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Abstract 

Increasing numbers in global cases of overweight and obesity pose a high burden for 

healthcare systems. Not only metabolic diseases like type 2 diabetes or cardiovascular 

diseases but also several types of cancers are closely connected. Excess intake of dietary 

lipids is a major factor contributing to this development and has a direct impact on the 

microorganisms inhabiting the gastrointestinal system. In both obesity and colorectal 

cancer, distinct changes in these microorganisms, referred to as the microbiome, have been 

identified. 

The present study aims at the comprehensive characterization of the molecular interplay 

between dietary fat, cholesterol, and the intestinal microbiome. A first employed dose-

response experiment identified the lipid species cholesterol as driver of resistance to diet 

induced obesity in germ free mice. This resistance proved to be specific to microbiome 

deficient mouse models, which indicated that cholesterol-gut microbiome interactions are 

decisive. A targeted metabolomics analysis based on mass spectrometry then identified 

changes in the intestinal bile acid pool, which were connected microbial dysbiosis. By 

combining these findings with 16S sequencing in a multi-omics manner, the glyoxylate 

shunt, a metabolic adaptation with implications in metabolic diseases, was identified as a 

possible driver. 

In a further approach, cholesterol and gut microbiota-driven carcinogenicity were 

investigated in a mouse model of intestinal tumors. Germ-free mice exhibited an overall 

increased tumor burden. A merged transcriptomics and stable isotope tracking analysis 

uncovered elevated fatty acid uptake and desaturation as possible metabolic drivers of 

tumorigenesis. Additionally, cholesterol-gut microbiota interactions were capable of 

ameliorating high-fat diet-induced tumorigenesis. In the absence of cholesterol, the cell 

surface proteins Selectin E and P stood out as top candidates with elevated expression. 

Beyond this, sequencing-based analysis of tumor-adjacent bacterial communities with 

modulatory influence on the identified candidate proteins in response to cholesterol was 

revealed. 

Conclusively, the present work established a platform to study the interactions of the lipid 

cholesterol and gut microbial species with relevance to the diseases obesity and colorectal 

cancer. By extensively using germ-free mouse models and multi-omics technology, novel 

bacterial pathways and metabolites with potential implications were characterized. 
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Zusammenfassung 

Die weltweit steigende Zahl der Fälle von Übergewicht und Adipositas stellt eine große 

Belastung für die Gesundheitssysteme dar. Nicht nur Stoffwechselkrankheiten wie Herz-

Kreislauf-Erkrankungen oder Typ-2-Diabetes, sondern auch verschiedene Krebsarten 

stehen in engem Zusammenhang. Die übermäßige Aufnahme von Nahrungsfetten ist ein 

wichtiger Faktor, der zu dieser Entwicklung beiträgt und sich direkt auf die Mikroorganismen 

im Magen-Darm-Trakt auswirkt. Sowohl bei Adipositas als auch bei Darmkrebs wurden 

deutliche Veränderungen dieser Mikroorganismen, des so genannten Mikrobioms, 

festgestellt. 

Die vorliegende Studie zielt auf die umfassende Charakterisierung des molekularen 

Zusammenspiels zwischen Nahrungsfett, Cholesterin und dem intestinalen Mikrobiom ab. 

Ein Dosis-Wirkungs-Experiment identifizierte die Lipidspezies Cholesterin als treibende 

Kraft für die Resistenz gegen ernährungsbedingte Fettleibigkeit bei keimfreien Mäusen. 

Diese Resistenz erwies sich als spezifisch für mikrobiomdefiziente Mausmodelle, was 

darauf hindeutet, dass die Wechselwirkungen zwischen Cholesterin und Darmmikrobiom 

ausschlaggebend sind. Eine gezielte Metabolomanalyse identifizierte dann Veränderungen 

im intestinalen Gallensäurepool, die mit einer mikrobiellen Dysbiose in Verbindung gebracht 

wurden. Durch die Kombination dieser Ergebnisse mit der 16S-Sequenzierung in einer 

Multi-omics-Analyse wurde der Glyoxylat-Beipass, eine Stoffwechselanpassung mit 

Auswirkungen auf Stoffwechselkrankheiten, als mögliche Ursache identifiziert. In einem 

weiteren Ansatz wurden dann Auswirkung von Cholesterin –Darmmikrobiota- Interaktionen 

auf die Kanzerogenität in einem Mausmodell für Darmtumore untersucht. Keimfreie Mäuse 

wiesen eine insgesamt erhöhte Tumorlast auf. Eine kombinierte Transkriptomik- und 

Stabile-Isotope-Tracking-Analyse deckte eine erhöhte Fettsäureaufnahme und -

Entsättigung als mögliche metabolische Faktoren der Tumorentstehung auf.  Darüber 

hinaus konnten die Interaktionen zwischen Cholesterin und der Darmmikrobiota die durch 

eine fettreiche Diät ausgelöste Tumorigenese umkehren. In Abwesenheit von Cholesterin 

stachen die Zelloberflächenproteine Selektin E und P als Top-Kandidaten mit erhöhter 

Expression hervor. Zusätzlich wurden Sequenzierungsanalysen von tumornahen 

Bakteriengemeinschaften durchgeführt und Spezies identifiziert, die direkt mit identifizierten 

Kandidatenproteine interagieren können. 

Mit der vorliegenden Arbeit wurde eine Plattform zur Untersuchung der Wechselwirkungen 

zwischen dem Lipid Cholesterin und mikrobiellen Spezies im Darm geschaffen. Im 

speziellem wurden relevante Interaktionen für die Krankheiten Adipositas und Darmkrebs 

untersucht. Durch den umfassenden Einsatz von keimfreien Mausmodellen und Multi-

Omics-Technologien wurden neue bakterielle Stoffwechselwege und Metaboliten 

idenfiziert, die eine Rolle in diesen Krankheitsbildern spielen können.
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1. Introduction 

1.1.  Lipid absorption in health & disease 

The absorption of dietary lipids plays a crucial role in the energy metabolism of the body. It 

has thus been thoroughly investigated with relevance to metabolic diseases, aiming on 

identifying targets for pharmacological interventions. Recent advances in biomedical 

research in this area have identified the involvement of bacterial species colonizing different 

body sites in metabolic health and disease, in this case particularly the gastrointestinal tract 

(Fan and Pedersen, 2021). These findings are based on observational and correlational 

data obtained in the past decades and thus mostly purely descriptive. In consequence, 

defining underlying mechanisms in a cause-effect manner is the aim of modern research in 

this field. As correlational studies have identified gut microbial signatures not only in 

metabolic diseases but also for several types of cancer, the relevance is even more 

emphasized on. Here, studies have already identified gut microbiota dependent 

mechanisms in the disease pathologies, mainly in the field of colorectal cancer, with 

therapeutic potential (Wong and Yu, 2023). Yet, there are still big unknowns, especially 

when it comes to the connection of obesity and colorectal cancer, which is increasingly 

relevant (Cani and Jordan, 2018; Keum and Giovannucci, 2019) Elucidating further 

mechanisms in gut microbiome-host interactions is thus of utterly importance. Particularly, 

this calls for studies investigating not only gut microbiome-host interactions in either 

metabolic diseases or colorectal cancer, but in a combined and targeted manner. Thus, the 

present study aims on deciphering molecular gut microbiome-host interactions, which pose 

a combined relevance in obesity and colorectal cancer. As target lipid species in this context 

cholesterol was chosen, which has numerous implications in both disease pathologies 

(Huang, Song and Xu, 2020) and additionally interacts with the gut microbiota.  

Generally, the most important site for the molecular processes facilitating lipid absorption is 

the small intestine, especially its upper parts. Major proportions of the lipids derived from 

ingesting foods found in a human body are fatty acids in the form of triglycerides and 

cholesterol (Baynes, 2014). Overconsumption of energy rich foods, which consist mainly of 

lipids and carbohydrates, is the main driver of obesity development in the western world. 

Obesity  and excess lipid intake are further connected with diseases like cardiovascular 

diseases (CVD), type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD) and 

several types of cancers, among them colorectal cancer (CRC; Haslam and James, 2005).  
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1.1.1. Molecular regulation of intestinal lipid absorption 

Before investigating the role of the gut microbiome in lipid absorption physiological 

processes in this field have to be defined. The digestion and absorption of fatty acids is a 

complex process involving numerous steps and rate-determining enzymes. Fatty acids are 

present in the diet mainly in the form of triglycerides (TG). Upon entering the stomach 

digestion starts by the breakdown of TGs through gastric lipase (most important in infants) 

and pancreatic lipase (most important in adults, Hamosh et al., 1981). TGs are broken down 

into diglycerides (DG), monoglycerides (MG), free fatty acids (FFA) and glyceride. When 

entering the small intestine, dietary lipids are further emulsified by bile acids, which 

additionally increase the activity of the pancreatic lipase. The resulting micelles are then 

transported to the enterocytes where the actual absorption process takes place. Major 

transporters responsible for the uptake into enterocytes are cluster of differentiation 36 

(CD36) and, to a lower degree, fatty acid transport protein 4 (FATP4; Ko et al., 2020). Both 

of them, however, are suggested to play a minor role in intestinal lipid absorption, as 

experiments in mice propose (Drover et al., 2005; Shim et al., 2009). Instead, passive 

diffusion is the primary way of FAs entering the enterocyte. In the cell, FAs and MAGs are 

re-esterified by the respective actions of MGATs and DGATs in the ER. The resulting TGs 

can either be stored in lipid droplets or designated for secretion via chylomicrons. 

Chylomicrons are complexes consisting of TGs, cholesterol, lipoproteins and phospholipids. 

Biosynthesis and maturation of chylomicrons is multi-step process including addition of the 

lipoprotein Apolipoprotein B48 (ApoB48) and other Apolipoproteins. Upon maturation, 

chylomicrons enter the system by delivery into lymphatic vessels, enter the blood stream at 

the thoracic duct, and are transported to other organs, e.g. the liver or adipose tissue (Wit 

et al., 2022). 
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Figure 1: Summary of intestinal fatty acid and cholesterol absorption  

Dietary lipids are predominantly absorbed in the upper regions of the small intestine. After breakdown 

through lipase activity and emulsification with bile acids, FAs and Chol are absorbed either by 

transporter activity or, in case of FAs, by passive diffusion. In the cell, FAs and Chol are re-esterified 

by their respective enzyme cascade and incorporated into chylomicrons, which are subsequently 

excreted into the lymphatic system. In the case of cholesterol, also excretion from the system into 

the gut lumen can take place, a process referred to as TICE. Small intestinal gut microbiota can 

influence these processes e.g. by the conversion of primary into secondary bile acids or by converting 

cholesterol into cholesterol-sulfate or coprostanol. BA, bile acid; TG, triglyceride; DG, diglyceride; 

MG, monoglyceride; chol, cholesterol; CD36, cluster of differentiation 36; FATP4, fatty acid transport 

protein 4; NPC11L, Niemann Pick 1C Like 1; SR-BI, Scavenger Receptor class B type 1; ABCG5,  

ATP-Binding cassette subfamily G member 5; ABCG8 ATP-Binding cassette subfamily G member 

8; MGAT, monoacylglycerol acyltransferases;DGAT diacylglycerol acyltransferases; ACAT acyl-

CoA:cholesterol acyltransferases. 

Cholesterol is predominantly present in the diet in the raw form or esterified with a fatty acid. 

Thus, digestion of cholesterol starts as well by the breakdown through lipase activity. It is 

then further incorporated into micelles and transported to the enterocytes. The most 

important intestinal segments for the uptake of cholesterol are the Duodenum and the 

proximal Jejunum (Wang, 2003). Uptake of cholesterol into the enterocytes is facilitated by 

Niemann Pick C1 Like1 (NPC1L1) and accounts for about 70% of intestinal cholesterol 

absorption in mice (Jia, Betters and Yu, 2011). Another transporter implicated in cholesterol 

uptake into enterocytes is the Scavenger Receptor class B type 1 (SR-BI), yet its importance 

is more controversial (Mardones et al., 2001). In the enterocyte, absorbed free cholesterol 
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is esterified by the action of acyl-CoA:cholesterol acyltransferases (ACAT) and incorporated 

into chylomicrons as one of their core elements (Dawson and Rudel, 1999). In contrast to 

the luminal absorption of cholesterol, enterocytes are also capable of releasing cholesterol 

into the gut lumen, a process referred to as transintestinal cholesterol efflux (TICE). This 

systemic removal is facilitated by the transporters ATP-binding cassette subfamily G 

member 5 and 8 (ABG5 and ABCG8), which form a heterodimer. TICE is a well-accepted 

essential pathway of cholesterol clearance in mice and humans (Jakulj et al., 2016). 

1.2. The (small) intestinal gut microbiome 

The term “microbiome” refers to the sum of all microbes, including bacteria, viruses and 

fungi, their genes and gene products that are found in the mammalian body. Initially found 

to be negligibly connected to the described molecular machinery of intestinal lipid 

absorption recent studies proved these interactions to be directly relevant (Martinez-Guryn 

et al., 2018). Whereas basically all body sites are colonized, the by far highest numbers and 

diversity can be found in the digestive system (Lloyd-Price et al., 2017). In the gut, a 

concentration gradient is present along the intestinal system. The Duodenum contains a 

comparable low number of microbes of 107 per gram wet weight, which increases along the 

Jejunum to an amount of 1011per gram wet weight in the Ileum. The highest number can be 

found in the colon, with numbers ranging up to 1014 microbes per gram wet weight (Sender, 

Fuchs and Milo, 2016). Due to this high number and its accessibility by taking stool samples 

most studies investigating host-microbiome crosstalk have focused on the large intestinal 

microbiome, which is thus well characterized (Kastl et al., 2020).  

Studies investigating the small intestinal microbiota remained scarce for a longer period, 

which is mainly owed to the more difficult accessibility. Given the fact that the small intestine 

is the main site of nutrient uptake and contains the largest mucosal surfaces with gut 

receptors, immune cells and nerve cells increasing research focus is placed on microbiota-

host interactions here (Willem M de Vos et al., 2022). This is especially important with 

relevance to lipid metabolism, which is also mainly facilitated here.   

1.2.1. Microbiome in Obesity 

The global numbers of overweight and obesity are rising, with about 1.9 billion adults and 

380 children million affected respectively according to the WHO (Obesity and overweight, 

2023). Connected with the resulting rising comorbidities, this generates a large burden for 

the health systems, especially in low-income countries. Changes in the gut microbiome 
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have been elucidated extensively in the last decade, discovering a multitude of microbiome 

dependent variations with relevance to obesity and its comorbidities (Carmody and Bisanz, 

2023). 

The concept of gut microbiota being involved in energy and nutrient harvest from the gut 

first evolved in the early 2000s (Bäckhed et al., 2004) .It was then reported for the first time  

in 2007 that germ free mice are resistant to diet induced obesity (DIO) when fed a western 

type high-fat diet (HFD, Bäckhed et al., 2007). Following this discovery, numerous further 

studies have been conducted to identify the underlying mechanism of this phenotype. The 

quality and composition of the diet was recognized to be a pivotal factor (Fleissner et al., 

2010). In further experiments the dietary fat source could be identified as a driving factor for 

this resistance with potential implications of dietary cholesterol (Kübeck et al., 2016). 

Particularly, the authors fed diets with different primary fat sources, containing either animal-

based lard or plant based palm oil. Only the lard-based diet was capable of inducing the 

DIO resistant phenotype in the GF mice and no resistance was detectable in conventional 

mice. Analysis of metabolites and gene expression yielded differences in cholesterol 

derived metabolites and the expression of cholesterol related hepatic genes Cyp7a1 and 

Nr1h4 (Kübeck et al., 2016). 

Whereas this pointed toward a clear resistance to diet-induced obesity in GF mice recent 

studies failed to reproduce these results, with GF mice showing the same induction of 

obesity as conventional (Conv) mice (Moretti et al., 2021). Additionally, human trials 

investigating the efficacy of microbial interventions on obesity generally failed to achieve a 

reduction in body weight. However treatments showed potential towards improved lipid and 

glucose metabolism (Depommier et al., 2019). Resulting from these findings the field now 

focuses more on deciphering specific microbiota dependent mechanisms with relevance to 

obesity and its comorbidities. 

1.2.2. Interactions of gut microbiota and lipids 

As this finding draws a clear correlation in obesity, the gut microbiome and intestinal and 

systemic lipid metabolism there is a growing interest in comprehending this intricate 

connection. Focus is thus placed on the molecular machinery connecting diet, microbiota, 

and their role in regulating lipid absorption, metabolism, and energy balance in the host. 

Various microbial signatures and metabolic pathways can influence these processes 

through numerous mechanisms. The impact of the gut microbiota on host lipid metabolism 

and overall lipid composition can be directly observed in different areas such as the plasma, 
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liver, and different segments of the intestines (Kindt et al., 2018; Liebisch et al., 2021). 

Feeding mice a HFD leads to specific changes in the microbiota of the Jejunum, resulting 

in a distinct HFD-associated microbial signature. When this signature is transferred to germ-

free mice, it enhances lipid uptake not only on a HFD but also on a regular low-fat diet, 

indicating that the small intestinal microbiota can affect lipid absorption independently of the 

diet (Martinez-Guryn et al., 2018). This effect is likely due to altered metabolic pathways 

associated with changes in microbiota signatures, which can persist even without 

continuous HFD feeding. Another study describes how bacterial metabolites like L-lactate 

or acetate directly influence the lipid metabolism of enterocytes by inhibiting the secretion 

of chylomicrons through various mechanisms (Araújo et al., 2020). Additionally, short-chain 

fatty acids produced by bacterial fermentation of dietary fiber enter the bloodstream and 

serve as building blocks for the synthesis of long-chain fatty acids in the liver (Kindt et al., 

2018). Certain bacterial taxa, such as Lactobacillaceae, metabolize dietary polyunsaturated 

fatty acids (PUFA) as a defense mechanism against antimicrobial toxins. In mice fed a HFD 

supplemented with the omega-6 PUFA linoleic acid, the introduction of specific bacterial 

strains capable of producing a metabolite called 10-hydroxy-cis-12-octadecenoic acid 

(HYA) improved diet-induced obesity, adipose tissue inflammation, and glucose tolerance 

(Miyamoto et al., 2019). HYA stimulated the secretion of glucagon-like peptide 1 (GLP1) 

from enteroendocrine cells and enhanced intestinal peristalsis through the prostaglandin 3 

receptor (EP3), resulting in reduced intestinal lipid absorption. Mono-association of germ-

free mice with HYA-producing bacterial strains confirmed the beneficial impact of these 

microbes (Miyamoto et al., 2019). 

In comparison to studies investigating the gut microbial influence on nutrient absorption, 

investigation of microbiome-cholesterol interactions are more uncommon. A long known 

and major bacterial mechanism of cholesterol turnover is the conversion of cholesterol to 

coprostanol (Juste and Gérard, 2021). Bacteria harboring pathways for this conversion are 

capable of reducing systemic host cholesterol levels, which is strongly associated with a 

reduced risk of CVD (Kenny et al., 2020). Besides these well-known pathways, gut bacteria 

are further able to modulate cholesterol itself. A combined mass spectrometry and 

sequencing approach yielded the bacterial transformation of cholesterol to cholesterol 

sulfate in mice and humans (Le et al., 2022). Cholesterol sulfate was further identified to be 

able to reduce inflammatory response in the gut and alleviate ulcerative colitis (Xu et al., 

2022). 

These findings present the rather new concepts in gut microbiome- lipid interactions that 

have been established after coming from correlational studies. In the case of the lipid 
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cholesterol, interactions have been described as, yet mechanistic outcomes with relevance 

to disease pathologies are scarcer, which emphasizes on the need for further studies. 

1.3. Colorectal cancer 

In synopsis of the present work so far the influence of gut microbiome interactions with lipid 

species can be regarded as factor in obesity development. Another disease, where the 

interplay of lipid species and the gut microbiome play an emerging and that is further directly 

connected to obesity colorectal cancer (CRC). CRC ranks among most common cancers 

globally. In numbers, it accounts for the third most new cancer cases as well as for the third 

most cancer related deaths in humans (Siegel, Miller and Jemal, 2019). In the last decades 

the global diagnosed cases of CRC showed an increasing trend, which are estimated to hit 

2.2 million cases, with 1.1 million deaths by 2030 (Arnold et al., 2017). Rises in these 

numbers are especially seen in middle and low-income countries, which can be attributed 

to the adoption of “western” lifestyles in these countries. This lifestyle is defined by the intake 

of poor diets and alcohol, smoking reduced level of physical activity and ultimately the 

development of obesity (Keum and Giovannucci, 2019). 

Next to the commonly known connection between obesity and metabolic diseases, excess 

body fat and body weight are further considered major risk factors for several types of 

cancer, among them CRC. Estimates range that obesity accounts for up to 20 % of all 

cancer related deaths (Calle et al., 2003; Calle and Kaaks, 2004). These findings are mostly 

based on epidemiological studies based on body mass index (BMI) or waist circumference, 

which are rather blunt measures to capture the complex biology in this interplay. The cancer 

promoting character of an obese state is mainly attributed to a chronic level of inflammation 

of the adipose tissue (Quail and Dannenberg, 2019). Other factors involved are the direct 

influence of a high fat intake, which is often connected with an obese state, or a gut microbial 

dysbiosis (O’Keefe, 2016). Entangling the direct contribution of these two connected risk 

factors and obesity alone is subject to current research. Especially in the case of CRC 

investigating this interplay and establishing a mechanistic relationship is of utterly 

importance due to the direct exposure to fat and the gut microbiota in the intestine. 

1.3.1. Risk factors for colorectal cancer – the gut microbiome 

It is estimated that about 65 % to 88 % of CRC cases happen spontaneously and not 

resulting from genetic disposition (Lichtenstein et al., 2000). Identification of potentially 

modifiable risk factors is thus considered a promising approach. The intestinal gut 
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microbiome is known to be involved in colorectal tumorigenesis since the 1960 and its role 

in intestinal carcinogenesis has received a lot of attention in the last decade (Laqueur, 

McDaniel and Matsumoto, 1967; Wong and Yu, 2019). Compared to obesity more 

mechanistic findings linked to disease pathologies have already been identified. Some of 

the bacterial taxa, where accumulating evidence exists are Fusobacterium nucleatum, 

Escherichia coli and Bacteroides fragilis. 

F. nucleatum was one of the first bacterial species of the gut microbiome, which was 

identified to be involved in colorectal tumorigenesis. Correlational studies identified its 

presence in patients to be correlated with patient outcome and shorter survival in CRC 

patients (Flanagan et al., 2014; Mima et al., 2016). Mechanistically, F. nucleatum is 

proposed to promote immune evasion and an anti-inflammatory tumor microenvironment 

(Tilg et al., 2018). Mucosa-associated E. coli has also been identified with an increased 

abundance in CRC tissue and association with tumor stage and prognosis (Bonnet et al., 

2014). This has been attributed to the E. coli produced colibactin, which causes DNA 

damage. In a similar manner B. fragilis is connected to CRC, which is proposed to cause 

inflammation-related tumorigenesis by secretion of the BFT toxin (Tilg et al., 2018). 

In addition to the directly defined actions of the above-mentioned bacterial species, the gut 

microbiota harbors more general mechanisms with relevance to intestinal carcinogenesis. 

One of the key areas is the microbial metabolism of dietary components. Several 

metabolites produced in this processed have been identified to be either pro- or anti-

tumorigenic. Pathways producing detrimental metabolites include the products of bacterial 

protein fermentation, the production of hydrogen sulphide and secondary bile acids. 

Bacterial protein fermentation of aromatic amino acids N-nitroso compounds, which act pro-

tumorigenic and cause mutations via DNA-alkylation (Gill and Rowland, 2002). Another pro-

tumorigenic bacterial metabolite is hydrogen sulphide, which is produced from diet-derived 

sulfate and damages the colonocyte barrier (Marquet et al., 2009). Desulfovibrio spp. is well 

known for this metabolic process. Special attention also goes to the bacterial conversion of 

primary to secondary bile acids (BAs). BAs exhibit strong antimicrobial actions, and thus 

modify composition of the gut microbiota. Microbial conversion of bile acids starts in the 

small intestine and is then extensively performed in the large intestine. The resulting 

secondary BAs are more hydrophobic than primary BAs, which boosts their ability to 

generate pro-tumorigenic ROS and RNS (Louis, Hold and Flint, 2014). 

In contrast to these carcinogenic mechanisms, also tumor suppressive mechanisms of the 

gut microbiota have been identified. The most famous is the fermentation of dietary non-
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digestible carbohydrates like dietary fibre and resistant starch to short chain fatty acids 

(SCFAs). Upon bacterial fermentation, SCFAs are quickly absorbed by colonocytes and 

further metabolized. Especially butyrate has been identified to act anti-inflammatory by 

inhibiting histone deacetylation and thus downregulate pro-inflammatory cytokines (Chang 

et al., 2014). Further anti-inflammatory actions have been identified by modulating colonic 

regulatory T-cell responses (Furusawa et al., 2013). Other tumor suppressive actions of gut 

microbiota comprise the biotransformation of phytochemicals, although mechanisms here 

are less defined and require further evaluation (Cani and Jordan, 2018). 

The capability of the gut microbiota to act either pro or anti tumorigenic is also reflected in 

experimental settings using germ free mouse models, which are considered as gold 

standard in microbiome research. Results from these studies deliver conflicting results, with 

some yielding either increased or decreased tumorigenesis in microbial absence (Leystra 

and Clapper, 2019). Deciphering the interplay of specific components and classes with the 

gut microbiota thus poses promising new insights. 

1.3.2. Aberrant lipid metabolism in colorectal cancer 

A central aspect of identifying CRC relevant mechanisms in the interplay of the gut 

microbiome and lipid species is defining the pathological lipid metabolism. Generally, 

cancers show an extensive need for energy to fuel cell growth and proliferation, which 

results in a wide range of metabolic perturbations to adapt to those needs. The most famous 

is probably the Warburg effect, which identifies anaerobic glucose metabolism even in the 

presence of oxygen in tumor tissue (Warburg, 1956). Another key feature of cancer 

metabolism is the enhanced dependence on lipids and in particular fatty acids, which are 

obtained by intracellular synthesis or cellular uptake (Snaebjornsson, Janaki-Raman and 

Schulze, 2020). Because of this characteristic feature of reshaping lipid metabolism, cancer 

shows changes in the lipid profiles found in tumors across various organs such as the liver, 

lung, and the colon (Vriens et al., 2019; Ecker et al., 2021). The complexity of cancer related 

alterations in FA metabolism has been demonstrated in a recent study. Vriens et al showed 

that cancer cells where capable of bypassing SCD-dependent desaturation by an unusual 

desaturation pathway and thus producing the FA sapienate (Vriens et al., 2019). SCD-

dependent desaturation is  generally considered the only synthesis pathway of MUFAs and 

essential for tumor growth and progression (Snaebjornsson, Janaki-Raman and Schulze, 

2020). Such metabolic reprogramming of lipids extends to the surrounding tumor 

microenvironment, affecting also surrounding tissue. In CRC, it has been demonstrated that 

cancer-associated fibroblasts derived from malignant tissue exhibit an increase in FAs and 
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phospholipid accumulation while experiencing reduced breakdown, which influences the 

migration of cancer cells (Gong et al., 2020). 

The balance between de novo synthesis and uptake of lipids is directly influenced by the 

presence of various lipid species in the surrounding extracellular environment. This 

availability is not only affected by the lipid composition of the diet but is also impacted by 

the heterogeneity present in the tumor microenvironment (Röhrig and Schulze, 2016). In 

contrast to other cancers, CRC has the unique feature of lipids being present directly in the 

gut lumen. Next to obesity, intake of FA rich diets has been identified as a risk factor for 

CRC development (Steck and Murphy, 2020). This increased intake results in higher luminal 

availability of FAs, which in turn also alters present gut microbiota. A recent study 

investigating FA induced tumorigenesis and its dependence on gut microbiota in preclinical 

models identified HFD-induced changes in gut microbial metabolism as driver of aggravated 

tumorigenesis. HFD feeding in microbial deficiency resulted in no altered tumorigenesis 

compared to controls (Yang et al., 2022). 

Besides FAs, also cholesterol and aberrations cholesterol metabolism are regarded as 

essential to cancer development and growth. Cholesterol is a major sterol component of 

cell membranes and cholesterol-derived metabolites have intricate functions in both 

facilitating cancer progression and suppressing immune responses (Huang, Song and Xu, 

2020). Cholesterol further shapes the tumor microenvironment, yet in the case of CRC, 

exogenous and dietary cholesterol have to be separated. Luminal cholesterol can either 

shape the TME directly or after its conversion to cholesterol metabolites by gut microbial 

action. Increased intake of dietary cholesterol is generally regarded as a risk factor for CRC. 

It has to be mentioned though that intake of dietary cholesterol is usually connected with 

other risk factors, which makes separation difficult (Hu et al., 2012). Deciphering differing 

effects of endogenous and dietary cholesterol on tumor-related lipid metabolism with 

respect to gut microbiota can thus bring new insights into the specific role of luminal lipids 

in CRC.  

1.4. Objectives 

The overall aim of the present study was to elucidate the role of dietary cholesterol and gut 

microbiome-cholesterol interactions with relevance to obesity and CRC. Two murine 

disease models were thus introduced and comprehensively compared in germ free and 

conventional experimental settings.  
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The identification of mechanisms in the complex interplay of gut microbiome and lipid 

species interactions requires defined and targeted approaches. As a first objective of this 

work, the initial finding that germ free mice are resistant to diet induced obesity (Kübeck et 

al., 2016) was reproduced. To refine the findings a purified diet supplemented with 

cholesterol was used. By employing a dose-response experiment in two microbiome 

deficient mouse model a solid backbone was established to specifically study disease 

relevant interactions in response to cholesterol 

Following this, the second aim of this study was then to investigate gut microbiome-

cholesterol interactions that are implicated in the resistance to obesity. Special focus was 

placed on two parts: First, differences in energy balance and cholesterol homeostasis 

parameters and secondly changes in gut microbial functional profiles. Even though clear 

results were obtained for obesity parameters changes in relevant metabolic processes were 

conflicting. Nevertheless, an interesting functional gut microbiota profile with potential 

implications in obesity was identified here. 

The third aim of the present study was subsequently to identify cholesterol and gut-

microbiome cholesterol interactions with relevance to colorectal cancer. The Apc1638N 

mouse model for intestinal tumorigenesis was thus included in germ free and conventional 

settings. Cholesterol was thought to influence the intestinal tumorigenesis either alone or in 

interaction with the gut microbiota. Interestingly, the gut microbiota was clearly required to 

influence tumorigenesis here. A downstream multi-omics analysis revealed a complex 

interplay of cancer dependent adhesion-molecules and gut microbial action as underlying 

mechanism. 
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2. Material & Methods 

2.1. Animal experiments 

For the studies male C57Bl6/N (SPF), C57Bl6NJ (GF) and male as well as female 

Apc1638N were selected. Germ free mice were initially supposed to be Bl6/N, however 

SNP analysis of 39 strain specific SNPs yielded 5/39 Bl6/J specific SNPs and are therefore 

referred to as Bl6/NJ. Conventional Apc mice breeding pairs were derived from GF mice to 

preclude genetic differences. All animal experiments were conducted in either the SPF-I, 

SPF-II or Gnotobiology facility of the Technical University of Munich, School of Life Sciences 

Weihenstephan. Mice were bred in house and group housed at 22 ± 1 °C and 12 h/12 h 

light – dark cycles at ~ 55% humidity with ad libitum access to water and food prior and 

during the experiments. Before the experimental phase, all mice were fed a standard chow 

diet (Ssniff, V1124-300). Conventional (Conv) and  antibiotics treated(AbX) animals were 

housed in individually ventilated cages (Greenline IVC, Tecniplast, 501 cm²), GF mice were 

housed in an open cage system (M2: 360 cm²; M3: 540 cm², Harlan) placed in a plastic film 

isolator (Harlan). Sterility inside the isolator was controlled regularly by aerobic and 

anaerobic cultivation in the Core Facility Microbiome of the ZIEL Institute for Food & Health 

as well as Gram staining of fecal smears and 16S rRNA gene targeted qPCR. No 

contaminations were detected during the experiments. In all facilities hygiene monitoring 

according to FELASA guidelines was performed quarterly to confirm the absence of 

pathogens. All experiments and procedures were approved by the local authorities in 

charge (Regierung von Oberbayern, approval number ROB 55.2-2532.Vet_02-19-193) 

according to national law. 

2.1.1. Diets 

All research diets were supplied by Ssnif Spezialdiäten GmbH (Soest, Germany). Until the 

start of the experiment at the age of 8 weeks mice received an autoclaved standard chow 

diet (V1124-000). Diets were then switched to a chemically defined CD until the age of 12 

week followed by the respective experimental diet. In all diets the fibre component was 

modified using Inulin (2.5%) and oat fibre (2.5%) to account for the influence this component 

has on the intestinal microbiome (Morrison et al., 2020). Sterilization of the specialized diets 

was performed by radiation at 50 kGy independent of the facility. Cholesterol was 

supplemented as raw substance (purity >95%; 97-103% total sterols). Table xy displays a 

detailed summary of the dietary composition.  



13 
 

Table 1:  Composition of experimental mouse diets. Only one cholesterol-

supplemented diet is shown exemplary, the others used differ just in the amount of the 

cholesterol component. 

1) Calculated with 94% crude fiber, 90 % total dietary fiber and 85% soluble fiber 

2) Calculated with 94% crude fiber, 90 % total dietary fiber and 85% soluble fiber 

3) Physiological fuel value 

Ingredients [%] 

Product No. 

Control diet 

S5745-E906 

PHFD + 0.00 

S5745-E920 

PHFD + 0.05 

S5745-E924 

Casein  24.0 24.0 24.0 

L-Cystine 0.2 0.2 0.2 

Corn Starch 47.8 27.8 27.748 

Maltodextrin 5.6 5.6 5.6 

Sucrose 5.0 5.0 5.0 

Inulin 2.5 2.5 2.5 

Oat fiber 2.5 2.5 2.5 

Vitamin premix 1.2 1.2 1.2 

Mineral Premix 6.0 6.0 6.0 

Choline Cl 0.2 0.2 0.2 

Cholesterol. < 96 % - - 0.052 

Palm oil - 20.0 20.0 

Soybean oil 5.0 5.0 5.0 

Proximate contents    

Crude Protein 21.1 21.1 21.1 

Crude fat 5.1 25.1 25.1 

Crude fiber(1,2) 4.8 4.8 4.8 

NDF(1,2) 2.3 2.3 2.3 

Soluble fiber(1,2) 2.1 2.1 2.1 

Total dietary fiber(1,2) 4.5 4.5 4.5 

Crude ash 5.4 5.4 5.4 

Starch 45.9 26.7 26.7 

Dextrin 5.5 5.5 5.5 

Sugar 6.2 6.2 6.2 

Energy (Atwater) 

Protein 

Fat 

Carbohydrates 

15.4 

23 

13 

64 

19.7 

18 

48 

34 

19.7 

18 

48 

34 
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2.1.2. Antibiotic treatment 

Antibiotic treatment started at an adult age of 12 weeks to prevent growth related 

implications and lasted until the end of the feeding trial at 20 weeks. Because of the rather 

long treatment period of 8 weeks the antibiotic cocktail was limited to two substances. Both 

Neomycin and Vancomycin are poorly absorbed in the GIT, further limiting the impact on 

the host (Zhang et al., 2014). Neomycin (1g/l, bela-pharm, Vechta, Germany) and 

Vancomycin (0.5g/l, Eberth Arzneimittel, Ursensollen, Germany) were freshly dissolved in 

the ad libitum available drinking water. Water bottles were covered with tin foil to avoid 

photodegradation and changed 2 times a week. Drinking behavior of the mice was screened 

regularly to avoid dehydration and no complications were detected during the experiments. 

2.1.3. Mouse model for intestinal tumorigenesis 

To analyze the influence of high-fat diets on the development and progression of colorectal 

cancer, mice of the Apc1638N model were used. These mice harbor a knockout mutation in 

the tumor suppressor gene Apc, with the allele Apc1638N (international nomenclature: 

Apctm1Rak; first described: Fodde et al., 1994). The allele Apc1638N is lethal in the early 

embryonic stage in homozygous status, therefore only heterozygous animals are used for 

breeding and experiments. A mutation in this gene is considered the first step in the 

development of the vast majority of all sporadic, i.e. non-hereditary, colorectal carcinomas 

in humans, as well as in the hereditary FAP syndrome (Kinzler and Vogelstein, 1996; The 

Cancer Genome Atlas Network, 2012). In the mouse model, the phenotype results in the 

formation of intestinal polyps in nearly 100% of the mice. Several polyps (3-5 adenomas, or 

adenocarcinomas) develop per animal in the small intestine and less frequently in the large 

intestine, the appearance of which is associated with anemia, weight loss, and 

splenomegaly. Obstruction of intestinal passage has never been observed, nor have 

metastases to other organs. Tumors form after a latency period of ~ 6 months, before that 

only microadenomas (< 1 mm) are detectable, making this model a suitable choice for 

steady interventions such as feeding experiments (Zeineldin and Neufeld, 2013). 

2.1.4. Genotyping 

Mice were genotyped at an age of 3-4 weeks using earpieces obtained during tagging. 

Tissues were lysed in tail-buffer (10 mM TRIS, 50 mM KCl, 0.45 % Nonidet P40, 0.45 % 

Tween-20, 10 % gelatin in H2O at pH 8.3 % with 0.2 mg/ml Proteinase K) for at least 4h at 
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65°C and constant shaking followed by inaction of Proteinase K at 95°C for 10 min. The 

resulting DNA – containing mix was analyzed using the PCR setup shown in table 2. 

Table 2: PCR Setup for Genotyping of Apc1638N mice 

Component Reaction Volume [µl] 

2x MyTaq Mix (Bioline) 10 

Nuclease-free water 7 

Forward primer (10 µM) 1 

Reverse Primer (10 µM) 1 

DNA mix 1 

Total 20 

 

Step Temperature [°C] Time [s] Cycles 

Initiation 94 60 1 

Denaturation 94 20 30 

Annealing 58 20 30 

Extension 68 20 30 

Final extension 68 60 1 

Cooling 10 pause ∞ 

 

Primer no.  Position Sequence 

2604 APC Gene - Forward CAGCCATGCCAACAAAGT 

2605 APC Gene - Reverse GGAAAAGTTTATAGGTGTCCCTTCT 

2606 Neomycin cassette - 

Reverse 

GCCAGCTCATTCCTCCACTC 

All used primers were synthesized by Eurofins Genomics, Ebersberg, Germany. 

2.1.5. Sampling 

Mice were asphyxiated using CO2 und subsequently blood and organs were collected, 

shock frozen using liquid nitrogen and stored at -80 °C until further analysis. To investigate 

the role of different intestinal segments the intestinal tract was subdivided into different 

segments. For the WT mice small intestinal segments were defined as Duodenum (proximal 

8cm) – Jejunum (middle region) – Ileum (distal 8 cm) (Fig. 2 A). 

Apc1638N smile intestinal segments were defined as Periampulary Region (0.5 cm proximal) 

– Duodenum (proximal 1/3) – Jejunum (middle 1/3) – Ileum (distal 1/3). For the assessment 
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of tumor burden the whole GIT was removed and directly transferred to an ice- cooled glass 

plate. Intestinal segments were separated, cut longitudinal and transferred to filter paper 

(Biorad Laboratories, Hercules, California, USA). Tumor size was assessed by calculating 

the product of the long diameter and the short diameter measured with a transparent 

laboratory ruler. An exemplary picture of a duodenal section with tumors marked is shown 

in Figure 2 B. 

 

Figure 2: Intestinal segment definition 

Due to the lack of physiological partitioning, the small intestinal segments (A) have to be defined as 

described in the text for the different experiments. For the scoring of the tumoral burden and sampling 

of tumor tissue segments (B) were fixed on filter paper on a cooled glass plate, measured, and then 

collected separately. Samples were defined as Tumor (T), Tumor Adjacent (TA) directly next to the 

Tumor sample and Tumor Distal (TD) as distal of the tumor sample. 

2.2. Metabolic Phenotyping 

2.2.1. Bomb calorimetry 

Bomb calorimetry was used to determine energy content of food and feces and thus 

calculate energy intake and fecal excretion. Measurements were performed after at least 

one week of dietary adaption, at an age of 13-14 weeks. Cage contents of group-housed 

mice were collected after 3-5 days and dried for 24-48h. For the separation of dietary 

residuals, embedding, and feces, a multi sieve shaker (VWR, Darmstadt, Germany) with a 

respective sieve system (5 mm – 1 mm,) was used. Feces were dried at 55°C for 5 -7 days, 

homogenized using a TissueLyser (Retsch) and pelletized using an in house built pelleting 

press. 1g pellets were applied to the bomb calorimeter (Parr 6400, Parr instruments, Moline, 

Illinois, USA) and burned at a high-pressure oxygen atmosphere of 30 bar. In the case of 

limited material available a combustion aid (Benzoic Acid, Parr instruments, Moline, Illinois, 

USA) was added. Dietary energy content was determined by burning 1g of diet collected 

from feeding racks to preserve the feeding state.  
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Energy intake was calculated as the amount of diet consumed multiplied with dietary energy 

content and normalized to 24h and mouse number per cage. Fecal energy content values 

were normalized to 1g and mouse number per cage. Germ free and AbX mice have a liquid, 

diarrhea like fecal texture (Clavel et al., 2016) making comprehensive collection and 

separation of feces impossible, therefore no assimilation efficiency values have been 

calculated.  

2.3. Next Generation Sequencing 

2.3.1. 16S rRNA Sequencing  

Intestinal scrapings were obtained by carefully scraping pinned section with a sterilized 

microscope slide and then collected together with cecal contents and immediately snap 

frozen in liquid nitrogen and stored at -80 °C. DNA isolation, library preparation and 

sequencing were performed at the ZIEL – Core Facility Microbiome of the Technical 

University of Munich according to published protocols (Reitmeier et al., 2020). Briefly DNA 

was isolated using a MaxWell® DNA isolation kit (Promega GmbH, Walldorf, Germany). 

Primers targeting the bacterial V3-V4 region of the 16S rRNA gene including a forward and 

reverse Illumina specific overhang and a barcode were used. PCR cycles in the second 

PCR were increased by 10 to 25 for scrapings due to the lower microbial density. 

Sequencing was then performed on an Illumina MiSeq® device. 

Obtained sequencing files were demultiplexed and analyzed using the IMNGS2 platform, 

which is based on the UPARSE approach for sequence quality check, chimera filtering and 

cluster formation (Lagkouvardos et al., 2016; https://www.imngs2.org/). Analysis was 

performed using standard values for barcode mismatches, trimming, expected errors and 

abundance cutoff. Downstream analysis of the IMNGS platform output files were performed 

using the NAMCO platform (Dietrich et al., 2022). In brief, obtained abundances have been 

normalized to minimum sampling depth and quality of obtained sequences was assessed 

using rarefaction curves (McMurdie and Holmes, 2014). Alpha Diversity is displayed as 

Richness and Simpson effective (Jost, 2007), beta diversity based on Bray-Curtis 

dissimilarity and PCoA (Gower, 1966) and Heatmap clustering based on Phyloseq 

(McMurdie and Holmes, 2013) using the detrended correspondence analysis (DCA) method 

. Functional predictions of bacterial pathways was performed with PICRUST2 (Douglas et 

al., 2020) and investigated using the centered log ratio function of the aldex2 R-package 

with 256 Monte Carlo simulations. For the identification and classification of bacterial 

enzymes and pathways the Biocyc meta collection was used (Karp et al., 2019). 



18 
 

Assignment of species to specific zOTUs was performed with EZBioCloud (Yoon et al., 

2017). 

2.3.2. Full length RNA Sequencing  

Full length RNA sequencing was performed at the NGS core facility in cooperation with 

Dr. Christine Wurmser (Liesel-Beckmann-Str. 1, TUM School of Life Sciences, Technical 

University of Munich, 85354-Freising, Germany). RNA was isolated from the tumors and 

respective control tissue using an adapted version of the `single-step method´(Chomzynski, 

1987). Briefly, tissue was transferred to 800 µl TRIsure™ (BIO-38033, Bioline) and lysed 

mechanically by ULTRA-TURRAX® (IKA®-Werke, Staufen). After centrifugation (12.000 g 

for 15 min at 4°C) the upper aqueous phase was transferred to a kit column and the isolation 

was proceeded according to the manufacturers protocol (SV Total RNA Isolation System, 

Promega, Walldorf). RNA concentration as well 260/280 and 260/230 control ratios were 

determined using a spectrophotometer (Nanodrop-1000).  

Purity and integrity of purified RNA was evaluated on a 2100 Bioanalyzer system (Agilent, 

Waldbronn). RNA Integrity Number (RIN) of the RNA samples ranged between 6.3 and 9.5 

with a mean at 8.3, representing good RNA quality for intestinal tissue samples since these 

are known to degrade fast (Heumüller-Klug, 2015). 500 ng of total RNA was used for the 

library preparation according to the manufacturers protocol (TruSeq® Stranded mRNA 

Library Prep, 20020594, Illumina GmbH, Berlin). The sequencing reaction of the prepared 

library was run on a NovaSeq 6000 sequencing system using a SP 100 flow cell in 101 

single read modus by IMGM Laboratories, Martinsried, Germany. Signals were processed 

using the NVCS and Real Time Analysis v3.4.4. software packages and the bcl2fastq 

v2.19.1.403 software, applying the FastQ only processing pipeline. 

Obtained FastQ files were first quality controlled using FastQC/MultiQC (Versions 0.11.9 

and 1.14 respectively). The first base of every sequencing run was removed due to bad 

quality using Cutadapt v. 4.2 (Martin, 2011). Quality control after cutting using the above 

mentioned pipeline yielded Phred Scores >30, which can be considered as high quality and 

therefore qualify for further processing. Sequence Alignment was then performed using the 

HISAT2 algorithm v. 2.2.1 (Kim et al., 2019) and the most recent version of the Mouse 

Genome Assembly GRCm39. Alignments were quality controlled using SAMtools 1.13.  

Reads aligned ranged from 17.4 to 32.2 million representing the sequencing depth with 

>97.5 % sequences aligned per sample. A count matrix was then generated using 

featureCounts v.2.0.1 (Liao, Smyth and Shi, 2014) and the Mouse Genome Assembly 
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GRCm39. Because of limited local computing resources some of these algorithms were run 

on the Galaxy Europe Platform v 22.05 (The Galaxy Community et al., 2022). The obtained 

count matrix was normalized using DESeq2 v. 1.34 (Love, Huber and Anders, 2014) and 

corrected for unwanted alteration in library preparation using ruvseq v. 1.26 (Risso et al., 

2014).  DESeq2 was further used to analyze the differential gene expression of the obtained 

files. Gene Set Enrichment Analysis (GSEA) of the obtained DESeq2 – normalized count 

matrices was then performed using GSEA v. 4.3.2. and pathways were assigned by the 

MDB mouse-ortholog hallmark gene set collection v2022.1 (Liberzon et al., 2015).  

2.4. Mass Spectrometry 

2.4.1. Fatty Acids 

Stable isotope labelled fatty acids were synthesized by CDN Isotopes, Pointe-Claire, 

Canada. Shortly, for the preparation of the stable isotope labelled lipid gavages, 10 µmol 

FA 16:0[D5] (hexadecanoic acid-15,15,16,16,16-d5) and 3.33 µmol TG (16:0[D31])3 

(glyceryl tri(hexadecanoate-d31)) (both from CDN isotopes) were weighed into separate 

glass tubes for each gavage. 100 µL of isooctane:isopropanol 3:1 (v:v) were added to both 

glass tubes. The tube containing FA 16:0[D5] was sonicated at 37 °C until the FA was 

completely dissolved, and all liquid was transferred to the second tube containing the 

incompletely dissolved TG (16:0[D31])3. The tube now containing both lipids was sonicated 

at 37 °C until the TG (16:0[D31])3 had dissolved. Per gavage, 200 µL of the prepared 

solution was aliquoted into 1.5 mL tubes and evaporated to dryness using a vacuum 

concentrator (Jouan RC 10.10). To each tube 100 µL of olive oil (Rewe Beste Wahl) was 

added and the gavages were stored at 4 °C until use. Prior to gavaging, the labels were 

sonicated at 37 °C for 30 min and checked for any precipitated label lipids. The workflow of 

the experiment is described in Figure 3. 

For FA quantification in the different intestinal section, the mass of tumors and healthy tissue 

was determined in non – thawing conditions. 2-30 mg of frozen samples were aliquoted into 

2 mL screw-capped tubes (Sarstedt). The tubes were prefilled with 0.7 g ceramic beads 

(1.4 mm diameter, Bertin Technologies) and cold tissue extraction solution (MeOH:ddH2O 

1:1, 1% SDS) was added to a final concentration of 0.05 mg/µL. Samples were 

homogenized using a FastPrep-24 homogenizer (MP Biomedicals) with the following 

settings: 1 × 30 s, 6 m/s. For the quantification in plasma, whole blood was obtained by 

cardiac puncture and plasma was obtained using EDTA- coated tubes (Sarstedt, Sarsted) 

according to the manufacturer’s protocol. 
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Figure 3: Workflow of the lipid uptake experiments 

For the intestinal uptake experiments of fatty acids mice were fasted for 2 hours and then the label 

dissolved in olive oil was gavaged. After 60 minutes mice were killed and blood and tissue was 

sampled. 

GC-MS analysis was performed as previously described (Ecker et al., 2012). Briefly, 20 µL 

of the intestinal tissue extraction solutions (= 1 mg tissue equivalent) or 10 µl of plasma 

were used for the fatty acid derivatization. Acetyl chloride and methanol treatments were 

used to generate fatty acid methyl esters (FAMEs), which were extracted with hexane. The 

analysis of the total FA content was performed using a Shimadzu 2010 GC-MS system. 

FAMEs were separated from SGE using helium as a carrier gas on a BPX70 column (10 m 

length, 0.10 mm diameter, 0.20 μm layer thickness). The oven temperature was set to 50°C 

and increased at 40°C/min to 155°C, 6°C/min to 210°C and finally 15°C/min to 250°C. To 

detect specific fragments of saturated and unsaturated FAs (saturated, m/z 74; 

monounsaturated, m/z 55; di-unsaturated, m/z 67; polyunsaturated, m/z 79), the FA species 

and their positional and cis/trans isomers were characterized in scan mode and quantified 

by single ion monitoring. Isotope-tagged FA species were quantified by single ion 

monitoring of their respective molecular ions using the calibration curves of the untagged 

species. Non-naturally occurring C21:0 iso was used as an internal standard. 

Obtained measurement have been processed analyzed and quantified using the integrated 

pipeline in Lab Solutions Software package (Shimadzu, Duisburg, Germany). Amounts of 

measured FAs were normalized to the sample weight or volume applied and given in nmol/g 

wet weight or nmol/10 µl respectively. Downstream analysis was then performed using the 

Metaboanalyst platform v. 5.0 (Pang et al., 2021).For visualization purposes data was 

scaled using range scaling. 

2.4.2. Bile Acids 

Gall bladder content (=bile) was acquired by direct puncture of the gall balder with a cannula 

(30.5 g). 1 µl of bile was then dissolved in 99 µl of methylated DHCA and 20 µl of bile acid 

standard prior to measurement.For the cecal content approximately 20 mg were weighed 

into 2 mL bead-beater tubes (FastPrep-Tubes, Matrix D, MP Biomedicals Germany GmbH, 
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Eschwege). As an internal standard for recovery losses, 1 mL of methanol-based 

dehydrocholic acid extraction solvent (c=1.3 µmol/L) was added. Samples were extracted 

using a FastPep-24TM 5G bead beater (MP Biomedicals Germany GmbH, Eschwege, 

Germany) with a CoolPrepTM (MP Biomedicals Germany, dry ice cooled) for 3 times 20 

seconds each at a speed of 6 m/sec followed by a 30 second pause. 

Measurement of bile acids has been performed as previously described (Reiter et al., 2021). 

Briefly, a QTRAP 5500 triple quadrupole mass spectrometer (Sciex, Darmstadt, Germany) 

coupled to an ExionLC AD ultra-high performance liquid chromatography system (Sciex, 

Darmstadt, Germany) was used for targeted bile acid measurements. Bile acids were 

detected and quantified using a multiple reaction monitoring (MRM) method. An 

electrospray ion voltage of -4500 V and the following ion source parameters were used: 

curtain gas (35 psi), temperature (450 °C), gas 1 (55 psi), gas 2 (65 psi) and injection 

potential (-10 V). The MS parameters and LC conditions were optimised with commercially 

available standards of endogenous bile acids and deuterated bile acids for the simultaneous 

quantification of a selection of 34 analytes. For the separation of the analytes, a 100 × 2.1 

mm, 100 Å, 1.7 μm, Kinetex C18 column (Phenomenex, Aschaffenburg, Germany) was 

used. The chromatographic separation was performed at a constant flow rate of 0.4 mL/min. 

The mobile phase consisted of water (eluent A) and acetonitrile/water (95/5, v/v, eluent B), 

both containing 5 mM ammonium acetate and 0.1% formic acid. The following program has 

been used for elution (Table 3). 

The injection volume for all samples was 1 μL. The column oven temperature was set at 40 

°C and the autosampler was maintained at 15 °C. Data acquisition and instrument control 

were carried out using Analyst 1.7 software (Sciex, Darmstadt, Germany). 

Obtained measurement data are given either in µM (bile) or in µM per gram wet weight. For 

missing values, a mean imputation has been performed when at least 50% of the samples 

per group presented with confirmed and quality controlled measurements. Statistical 

evaluation and visualization has been performed using the Metaboanalyst platform v. 5.0 

(Pang et al., 2021). 
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Table 3:  Elution protocol of the HPLC. 

Time [min] Eluent B [%] 

2 25 

3.5 27 

5.5 43 

Hold - 1 43 

8.5 58 

hold - 3 58 

17.5 65 

18 80 

19 100 

Hold - 1 100 

20.5 - 25 Stop - Equilibration 

2.5. Statistics 

Statistical analysis was performed using GraphPad Prism version 9.5.1 (GraphPad 

Software, San Diego, California) for all non-omics data. For two group comparisons 

unpaired and parametrical t-tests with Welch’s correction were applied, for three or more 

groups ANOVA followed by Tukey’s post hoc test was used if not specified otherwise. To 

analyze microbiota data non-parametric Mann-Whitney U (two groups) and Kruskal-Wallis 

tests (>two groups) were applied. Differences in Beta Diversity were assessed using 

PERMANOVA. 

All statistical tests in multivariate datasets (16S Sequencing, full length RNA-Sequencing, 

fatty acids and bile acids) are corrected for multiple testing using FDR (False Discovery 

Rate) based on the Benjamini-Hochberg Method (Benjamini and Hochberg, 1995). For data 

presentation volcano plots have been created using the VolcanoseR App (Goedhart and 

Luijsterburg, 2020) and heatmaps using the morpheus app 

(https://software.broadinstitute.org/morpheus/). 

Data are presented as means + SD if not specified otherwise. The only exception are graphs 

of body mass development (total and delta), where mean + SEM is shown. Bar charts 

further indicate every single measurement as one individual point. Violin and Boxplots 

central bands indicate the median, lower and upper part of the box the respective 25 and 

75 percentiles and the whiskers connect data points outside these quartiles. Outliers are 

indicated as separate points. Violin plots additionally contain a probability based kernel 
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density plot. Statistically significant results are indicated with asterisks: * = p < 0.05. ** = p 

< 0.01, *** = p < 0.001, **** = p < 0.0001. 
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3. Results 

3.1.  Resistance to diet induced obesity in microbiome deficient models is 

dependent on the cholesterol dosage 

The resistance to diet-induced obesity (DIO) in germ free (GF) mice is an often described 

phenotype (Bäckhed et al., 2007; Rabot et al., 2010), yet approaches to identify a 

mechanism responsible for this observation failed so far. The lack of consistency in 

reproducing this phenotype proves that this is a more complex interplay than initially found. 

One very promising approach showed that the phenotype is dependent on the dietary fat 

source with strong hints towards an involvement of dietary cholesterol (Kübeck et al., 2016). 

Only a cholesterol containing, lard based diet, was able to induce the resistance. 

  

Figure 4: Setup of the cholesterol dose dependency study 

Starting week 8 mice were fed a control diet (CD), at week 12 the respective high-fat diet (HFD) or a 

CD were fed until week 20. GF mice were kept in an isolator, antibiotics-treated (AbX) in regular 

cages with the treatment starting at week 12. Diets contained purified supplemented cholesterol and 

are available ad libitum.  

To test the hypothesis if dietary cholesterol, which was present only in the lard-based diet, 

is the driving factor for the phenotypic resistance to DIO, the following feeding setup was 

chosen (Fig. 4). Instead of using cholesterol-containing lard, cholesterol was supplemented 

to a cholesterol free palm oil high-fat diet (PHFD). Cholesterol was supplemented in a range 

of 0.01 % to 1.00 % which is in consonance with human nutrition (Xu, McClure and Appel, 

2018). Concentrations have been chosen higher compared to the initial finding (the lard 

based diet contained about 0.011 % cholesterol) due to the counteracting properties of plant 

sterols on cholesterol uptake, which are present only in the PHFD (Brauner et al., 2012). 
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Figure 4 depicts an overview of the setup chosen to scrutinize the role of dietary cholesterol 

in microbiome deficient models in a dose dependent manner. 

3.1.1. Antibiotic treatment efficiently induces microbiome deficiency 

Germ free (GF) mice are referred to as gold standard in microbiome research harboring no 

microbes at all and are thus an optimal control for conventional (Conv) mice. Concomitant 

with this advantage there are also some drawbacks in this model, like physiological changes 

and an underdeveloped immune system (Kennedy, King and Baldridge, 2018). To 

overcome these difficulties and directly identify cholesterol – gut microbiota interactions as 

phenotypic drivers conventional mice treated with antibiotics served as a second 

microbiome deficient model. 

Even though it is impossible to completely eradicate all bacteria in the GIT using an 

antibiotic cocktail, the crucial reduction of bacterial diversity results in a disturbed microbial 

ecosystem. The effectivity of the treatment was evaluated by 16S sequencing of cecal 

content at the end of the study. In comparison to the cecal content of untreated mice a 

dramatic reduction in Alpha Diversity was achieved indicated by the differences in Simpson 

index and Richness (Fig. 5 A). This was independent of dietary fat and cholesterol content 

(Fig. 5 C). The reduction in bacterial diversity is further demonstrated by a significant drop 

in the abundance of a vast majority of bacterial sequences in the cecum (Fig. 5 B). Looking 

at what bacterial genera are detectable remarkably AbX mice are predominantly inhabited 

by Akkermansia and Escherichia – Shigella, accounting for approximately 98% of all 

detectable bacterial sequences (Fig. 5 D). In line with the other metrics, Conv mice show a 

broad variety of gut bacterial genera, indicating that antibiotic resistances as a result of the 

long treatment period are negligible. Following antibiotic treatment, physiological changes 

can occur as well, comparable to those detected in germ free animals (Bayer et al., 2019). 

One of the hallmarks of these changes is the enlarged cecum, which also is clearly present 

and comparable to those of germ free mice (Fig. 5 E). Consequently, the antibiotic treatment 

of Conv mice established a validated and qualified model of microbial deficiency.  
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Figure 5: Efficacy of the antibiotic treatment . 

(A) Differences in the bacterial Alpha Diversity shown by effective Simpson index and Richness (CD 

only, n=6-8). (B) Abundance of bacterial sequences on OTU/Species level based on unsupervised 

Bray-Curtis distance (C) Differences in Alpha Diversity indicated by effective Simpson index and 

Richness in a diet comparison showing CD and one exemplary HFD (n= 6-8). (D) Taxonomic binning 

on Genus level based on the relative bacterial abundance. (E) Cecal weight of Conv, AbX and GF 

mice determined by weighing. Violin and Boxplots central bands indicate the median, lower and 

upper part of the box the respective 25 and 75 percentiles and the whiskers connect data points 

outside these quartiles. Outliers are indicated as separate points. Violin plots additionally contain a 

probability based kernel density plot. GF and AbX animals were 20w old, Conv 24w.  Statistically 

significant results are indicated with asterisks: * = p < 0.05. ** = p < 0.01, *** = p < 0.001, **** = p < 

0.0001. 

3.1.2. Resistance to obesity depends on the cholesterol dosage 

The resistance to DIO was previously shown to be induced by dietary cholesterol (Kübeck 

et al., 2016), however how the supplementation of cholesterol to the PHFD influences the 

onset of DIO remains elusive so far. In order to experimentally determine which 

concentration is most effective in inducing this resistance, it is necessary to take into 

account not only body mass, but also body composition and, in particular, fat mass. Starting 

with the GF mice total weight development was indeed dependent on the cholesterol 

dosage (Fig. 6 A), which was further supported when normalized for the starting weight 
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(Fig. 6 B). Here, the lowest cholesterol concentration of 0.01 % resulted in the highest 

weight gain and body mass. Further, body composition determined by NMR showed the 

highest level of fat mass induced by the lowest cholesterol concentration. The lowest 

amount of body fat was detected at a dose of 0.05 % (Fig. 6 C). Nevertheless, it has to be 

taken into account that NMR body composition measurement tend to be incorrect in GF 

mice due to the enlarged cecum (Krisko et al., 2020). Thus, looking at the size of two major 

fat depots iWAT and eWAT might give a more comprehensive insight into the accumulation 

of body fat. The weight of iWAT is significantly decreased at 0.05 % cholesterol with a similar 

trend in eWAT when normalized to body mass (Fig. 6 D; Kleinert et al., 2018). Taken 

together these data indicate a clear dose dependency in the induction of resistance to DIO, 

with the least degree of obesity at a cholesterol concentration of 0.05%. 

When including the AbX treatment as a second model of microbial deficiency, a reduced 

final body mass and weight gain compared to GF mice was detected. Interestingly, the HFD 

fails to induce a higher body mass and weight gain in this model. The CD fed mice show a 

higher weight increase especially in the first weeks of the feeding study (Fig. 6 A and B). A 

potential reason for this phenotype is the antibiotic-induced cecal growth, which accounts 

for several grams (Fig. 5 E) and is known to be reduced when fed a HFD (Riedl et al., 2021). 

Whereas body composition indicates no dietary difference, possibly biased by the 

physiological changes (Fig. 6 G), corrected fat depots iWAT and eWAT show no induction 

of DIO in CD fed mice. In the HFD fed mice, a strong trend hints towards reduced obesity 

induction at a cholesterol concentration of 0.05 % in the iWAT, with a similar, though 

weakened, picture in the eWAT (Fig. 6 H). The antibiotic treatment generally disturbs weight 

gain as a primary predictor of DIO. Fat depot size however still indicates a HFD induced 

phenotype and supports the previous finding in the GF mice with the strongest resistance 

to DIO induced by 0.05 % cholesterol. 

Besides obesity, further parameters have to be taken into account to deepen the 

understanding of the cholesterol-induced resistance to DIO. To assess which side of the 

energy balance equation is influenced by dietary cholesterol bomb calorimetry was 

performed. GF mice fed the 0.01 % cholesterol diet displayed a significantly lower energy 

intake and a lower fecal energy content (Fig. 7 A and B). A similar trend was observed in 

the AbX treated mice in the energy intake but not in the fecal energy content (Fig. 7 C and 

D). Mice fed a 0.05 % cholesterol HFD showed a deficiency in the uptake of dietary energy, 

which is in line with the primary outcome in obesity parameters. Even though this energy 

deficit was counteracted by an increased dietary energy intake, cholesterol protected from 

development of DIO. 
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Figure 6: Cholesterol protects mice from DIO 

(A) Weight development of GF mice shown as total body mass. (B) Percentage changes in body 

mass normalized to differences in the starting weight at w12. (C)Total fat mass and lean mass 

determined by NMR at the end of the feeding trial, fasted overnight. (D) Major fat depots iWAT and 

eWAT mass, ANCOVA corrected with total body mass as cofactor. Total weight development (E) 

and w12 normalized percentage changes (F) of the AbX treated mice. NMR determined body 

composition (G) and body mass-ANCOVA corrected fat depots iWAT and eWAT (H).GF: n = 2 (CD), 

4-7(HFD).AbX: n = 6-7. Statistically significant results are indicated with asterisks: * = p < 0.05. ** = 

p < 0.01, *** = p < 0.001, **** = p < 0.0001. 
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Figure 7: Altered energy intake and fecal excretion in response to cholesterol  

Daily energy intake of GF (A) and AbX (C) mice in week 13 of the feeding experiment from grouped 

cages calculated given as value per mice and fecal energy content of pooled fecal samples from GF 

(B) and AbX (D) mice. n numbers are indicated per dot and given per mouse (energy intake; n = 2-

5) or per measurement (fecal energy; n = 3-6). Statistically significant results are highlighted with 

asterisks: * = p < 0.05. ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 

The changes in obesity development and energy balance parameters in these two 

microbiome deficient models deliver a comprehensive insight into the cholesterol dose 

dependent resistance to DIO. Compared to the initial finding of Kübeck et al., where a dose 

of 0.011 % induced a resistant phenotype, in this experiment a similar supplementation of 

0.01 % was inefficient. A possible reason is the counteracting character of phytosterols in 

the HFD and their effect on cholesterol metabolism (Ostlund, 2004; Gylling and Simonen, 

2015). Increasing the cholesterol concentration to 0.05 % proved to be most efficient in 

inducing the resistant phenotype, characterized by reduced measures of obesity and a 

deficiency in dietary energy uptake. In the following experiments, this concentration is thus 

used to establish a mechanistic model for the interaction of dietary cholesterol, the gut 

microbiota, obesity and intestinal cancer. 
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3.2. The role of gut-microbiota in cholesterol dependent resistance to DIO 

Gut microbiota are considered a major factor in the pathophysiology of obesity and related 

metabolic disorders like cardiovascular diseases (CVD) and type II diabetes (T2D). Some 

of the described mechanisms with which the gut microbiota are capable of influencing host 

metabolism are the production of short-chain fatty acids (SCFAs, Dalile et al., 2019), 

influencing intestinal permeability (Chakaroun, Massier and Kovacs, 2020) or the direct or 

indirect effects of bacterial metabolites on host metabolism (Canfora et al., 2019). Dietary 

cholesterol has been identified to directly interact with gut microbiota (Le et al., 2022), yet 

a mechanism how this interaction influences host metabolism with respect to obesity has 

not been established thus far. 

To identify metabolic alteration in response to dietary cholesterol as well as related bacterial 

metabolism and establish a causal link between dietary cholesterol, gut microbial 

dependent metabolism shifts and obesity another feeding study was conducted. Cholesterol 

has been shown to induce resistance to DIO at a concentration of 0.05% most efficient in 

GF mice, thus this cholesterol concentration was compared to an identical diet without 

cholesterol supplementation (HFD +0.00). This study was performed in a GF and in a 

conventional setting, which enables the comparative analysis of the influence of dietary 

cholesterol in the presence or absence of the microbiome. Figure 8 shows the setup for the 

feeding study.  

 

Figure 8: Setup of the comparative DIO feeding study 

For the identification of cholesterol related changes in host metabolism with respect to the gut 

microbiota a feeding study comparing a HFD with or without cholesterol was performed. This study 

was equally performed in GF and Conv mice and the feeding time is prolonged to an age of 24 

weeks, which delivers a more solid obesity phenotype in both models. 
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3.2.1. Cholesterol induced resistance to DIO is dependent on the gut microbiota 

In order to investigate how dietary intervention with HFDs influences obesogenicity, the 

development of body mass and the accumulation of body fat were assessed. The role of 

cholesterol and cholesterol – gut microbiota interaction was investigated by comparing the 

effects of the cholesterol supplementation in the diets in GF and Conv mice. 

 

Figure 9: Cholesterol induced protection from DIO is microbiome dependent  

Weight development and fat depots of GF and Conv mice in the feeding study. (A) Total body mass 

of the mice in the feeding trial. n = 13-16 (B) Body mass change in the timeline of the study 

normalized to the starting weight in w12 of the trial and given as percentage. n=13-16 (C) Total body 

mass determined at the end of the study at week 24. n = 10-16 (D) Weight of major fat depots iWAT 

and eWAT determined at sampling and ANCOVA corrected with total body mass as cofactor n =10-

16. Statistically significant results are highlighted with asterisks: * = p < 0.05. ** = p < 0.01, *** = p < 

0.001, **** = p < 0.0001 

General body mass assessment displayed an efficient induction of obesity by the HFDs in 

Conv mice (Fig. 9 A). In GF conditions, mice fed the HFD + 0.00 showed a similar rise in 

body mass compared to both Conv HFDs, however the cholesterol supplementation lead 

to a decreased accumulation of body mass. This phenotype was further emphasized when 
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being normalized to starting body mass (Fig. 9 B). The HFD + 0.05 failed to induce an obese 

phenotype and showed a rise in body mass similar to those of both CD fed groups. Thus, 

the cholesterol supplementation of the diet efficiently induced a microbiome dependent 

resistance to DIO. 

Measurement of total body mass at the end of the feeding study presented a similar picture. 

However, the weight difference between the HFD + 0.00 and HFD + 0.05 failed to reach 

significance in both GF and Conv conditions (Fig. 9 C). In GF conditions, a trend towards a 

higher body mass in the HFD + 0.00 compared to the HFD + 0.05 was detected, which was 

absent in the Conv mice. Fat depots ANCOVA-corrected for total body mass further 

indicated reduced accumulation of fat mass in response to cholesterol in the GF mice, 

detectable in the iWAT but not in the eWAT. This phenotype was absent in Conv mice, 

where neither a HFD nor a cholesterol supplementation resulted in increased fat 

accumulation in the iWAT and only a cholesterol supplemented diet induced fat 

accumulation in the eWAT. Concluding, these data deliver an inconsistent picture, with 

some measures indicating a cholesterol dependent resistance to DIO in GF mice and some 

fail to reach significance in this aspect. It has to be noted however, that in the timeline of 

the feeding study, an increased number of mice fed the HFD + 0.00 with high body mass 

accumulation failed to finish the trial. Investigation of these dropouts yielded in increased 

number of cecal torsion, a known complication in GF mice  (Djurickovic, Ediger and Hong, 

1978). Accumulation in body mass increased the occurrence of such cecal torsions in GF 

mice, thus influencing the contradictory results in Figure 9.  

In a next step, energy balance of the mice was assessed using bomb calorimetry to 

investigate differences in feeding behavior and assimilation efficiency. Contradictory to the 

previous findings of an increased energy intake in microbiome deficient models, mice fed 

the HFD + 0.05 had no increased energy intake in comparison to the HFD + 0.00, which 

was also microbiome independent. (Fig. 10 A). Fecal energy excretion was increased in the 

HFD + 0.05, which hints towards a decreased assimilation efficiency (Fig. 10 B). 

Interestingly this was present in both GF and Conv mice, however with an increased effect 

size in GF mice. This indicates a reduced assimilation of energy in the presence of dietary 

cholesterol, especially in GF conditions 

To sum up the obesity phenotype indicates a cholesterol dependent resistance to DIO. Even 

though some of the data present conflicting results, weight development and accumulation 

of fat mass indicate a resistance to DIO when 0.05% cholesterol is supplemented to the, 

which affected GF but not Conv mice. 
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Figure 10: Energy intake and fecal energy in response to cholesterol  

(A) Energy and Intake and (B) Energy content of feces of GF and Conv mice normalized to 24h and 

gram feces respectively. All measurements were performed in week 13 of the feeding experiment, 

after at least 1 week of dietary adaption. n numbers are indicated per dot and given per mouse 

(energy intake; n = 4-6 per group) or per measurement (fecal energy; n = 4-6 per group). Statistically 

significant results are highlighted with asterisks: * = p < 0.05. ** = p < 0.01, *** = p < 0.001, **** = p 

< 0.0001 
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3.2.2. Fatty acid uptake and plasma composition are unaffected by cholesterol 

 

Figure 11: Uptake of fatty acids and fatty acid composition in murine plasma 

To track luminal fatty acid uptake into plasma, mice were gavaged with a lipid cocktail containing a 

stable isotope labelled free fatty acid (palmitate) and a stable isotope labelled tripalmitate and 

sacrificed after 1 h. (A) Label concentration of the free fatty acid (FFA) label in the plasma. (B) Label 

concentration of the triglyceride label in the plasma.(C) Heatmap of all FAs measured and arranged 

using Euclidean distance for the FAs and no group clustering (D) Unsupervised Prinicipal Component 

Analysis (PCA) of fatty acid profiles comparing HFD + 0.00 and HFD + 0.05 of Conv and GF mice 

respectively. (E) Volcano plots comparing HFD 0.00 and HFD 0.05 with FDR corrected p <0.05 and 

log2FC > 2 considered significant. n = 4-6 mice per group for all panel parts. 
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The intake of high amounts of fat in the diet is a main factor for the development of obesity. 

These dietary fats are absorbed in the upper parts of the small intestine with the Duodenum 

and Jejunum being the most important sites. Even though the bacterial mass in these 

intestinal sections is low compared to the large intestine, these bacteria are capable of 

influencing the absorption of luminal fatty acids (Martinez-Guryn et al., 2018). Differential 

uptake of fats influenced cholesterol and cholesterol – microbiome interaction could thus 

pose a possible confounding factor in the development of obesity. To address this question 

a stable isotope labelling approach followed by GC-MS was applied. 

Following gavage with a fat cocktail containing labelled FFAs and Triglycerides 

concentrations of these labels were assessed in the plasma of the mice after 1 hour. In 

Conv mice the label levels of the FFA and the Triglyceride label showed no detectable 

difference caused by the feeding regime, although a trend towards higher uptake in all HFD 

fed mice compared to CD feeding is visible (Fig. 11 A and B). In GF mice the uptake was 

not altered compared to the Conv mice and additionally no dietary difference was detected 

(Fig. 11 A and B). GC-MS based analysis also allows for the quantification of different FAs 

and thus create plasma FA profiles for the mice. The profiles of these mice showed no 

detectable differences when being clustered and deliver no separation neither by diet nor 

by microbial state (Fig. 11 C). In addition, the direct comparison of profiles of the HFD 0.00 

and the HFD 0.05 to detect cholesterol specific effects showed no separation in GF and 

Conv mice (Fig. 11 D). This was further confirmed when scrutinizing for changes in specific 

FAs, where the statistical analysis of all measured metabolites yielded no difference in GF 

and Conv mice (Fig. 11 E). 

Taken together the stable isotope labelling approach indicated no diet-induced difference 

in the luminal fatty uptake after a lipid load challenge. Despite higher energy content in the 

feces, neither dietary cholesterol nor the presence or absence of gut microbiota had a 

detectable influence. Analysis of plasma fatty acid profiles further displayed no detectable 

difference and underlined that an altered uptake of fatty acids cannot be identified as a 

proximate reason for the resistance to DIO. 

3.2.3. The bile acid pool is altered in response to cholesterol 

Bile acids are potent digestive surfactants, which promote the uptake of fats, other lipids 

and fat-soluble vitamins from the digestive tract into the system, by acting as emulsifiers. 

Additionally they have an established role as major regulator of metabolism, affecting 

triglyceride, cholesterol, glucose and energy homeostasis (Lefebvre et al., 2009). Further,  
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Figure 12: Composition of bile acids in the gall bladder  

Bile was obtained by direct puncture of the gall bladder and composition has been determined using 

LC-MS. (A) Unsupervised Principal Component Analysis (PCA) of GF and Conv mice shows higher 

variety of bile acids in Conv bile. (B) Unsupervised hierarchical clustering using Euclidean distance 

identifies distinct clustering according to diet in the Conv mice, which is absent in the GF mice. (C) 

Comparison of HFD 0.00 and HFD 0.05 in GF and Conv conditions using volcano plots present 

difference in response to cholesterol. FDR corrected p values <0.05 and FC of >2 are considered 

significant. Data are given in µM and n = 4-6 mice per group for all panel parts.  

they represent the primary pathway for systemic cholesterol catabolism and account for 

more than 50 % of daily cholesterol turnover (Staels and Fonseca, 2009). Bile acids are 

stored in the gall bladder, enter the intestine via the pancreatic duct, and are reabsorbed in 

the ileum to about 95% (Lefebvre et al., 2009). The bile acid pools of GF and Conv mice 

differ in their composition due to the complete absence of secondary bile acids in GF mice. 

To investigate how cholesterol-microbiota interactions affect the bile acid pool and 

consequently the host metabolism, bile acids were measured in the gall bladder and cecum 

of Conv and GF mice. Starting with the bile composition, unsupervised clustering yielded a 

distinct bile acid signature for GF mice, unaffected by the diet (Fig. 12 A). In Conv mice, the 
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situation differed with alterations in the signature according to the diet. Hierarchical 

clustering further revealed that each diet group had its distinct bile acid signature, whereas 

no dietary differences could be detected in GF mice. (Fig. 12 B). In consequence, the 

specific influence of cholesterol in presence or absence of the gut microbiota on the bile 

acid pool was investigated (Fig. 12 C).  

 

Figure 13: Quantification and composition of cecal bile  acids 

Bile acids were measured and quantified in cecal content of GF and Conv mice. (A) Unsupervised 

Principal Component Analysis (PCA) of Conv mice bile acid pool. (B) Comparison of HFD 0.00 and 

HFD 0.05 in Conv conditions using volcano plots show cholesterol specific alterations. FDR corrected 

p values <0.05 and FC of >2 are considered significant (C) Analysis of total BA amounts in Conv and 

GF mice. Data are given in µmol/g wet weight and n = 4-6 mice per group for all panel parts. 

Statistically significant results are highlighted with asterisks: * = p < 0.05. ** = p < 0.01, *** = p < 

0.001, **** = p < 0.0001 

In GF mice, no cholesterol-induced difference in the analyzed components was detected. 

Conv mice, in contrast, showed higher levels of Glycoursodeoxycholic acid and Allocholic 

acid in HFD + 0.05 fed mice. Even though these bile acids present rather small parts of the 
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general bile acid pool, these data underline the distinct bile acid signatures in the dietary 

groups. Ursodeoxycholic acid is further capable of boosting the conversion of cholesterol to 

bile acids (Nilsell et al., 1983) These differences in bile acid species were only present in 

Conv mice, which identifies gut microbiota as possible drivers of dietary differences. 

Where this analysis delivers information regarding the composition of the bile acid pool, the 

amount of bile acids excreted remains elusive. Following influx of bile into the small intestine 

and acting in lipid digestion, bile acids are reabsorbed in the Ileum to an amount of 95%. 

To address the question how dietary cholesterol influences excretion, bile acids were 

measured in cecal content of Conv and GF mice. 

In Conv mice, cecal bile acids showed a distinct clustering according to the feeding regime, 

with a clear separation induced by cholesterol (Fig. 13 A). Analysis of single biliary 

components further identified several elevated bile acid species in response to cholesterol, 

indicating a general rise in bile acids, rather than that of specific species (Fig. 13 B). 

Investigation of the general amount of bile acids in the cecum identified a significant higher 

amount of bile acids in HFD + 0.05 fed Conv mice (Fig. 13 C), which is a strong indicator of 

increased cholesterol catabolism in this pathway. In GF mice, no cholesterol-induced effect 

was detectable. It has to be noted that the bile acid concentrations in GF ceca are low due 

to the cecal enlargement and thus several species were below detection limit. The 

measurement however clearly identified a HFD induced and cholesterol independent effect 

and thus delivered valid results. 

In conclusion, gall bladder bile acids cluster according to diet and specifically in response 

to cholesterol in Conv but not GF mice, indicating a possible role of gut microbiota. 

Downstream differences in cecal bile acids further indicate microbial involvement, with 

elevated bile acids in response to cholesterol only detectable in Conv mice. These 

microbiota-induced differences very likely have an impact on the systemic metabolism and 

can thus be identified as candidates, which underlie the different effect of cholesterol on 

DIO in Conv and GF mice. 

3.2.4. Gut microbiota are altered in response to cholesterol 

Intestinal gut microbiota are known to be altered in metabolic disease and also specifically 

in response to feeding a HFD. Since the present study demonstrated, that development of 

DIO in response to a HFD is dependent on the gut microbiome in presence of dietary 

cholesterol, induced changes in gut microbial communities present an interesting target. 
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The cecum is the major habitat for gut microbes in the mouse, however also small intestinal 

microbes have been identified to contribute to systemic metabolism (Martinez-Guryn et al., 

2018). Thus, 16S Sequencing of small intestinal scrapings and cecal content has been 

performed.  

Duodenal Alpha Diversity dropped in response to cholesterol, shown by significant lower 

bacterial Richness and Simpson Index (Fig. 14 A). This cholesterol dependent effect was 

further highlighted by changes in the Beta Diversity, where the microbial signature of the 

HFD + 0.05 group significantly differed from the CD and HFD (Fig. 14 C). 

Interestingly in the Jejunum, the difference in Alpha Diversity was absent and a strong trend 

in both Richness and Simpson towards higher diversity induced by cholesterol was evident 

(Fig. 14 D). Beta Diversity further presented a significant separation by cholesterol in this 

segment (Fig. 14 F). 

In contrast the Ileum depicted a reduced Alpha diversity in response to cholesterol in both 

metrics (Fig. 14 G), which also significantly differed from the other dietary groups indicated 

by Beta Diversity (Fig. 14 I). 

To sum up, these metrics of bacterial diversity indicated specific effects of dietary 

cholesterol in the small intestinal microbiota. In all of the segments analyzed, a significant 

distinct signature can be attributed to cholesterol. Interestingly the features of these 

signatures are specific to the respective segment with significantly lower Alpha Diversity in 

the Duodenum and Ileum and a trend towards the opposite in the Jejunum. In addition, 

Taxonomic Binning on family level showed no consistent change in specific taxa across all 

segment, concluding that dietary cholesterol had a segment specific effect on the small 

intestinal microbiome. 
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Figure 14: Gut microbial shifts in murine intestinal sections  

Sequencing of the bacterial V3/V4 16S region derived from mucosal scrapings of the intestinal 

sections Duodenum Jejunum and Ileum as well as cecal content. (A, D, G and J) Bacterial Alpha 

Diversity of the respective intestinal segment presented by the metrics Richness and effective 

Simpson Index. (B, E, H and K) Taxonomic Binning on Family level based on the relative bacterial 

abundance in the dietary groups and respective segments. (C, F, I and L) Principle Coordinate 

Analysis (PCoA) based on Bray-Curtis distance showing dissimilarities in Beta Diversity across the 

samples on OUT/Species level. Differences between the samples have been investigated using 

PERMANOVA-testing across all groups. n = 7-8 for the intestinal scraping (Duodenum, Jejunum and 

Ileum) and 8-11 for the cecal content. Boxplots central bands indicate the median, lower and upper 

part of the box the respective 25 and 75 percentiles and the whiskers connect data points outside 

these quartiles. Outliers are indicated as separate points. Statistically significant results are indicated 

with asterisks: * = p < 0.05. ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. 

Downstream of the small intestine the microbial signature of the cecum yet presented 

another situation, where no significant effect of cholesterol was detected. Beta Diversity 

indicated a significant difference in the signatures of the two HFDs to the CD but no 

cholesterol specific effect and Taxonomic Binning further only indicates minor differences 

in bacterial composition. This highlights the segment specific effect of cholesterol on the gut 

microbiota with a multitude of possible metabolic implications. These implications and their 

interplays widens the impact of the cholesterol – gut microbiome interactions and 

emphasizes on their role in the development of DIO.  

3.2.5. Ileal gut microbiome signature links dietary cholesterol with metabolic 

diseases 

Recent research has already identified gut microbial changes in metabolic disease by 

mainly identifying relevant bacterial taxa based on correlations. The underlying mechanism 

often remains elusive due to either technical limitations or lack of knowledge in the complex 

interplay of the microbial ecosystem. To discover mechanistic changes in the cholesterol 
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induced changes and establish a causal link in cholesterol – gut microbiome interactions 

and the development of obesity PICRUSt2 (Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States, Douglas et al., 2020) based analysis has been 

performed. 

Murine bacterial diversity and density increases along the gastrointestinal tract reaching 

highest levels in the cecum. When investigating cecal gut microbial functional profiles no 

significant differences induced by cholesterol were detected (data not shown). 

Consequently small intestinal bacterial pathways were investigated, which matter especially 

due to the metabolic activity of the small intestine. Whereas no significant changes in 

pathways were detected in the Jejunum (not shown), functional bacterial profiles in the 

Ileum presented with significant changes in response to cholesterol. 

 

Figure 15: Functional changes in ileal bacterial pathways 

PICRUSt2 was used to assign metagenomics functions to the 16S based microbial analysis of the 

Ileum. (A) Volcano plot showing a 2-group comparison of the HFD + 0.00 and the HFD + 0.05 with 

all differential regulated enzymes based on enzyme classification (EC) number. p < 0.05  and is 

significant, data are BH corrected for multiple testing (B) Pathway analysis displaying all significant 

increased bacterial pathways in the ileal section of the HFD + 0.05 compared to the HFD + 0.00. P 

values < 0.05  are considered significant and data are corrected for multiple testing using the BH 

method.. n = 7 for all groups and panels. Data are normalized by copy numbers and analysis was 

performed with the ALDEx2 R-package on the NAMCO-platform. Enzymes and pathways were 

assigned to bacteria using the Metacyc database(Karp, 2002). 
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Alpha Diversity in the Ileum is significantly increased in the absence of cholesterol. When 

inspecting differences in enzymes as a response to this reduction Methylisocitrate Lyase 

and Isocitrate Lyase are significantly enriched (Fig. 15 A). These enzymes represent key 

regulators of a metabolic adaption in bacteria called the glyoxylate shunt and are required 

for the survival on fatty acids as energy source (Eoh and Rhee, 2014). In addition, at 

functional levels, pathways resembling bacterial fatty acid synthesis and subsequent 

glyoxylate bypass were most enriched in response to cholesterol (Fig.15 B). A special 

programming in gut microbial metabolism towards a glyoxylate bypass has been associated 

with metabolic disorders like obesity, T2D and atherosclerosis (Proffitt et al., 2022) and 

more specifically with the accumulation of visceral fat (Beaumont et al., 2016). 

In conclusion, a metabolic adaption of gut microbiota towards increased fatty acid synthesis 

and the glyoxylate bypass can be detected in the Ileum. Although direct consequences for 

the host metabolism remain elusive, these cholesterol induced adaptions link gut microbiota 

with metabolic diseases. Especially the described increased accumulation of visceral fat 

(Beaumont et al., 2016) establishes a connection between DIO and gut microbiota-

cholesterol interactions and identifies an underlying mechanism for the resistance to DIO in 

the HFD+0.05 GF mice.   
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3.3. Bacteria - cholesterol interaction suppresses intestinal tumorigenesis by 

altering gut microbial metabolites 

Tumors of the GIT are one of the most commonly diagnosed cancers accounting for the 

third most fatalities among cancers (Siegel, Miller and Jemal, 2019). As major risk factors, 

both obesity in general and excess dietary fat intake in specific, play an important role in 

the development of this malignancy  (Keum and Giovannucci, 2019). Besides excess 

dietary fat intake, one shared feature of obesity and colorectal cancer is a dysbiosis of the 

intestinal microbiome. The mechanistic reasons behind this relationship are so far largely 

unknown. Specifically, the key question is the ́ cause or causation´ problem. Is the microbial 

dysbiosis one of the drivers or the result of carcinogenesis? Another factor associated with 

a higher risk of colorectal cancer is dietary cholesterol (Hu et al., 2012). A shift in the 

intestinal microbiome is also considered a possible reason (Zhang et al., 2021). The ability 

of cholesterol - gut microbiota interactions to influence HFD induced obesity has already 

been shown in this study and combines a complex interplay of the above-mentioned risk 

factors. Thus, investigating this interplay with respect to intestinal tumorigenesis can widen 

our understanding and deliver new insight into the ´cause or causation’ question. 

 

Figure 16: Setup of the Apc1638N intervention study. 

To minimize genetic differences breedings of Conv mice were established from GF colonies by 

transferring breeding pairs from the isolator to the Conv facility. In comparison to the previous feeding 

studies, the setup was prolonged to a final age of 32 weeks due to the latency period. This results in 

a solid and comparable tumor phenotype. 

The use of transgenic mouse models to study tumorigenesis related interactions is well 

established (Lampreht Tratar, Horvat and Cemazar, 2018). Such a system can mimic 

cholesterol – dietary fat – gut microbiota interplay in a controlled setting. The Apc1638N model 

is a suitable transgenic model for feeding studies due to the latency period, which enables 

studying of long-term effects. The setup for the feeding study was adapted accordingly 

(Fig. 16) and delivers a comprehensive way to study the effect of dietary cholesterol and fat 

crosstalk with the gut microbiota on intestinal tumorigenesis. 
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3.3.1. Cholesterol – gut microbiota interactions ameliorate HFD induced 

tumorigenesis 

 

Figure 17: HFD and cholesterol influence intestinal tumorigenesis.  

(A and D) Tumor incidence defined as percentage of mice presenting with a tumor phenotype for 

Conv and GF mice. (B and E) Tumors were separated into small (<10 mm²) and big (>10 mm²) and 

total numbers of either small or big per animal were evaluated. (C) Representative pictures of tumor 

bearing intestinal sections with tumors indicated in red. (F) Spleen size of the mice determined by 

weighing. (G) Tumor size determined by cumulative tumor surface per animal Outliers have been 

removed using the ROUT method with default Q (G only). n (GF) = 9 – 11 per group; n (Conv) = 15 

– 18 per group.  Statistically significant results are highlighted with asterisks: * = p < 0.05. ** = p < 

0.01, *** = p < 0.001, **** = p < 0.0001 
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To investigate the HFD induced tumorigenesis in absence or presence of either the gut 

microbiota or cholesterol the tumor burden was evaluated at the end of the feeding study. 

Conv mice showed an increased incidence of lesions when fed a HFD + 0.00 compared to 

the CD, which is in line with previous studies (Yang et al., 2022). Remarkably, this effect 

was ameliorated when cholesterol was supplemented to the diet. Mice fed the HFD + 0.05 

showed an incidence of ~ 70% similar to the CD (Fig. 17 A). Intestinal tumor formation 

presented no difference when inspecting small tumors but presence of big tumors was 

significantly higher in HFD + 0.00 fed mice, again with cholesterol reversing the phenotype 

(Fig. 17 B).  

Comparing these results to GF mice, no dietary effect was detectable in either incidence, 

small tumors or big tumors (Fig. 17 D and E). Another phenotypical feature of this mouse 

model is splenomegaly, which increases with a proceeding tumor burden (Fodde et al., 

1994). While the spleen size is not altered, (Fig 17 F) cumulative tumor size is increased 

only in the HFD + 0.00 group in Conv mice but not in GF mice (Fig. 17 G). In line with 

literature, these findings identified a HFD induced increased tumor phenotype only in the 

presence of gut microbiota (Yang et al., 2022). Interestingly, supplementation of cholesterol 

to the HFD completely reversed this phenotype and showed a tumor burden comparable to 

that in CD fed mice.  

Across these data, GF mice showed no diet dependent alterations in tumorigenesis. 

However compared to the Conv mice overall tumor burden was elevated. By evaluating 

only CD fed mice and thereby avoiding a potential dietary effect, tumor number and size 

was consistently increased in GF mice (Fig. 18 A). Additionally, an increase in spleen size 

was detectable (Fig. 18 B). There are conflicting reports whether GF mice exhibit an 

increased or decreased tumor phenotype in comparison to Conv counterparts. (Leystra and 

Clapper, 2019). In the present study, the overall tumor burden was clearly elevated in 

microbial absence.  
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Figure 18: GF mice exhibit an advanced tumor phenotype 

(A) Total numbers of tumors was increased in CD fed GF mice independent of the size. (B) Because 

of the absence of dietary differences the spleen to body mass ratio can be calculated as a 

phenotypical identifier. (C) Tumor size determined by cumulative tumor surface per mice. (D) 

Representative picture of tumor bearing intestinal sections with tumors indicated in red. n(GF) = 9; 

n(Conv) = 16.   Statistically significant results are highlighted with asterisks: * = p < 0.05. ** = p < 

0.01, *** = p < 0.001, **** = p < 0.0001 

3.3.2. HFD rather than obesity induces a tumor phenotype  

Since both, obesity and excess dietary fat intake are major risk factors for intestinal 

tumorigenesis, induction of obesity by the different HFDs in the murine tumor model was 

evaluated. Total body mass and body mass change (Fig. 19 A) showed an increased 

induction of DIO as a consequence of HFD feeding only in Conv mice. Under GF conditions, 

both HFDs failed to induce a higher body mass than the CD. This was independent of 

cholesterol supplementation. GF mice are known to have an enlarged cecum, which also 

depends on the type of diet fed. Thus, correcting the final body mass for the cecum resulted 

in a significant though dampened induction of DIO in GF mice (Fig. 19 B). The fat depots, 

split by gender displayed no dietary induction of obesity in GF mice at all, with no differences 

in iWAT and eWAT/pgWAT under GF conditions, but in Conv mice. Overall, GF mice of this 

model were resistant to DIO independent of the diet and the dietary cholesterol 

concentration, which is in conflict with the obese phenotype observed in WT mice. Given 

the fact that this mouse model has a heterozygous deletion of the APC- Gene, which is part 

of the WNT/β-catenin pathway that is involved in tissue growth (Steinhart and Angers, 

2018), this is a potential confounder.  
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Figure 19: DIO in Apc1638N mice depends on the gut microbiota and not 
cholesterol 

(A) Weight development of Apc1638N mice shown as total and percentage normalized to the start at 

week 12. (B) Body mass at the end of the study normalized for physiological changes by removing 

the weight of the cecum (C) Total weight of the major fat depots iWAT and eWAT determined by 

weighing in male mice. (D) Weighed fat depots for female mice, separated from the male values due 

to sex biased physiology. n(GF) = 9 – 11; n(Conv) = 15 – 18 for A and B; n(GF) = 3 – 6; n(Conv) = 6 

– 12 for C; n(GF) = 3 – 6; n(Conv) = 6 – 10 for D; all per group. Statistically significant results are 

highlighted with asterisks: * = p < 0.05. ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 

Altogether, these findings failed to identify a relationship between tumor incidence and 

obesity in this model, indicating that rather HFD induced excess dietary fat intake than 

accumulation of body fat boosted tumor formation. 
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3.3.3. Gene expression profiles of tumors are defined by the gut microbiota 

 

Figure 20: Gene expression profiles of Conv and GF tumors 

Full length RNA sequencing of intestinal lesions. A total of 40 841 transcripts were detected across 

the samples (A) Unsupervised principal component analysis of all six dietary and microbial groups 

reveals a microbial signature defined by PC1 and no dietary pattern. (B) Unsupervised PCA of CD 

fed tumors only identifies differences caused by microbial presence/absence. Conv tumors present 

with a higher variance in gene expression than GF lesions. PCAs in A and B have been created 

using DESeq2. (C) Significantly different regulated genes in CD fed mice. In the volcano plot genes 

with a FDR corrected p value of <0.05 and a fold change of >2 have been considered significant. 

Created using the galaxy `Volcano plot` tool version 0.0.5. (D) Gene Set Enrichment Analysis 

(GSEA) on normalized gene expression of the tumors derived from CD fed animals. Pathways were 

assigned on the MDB mouse-ortholog hallmark gene set collection v2022.1 using GSEA version 

4.3.2 and all FDR corrected pathways at a significance level of 0.05 are shown. n = 5 for each group, 

all data are normalized using ruvseq and corrected for multiple testing using FDR.  
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Omics approaches are frameworks that deliver insight into cellular signaling and can help 

in defining cancer pathophysiology. To get a better understanding of the molecular 

processes triggered by the different microbial conditions, dietary fat and cholesterol and 

their interplays, full length RNA sequencing of tumor tissue was performed. 

Analysis of differential gene expression revealed a distinct difference in the signatures of 

the lesions. The main driver for these differences is the microbial state, indicated by 

separation across the principal component 1 (PC1) in the principal component analysis 

(Fig. 20 A). In both conditions, no clear dietary effect and thus clustering can be detected. 

This indicates that the influence of the diets and diet – microbiota interactions induce 

specific changes in gene expression of the tumors rather than modifying the general genetic 

programming. Germ free tumors were more homogenous in their gene expression 

compared to the conventional ones. This clearly demonstrates the importance of 

investigating the interplay between dietary components and the gut microbiota in tumor 

development. 

So far, six groups defined by microbial status and diet fed were analyzed, which gives a first 

hint on the global gene expression profiles. To direct the analysis towards alterations in 

response to specifically the microbial influence, only CD fed mice were considered further. 

Concomitant with the previous findings Conv tumors displayed a higher variability in gene 

expression than their germ free counterparts (Fig. 20 B) . Following the observed 

differences in the PCA, especially in PC1 differential gene expression revealed several 

differentially regulated genetic targets (Fig. 20 C). Among the top overexpressed genes 

upregulated in Conv tumors several immunoglobulins were detected. There are numerous 

implications of B-cell dependent immunity in tumorigenesis, which possibly contributes 

functionally to the observed differences in tumorigenesis (Sharonov et al., 2020). 

Information on differential expression of genes can be integrated into functional profiles 

using databases. In order to retrieve a functional profile of the differential regulated genes 

and better understand the underlying biological processes Gene Set Enrichment Analysis 

(GSEA) was carried out (Fig. 20 D). Starting with the functional pathways upregulated in 

the tumors derived from conventional mice several pathways related to immune responses 

were enriched most. Responses to both, Interferon type I (alpha) and type II (gamma) 

signaling were overrepresented. The downstream targets of these major regulators of 

antitumor immunity, the JAK/STAT pathways were enriched consequently. Interferon 

gamma is considered as cytostatic, antiproliferative and pro-apoptotic and can thus inhibit 

tumor growth. (Castro et al., 2018; Jorgovanovic et al., 2020). Type I interferons are able to 
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influence tumor progression in a similar way. Their role, however, is more conflicting 

(Parker, Rautela and Hertzog, 2016; Cheon et al., 2023). 

Contrary to the increased activity of the immune system in Conv tumors, tumors derived 

from germ free mice were metabolically more active according to their genetic signature. 

Fatty Acid Metabolism and Oxidative Phosphorylation were the top two enriched pathways 

in GF tumors, indicating a higher turnover of fatty acids and subsequent mitochondrial 

energy production. Both fatty acids and the mitochondrial ATP production, are essential for 

tumor growth and progression (Porporato et al., 2018; Koundouros and Poulogiannis, 2020; 

Sica et al., 2020). Another interesting aspect is the increased Hypoxia in these lesions, 

which leads to an altered metabolism with higher dependency on fatty acids (Röhrig and 

Schulze, 2016). Also, activation of the mTOR pathway contributes to cell proliferation and 

is essential for tumor growth (Zou et al., 2020). 

To sum up the findings from the gene expression studies, tumors derived from conventional 

and germ free mice differ in the activity of their immune system and metabolism. 

Conventional derived tumors show higher activity of immune related processes and 

elevated Interferon signaling. In contrast, germ free mice derived tumors mice are 

characterized by a modified energy metabolism with a shift towards fatty acid utilization. 

Higher metabolic activity boosts tumor growth and progression and can thus be identified 

as a driver for the increased tumorigenesis observed in GF mice derived tumors. 

3.3.4. Microbial state but not diet facilitates fatty acid uptake and composition in 

tumors and healthy tissue 

Cancers are known to modify their metabolism to meet the energy requirements for 

continuous growth. Hypoxic conditions, which are often encountered in cancer due to 

extensive growth, lead to a higher dependency on extracellular fatty acids (Koundouros and 

Poulogiannis, 2020). In the special case of intestinal tumors, fatty acids are either available 

from the system or directly in the gut lumen, and it remains elusive if luminal or systemic 

fatty acids deliver nutrients required for growth.  

To address this question, a stable isotope labelling approach with subsequent GC-MS 

analysis was implemented. Mice were gavaged with a fat cocktail containing stable isotope 

labelled free fatty acids (FFAs) and triglycerides dissolved in olive oil. In the process of 

digestion, enzymes like gastric and pancreatic lipase break down dietary triglycerides into 

monoacylglycerids (MAGs), free fatty acids (FFAs) and the glycerol backbone. Thus, 
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differences in both these labels account for the ingestion of fatty acids. The uptake in healthy 

and diseased tissue was evaluated after 1 hour and yielded significantly lower uptake of 

luminal fatty acids into tumors compared to controls independently of the gut microbiota 

(Fig. 21 A and B). Healthy tissue directly adjacent to the tumor as well as distal (1 cm 

downstream of the tumor) tissue took up significantly more fatty acids, which was evident 

in both labels. Both these control tissues displayed no detectable difference in their label 

concentrations, indicating that the reduced uptake into the lesions is tumor specific. This 

showed that the tumor tissue itself has limited luminal fatty acid uptake capacities and 

consequently that tumors rather fulfill their energy needs by systemic uptake than from the 

lumen. 

Across these data, GF tissues consistently showed a higher uptake of luminal fatty acids in 

both labels. Comparing fused data of both labels in GF and Conv tissues, all GF tissues 

revealed a higher uptake with respect to their disease state (Fig. 21 C). Higher lipid uptake 

into these tissues was in line with increased activity of fat related metabolism detected in 

GF lesions. 
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Figure 21: Luminal fat uptake is reduced in tumors and Conv tissue.  

Mice were gavaged with a lipid cocktail containing a stable-isotope labelled free fatty acid (Palmitate) 

and a stable-isotope labelled Tripalmitate and sacrificed after 1 hour to follow lipid uptake into tumors 

and healthy control tissues. Tumor Adjacent tissue was sampled directly next to the tumor, Tumor 

Distal 1 cm downstream.  (A) The uptake of the free fatty acid label from the gut lumen into tumor 

tissue is reduced in GF and Conv mice. (B) Uptake of the Triglyceride label is similarly reduced in 

tumor tissue indicating that the delivery has no physiological impact; n= 5-8 per group for A and B 

and multiple paired t-tests using the Holm-Sidak method were applied. (C) Fused data of both labels 

comparing the FA uptake in CD fed GF and Conv mice show that the uptake is increased in GF 

tissue independently of the tissue; n=10-16 per group. (D) Comparison of fused label uptake indicate 

no dietary influence on FA uptake into tumors on neither Conv nor GF conditions; n =10-24. 

Statistically significant results are highlighted with asterisks: * = p < 0.05. ** = p < 0.01, *** = p < 

0.001, **** = p < 0.0001. 
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Another aspect to be considered is the influence of the used diets and diet related shifts in 

the gut microbiota. HFD induced changes in the intestinal microbiota are suggested to 

increase the lipid uptake capacities in the intestine (Martinez-Guryn et al., 2018). A dietary 

effect however was not detectable in this study. Neither GF nor Conv tissue showed diet 

dependent differences in fatty acid uptake independent of the disease state of the tissue 

(Fig. 21 D). Fatty acid uptake can thus be excluded as a driver for diet-induced differences 

in tumorigenesis, however can be identified to play a pivotal role in the elevated tumor 

phenotype in GF mice. 

To further elucidate the consequence of an altered lipid metabolism and higher luminal fatty 

acid uptake in GF tumors, the fatty acid composition of the tumors was investigated. Fatty 

acid signatures of GF and Conv tumors were analyzed using principal component analysis 

(PCA) and partial least squares – discriminant analysis (PLS-DA, Fig. 22 A and B). PCA is 

an unsupervised method for reducing dimensionality and identifying general patterns in the 

data. PLS-DA is a similar but supervised method, where the variance between predefined 

groups is maximized and thus differences can be identified. Analysis of distinct fatty acids 

further identified three significantly altered species, however no pattern could be identified 

(Fig. 22 C). Further profile visualization yielded clustering according to the microbial state 

(Fig. 22 D), yet high inter-individual variations were detected. Since these analyses yielded 

no specific pattern in single fatty acid profiles, general classes were analyzed next. Here, a 

strong trend towards higher total FA present in GF tumors was identified (Fig. 22 E). 
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Figure 22: Fatty acid composition in GF and Conv derived tumors 

Fatty acid profiles of CD fed murine tumors determined by GC-MS. (A) Unsupervised Principal 

Component Analysis (PCA) of the fatty acid profiles. (B) Supervised Partial Least Squares- 

Discriminant Analysis (PLS-DA) maximizes differences in components between samples. (C) 

Volcano plot of FA profiles with significant metabolites marked. Metabolites with an FDR-corrected 

p value of <0.05 and fold change >2 are considered significant. (D) Heatmap of all FAs measured 

and arranged using unsupervised Euclidean clustering. (E) Total values of all FAs, PUFAs and 

MUFAs measured in the intestinal tumors. (F) Expression level of SCD1 determined in the RNA-

sequencing experiment. n = 5-8 per group for A-E and n = 4-5 per group for F. Statistically significant 

results are highlighted with asterisks: * = p < 0.05. ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 

This is in agreement with the elevated uptake of fatty acids observed. Additionally PUFAs 

are reportedly altered in colorectal cancer (CRC) and play a role in progression of cancer 

(Coleman, Ecker and Haller, 2022), however are not influenced by gut microbes (Fig. 22 E). 

On the other hand, monounsaturated fatty acids (MUFAs) are significantly higher in GF 

tumors. Two polyunsaturated fatty acids (PUFAs) are essential and have to be consumed 

by the diet; MUFAs can be synthesized by desaturation of saturated fatty acids (SAFAs). 

The key enzymes of the desaturation from SAFAs to MUFAs is SCD1 with implications in 

CRC (Ran et al., 2018) and both the concentrations of MUFAs and the expression of SCD1 

were elevated in GF tumors. 

Concluding, it can be proposed that the GF environment promotes uptake of luminal, 

saturated fatty acids into the tissue and that the tumors adapt their metabolic program 
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towards increased utilization of fatty acids. Whereas the tumors itself had a decreased 

luminal FA uptake independent of the microbial status, surrounding tissues had an 

increased uptake in GF mice compared to Conv mice. The altered tumor microenvironment 

with increased availability of fatty acids led to a surge in desaturation of fatty acids and thus 

fueled tumor growth in this model of intestinal tumors. 

3.3.5. Cholesterol induces changes in gene expression of oncogenes and tumor 

suppressors 

The analysis of gene expression and fat metabolism in Conv and GF intestinal tumors 

delivers information on how either presence or absence of the gut microbiota influences 

tumorigenesis. Another question though, which remains unanswered so far, is the influence 

of dietary cholesterol on the formation and progression of gastrointestinal cancer. The initial 

scoring of the tumor burden in the Apc1638N yielded an advanced tumor phenotype induced 

by HFD feeding (Fig. 17 A-E). Adding 0.05 % cholesterol to this HFD reversed this 

phenotype and resembled a tumor burden similar to CD feeding. This phenotype was only 

present in Conv mice, absence of microbiota resulted neither in a HFD nor in a cholesterol 

dependent effect, thus indicating an involvement of gut microbiota. 

In order to get a better understanding of the molecular mechanisms driving the cholesterol-

induced reduced tumorigenesis, gene expression patterns of the intestinal lesions were 

analyzed using RNA sequencing. In the previous analysis of all diets and conditions, no 

diet-induced shift in gene expression pattern was detectable, irrespective of the microbial 

setting (Fig. 20 A). Additionally, when comparing the distinct features in gene expressions 

of Conv mice derived tumors in Venn diagrams, every diet showed its unique features 

(Fig 23 A). The overlaps of differentially expressed genes in comparisons to the other 

dietary conditions were low, indicating that the suppression of tumorigenesis from CD and 

cholesterol followed a specific genetic pattern. To assess the effect of the cholesterol 

supplementation comparison of the two HFDs was thus favorable. In line with the previous 

analysis, general gene expression patterns displayed no cholesterol specific signature in 

the PCA, with a wide variety in between each group (Fig. 23 B). 
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Figure 23: Shifts in gene expression profiles in response to cholesterol  

Full length RNA-sequencing of Conv intestinal lesions. (A) Venn diagram of significant different 

expressed genes. Each circle presents the differently expressed genes when compared to the other 

diets with shared features in between. This gives a first idea of the genetic variance with respect to 

the tumor phenotype and shows that the induced genes by HFD and/or cholesterol differ from the 

CD. (B) Unsupervised PCA of tumors derived from Conv mice fed the HFDs without or with 0.05% 

cholesterol. Transcriptional signatures do not cluster according to diet and show a wide variety in 

between each group, suggesting that there are rather distinct than global changes in gene 

expression. Created using DESeq2 (C) Heatmap of all significant differential expressed genes (FDR 

corrected p <0.05) in HFD+0.00 and HFD+0.05 chol tumors. Data are VST-transformed (variance 

stability transformation) and centered around the mean, clustering of rows and columns is performed 

using Euclidean distance Created using Morpheus. n = 5 per group for all panel parts. 
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This indicates that the expression of specific genes rather than the global genetic program 

is influenced and defines the tumor pathophysiology. Differential gene expression (DGE) 

yielded a total of 50 differential expressed transcripts presenting possible candidates for the 

tumor-suppressive action of cholesterol (Fig. 23 C). 

Of the identified transcripts seven displayed a fold change of >2 (Fig. 24 A). Taking into 

account germ free tumoral expression as a negative control, all 7 of these candidates 

showed no alteration in microbial absence, confirming the relevance of gut microbiome and 

diet interactions for their expression (Fig. 24 B). Among these candidates, several have 

been reported to be implicated in tumorigenesis. Most striking is the increased expression 

of Selectin E (Sele) and Selectin P (Selp), which showed the two highest scores in 

significance and fold change (Fig. 24 A and B). The Selectins are a family of cell adhesion 

molecules, consisting of three members, Selectins L – P and E. Selectin L is expressed in 

leukocytes, E in endothelial cells and P in platelets and endothelial cells. Functionally, they 

comprise different functions of cell adhesions and are involved in cell recruitment and 

inflammation. During inflammation, Selectin P is expressed on endothelial cells first and 

followed by Selectin E upon demand, which is well reflected by the expression levels 

observed in this study. Their role in cancer progression and metastasis formation is also 

established (Borsig, 2018), making them the most promising candidates. 

Other candidates, however, also deserve consideration. The role of matrix 

metalloproteinases (MMPs) in cancer is also well established. Their mechanism of action in 

tumor progression is promoting neovascularization and subsequent angiogenesis and 

Epithelial – Mesenchymal Transition (EMT, Quintero-Fabián et al., 2019). MMP3 meets 

threshold limits for the fold change, however in sum three different MMPs (MMP3, MMP10, 

MMP13) are significantly higher expressed in the HFD + 0.00 group, underlining their role 

as possible candidates. 

Further candidates involved in tumorigenesis among differential expressed transcripts are 

the Lysyl Oxidase (LOX) and Iodothyronine Deiodinase (DIO2). The LOX family consists of 

a group of extracellular  copper-dependent enzymes that structure the extracellular matrix 

(ECM) and can promote tumor growth in CRC (Wang, Hsia and Shieh, 2016). DIO2 was 

reported to be involved in intestinal tumor growth of Apcδ716 tumors, which also harbors a 

KO- of the Apc-gene (Kojima et al., 2019) . 
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Figure 24: Candidate genes are implicated in tumorigenesis relevant pathways 

Data analysis of the RNA-Sequencing was enhanced to identify the most promising candidates. (A) 

Volcano plot of DGE in the HFD +/- cholesterol. No gene met the quality criteria to be significantly 

upregulated in the cholesterol group. Genes with a FDR corrected p value of <0.05 and a fold change 

of >2 are considered significant. Created using the galaxy `Volcano plot` tool version 0.0.5. (B) 

Heatmap with the identified candidates and expression data of all 6 groups indicates that changes 

in these markers are not induced in GF tumors. Data are VST-transformed (variance stability 

transformation) and centered around the mean, clustering of rows is performed using Euclidean 

distance. Created using Morpheus. (C) Gene Set Enrichment Analysis (GSEA) on normalized gene 

expression of tumors from Conv HFD fed mice. Pathways were assigned on the MDB mouse-

ortholog hallmark gene set collection v2022.1 using GSEA version 4.3.2 and all FDR corrected 

pathways at a significance level of 0.05 are shown.  n = 5 for all panel parts. 

In the next step, Gene Set Analysis (GSEA) delivers a more comprehensive view on how 

the cholesterol dependent induction of these candidates influenced functional changes in 

the tumors. Starting with the highest enriched pathway by the HFD + 0.00, the EMT, is a 

complex phenomenon involved in embryonic development and allows tumor becoming 

more malignant, increasing their invasiveness and metastatic activity (Ribatti, Tamma and 

Annese, 2020). Additionally, angiogenesis is required for tumor growth to deliver oxygen 

and nutrients necessary for extensive growth (Lugano, Ramachandran and Dimberg, 2020) 

as well as the coagulome, which is an essential part of the tumor microenvironment (TME, 

Galmiche et al., 2022). The enrichment of a general inflammatory response as well as 
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signaling of KRAS – induced signaling, one of the most important oncogenes in colorectal 

cancer (Liao et al., 2019), emphasizes on the advanced tumor phenotype present. 

Investigation of pathways enriched in cholesterol feeding (HFD + 0.05) delivers a more 

inconsistent picture than the pro- tumor enriched pathways induced by the HFD + 0.00. On 

the one hand, potential pro- tumorigenic pathways like oxidative phosphorylation (Ashton 

et al., 2018), or MYC – targets, a proto-oncogene, are enriched in response to cholesterol. 

Next, reactive oxygen species (ROS) are necessary at moderate levels for tumor 

proliferation, but can also trigger programmed cell death such as necroptosis and 

ferroptosis and can therefore be considered as either pro- or anti-tumorigenic. The same is 

true for E2F, a family of transcription factors regulating the cell cycle, which can act either 

as pro– or anti proliferating. On the other hand, the DNA repair pathway is enriched as well, 

which inhibits excessive proliferation and thus tumor growth. Concluding, in contrast to the 

oncogenic gene expression profile induced by the HFD + 0.00, the HFD + 0.05 induces 

enrichment of also anti-proliferative pathways in the tumors.  

In order to establish a comprehensive connection between pathways and candidates, a 

comparative analysis of tumor promoting pathways in the HFD + 0.00 and differential 

expressed genes was established. The Selectins E and P are involved in a wide variety of 

cancer progression and growth as well as metastasis formation. Especially because of their 

concomitant role and the fact that both transcripts are enriched most in the HFD + 0.00 

group underlined their importance. Selectin P is able to facilitate platelet adhesion at the 

site of the tumor and thus promoting growth by angiogenesis, one of the pathways by HFD 

+ 0.00 feeding (Qi et al., 2015). The adhesive platelets at the tumor site also induce 

activation of the coagulome contributing to tumor progression, which is a pathway induced 

by the HFD + 0.00 as well (Galmiche et al., 2022). There are also numerous reports on the 

role of platelet adhesion in EMT, further representing an induced pathway in the absence 

of cholesterol (Wang et al., 2022). Additionally there are reports on Selectin P to be involved 

in metastasis formation (Kim et al., 1998).  Even though studies on E-Selectin are scarcer, 

potentially due to the timeline of expression of P and E, there are also report on its 

involvement in metastasis formation (Kang et al., 2016). Taken together, the upregulated 

expression of Selectins possibly explains the enriched pathways in the absence of 

cholesterol, which all contribute to tumor growth, progression and metastasis formation, as 

observed in the mice. The role of Selectin P in colorectal cancer was investigated in a recent 

study (Cariello et al., 2021). By crossing a Selp -/- mouse with different mouse models for 

colorectal and intestinal tumors a cancer related phenotype with reduced tumor growth and 
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number was discovered, similar to this study. This confirms that Selectins alone are able to 

induce the observed alterations. 

To conclude, tumors derived from mice either fed a no cholesterol diet (HFD + 0.00) or a 

diet with supplemented cholesterol (HFD + 0.05) differ in gene expression in a limited 

number of transcripts with Selectins E and P being top regulated. Pathway analysis yields 

a number of enriched pathways with pro- tumorigenic properties in the absence of 

cholesterol. The Selectins E and P connect these pathways by 1.) being able to induce 

them, and 2.) other studies showing the ability of Selectin P to induce a similar phenotype 

in the mouse model. Thus, the upregulation of Selectin E and P presents the most promising 

tumor promoting mechanism induced by HFD and repressed by cholesterol.  

3.3.6. Cholesterol shifts gut microbiota in tumor bearing intestinal sections 
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Figure 25: Bacterial signatures affected by HFD and cholesterol in gut sections 

Sequencing of the bacterial V3/V4 16S region derived from mucosal scrapings of tumor bearing 

sections Duodenum and Jejunum. (A and E) Bacterial Alpha Diversity presented by the metrics 

Richness and effective Simpson Index. (B and F) Taxonomic binning on Phylum and on Family level 

based on the relative bacterial abundance in the groups. (C and G) Abundance of bacterial 

sequences on OTU/Species level based on Bray-Curtis distance and clustered unsupervised. (D and 

H) Principle Coordinate Analysis (PCoA) based on Bray-Curtis distance showing dissimilarities in 

Beta Diversity across the samples. Differences between the samples have been investigated using 

PERMANOVA-testing across all groups. n = 7 for all groups and panels. Boxplots central bands 

indicate the median, lower and upper part of the box the respective 25 and 75 percentiles and the 

whiskers connect data points outside these quartiles. Outliers are indicated as separate points. 

Statistically significant results are indicated with asterisks: * = p < 0.05. ** = p < 0.01, *** = p < 0.001, 

**** = p < 0.0001. 

Since a cholesterol dependent altered tumor phenotype was only present in Conv mice and 

no alterations were detected in GF mice, investigation of gut microbial communities present 

an interesting target. To assess differences caused by dietary fat and cholesterol intestinal 

sections bearing tumors were analyzed. This enables the detection of communities in the 

direct proximity of the lesions and thus the most relevant changes concerning 

tumorigenesis. 16S sequencing yielded no difference in the Alpha Diversity of duodenal 

scrapings induced by HFD, however bacterial diversity was significantly increased by 

cholesterol visible in both Richness and effective Simpson index (Fig. 25 A). 
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Taxonomic Binning gave more insight into shifts at different stages. At the Phylum level the 

HFD + 0.00 showed a strong increase in the abundance of Firmicutes and a decrease in 

Bacteroides when compared to the CD (Fig. 25 B). Cholesterol supplementation abrogated 

this shift and manifested with a composition similar to the CD. At the Family level, the shifts 

were shown in more detail: While the HFD + 0.00 increased the abundance of 

Erysipelotrichaceae and Peptostreptococcaceae compared to the CD, the HFD + 0.05 

showed a more distinct composition. Notably the increases in abundance of 

Bacteroidaceae, Rikenellaceae and Tannerellaceae were exclusively induced in the 

presence of cholesterol. Especially the increase in Bacteroidaceae is remarkable, since this 

family was only negligibly present in the HFD + 0.00 group (0.34 %). Unsupervised 

clustering additionally showed that this microbial signature is specific to the HFD + 0.05 

(Fig. 25 C), which was further visible in the Beta Diversity (Fig. 25 D)  and confirmed that 

signatures differ significantly in the mucus layer of the Duodenum. 

The Jejunal situation differed from the clear shifts in the Duodenum. Alpha Diversity yielded 

no detectable difference in neither Richness nor Simpson Index (Fig. 25 E). Taxonomic 

Binning showed mild shifts induced by the HFD + 0.00 compared to the CD and reversed 

by the cholesterol in similar bacterial Phyla and Families as observed in the Duodenum 

(Fig. 25 F). Further analysis by unsupervised clustering also showed no distinct dietary 

clustering in the duodenum, induced neither by HFD nor by cholesterol (Fig. 25 G). Analysis 

of Beta Diversity confirmed this, indicating no detectable difference in the groups (Fig. 25 

H). This further confirms the general findings that no diet-induced difference is detectable 

in the duodenum. 

To sum up the findings from the 16S rRNA sequencing based analysis of the intestinal 

sections significant shifts can be detected in the Duodenum with no or only minor shifts in 

response to cholesterol in the Jejunum. This corresponds very well with the cholesterol 

uptake in the gut, which is mainly absorbed in the Duodenum and the proximal Jejunum 

(Wang, 2003). Additionally, most of the tumors in this mouse model occur in the Duodenum, 

where the cholesterol - dependent shifts are detected. This highlights the relevance of these 

shifts and establishes a connection between cholesterol and the altered tumor phenotype 

in the Conv mice.  
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3.3.7. Bacterial pathways and enzymes involved in Selectin binding are activated 

by cholesterol induced bacteria 

Next generation 16S sequencing is a well-established tool to identify bacterial species and 

characterize bacterial signatures and their shifts in health and disease. In this case, distinct 

changes in the tumor adjacent bacteria were detected. In order to add a mechanistic 

analysis and identify distinct bacterial enzymes and pathways involved in the tumor – 

cholesterol phenotype PICRUSt2 (Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States, Douglas et al., 2020) based analysis was performed. 

Assignment of functional bacterial pathways yielded enrichment of several pathways in the 

HFD + 0.05 compared to the other two dietary conditions (Fig. 26 A). The fact that only 

pathways enriched in the HFD + 0.05 can be detected is due to the increased bacterial 

diversity, which has been discussed previously, and results in a higher variety of pathways 

and metabolic activity. Several of the pathways, which are significantly altered, have 

potential implications in the observed tumor phenotype. Pyridoxal 5´phosphate, the active 

form of vitamin B6, has a wide variety of functions affecting gene expression, metabolism 

and the immune system. Menaquinol-8 (MK8) is a long, bacterial derived, form of vitamin 

K2, which is required for blood coagulation. Several pathways related to MK8 are altered in 

response to diet (superpathway of menaquinol 8 biosynthesis II, 1, 4-dihydroxy-6-

naphthoate biosynthesis I+II).  The role of the length of the side chains of this vitamin is 

subject to further research and many variants have been found to harbor anti-cancer activity 

(Bus and Szterk, 2021).  
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Figure 26: PICRUSt2 based analysis of bacterial enzymes and pathways  

PICRUSt2 was used to assign metagenomics functions to the 16S based microbial analysis of the 

Duodenum. (A) Pathway analysis displaying all significant different bacterial pathways in the 

duodenal section of the three different diet groups. P values < 0.1 are considered significant and 

data are corrected for multiple testing using the BH method. (B) Volcano plot showing a 2-group 

comparison of the HFD + 0.00 and the HFD + 0.05 with all differential regulated enzymes based on 

enzyme classification (EC) number. p < 0.05 is significant, data are BH corrected for multiple testing  

(C) Pathway analysis displayed as a volcano plot comparing differential pathways in the HFD + 0.00 

group and the HFD + 0.05 group. Significant (p < 0.1) pathways are highlighted. n = 7 for all groups 

and panels. Data are normalized by copy numbers and analysis was performed with the ALDEx2 R-

package on the NAMCO-platform. Enzymes and pathways were assigned to bacteria using the 

Metacyc database (Karp, 2002).  

These pathways were also among the highest regulated when comparing the two HFDs 

and thus showing the distinct effect of cholesterol (Fig. 26 C). Another interesting aspect 

was the alteration in mannan degradation, which is a precursor for the CMP-legionaminate 

biosynthesis I (Fig. 26 A and C). Legionaminate or legionaminic acid is a bacterial sialic 

acid analogue. Sialic acids are usually found on cell surfaces in all animal tissues with the 
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highest occurrence in the brain. Hypersialation is also a well-established hallmark of cancer 

cells in many different cancer types, which leads to cancer progression and metastasis 

(Dobie and Skropeta, 2021). Binding partner of sialic acids are all three Selectins P- E- and 

L, where P and E have been found to be upregulated in the absence of cholesterol. In 

consequence and with respect to the observed phenotype, the increased level of this 

bacterial analogue of sialic acid possibly influences Selectin dependent signaling and thus 

tumor progression and growth. 

Across the detected significant candidates, several pathways with implications in sulfate 

metabolism are altered. Two of these pathways (sulfate reduction (assimilatory) I and the 

superpathway of sulfate assimilation and cysteine biosynthesis) can be regarded as 

assimilatory and suggest a direct benefit for bacteria. Interestingly a recent publication 

describes the interaction of dietary cholesterol and the gut microbiome to specifically include 

the conversion from cholesterol to cholesterol sulfate (Le et al., 2022). The sulfate required 

for this process is delivered by endogenous sources. This conversion is dependent on 

Bacteroides, a bacterial genus, which is nearly exclusively found in the HFD + 0.05 in the 

present study (Fig. 26 B). Additionally the bacterial degradation of chondroitin sulfate is 

enriched in response to cholesterol and presents the pathway with the highest difference in 

the two HFD conditions (Fig. 26 A and C). On the enzyme level, the two enzymes 

responsible for the degradation of chondroitin, chondroitin sulfate ABC Endolyase and 

chondroitin ABC Exolyase are two of the most enriched bacterial enzymes in response to 

cholesterol (Fig. 26 B). Chondroitin sulfate is a naturally occurring sulfated 

glycosaminoglycan and important part of the extracellular matrix (ECM). In cancer cell 

surface chondroitin regulates cancer cell properties like proliferation and invasion 

(Nadanaka, Tamura and Kitagawa, 2022). Also, it is be able to promote tumor growth and 

metastasis in breast cancer by the interaction with Selectin P (Cooney et al., 2011). The 

increased bacterial degradation of chondroitin sulfate might thus be a possible supplier of 

endogenous sulfate and the sulfuration of cholesterol. This degradation alters the tumor 

microenvironment and can thus be considered a possible contributor to the observed 

reduced tumorigenesis in response to cholesterol. 

To sum up the bacterial signature in the duodenum induced by dietary cholesterol harbors 

pathways producing metabolites, which are involved in coagulation thus contribute to the 

cholesterol dependent reduced tumorigenesis in HFD feeding. Further, bacterial pathways 

producing the xenobiotic binding partners of Selectins, bacterial sialic acid analogues, are 

enriched in response to cholesterol. Concomitant, chondroitin, which is a further binding 

partner of Selectins, is degraded by gut bacteria induced by cholesterol feeding. The 
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induction in these pathways establishes a connection in the observed mild tumor phenotype 

and the reduced expression of Selectins in response to cholesterol. Cholesterol induced 

changes in bacterial communities can thus be identified as drivers for the reduced 

tumorigenesis in this mouse model of intestinal tumors.  



68 
 

4. Discussion 

The association of shifts in the gut microbial communities with several human diseases is 

a well-established and accepted concept. Functional changes of the gut microbiota are 

associated with metabolic diseases like obesity (Liu et al., 2017) and related co-morbidities 

like CVD (Witkowski, Weeks and Hazen, 2020), NAFLD (Aron-Wisnewsky et al., 2020) or 

T2D (Canfora et al., 2019). Obesity is further considered as one of the main risk factors for 

colorectal cancer in specific and also for this malignancy changes in gut microbial 

communities are outlined (Keum and Giovannucci, 2019; Wong and Yu, 2019). Where at 

first correlation were made on observational findings recent research underwent transition 

into defining mechanisms of microbiota-host interactions in the pathogenesis of these 

diseases. 

The present study investigates the impact of the lipid cholesterol as a dietary component 

on host metabolism in relevant disease models. In order to highlight the importance of 

cholesterol - gut microbiota interactions feeding regimes have been performed in GF and 

SPF conditions in a comparative manner. Especially with regard to the proposed resistance 

to obesity in GF mice (Bäckhed et al., 2004, 2007; Rabot et al., 2010) and the identified role 

of cholesterol (Kübeck et al., 2016) identification of interactions of lipids and the gut 

microbiota would widen our understanding of the disease pathology. Indeed, the resistance 

to diet-induced obesity (DIO) was inducible by cholesterol in a dose-specific manner. In the 

following comparative study the investigation of metabolic changes lead to the identification 

of an altered bile acid pool and specific cholesterol related microbial signatures, especially 

in the small intestine. These findings bring further insight into the underlying mechanism of 

a resistance to DIO in GF mice. 

Obesity additionally is one of the main risk factors for colorectal cancer (CRC, Siegel, Miller 

and Jemal, 2019). This strong interconnection is also directly investigated by the inclusion 

of a disease model, which adds yet another layer. Further shared features of obesity and 

CRC are gut microbial shifts. An increased cholesterol intake is additionally considered a 

risk factor for CRC (Hu et al., 2012). Interestingly, this study identified a lowered tumor 

burden as results of cholesterol supplementation, which alleviated the effect of HFD induced 

tumorigenesis. Investigation into the genetic program of the tumors identified general 

metabolic and immunological changes in GF and Conv derived neoplastic lesions. The 

cholesterol itself had a more specific effect and reduced the HFD elevated expression levels 

of the Selectins P & E only in the presence of gut microbiota. In the gut microbial 
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communities adjacent to these lesions, metabolic pathways producing legionaminate and 

degrading chondroitin were enriched, both able to interact with Selectins. The relevance of 

the identification of such a mechanism in a murine model system to widen our 

understanding of the role gut microbiota in colorectal cancer will be evaluated. 

4.1. Protection to diet-induced obesity in germ free mice - a still unresolved 

puzzle? 

Since its first discovery in 2004 (Bäckhed et al., 2004) many studies were conducted to find 

an underlying mechanism for the resistance to DIO in GF mice, however so far nobody 

convincingly and reproducibly achieved this. Where some were able to successfully 

reproduce the original results (Rabot et al., 2010) recent studies failed to a DIO resistant 

phenotype at all (Logan et al., 2020; Moretti et al., 2021). More specific studies investigating 

DIO in germ free conditions have focused on dietary quality and composition (Fleissner et 

al., 2010; Kübeck et al., 2016). Based on the finding by Kübeck et al. where the authors 

identified the dietary fat type as the primary driver and associated it with global changes in 

cholesterol homeostasis this study was conducted to directly investigate the impact of 

dietary cholesterol. 

The dose response experiment performed in this study was intended to identify a 

cholesterol dose, which induces resistance to DIO most efficiently. In GF mice, a cholesterol 

supplementation of 0.01% was ineffective to induce resistance to DIO, which compares to 

the cholesterol dose identified in the Kübeck study (0.011 %). This is possibly caused by 

the counteracting mechanism of phytosterols present exclusively in plant material and 

influencing cholesterol uptake (Brauner et al., 2012; Gylling and Simonen, 2015). On the 

contrary, a cholesterol supplementation of 0.05 % led to lowered fat mass as indicated by 

NMR. It has to be stated, however, that NMR measurements are error prone in GF mice. 

(Krisko et al., 2020). Regardless, the iWAT fat depot size of the HFD + 0.05 fed mice proved 

to be decreased in mass after ANCOVA-correction (Kleinert et al., 2018). In combination 

these measurements indicate a certain degree of resistance to DIO most pronounced in the 

HFD + 0.05 group. 

GF mice are considered gold standard in microbiome research, however the lack of gut 

microbiota also induces a number of physiological changes (Clavel et al., 2016). AbX 

treated mice, which have a reduced microbial diversity, have thus been included as a 

second model. The antibiotic treatment proved to be very efficient in these mice, indicated 
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by a dramatically decreased bacterial diversity in all metrics evaluated. Fat depot size in 

these mice showed a trend towards lower mass in the HFD + 0.05 group as observed in the 

GF mice, albeit non-significant. In addition, the AbX mice exhibited no susceptibility to DIO 

at all, which indicates that the treatment had systemic offside effects. As a result this model 

has been excluded from the further experiments performed in this study. Nevertheless, the 

outcome from the AbX treated mice can still be rated as confirmatory. In both the GF and 

the AbX mice, a palm-HFD with a supplemented cholesterol concentration of 0.05 % was 

most efficient in inducing resistance to DIO. 

The next experimental step comprised a functional comparison of the 0.05 % cholesterol 

supplemented to the HFD. In GF mice, the HFD+ 0.05 % cholesterol group exhibited a lower 

weight gain and iWAT size compared to the group without supplemented cholesterol (HFD 

+0.00). In contrast, cholesterol induced no significant difference in the final body mass. This 

is likely caused by the increased number of obese mice in the HFD + 0.00 group, which 

died before reaching the end of the study and thus biased the data (Fig. S1). Investigation 

of these deaths yielded an increased number of cecal torsions, a malignancy which is 

described in GF mice (Djurickovic, Ediger and Hong, 1978; Bolsega et al., 2023). It can 

therefore be hypothesized that an increased accumulation of body fat favors the occurrence 

cecal torsions in GF mice. Nonetheless, these results present a clear separation from the 

same feeding experiment in Conv mice. HF-DIO was induced here irrespective of the 

cholesterol concentration as visible in body mass and fat depots and final body weight. This 

definitely hints towards gut microbiome-cholesterol interactions, which counteract the 

resistance to DIO in response to cholesterol. 

Interestingly an effect of cholesterol on obesity development is completely absent in the 

Apc1638N tumor mice. In this model, both HFDs induce DIO in Conv mice and fail to do so in 

GF mice. Only a slight difference in body mass is detectable in GF conditions and fat depot 

masses fail to exhibit a difference. This indicates a general resistance to DIO in GF Apc1638N 

mice. So far, no literature regarding the susceptibility to DIO in this model in GF conditions 

exist. It can be assumed that the genetic background is involved. The heterozygous KO of 

the APC gene leads to a reduced protein level of the APC protein resulting in increased β-

catenin signaling. Besides its implication in cancer, the Wnt/ β-catenin pathway has critical 

and various role in embryonic development and adult tissue homeostasis (Liu et al., 2022). 

Further studies also identified a role Wnt/ β-catenin in the development of obesity (Wang et 

al., 2013; Loh et al., 2015). It can thus be hypothesized that disturbance in Wnt/ β-catenin 

signaling leads to the resistance to DIO in the GF Apc1638N mice. The underlying mechanism 
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remains elusive so far. Either the absence of gut microbiota or other physiological ablations 

in the GF model are potential factors further studies would be required. 

In conclusion, the hypothesis that dietary cholesterol induces resistance to DIO in a dose 

and microbiome dependent manner can be confirmed. This adds yet another layer to the 

discussion of the resistance to DIO in GF mice by confirming the results from Kübeck et 

al.(Kübeck et al., 2016, GF mice are DIO resistant),  and opposing others (Logan et al., 

2020; Moretti et al., 2021, GF mice are not DIO resistant). More recent studies have 

specifically investigated the role of the gut microbiome in obesity related features like energy 

absorption (Martinez-Guryn et al., 2018; Petersen et al., 2019), appetite regulation 

(Federico et al., 2016; Jia et al., 2017) and chronic inflammation (Jia et al., 2017). In 

contrast, this study focuses on defining an obese state under the influence of dietary 

cholesterol. The next step is thus to include obesity-related features by testing glucose-

homeostasis, liver function and atherosclerotic plaque formation. This paves the way to 

define the role of cholesterol dependent resistance to DIO in GF animals and subsequent 

implications of the gut microbiome in obesity. 

4.1.1. Fatty acid assimilation is not influenced by cholesterol 

Obesity develops from an imbalance of higher energy intake than energy expenditure. 

Ingested energy can either be used by metabolic processes and converted to heat, stored 

in the body in the form of fat depots or excreted via feces. In previous studies, the resistance 

to DIO in GF mice has been attributed to an increased fecal output resulting from reduced 

nutrient absorption (Kübeck et al., 2016). This observation was further enforced by the 

identification of a HFD induced jejunal bacterial signature, which was able to boost luminal 

uptake of fatty acids (Martinez-Guryn et al., 2018). 

In the present study, cholesterol supplementation to a HFD resulted in an increased fecal 

energy content in GF mice compared to their Conv counterparts. Although this was, to a 

lower extent, true in Conv mice this finding was well in line with the observed resistance to 

DIO in GF mice. In humans, up to 41 % of the fecal energy is contributed by fat, which 

additionally is higher in germ free mice due to the absence of bacterial mass (Murphy et al., 

1991; Martinez-Guryn et al., 2018). Especially with respects to the important role of 

cholesterol in fatty acid metabolism, a reduced luminal fatty acid uptake in germ free mice 

fed dietary cholesterol presented an interesting target. 
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Stable isotope labelling using labelled triglycerides and FFAs presents a comprehensive 

and targeted approach to analyze luminal fatty acid uptake (Ecker et al., 2012). After 1h, 

plasma level of both labels yielded no difference in concentration indicating no difference in 

luminal fatty acid uptake in all groups. Even though this suggests that a decreased uptake 

of fatty acids can be excluded as potential driver of obesity resistance, the analysis covers 

only one measurement point. The timeframe of 60 minutes is well suited to track lipid uptake 

into plasma, yet fails to detect differences in the kinetic character of luminal lipid uptake 

(Ochiai, 2020). The inclusion of further measurement points would be required to get a 

comprehensive of the complete luminal fatty acid. In the scope of this study, this was not 

feasible due to a limited isolator capacity. Especially given the fact, that HFD + 0.05 fed 

mice excrete feces with higher energy content compared to the HFD + 0.00 group, 

differences in longer term fatty acid uptake are likely.   

4.1.2. Cholesterol- gut microbiota interactions define bile acid profiles 

In close connection to the luminal fatty acid uptake are bile acids (BAs), which act as 

emulsifiers and thus facilitate fatty uptake. Cholesterol induced a 3-fold increase of total BA 

pool size in the cecum and altered the gall bladder BA pool composition in Conv mice. 

However, this did not affect the absorption of fatty acids. Besides their role in lipid ingestion, 

bile acids are important metabolic regulators (Staels and Fonseca, 2009), account for more 

than 50 % of cholesterol turnover (Lefebvre et al., 2009) and are modified by the gut bacteria 

(Collins et al., 2023). Since 95% of secreted bile acids are reabsorbed in the ileum, 

increased cecal BAs indicate a wide range of possible metabolic consequences. Bile acids 

in Ileum and colon activate the receptors FXR (farnesoid X receptor) and TGR5 (takeda g 

protein coupled receptor 5) and can influence the central nervous system, the liver, and 

adipose tissue among others (Wahlström et al., 2016; Mertens et al., 2017). Gut bacteria 

modify the bile acid pool by dehydration, epimerization and oxidation, which renders their 

action as important influencers of metabolism (Wahlström et al., 2016; Collins et al., 2023). 

While these are just some of the possible metabolic effects of BAs, the vast multitude of 

possible action leaves wide room for interpretation. Further testing like analysis of gene and 

protein expression patterns in ileum, colon and liver or systemic metabolomics in response 

to cholesterol-microbiota interactions are required to decipher the systemic effects of bile 

acids in this model. Nevertheless, combining FA stable isotope labelling and targeted BA 

metabolomics defines a direction towards BA signaling and is an important step into 

elucidating the underlying mechanism of cholesterol-induced resistance to DIO in GF mice.  
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4.1.3.  Glyoxylate shunt- a gut microbial player in obesity? 

Gut bacteria are able to affect lipid metabolism (Araújo et al., 2020) and directly modify 

luminal fatty acid uptake (Miyamoto et al., 2019) and bile acids (Wahlström et al., 2016). 

Additionally, gut microbial signatures are impacted in an obese state (Canfora et al., 2019). 

The obesity resistant phenotype, which depends on cholesterol-gut microbiota interactions 

further renders strong interest in changes in gut microbial communities. 

Whereas in humans the highest microbial numbers are found in the colon, in the mouse 

model the cecum is the place with the highest abundance in the mouse. Analysis of cecal 

bacterial communities revealed only minor changes in the composition induced by 

cholesterol. Also on a functional, level no differences in bacterial pathways were detectable, 

which in conclusion means, that interactions of cecal gut microbiota and cholesterol play a 

subordinate role in the development of DIO here. 

In consequence, focus was shifted on small intestinal microbiota. Even though the microbial 

diversity and abundance is lower compared to the large bowel and subject to a fast changing 

environment, small intestinal bacteria play an important role due to the high metabolic 

activity of the small intestine (Kastl et al., 2020). Interestingly, dietary cholesterol induced 

segment specific changes in the communities, with either reduced or elevated diversity. On 

a functional level, communities found in the ileum adaption towards an increased fatty acid 

synthesis and an alteration in the TCA cycle, the glyoxylate bypass. 

The glyoxylate bypass or shunt is a metabolic adaption of bacteria required for growth on 

fatty acids or acetate (Eoh and Rhee, 2014). In mice, enrichment of this pathway in gut 

microbiota has been previously reported in HFD feeding (Nicolas et al., 2017). Additionally, 

gut microbiota also show an adaption towards increased fatty acid synthesis in the Ileum. 

The increased synthesis of fatty acids here is a possible explanation for the increased 

energy content of the feces in the HFD + 0.05 group. Furthermore, the glyoxylate shunt has 

been associated with metabolic disease in general (Proffitt et al., 2022) and with the 

accumulation of visceral fat in specific (Beaumont et al., 2016). In order to connect these 

changes in microbial metabolism to the increased cholesterol levels it can be hypothesized 

that cholesterol is used as primary carbon source for bacterial growth. Bacterial pathways 

for cholesterol degradation are described and such adaptions, including the glyoxylate 

shunt have been described in Mycobacterium tuberculosis (García, Uhía and Galán, 2012; 

Serafini et al., 2019). Another possible factor are increased levels of bile acids in the ileum, 
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which itself have a bactericidal action and regulate gut microbial communities (Collins et al., 

2023). 

The next question in deciphering the underlying mechanism of the cholesterol-induced 

resistance to DIO is how the host metabolism is directly shaped by these adaptions. The 

interplay of increased cholesterol in the gut lumen, increased bile acid levels and resulting 

changes in the microbial ecosystem represents an interesting finding in response to 

cholesterol supplementation. The present research highlights the gut microbial glyoxylate 

bypass as player in metabolic disease and adds an interesting new concept to the role of 

gut microbiota in obesity. 

4.2. Cholesterol-gut microbiota interactions and colorectal cancer 

The interplay of dietary fat, cholesterol and the gut microbiota investigated in this study 

delivers interesting new information in the development of obesity. Obesity itself is further 

regarded as a primary risk factor for the development of colorectal cancer (Siegel, Miller 

and Jemal, 2019). Taking a deeper look at the characteristics of colorectal cancer, 

excessive fat intake (Keum and Giovannucci, 2019) and dietary cholesterol (Hu et al., 2012) 

are additional related risk factors and are in close connection with an observed microbial 

dysbiosis in this malignancy. The present setup thus presents a comprehensive and 

suitable opportunity to study the interplay of these risk factors in the emergence and 

progressing of colorectal cancer. 

4.2.1. The selection of a suitable experimental model 

Murine models of intestinal cancer  harboring a truncating germline mutation of APC have 

been used for decades in preclinical research (Jackstadt and Sansom, 2016). A mutation 

in this gene resembles the human disease of FAP (familial adenomatous coli), but also 80-

90% of sporadic CRC cases harbor a mutation in this gene (Powell et al., 1992). Even 

though development of transgenic models has progressed a lot in recent years, Apcmin , the 

oldest model, is still the most commonly used (Bürtin, Mullins and Linnebacher, 2020). 

For this study, the Apc1638N model was chosen. The heterozygous deletion insertion at 

position 1638 in the Apc gene results in tumor formation after a lag of about 6 months in up 

to 100 % of the mice (Fodde et al., 1994). One of the main advantages of this model in 

comparison to the widely used Apcmin mouse model is the increased mucosal and 

submucosal invasion, which also leads to the progression to adenocarcinomas. 
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Additionally, even though a lag phase of about 6 months produces prolonged experimental 

periods, this is closer to the human situation, where tumor formation and progression is a 

matter of years. Especially with this background, a HFD intervention with or without 

cholesterol can increasingly influence tumor formation after longer intervention periods. 

In contrast to the human situation, the Apc1638N mice develop a majority of lesion in the small 

intestine. This is especially a disadvantage in translating gut-microbiome-host interactions, 

however can serve a model organism to study cholesterol- gut microbiome interactions.. 

Another aspect, which has to be considered, is the suitability of a mouse model for germ 

free studies. There are conflicting results regarding the susceptibility to intestinal tumors 

with some studies identifying higher (Mizutani et al., 1984; Zhan et al., 2013) tumor 

incidence in GF or microbiome deficient mice and some lower (Kaur et al., 2018) in different 

models. In this study, GF animals displayed a clearly elevated tumor burden, which was 

attributed to a decreased immune infiltration and an elevated metabolic activity. 

Confounding factors contributing to this discrepancy are first of all the use of different tumor 

models. Another interesting confounding factor is the diet fed to the animals. Comparing a 

regular chow diet to the control diet fed in this study, a dramatic increase in tumor burden 

can be observed in chow feeding (Fig. S2). This emphasizes on the use of purified and 

defined diets in the study of colorectal cancer as a critical standardization requirement. 

Altogether, the investigated interplay of dietary lipids and gut microbiota unites several 

characteristics relevant to colorectal cancer, which is thus included into this study. Despite 

the different location of tumor incidence compared to the human situation, the Apc1638N 

mouse model was chosen. This model enables studying specific interactions of dietary fat 

and cholesterol and the gut microbiota in a Conv and GF setting and thus is a suitable 

model. 

4.2.2. Cholesterol reduces intestinal tumor formation  

A central question in this study is the contribution of obesity and the gut microbiota to the 

development of intestinal tumors. As there is a close connection in factors contributing to 

obesity on the one hand and intestinal tumors on the other, dissecting the role of a single 

factor is challenging. The setup of this study allows an investigation of this interplay, with a 

special focus on the role of the gut microbiota. 

In Conv mice, the feeding of a HFD efficiently induced DIO in the Apc1638N, irrespectively of 

the cholesterol content. The tumor burden, however, was only significantly increased in 
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mice fed a HFD without cholesterol, along with HFD and cholesterol specific changes in 

tumor bearing regions of the GIT. When comparing these findings now to the GF setting, 

no dietary effect on tumorigenesis can be detected, induced neither by a HFD, nor by 

cholesterol supplementation. Consequently, a HFD induced elevated tumorigenesis is 

dependent on the presence of the gut microbiota, which is in line with recent reports (Yang 

et al., 2022). Interestingly, supplementing cholesterol to this HFD completely ameliorated 

the HFD induced tumorigenesis. This was especially surprising, since dietary cholesterol 

intake is considered to be a risk factor for colorectal cancer in humans and that tumors in 

general require increased cholesterol levels for growth (Hu et al., 2012; Mok and Lee, 2020). 

This phenotype was specific to Conv mice and absent in germ free mice, it is thus very likely 

cholesterol-gut microbiota interactions directly influence intestinal tumorigenesis. 

In contrast to Conv mice, the absence of microbiota led to an overall increased tumor burden 

in GF mice. The analysis of gene expression of the bulk tumors yielded a decreased activity 

of the host immune system on the one hand and an increased metabolic activity in the lesion 

on the other hand. Both are potential drivers contributing to the increased tumor burden 

detected in the GF tumors. The reduced activity of the immune system can be attributed to 

the absence of the gut bacteria, which are well known and important factors in immune 

system development, maturation and regulation (Wu and Wu, 2012; Zheng, Liwinski and 

Elinav, 2020). Interestingly, GF tumors showed a higher metabolic activity, with in particular 

elevated fatty acid metabolism. Fatty acid metabolism is altered in colorectal cancer 

(Coleman, Ecker and Haller, 2022) and it is widely accepted that an increased availability 

of fatty acids support tumorigenesis and cancer progression (Koundouros and 

Poulogiannis, 2020) 

4.2.3. Absence of gut microbiota increases tumors dependence on fatty acids 

Following this finding, fatty acid uptake into the tumors was directly tracked using a stable 

isotope labelling approach. Here, two interesting observations were made: First, all tumors 

analyzed had a reduced uptake of fatty acids compared to healthy tissue. Given the fact 

that tumors occurred in the small intestine, where also fatty acid uptake is facilitated, this is 

especially interesting. It indicates, that intestinal tumors fuel their energy needs not via 

luminal fatty acid uptake but by a systemic supply route. Whereas this was true for both GF 

and Conv derived tumors, GF mice showed higher uptake of luminal fatty acids in healthy 

and malignant tissue, which is in conflict with previous reports (Martinez-Guryn et al., 2018). 

Absence of gut microbiota promoted uptake of saturated fatty acids into malignant as well 

as healthy tissue, resulting in increased fatty acid related metabolic activity. The metabolic 
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activity in absence of gut microbiota included several pathways of fatty acid metabolism and 

in specific and increased activity of fatty acid desaturation. This was unveiled directly by the 

increased expression of SCD1, the key enzyme of fatty acid desaturation and the increased 

levels of MUFAs in these tumors. The desaturation of fatty acids presents a key process in 

cancer metabolism, required for growth and progression of tumors (Vriens et al., 2019).It 

can thus be hypothesized that increased SCD1 dependent fatty acid desaturation due to a 

higher availability of fatty acids is the driving factor for the elevated tumor phenotype in GF 

mice compared to Conv mice 

In synopsis of these findings the gut microbiota can be identified as necessary for the HFD 

and DIO related induction of tumorigenesis, confirming prior findings (Yang et al., 2022). 

Absence of the gut microbiota resulted in no obesity or HFD related tumor phenotype, but 

in an overall increased tumor burden and elevated fatty acid metabolism. Stable isotope 

labelling revealed an increased uptake of saturated fatty acid into primarily healthy tissue. 

This resulted in higher fatty acid desaturation in the tumors and can thus be identified as 

driver for the increased tumorigenesis in GF mice. 

4.2.4. Selectins and Selectin regulation in colorectal cancer 

Following the investigation of differences between GF and Conv derived tumors, special 

focus was placed on the analysis of Conv tumors, since dietary differences here directly 

identified dampened tumorigenesis in response to cholesterol-gut microbiome interactions. 

Feeding the HFD + 0.00 resulted in an increase in tumor burden in the mice compared to 

feeding the CD. The supplementation of 0.05 % cholesterol to this HFD completely 

ameliorated this induction, which is one of the most striking and surprising findings of this 

study. 

Dietary cholesterol is generally regarded as a risk factor for colorectal cancer (Järvinen et 

al., 2001; Hu et al., 2012), so the present result are surprising. A problem about dietary 

cholesterol as a risk factor is, however, that cholesterol is nearly exclusively contained in 

dietary products like meat, eggs or seafood. Each of these products contains other 

components that are considered dietary risk factors for colorectal cancer, which makes 

assessing the influence of a single component hard and further emphasizes on the need 

for targeted approaches (O’Keefe, 2016). This study focused on cholesterol as a 

supplemented component and thus the unbiased effect on tumorigenesis in search of an 

underlying mechanism. 
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The absence of dietary cholesterol in the HFD resulted in differential gene expression, and 

most remarkably, Selectin E and Selectin P were elevated in the tumors. The Selectins are 

a family of transmembrane proteins comprising three members (E, P & L) named after the 

cell type in which they are expressed. These are endothelial cells (Selectin E), platelets 

(Selectin P) and leukocytes (Selectin L), although the Selectins are not exclusively 

expressed in their respective cell type. Besides their primary role as mediators of cell 

adhesion all of them have been implicated in cancer immunity (Borsig, 2018). During 

carcinogenesis, selectins promote various steps in the interactions with tumor cells and 

blood constituents like platelets and immune cells. With respect to intestinal tumors,  

Selectin-E mediated binding of colon cancer cells correlates with metastatic potential 

(Sawada, Tsuboi and Fukuda, 1994). The role of Selectin-P in tumorigenesis is better 

defined. Selectin-P facilitates platelet adhesion at the site of the tumor and thus promoting 

angiogenesis (Qi et al., 2015), coagulation (Galmiche et al., 2022) and epithelial-

mesenchymal transition (EMT), all of them hallmarks of tumor growth and metastasis 

formation. 

An emerging question here is if the contribution of an increased Selectin expression can 

explain the elevated tumor phenotype observed in the HFD 0.00 feeding groups. The 

imminent role of Selectin-P in intestinal tumorigenesis and colorectal cancer has recently 

been addressed (Cariello et al., 2021). Cariello and colleagues investigated intestinal 

tumorigenesis in mice carrying a full body knockout of Selectin-P (Selp -/-). The formation of 

tumors was induced either by azoxymethane (AOM) treatment, or by crossing with Apcmin 

mice and thus covers formation of small intestinal tumors as well as tumors in the colon. 

Knockout of Selectin-P resulted in reduced tumor formation and growth in both models in 

the small intestine as well as in the colon. This very well resembles the observed tumor 

phenotype in the absence of cholesterol in this study and confirms elevated Selectin 

expression as driver of intestinal tumorigenesis, which is further not only relevant in the 

small intestine but also in the colon of mice. 

4.2.5. Connecting dots-Selectin expression and the gut microbiota 

After specifying the role of Selectins in colorectal cancer, a question that still remains is the 

connection between altered gut microbiota and elevated expression of Selectin E & P. 16S 

sequencing yielded significantly higher diversity in close proximity of the tumors induced by 

cholesterol. Functional assessment of the consequences of these changes yielded 

pathways enriched in response to cholesterol. Two of these pathways, the CMP-

legionaminate biosynthesis and the chondroitin sulfate degradation were identified to be 
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able to interact with Selectins and thus present the most interesting changes with respect 

to the lowered tumorigenesis. 

Legionaminate or legionaminic acid is a bacterial derived sialic acid like sugar, which was 

named after the pathogenic Legionella pneumophila. Generally regarded a virulence 

associated factor, it shares high similarities in absolute configuration to sialic acid, which 

are required for the binding of glycoproteins to the Selectins (Schoenhofen et al., 2009). 

The relevance of hypersialation for tumor growth and progression is also known for a long 

time and well established. (Smith and Bertozzi, 2021) Thus, it can be hypothesized that 

bacterial synthesis of this sialic acid homologue influences binding properties of the 

Selectins. This can then further impede binding of platelets to Selectin-P, which is required 

for tumor growth and progression in colorectal and intestinal cancers (Cariello et al., 2021). 

This very concise finding exhibits the imminent impact of legionaminic acid binding to 

Selectin-P on tumor relevant mechanisms like coagulation or EMT. 

Another bacterial pathway, which is in close connection to Selectins, is the chondroitin 

sulfate degradation. Chondroitin sulfate is a sulfated glycosaminoglycan, which is usually 

found attached to extracellular proteins, thus forming proteoglycans. Upon cancer 

progression, tumor cells adapt the composition of their glycocalyx and accumulation of 

chondroitin sulfate has been discovered in squamous cell carcinoma (Chen et al., 2022), 

prostate cancer (Al-Nakouzi et al., 2022) and breast cancer (Nadanaka, Tamura and 

Kitagawa, 2022). In breast cancer, it has further been demonstrated that chondroitin sulfate 

directly interacts with Selectin-P to facilitate metastasis (Monzavi-Karbassi et al., 2007; 

Cooney et al., 2011). Degradation of cell surface chondrotitin by bacteria could thus inhibit 

the tumors ability to grow and form metastasis. A chondroitin sulfate chain consists of 

numerous sugars, which can be sulfated in various quantities and positions. Interestingly, 

a recent study shows the capability of gut bacteria to utilize cholesterol as a sulfate acceptor 

(Le et al., 2022). By using a bio-orthogonal labelling approach, the authors demonstrated 

the distinct ability of commensal gut bacteria to transfer endogenous sulfate to cholesterol 

as a direct response to dietary cholesterol. Several bacterial genera are implicated in this 

action and particularly the Bacteroides genus shows high sulfotransferase activity. In line 

with this study, Bacteroides are highly enriched in response to dietary cholesterol and nearly 

not present in the cholesterol – free HFD in tumor bearing sections. Sulfatation patterns of 

chondroitin, which are functioning as binding motifs, could thus serve as endogenous 

source of sulfates and in consequence bacterial sulfate degradation changes cancer 

dependent binding properties of chondroitin. 
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The cholesterol induced reduced tumorigenesis and the discovery of these pathways calls 

for further investigation of the direct interaction of gut bacteria and Selectins and chondroitin 

in colorectal cancer. Careful considerations have to be taken regarding the experimental 

model system and setup to comprehensively assess these interactions in a meaningful 

manner. Selectins expression is elevated in colorectal tumors but this fails to be seen in 

typical model systems like intestinal tumor cell lines or tumor derived organoids. In addition, 

cholesterol is largely absorbed in the small intestine and only to a much lower extent present 

in the large intestine, the location, where colorectal cancer typically occurs. A possible 

solution for this problem is the application of Ezetimibe, a selective inhibitor of NPL1C1. 

Ezetimibe effectively reduces luminal uptake of cholesterol and in consequence, cholesterol 

levels in the colon. Moreover, Ezetimibe is shown to increase Bacteroides levels in the feces 

of mice (Jin et al., 2022) and implicated as a potential candidate in colorectal cancer therapy 

(Gu et al., 2022). Whereas this is mainly attributed to the systemic effect of Ezetimibe, the 

present proposed mechanism could add another layer to the mechanism of action. 

Altogether further in vitro and in vivo experiments are required to define the exact 

mechanism in the cholesterol – gut microbiota dependent tumor suppression.   

4.3. Conclusion & Outlook 

The present study evaluated the impact of the interplay of dietary lipid and commensal gut 

microbiota on host metabolism in health and disease. Special focus was placed on 

interactions with cholesterol, a lipid molecule that can be consumed either with the diet or 

by endogenous synthesis, with numerous implications in health and disease. By making 

efficient use of mouse models in conventional and germ free settings consequences of 

cholesterol-gut microbiota interactions with relevance to the development of obesity and 

intestinal cancer were investigated. 

Previous reports of the involvement of dietary cholesterol in the resistance to DIO observed 

in GF mice could be confirmed. Employing a dose-response experiment, an optimal 

concentration of dietary cholesterol was determined, which efficiently induced resistance to 

DIO in GF and AbX mice. This marks the first major finding of the present study and shows 

that a single dietary component, the cholesterol, can induce resistance to diet induced 

obesity in germ free mice. In consequence, metabolic deviations in the host were analyzed 

to find an underlying mechanism. Even though fatty acid uptake seemingly can be excluded 

here, future studies should focus on how gut microbiota interacting with lipid species 

influence intestinal fat uptake. An effect here is in agreement with increased energy and the 

feces, elevated bile acid levels and the microbial signature identified. This signature is 
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defined by the glyoxylate bypass, which was already identified to be present in metabolic 

disease. Further research in this direction should focus on moving from correlations to 

mechanisms and define the role of the glyoxylate bypass in the gut microbiota. Entangling 

this interplay can widen our understanding of the role of cholesterol and the gut microbiota 

in obesity and connected metabolic diseases like NAFLD, T2D and cardiovascular 

diseases. 

In order to investigate the impact of the obesity relevant interplay of gut microbiota and 

cholesterol, which is not only relevant to obesity but also combines several known risk 

factors for colorectal cancer analysis has been expanded. By employing a mouse model for 

intestinal tumors, dietary cholesterol was able to ameliorate HFD induced tumorigenesis 

only in presence of the gut microbiome. This surprising and striking new finding shows the 

direct influence of gut microbiome-cholesterol interactions on intestinal tumorigenesis. A 

combination of high throughput transcriptomic and 16S amplicon sequencing identified the 

interaction of the Selectins E & P and the gut microbial metabolites legionaminate and the 

degradation of chondroitin as target inhibitors of tumor growth. This establishes a direct 

causal link, starting with dietary cholesterol over  enrichment of bacterial pathways in 

response to cholesterol that then in turn influence binding properties of the Selectins P and 

E, which are required for intestinal and colorectal cancer formation and progression. Further 

experiments should focus on reproducing and translating these findings to a colon setting 

to resemble the human situation and redefine the role of gut microbiota and the interaction 

of lipid species in the progression and growth of colorectal tumors. 
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Appendix 

 

Figure S1 Individual body mass of GF mice fed the HFD + 0.00 

Total body mass curves of all GF mice included into the study fed the HFD + 0.00. Every line 

represents a single mouse. Mice that failed to reach the end of the study are indicated in blue.  

 

 

Figure S2 Tumor burden in conventional  Apc1638N mice 

Tumor burden of CD and chow fed mice at an age of 32 weeks. Mice were kept under identical 

conditions except for the diet fed. Males and females are represented in both groups in similar 

proportions. Mice were either littermates or from different litters of the same breeding pairs. n = 9 for 

Chow group and n = 16 for CD group. Statistically significant results are highlighted with asterisks: * 

= p < 0.05. ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 
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