-tie model of a given folded plate structure
obtained using vector-based 3D graphic statics (Chapter 9) is used to derive
in-plane discrete stress fields on the midplanes of the folded plates.

10.2.1 In-Plane Discrete Stress Field in a Single Plate

For a given plane polygonal element in equilibrium under constant in-plane
stresses applied along its edges, a discrete stress field can be generated within
the element, based on the assumption of rigid-plastic material behaviour. The
stress field consists of a combination of triangular sub-fields, each with a
constant planar bi-axial stress state (Hajdin 1990; Bahr 2017). Each sub-field
is separated from an adjacent sub-field by a discontinuity line, where only
the stresses of the two sub-fields perpendicular to the line must respect the
equilibrium condition (Nielsen 1984, p. 13; Bahr 2017).

Given a folded plate structure in equilibrium and based on the proposed
strut-and-tie model (§ 8.3), each folded plate can be regarded as a sub-system
in equilibrium under in-plane boundary reaction forces applied at the midpoints
of its edges. Each boundary reaction force is equivalent to the opposite of the
resultant of the forces carried by those plate members that meet at the midpoint
of the edge where the reaction force is applied. In case of a uniformly distributed
area load on the plate (§ 8.3), the reaction forces on the boundary of the plate
can be regarded as the resultants of in-plane uniformly distributed line loads
along the edges of the plate.

Simple Triangular Plate Element Considering the form diagram F of a
simple triangular plate element (Fig. 10.1a, left), its boundary reaction forces
(F111,F222,F333) can be found via the force diagram F* (Fig. 10.1a, right), knowing
the internal forces in the plate members. The boundary reaction forces can be
regarded as the resultants of in-plane uniformly distributed line loads (f111, f222, f333)

(Fig. 10.1b, left). For a plate with constant thickness t, constant stresses are
generated along the edges. The global equilibrium (§ 9.2) of the plate requires
that the boundary reaction forces fulfil the conditions (Hajdin 1990, p. 19):

F111 + F222 + F333 = 000 (10.3)

F111 × a222 − F222 × a111 = 000 (10.4)
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Figure 10.1: Constant Stress field in a simple triangular plate. (a) Determination of the
boundary reaction forces (F111,F222,F333) using form F and force F* diagrams. (b) Equivalent in-
plane uniformly distributed line loads (f111, f222, f333) and diffused strut-and-tie model representing
the stress field in the plate; determination of the principal stresses using the Mohr circle M.

Under these boundary conditions, on the midplane of the plate a constant bi-axial
stress field evolves, whose stress tensor T results (Hajdin 1990, p. 19):

T =
[
F̂111a222 − F̂222a111

] 1

a111 × a222
(10.5)

where F̂111 = F111/t and F̂222 = F222/t. Given a Cartesian orthogonal coordinate
system, T can be formulated as:

T =

[
σx τxy

τyx σy

]
=

1

a1xa2y − a1ya2x

[
F̂1xa2x − F̂2xa1x F̂1xa2y − F̂2xa1y
F̂1ya2x − F̂2ya1x F̂1ya2y − F̂2ya1y

]
(10.6)

The corresponding principal stresses can be found graphically after construct-
ing the Mohr circle M based on the known stress states at the boundary of the
plate (Fig. 10.1b, right).
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General Polygonal Plate Element In case of a polygonal plate with an ar-
bitrary number of edges and constant stress state at its boundary, an iterative
approach can be used to generate a discrete stress field within the midplane of
the plate, which is made of triangular sub-fields as the one previously described.
As explained in details by Hajdin (1990, pp. 42–53), the following procedure is
repeated until all the triangular sub-fields are generated:

1. Two, three, or four adjacent edges on the boundary of the plate are se-
lected.

2. Based on the previous selection, respectively two, three, or four triangles
are constructed over the selected edges so that they all share one common
vertex inside the boundary of the plate. Each triangle defines a sub-field
with constant stress state and constant stresses along its boundary. The
respect of the equilibrium conditions at the shared edges of adjacent tri-
angles requires that the position of the vertex meet specific geometric
conditions; it can be freely chosen, it is bounded to a line, or it is con-
strained to a point if the initially chosen edges are respectively two, three,
or four.

3. The stress tensor in each triangular sub-field is calculated.

4. The resulting two edges, which are not shared between adjacent triangles,
are regarded as part of a new boundary.

For example, given the form diagram F of a pentagonal plate (Fig. 10.2a,
left), the corresponding boundary reaction forces (F111,F222,F333,F444,F555) are initially
obtained through the force diagram F* (Fig. 10.2a, right). The three boundary
edges (a111, a222, a333) corresponding to the boundary forces (F111,F222,F333) are selected,
and three triangular fields are generated after choosing the vertex V1 (Fig. 10.2b,
left). This vertex must lie along the line r1, which is found by imposing the
following condition (Hajdin 1990, p. 49):

b111 × [(a222×a333)F111 − (a111×a333)F222 + (a111×a222)F333]− (a111×a222) (F222×a333 − F333×a222) = 000

(10.7)

The magnitudes of the boundary forces (R111,R222,S111,S222) at the edges of the
three triangles can be found using graphic statics. The same procedure is it-
erated a second time, now taking into consideration the three boundary edges
(c111, c222, a444) and the corresponding boundary forces (S111,S222,F444) (Fig. 10.2b, right).
The vertex V2 is chosen along the line r2, which is found based on a condition
analogous to the (10.7). Once all the triangular sub-fields are determined, a
new strut-and-tie network can be generated (Fig. 10.2c, left), which represents
the stress resultants of the discrete stress field within the plate. The field can
be then visualised with a diffused strut-and-tie network (Fig. 10.2c, right). The
principal stresses within each triangular sub-field can be found graphically using
the Mohr circle.
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Figure 10.2: Discrete stress field in a polygonal plate as a combination of triangular sub-
fields with constant bi-axial stress state. (a) Determination of the boundary reaction forces
(F111,F222,F333,F444,F555) using form F and force F* diagrams. (b) Determination of the first three
triangular sub-fields based on the boundary edges (a111, a222, a333); determination of the remaining
four triangular sub-fields in relation to the boundary edges (c111, c222, a444). (c) Form F and force F*

diagrams of the adjusted strut-and-tie network inside the plate. Diffused strut-and-tie model
representing the stress field in the plate and principal stresses in the triangular sub-fields.
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10.2.2 General Procedure for the Determination of Stress Fields
in a Folded Plate Structure

In the definition of the complete strut-and-tie model for folded plate structures
(§ 8.3), the assumption has been made that uniformly distributed area loads on
the surface of the folded plates (Fig. 8.10) can be replaced by an equivalent
system of point loads applied at the midpoints of the folded edges. These loads
are proportional to the tributary areas of the edges and represent the resultants
of uniformly distributed line loads along the edges (Fig. 8.11). Considering
the folded plates as sub-systems in equilibrium, this assumption implies that in-
plane and out-of-plane components of the uniformly distributed area load are
locally transferred to the folded edges respectively by plate and slab actions. As
explained in the following paragraphs, these two loading components define two
local stress states on the folded plate, the first one being an in-plane stress field
on the midplane of the plate and the second one a combined shear and moment
field on the midplane of the plate, or equivalently, two curved stress fields (Bahr
2017).

At the folded edges, the aforementioned point loads are then decomposed
into in-plane components into the adjacent folded plates. In turn, these originate
an in-plane stress field within the plates (§ 10.2.1). In order to obtain a complete
distribution of the stresses within a folded plate, the previously described stress
fields can be coupled to produce an overall combined stress, shear, and moment
field applied on the midplane of the plate (Bahr 2017). Because the behaviour of
a folded plate structure is not necessarily that of a pure plate structure (§ 8.3),
concentrated stresses may also evolve along the folded edges.

The effects of uniformly distributed area loads applied to a folded plate struc-
ture are here analysed in terms of individual stress fields. The analysis is per-
formed using the geometry of the roof of Scuola di Atletica by Musmeci (§ 4.2)
as a reference. Since the roof consists of the repetition of the same basic mod-
ule, the analysis is carried out on only one of these modules, which is itself
composed of two rectangular folded plates (Fig. 10.3.a). Each plate has dimen-
sions of l = 19.40 m by h = 2.60 m and constant thickness t = 100 mm. In this
example, the folded plate roof is supposedly made of an ideal isotropic material
with density ρ = 2500 kg/m3 and with compressive and tensile yield strengths
of fyc = −20 MPa and fyt = 20 MPa respectively. Considering that each plate is
statically rigid in its own plane, the structure is kinematically stable for the given
support conditions.

Local Transfer of Loading to the Folded Edges Contrary to the general
approach described in § 8.3, due to the specific rectangular geometries of the
folded plates and their overall elongated shapes, the plates are subdivided along
their long edges into nine rectangular panels (Fig. 10.3.a). After the subdivision,
the applied uniformly distributed loading, which in this example is equivalent to
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Figure 10.3: (a) Folded plate structure based on the roof of Scuola di Atletica by Musmeci
(§ 4.2): geometry of the structure and system of point loads as resultants of uniformly dis-
tributed area loads. (b) Global repartition of the point loads to the folded edges: form diagram
F of a section through a panel and related force diagram F*. (c) Local slab and plate actions on
a panel of the folded plate regarded as a sub-system in equilibrium: form diagram F representing
the stress resultants of two curved stress fields produced by the out-of-plane component of the
load; force diagram F* of the portion of the curved stress field in compression.
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three-times the self-weight of the structure, is replaced by a system of discrete
point loads Fi = 30 kN, which are applied to the centres of mass of the panels.
In the first phase of the analysis, the effects of the local transfer of the loading
to the folded edges are taken into consideration.

On a global level, regarding a module of the roof as a sub-system in equi-
librium and taking into account a vertical section through a panel of the folded
plate structure (Fig. 10.3.b, F), the point load Fi = 30 kN applied on one panel
generates two reaction forces RSi = 15 kN at the folded edges. Here, the re-
action forces of two panels belonging to adjacent plates are combined together
into one resultant force Fi = 30 kN, which is subsequently decomposed into two
in-plane components FP i = 26.14 kN into the adjacent plates (Fig. 10.3.b, F*).

On a local level (Fig. 10.3.c, F), after isolating a folded plate as a sub-system
in equilibrium, the point load Fi = 30 kN applied at the centre of mass of a panel
is first decomposed into in-plane and out-of-plane components. As previously
described, the in-plane component produces an in-plane stress field on the mid-
plane of the folded plate. The stress resultant of this field generates reaction
forces at the folded edges that are parallel to the plate (Fig. 10.3.c, F). The
out-of-plane component can be regarded as the resultant of a distributed loading
that is perpendicular to the plane of the plate (Fig. 10.3.c, F). As highlighted
earlier, this loading gives rise to two curved stress fields (Bahr 2017), one in
compression and one in tension respectively at the top and the bottom of the
plate. In this specific example, the stress resultants of the curved stress fields
can be represented as a two-dimensional funicular strut-and-tie network on the
section of the panel, whose internal forces can be assessed using graphic statics
(Fig. 10.3.c, F*)4. Based on these forces, the stress resultants of the combined
stress, shear, and moment field on the midplane of the plate can be eventually
found (Bahr 2017) as a combination of the local in-plane and the curved stress
fields.

Discrete In-Plane Stress Field in a Folded Plate In the second phase of the
analysis, considering a folded plate as a sub-system in equilibrium (Fig. 10.4) the
effects produced by the previously described in-plane components FP i = 26.14 kN

applied at the top and bottom boundary edges of each panel are investigated.
These forces have to be regarded as the resultants of uniformly distributed line
loads fP = 12.1 kN/m applied at the top and bottom boundary edges of the
folded plate.

In the first step, a complete strut-and-tie network (§ 8.3) is generated to
represent the stress resultants of the internal forces in the folded plate. Edge
members are introduced along the top and bottom folded edges and plate mem-
bers on the midplane of the folded plate. The nodes of the strut-and-tie network

4In case of panels with more complex geometries, a spatial strut-and-tie network has to be
generated in order to define the curved stress fields on the plate (Bahr 2017).
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Figure 10.4: Definition of discrete in-plane stress fields in a folded plate made of an ideal
isotropic material, based on the roof of Scuola di Atletica by Musmeci (§ 4.2): first iteration.
(a) Complete strut-and-tie network as a form diagram F. (b) Related force diagram F*. (c)
Analysis of a panel of the folded plate regarded as a sub-system in equilibrium to derive a discrete
in-plane stress field: form diagram F, force diagram F* and Mohr circle M. (d) Diffused strut-
and-tie network representing the stress field in the plate.
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are placed at the midpoint of the boundary edges of the panels, where the point
loads are applied (Fig. 10.4.a).

In the second step, regarding the strut-and-tie network as a form diagram
F, the equilibrium of its external and internal forces is assessed after generating
the related force diagram F* (Fig. 10.4.b). An initial assumption is here made
that the edge members coincident with the top and bottom boundary edges of
the panels behave like stringers with zero width and infinite resistance capacity.
It is thus supposed that the concentration of stresses along the folded edges
can be directly resolved at the boundary of the plate, without the necessity of
mobilising part of the resistance capacity of the plate. As a result, the lever arm
hl between the top struts and the bottom ties is regarded as equal to the full
height of the plate (i.e. hl = h = 2600 mm). This assumption obviously leads
to an overestimation of the resistance capacity of the folded plate structure.
As explained later, further adjustments to the strut-and-tie network have to be
taken into consideration.

In the third step, regarding each panel as a sub-system in equilibrium
(Fig. 10.4.c, F), its boundary reaction forces are determined with the aid of a
force diagram (Fig. 10.4.c, F*), based on the known internal forces within the
plate members (§ 10.2.1). Since the thickness of the folded plate is constant,
these boundary reaction forces imply the presence of constant in-plane stresses
along the boundary of the panel. Given these reaction forces, a discrete in-plane
stress field in the plane of the panel can be derived as a combination of triangular
sub-fields, each with a constant planar bi-axial stress state (§ 10.2.1). The
Mohr circle (Fig. 10.4.c, M) can be used to determine the principal stresses
associated with each triangular sub-field. After repeating the same procedure
for all the panels of the folded plate, a first instance of the stress field on the
midplane of the folded plate can be eventually visualised in the form of a diffused
strut-and-tie network (Fig. 10.4.d). Note that this in-plane stress field has to
be combined with the local in-plane and curved stress fields defined in the first
phase of the analysis to obtain a complete stress distribution on the plate.

To take into account the effects of the accumulation of stresses along the
top and bottom folded edges, an iterative analysis process is necessary (Muttoni
et al. 1997). More specifically, at each iteration, a strut-and-tie network is
developed, and its internal forces are assessed. Based on the yield strength of
the material fyc (respectively fyt) and plate thickness t, the widths wi j of the
struts and ties at the folded edges are calculated as wi j = Fi j/(fyct), respectively
wi j = Fi j/(fytt), with Fi j being the internal forces in the struts and ties. The
assumption is made that a uniaxial stress field with constant stress intensity
fyc , respectively fyt, is generated along the folded edges. The geometry of the
strut-and-tie network is then adjusted to accommodate for the required widths
wi j . The procedure is iterated until the resistance capacity of the folded plate is
entirely exploited, thus allowing to maximise the lever arm hl between the top
struts and the bottom ties. Using the configuration depicted in Fig. 10.4 as a
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starting point, the outcome of the analysis after four iterations (Fig. 10.5) shows
a final lever arm of hl = 2153 mm at the middle axis of the folded plate.

10.2.3 Influence of Material and Geometry on the Stress Field

The procedure described above for the definition of in-plane discrete stress fields
in folded plates is now applied to other case studies in order to highlight, on the
one hand, the effects of the material properties and the adopted construction
technology, and on the other hand, the influence of the geometry of the plates.

Application to Reinforced Concrete Folded Plates In the previous example
based on the roof of Scuola di Atletica by Musmeci, the assumption was made
that the folded plate was constituted of an ideal isotropic material with compres-
sive and tensile yield strengths of fyc = −20 MPa and fyt = 20 MPa respectively.
Following the approach described by Muttoni et al. (1997), the analysis is here
repeated on the same case study (i.e. same loading and support conditions),
now considering that the folded plate is in reinforced concrete. In this regard,
the density of the composite material is assumed to be ρ = 2500 kg/m3, the
effective concrete strength is set to fce = −20 MPa, while the plastic limit of
the reinforcing bars is set to fsy = 460 MPa. The load-bearing behaviour of the
folded plate is assimilated to the one of a deep beam with uniformly distributed
line loading. The reinforcement is constituted by longitudinal bars along the
bottom edge of the folded plate and vertical stirrups distributed along the plate.

An initial strut-and-tie network is defined to represent the distribution of the
internal forces within the plate. In this case, the struts along the top boundary
edge of the plate represent the longitudinal concrete zone under compression,
while the ties along the bottom boundary edge represent the reinforcing steel bars
under tension. The transfer of forces between the struts and ties at the top and
bottom of the plate is attained through a load-bearing mechanism that involves
inclined compression concrete struts and vertical stirrup reinforcement. Due to
the high slenderness ratio of the plate, a solution with multiple suspensions,
equivalent to the combination of five structural systems (Muttoni et al. 1997)
is adopted. In analogy to the previous example, the analysis process is iterated
four times, and the result is illustrated in Fig. 10.6. The comparison between the
in-plane stress fields of three modules (i.e. six folded plates) of the roof for the
above and current examples (Fig. 10.7) allows identifying the influence of the
material properties and the adopted construction technology on the definition of
the stress fields.

Application to Folded Plates with General Geometries The application of
the procedure explained above is here further exemplified on two folded plate
structures with generic plate geometries. In particular, the first example is related
to the roof of Cinema San Pietro by Musmeci (§ 4.2); the analysis is applied to
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Figure 10.5: Definition of discrete in-plane stress fields in a folded plate made of an ideal
isotropic material, based on the roof of Scuola di Atletica by Musmeci (§ 4.2): fourth iteration.
(a) Complete strut-and-tie network as a form diagram F. (b) Distribution of the forces along
the longitudinal reinforcement. (c) Force diagram F* of the strut-and-tie network. (d) Diffused
strut-and-tie network representing the stress field in the plate.
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Figure 10.6: Definition of discrete in-plane stress fields in a folded plate made of reinforced
concrete, based on the roof of Scuola di Atletica by Musmeci (§ 4.2): fourth iteration. (a)
Complete strut-and-tie network as a form diagram F. (b) Forces along the longitudinal rein-
forcement. (c) Forces in the stirrup reinforcement. (d) Force diagram F* of the strut-and-tie
network. (e) Diffused strut-and-tie network representing the stress field in the plate.
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Figure 10.7: Axonometric view of the in-plane stress fields as diffused strut-and-tie networks
in the folded plate structure of the roof of Scuola di Atletica by Musmeci (§ 4.2). (a) Ideal
isotropic material. (b) Reinforced concrete.

one of the modules of the roof, which is itself composed of ten triangular folded
plates (Fig. 10.8). The second example is related to the roof of Teatro Regio
by Musmeci (§ 4.2); in this case, the analysed module consists of eleven folded
plates with various polygonal shapes (Fig. 10.10.a). In both examples, a constant
thickness t = 100 mm for the folded plates is assumed. Moreover, the plates are
regarded as made of an ideal isotropic material with density ρ = 2500 kg/m3 and
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with compressive and tensile yield strengths of fyc = −20 MPa and fyt = 20 MPa

respectively. The structures are kinematically stable in relation to the specified
support conditions, and they are loaded under self-weight. Moreover, in these
examples, the assumption is made that the struts and ties along the folded edges
behave like stringers with infinite resistance capacity.

In both examples, the generation of the complete strut-and-tie networks re-
lies on the general procedure described in § 8.3 (Fig. 10.9.a and Fig. 10.10.b).
As such, the folded plates are entirely triangulated with nodes only at the mid-
points and endpoints of the folded edges, where the point loads that replace
the uniformly distributed area loads due to the self-weight are applied. It is
then assumed that these point loads represent the resultants of uniformly dis-
tributed line loads along the folded edges (§ 8.3). In order to define in-plane
discrete stress fields in the folded plates, the initial strut-and-tie networks are
adjusted on a plate basis (Fig. 10.9.b and Fig. 10.10.c), following the procedure
described in § 10.2.1. Grounded on the specific strut-and-tie network defined
for each plate, multiple possible equilibrium solutions can be developed. First
instances of the stress fields on the midplanes of the folded plates are shown as
diffused strut-and-tie networks (Fig. 10.9.c and Fig. 10.11).

As mentioned before, because of the initial assumptions, these results gen-
erally represent an overestimation of the resistance capacity of the structures.
Hence, they should be considered only as a qualitative representation of the dis-
crete in-plane stress fields in the folded plates. Results that are more accurate
can be obtained with an iterative analysis process. It should also be noted that
the definition of the stress fields at the nodes of the strut-and-tie model with
concurrently loaded edge members (i.e. at the endpoints of the folded edges)
requires the development of specific nodal solutions (Bahr 2017). Finally, as
previously highlighted, these in-plane stress fields have to be combined with the
local in-plane and curved stress fields to obtain a complete stress distribution on
the folded plates.

Figure 10.8: Folded plate structure whose geometry is based on the roof of Cinema San Pietro
by Musmeci (§ 4.2).
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Figure 10.9: Definition of discrete in-plane stress fields in a folded plate module made of an ideal
isotropic material, based on the roof of Cinema San Pietro by Musmeci (§ 4.2): first iteration.
(a) Complete strut-and-tie network as a form diagram F. (b) Analysis of two plates regarded as
sub-systems in equilibrium: form F and force diagrams F*. (c) Diffused strut-and-tie network
of the stress field in the folded plate module.
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Figure 10.10: (a) Folded plate structure whose geometry is based on the roof of Teatro Regio
by Musmeci (§ 4.2). (b) Complete strut-and-tie network of a folded plate module as a form
diagram F. (c) Analysis of a polygonal folded plate regarded as a sub-system in equilibrium to
derive a discrete in-plane stress field on the midplane of the plate as a combination of triangular
sub-fields: form diagram F, force diagram F*.
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Figure 10.11: Visualization of the in-plane stress field as a diffused strut-and-tie network in a
folded plate module from the project Teatro Regio by Musmeci (§ 4.2).
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11. General Framework

The design method for structural folding in architecture here presented relies
on the previously defined structural model for folded plate structures (§ 8.3).
The method is implemented within a software-based computational toolkit that
makes use of the resources offered by contemporary digital tools for architectural
and structural design. Hence, contrary to other design practices that are directly
based on physical folding, in the proposed approach folding is regarded as a virtual
design operation (D’Acunto and Castellón 2015), as in the works of Buri and
Meyer (Chapter 6). Even though the method can be easily used to produce folded
surface structures (Chapter 2), such as the previously analysed roofs designed by
Musmeci (§ 4.2, § 8.3, Chapter 9, Chapter 10), its main scope is the generation
of folded volumetric structures (Chapter 2), which enclose architectural spaces,
as in the case of the buildings designed by Sancho and Madridejos (§ 5.2).

The developed approach aims to offer the designer, either architect or engi-
neer, the possibility to make use of the structural and spatial potentials of folding
simultaneously. In fact, it is intended to support the designer throughout the
design process, starting from the initial phase. As such, this approach put a spe-
cific focus on the relationship between architecture and engineering, considering
folding as a mediator between load-bearing capacity and design intention.

The developed method addresses various aspects of the design of folded
plate structures in architecture, starting from the initial topological organisation
of the structure and the architectural space generated by the folded plates, to
the subsequent definition of their geometry. The method is grounded on a three-
dimensional design process (D’Acunto and Castellón 2015), in which the plate
geometry is virtually folded within a previously designed statically rigid reference
grid as a spatial lattice structure (§ 8.2.1). As a result, a folded plate structure is
generated that is also the building envelope of an architectural space. Without
compromising its intrinsic structural properties in terms of static rigidity and
its inner spatial organisation, the geometry of the folded plate structure can
be transformed. Furthermore, by relying on the previously illustrated strut-and-
tie model (§ 8.3), the internal forces within the folded plate structure can be
controlled and adjusted (Chapter 9, Chapter 10).

Because of the use of geometric operations only, the proposed approach
is generally material and scale-independent. As explained in the next sections,
restraints concerning specific material properties, fabrication or scale-related de-
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Figure 11.1: Overview of the proposed design method for structural folding in architecture,
concerning both levels of topology and Euclidean geometry and dealing with matters related to
both space and structure.

pendencies can be adequately taken into consideration within the design process
in the form of geometric constraints (D’Acunto and Castellón 2015). The de-
veloped design method relies on two general procedures: a topological one and a
metric one. Each of them includes two main operations that allow the designer
to deal with matters related to both space and structure (Fig. 11.1).

Level of Topology: Structure and Space The topological and projective ge-
ometric procedure comprises the two operations T1–grid generation and T2–
virtual folding. It is through these two operations that the static rigidity of the
folded plate structure is attained and the general organisation of its enclosed
architectural space is controlled.

In particular, the first operation (T1–grid generation) supports the designer in
defining the topology of a statically rigid grid as a lattice structure that is made
out of individual tetrahedra or more general triangulated polyhedra (§ 8.2.1).
This grid is subsequently used as a reference for the generation of the folded plate
structure (§ 8.3). Hence, this first operation mainly pertains to the structural
aspects of the design.

The second operation (T2–virtual folding) gives the designer the opportunity
to define the topology and outline the geometry of the folded plate structure
and of its enclosed architectural space. As such, this second operation is com-



142 11 General Framework

plementary to the first one as it also addresses questions related to architecture.
Moreover, the reference grid and the folded plate structure are topologically
interdependent. Different topologies of the folded plate structures can be gen-
erated based on the same initial reference grid.

Level of Euclidean Geometry: Space and Structure The metric procedure
includes the two operations M1-form manipulation and M2–force manipulation.
Given a kinematically stable folded plate structure with its enclosed architectural
space as generated using the first procedure, the second procedure allows the
designer to adjust both its form and the distribution of its inner forces.

In particular, the third operation (M1–form manipulation) can be used to
modify the geometry of the structure and thus of its enclosed architectural space.
Therefore, this operation gives the designer control on the proportions and di-
mensions of the architectural space in order to meet specific design requirements.

The fourth operation (M2–force manipulation), which is complementary to
the third one, permits the load-bearing behaviour of the structure to be steered
towards a desired one. Based on the proposed strut-and-tie model for folded plate
structure (§ 8.2), this operation makes use of vector-based 3D graphic statics
(Chapter 9) to construct the force diagram of the structure and to enable its
direct transformation based on specific structural requirements. Stress fields in
the folded plates can be then derived (Chapter 10). Modifications to the metric
properties of the force diagram affect in turn the geometry of the structure,
making the M1 and M2 interdependent.

It is important to point out that it is not necessary to apply the four op-
erations following a predefined sequential order. That is, after a first complete
execution of the process (T1–T2–M1–M2), any of these operations can be
implemented in a non-sequential way. This can be attained without losing the
consistency of the folded plate structure being designed (D’Acunto and Castellón
2015).

For example, the topology of the reference grid or the one of the folded
plate structure can be modified again with the operations T1 or T2 after its
geometry has been already transformed by means of the operation M1 or M2,
without the necessity to reinitialise the entire design process. In the same way,
the form of the structure can be adjusted again using the operation M1 after its
force diagram has been transformed using the operation M2. Furthermore, the
same operation can be re-executed multiple times throughout the process in a
linear or hierarchical way, based on the specific design necessities (D’Acunto and
Castellón 2015).

This non-sequential character is a peculiarity of the proposed design method,
which distinguishes it from other procedures for architectural and structural de-
sign, such as those based on form-finding. Contrary to form-finding, the output
of the developed design approach is not clearly determined for a given set of
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inputs, but it is instead a negotiation between both structural and architectural
requirements, which are directly managed by the designer. In this way, the
method enables architects and engineers to engage with the different aspects re-
lated to the design of folded plate structures. Moreover, it empowers them with
a synthetic approach to explore the relationship between structure and space
(Fig. 11.2).

Software Implementation The implementation of the design method into a
parametric digital toolkit has facilitated the applicability of the proposed ap-
proach to the solution of actual design tasks (Kotnik and D’Acunto 2013). This
software implementation allows the designer to operate with the previously intro-
duced topological and metric procedures in a completely interactive way. Thanks
to the robustness of the toolkit, each operation and its related sub-operations
can be applied at will, while keeping the geometry of the folded plate structure
consistent. In fact, through the toolkit, the designer is given the opportunity to
switch in real time from one operation to another, while having constant feed-
back on the consequences of this operation on the geometry of the folded plate
structure and the repartition of its internal forces (Kotnik and D’Acunto 2013).

Because of the parametric nature of the toolkit, the folded geometry is gen-
erated as a variable object, like an objectile (§ 5.1), which is constructed through
a set of geometric relationships and which is potentially able to express multiple
forms at the same time. In this way, the designer can explore at once diverse
design solutions and easily adapt them to different design scenarios (D’Acunto
and Castellón 2015).

Since all the previously introduced operations are geometry-based, it has
been possible to develop the toolkit as a software package within a single 3D
modelling environment. For its flexibility and intuitive graphical interface, the
commercial CAD software McNeel Rhinoceros 3D1 and the parametric plug-in
Grasshopper 2 have been chosen for the development. Besides, the implemen-
tation of the design operations is based on a set of customised computational
definitions developed using the programming languages IronPython3 and C#4.
For the solution of non-linear problems such as constraint-based transformations,
the Kangaroo2 library by Piker (2017) has been implemented.

1McNeel Rhinoceros: http://www.rhino3d.com/ (Accessed 05.06.2018).
2McNeel Grasshopper: http://www.grasshopper3d.com/ (Accessed 05.06.2018).
3.NET Foundation IronPython: https://ironpython.net/ (Accessed 05.06.2018).
4Microsoft .NET C# language: https://docs.microsoft.com/en-us/dotnet/csharp

(Accessed 05.06.2018).

http://www.rhino3d.com/
http://www.grasshopper3d.com/
https://ironpython.net/
https://docs.microsoft.com/en-us/dotnet/csharp
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Figure 11.2: Overview of the proposed design method for structural folding in architecture,
based on four main non-hierarchical operations: T1–grid generation, T2–virtual folding, M1–
form manipulation, and M2–force manipulation.
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12. Level of Topology

12.1 Generation of the Reference Grid

Operation T1–grid generation allows the designer to generate a reference grid
constituted by a cluster of space-filling non-regular tetrahedra. This reference
grid can be regarded as a virtual spatial lattice structure, not supported to the
ground, made of edges connected to each other at common vertices by means of
pin-joints (§ 8.1). The edges of the grid are the edges of the tetrahedra, which
in turn coincide with the edges of the folded plate structure that is generated in
the subsequent operation T2–virtual folding.

From a topological point of view, the grid works as a structural and spatial
reference for the overall design process. That is, the topology of the grid controls
the static rigidity (§ 8.2) of the folded plate structure and the organisation of its
enclosed architectural space as created using the operation T2–virtual folding
(D’Acunto and Castellón 2015). Hence, through operation T1 the topology of
the folded plate structure is set by specifically defining the amount of the tetrahe-
dra within the grid and their mutual connectivity. The grid is assembled following
a bottom-up strategy in which individual tetrahedra are used as elementary rigid
bodies that are clustered into a larger overall rigid lattice structure. In order to
perform structurally as rigid bodies, these tetrahedra must be non-degenerate1.

This bottom-up strategy for the creation of kinematically stable structures
is a specific application of the procedure for the generation of simple rigid struc-
tures made of successive linkages (§ 8.2). Similar procedures for the sequential
construction of kinematically stable spatial structures can be found in the litera-
ture. Among others, the Stringer System (Almegaard 2003) for the definition of
triangulated spatial networks, the Tetraedermethode (Schrems 2016) for the as-
sembly of tetrahedral trusses and the approach suggested within the Load Path
Network Method (Enrique and Schwartz 2017) for the construction of spatial
strut-and-tie networks.

1A tetrahedron is non-degenerate if its four vertices are not all incident to the same plane.
In fact, in this specific projective geometric configuration, the tetrahedron is not a rigid body,
as it is not infinitesimally rigid. The edges of the tetrahedron are linearly dependent on each
other, and they have a lower rank (§ 8.2) than the one that would be expected from solely
topological considerations (Crapo 1979, p. 28).
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Construction of the Grid The first step in the generation of the reference
grid consists in the creation of a non-degenerate tetrahedron B0 (Fig. 12.1.a),
working as a spatial lattice structure, with vertices Vi , edges Ei−j and faces fi−j−k .
This constitutes the initial seed of the grid. Starting from the seed, the grid can
be then extended through the sub-operation T1-A, by adding a new tetrahedron
at a time, thus resulting in a cluster of tetrahedra (Fig. 12.1.b). Tetrahedra can
be removed through the sub-operation T1-R. An underlying tetrahedral volume
mesh is used to represent the grid, whose individual elements are tetrahedral
mesh cells that can be visualised in the projective space in a form diagram FG

2.
In principle, any rigid linkage could be used to connect a new tetrahedron to

an existing one (§ 8.2). Since the continuity between faces of any two connected
tetrahedra is necessary for the operation T2, the ordinary way to connect two
tetrahedra of the grid is by sharing a contact face; in turn, this implies that the
two tetrahedra share three contact edges and three contact vertices3. In fact,
with regard to static rigidity, connecting two completely disconnected tetrahedra
by means of a shared face is analogous to linking two tetrahedra through six
linearly independent edges. Likewise, the same configuration can be achieved by
linking a point to the three vertices of an existing tetrahedron using three new
edges (§ 8.2). In this case, the point and the three edges constitute one of the
vertices and three of the edges of a second tetrahedron that shares its three
other vertices and its three other edges with the existing tetrahedron in the grid.

Static Rigidity As mentioned above, the reference grid performs structurally
as a spatial lattice structure not supported to the ground. Based on the extended
Maxwell’s rule (8.12) the number sG of independent states of self-stress of the
grid can be found as follows:

sG = EG − 3VG +mG + 6 (12.1)

with EG the number of grid edges, VG the number of grid vertices, mG the number
of internal mechanisms and 6 the number of rigid body motions of space. Being
rigidly assembled, mG = 0 and the grid is either statically determinate (sG = 0)
or statically indeterminate (sG > 0). In the latter case, sG corresponds to the
number of edges of the grid other than the minimum necessary ones to attain
the static determinacy of the structure, i.e. the degree of static indeterminacy
of the structure n as expressed in (8.11).

2It should be noted that all the metric properties of the diagram FG are irrelevant and only
the topological and projective properties of incidence among geometric elements have to be
taken into consideration.

3To prevent the eventuality of self-intersection among the individual tetrahedral mesh cells
of the reference grid, no more than two tetrahedra are allowed to share the same face. More-
over, considering the face normals of each underlying tetrahedral mesh cell outward-pointing,
the two face normals, corresponding to a face shared between two tetrahedra, are always op-
posite to each other.
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Figure 12.1: Operation T1–grid generation: graph G, showing the connectivity of the individual
rigid bodies, and form diagram FG, depicting the reference grid. (a) Initial seed as a tetrahe-
dron B0 with vertices Vi , edges Ei−j and faces fi−j−k . (b) Creation of a loop of rigid bodies
(B0, B1, B2, B3, B5, B4) in FG, resulting in a cycle (c1) in G. (c) Sequential assembly of the
reference grid as a combination of rigid bodies.
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The grid is statically determinate as long as its constituting tetrahedra are
connected to each other to form linear chains of rigid bodies. In this case,
as previously described, adding a new tetrahedron implies the addition of one
new vertex and three new edges to the grid, so that sG in the (12.1) does not
change. The grid becomes statically indeterminate to one or more degrees when
the connected tetrahedra generate loops of rigid bodies (Fig. 12.1.b). In the
simplest case, a loop is achieved after adding to the grid a new tetrahedron that
shares two of its faces with two existing tetrahedra, thus adding a new edge
to the grid and one degree of static indeterminacy. In the occurrence that the
additional tetrahedron shares three faces with three existing tetrahedra of the
grid, sG stays invariant. Moreover, in the special case of a loop of tetrahedra
forming a toroidal polyhedron, at least three new tetrahedra are necessary to
close the initially disconnected chain, and six new degrees of static indeterminacy
are added to the grid. While building the grid, it is possible to keep track of its
degree of static indeterminacy by counting how many new vertices and edges
are added in relation to the (12.1).

A graph G can be laid out to depict synthetically the connectivity of the
individual rigid bodies (Fig. 12.1, left)4. In G each rigid body Bh is represented
as a vertex and each face fi−j−k shared by any two rigid bodies is represented as
an edge. As such, loops of rigid bodies in the grid define elementary cycles in G.

Subdivision and Combination Adding (T1-A) and removing (T1-R) tetra-
hedra are the basic sub-operations for the generation of the reference grid
(Fig. 12.1.c). Two supplementary sub-operations can be used to transform the
topology of the grid, namely subdivision (T1-S) and combination (T1-C).

On the one hand, through subdivision (T1-S), an existing tetrahedron can
be replaced by a cluster of two or more tetrahedra that are enclosed within the
existing one. For example, by introducing a new vertex inside a given tetrahedron,
the tetrahedron can be subdivided into four new tetrahedra, each of them sharing
the newly introduced vertex and having as a face one of the faces of the given
tetrahedron (Fig. 12.2.a). After this sub-operation is applied, a new degree of
static indeterminacy is added to the grid since the four new tetrahedra generate
themselves a closed chain of rigid bodies (Fig. 12.2.b). Likewise, by inserting a
new vertex along one of the edges of a given tetrahedron, the tetrahedron can
be subdivided into two new tetrahedra. In case the edge where the new vertex is
inserted is shared with other tetrahedra, these have to be subdivided accordingly
in order to keep face-to-face connectivity between all the tetrahedra. The sub-
operation (T1-S) can be repeated hierarchically, and each of the tetrahedra
resulting from the subdivision of an initially given tetrahedron can be further
subdivided to obtain a refined grid.

4A related approach based on the use of graph theory for the construction of statically
determinate strut-and-tie networks in space is found in (Enrique and Schwartz 2017).
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On the other hand, through combination (T1-C), a cluster of tetrahedra can
be joined (Fig. 12.2.a) to produce a convex triangulated polyhedron (Fig. 12.2.b).
According to Alexandrov’s theorem (Alexandrov 1958), a convex triangulated
polyhedron, with no vertex having its connected edges coplanar, performs itself
as a rigid body (§ 8.2) and therefore it is rendered in the graph G as an individual
vertex (Fig. 12.2.b). A degree of static indeterminacy is removed from the grid
for any simple closed chain of tetrahedra that is combined into a triangulated
polyhedron.

Topological and Projective Constraints Specific constraints can be imposed
on the reference grid according to the given design requirements. These are
then retained throughout the entire design process and are applied on top of any
other constraint introduced within the subsequent design operations. From a
topological standpoint, rules can be applied on the number of tetrahedra within
the grid, the number of connections per tetrahedron and the number of closed
chains of tetrahedra (i.e. the degree of static indeterminacy of the structure).

From the point of view of projective geometry, constraints of incidence can
be established among different elements of the grid and applied sequentially
while the reference grid is being constructed. These constraints are applicable
as long as the tetrahedra or triangulated polyhedra constituting the grid do not
degenerate into a critical form (Baracs 1975), thus creating an internal finite or
infinitesimal mechanism (§ 8.2). Provided that the tetrahedra are not connected
to each other to generate loops, the linearity of the constraints of incidence is
attained.

For example, it is possible to enforce the incidence of two adjacent faces
fs−j−k and ft−k−j with the same plane πs−j−t−k or the incidence of two connected
edges Es−j and Ej−t with a common line ls−j−t. Based on the axioms of incidence
of projective geometry (Coxeter 1987) and given the relationship between faces
fi−j−k , edges Ei−j and vertices Vi of the grid, these rules of incidence can be
formulated as constraints applied directly to the Vi . If no constraints are applied,
a vertex Vi has three degrees of freedom (DOFs) with regard to its position
in space. Enforcing a vertex to be incident with one plane (respectively two
or three), reduces its DOFs to only two (respectively one or zero). No more
than three incident planes can be assigned to the same vertex to avoid the
system being over-constrained. The dependencies between the vertices Vi can
be illustrated and controlled using a directed graph as suggested by Fivet and
Zastavni (2015).
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Figure 12.2: Operation T1–grid generation: graph G, showing the connectivity of the individual
rigid bodies, and form diagram FG, depicting the reference grid. (a) (b) Subdivision (T1-S) of
a tetrahedron (B19) into four tetrahedra (B22, B23, B24, B25); combination (T1-C) of a cluster
of tetrahedra (B0 − B11) into a triangulated polyhedron (B26).
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Figure 12.3: Operation T1–grid generation: graph G, showing the connectivity of the individual
rigid bodies, and form diagram FG, depicting the reference grid. (a) (b) Combination (T1-C)
of a cluster of tetrahedra (B14 − B25) into a triangulated polyhedron (B27).
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12.2 Creation of the Folded Plate Structure

Operation T2–virtual folding allows the designer to delineate the geometry of
the folded plate structure, which is virtually folded within the spatial reference
grid generated via operation T1–grid generation (Fig. 12.1). That is, through
the sub-operation T2-A a subset of mesh faces from the polyhedral volume
mesh representing the reference grid are actualised into a continuous triangulated
mesh, which outlines the geometry of the folded plate structure. Using the form
diagram FG as a base (Fig. 12.3.b), the triangulated mesh can be visualised with
the aid of a form diagram FP (Fig. 12.4.a).

Architectural Considerations While creating the geometry of the folded plate
structure through operation T2, an enclosed architectural space is also produced.
In this way, the developed design approach overturns the traditional tectonic
separation among the walls, the floor, and the ceiling of a building (D’Acunto
and Castellón 2015). In compliance with the proposal of Sancho and Madridejos
(§ 5.2), the folded plate geometry generates a continuous and differentiated
architectural space. In fact, it is through operation T2 that the main topological
features of the architectural space can be outlined and controlled. These aspects
include the general organisation of the interior space in terms of the number
of floors of the building, the distribution of the rooms according to a given
architectural programme, as well as the main internal circulation. Moreover,
while creating the folded plate structure also the topological relationship between
interior space and external context can be addressed by defining the amount and
the location of the openings to the outside (D’Acunto and Castellón 2015).

Structural Behaviour The folded plate structure relies on the combination
of lattice and plate actions (§ 8.2.3) and the folded edges work at the same
time as axially loaded bars and hinge lines (§ 8.3). Different possible folded
plate structures can be actualised based on the same initial reference grid. The
topology of the folded plate structure can be outlined using a graph P, in which
each folded plate fi−j−k is represented by a vertex and each folded edge Ei−j shared
by adjacent folded plates is shown as an edge (Fig. 12.4, left). Based on the
extended Maxwell’s rule (8.12), a relationship analogous to the (12.1) can be
defined for the number mP of internal mechanisms in the folded plate structure
regarded as system supported on the ground:

mP = −EP + 3VP + sP − kP (12.2)

with EP the number of folded edges, VP the number of folded plate vertices,
sP the number of self-stresses and kP the number of kinematic restraints at the
supports (6 minimum to prevent any rigid body motion of space).

For a given statically determinate grid (sG = 0 and mG = 0) as defined
through operation T1 (Fig. 12.3.b), its full set of grid edges EG (and as such
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grid vertices VG) have to be actualized into folded edges EP (respectively folded
plate vertices VP ) in order to achieve the static determinacy of the folded plate
structure (sP = 0 and mP = 0), provided kP = 6 (Fig. 12.5.a). That is, if one
or more grid edges are not converted into folded edges (EP < EG), one or more
internal rotational mechanisms can be found within the folded plate structure
(mP > 0). In this occurrence, the static rigidity of the folded plate structure can
be achieved by introducing supplementary kinematic restraints at the supports
(kP > 6). Alternatively, the rotational degrees of freedom due to the internal
mechanisms can be eliminated by regarding one or more appropriate folded edges
as rotationally rigid connections rather than hinges. From the point of view of
the sole static rigidity, the effect of these rigid connections can be taken into
account in the (12.2) by supposing the missing edges in the structure as actually
present, until EP = EG. In case one or more faces of the reference grid are
constrained to be incident with the same plane (§ 12.1), a single folded plate
can be built on these faces as a triangulated mesh polygon. Note that both the
exterior and the interior edges of the triangulated mesh polygon have to be taken
into account when evaluating EP .

Continuity of the Folded Plate Geometry In order to guarantee the geo-
metric continuity of the generated folded plate structure, a series of topological
rules have to be respected in the definition of the underlying triangulated mesh
in FP throughout the application of the sub-operation T2-A. In particular, any
two triangular mesh faces or triangulated mesh polygons are not allowed to share
a single vertex but at least two, which should belong to the same mesh edge.
Besides, more than two mesh faces or mesh polygons can share the same mesh
edge. In this case, the edge is defined as non-manifold, and it is shown in P
as many times as the number of mesh faces or mesh polygons connected to it.
Holes are allowed within the mesh and can be produced by removing selected
mesh faces of mesh polygons via the sub-operation T2-R. This implies the gen-
eration of naked edges (i.e. edges belonging to only one mesh face) along the
boundaries of the holes as free edges. After the removal of mesh faces or mesh
polygons, the static rigidity of the modified folded plate structure has to be re-
evaluated, and additional kinematic restraints or rotationally rigid connections
have to be introduced when required.

Unfolding of the Folded Geometry Following the approach suggested by Ne-
jur and Steinfeld (2017), the graph P can be used to identify a valid sequence
of folded plates (i.e. triangular mesh faces or a triangulated mesh polygons) to
be rotated in order to unfold the entire folded plate structure onto one plane
FU (Fig. 12.5.b). Through the sub-operation T2-U, a folded plate that lies on
the target unfolding plane is first chosen. Selected edges of P are then cut until
all cycles in the graph are removed while keeping the graph connected. This
results in the creation of a directed rooted tree PU (Fig. 12.5.b), whose paths
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are all branching out from the vertex corresponding to the chosen initial mesh
face. The order of the vertices in PU defines the sequence of folded plates to be
rotated for the unfolding.

Figure 12.4: Operation T2–virtual folding. (a) (b) Sequential construction of the folded plate
structure FP and related graph P.



12.2 Creation of the Folded Plate Structure 155

Figure 12.5: Operation T2–virtual folding. (a) Statically determinate folded plate structure FP

and related graph P. (b) Unfolded plate structure FU and related graph PU as a directed rooted
tree. The colour of the faces of FU (respectively vertices of PU), from white to dark grey, is
related to the number of rotations necessary for the unfolding of the faces.
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13. Level of Euclidean Geometry

13.1 Transformation of the Form

With operation M1–form manipulation, the metric properties of the reference
grid (§ 12.1) and of the folded plate structure (§ 12.2) can be specified and
modified without altering their topological features, as defined through the previ-
ously described operations. Hence, operation M1 enables the designer to explore
diverse metric design solutions that are grounded on the same topological layout.
As such, variation can be introduced into the design development (D’Acunto and
Castellón 2015).

In particular, with operationM1 the proportions and dimensions of the folded
plate structure and the ones of its enclosed architectural space can be controlled
and adjusted. The designer can thus inform the process in relation to the specific
design needs to obtain the desired spatial qualities. As a result, using operation
M1, the architectural opportunity of folding to combine diverse spatial conditions
within the same continuous variation of the form (Lynn 1993b; Carpo 2004) can
be exploited (D’Acunto and Castellón 2015).

Introduction of Metric Properties In the form diagram FP (§ 12.2), the refer-
ence grid and the folded plate structure are depicted respectively as a polyhedral
volume mesh and a continuous triangulated mesh. In the Euclidean 3D space,
FP is converted into the metric form diagram FM.

A Cartesian coordinate system is defined by choosing an origin O = (0, 0, 0)

and three coordinate axes {x1, x2, x3}. A set of position vectors pi = {pi1, pi2, pi3}
are then assigned to the vertices Vi of the polyhedral volume mesh, which are
themselves coincident with the vertices of the triangulated mesh. As previously
observed (§ 12.1), based on the degree of freedom (DOFs) of the Vi , the heads
of the pi are either free in space, bounded to a plane1, bounded to a line (i.e.
intersection of two planes)2, or fixed in a point (i.e. intersection of three planes).

1In this case, pi can also be outlined as pi = {p⊥, p‖1, p‖2}, where p⊥ is a fixed component
perpendicular to the constraint plane while p‖1 and p‖2 are two variable components parallel to
the plane and perpendicular to each other.

2With pi = {p⊥, p‖}, where p⊥ is a fixed component perpendicular to the constraint line,
and p‖ is a variable component parallel to the line.
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Global and Local Transformations Through operation M1, each vertex Vi of
the reference grid (respectively folded plate structure) can be adjusted by adding
a translation vector ti to its position vector pi . A grid edge Ei−j (respectively
folded edge) can be transformed by applying two translation vectors to its ver-
tices. Likewise, a grid face fi−j−k (respectively folded plate) can be transformed
using three translation vectors applied to its vertices. Since the vertices of the
reference grid and those of the folded plate structure are coincident, any geomet-
ric transformation of the reference grid implies the concurrent modification of
the folded plate structure. Two categories of transformations can be employed,
namely global and local transformations.

Among the global transformations, particularly useful with regard to the de-
sign process are the global parallel transformations (§ 9.5). These manipulations
are applied at the same time to all the vertices Vi (Fig. 13.1.a). Because of
the underlying properties of this class of transformations (Pottman et al. 2007),
not only the topology but also the previously defined constraints of incidence
between elements of the reference grid (§ 12.1) are preserved throughout the
transformation. Moreover, the kinematic stability of the folded plate structure
is also secured after the transformation (Rankine 1856). These properties can
help the designer to adapt the geometry of the folded plate structure to specific
design requirements, such as given boundary constraints.

Local transformations can be applied to the vertices Vi (Fig. 13.1.b) by means
of direct geometric operations as long as the transformation is compatible with
the degrees of freedom (DOFs) of the Vi . When present, the previously defined
constraints of incidence (§ 12.2) have to be updated based on the dependencies
between the Vi . The application of constraint-based global and local transfor-
mations (Fig. 13.2.a) entails the use of numerical simulations, which are here
dealt with the Kangaroo2 library by Piker (2017).

Application of Extra Metric Constraints A series of extra metric constraints
can be applied along with the operation M1. These constraints allow for the
shape and the dimension of the folded geometry to be adjusted to meet given
programmatic and static needs or to adapt to certain architectural and struc-
tural boundary requirements (D’Acunto and Castellón 2015). Metric constraints
may also reflect specific design necessities, such as material properties, construc-
tion and fabrication needs, or scale-dependent requisites. In order to introduce
constraints within the proposed design method, these have to be formulated in
terms of metric restrains imposed on the surface area |Af | of the folded plates,
on the length |E| of the folded edges, or on the angle α between adjacent folded
plates (D’Acunto and Castellón 2015). Metric constraints generally introduce
non-linearity into the system, and therefore their application necessitates the use
of numerical simulations, as highlighted above.
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Figure 13.1: Operation M1–form manipulation. (a) Application of a global transformation to
the folded plate structure (FM): non-uniform scaling along the x2 coordinate axis and with
origin plane Ω = {V8, V10, V16}. (b) Application of a local transformation to FM’: translation of
the vertex V1 along the line r = {V1, V2}.
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Figure 13.2: Operation M1–form manipulation. (a) Constraint-based local transformation of
the folded plate structure (FM”): translation of the vertex V18 along the line t of intersection
between the plane Γ = {V12, V16, V18} and the given plane Π; translation of the vertex V14 to the
point of intersection between the plane Π and the line s = {V14, V15}. (b) Transformed folded
plate structure FM” ’.
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13.2 Manipulation of the Internal Forces

Through operation M2–force manipulation, the integration between structure
and architecture is eventually attained. In fact, this operation allows for the
inherent structural logic of the previously created folded plate structure to be
revealed. Given the form diagram FM (§ 13.1), where the reference grid and the
folded plate structure are represented respectively by a polyhedral volume mesh
and a triangulated mesh, operation M2 can be used to automatically generated
the related strut-and-tie network. In relation to the scope of the design task, a
complete strut-and-tie network or a synthetic one (§ 8.3) can be created.

Complete Strut-and-Tie Model A complete strut-and-tie model (Fig. 13.4.a)
can be automatically assembled according to the procedure described in § 8.3.
Hence, each folded edge is replaced by two edge members, while the folded
plates by an appropriate triangulation of plate members3. Considering the strut-
and-tie network as a 3D form diagram F, its corresponding 3D force diagram F*

can be constructed according to any of the approaches described in § 9.4 and
transformed as explained in § 9.5 to meet specific design requirements.

It is worth noting that the usual high amount of linear members in a com-
plete strut-and-tie network together with the large number of external forces
potentially applied to any node of the network may result in the generation of a
vector-based 3D force diagram with several duplicate edges (§ 9.4). Although
the construction of the 3D force diagram is always possible, in some instances a
clear visual correlation between 3D form and force diagrams may be prevented.
Hence, the vector-based 3D force diagrams may be difficult to be handled during
the design process, and the benefit of using vector-based 3D graphic statics for
the control of the internal forces in the structure reduced. In this occurrence, it
may be more convenient to use instead a synthetic strut-and-tie network with a
reduced number of linear members.

As previously described (§ 10.2), a complete strut-and-tie model can be used
to automatically derive in-plane discrete stress fields within the folded plates
(Fig. 13.4.b), in compliance with the lower bound theorem of the theory of
plasticity (§ 10.1).

Synthetic Strut-and-Tie Model A synthetic strut-and-tie network can be au-
tomatically generated directly from the triangulated mesh (Fig. 13.3.a). Such a
strut-and-tie network has a reduced amount of linear members in comparison to
the one described above. In particular, each folded edge is replaced by an edge
member and each internal edge in a triangulated mesh polygon is substituted
with a plate member. In this strut-and-tie network, loads can be applied at the

3Folded plates as triangulated mesh polygons are triangulated based on the rules described
in § 8.3; as such, the plate members are connected exclusively at the midpoints of the folded
edges located along the borders of the mesh polygons.
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endpoints of the folded edges only. Given its simplified nature, such a model does
not completely take into account the load-bearing capacity of the folded plate
structure, since the transfer of the internal forces is confined almost exclusively
to the folded edges and the plates are not entirely active (§ 8.3). Nonetheless,
the model still constitutes a valid equilibrium-based solution. Because of this
reason, such a model can be particularly useful during the conceptual design
stage, when a synthetic model can facilitate the process of testing several dif-
ferent design options. That is, fundamental structural input for the early stage
of the design process is supplied to the designer by this synthetic strut-and-tie
model in a comprehensible and coherent way.

Thanks to the use of vector-based 3D graphic statics (§ 9.4), regarding the
strut-and-tie model as a 3D form diagram F (Fig. 13.3.a), its corresponding 3D
force diagram F* (Fig. 13.3.b) can be constructed to reveal the inherent rela-
tionship between the geometry of the folded plate structure and the distribution
of its internal forces. As a result, similarly to the design approach suggested by
Musmeci (§ 4.2), the capability of the structure to resist the externally applied
loads through its form is made explicitly evident. Contrary to Musmeci’s solu-
tion, in this case, the geometry of the folded plate structure not necessarily has
to be described through projections. This aspect permits the proposed synthetic
strut-and-tie model and its related 3D force diagram to be constructed for any
folded plate structure, either in the form of a folded surface structure or a folded
volumetric structure (Chapter 2).

Due to the dependency between F* and F (§ 9.5), while the former is adjusted
to control the magnitudes of the internal forces in the folded plate structure,
the latter is modified accordingly. Both global and local transformations can be
used to manipulate the force diagram. Furthermore, the inherent relationship
among the various operations of the proposed design method makes it possible
to apply any valid transformation to the topology and metrics of the reference
grid or of the folded plate structure (§ 12.1; § 12.2; § 13.1) without losing the
dependency between F* and F. In fact, after applying any of those topological
or metric transformations the geometry of the strut-and-tie network is updated
accordingly.

For example, in case the strut-and-tie network has some edge or plate mem-
bers loaded with high internal forces, the network can be modified not only
metrically, but also topologically through a subdivision of the related reference
grid (§ 12.1). In turn, this operation results in the creation of subdivided edge or
plate members and the consequent redistribution of the high-magnitude forces
into more elements. Similarly, in case the folded plate structure has free edges
under compression, a modification to the topology of the structure (§ 12.2) can
be introduced as an effective design solution to remove the free edge and avoid
the risk of buckling (Kotnik and D’Acunto 2013).
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Figure 13.3: Operation M2–force manipulation. (a) Synthetic strut-and-tie network of the
folded plate structure as a 3D form diagram F with 6 applied loads and 3 support points. (b)
Corresponding 3D force diagram F*. Given the complexity of the force diagram, its manipulation
necessarily requires the use of a 3D software environment.
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Figure 13.4: Operation M2–force manipulation. (a) Complete strut-and-tie network of the
folded plate structure as a 3D form diagram F. (b) Discrete in-plane stress field in a polygonal
plate as a combination of sub-fields with constant bi-axial stress states (§ 10.2). The assump-
tions are made that the plate is constituted of an ideal isotropic material with rigid-plastic
behaviour and that the edges behave like stringers with infinite resistance capacity (§ 10.2.2).
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14. Folded Plate Prototypes
at Various Scales

A series of design experiments as case studies have been carried out to inform the
theoretical advancement of the proposed design method for structural folding in
architecture (Chapter 11). With the aim to prove the validity of the approach
in real design scenarios, each of these experiments has been associated with a
specific design task, with a given brief and clear boundary conditions. The primary
goal of this part of the investigation was to explore the potentials offered by the
proposed design method to define and materialise architectural and structural
concepts that go beyond the conventional typological boundaries. Accordingly,
in the creation of a series of folded plate prototypes, folding has been used as an
effective way to address simultaneously multiple design objectives while finding a
negotiation between load-bearing capacity and architectural idea. Grounded on a
holistic view on design, these design experiments reflect an integrated approach
to structural folding that is alternative to most of the current ones, which are
usually based either on formal exploration or on structural optimisation.

Although the primary target of the developed method is the design of folded
plate structures at the scale of architecture (Chapter 11), design experiments
have been carried out also at smaller scales, thus offering the possibility to build
real-size physical prototypes. In fact, the general rules and procedures defined
within the design method can be applied at any scale, as long as scale-dependent
factors are taken into account in the form of geometric constraints (i.e. lim-
itations on the surface area of the folded plates, on the length of the folded
edges, or on the dihedral angle between the plates) (§ 13.1). The construction
of full-scale prototypes has represented a fundamental opportunity to assess the
strengths and limitations of the method while gathering relevant information for
its further development. The experiments have been chosen to address various
contexts regarding function and use. Moreover, different materials and con-
struction technologies have been selected for the different case studies, with the
objective of testing the adaptability of the proposed design operations to various
design settings.

In the definition of the case studies, the method has been applied throughout
the entire design process, starting at the outset of the design development. From
an operative standpoint, the design has been carried out using the digital imple-
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mentation of the method in the form of the parametric toolkit (Chapter 11).
Overall, three case studies have been completed (Fig. 14.1): a cantilevering ta-
ble, a hanging structure, and a small building within the envelope of an existing
building. In the next chapters, the most relevant aspects of the design develop-
ment of the three case studies are described. In particular, after a first introduc-
tion on the specific design brief and context related to each design experiment,
the implementation of the design method to each case study is explicated.

Figure 14.1: Series of folded plate prototypes at various scales designed using the proposed
method for structural folding in architecture (Chapter 11).
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15. A Cantilevering Table1

Over the last few years, the desire to give the Chair of Structural Design at
ETH Zurich a clear and identifiable image has supported the idea of designing
a series of customized pieces of furniture (Schwartz 2016b) that could evidently
express the specific position of the Chair within the context of structural design.
In fact, this occasion has represented an opportunity to engage with the topic of
structural folding in the form of a design experiment. Thanks to its versatility as
a design operation, folding has been employed for the creation of a multi-purpose
meeting table, the foldDESK 2 with the aim to produce a piece of furniture that
could also embody additional functions other than the usual ones for which a table
is generally designed. Based on the inherent properties of folding (Fig. 15.1),
it has been possible to establish a direct correlation between the form of the
load-bearing structure and the flow of the internal forces.

Figure 15.1: Structural concept of the foldDESK: from 2D to 3D, gaining structural integrity
through folding.

1Contents of this chapter have been previously published in (Kotnik and D’Acunto 2013)
and (D’Acunto 2016).

2The project foldDESK was developed in 2013 by the author in collaboration with Özgür
Keles (ETH Zurich, Chair of Structural Design), based on a first design proposal developed in
2011 by the latter. Special thanks go to the student assistant Simon Wolfensberger for his
support in the construction of the physical prototypes.
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15.1 Design Development

The project foldDESK is the response to the request of providing the profes-
sor’s office with a new meeting area for the discussions with the students. The
initial design proposal (Fig. 15.3.A) was built upon the redefinition of the tra-
ditional meeting table typology. More specifically, a multi-functional table was
proposed based on the combination of two diverse and generally disjointed ele-
ments, namely a tabletop and a whiteboard, into one single piece of furniture.
Due to the limited amount of space in the professor’s office, the idea has arisen
to reduce the footprint area of the table to the minimum, thus supporting it
using a sub-structure cantilevering directly from the wall.

Although innovative from a functional point of view, the design proposal was
nevertheless based on a conventional load-bearing solution. This solution relied
on the presence of a sub-structure made of two standard steel I-beams hidden
beneath a cladding surface in the form of a steel sheet that could be used at the
same time as the tabletop and the whiteboard.

While seeking the goal of making the load-bearing system of the table explicit
and correlating the form to the distribution of the internal forces, in a second
stage of the design process structural folding has been introduced as the guiding
principle for the design development. Hence, the hidden sub-structure conceived
in the initial design proposal has been subsequently eliminated, while the steel
sheet defining the tabletop and the whiteboard has been converted into a folded
plate structure and elevated to be the actual load-bearing system of the table.
It is through this operation of synthesis and reduction to the essential that
programmatic functions and structural aspects have been integrated into the
very same element, thus reaching the essence of the new design idea (Fig. 15.2).

Based on the initial design proposal (Fig. 15.3.A), geometric studies were first
conducted in order to define the overall topology of the table. These resulted in
two opposite solutions, the first one consisting in a non-regular closed polyhedron
(Fig. 15.3.B) and the second one in an open polyhedral surface (Fig. 15.3.C). If
in the first case the folded plate nature of the structure was not explicitly shown
and this was rather perceived as a solid volume, in the second case the structure
had to rely on the bending stiffness of the folded edges to achieve its static rigidity
(§ 8.2.2, § 12.2). To overcome these limitations, a third solution (Fig. 15.3.D),
as a combination of the first two, has been then put forward in compliance with
the proposed design method for folded plate structures (Chapter 11).

The topology of the table has been initially delineated by arranging in space
an assembly of four tetrahedra (Fig. 15.4, FG) through operation T1 (§ 12.1).
Using operation T2 (§ 12.2), the statically rigid folded plate structure of the table
has been subsequently virtually folded within the reference grid (Fig. 15.4, FP).
In terms of geometry, the proportions and dimensions of the table have been
defined using operation M1 (§ 13.1) after setting up three constraint planes
(Fig. 15.4, FM). These have been introduced to take into account the boundary
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Figure 15.2: The foldDESK viewed from the professor’s desk (photo © Karin Gauch and
Fabien Schwartz).
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Figure 15.3: Evolution of the geometry of the foldDESK throughout the design process (front
views).

constraints at the site and the functional constraints dictated by the use of the
table. Hence, on the one hand, a vertical plane has been used to restrain one
of the plates to lie onto the surface of the office’s wall. On the other hand, a
horizontal plane has been employed to define the position of the tabletop and
a tilted plane to control the spatial arrangement of the plate doubling as the
whiteboard. By intersecting the three planes together, the lines corresponding
to the folded edges of the table could be generated at once. Being grounded on
this geometrical construction, the shapes of the plates depended on a series of
interrelated parameters. Hence, the modification of one parameter in the model,
such as the height of the plane containing the tabletop or the angle of inclination
of the whiteboard to the horizontal, had direct influence on the geometries of
the plates, based on the mutual dependencies between the vertices of the folded
plate structure (§ 12.2, § 13.1).

An iterative process using the operations M1 and M2 (§ 13.2) has been
subsequently carried out while mediating between the functional and structural
needs prescribed by the project. In this case, a synthetic strut-and-tie network
(§ 8.3; § 13.2), with vertical loads applied only to the endpoints of the edges at
the boundary of the tabletop, has been initially set up. Such a model has been
employed to gain a qualitative understanding of the global mechanical behaviour
of the structure while subjected to a typical loading on the tabletop. Hence,
regarding the strut-and-tie network as a 3D form diagram, its corresponding
vector-based 3D force diagram has been generated (Fig. 15.5). The latter has
allowed assessing the relative magnitudes of the internal forces in the folded
plate structure (§ 9.3) and adjusting them by means of appropriate local trans-
formations of the force diagram (§ 9.5) while respecting the previously imposed
constraint planes.
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Figure 15.4: Application of the proposed design method for folded plate structure (Chapter 11)
to the design of the foldDESK: definition of the reference grid FG; creation of the folded plate
structure FP; adjustment of the geometry of the folded plate structure FM; definition of the
strut-and-tie model F.

Figure 15.5: Local constraint-based transformation of the synthetic strut-and-tie network
(§ 8.3; § 13.2) of the foldDESK: variations of the 3D form diagram (F, F’, F”) and the
corresponding 3D force diagram (F*, F*’, F*”).

Since at the time of the design of the foldDESK the procedure to derive
stress fields using a complete strut-and-tie network (§ 10.2) was not yet devel-
oped, a stress analysis has been then carried out using a conventional FEM solver
(Fig. 15.6). The resulting stress field generated with this analysis is qualitatively
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Figure 15.6: Midplane principal stresses under self-weight based on FEM analysis.

Figure 15.7: Complete strut-and-tie network of the foldDESK under self-weight and visualisa-
tion of the stress field as a diffused strut-and-tie network.

comparable to the force distribution in the synthetic strut-and-tie network (Kot-
nik and D’Acunto 2013), leading to the dimensioning of the thickness of the steel
plates at 3.0 mm. A complete strut-and-tie network, which takes into account
both lattice and plate action under self-weight, is illustrated in Fig. 15.4, F. This
network can be used to derive in-plane discrete stress fields as a combination of
triangular sub-fields, each with a constant bi-axial stress state (Fig. 15.7).



15.1 Design Development 175

Figure 15.8: 1:50 cardboard model of the foldDESK.

Figure 15.9: 1:1 cardboard model of the foldDESK mounted on site.
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15.2 Manufacturing

Based on the geometry of the table resulting from the previously described design
process, physical models at various scales were produced to investigate further
the design solution (Fig. 15.8; Fig. 15.9). For the construction of the full-scale
steel prototype of the foldDESK (Fig. 15.11), a collaboration was established
with an industrial partner specialised in high-tech metal manufacturing3. An
unfolded layout of the folded plates (Fig. 15.10, FU) was generated through the
sub-operation T2-U (§ 12.2). This was then used as the cutting layout for the
manufacturing of the 3.0 mm-thick steel plates, which have been laser cut using
an automated (CNC) metal laser cutter.

Considering the variable dihedral angles between adjacent plates, two differ-
ent techniques have been employed for the connection of adjacent plates in the
final prototype. More specifically, for dihedral angles larger than 90◦, the edges
between two adjacent plates have been physically bent using a high-tonnage hy-
draulic press brake with a V-die, resulting in rounded edges (Fig. 15.12, left).
For angles smaller than 90◦, the connections between plates have been obtained
through welding, thus generating sharp edges (Fig. 15.12, right).

Figure 15.10: Unfolded configuration of the foldDESK (FU) and classification of the edges.

3Gysi AG, Baar (Switzerland): https://www.gysi.ch/ (Accessed 15.06.2018).

https://www.gysi.ch/
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Figure 15.11: The foldDESK under construction. (Left) Overall view. (Right) Detail of the
connection between the plates.

Figure 15.12: Detail samples showing the two types of edges in the foldDESK. (Left) Physically
bent edge with a rounded profile. (Right) Welded edge with a sharp profile.
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15.3 Continuity and Differentiation

Thanks to the use of folding, the final design of the foldDESK (Fig. 15.15)
integrates functional requirements, structural necessities and the research for
creative expression into one object. Indeed, the table is a neat and elegant form
that fills the available space at the site consistently, while at the same time
becoming a new focal point within the office (Fig. 15.13).

Despite the simplicity of its form, the table manifests a high level of com-
plexity. Being a three-dimensional object generated through a continuous and
differentiated folded plate geometry, the table has to be observed from diverse
points of view in order to experience completely its presence. Due to its variable
openness, the folded plate structure of the table is perceived either as a semi-
enclosed volume (Fig. 15.14) or as a semi-open surface (Fig. 15.2) according
to the position of the observer. Such a dichotomy is emphasised by the posi-
tion of the table within the office, as it directly faces the two possible ways to
access the room (Fig. 15.15.b) respectively with its front and its side elevations
(Fig. 15.15.a). This position enforces the foldDESK to be initially seen from
either one or the other of these two sides and encourages the observer to walk
around it to comprehend entirely its three-dimensionality.

From a visual point of view, the foldDESK naturally establishes an active
dialogue between solid and void. The nature of this porous structure is high-
lighted by the play of lights and shadows on the surface of the folded plates.
It is especially because of this effect that the table appears to levitate above
the ground, regardless of its mass of 98.0 kg. Moreover, as in the case of the
Chapel in Valleacerón by Sancho and Madridejos (§ 5.2.1), each side of the table
reacts in a completely different way to the lighting conditions. This is particu-
larly strengthened by the two diverse treatments of the folded edges (§ 15.2),
some of them creating a clear contrast between light and shadow and other
ones producing a soft transition. Yet, as in the case of the architectural pieces
of Sancho and Madridejos, through the unifying action of the fold, the different
parts of the foldDESK are still connected visually into one single geometry thus
generating differentiation through continuity (§ 5.1). Such visual qualities have
been especially tested using the cardboard models (Fig. 15.8; Fig. 15.9). These
have been built at different scales up to the full-scale size in order to thoroughly
investigate the appearance of each side of the table in relation to the mutable
lighting conditions at the site.

With regard to the structure, as highlighted in the case of the work of Mus-
meci (§ 4.2), it is through the statics that the expressiveness of the form of the
table is declared. As such, the load-bearing behaviour of the foldDESK is directly
exposed to the observer who can immediately read the flow of the internal forces
in its geometry. In this way, the table constitutes a clear materialisation of the
principle of resistance through form by structural folding (§ 4.1).
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Figure 15.13: The foldDESK in use (photo © Karin Gauch and Fabien Schwartz)
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Figure 15.14: The foldDESK in use (photo © Lukas Schaffhuser)
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Figure 15.15: Final design solution of the foldDESK. (a) Lateral and front views of the table
and overall dimensions. (b) Lateral, front and plan views of the table on site.
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16. A Hanging Structure1

Being developed as an entry for the International Association for Shell and Spatial
Structures (IASS) Expo 2015 out of a collaboration between ETH Zurich and
Arup Amsterdam, the project foldKITE aimed to explore the potentials of folded
plate structures in the field of ultra-lightweight design2.

Given the lack of bounding functional requirements, the project foldKITE
represented a good occasion to test the limits of the proposed design method
for folded plate structures (Chapter 11) in terms of complexity of the geometric
and structural solutions. Yet, as an entry for the IASS Expo 2015, the foldKITE
had to comply with the regulation introduced by the organisers of the exhibition.
These required the constituent parts of the structure to be prefabricated off-site
and transported to the site, the Muziekgebouw at Amsterdam, using no more
than six containers, each with maximum dimensions of 1.00 m x 0.75 m x 0.65 m

and a mass lower than 32.0 kg. Moreover, once built, the structure had to fit into
an assigned virtual bounding box of maximum dimensions of 8.00 m x 4.00 m x
4.00 m and be able to be suspended from the ceiling of the Muziekgebouw using
no more than three cables. Given these guidelines, a design concept has been
put forward to challenge the aforementioned rules with the introduction of even
more radical restraints. With the intention of reducing the mass of the system
to the minimum, the number of boxes allowed for the transportation of the parts
to the site has been decreased from six to one. In addition, to maximise the
overhang of the structure, the three suspension cables have been allowed being
connected to the structure at the vertices of one plate only.

During the conceptual stage of the design process, the global geometry of the
foldKITE has been generated using the proposed design method (Chapter 11).
Based on this geometry, in a second phase, detailed solutions have been devel-
oped for the individual plates that constituted the folded plate structure. The
design has been eventually materialised into a full-scale prototype.

1Contents of this chapter have been previously published in (D’Acunto et al. 2015).
2The design experiment here presented has been conceived and developed between Decem-

ber 2014 and May 2015 by the author in collaboration with Juan José Castellón González (ETH
Zurich, Chair of Structural Design), Alessandro Tellini (ETH Zurich, Raplab) and Shibo Ren
(Arup Amsterdam). Special thanks go to the student assistants Jonas Hodel and Leo Kleine
for their support during the manufacturing process.
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Figure 16.1: Overall view of the hanging structure foldKITE.

Figure 16.2: Close-up view of the hanging structure foldKITE.
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16.1 Generation of the Global Geometry

The global geometry of the foldKITE has been designed throughout a process
involving three main design iterations. At each iteration, the geometry of the
folded plate structure has been gradually refined, to address specific structural,
manufacturing, and transportation constraints.

In the first design iteration, through operation T1 (§ 12.1) a grid made
of 11 tetrahedra has been generated as a spatial reference for the subsequent
design steps (Fig. 16.3, FG). With operation T2 (§ 12.2), the topology of
the folded plate structure has been then delineated (Fig. 16.3, FP). Hence,
properties such as the organisation of the space enclosed by the folded plates
and the amount and location of openings have been here defined. Various design
solutions have been investigated in order to introduce spatial differentiation in
the folded geometry while keeping the continuity of the form. Moreover, specific
rules of incidence (§ 12.2) related to the alignment of certain vertices of the
folded plate structure have been defined and used as underlying constraints in
the subsequent transformations of the geometry.

Through the repeated application of operations M1 (§ 13.1) and M2
(§ 13.2), the position of the individual vertices of the reference grid, and thus
of the folded plate structure, has been adjusted in space until the desired
design intentions and the necessary structural requirements have been fulfilled,
in compliance with the above rules of incidence among the vertices (Fig. 16.3,
FM and F). In particular, a synthetic strut-and-tie model (§ 8.3; § 13.2), with
the internal forces transferred exclusively along the folded edges, has been used
to obtain a qualitative insight on the mechanical behaviour of the structure.
Being the foldKITE meant to be suspended indoor, its self-weight has been the
only loading taken into consideration. For each plate, a weight proportional
to its surface area has been regarded as redistributed to the corresponding
vertices by local bending action. Three supports, related to the suspension
cables, have been placed at the vertices of one of the middle plates of the folded
plate geometry. Based on this set-up the internal forces have been evaluated
with operation M2 and the folded plate structure transformed to improve its
structural behaviour. Hence, through operation M1 the static height of the
structure has been increased at the supports to reduce the magnitudes of the
internal forces. To avoid local instability due to buckling, the length of the free
edges under compression has been reduced. With the same aim, the dihedral
angles between the plates have been adjusted in relation to the magnitude of
the forces in the folded edges. In a subsequent step, the reference grid has been
subdivided into 20 tetrahedra using the sub-operation T1-S to increase the
number of folded plates at the back of the structure. Thanks to this topological
transformation, the centre of mass of the structure has been shifted toward the
back, and the internal forces have been spread evenly (Fig. 16.4, F).
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Figure 16.3: Application of the proposed design method for folded plate structure (Chapter 11)
to the generation of the global geometry of the foldKITE: definition of the reference grid FG;
creation of the folded plate structure FP; adjustment of the geometry of the folded plate
structure FM; definition of the strut-and-tie model F.

Figure 16.4: Synthetic strut-and-tie network of the foldKITE under self-weight.
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Figure 16.5: Evolution of the design solution. (a) First design iteration. (b) Second design
iteration. (c) Final design solution.

The first proposal for the global geometry of the foldKITE resulted in an
asymmetric structure of 5.00 m x 2.00 m x 1.50 m in size and composed of 49
triangular plates of various dimensions (Fig. 16.5.a). In order for this solution
to comply with the aforementioned constraint according to which the entire
structure had to fit within a container of 1.00 m x 0.75 m x 0.65 m, most of
the plates would have had to be necessarily split into sub-parts. Due to the
disadvantages of this procedure, especially in terms of reduced static rigidity
(§ 8.2.2) for the presence of extra inner hinges within the plates, an alternative
design solution has been searched for to keep the individual plates as single parts.

Hence, a second iteration of the design process was run, this time introducing
the dimensions of the container as an extra metric constraint (§ 13.2) in the first
place. With operation T1, the initial tetrahedral grid composed of 20 tetrahedra
has been re-subdivided into 40 tetrahedra. While keeping a global geometrical
configuration similar to the one of the previous design proposal, with operation
M1 the vertices of the reference grid have been adjusted through a constraint-
based local transformation in order for the size of each plate to fit within the given
container’s dimensions. A second design proposal with 85 triangular plates was
generated in this design iteration (Fig. 16.5.b). Although this solution avoided
the plates to be split into smaller parts, this new proposal relied on a relatively
high number of plates to be manufactured and later assembled.

A new global geometry of the foldKITE was finally developed in a third
iteration of the design process, which combined the advantages of both first and
second proposals. In particular, using the latter as a starting point, a longitudinal
vertical plane of symmetry has been introduced to reduce the total amount of
bespoke plates. This overall simplification of the system has been applied without
compromising the sculptural quality of the design solution. The final proposal
resulted in a geometry composed of 65 triangular plates and 100 edges, with
global dimensions of 5.00 m x 1.50 m x 1.25 m (Fig. 16.5.c).
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16.2 Detailed Design and Materialization

Based on the final proposal for the global geometry of the foldKITE (Fig. 16.5.c),
a detailed design has been initiated for the engineering of the plates constituting
the folded plate structure. This phase has been carried out using digital and
physical models. In this second phase of detail design, explicit questions related
to materials and construction technologies have been addressed. Given the initial
intention of designing the foldKITE as an ultra-lightweight structure, thorough
research on lightweight materials has been conducted. Indeed, an important
reference in this phase has been found in the sport kite sector; the necessity to
produce flying objects able to resist severe wind conditions has pushed this sector
to develop high-strength materials that are, at the same time, ultra-lightweight.
Because of its mechanical properties and its ethereal and translucent materiality
that fitted particularly well with the design concept, the hydrophobic kite fabric
Icarex (PC-31)3 has been selected as the main material for the production of
the plates of the foldKITE.

In compliance with the synthetic strut-and-tie model (§ 16.1), a strategy has
been put forward to reinforce the kite fabric along the edges of the folded plate
structure with frames, whose dimensions have been made proportional to the
length of the edges and to the intensity of the internal forces. A first solution
has been explored using fibreglass strips. The strips could be directly laminated
onto one side of the PC-31 fabric using two-component epoxy resin. A physi-
cal prototype of a generic plate has been then developed as a test (Fig. 16.6).
Although the prototype showed an adequate degree of lightness and structural
stability, due to manufacturing limitations such as the impracticability to handle
the epoxy resin safely and to cut the fibreglass strips easily with the available ma-
chinery, other solutions have been looked for. After testing various alternatives,
frames made of 1.0 mm-thick solid bleached board (SBB) with an area density of
600 g/m2 have been eventually chosen to replace the fibreglass strips as the rein-
forcement of the edges of the triangular plates. Contrary to the fibreglass strips,
the SBB could be easily glued to the PC-31 fabric using common multi-purpose
solvent-based spray adhesive. While satisfactory in relation to the structural re-
quirements, the employment of SBB also gave the possibility of using a digital
cutter to produce the individual frames.

In order to join the triangular plates to generate the folded plate structure, a
solution based on a flap-to-flap connection has been developed by adding folded
flaps along the edges of the plates, thus creating actual hinge connections. Other
than providing an adequate way for the joining of the plates, the introduction of
the folded flaps improved the local structural stability of the edges against their
self-weight, while reducing their risk to buckle under high compressive normal
forces. Special attention has been paid to the fabrication of the flaps. To keep

3The Icarex Ripstop Polyester (PC-31) fabric is a polycarbonate film reinforced with
polyester strands with an area density of 31 g/m2.
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Figure 16.6: Manufacturing of a plate using the lamination technique. (Left) Arrangement of
the fibreglass strips along the edges of the plate. (Right) Application of the two-component
epoxy resin.

Figure 16.7: Detail design of the plates. (Left) Connection of the flaps through binding.
(Right) Connection of the flaps by scoring.

the manufacturing process simple, a first design alternative has been evaluated
where the flaps were cut at once with the frames, and the SBB was scored
on one side along the edges to generate the required hinge (Fig. 16.7, left).
However, this solution had to be rejected soon after experiencing severe problems
of delamination of the SBB along the scored lines, in those tests where the flaps
were loaded with local shear forces perpendicular to the axis of the scored lines.

A definitive solution has been found by looking at the bookbinding industry
and precisely at the hardcover binding technique that allowed a robust yet neat
connection system to be deployed. In this way, unlike the previous alternative,
the flaps have been first cut as independent elements from the frames and subse-
quently connected to them along their edges using 160 g/m2 white paper strips
with poly-vinyl acetate (PVA) glue on one side and kite fabric with spray adhesive
on the other side (Fig. 16.7, right).
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16.3 Construction

As imposed by the rules of the organisers of the IASS Expo 2015, the fabrication
of the plates of foldKITE has been carried out entirely off-site, taking advan-
tage of the use of the digital manufacturing machines of the Rapid Prototyping
Architectural Laboratory (Raplab) at ETH Zurich. The plates have been conse-
quently arranged into one single container of prescribed dimensions and shipped
to the Muziekgebouw at Amsterdam, where the final assembly and the rigging
of the full-scale structure have taken place.

The manufacturing process of the plates has been organised in four main
steps: generation of the cutting drawings of the plates based on the global ge-
ometry of the foldKITE; cutting of the SBB frames and flaps using a digital
cutter; mounting of the frame onto the PC-31 kite fabric; joining of the flaps to
the frames. At first, the cutting layouts of the 65 triangular frames have been
produced (Fig. 16.8) after unfolding the geometry of the folded plate structure
using the sub-operation T2-U (§ 12.2). Each flap attached to each frame has
been then labelled with a univocal code specifying the number of its correspond-
ing edges in the global geometry, along with the numbers of the plates directly
connected to it. This operation has been developed based on the underlying
topological data-structure embedded in the graphs G (§ 12.1) and P (§ 12.2)
related to the previously defined reference grid and folded plate structure respec-
tively (§ 16.1). Using a digital cutter, the SBB frames and flaps have been then
cut out of the SBB according to the cutting layouts (Fig. 16.9, top left), and
automatically marked based on the previously defined codes.

Before mounting the SBB frames onto the PC-31 fabric using the multi-
purpose solvent-based spray adhesive, the fabric has been first laid out onto a
vacuum table (Fig. 16.9, bottom left). Apart from facilitating the gluing opera-
tion, this operation also allowed the fabric to be perfectly stretched to avoid the
presence of undesirable wrinkles. Furthermore, because of this procedure, after
the frames have been connected to the fabric, a minimum level of pre-stressing
has been introduced into the plates, with the intention of generating a structural
system working similarly to a stressed skin.

The flaps have been eventually connected to the frames following the previ-
ously described hardcover binding technique (Fig. 16.9, top right). In this phase,
special attention has been paid in keeping an adequate distance between the flaps
and the frames, for these connections to work effectively as hinges (Fig. 16.9,
bottom right). Moreover, the water content of the PVA glue has been constantly
monitored to avoid unsought effects of soaking in the SBB.

Overall, for the manufacturing process 14.42 m2 of PC-31 fabric have been
employed along with 9.40 m2 of SBB. The total mass of the foldKITE has then
resulted in 7.15 kg, well below the maximum allowable mass prescribed by the
regulation of the exhibition.
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Figure 16.8: Cutting layout of two frames with flaps and identifying codes.

Figure 16.9: Manufacturing process of a plate. (Top left) Cutting of the SBB frames. (Bottom
left) Mounting of the SBB frames onto the PC-31 fabric. (Top right) Connection of the flaps
to the frames. (Bottom right) Creation of the hinges between the flaps and the frame.
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16.4 Final Assembly

The final assembly of the full-scale folded plate structure has been carried out
entirely on site near the Muziekgebouw at Amsterdam (Fig. 16.10). After sort-
ing and grouping the plates based on their mutual topological connectivity, the
assembly process has been accomplished by joining the adjacent plates through
the previously described flap-to-flap connections (§ 16.2). Thanks to the ver-
satility of this connection system, the assembly of the plates has been manually
executed, using only ordinary hand tools. Cyanoacrylate (CA) fast-acting adhe-
sive has been used to pair the corresponding flaps of adjacent plates together;
for safety reasons, 6.0 mm and 8.0 mm-wide metal staples have also been added
to prevent possible unexpected creep over time along the glued connections.

Due to the high complexity of the geometry, a precise assembly sequence
has been followed with the aim of keeping the construction process easily man-
ageable. This sequence had been generated beforehand as the result of a series
of extensive assembly tests carried out on 1:10, 1:2 and 1:1 prototypes of the
foldKITE to guarantee that all the parts of the structure that had to be con-
nected to each other could be easily accessible by the operators. In fact, a strat-
egy has been developed to erect the structure based on four main sub-clusters
(Fig. 16.11). In particular, the possibility to assemble at first each sub-cluster in
its unfolded two-dimensional configuration and to fold it afterwards in three di-
mensions has allowed for the complexity of the system to be broken down. That
is, given the list of the plates belonging to each sub-cluster and the sequence
how to connect these plates to each other, the three-dimensional geometry of
the folded plate structure has been unambiguously determined, thus completely
avoiding the need for measuring the dihedral angles between the plates.

After the entire folded plate structure has been completely built, the rigging
construction necessary for hanging the structure has been produced. Eventually,
the foldKITE has been suspended from the ceiling using one cable only, which
had to be inevitably aligned to the resultant of the self-weight and thus to the
centre of mass of the system in order to fulfil the global equilibrium (§ 9.2). In
particular, a steel wire rope with a diameter of 4.0 mm in conjunction with a cable
gripper has been used for this purpose. Moreover, a swivel has been inserted to
permit the free rotation of the structure around the suspension cable. To allow
for an even distribution of the tensile stresses from the cable to the structure,
three secondary wire ropes with a diameter of 2.0 mm have been employed to join
the main suspension cable to the vertices of one of the folded plates. The entire
assembly process has been completed in around 9 working hours by 3 people.
Despite its dimensions of 5.00 m x 1.50 m x 1.25 m, thanks to its extremely low
mass of 7.15 kg, the foldKITE has been easily transported from the assembly
area to the Muziekgebouw and eventually suspended from the ceiling at 4.0 m

from the ground.
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Figure 16.10: On-site assembly process of the foldKITE.
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Figure 16.11: Assembly logic showing the four clusters.

The foldKITE is the result of a process of negotiation between design in-
tentions, structural, manufacturing, and transportation constraints. The three-
dimensional geometry of the foldKITE is rather complex but still clearly intelligi-
ble. While folding itself from the outside to the inside, the folded plate geometry
generates a porous space that is continuously variable. It is thanks to its ethe-
real materiality and its lightweight construction that the foldKITE is perceived
as floating in the air (Fig. 16.12, Fig. 16.13, Fig. 16.14).

With regard to its load-bearing behaviour, the structure has been designed
using a synthetic strut-and-tie model (§ 16.1), where the main internal forces
are transferred via the folded edges. Although less precise than a complete
strut-and-tie model (§ 8.3) this synthetic model has allowed to easily test dif-
ferent design variations during the early design phase. From a construction
standpoint, owing to the flap-to-flap hinge connection between the folded plates
(Fig. 16.15), the necessity to build customised three-dimensional nodes has been
completely avoided. In turn, this has allowed employing a simple manufactur-
ing process. Moreover, the possibility to assemble the foldKITE starting from
two-dimensional sub-cluster has facilitated its installation on site. As a result,
while pushing the boundaries of folded-plate structures into the field of ultra-
lightweight constructions, the project has epitomised how structural folding can
be effectively employed to achieve structural integrity and spatial differentiation
within a coherent formal system.
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Figure 16.12: Global view of the foldKITE in the Muziekgebouw (Amsterdam).

Figure 16.13: The foldKITE in the Muziekgebouw (Amsterdam) seen from underneath.
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Figure 16.14: Lateral view of the foldKITE in the Muziekgebouw (Amsterdam).

Figure 16.15: Close-up view of the foldKITE in the Muziekgebouw (Amsterdam).
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17. A Building in a Building

This chapter presents an exemplary application of the proposed design method
at the architectural scale (Chapter 11). The aim is to show how the method
could be possibly used for the preliminary design of a building where space and
structure are seamlessly integrated, thus giving rise to a so-called strong struc-
ture (Schnetzer et al. 2012; Chapter 1). In order to illustrate the proposed
approach, a fictitious design brief has been taken into consideration to tackle
a series of architectural and engineering questions within the conceptual stage
of the design process. The design brief has been derived from a design exer-
cise suggested within the elective course Experimental Exploration on Space and
Structure at ETH Zurich1, in which architecture students were asked to develop
a simple architectural design using the proposed method for structural folding in
architecture.

In particular, the site for this proposed design experiment has been chosen
in the town of Schlieren, in the western outskirts of Zurich, an area that used
to host a strategical industrial hub during the late 19th and early 20th centuries.
Over the last few years, many of the industrial facilities located at Schlieren have
been abandoned, and the entire site is nowadays undergoing a process of urban
reconversion. The strategy of the town of Schlieren for this site is to preserve
all the historical industrial constructions, while allowing for new public venues,
mostly related to cultural and leisure activities, to be integrated therein.

Given this context, a fictitious task has been set to design a compact building
in reinforced concrete with a maximum volume of 2000 m3 housing a public art
gallery. In order to create a dialogue with the built environment and to give
new use to the existing facilities, the new building had to be placed within the
envelope of one of the former industrial storehouses of Schlieren (Fig. 17.1).
In the design experiment, only a portion of the storehouse has been taken into
consideration and regarded as the plot for the new building (Fig. 17.2). The
plot is accessible from the main entrance on the East facade of the storehouse
and a secondary entrance along the North facade.

1The course EEoSS, from which the design brief is derived, has been taught by the author
together with Juan José Castellón González, Prof. Dr. Joseph Schwartz (ETH Zurich, Chair of
Structural Design), and Alessandro Tellini (ETH Zurich, Raplab) during the Winter Semester
2015.
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Figure 17.1: Axonometric view of the former industrial storehouse, located in Schlieren (Zurich)
chosen as the site of the design experiment.

Figure 17.2: Site plan: portion of the industrial storehouse, located in Schlieren (Zurich)
regarded as the plot of the new public art gallery.
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17.1 Design Development

Considering the previously introduced boundary conditions, to avoid any physical
interference between the new building and the existing one, the art gallery has
been conceived as an independent volume, with a continuous and differentiated
internal space that develops vertically and is organised along a spiral ramp. To
facilitate the circulation of the visitors between the two accesses to the store-
house on the ground floor, the objective to reduce the footprint of the building
to the minimum has been additionally taken into consideration.

Given the above design intentions, a conceptual design of the new building
has been undertaken. Using operation T1 (§ 12.1) an initial reference grid has
been generated as a statically determinate lattice structure made of a linear chain
of triangulated polyhedra. This grid has been used to delineate the topology of
the aforementioned spiral ramp (Fig. 17.3, FG a–d). With the aim of reducing the
footprint of the building to the minimum, the reference grid has been defined to
have only one of its triangular faces in contact with the ground. Given this initial
grid, supplementary edges have been then introduced to obtain the topology
of a box as an overall statically indeterminate lattice structure (Fig. 17.3, FG

e–f). Based on the reference grid, with operation T2 (§ 12.2) the topology of
the folded plate structure has been defined. Accordingly, the spiral ramp has
been initially created inside the grid (Fig. 17.3, FP a–d). To achieve the static
rigidity of the folded plate structure, additional folded plates have been placed
(Fig. 17.3, FP e–f) until all the edges of the reference grid have been actualised
into folded edges (§ 12.2). From an architectural standpoint, this has resulted
in the creation of a porous envelope containing an enclosed architectural space.
While generating the folded plate structure, the main topological features of this
enclosed architectural space have been outlined, such as the number of levels of
the building, the layout of the internal circulation and the organisation of the
openings in the building envelope.

By applying operations M1 (§ 13.1) and M2 (§ 13.2) iteratively, the geom-
etry of the reference grid and of the related folded plate structure have been
defined based on the architectural and structural requirements. In relation to
the architecture (Fig. 17.4, FM), the dihedral angles between the plates have
been adjusted to control the slope of the spiral ramp. This operation, together
with the respect of a clearance of at least 2.20 m along the ramp, has resulted
in the creation of an internal space with four main levels at 0.00 m, +2.00 m,
+5.00 m and +10.00 m. The proportions and dimensions of the internal space
have been then further adjusted to allow the creation of two main exhibition
areas at the levels +2.00 m and +5.00 m. Furthermore, an open rooftop at the
level +10.00 m has been produced to establish a direct relationship between the
top of the new building and the ceiling of the existing storehouse.

With regard to the structure, considering the self-weight as the primary load
case, a complete strut-and-tie network (Fig. 17.4, F) has been generated to get
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Figure 17.3: Construction of the reference grid FG and definition of the topology of the folded
plate structure FP.
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Figure 17.4: Transformation of the folded plate structure FM (front, back) and definition of
the strut-and-tie model under self-weight F (front, back).

an insight on the distribution of the internal forces in the folded plates (§ 8.3).
In this initial phase of the design, it has been assumed a constant thickness of
the plates of 250 mm. Considering the internal and external static indeterminacy
of the strut-and-tie network, in compliance with the theory of plasticity (§ 10.1),
the magnitudes of the redundant internal and external forces have been regarded
as parameters. As such, these values have been adjusted through an optimisation
process (Rondeaux et al. 2017) to achieve an overall uniform distribution of the
forces in the structure.
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17.2 Integration of Space and Structure

Based on the above application of the proposed design method, a preliminary
design of the new building housing the art gallery has been put forward that
offers seamless integration between space and structure (Fig. 17.5, Fig. 17.6).
In fact, it is not possible to make a distinction between the structural system
and the architectural envelope, as these two elements are unified within the same
single object.

In this design experiment, the architectural potentials of the proposed design
approach have been put forward to create a continuous folded plate geometry
that folds into space to generate the spiral ramp and then unfolds back to
delineate the exterior walls of the building. In line with the design approach of
Sancho and Madridejos (§ 5.2), the architectural space results from the three-
dimensional articulation of the folded plate structure that generates a coherent
architectural formal system. As a result, the tectonic distinction between the
individual elements of the building is completely dissolved (§ 12.2).

In analogy to the case of the Chapel in Valleacerón by Sancho and Madride-
jos, the art gallery is perceived differently (Fig. 17.8, Fig. 17.9), based on the
point of view from which the building is observed. In fact, as highlighted in the
previous case studies of the foldDESK (§ 15.3) and the foldKITE (§ 16.4), the
complex geometry of the folded plate structure can be only comprehended by
looking at it from various perspectives. In this case, an extra dimension is added,
since it is possible to enter the building and observe it from the inside. While
moving along the spiral ramp (Fig. 17.7), the different parts of the building
can be experienced, and its relationship to the surrounding context evaluated.
Consequently, a dialogue between the new building and the existing one can be
established, which is mediated by the presence of the folded plate geometry.

From a structural standpoint, similarly to the approach of Musmeci (§ 4.2),
the form of the building offers a direct manifestation of its static behaviour,
being an expression of the principle of resistance through form. Thanks to the
static rigidity of the reference grid that is inherent to the folded plate structure,
the internal forces are transferred exclusively through the folded edges and the
folded plates, thus avoiding activating a less effective resistance mechanism that
relies on the bending stiffness of the folded edges.

Even though the design experiment here presented is limited at the level of
the conceptual design phase, the use of the proposed design method has given
the opportunity to address significant architectural and engineering questions.
Supplementary architectural and engineering requirements, such as material and
construction constraints, may be included in the design workflow as extra geo-
metric constraints (§ 13.1). As such, the result here presented can be regarded
as a starting point for further design development.
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Figure 17.5: Plans at +3.00m and +8.00m of the proposed new building hosting an exhibition
space.
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Figure 17.6: Longitudinal section (A-A) and cross-section (B-B) of the proposed new building
hosting an exhibition space.
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Figure 17.7: Sequence of conceptual interior views along the spiral ramp of the proposed new
building hosting an exhibition space.
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Figure 17.8: Conceptual view of the main entrance of the proposed new building hosting an
exhibition space.

Figure 17.9: Conceptual view of the back of the proposed new building hosting an exhibition
space.
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18. Discussion

This thesis has investigated the potentials of folding as a design operation that
enables exploring the interaction between the disciplines of architecture and en-
gineering. In this context, folding has been regarded as a medium to promote
the collaboration between architects and engineers, starting from the early stage
of the design process. In the following sections, a summary of the unique con-
tributions of this research is presented, together with an overview of the current
limitations of the proposed approach and an outlook on further developments.

18.1 Contributions

Considering the existing methodologies for the design of folded plate structures in
architecture (Chapter 7), up to now a few solutions have been proposed that can
deal with both spatial and structural aspects and address them simultaneously
starting from the conceptual phase of the design development. On the one hand,
existing strategies permit the design of folded geometries based on structural
considerations (§ 4.2.2) but with a limited scope in terms of the spatial solution.
On the other hand, approaches have been put forward to explore more articulated
spatial configurations (§ 5.2.1); however, these solutions require the analysis of
the structural performances of the folded forms to be performed in an advanced
step of the design process, mostly using numerical models like the finite element
method (FEM).

With the aim to overcome the limitations of the existing approaches, the
main contribution of this research is the introduction of a novel design method
for structural folding in architecture that enables both architects and engineers
to take advantage of the spatial and structural opportunities of folding (Chap-
ter 11). By establishing a unified design framework, this mode of operation
brings together architectural and engineering thinking through the mediation of
geometry. In fact, it is thanks to the use of geometry, and the possibility to work
with topological and metric operations, that the developed approach gives the
designer the chance to address questions related to both space and structure in
a consistent and integral way.
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The elaboration of the proposed design method has involved the develop-
ment of several models and procedures, including the formulation of a structural
model for folded plate structures (§ 8.3), the definition of a set of rules for de-
signing (Chapter 11), and the development of design experiments as case studies
(Chapter 14). In the following subsections, individual contributions for each of
these points are listed and discussed.

18.1.1 Structural Model

Different structural models have been proposed in the literature to describe the
behaviour of folded geometries (§ 8.3): structures as assemblies of rigid facets,
as shells, as membranes, or as trusses (Lebée 2015). These models are generally
treated within the theory of elasticity and implemented using FEM, which implies
a series of limitations especially during the first steps of the design development
(§ 7.1).

An alternative structural model based on graphic statics and the theory
of plasticity has been here proposed; this model has been implemented in the
form of a complete strut-and-tie network and a synthetic strut-and-tie network
(§ 8.3):

• The complete strut-and-tie network, which complies with the membrane
model (§ 8.3), has been defined as an integration of the lattice and the
plate structure systems (Wester 1984; § 8.1). Thanks to this strut-and-tie
network, fundamental properties of a folded plate structure such as static
rigidity, equilibrium of the internal forces and stress distribution can be rep-
resented in a single and coherent model. This model can be easily adapted
to any geometric configuration of the folded plate structure, regardless of
the complexity of its topology or of its metric properties.

• The synthetic strut-and-tie network, which complies with the truss model
(§ 8.3) and can be derived from the complete strut-and-tie model, has
been defined as a simplified network that nonetheless represents a valid
solution in terms of static rigidity, and equilibrium of the internal forces.
This model is specifically intended for the early stage of the design process,
to have a quick understanding of the global mechanical behaviour of the
structure.

In order to evaluate and control the static equilibrium of the complete and syn-
thetic strut-and-tie networks regarded as 3D form diagrams, a series of proce-
dures involving the use of vector-based 3D graphic statics have been introduced,
as part of a broader ongoing research on the development of graphic statics in
the third dimension (D’Acunto et al. 2019):

• A graphical procedure for the evaluation of the external equilibrium of
forces in space (§ 9.2), which makes use of graphic statics and projec-
tions, has been formalised (D’Acunto et al. 2016) and integrated within
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the proposed design method, based on a traditional graphical construction
(Culmann 1866).

• A general methodology grounded on graph theory has been proposed for
the construction of vector-based 3D force diagrams (§ 9.4) whose corre-
sponding 3D form diagrams are not planar (Jasienski et al. 2016; D’Acunto
et al. 2019). This mode of operation extends the applicability of vector-
based 3D graphic statics to any 3D strut-and-tie network in static equilib-
rium while making clear the fundamental relationship between form and in-
ternal forces. In this context, various topological configurations of 3D force
diagrams have been introduced (double-layered, single-layered, multiple-
quads, and case-specific), which can be alternatively used according to the
specific design requirements.

• A series of procedures have been introduced for the global and local trans-
formation of vector-based 3D force diagrams (§ 9.5) that secure their
interdependency with the corresponding 3D form diagrams. These pro-
cedures permit the bi-directional manipulation of 3D form and force dia-
grams, thus allowing for the fundamental relationship between form and
internal forces in a 3D strut-and-tie network to be used as an active design
parameter (D’Acunto et al. 2017).

With regard to the complete strut-and-tie network, an approach to the evaluation
of stress fields in folded plate structures has been introduced (§ 10.2):

• An existing procedure for the evaluation of discrete stress fields in two-
dimensional structures (Hajdin 1990) has been adapted to derive in-plane
discrete stress fields in folded plate structures, as a combination of trian-
gular sub-fields, each with a constant planar bi-axial stress state.

18.1.2 Design Method

Built upon the above structural model, a general procedure for the design of
folded plate structures in architecture has been conceived (Chapter 11). More
specifically, a statically rigid folded plate structure is created within a reference
grid. While generating the folded plate structure, an enclosed architectural space
is produced at once. Without losing its inherent topological properties, the form
of the folded plate structure and the distribution of its internal forces can be
adjusted by the designer to meet specific architectural and structural require-
ments (D’Acunto and Castellón 2015). In relation to the proposed method, the
following contributions have been made:

• A three-dimensional design process based on the use of four main oper-
ations (T1–grid generation, T2–virtual folding, M1–manipulation of the
form, M2–manipulation of the forces) has been introduced that allows the
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design of both folded surface structures and folded volumetric structures
(Chapter 11) while operating at the levels of topology (Chapter 12) and
Euclidean geometry (Chapter 13).

• The design method has been implemented within a parametric digital
toolkit that permits the design of folded plate structures in a three-
dimensional digital modelling environment. The toolkit allows for the
interactive use of the proposed design operations in a non-sequential and
non-destructive way.

• Considering the topological and projective geometric procedure of the pro-
posed method (T1–grid generation and T2–virtual folding), an approach
has been defined that takes advantage of structural topology and graph
theory (§ 8.2) for the direct control of the kinematic and static deter-
minacy of a folded plate structure. Topological operations of subdivision
(T1-S) and combination (T1-C) have been implemented, and a strategy
to deal with projective constraints has been proposed based on the work
of Fivet and Zastavni (2015).

• Considering the metric procedure of the proposed method (M1–form ma-
nipulation and M2–force manipulation), the above global and local trans-
formations of the vector-based 3D form and force diagrams have been
integrated into the developed approach. These allow the designer to mod-
ify the geometry of the folded plate structure interactively while having a
real-time overview of the distribution of the internal forces. A procedure
to apply metric constraints to the surface area of the folded plates, to the
length of the folded edges, and to the dihedral angle between folded plates
has been proposed, which makes use of the work of Piker (2017).

18.1.3 Case Studies

The proposed design method for structural folding in architecture has been tested
by means of a series of design experiments (Chapter 14). In particular, three
case studies have been developed: a cantilevering table, a hanging structure, and
a small building. Each of these experiments has been associated with a specific
design task, with a given brief and clear boundary conditions. Overall, the case
studies have proved the flexibility of the proposed approach when applied to real
design scenarios. In this domain, two main contributions have been made:

• Demonstration of the validity of the developed method to materialise ar-
chitectural and structural concepts that go beyond the conventional typo-
logical boundaries in terms of both space and structure.

• Demonstration of the flexibility of the proposed approach when applied to
the design of architectural and structural projects at various scales and
involving the use of different materials.
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18.2 Limitations and Future Work

Although the application of the proposed design approach for structural folding
in architecture to a series of case studies has demonstrated the strengths of
the developed approach, several limitations in the current implementation of
the method can be detected. In the following subsections, these limitations are
discussed at the level of the structural model, the design method, and the case
studies. Moreover, various possibilities for improvement are put forward.

18.2.1 Structural Model

The proposed strut-and-tie model (§ 8.3) is based on a series of assumptions
on the mechanical behaviour of folded plate structures. On the one hand, these
assumptions allow the model to be easily comprehensible while also adaptable to
complex spatial configurations. On the other hand, some of these assumptions
may limit its range of applicability. Regarding the strut-and-tie network, the fol-
lowing limitations can be detected, and further developments can be suggested:

• In the complete strut-and-tie network, vertices are placed only at the mid-
points and endpoints of the folded edges. This configuration relies on
the hypothesis that for a given folded plate, the uniformly distributed area
load on the plate can be replaced by an equivalent system of uniformly
distributed (i.e. constant) line loads along the folded edges that are pro-
portional to the triangular tributary areas of the edges. Although this
solution is valid in terms of global equilibrium, for a more precise reparti-
tion of the loads, uniformly varying loads with linear distributions (Hajdin
1990) can be considered along the folded edges. These loads can be then
replaced by two resultant forces along each folded edge, yet requiring a
different layout of the strut-and-tie network to be generated in comparison
to the one currently proposed.

• The presented approach for the repartition of the loads is based on the sub-
division of the plates into triangles. For specific geometric configurations,
this procedure may represent an oversimplification of the actual mechan-
ical behaviour of the structure. In future developments of this research,
alternative strategies for the subdivision of the plates will be explored.

Regarding the introduced vector-based 3D graphic statics procedures, obser-
vations can be made as follows:

• The vector-based 3D force diagram of a complete strut-and-tie network
may present a high number of duplicate edges (§ 9.4), thus compromising
the possibility for a clear and direct correlation between form and distri-
bution of internal forces in a folded plate structure. For this reason, a
synthetic strut-and-tie network has been developed with a reduced number
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of linear members. Further developments will explore the possibility for
an interactive forward and backward conversion between the former and
the latter. This possibility would allow the designer to choose the level of
resolution of the strut-and-tie model based on the specific design task at
hand.

• In the case of folded plate structures with complex three-dimensional ge-
ometries, also synthetic strut-and-tie networks may produce vector-based
3D force diagrams that are difficult to be visualised and handled. More
research is required on the construction procedures of the force diagrams,
especially to develop strategies for the minimisation of the number of du-
plicate edges (§ 9.4). Possible approaches in this context may involve the
implementation of techniques of graph drawing (Buchheim et al. 2014).

• In the current implementation of the design method, the local constraint-
based transformation of a vector-based 3D force diagram is solved using
numerical simulations (Piker 2017). To avoid the necessity for this time-
consuming iterative process to be run at every modification of the force
diagram and to prevent any potential instability issue related to the nu-
merical approach adopted, future research will explore other procedures.
A possible strategy could be the use of machine learning applied to 3D
graphic statics (Fuhrimann et al. 2018). By deploying algorithms based on
neural networks, the underlying non-linear function that relates the geome-
tries of the 3D force and form diagrams could be learned by the machine,
and subsequently, the two diagrams could be interactively transformed in
real time by the designer. An alternative solution may involve the direct
mathematical formulation of the constraints between the diagrams (Fivet
2013).

• Because of its practical advantages (§ 9.1), in the proposed method the
vector-based strategy to 3D graphic statics has been preferred over the
polyhedron-based one. Considering that the folded plate structures gener-
ated using the developed approach are built on reference grids as polyhe-
dral frames, the applicability of the polyhedron-based strategy for the con-
struction and transformation of the 3D force diagrams (Lee et al. 2018;
Konstantatou et al. 2018) will also be investigated in future work.

Regarding the solution introduced for the evaluation of the stress fields in
the folded plate structures (§ 10.2), the following considerations can be made:

• In the general implementation of the proposed design method, under the
assumption that the struts and ties along the folded edges behave like
stringers with infinite resistance capacity, an in-plane discrete stress field
can be automatically generated in a folded plate as a combination of trian-
gular sub-fields. This approach generally leads to an overestimation of the
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resistance capacity of the structure since it does not take into account the
diffusion of the stresses along the folded edges. In future developments of
the design method, a solution has to be implemented that considers this
effect, such as the automatic procedure proposed by Hajdin (1990).

• The local repartition of a uniformly distributed area load from a folded
plate to the folded edges generates two local stress states on the plate.
The first one is an in-plane stress field on the midplane of the plate and the
second one is a combined shear and moment field on the midplane of the
plate, or equivalently, two curved stress fields (Bahr 2017). Future work
will explore the implementation in the design approach of the procedure
suggested by Bahr (2017) to calculate the curved stress fields on the folded
plates.

• The definition of the stress fields at the nodes of the strut-and-tie model
with concurrently loaded edge members (i.e. at the endpoints of the
folded edges) has not been investigated in this work. In fact, these three-
dimensional discontinuities of the structure require the development of
specific nodal solutions using, for example, the procedure suggested by
Bahr (2017).

18.2.2 Design Method

In relation to the set of rules defined within the scope of the proposed design
method (Chapter 11), the following limitations can be highlighted, and possible
improvements suggested:

• Although a solution to implement scale-dependent and material-dependent
constraints within the design method has been proposed (§ 13.1), at
present these constraints have to be formalised according to the specific
design task. In future developments of this work, an explicit formulation
of these constraints will be introduced. Possible solutions in this context
may be found in the works of Buri (2010) and Meyer (2017).

• The geometry of the folded plate structure generated using the devel-
oped approach is represented using a triangulated mesh with no thickness
(§ 13.1). If this simplification is helpful at the conceptual design level,
in subsequent steps of the design process the possibility to control this
parameter could be of fundamental importance. Further improvements of
this research will introduce a new operation that allows transforming the
triangulated mesh into a thick solid geometry. In this regard, the procedure
suggested by Meyer (2017) can be taken into consideration.

• Using the operations defined within the proposed design method, the de-
signer can create and control the topology and the geometry of the folded
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plate structure directly. For specific design applications, however, form-
finding may be more convenient. In this regard, future developments of
the research will explore the integration of other frameworks for analysis
and design of structures in static equilibrium, such as the Combinato-
rial Equilibrium Modelling (CEM) (Ohlbrock and Schwartz 2016; Ohlbrock
et al. 2017). The use of the CEM would make it possible to generate a
first instance of the reference grid through form-finding.

• The proposed design approach promotes the continuous interaction of the
designer with a series of operations for the generation and transformation
of the folded plate structure. The current digital implementation of the
method involves the use of a series of customised tools, which have been
defined within a common CAD software environment but developed in
the form of separate scripts. To enhance the consistency of the digital
implementation, a unified software package has to be developed. In this
context, the open source COMPAS library (Van Mele et al. 2017) may be
used.

18.2.3 Case Studies

Although the case study related to the design of an art gallery within the envelope
of an existing building (Chapter 17) has demonstrated the potentials of the
method for conceptual architectural design, a more refined example may be
developed to further assess the effectiveness of the proposed approach at the
scale of architecture. In fact, in this case study, many important aspects have
not been taken into consideration, such as material and construction constraints.

In this context, the design and construction of a full-scale architectural
project in the form of a pavilion or a small building would be useful. This addi-
tional case study would offer the chance to test the proposed design strategy at
the building scale and in a real design setting while dealing with design questions
that go beyond the conceptual design level.
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19. Final Reflections

Through the investigation of the diverse understandings of structural folding in
architectural design, this research has explored the relationship between the load-
bearing capacity and the space making potential of folded plate structures. A
novel design method to incorporate structural folding in architectural design has
been presented. In particular, the method allows the designer to generate a folded
plate structure that forms the building envelope of an enclosed architectural
space. Grounded on a new structural model for folded plate structures that relies
on 3D graphic statics and the theory of plasticity, the developed approach gives
the possibility to evaluate and control simultaneously the load-bearing behaviour
of the structure at three different levels: static rigidity, equilibrium of the internal
forces, and stress distribution. These aspects can then be used as drivers for the
design development.

The broader scope of the proposed method is to foster a non-hierarchical
exchange between the two interconnected disciplines of architecture and engi-
neering. In fact, the method suggests an operative approach that supports the
dialogue between architects and engineers, while guiding them throughout the
entire design process, starting from the conceptual stage. In this way, essential
design decisions related to space and structure can be taken at the same time,
in a consistent and informed way. In this regard, as highlighted by the structural
engineer Musmeci:

”We cannot be satisfied with a design method that limits the use of rational
tools to the sole process of analysis, leaving the creation of the form to
arbitrary acts supported only by intuition and experience [. . . ] Eventually,
we want to earn and use our freedom as designers; not the freedom of who
can go anywhere but does not know where to go, but the freedom of who
knows what to look for, and also how and where to find it.”1 (Musmeci
1979b, p. 40)

The hope of the author is that the proposed holistic approach to design could
contribute to the development of a design culture where freedom of architectural
expression and engineering thinking are seamlessly combined, in order to trigger
a paradigmatic shift in the current practices of building design.

1Translation of the quotation from Italian to English by the author.
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