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Abstract

High-precision experiments of beta decays of unbound neutrons provide a strong lever to
probe the structure of the weak interaction for potential tensor and scalar contributions.
Such contributions would indicate physics beyond the Standard Model and can be measured
as an energy-dependent shift in the electron energy distribution from neutron beta decay
and are parametrized in the Fierz interference term 𝑏. Such studies require exact calibra-
tions, understanding and control of measurement parameters, and quantifying systematic
uncertainties.

This thesis focuses on determining systematic uncertainties and corrections in an electron
energy measurement with the Perkeo III spectrometer conducted at the Institut Laue-
Langevin in 2019/20. I present the data analysis of this measurement with the developed
corrections to estimate systematic uncertainties, test hypotheses of their causes, and propose
studies for further evaluation. To this end, I developed four analysis tools and studied
new approaches for high-precision experiments, ranging from variational inference, deep
learning, and causal inference to differentiable programming. Applications range from
low-energy particle physics to state-of-the-art computational astrophysics simulations.
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1 Introduction

High-precision experiments are one of the main drivers of searches for new fundamental
forces and particles. Contrary to their high-energy counterparts that also use increasing en-
ergy scales and extensive collision data to look for rare, unusual events from new interactions
or particles, high-precision experiments mainly focus on improving studies of known inter-
actions and particles at lower energies to search for deviations and indicators of new physics
models. These high-precision experiments require exact calibrations, understanding, and
control of measurement parameters and related systematic uncertainties. While the Stan-
dard Model of particle physics successfully explains all known fundamental particles and
the dominant forces at these scales, there are observations indicating its incompleteness that
require physics models beyond the Standard Model. With high-precision experiments, we
can gain insights into new processes to test existing models and advance our understanding.

As a pure weak interaction process at low-energy scales, studies of beta decays of free
neutrons provide a strong lever to probe the structure of the weak interaction for potential
tensor and scalar contributions, which would indicate physics beyond the Standard Model.
Knowledge of the structure of the weak interaction is essential to guide new physics searches,
similar to how the early studies of Fermi interaction in beta decay contributed to the discovery
of the weak interaction and the formulation of the Standard Model. Constant improvements
in high-precision measurements to continuously drive these searches require technological
advances in experiment equipment and analysis tools. These advances make it more complex
and critical to accurately and precisely estimate systematic uncertainties for new physical
results.

To this end, this thesis focuses on determining and estimating systematic uncertainties and
their causes for a precise electron energy measurement in neutron beta decay with the
Perkeo III spectrometer to search for beyond Standard Model physics in left-handed tensor
interactions. I summarize the related work to link the electron energy measurement to
scalar and tensor interactions and recapture the measurement campaign and experiment
setup conducted under my management at the Institut Laue-Langevin in 2019/20 [Lam19]
to collect the required data from neutron beta decay. I discuss the data analysis of the
Perkeo III measurement to estimate systematic uncertainties, test hypotheses of causes to
increase understanding, and propose studies for further evaluation. The work in this thesis is
also the result of collaborations and significant contributions of other theses [Ant19; Kro20;
Fal22; Bes22].

In this thesis, I developed four analysis tools and frameworks to enable specific analysis
and to impact work beyond this thesis. I study new analysis approaches for high-precision
experiments, ranging from variational inference, deep learning, and causal inference to
differentiable programming. My studies cover applications in low-energy particle physics
to state-of-the-art computational astrophysics simulations and also lead to four scientific
works [Wan+19; LBM22; Lam+22a; Dor+23]. Furthermore, I examine the systematic
uncertainties of the electron energy spectrum measurement with Perkeo III and highlight
areas with the highest potential for improvement to guide future high-precision experiments.
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2 Physical Motivation

The Standard Model of particle physics successfully explains a wide range of physical
phenomena in the universe. It describes all known fundamental particles and the dominant
forces acting between them at these scales through quantum field theories (QFTs). It outlines
the interactions of leptons (e.g., electrons), quarks (the constituents of, e.g., neutrons), and
force-carrying bosons (e.g., photons). However, there are still observations that cannot be
explained by it, suggesting that physics beyond the Standard Model is needed. It does not
incorporate gravity, explain the imbalance of matter and antimatter in the universe, or predict
the masses of neutrinos. It also cannot explain dark matter or dark energy, which comprise
most of the universe.

This chapter focuses on searches for beyond Standard Model (BSM) physics through scalar
and tensor contributions in the weak interaction in neutron beta decay. Beta decays have been
essential throughout the development of the Standard Model [LY56; Cow+56; Wei58], e.g.,
to discover the parity-violating structure of the weak interaction [Wu+57]. They continue to
be relevant to particle physics research through measurements of Standard Model parameters
and their contribution to constraining BSM physics searches.

2.1 Beta Decay in the Standard Model

In the Standard Model, the weak interaction is the fundamental force mediating beta decay.
It violates parity symmetry, allows quark flavor changes, and is transmitted by the heavy𝑊±

and 𝑍 bosons, the only force-carrying bosons with mass in the Standard Model. The weak
interaction is an essential link between nuclear and particle physics.

To study this interaction, we will particularly focus on the beta decay of a free neutron 𝑛 into
a proton 𝑝, an electron 𝑒, and an anti-electron neutrino ā𝑒 as

𝑛→ 𝑝 + 𝑒 + ā𝑒 .

The decay is mediated through the weak interaction as illustrated in the Feynman diagram
in Fig. 2.1a. The matrix element M𝛽− for this beta decay with Dirac spinors 𝜓𝑖 for
𝑖 ∈ {𝑢, 𝑑, 𝑒, a𝑒},𝑊 boson mass 𝑚𝑊 , and momentum transfer 𝑞2 is given by

M𝛽− = −
[
𝑔𝑊√

2
�̄�𝑢

1
2
𝛾` (1 − 𝛾5)𝜓𝑑

] [
𝑔`a − 𝑞`𝑞a/𝑚2

𝑊

𝑞2 − 𝑚2
𝑊

] [
𝑔𝑊√

2
�̄�𝑒

1
2
𝛾` (1 − 𝛾5)𝜓a𝑒

]
. (2.1)

The left-handed chiral projection operator 1
2 (1 − 𝛾5) contains the parity-violating 𝑉 − 𝐴

structure of the weak interaction. In beta decays, the moment transfer 𝑞2 is limited by the
available energy 𝐸𝛽− in these processes and is a lot smaller than the mass of the 𝑊 boson
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(a) Feynman diagram of the neutron beta decay
within the Standard Model.
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(b) Four-point interaction of nucleon and leptonic
currents within the EFT framework in Equ. (2.7).

𝑚𝑊 = 80.377(12) GeV [Wor+22]. The available energy is given by the mass differences as
[Wor+22]

𝐸𝛽− = 𝑚𝑛 − 𝑚𝑝 − 𝑚𝑒 = 782.33341(46) keV.

At higher momentum transfers, the weak interaction must be unified with the electromagnetic
force to an electroweak interaction. However, at the low-energy scales of beta decay, we can
describe the interaction as a four-fermion interaction - where these four fermions directly
couple to one another at a single vertex, as illustrated in Fig. 2.1b. The Fermi theory
approximation of Equ. (2.1) is then given by

M𝛽− =
𝐺𝐹√

2
𝑔`a

[
�̄�𝑢𝛾

` (1 − 𝛾5)𝜓𝑑

] [
�̄�𝑒𝛾

` (1 − 𝛾5)𝜓a𝑒

]
, (2.2)

with Fermi constant𝐺𝐹 and𝐺𝐹/
√

2 = 𝑔2
𝑊
/8𝑚2

𝑊
. In modern terms, Fermi theory is the low-

energy effective field theory for the underlying Standard Model weak interaction process,
which is explored in more detail in Sec. 2.2.

Using the Fermi theory framework and Equ. (2.2), we can derive a differential decay
rate, integrating over angular dependencies and neutrino energy [Wil82] while neglecting
electromagnetic interaction between the beta particles, as

dΓ =
𝐺2

𝐹
|𝑉𝑢𝑑 |2

32𝜋5 (1 + 3_2) 𝑝𝑒 𝐸𝑒

(
𝐸𝛽− − 𝐸𝑒

)2 d𝐸𝑒, (2.3)

with electron energy 𝐸𝑒 and momentum 𝑝𝑒. Also, Equ. (2.3) illustrates that neutron beta
decay can be parametrized by experimentally measuring two quantities: The neutron lifetime
𝜏 as integrated phase space and the ratio between axial-vector and vector coupling in the
weak interaction _. These experimental quantities are essential to check, e.g., the unitarity
of the CKM matrix by setting limits on the first CKM quark mixing matrix element 𝑉𝑢𝑑 .

To conclude, we can use the Standard Model to describe beta decay. However, we need a
different approach to incorporate BSM physics in experimental quantities.

2.2 Weak Effective Field Theory

To study BSM physics, scientists can use the Lagrangian L of the Standard Model and
expand it to describe specific physical phenomena at particular energy scales using so-called
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effective field theories (EFTs). They provide a framework to systematically investigate
BSM physics by incorporating new degrees of freedom at the energy scale of interest
while avoiding renormalization criteria in QFTs through suppression for energies larger
than their energy scale. We quantify and parametrize the effects of the introduced, non-
renormalizable operators of the EFT and its underlying high-energy theory in the so-called
Wilson coefficients 𝜖 .

The Standard Model effective field theory (SMEFT) is the most common EFT and extends the
Standard Model to higher energies by parameterizing new physics effects at lower energies,
allowing us to study BSM physics in a model-independent way and providing guidance for
new physics searches that can point us to the correct high-energy theory. However, when
studying low-energy interactions, it is possible to formulate a weak EFT (WEFT) [Bha+12],
which is constrained to energies at the electroweak scale (2 GeV), while SMEFT focuses
on larger energies. The WEFT model assumes massless neutrinos and constrains all BSM
physics in its Wilson coefficients 𝜖 at scales above 2 GeV.

Going to the even smaller energy scales of beta decays (3-momentum transfer |𝑞 | ≃ 1 − 10
MeV), we can use WEFT and formulate a pionless EFT [Kol99]. We describe the transitions
in beta decays with non-relativistic quantum fields 𝜓𝑁 for nucleons, i.e., the protons 𝑝
and neutrons 𝑛, while using relativistic quantum fields for the electrons 𝑒 and left-handed
neutrinos a𝐿 . This distinction means going from quark-level vertices to nucleon-level four-
point interactions [CB83].

2.2.1 EFT Lagrangian

The leading order subset of the pionless EFT Lagrangian L ̸𝜋EFT for transitions in beta decays
is given by [Kol99; Fal+21]

L ̸𝜋EFT ⊃ L (0) + O (∇/𝑚𝑁 ) + h.c. , (2.4)

expanded in orders of spatial derivatives ∇ over nucleon mass 𝑚𝑁 = (𝑚𝑝 + 𝑚𝑛)/2. The
Lagrangian in Equ. (2.4) contains all Lorentz-invariant contributions from scalar 𝑆, pseudo-
scalar 𝑃, axial-vector 𝐴, vector 𝑉 , and tensor 𝑇 in its nucleon-level Wilson coefficients 𝐶+

𝑖

with 𝑖 ∈ {𝑆, 𝑃, 𝐴,𝑉, 𝑇}. Within the framework of the Standard Model, 𝐶+
𝑆
, 𝐶+

𝑃
, and 𝐶+

𝑇
are

zero. The zeroth expansion term L (0) is then given by [Fal+21]

L (0) = −
(
𝜓†
𝑝𝜓𝑛

) [
𝐶+
𝑉𝑒𝐿𝛾

0a𝐿 + 𝐶+
𝑆𝑒𝑅a𝐿

]
+

(
𝜓†
𝑝𝜎

𝑘𝜓𝑛

) [
𝐶+

𝐴𝑒𝐿𝛾
𝑘a𝐿 + 𝐶+

𝑇𝑒𝑅𝛾
0𝛾𝑘a𝐿

]
,

(2.5)

with Pauli matrices 𝜎𝑘 , 𝛾` =

(
0 𝜎`

�̄�` 0

)
, 𝜎` =

(
𝜎0, 𝜎𝑘

)
, and �̄�` =

(
𝜎0,−𝜎𝑘

)
. At the

zeroth level, the Lagrangian matches the historical Fermi and Gamow-Teller transitions and
Lee-Yang notation𝐶+

𝑖
= 𝐶𝑖 +𝐶′

𝑖
[LY56]. In the limit 𝑞 → 0, we can match the nucleon-level

Wilson coefficients𝐶+
𝑖

with the quark-level WEFT Wilson coefficients 𝜖 and nucleon charges
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𝑔𝑖 = 𝑔𝑖 (𝑞2 = 0) with 𝑖 ∈ {𝑆, 𝐴,𝑉, 𝑇, 𝐼𝑆} (induced scalar 𝐼𝑆), leading to [Wei58; Hol74;
Bha+12; Fal+21]

𝐶+
𝑉 =

𝑉𝑢𝑑√
2𝐺𝐹

{
𝑔𝑉 (1 + 𝜖𝐿 + 𝜖𝑅)

√︃
1 + Δ𝑉

𝑅
− 𝑚𝑒

𝑚𝑁

𝑔
(1)
𝑇
𝜖𝑇

}
𝐶+

𝐴 = − 𝑉𝑢𝑑√
2𝐺𝐹

{
𝑔𝐴 (1 + 𝜖𝐿 − 𝜖𝑅)

√︃
1 + Δ𝐴

𝑅
+ 2

𝑚𝑒

𝑚𝑁

𝑔
(3)
𝑇
𝜖𝑇

}
𝐶+
𝑆 =

𝑉𝑢𝑑√
2𝐺𝐹

{
𝑔𝑆𝜖𝑆 + 𝑚𝑒

2𝑚𝑁

𝑔𝐼𝑆 (1 + 𝜖𝐿 + 𝜖𝑅)
}

𝐶+
𝑇 =

𝑉𝑢𝑑√
2𝐺𝐹

𝑔𝑇𝜖𝑇

(2.6)

with the first CKM matrix element𝑉𝑢𝑑 , electron mass𝑚𝑒, Fermi constant𝐺𝐹 , inner radiative
corrections Δ𝑉

𝑅
and Δ𝐴

𝑅
[Wil82; Gor19; GS21; Cir+22]. Note that in the zeroth expansion

term L (0) , there is no nucleon-level pseudoscalar contribution𝐶+
𝑃

. Higher order derivatives
of L ̸𝜋EFT would also introduce effects such as weak magnetism, induced tensor terms, and
quark-level tensor interactions. However, due to higher suppression with nucleon mass
1/𝑚𝑁 , searches are more sensitive for BSM physics contributions through scalar and tensor
contributions in the zeroth derivative leading order term.

2.2.2 Neutron Beta Decay Amplitude

With the Lagrangian for nuclear beta decay transitions in Equ. (2.5), we can calculate the
beta decay amplitude M𝛽− . Expanded in orders of 3-momenta 𝑞 over nuclear mass 𝑚𝑁 ,
the leading order amplitude M (0)

𝛽− is given with the Wilson coefficient from Equ. (2.6) and
leptonic currents 𝐿 [Fal+21]

M (0)
𝛽− = −

〈
𝜓†
𝑝𝜓𝑛

〉 [
𝐶+
𝑉𝐿

0 + 𝐶+
𝑆𝐿

]
+

〈
𝜓†
𝑝𝜎

𝑘𝜓𝑛

〉 [
𝐶+

𝐴𝐿
𝑘 + 𝐶+

𝑇𝐿
0𝑘 ] . (2.7)

The leptonic currents 𝐿 are given through the spinor wave functions of the electron 𝑒 and
electron neutrino a with chirality 𝐿/𝑅

𝐿 = �̄�𝑅 (𝑘𝑒) a𝐿 (𝑘a)
𝐿` = �̄�𝐿 (𝑘𝑒) 𝛾`a𝐿 (𝑘a)
𝐿0𝑘 = �̄�𝑅 (𝑘𝑒) 𝛾0𝛾𝑘a𝐿 (𝑘a)

(2.8)

with 𝑘 ∈ {1, 2, 3}. Using Fermi’s golden rule, we can use Equ. (2.7) to calculate the
differential decay width integrated over electron spin for the neutron decay as [JTW57]

dΓ
d𝐸𝑒 dΩ𝑒 dΩa

= 𝑀2
𝐹 𝐹 (𝑍, 𝐸𝑒) (1 + 𝛿𝑅)

𝑝𝑒𝐸𝑒

(
𝐸𝛽− − 𝐸𝑒

)2

64𝜋5 b̂

{
1 + 𝑏𝑚𝑒

𝐸𝑒

+ 𝑎 (𝐸𝑒)
𝒌𝑒 · 𝒌a

𝐸𝑒𝐸a

+ 𝑱 · 𝒌𝑒
𝐽𝐸𝑒

𝐴 (𝐸𝑒) +
𝑱 · 𝒌a

𝐽𝐸a

𝐵 (𝐸𝑒) +
𝑱 · (𝒌𝑒 × 𝒌a)
𝐽𝐸𝑒𝐸a

𝐷 (𝐸𝑒)
}
,

(2.9)

with normalization b̂, 3-momentum vector 𝒌𝑖 for electron and neutrino, neutron spin 𝑱,
leading order electromagnetic corrections in Fermi function 𝐹 and radiative corrections 𝛿𝑅.
Equ. (2.9) neglects any higher corrections on the parameters 𝑏, 𝑎, 𝐴, 𝐵, and 𝐷. Higher
order corrections can be found in [Fal+21]. These parameters are the correlation coeffi-
cients directly caused by including all Lorentz-invariant contributions in the Lagrangian in
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Equ. (2.4). Within the framework of the Standard Model, 𝐷 and 𝑏 are zero, and all other
correlation coefficients are a function of _ = 𝐶+

𝐴
/𝐶+

𝑉
.

We can further simplify Equ. (2.9) when integrating over all neutron spin directions, con-
sidering unpolarized neutrons, to

dΓ ∝ 𝑝𝑒𝐸𝑒

(
𝐸𝛽− − 𝐸𝑒

)2
b̂

{
1 + 𝑏𝑚𝑒

𝐸𝑒

}
d𝐸𝑒, (2.10)

neglecting electromagnetic and radiative corrections. The Fierz interference term 𝑏 is the
focus of this thesis and will be further discussed in the following section.

2.3 Fierz Interference Term

The resulting energy spectrum in Equ. (2.10) contains only the phase space contribution of
the so-called Fierz interference term 𝑏, which is a function of the Wilson coefficients 𝐶+

𝑖

from the pionless EFT Lagrangian in Equ. (2.5) [Fal+21]

b̂ =
��𝐶+

𝑉

��2 + ��𝐶+
𝑆

��2 + 3
[��𝐶+

𝐴

��2 + ��𝐶+
𝑇

��2]
𝑏 b̂ = ±2 Re

[
𝐶+
𝑉�̄�

+
𝑆 + 3 𝐶+

𝐴�̄�
+
𝑇

]
.

(2.11)

This expression simplifies to

𝑏 = 2
𝐶+
𝑆
+ 3_𝐶+

𝑇

1 + 𝐶+
𝑆

2 + 3_2 + 3𝐶+
𝑇

2 ≃ 2
𝐶+
𝑆
+ 3_𝐶+

𝑇

1 + 3_2 + O
(
𝐶+
𝑆/𝑇

2
)
. (2.12)

By setting 𝐶+
𝑇
= 0, 𝐶+

𝑆
= 0, and _ = 𝐶+

𝐴
/𝐶+

𝑉
, we can obtain the original Standard Model

decay rate in Equ. (2.3) from Equ. (2.10) and (2.11).

As shown in Equ. (2.12), the Fierz interference term 𝑏 is a function of BSM physics in the
form of scalar and tensor contributions. Historically, the Fierz interference term refers to
the interference when exchanging different spin bosons, i.e., virtual particles [Fie37; Fie39].
This interference modifies the overall coupling constant of the considered process and leads
to small corrections in the predicted decay rates. For the pionless EFT framework we used,
the interference is between different structures of nucleon-level currents instead of virtual
particles. For visualization, Fig. 2.2 illustrates the effect of a non-zero Fierz interference
term 𝑏 on the electron beta spectrum.

We can therefore use the pionless EFT description of beta decay to quantify left-handed
BSM physics by precisely measuring the differential decay rate.

2.3.1 Sensitivity of Different Decays

While Equ. (2.10) shows that we can use beta decay for studies of BSM physics, there are
other beta decays besides that of the free neutron, that might be suitable to look for BSM
physics.

The authors of [GN16] demonstrate that the beta decays of neutrons and 6He nuclei are
optimally sensitive probes to constrain the Fierz interference term 𝑏 experimentally. Decays
with endpoint energies in the 600 − 3800 keV range are within 20% [Δ𝑏] of the optimal
statistical uncertainty, as illustrated in Fig. 2.3. The energy-dependent sensitivity arises from
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Figure 2.2 Effect of a non-zero Fierz interference term 𝑏 on the electron beta spectrum. Both spectra
are normalized. The value of 𝑏 = 0.5 is exaggerated for visualization purposes.

Figure 2.3 Graph and caption adapted from [GN16]: "The solid red line shows the 1𝜎 statistical
uncertainties obtained from fits of simulated beta energy spectra as a function of the endpoint energy
𝐸0." The dotted line is neglected and the authors used 108 events for each fitted spectrum.

a balance between two competing factors. On the one hand, the magnitude of the 𝑚/𝐸 term
in the decay probability in Equ. (2.10) grows with decreasing energy, enhancing sensitivity.
On the other hand, the available phase space for BSM physics, i.e., the difference between
Equ. (2.10) and (2.3), decreases with energy, reducing sensitivity. A reason to favor studying
neutron decay over 6He decay is that a measurement with free neutrons does not need to
consider interference with nuclear wave functions of mother nuclei.

2.3.2 Related Work and Measurement Goal

Previous work already determined the Fierz interference term 𝑏 in neutron beta decay.
Currently, there is only one measurement directly from the electron energy spectrum in
[Hic+17],

𝑏 = 0.067 ± 0.005 stat
+0.090
−0.061 sys ,
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and two from a combined analysis with the beta asymmetry 𝐴 [Sun+20]1 and [Sau+20]

𝑏 = 0.066 ± 0.041 stat ± 0.024 sys ,

𝑏 = 0.017 ± 0.020 stat ± 0.003 sys .

The value from [Sau+20] is currently the most precise measurement with an overall result of
𝑏 = 0.017(21). Superallowed nuclear decays currently set the strongest limits for left-handed
scalar interactions with [HT20] at 95% confidence level

−0.0020 < 𝐶+
𝑆/𝐶

+
𝑉 < 0.0020.

Using the scalar limit from [HT15] (predecessor result of [HT20]), the authors of [Mär+19]
derived a limit on left-handed tensor interactions at 95% confidence level

−0.0044 < 𝐶+
𝑇/𝐶+

𝐴 < 0.00023.

Compared to other decays, e.g., Li beta decay [Bur+22] at 95% confidence level

−0.087 < 𝐶+
𝑇/𝐶+

𝐴 < 0.087,

neutron beta decay drives the limits on left-handed tensor interactions.

To further push the boundaries of BSM physics searches, we set out to measure the Fierz
interference term with an absolute precision of 𝜎𝑏 = 5 · 10−3 from a direct electron energy
spectrum measurement [Lam19], improving on the most precise result to date from [Sau+20]
with 𝜎𝑏 = 2.1 · 10−2 by a factor of four. The resulting precision of [Sau+20] is limited by
statistical uncertainties. Our proposed measurement [Lam19] is expected to be limited by
systematical uncertainties, requiring improved methodologies in the analysis and a broader
set of systematic effects to be studied. I was the main responsible for preparing and managing
this measurement campaign. The analysis of that measurement campaign is the focus of my
thesis, see Sec. 4.

The aspired precision of 𝜎𝑏 = 5 · 10−3 bridges the gap to or is competitive with proposed fu-
ture measurements, e.g., [Sev14; Huy+16; Fry+19; Wan+19]. The Perkeo III spectrometer
used, e.g., in [Sau+20], and for the measurement for this thesis, is followed-up by the PERC
spectrometer [Dub+08], which is currently in development with my involvement [Wan+19].

1The authors of [Sun+20] also extract 𝑏 directly from the electron energy spectrum, but focus on the beta
asymmetry due to the resulting uncertainties.
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3 Machine Learning for High-Precision
Experiments

Particle physics experiments are often complex and intricate, with many tunable parameters.
While deriving models of the underlying physical processes from first principles is not
always possible, it is necessary to understand and model experiments to achieve precise
results. Historically, this requirement led to the creation and utilization of Monte-Carlo-
based simulations and advanced statistical tools. In this chapter, I intend to explore statistical
machine learning and deep learning alternatives to enhance experimental work by integrating
physical motivation and statistical goals where applicable. Specifically, I present applications
in post-experimental data analysis, pre-experimental optimization of experiment design, and
developing tools to gain insight into state-of-the-art large-scale simulations.

The presented work and some illustrations in this chapter is based on three scientific works
with my contributions [LBM22; Lam+22a; Dor+23].

3.1 Methodology - Modeling

Without an analytical model based on first principles, we must rely on empirical data from
experiments or simulations to construct a surrogate model to describe physical processes.
Machine learning techniques can be employed to extract relationships from such data.
These methods help analyze complex systems where theoretical models are intractable or
nonexistent.

Two broad classes of machine learning methods are particularly relevant for surrogate
modeling: regression and dimensionality reduction. Regression techniques like Gaussian
process regression and neural networks can learn a functional mapping between inputs and
outputs. They provide a surrogate model for emulating the system response. Dimensionality
reduction methods, such as principal component analysis and autoencoders, can extract
salient features from the data by reducing input redundancies.

We can use such data-driven approaches to improve data analysis, simulation efficiency, or
experiment design. This section summarizes existing literature and recent scientific work
and also highlights applicability to physics experiments.

3.1.1 Kernel Functions

Kernel functions 𝑘 are defined as integral operators for 𝒙 ∈ 𝜒 on 𝑓 with Lebesgue measure
a as

(𝑇𝑘 𝑓 ) (𝒙) =
∫
𝜒

𝑘 (𝒙, 𝒙′) da(𝒙′).
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Should 𝑘 fulfill the Mercer condition [SS18], calculating 𝑘 (x, x′) is equivalent to mapping
x and x′ to a feature space via a function 𝜙 and taking the inner product [SS18]

𝑘 (x, x′) = ⟨𝜙(x), 𝜙(x′)⟩a . (3.1)

However, neither the projection nor the inner product needs to be calculated directly. This
equivalence is called the kernel trick. Since the equivalent mapping of 𝜙 is primarily non-
linear and usually into higher dimensions, we can use kernel functions to make data more
separable for a more straightforward classification or analysis, e.g., with linear methods.
Furthermore, we can construct the Gram matrix K for 𝐾𝑖 𝑗 = 𝑘 (xi, xj

′) with respect to a
data set D𝑛 = {x1, ..., xn} of size 𝑛. Should K be positive semi-definite, then 𝑘 is a valid
covariance function and K the corresponding covariance matrix. We can interpret K as a
similarity matrix because we score each point xi to each point in D𝑛 by a similarity criterion
defined by the kernel function 𝑘 .

Kernel functions can be, e.g., stationary (𝑘 (x, x′) = 𝑘 (x − x′)) and therefore invariant
under spatial displacements, or isotropic (𝑘 (x, x′) = 𝑘 ( |x − x′ |)). In addition, we can cre-
ate composite kernels, as a sum, product, or convolution of two kernel functions [SS18].
Given that 𝑘 scores points by a similarity criterion, we can interpret composite kernels
as combining similarity criteria with logical operators. As the kernel function parameters
are related to data-specific characteristics such as length scales, kernel methods offer inter-
pretable parameters. This benefit is unique compared to other machine learning methods
and makes them attractive for physics applications [LBM22]. Thus, we can create physically
motivated kernel functions with physical parameters and encode physical information like,
e.g., symmetry (𝑘 (x, x′) = 𝑘 (x, x′) + 𝑘 (−x, x′)) or local density changes of our problem. I
want to highlight that the kernel function parameters, even if interpretable, still need to be set.

The computational complexity of K scales with O(𝑛2). To use kernel functions with
large data sets, we can use a low-rank matrix approximation called Nyström approxima-
tion [DM05; RW06]. For this, we chose a random subset D𝑚 of 𝑚 data points with
𝑚 < 𝑛 to represent the data set and calculate the Gram matrix for 𝐾𝑖 𝑗 = 𝑘 (xi, xj) with
xi ∈ D𝑛 = {x1, ..., xn} and xj ∈ D𝑚 ⊂ D𝑛.

To visualize kernel functions, we can consider a fictional problem: We have a measurement
of 𝐾+ decay and the experiment collected the decay particle charge 𝑄 and rest mass 𝑚 in
natural units with uncorrelated uncertainties. Our goal in this simple example is to separate
the data set to only contain 𝜋0. The dominant, non-leptonic decay channels are

𝐾+ → 𝜋+𝜋0

𝐾+ → 𝜋+𝜋+𝜋−

𝐾+ → 𝜋+𝜋0𝜋0.

The mass resolution is sufficient to remove leptonic decay, but it is insufficient to separate
the mass difference between 𝜋± and 𝜋0 of 𝑚𝜋± − 𝑚𝜋0 ≈ 4.6 MeV. The measured data
set is shown in Fig. 3.1. The branching ratios for different decays have been taken into
account. Using the symmetric polynomial kernel, we can illustrate how the data set with
x ∈ R2 becomes linearly separable after applying the equivalent mapping function 𝜙 into a
higher-dimensional space as
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Figure 3.1 Illustrating kernel functions with the separation of 𝜋±0 produced in 𝐾+ decay. (Left)
Original data set of dominant non-leptonic 𝐾+ decay. (Right) First two dimensions after mapping
the data set with 𝜙, see Equ. (3.2).

for 𝑘 (x, x′) = (x𝑇x′)𝑑 𝑑 = 2−−−−→ 𝜙(x, x′) = ©«
√

2𝑥0𝑥1
𝑥2

0
𝑥2

1

ª®¬ ≡ ©«
√

2𝑄𝑚
𝑄2

𝑚2

ª®¬ . (3.2)

The result is shown in Fig. 3.1. Even when only plotting the first two of the three dimensions
in the feature space, we can separate the 𝜋0 data points with a straight line in this constructed
example.

Besides the polynomial kernel in Equ. (3.2), other common kernel choices are the Matérna
kernel class with 𝑑 = | |x − x′ | |2 [RW06; Sha+16]

𝑘 (x, x′)a= 3
2
= 𝜎2

(
1 +

√
3𝑑
𝜌

)
exp

(
−
√

3𝑑
𝜌

)
𝑘 (x, x′)a= 5

2
= 𝜎2

(
1 +

√
5𝑑
𝜌

+ 5𝑑2

2𝜌2

)
exp

(
−
√

5𝑑
𝜌

)
,

(3.3)

and the radial basis function kernel (RBF)

𝑘 (x, x′) = 𝜎2 exp
(
− 𝑑

2𝜌2

)
. (3.4)

Both have a length scale parameter 𝜌, an output scale parameter 𝜎 and are isotropic kernel
functions. The RBF kernel highlights the elegance of the kernel trick, as it’s mapping
function 𝜙 maps into an infinite-dimensional feature space as shown with the multinomial
theorem.

Any algorithms relying on kernel functions to map data into high-dimensional feature
spaces are called kernel methods. For example, we can combine kernel functions with
data dimensionality reduction methods, e.g., principal component analysis (PCA). PCA
simplifies complex data sets by transforming the original variables into new variables called



3 Machine Learning for High-Precision Experiments

14

x [a.u.]
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

y 
[a

.u
.]

Data
GPR
GPR +- 

0 1 2 3 4 5
x [a.u.]

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

y 
[a

.u
.]

Data
GPR
GPR +- 

Figure 3.2 Caption and graph adapted from [LBM22]: "Example: Gaussian process posterior
distribution for two different data sets. One with 4 (top) and updated for 8 (bottom) noisy points of
the same unknown underlying distribution."

principal components. The principal components are orthogonal to each other and explain
the maximum possible variance of the original data. By reducing the dimensionality of
the data, principal component analysis can reveal hidden trends and patterns in the data.
However, PCA is a linear technique, and if the data has significant non-linear effects, PCA
will miss those relations. As presented in [SSM98], we can expand PCA to a non-linear
component analysis by constructing K of our data set and performing PCA on the result,
so-called kernel PCA. Another example for kernel methods are support vector machines and
Gaussian processes, of which we will explore the latter in the next section.

3.1.2 Gaussian Processes

We can model the predictions and local uncertainties of a continuous input space by treating
each point as a component of an infinite-dimensional Gaussian distribution. A sample from
this Gaussian distribution is a function with a value for each point in the input space, defining
a Gaussian process with function samples f as

f ∼ GP (𝑚(x), 𝑘 (x, x′)) .

The mean and fluctuation of the sample function f state the predictive mean and uncertainty
at a point x, i.e., each point x in the input space has a mean 𝑚(x) and covariance 𝑘 (x, x′) to
other points x′.

We want to construct such a model using a finite data set of observations. Using Bayesian
inference, we can define a prior over functions with a zero mean𝑚(x) = 0, covariance matrix
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K with entries 𝐾𝑖 𝑗 = 𝑘 (xi, x′j), an observed data set of size 𝑛 with input points 𝑋 ∈ R𝑚 and
values 𝑦 ∈ R

f ∼ N (0, K(𝑋, 𝑋)) .

Positive semi-definite kernel functions are used as covariance functions, see Sec. 3.1.1.
We can expand this for observations with fixed noise 𝑦 = 𝑓 (x) + 𝜖 where 𝜖 ∼ N(0, 𝜎2

𝑛).
Expanding the following expressions for individual noise for each point is straightforward.
In addition, we add testing points 𝑋∗ in the input space where we want to predict function
values f∗ to get the joint prior over functions[

y
f∗

]
∼ N

(
0,

[
K(𝑋, 𝑋) + 𝜎2

𝑛I K (𝑋, 𝑋∗)
K (𝑋∗, 𝑋) K (𝑋∗, 𝑋∗)

] )
. (3.5)

As we are using only Gaussian distributions, we can obtain the predictive distribution through
conditioning

f∗ | 𝑋, y, 𝑋∗ ∼ N
(
f∗, cov (f∗)

)
, (3.6)

with predicted mean f∗ and covariance cov (f∗)

f∗ = K (𝑋∗, 𝑋)
[
K(𝑋, 𝑋) + 𝜎2

𝑛I
]−1 y

cov (f∗) = K (𝑋∗, 𝑋∗) − K (𝑋∗, 𝑋)
[
K(𝑋, 𝑋) + 𝜎2

𝑛I
]−1 K (𝑋, 𝑋∗) .

(3.7)

Thus, Gaussian processes reconstruct the underlying signal without contaminating noise by
computing a weighted average of noisy observations y, making them equivalent to linear
smoother by definition. Furthermore, they are a generalization of spline models, large
neural networks, and support vector machines [Nea96; Wah78; RW06]. We can apply them
to regression (GPR) or classification tasks.

The only parameters of a Gaussian process like described above are the noise parameter 𝜎𝑛

and any parameters of the covariance function 𝑘 . Gaussian processes are non-parametric,
as they are created from data sets and grow in complexity with them.1 We can set these
parameters by maximizing the marginal log-likelihood log 𝑝(y | 𝑋) obtained through the
Gaussian likelihood and prior as

log 𝑝(y | 𝑋) = −1
2

y⊤
(
K(𝑋, 𝑋) + 𝜎2

𝑛I
)−1

y − 1
2

log
��K(𝑋, 𝑋) + 𝜎2

𝑛I
�� − 𝑛

2
log 2𝜋. (3.8)

The noise and kernel function parameters are optimized during the fit, implying statistically
motivated results, unlike some other machine learning approaches. To illustrate the non-
parametric nature, we give an example GPR for a one-dimensional input space for a data set
with four and eight data points from the same data set in Fig. 3.2. Note that the predicted
mean and covariance converge to the prior again away from the data. The predictive range
depends on the length scale parameter of the kernel function, see Equ. (3.4).

The covariance function is the most critical model assumption for Gaussian processes. Its
differentiability affects the smoothness of the samples drawn from the corresponding prior
in Equ. (3.5). As natural phenomena usually have underlying non-continuous contributions,
smooth samples struggle to model such phenomena, leading to a length scale collapse when

1Histograms are another example of a non-parametric model that grows in complexity with the data set to
approximate probability density functions for a given set of hyperparameters, e.g., number of bins.
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Figure 3.3 Illustrating the impact of mean-square differentiability of different kernel functions on
sample smoothness by drawing samples from the joint prior in Equ. (3.5). The results are shifted on
the y-axis for visualization purposes.

maximizing the marginal log-likelihood. This collapse, in turn, yields imprecise posterior
distributions. To illustrate the impact of the mean-square differentiability of the covariance
function, we can compare samples drawn from the prior for three kernel functions with the
same length scale in Fig. 3.3. The RBF kernel function in Equ. (3.4) is infinitely mean-
square differentiable, whereas the Matérn kernel functions are only ⌈a⌉ − 1 times [SS18]
mean-square differentiable, and the Wiener kernel (𝑘 (x, x′) = min(x, x′)) is not mean-square
differentiable.

Besides prior knowledge about smoothness properties encoded in the covariance function,
we also make other assumptions using Gaussian processes. Gaussian processes assume
that similar inputs will have similar outputs, meaning the modeled function is smooth
and continuous. For stationary covariance functions, the covariance function used in the
Gaussian process depends only on the distance between inputs, not on the absolute values of
the inputs, meaning the modeled function has the same smoothness properties everywhere.
The Gaussianity of the underlying noise in the observations and latent function values is a
requirement for the analytical tractability of the posterior predictive distribution. I discuss
non-stationarity and adaptable metrics in covariance functions, data set size limitations, and
non-Gaussian likelihoods in Sec. 3.1.3. In this section, we focus on scalar outputs, however,
multi-output Gaussian processes are possible [AL08; Wil+16b], also see Sec. 3.1.3.

In conclusion, Gaussian processes allow us to incorporate prior knowledge about the function
we want to model while offering a non-parametric but statistically motivated approach to
model data while also offering uncertainty quantification.

3.1.3 Stochastic Variational Gaussian Processes and Deep Kernel
Learning

The most significant limitation of Gaussian processes for (particle) physics applications is the
insufficient scalability to large data sets. Due to the matrix inversion of K in the marginal log-
likelihood in Equ. (3.8), Gaussian processes have a computational complexity of O(𝑛3) for
a dataset of size 𝑛. An approach to increasing Gaussian processes’ scalability is a stochastic
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variational Gaussian process (SVGP), as outlined by [HFL13; HMG14; Hen+15].2 They
combine sparse Gaussian processes [QR05] with posterior approximation via variational
inference [BKM17]. Their approach enables stochastic gradient descent optimization on a
lower bound of the marginal log-likelihood from Equ. (3.8) and non-Gaussian likelihoods.

The goal of this section is to outline how stochastic variational Gaussian processes (SVGP)
are derived differently from exact Gaussian processes, as described in Equ. (3.7) and (3.8),
and to scale Gaussian processes to large data sets. The authors of [QR05] use a sparse prior
with 𝑚 inducing points 𝑋S as additional parameters to the model as[

f
fS

]
∼ N

(
0,

[
K(𝑋, 𝑋) K (𝑋, 𝑋S)
K (𝑋S, 𝑋) K (𝑋S, 𝑋S)

] )
. (3.9)

The idea is to have the inducing points and their predictions (𝑋S, fS(𝑋S)) summarize the
data set and add the inducing points 𝑋S, but not their predictions fS, as parameters to the
model. In the exact Gaussian process joint prior over functions in Equ. (3.5), we want
to use the information of y(𝑋) to infer values f∗(𝑋∗) during inference. With the sparse
prior, we want to use the information of fS(𝑋S) to infer values f (𝑋) during maximization of
the likelihood. However, using the sparse prior from Equ. (3.9) results in a marginal log-
likelihood log 𝑝(y | 𝑋) still containing K(𝑋, 𝑋) terms and also losing terms containing the
added inducing points 𝑋S. Therefore, we need another objective value besides the marginal
log-likelihood to fit our model with all its parameters.

To this end, the authors of [HFL13; HMG14] use variational inference [BKM17] to solve
this problem. The idea of variational inference is to approximate the posterior distribution
with a variational distribution as

𝑞 (f, fS) ≈ 𝑝 (f, fS | y) .

We can choose the approximation as factorization

𝑞 (f, fS) = 𝑞 (f | fS) 𝑞 (fS) ,

with marginal variational distribution 𝑞 (fS) as Gaussian distribution with variational pa-
rameters 𝝁 and 𝚺

𝑞 (fS) = N(𝝁,𝚺).

The model has inducing points and variational parameters as additional model parameters.
The number of inducing points is fixed and set manually. For variational inference, we can
use a lower bound on the marginal log-likelihood as the optimization objective, the evidence
lower bound or ELBO

log 𝑝(y | 𝑋) ≥ 𝔼f,f𝑠∼𝑞 (f,f𝑠 )

[
log

(
𝑝(y | f) 𝑝 (f, fS)

𝑞 (f, fS)

)]
.

Which we can rewrite as

ELBO =

𝑛∑︁
𝑖=1

∫
log (𝑝 (𝑦𝑖 | 𝑓𝑖)) 𝑞 ( 𝑓𝑖) d 𝑓𝑖 − KL (𝑞 (fS) ∥𝑝 (fS)) , (3.10)

2Generally, using variational inference with Gaussian processes is called variational Gaussian processes
[TRB15], and this approach enables non-Gaussian likelihoods for many Gaussian process expansions, e.g.,
Deep Gaussian processes [SD17].
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Figure 3.4 SVGP example: Predictive distribution with 95% confidence region from Equ. (3.11)
after optimizing the ELBO from Equ. (3.10). The five inducing points 𝑋S and their predictions fS (𝑋S)
summarize the data set. We plot only 10% of the observed data set for illustration.

with the Kullback–Leibler divergence or relative entropy KL [KL51]. When using the ELBO
as the optimization objective with gradient methods, we can approximate the gradient of the
sum in the first term in Equ. (3.10) with a random subset of the data set. This approximation
is called stochastic gradient descent (SGD) and avoids using the entire data set, see Sec. 3.2.2
or [KW19]. The second term is independent of the data set. Maximizing the ELBO improves
how well the variational distribution approximates the posterior and how well our model
describes the original data set. In analogy to the exact Gaussian process in Equ. (3.7), the
predictive distribution for the SVGP becomes

f∗ | 𝑋, y, 𝑋∗, 𝑋S ∼ 𝑝 (f∗ | fS) = N
(
f∗, cov (f∗)

)
,

with new predicted mean f∗ and covariance cov (f∗) at testing points 𝑋∗ and shorthand
writing K (𝑋∗, 𝑋S) = K∗S etc.

f∗ = K∗SK−1
SS 𝝁

cov (f∗) =
(
K∗SK−1

SS

)
𝚺

(
K∗SK−1

SS

)⊺
+ K∗∗ − K∗SK−1

SS K⊺∗S.
(3.11)

The predictive mean and covariance do not require the original data set for calculation
anymore. SVGPs achieve a computational complexity of O(𝑚3). We illustrate SVGP on a
simple, one-dimensional regression problem with a data set of 𝑛 = O(104) points using five
inducing points 𝑋S in Fig. 3.4. We generate the data set in Fig. 3.4 with an arbitrary, under-
lying function with observational noise. As can be seen, the inducing points successfully
summarize the large data set. The SVGP model offers all advantages of Gaussian processes
but scales to millions of data points, enabling regression and classification applications in
particle physics. SVGPs are limited to problems where a smaller number of inducing points
suffice to represent the data set’s details and where regular kernels are expressive enough.

To overcome the limited flexibility of kernel functions, the authors of [Wil+16a] introduced
scalable deep kernel learning (DKL) to utilize the adaptive basis functions of a neural
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network (NN). To achieve computational complexity of O(𝑛) for 𝑛 training points during
inference, they use local kernel interpolation, inducing points, and structure exploiting
algebra introduced in [WN15b]. The authors of [Wil+16a] use the output features of a
deep kernel NN as input for a base kernel, e.g. RBF in Equ. (3.4), of a Gaussian process
and jointly train the parameters of the deep kernel NN and the base kernel by maximizing
the marginal log-likelihood. This approach combines, e.g., the infinite set of fixed basis
functions of an RBF kernel with a set length scale with a fixed set of highly adaptive basis
functions of NNs. Thus, the deep kernel NN learns statistical representations from the data
set and enables non-euclidean similarity metrics throughout the input space.

The DKL approach was expanded by [Wil+16b], introducing stochastic variational deep
kernel learning (SV-DKL), effectively combining the benefits of DKL and SVGP. It allows
for stochastic gradient training enabled by variational inference [BKM17] on the ELBO as
for SVGP. For correlated multi-output predictions, the authors feed the outputs of the deep
kernel NN into a set of additive base kernels, which they use for independent Gaussian
processes. Furthermore, they mix these Gaussian processes linearly to induce correlations
and feed the outputs into a softmax likelihood for classification. The SV-DKL model
achieves a computational complexity of O(𝑚1+1/𝑑) for fixed inducing points 𝑚 and input
dimensions of our data set 𝑑.

SV-DKLs are ideal for physics applications as they can handle large-scale physics datasets
while enabling uncertainty quantification and non-Euclidean metrics often required in
physics, e.g., to model local density changes. We can use them while retaining the advan-
tages of Gaussian process models, like their statistical motivation. They offer a principled
way of creating surrogate models from empirical data for further analysis by learning map-
pings between inputs and outputs. Also, they can be used to get an integrable model that
accurately describes the underlying phenomena with the mentioned benefits.

3.2 Methodology - Optimization

To maintain continues improvements in experimental results, physicists keep innovating and
optimizing their instruments, simulations, and data analysis. This development continuously
increases the complexity and makes optimization more difficult. To tackle this issue, we
will explore two optimization approaches based on machine learning methodology that are
promising for physics applications.

Generally, optimization is finding the minimum or maximum of an objective function L that
maps a set of tunable parameters x from the space of possible parameters 𝜒 to an objective
value, e.g., maximizing the energy resolution of a detector, and the corresponding optimal
parameters x̂ as

x̂ = arg min
𝑥∈𝜒

±L(x), (3.12)

where L incorporates the underlying physical properties of a system leading to the objective
value, e.g., particle tracks and energy losses. L can be statistically motivated like a likelihood
or another metric. This problem raises two questions: How to create L and how to minimize
it to obtain x̂?

I want to focus on two specific cases and discuss solutions in this chapter.3 In the first
case, we cannot derive L from first principles, have little data, and creating more data is

3I recommend [KW19] for more optimization methodology.
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expensive. This issue requires a sample-efficient, sequential approach that guides data-
taking while optimizing. An example could be finding the ideal experiment parameters
from simulations that take hours to test one set of parameters with enough precision. In the
second case, we can create L via a surrogate model (or even from first principles), but the
optimization is non-convex, and we want to optimize it with a gradient-based deep learning
methodology. An example would be having a range of simulations of a detector for many
different parameters, but finding the optimum is difficult due to the number of parameters
and their correlation.

3.2.1 Bayesian Optimization

If we cannot derive L in Equ. (3.12) from first principles, we must construct a model based
on the available data, e.g., previous detector designs or simulations, to approximate the
function, e.g., using the methods in Sec. 3.1. However, if we have little or no data and
data generation, i.e., testing a set of parameters, is very time-consuming or expensive, we
must include the data acquisition for modeling L into the optimization, by updating L in a
sample-efficient, sequential approach that guides data-taking while optimizing.

Specifically, Gaussian processes can be employed to create an approximate L from a limited
number of noisy observations iteratively for each new observation, see Sec. 3.1.2 and 3.1.3.
One key difference between Gaussian processes and other modeling methods, such as neural
networks or splines, is the provided statistical uncertainty for predictions, see Equ. (3.7) and
(3.11). We can leverage this aspect for statistically guided optimization based on criteria such
as information gain or expected improvement. Selecting the next test point 𝑛+1 by leveraging
the uncertainty of the current model for a data set D𝑛 = {(x𝑙,L𝑙) | 𝑙 = 1, ...., 𝑛} of 𝑛 tested
points sequentially and updating the model is called Bayesian optimization [Sha+16]. Such
guided optimizations are essential when the goal is to use the fewest samples possible to
find optimal parameters.

To determine the next set of untested parameters x to be sampled, we can formulate an ac-
quisition function 𝛼 that scores candidate data points’ utility for the next evaluation, guiding
the sequential search. There are two approaches to be balanced when guiding the sequential
search: Exploiting the already available data and risk converging locally or exploring regions
in the input space with little data, risking inefficiency. Acquisition functions must balance
exploration of the input space versus exploitation of the current best result to achieve overall
sample efficiency and reach the global optimum. Two commonly acquisition functions are
expected improvement (EI) and lower confidence bounds (LCB)[Sha+16]. For Gaussian
process posterior distribution with standard deviation 𝜎𝑛 and mean prediction `𝑛 for a given
dataset D𝑛, both acquisition functions are tractable. The LCB is

𝛼LCB(𝑥;D𝑛) = `𝑛 (𝑥) − ^ · 𝜎𝑛 (𝑥) (3.13)

with the exploration parameter ^. For Gaussian process posterior distribution 𝑓 with normal
distribution N and its cumulative distribution function Ψ, EI is

𝛼EI, GP(𝑥;D𝑛) = 𝔼 max
(
𝑓 (𝑥) − 𝑓 (𝑥+𝑛), 0

)
= 𝜎𝑛 (𝑥) · 𝛾(𝑥) · Ψ (𝛾(𝑥)) + N (𝛾(𝑥))

(3.14)

with 𝛾(𝑥) =
(
𝑓 (𝑥) − 𝑓 (𝑥+𝑛) − ^

)
/𝜎𝑛 (𝑥).4 Finally, we determine the best next candidate to

be sampled 𝑥𝑛+1 with a gradient-based approach on the acquisition function. As we are
4Other, less common acquisition functions are presented in [Sha+16; Ber+18], like entropy-based acquisition

functions.
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using gradient-based approaches on the Gaussian process surrogate of L, these evaluations
circumvent the original problem of expensive data generation.

To better visualize the sequential optimization and how the acquisition function guides it,
we can look at a one-dimensional example where we optimize one parameter 𝑥 in Fig. 3.5.
For seven tested (𝑥, L) pairs, we can construct a Gaussian process model (Matérn kernel
function (a = 5/2)) and use LCB as the acquisition function (^ = 2) in Fig. 3.5a. Using
an L-BFGS algorithm [KW19], we can find the minimum of the acquisition function to
determine the next parameter value to be tested. We test this parameter and repeat the
pattern. After training the Gaussian process model on the additional data point in Fig. 3.5b,
the uncertainty estimation grows in the previously unexplored region and the acquisition
function guides the optimization in that region, ultimately finding the global optimum in
following steps.

Bayesian optimization with Gaussian processes works without knowing the to-be-optimized
black-box function analytically, removing the expensive amount of function evaluations
that gradient-based or sampling-based approaches require. It is successful in correlated
and higher-dimensional problems, as the underlying kernel function is well-suited for that.
This method found applications in hyperparameter tuning [Ber+11], outperforming other
methods, and has also found physics applications [Dur+20; Han+21; Jal+21; Lec18; Kis19;
IWY17; Cis+20; Eks+19]. Furthermore, the authors of [RHE21] recently demonstrated
how the approach could be expanded to multi-objective Bayesian optimization (MOBO)
[PZŽ16] to optimally balance the trade-offs between multiple competing objectives for
physics applications simultaneously.

3.2.2 Differentiable Programming

If we can construct a surrogate model of L in Equ. (3.12) or derive one from first principles,
we can use two gradient-based deep learning optimization approaches to solve difficult
optimizations: Stochastic gradient descent (SGD) and automatic differentiation.

So far, we have only considered L(x) as a function of the experiment parameters x, e.g.,
detector geometries, detector gain, or acting magnetic fields. More accurately, the objective
value is also calculated for a training data set, e.g., a set of generated events of particles with
distributed properties, and then averaged.5 The objective value for one data point is L𝑖 .
SGD is an optimization technique where we estimate the gradient of the objective function
from subsets of the training data iteratively instead of calculating the exact gradient from
the entire training set. When optimizing the parameters x of L(x), we can iteratively update
the values of x at the 𝑘-th optimization step as

x(𝑘+1) = x(𝑘 ) − 𝛼𝑘

𝑚

𝑚∑︁
𝑖

∇𝑥L𝑖 (x(𝑘 ) ), (3.15)

where 𝑚 is the size of a random subset of the training data set of size 𝑛 and learning rate 𝛼𝑘

at step 𝑘 . Generally, 𝛼𝑘 is a hyperparameter that needs to be set manually or as a function of
𝑘 . This basic formula can be adapted for better and faster convergence, e.g., by incorporating
previous updates and their derivatives [KB14].

The stochastic gradients provide a noisy estimate of the true gradient, which can help the
optimization escape local minima and plateaus. Also, this approximation enables us to use

5The training data set can also be the data set used to create a surrogate model of L to incorporate the underlying
physics.
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Figure 3.5 Bayesian optimization example for three consecutive optimization steps. The true ob-
jective function is unknown, but plotted for visualization. (Left) Gaussian process model (2𝜎
uncertainty) trained on 𝑛 data points at step 𝑛. (Right) Acquisition function uses the Gaussian pro-
cess to chose the 𝑛 + 1-th data point to be tested next.
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large data sets, see Sec. 3.1.3 for an example, and adapt the optimization to changing or
growing data sets. The latter is most relevant for particle physics applications, as we can
only understand most state-of-the-art experiment setups with Monte-Carlo-based simula-
tions. This requirement implies that we must rely on large Monte-Carlo-based data sets to
construct L and optimize the experiment parameters.6 Both benefits are also essential when
optimizing high-dimensional and non-convex problems, as is the case for deep learning or
when optimizing a complex detector design [Dor+23]. This similarity also implies that we
can leverage the benefits of overparameterized models and their objective value landscape
to find optima [MBB18; Bel+19; LZB22].

SGD requires the gradient of the objective function, and there are different ways to compute
it. For large overparameterized models, automatic differentiation beats other approaches,
such as numerical or symbolic differentiation, in efficiency and accuracy [Bay+17]. The idea
is to automatically compute the partial derivatives of an implemented function sequentially
by applying the chain rule of calculus to the program’s elementary operations (addition,
subtraction, multiplication, division), see [Bay+17; KW19] for details. It works for any
function that can be expressed as a computer program. Combining automatic differentiation
with gradient-based optimization makes up differentiable programming - a core ingredient
of modern machine learning and deep learning approaches with valuable applications for
physics [Dor+23].

We can leverage the framework of differential programming to optimize particle physics
experiments. Differential programming works for implemented models of L from first
principles or with surrogate models. Deep learning surrogate models are immediately
usable with differentiable programming as they are trained with it. If there is a model
from first principles, a surrogate model might be worth the trade-off in accuracy for faster
computation of its values and derivatives [Kas+20]. Also, we can model individual parts
of an experiment and combine the models to create an end-to-end pipeline when many
simulation parameters are present, and a complete mapping of the parameter space would
be too costly.

3.3 Application

We utilize the methodology from Sec. 3.1 and 3.2 for different physics applications, ranging
from particle physics to computational astrophysics and cosmology. All presented example
applications are based on the papers with my contributions [LBM22; Lam+22a; Dor+23]
and partially reprinted where indicated.

3.3.1 Temperature Induced Gain Fluctuation Correction

As a specific example, we will optimize the analysis of an electron energy detector by
improving its calibration by modeling an underlying systematic effect and their uncertainty
with Gaussian processes. The detector and measurement setup is the same as in Sec. 4.2.1
and the result is used in Sec. 5.2.4. This section is a partial reprint of [LBM22].

Consider a simplified electron energy detector for an incoming electron with kinetic energy
𝐸𝑒. The detector is made up of a square scintillator, light guides at the sides, and a

6The main alternatives for sufficiently small data sets are quasi-Newton approaches, e.g., BFGS and L-BFGS
[KW19].



3 Machine Learning for High-Precision Experiments

24

Electrons

Scintillator

Light guides

PMTs

Figure 3.6 Caption and figure taken from [LBM22]: "Electron energy detector schematic. The
spatial response measurement grid points are in front of the detector and parallel to the scintillator
surface."

photomultiplier tube (PMT) at the end of each light guide, as shown in Fig. 3.6. When an
electron hits the scintillator, it deposits its energy, and 𝑛𝛾 photons are produced proportional
to the electron energy 𝐸𝑒. Photons travel through the detector to the PMTs and are converted
to charge pulses with total charge 𝐴. The measured charge 𝐴 is on an arbitrary scale, and
we assume a linear relation to the original electron energy

𝐴 ∝ 𝑛𝛾 ∝ 𝐸𝑒

𝐸𝑒 = 𝑔 · 𝐴
(3.16)

with gain 𝑔. Generally, we use a mono-energetic electron source with known energy to
determine 𝑔. We must expand this model for a realistic data set measured over time to
account for temperature-induced fluctuations 𝑓𝑇 (𝑡) of the gain 𝑔 over time.

𝑔(𝑡) = 𝑔 · 𝑓𝑇 (𝑡). (3.17)

There is no analytical model for the temperature dependence of 𝑔(𝑇), as PMTs are inherently
highly non-linear. However, we can characterize the systematic effect with a mono-energetic
source. We measure the total charge 𝐴 with the source in front of the detector at different
times for temperature-induced gain fluctuations. The data set we use for this example
problem stem from the recent Perkeo III measurement, see Sec. 4.

With Gaussian process regression (GPR), we can reconstruct underlying signals in a non-
parametric and Bayesian way. We apply GPR with a Matérn kernel function (a = 3/2) and a
mean prior 𝑚(t) = 1 to determine the temperature-induced gain fluctuation correction 𝑐𝑇 (𝑡)
at different times 𝑡 from Equ. (3.17) with 𝑐𝑇 (𝑡) = 𝑓𝑇 (𝑡)−1. We use hourly measurements
with the mono-energetic source over about two weeks. We assume a constant, underlying
gain, which we extract as the weighted arithmetic mean of the hourly measurements. The
relative deviation from the mean is the pointwise correction 𝑐𝑇 ′(𝑡𝑖) for time of measurement
𝑡𝑖 . Therefore, the correction is given by

𝑐𝑇 (𝑡𝑖) = 𝑐𝑇 ′(𝑡𝑖) + 𝜖 with 𝜖 ∼ N(0, 𝜎2
𝑛)

in analogy to Equ. (3.5).

The data set and the GPR results are shown in Fig. 3.7. Using GPR reconstructs the underly-
ing correction with statistical uncertainty and avoids overfitting to noisy data. In particular,
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Figure 3.7 Temperature-induced gain fluctuation correction 𝑐𝑇 (𝑡) with GPR, reconstructing the
underlying signal.

the kernel function and its length scale parameter also guarantee this robustness in low-data
regimes, see Fig. 3.7 before the 13th of January. Other standard tools in physics data analysis
do not guarantee this benefit, e.g., splines or non-linear regression methods. Furthermore,
even linear smoother will lack the uncertainty quantification and statistical motivation, as
Gaussian processes generalize them. The uncertainty quantification specifically is essential
for high-precision physics experiments. It enables accurate quantification of the systematic
error on the final measurement, e.g., see Sec. 8. Furthermore, the GPR model parameters
are interpretable, as the noise 𝜎𝑛 states the statistical fluctuation of the pointwise corrections
𝑐𝑇

′ and the kernel function length scale 𝜌 states the timescale for correction changes to
occur. However, the interpretability depends on the choice of covariance function, as, e.g.,
stationary kernels fail to model data requiring varying local length scales.

The correction outperforms previous analyses in systematic uncertainty quantification [Sau18;
Sau+20] and we directly improve the overall precision and quality of the Perkeo III analy-
sis. Gaussian processes can model systematic corrections, e.g., by reconstructing unknown
background time series, inferring energy-dependent corrections from simulations, or mod-
eling spatial dependencies. We can also use Gaussian processes for event reconstruction
through classification, see Sec. 3.3.3.

3.3.2 Detector Fine-Tuning

To build upon the electron detector example, we can correct another systematic effect that
arises when taking data. This section is a partial reprint of [LBM22] and builds upon the
collaboration with [Bes22], see Sec. 5.2.2.

Besides temperature-induced gain fluctuations, we must consider relative gain deviations
between individual PMTs. PMTs are hard to tune for identical gain as they are inherently non-
linear and because photon paths depend on the electron impact position on the scintillator.
A different number of scintillation photons reaching each PMT leads to individual energy
resolutions.7 This spatial dependency, together with an energy-dependent spatial distribution

7This effect is worsened by the differences between PMT models, as it is not guaranteed that a detector uses
PMTs of the same model and manufacturing batch. Also, PMTs degrade with age.
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Figure 3.8 Unoptimized spatial response map with all peak positions `𝑖 shown relative to the central
value `c. The objective values according to Equ. (3.19) are Lu = 22690 for the uniformity and
Ls = 9250 for the symmetry.

of electrons on the detector, can lead to an energy-dependent gain 𝑔(𝐸). However, we can
reduce this systematic effect by fine-tuning the individual PMT gain 𝑔𝑖 to be equal or to
create a spatially uniform and symmetric detector response. We can fine-tune each PMT 𝑖
with a relative gain factor 𝑐𝑖 to get the correct total charge 𝐴

𝐴 =
∑︁
𝑖

𝑐𝑖𝐴𝑖 , (3.18)

for the energy reconstruction in Equ. (3.16). We write all PMT fine-tuning factors as a vector
c.

We can also characterize the effect with a mono-energetic electron source with known
energy. We measure the electron energy on a grid of different positions of the source in
front of the detector, as such measurements contain more information about individual PMT
contributions.

At each position 𝑘 , we measure a spectrum of total charges 𝐴′ = 𝐴(c) for several electrons
and extract the peak position `𝑘 with a fit of the histogram. For an ideal detector, the
grid results are symmetric and uniform. An ideal fine-tuning should also lead to uniform
and symmetric results. Without fine-tuning (i.e. c = 1), we would accept non-uniform
and asymmetric results. Such results would require hard-to-reach overall precision, as we
must correct other effects depending on the detector positioning or the incoming electron
distribution in the analysis. We illustrate the grid of measurements or spatial response of
the detector as a map in Fig. 3.8 without fine-tuning.

We calculate the measured deviation from symmetry and uniformity of the resulting grid
measurement as objective value L to turn it into an optimization problem as

L (c) = Lu (c) + Ls (c) . (3.19)
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Figure 3.9 Spatial response map of Fig. 3.8 optimized with GPR resulting in the objective values
from Equ. (3.19) with uniformity term Lu = 6360 and symmetry term Ls = 710. All peak positions
`𝑖 are shown relative to the center value `c. Same color scaling as Fig. 3.8.

Minimizing L yields optimal gain factors c. We define the uniformity term Lu as the
mean squared error of each grid point 𝑘 for all 𝑛 points to the central peak position `c for
unoptimized gain factors, i.e. c = 1.

Lu (c) =
1
𝑛

𝑛∑︁
𝑘

(`c − `𝑘 (c))2 (3.20)

The reference point `c stabilizes the energy-channel relation before and after the optimiza-
tion. To favor symmetric solutions, the square deviations from the 𝑚 points in the left and
rightmost columns are calculated in two groups: left to right columns and top to bottom
halves of these columns are added as symmetry loss Ls

Ls (c) = 𝛼1

𝑚∑︁
𝑘

(
`left,𝑘 (c) − `right,𝑘 (c)

)2

+ 𝛼2

𝑚∑︁
𝑘

(
`top,𝑘 (c) − `bot,𝑘 (c)

)2
,

(3.21)

with scaling factors 𝛼1 = 0.5/𝑚 and 𝛼2 = 0.5/(𝑚 − 1). The symmetric deviation is only
calculated for these columns, as they are most sensitive to any individual gain changes.

For a given set of gain factors c ∈ ℝ8 and the corresponding objective value L, we need
to recalculate all spectra for all grid points with processing and fit. This process requires
time, and any solution method needs to guarantee symmetric and reproducible results. In
addition, the Perkeo III data set has many such measurements to optimize, requiring high
sample efficiency. However, the parameters c highly correlate, and the problem is hard to
solve without brute force.
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To predict minima of the objective function L(c) in Equ. (3.19), we require a model to infer
values of L for untested gain factors c. With an accurate model of L(c), we can evaluate it
with little cost, needing fewer tested samples of (c, L) pairs.

To this end, we use Bayesian optimization with Gaussian processes to fine-tune the individual
PMT gain factors c. We use GPR with a Matérn kernel function (a = 5/2). We employ a
combination of improvement-based and optimistic policies as acquisition function by mainly
using expected improvement (EI) and lower confidence bounds (LCB), see Sec. 3.2.1. We
found ^ = 1 for EI to balance a greedy search with the necessary exploration for the problem.
When the EI utility is below a threshold and could lead to stagnation, we use LCB with
^ = 3 for more exploration. We seed the approach with the best current optimum and random
points at each iteration.

As comparison, we use empirically tuned random normal sampling (c ∼ N(𝝁 = 1,𝚺 =

0.05 I)) as baseline and a tree-structured Parzen estimator (TPE) [Ber+11]. TPE is also a
case of Bayesian optimization, but instead of modelling the posterior distribution 𝑝 (𝑦 |𝑥),
it models the likelihood 𝑝 (𝑥 |𝑦). The TPE model is a standard sequential model-based
optimization approach for machine learning hyperparameter optimization, as it is less com-
putationally heavy to compute than, e.g., GPR [Ber+11]. However, due to the covariance
function, GPR is naturally more able to deal with highly correlated problems. We also
tried the Monte-Carlo-Markov-Chain-based simulated annealing method, as it is commonly
used in particle physics, but it is far too inefficient to be competitive. As an alternative
approach to modelling the posterior distribution, we tried the novel deep adaptive design
(DAD) method [Fos+21], a Bayesian optimal experimental design approach [Lin56] where
an ideal strategy or optimization sequence is learned for a given number of steps, enabling
rapid online inference and eliminating costly posterior update calculations. This would be
useful to have an optimization policy for all 2D response maps, however, training turned out
to be too costly for our example case.

All code is available on GitHub8. The spatial response maps are calculated with the
Perkeo III analysis package panter, see Sec. 5.1. The Bayesian optimization algorithm
is implemented with Pyro [Bin+18], which builds on GPyTorch [Gar+18] and we used the
already implemented TPE from the Optuna [Aki+19] package.

Symmetric uniformity is the overall goal, and for this problem, a minimized Ls implies a
small Lu. Therefore, we use the total loss L from Equ. (3.19) as objective value during
the optimization and the symmetry loss Ls for comparing results. Besides symmetry loss,
we chose function evaluations as an additional metric. A function evaluation means cal-
culating one pair (c, L(c)). We initialize the GPR with a few random data points from
the random normal sampler, which we also count as function evaluations. To simplify the
problem and compare methods, we combine PMTs and their gain factors 𝑐𝑖 in symmetric
groups of two (each corner). This grouping reduces the dimensionality and correlations of
the problem by creating a fixed, embedded subspace of the original ℝ8 input space at the
cost of achievable minima quality. Tab. 3.1 presents the results for different PMT group-
ings and fixed function evaluations. One optimized spatial response map is shown in Fig. 3.9.

Bayesian optimization with GPR outperforms the other methods in overall best-achieved
results and reproducibility. Contrary to GPR, the TPE approach suffers a high spread of
results in Tab. 3.1. It is noteworthy how a well-tuned random normal sampler outperforms

8https://github.com/maxlampe/detector-bayopt

https://github.com/maxlampe/detector-bayopt
https://github.com/maxlampe/detector-bayopt
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Table 3.1 Comparing optimization results for different methods and PMT groupings, i.e., different
problem dimensionality. We fixed the number of function evaluations (calls) and run five uncorrelated
optimizations for each setting for the map in Fig. 3.8, with the best achieved value L∗

s and the average
achieved value L̄s.

Dimensionality Function calls Method L∗
s L̄s L̄s − L∗

s

Unoptimized 9251
c ∈ ℝ4 75 Random normal 1070 2900 1830

TPE 1200 3800 2600
GPR 980 995 14

c ∈ ℝ8 150 Random normal 4130 4640 510
TPE 1540 2590 1050
GPR 643 675 32
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(a) Using Gaussian processes for Bayesian optimiza-
tion
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(b) Using the tree-structured Parzen estimator (TPE)

Figure 3.10 Optimization history with GPR for one run of Tab. 3.2. The current best optimization
result for the given number of function calls is shown, as well as uniformity and symmetry loss
terms. Between 40 and 55 function calls, we can see the acquisition function favoring exploration
over exploitation, leading to an improvement.
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the TPE approach, as the TPE approach struggles with the limited function calls. For
all uncorrelated optimization runs, GPR would have required even fewer function calls
as given, demonstrating its outstanding sample efficiency. This effect is shown in the
optimization history for one run in Fig. 3.10, which is representative of all runs. In the
Bayesian optimization with GRP run in Fig. 3.10a, we can see an exploration period leading
to a better optimum at around 50 function evaluations. The most significant trade-off of
using Bayesian optimization with GPR is the required computation time between testing
samples to train the GPR and getting the next point in the sequential optimization. This
computational requirement is why Bayesian optimization with GPR works best in cases
where one evaluation is expensive, or the optimization is non-convex.

Bayesian optimization with GPR outperform previous analyses in systematic uncertainty
quantification and achieve the best spatial response correction while being sample efficient
and reproducible [Sau18; Sau+20]. In doing so, we improve the overall precision and quality
of the Perkeo III analysis using GPR by modeling systematic corrections and optimizing
analysis parameters. Gaussian processes provide well-calibrated predictive uncertainty for
many tasks and are well-suited as an input model for Bayesian optimization. Bayesian
optimization with GPR can optimize complex experiment setups and tune its parameters or
determine energy cuts in correlated, costly analysis to maximize energy resolution.

3.3.3 Scalable Unsupervised Classification of Cosmological Shock Waves

The outlined methods in Sec. 3.1 enable an analysis of state-of-the-art-sized data sets, as they
would also appear in particle physics. To illustrate this capability, I present the application
of SV-DKL and kernel methods to a previously unsolved problem in computational astro-
physics. The presented approach unites modeling flexibility with required statistical and
physical motivation to better understand simulated data sets from modern supercomputers.
This section is a partial reprint of [Lam+22a] and the extended abstract version of the same
paper [Lam+22b]. As this example application is more complex than the others, I adhere to
the paper structure and its sections for readability.

Introduction

Cosmological structures form by gravitationally accreting mass from their surroundings
[Ber98; SD15; NO17]. As galaxies fall into clusters, they dissipate their energy in the form
of shock waves in the diffuse gas between them, labeled as the intra-cluster medium (ICM)
[Dol+05; Pfr+07; Pfr+17; Vaz+11; Vaz+16; SS15; Ste+22]. In these systems, the evolution
of shock waves is the primary driver setting the global physical properties [Sed46; Tay50a;
Tay50b; KO15; WN15a; Ste+20; Fie+17]. These shock waves are defined as discontinuities
in density and temperature, propagating through the ICM. They are powerful accelerators of
relativistic particles, which we can observe as synchrotron emission sources from merging
galaxy clusters [Wee+19].

Modeling these cosmological systems with state-of-the-art simulations requires modern
supercomputers, as there is large degeneracy in the possible geometry. The produced data
sets contain up to O(1010) particles, which we need to interpret to make conclusions about
formation scenarios. However, shock wave structures in galaxy clusters form highly complex
shapes and surfaces (see Fig. 3.11), and collisions between them lead to a superposition of
different shock waves with overlapping geometries. From first principles, we can not make
a simple, prior connection between in-falling substructures and shock wave surfaces. This
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Figure 3.11 We show a reduced simulated data set ClustHD2 containing all particles with a detected
shock in the sonic Mach number range M𝑠 ∈ [1, 5]. a) Full simulation domain. The main cluster
is in a cutout of the cosmic web, which shows internal and accretion shocks. b) Manual zoom into
the cluster showing the complex shock structure of multiple ongoing merger shocks. We want to
determine all shock surface particles as separate labeled groups and remove non-shock wave particles.
c) Same as b), but rotated by 45◦.

setup poses a complex unsupervised classification problem for an unknown number of
target classes in which we must find, separate, and label coherent shock wave structures in
simulated data.

To this end, we propose a novel, physically motivated, and fully scalable machine learning
pipeline to solve the outlined problem. We separate the unsupervised classification task by
creating labels for a random subset of each data set and then training a classifier on that
subset. For pre-processing, we exploit the non-stationarity of the problem with kernel prin-
cipal component analysis (kernel PCA) [JC16; SSM98] and use Gaussian mixture models
(GMM) [Bar12] to pre-clean the data from unwanted non-shock wave particles. For the
subset classification, we further use physically motivated kernel functions with kernel PCA,
Nyström approximation [DM05; RW06] and employ an agglomerative clustering (friends-
of-friends, FoF [Dav+85]) algorithm with an automatically set linking length. Finally, we
use the labeled subset to train a stochastic variational deep kernel learning (SV-DKL, DKL)
[HFL13; HMG14; Wil+16a; Wil+16b] classifier to use our algorithm on the full data sets.
For the first time, we can tackle this problem with our described pipeline and guarantee
scalability for state-of-the-art and future data sets. To the best of our knowledge, this is
the first application of DKL and SV-DKL to an astrophysical task. Furthermore, we are
not aware of any preceding work having solved this unsupervised classification problem, in
particular not with state-of-the-art resolution data sets.

Data Sets

We employ three data sets for the shock surface classification to gauge the flexibility of our
pipeline for increasing physical complexity and different scales. All data sets were generated
with OpenGadget3[Spr05; Bec+16] (GNU). We name the data sets ClustHD (Fig. 3.11),
ClustMHD and BoxMHD (Fig. 3.12). The first two are ultra-high-resolution (magneto)
hydrodynamics simulations (MHD) of a single massive galaxy cluster (∼ 109 particles), and
BoxMHD is a high-resolution simulation of a large cosmological volume with many clusters
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Figure 3.12 We show a reduced dataset for the BoxMHD simulation, as in Fig. 3.11. 𝑎) Full
simulation domain. It contains the full cosmic web, as this is a cosmological box simulation. b)
Manual zoom on one of the galaxy clusters forming at the intersection of cosmic filaments. c) Same
as b), but rotated by 45◦.

(∼ 1010 particles), but at lower resolution 9. The magnetic fields lead to additional motions
perpendicular to the shock propagation and more patchy shock wave surfaces. BoxMHD
is a simulation of a cosmological volume containing several cluster objects, whereas all
other data sets consist of single cluster objects. For BoxMHD, our problem scales from
an unknown number of target classes in one cluster to the same for an unknown number of
clusters. We reduce the full data set of the simulation to only the parameters relevant for the
actual shock surfaces. These are the spatial positions x, the sonic Mach number Ms and the
shock normal vector n̂s.

Virgo Model Pipeline

We propose a new analysis pipeline to solve the unsupervised classification of an unknown
number of cosmological shock waves in a scalable, probabilistic and physically-motivated
way. We separate our approach into four steps:

1) For data pre-processing, we remove data points above a conservative velocity threshold
(M𝑠 ≤ 15) and rescale the data set to a zero mean and unit variance. We can set this
threshold, as large-velocity particles are rarely a part of shock waves surfaces. Our analysis
only uses the particle position x and shock normal vector n̂𝑠. Each particle therefore is a
6-dimensional vector q = (𝑥𝑥 , 𝑥𝑦 , 𝑥𝑧 , �̂�𝑠𝑥 , �̂�𝑠𝑦 , �̂�𝑠𝑧)⊤.

2) The raw simulation output is noisy with non-shock wave particles and not centered,
as is illustrated in Fig. 3.11a and Fig. 3.12a. We use an RBF kernel with the Nyström
approximation on the particle positions x for kernel PCA. We use GMM in the feature space
with expectation maximization to separate the actual cluster of shock waves from non-shock
wave particles by density estimation. This approach exploits the inherent local density
changes of the problem by using a stationary kernel to separate non-shock wave particles
from relevant shock wave particles.

9For more information, including a movie, please see http://www.magneticum.org/complements.
html#Compass

http://www.magneticum.org/complements.html##Compass
http://www.magneticum.org/complements.html##Compass


3.3 Application

33

3) We construct a physically motivated composite kernel 𝑘V by adding two separate com-
posite kernels made up of Matérn-5/2 kernels 𝑘M and linear kernels 𝑘L

𝑘1(q, q′) = 𝑘M(x, x′) · 𝑘L(x, x′) (3.22)
𝑘2(q, q′) = 𝑘M(x, x′) · 𝑘L(n̂𝑠, n̂′

𝑠) (3.23)
𝑘V(q, q′) = 𝑘1(q, q′) + 𝑘2(q, q′). (3.24)

𝑘1 creates a non-stationary kernel for spatial information, whereas 𝑘2 combines local spatial
information with shock normal directions of the particles. We combine 𝑘V with the Nyström
approximation and PCA, accepting a reduction of the data set to a random subset for
computational limitations. The resulting feature space enables separation with a fixed
linking length 𝛽 FoF algorithm. We estimate 𝛽 with the average n-next-neighbor distance in
the resulting feature space. We automatically label every unclassified particle as non-shock
wave particle.

4) We use this labeled subset to train an SV-DKL classifier. With its deep kernel network,
we gain a locally adaptable similarity metric required for robust classification. The SV-DKL
framework allows us to achieve fast inference and good scalability, as we are not limited by
the size of the data set.

Our approach is distinctly scalable, as the proposed pipeline succeeds for data sets of extreme
sizes: We can downsize the data set at each step only to recover full resolution with the
SV-DKL at the end. We collect our analysis in a Python software package to be available for
future analysis, called Virgo (Variational Inference package for unsupeRvised classification
of (inter-)Galactic shOck waves)10. The package utilizes already implemented features of
PyTorch [Pas+19](BSD), GPyTorch [Gar+18](MIT), scikit-learn [Ped+12](BSD) and pyfof
[Gib19](MIT).

Experiments

We evaluate our pipeline on the generated data sets, as this is a previously unsolved problem
and there are no benchmark data sets available. Different time steps of one simulation,
indicated by an index, are quasi-independent data sets to be solved due to morphing structures
and changing number of target classes. As there exist no labeled data sets, we must verify
the results visually by the coherence of the shock wave surface classification and the removal
of non-shock particles. In our studies, we observe that any other approach visibly over- or
under-segments the shock waves.

First, we evaluate one single cluster data set where only one shock wave structure is present
within many non-shock wave particles. We show the denoising and centering process
representative for ClustHD2 in Fig. 3.13. Our approach accurately separates the dense
cluster region from the general simulation output. Should more structures be present, we
increase the number of GMM components and obtain reliable results for all tested data sets.
In doing so, we achieve good separation for all available and tested data sets. We classify
the denoised result as described in step 3) while reducing the data set in size to a random
subset. However, this step reduces the data set size from the original O(106) to O(104).
We recover full resolution with the SV-DKL classifier trained on the labeled subset. This
final classification does not depend on the choice of the random subset in the previous
step. Fig. 3.16 shows the reconstructed and labeled data set of ClustHD2. The complex

10The source code is available at https://github.com/maxlampe/virgo

https://github.com/maxlampe/virgo
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Figure 3.13 We show the denoising process of Sec. 3.3.3 step 2) and its impact on the ClustHD2
data set from Fig. 3.11. a) GMM fitted in kernel-PCA space with low-density noise component
(gray) and high-density cluster component (blue). We only plot the first three principal components
of the kernel space dimensions. b) Labeled data from a), but shown in physical space. c) Resulting
denoised data set for further analysis.

morphology of the shock waves and its substructures are restored and correctly labelled.
The figures show the clear separation and classification of the shock surfaces without over-
segmentation. Any non-shock-wave particles are labeled as noise with a visibly low error
rate.

To test the extent of Virgo’s capabilities, we run the pipeline on the more complex BoxMHD
data set. We repeat step 2) for this data set twice, once with 35 GMM components, keeping the
densest ten components, and then again on each remaining component with the parameters
described above. This additional step is required to single out dense objects and do single
cluster shock wave analysis like in for ClustHD. We illustrate the labeling of the subset
from step 3) of the biggest substructure in BoxMHD in Fig. 3.15. The scalability with the
SV-DKL works as well as for the other data sets. Some substructures are small enough
for data size not to require the SV-DKL, as the Nyström approximation is not required,
demonstrating that Virgo is applicable to much larger and detailed data sets.

We compare the SV-DKL against a 𝑘-nearest-neighbor (𝑘-NN, 𝑘 = 10) classifier and a
fully connected NN (like deep kernel NN) in Tab. 3.2 to test the propagated error for the
resolution reconstruction. All models are trained from scratch and data sets are re-shuffled.
The SV-DKL outperforms the other methods in accuracy. We expect the SV-DKL to
perform better with non-shock wave particles near shock wave surfaces, due to the additive
Gaussian processes. However, 𝑘-NN achieves decent accuracy, and we recommend it as a
cost-effective replacement for online applications. Virgo also successfully separates and
labels shock waves on the more complex BoxMHD data set. We repeat step 2) for this
data set twice to deal with the multiple cluster objects. This additional step is required to
single out dense objects and do single cluster analysis. In addition, Virgo shows signs of
generalization, as we used the trained classifier from the labeled subset of ClustHD2 on
the full data set of ClustHD3 and obtained good results as well. However, this requires the
same amount of target shock wave classes. Overall, virgo solves the outlined classification
problem of cosmological shock waves and delivers robust results on all tested data sets.
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Figure 3.14 We show the labeled subset of ClustHD2 after the denoising process. The clear
separation of the shock wave surfaces from non-shock wave particles (gray) is visible. Also, the
estimated error of labeling shock surface particles as non-shock wave particles is visibly negligible.
a) Labeled subset with the FoF algorithm of step 3) in Sec. 3.3.3. b) same as a), but rotated by 45◦.
c) Same as a), but with non-shock wave particles plotted too.
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Figure 3.15 We show the labeled subset of BoxMHD after the denoising process. The clear separation
of the shock wave surfaces from non-shock wave particles (gray) is visible. Also, the estimated error
of labeling shock surface particles as non-shock wave particles is visibly negligible. a) Labeled
subset with the FoF algorithm of step 3) in Sec. 3.3.3. b) same as a), but rotated by 45◦. c) Same as
a), but with non-shock wave particles plotted too.

Table 3.2 Comparing average test accuracies on the labeled subsets of the data after step 3) in
Sec. 3.3.3 for different methods on different data sets for ten independent runs.

Method ClustHD1 ClustHD2 ClustHD3 ClustMHD1 BoxMHD1

𝑘-NN 97.10 ± 0.34 96.61 ± 0.32 97.19 ± 0.30 96.57 ± 0.39 96.69 ± 0.48
FC-NN 95.33 ± 1.32 95.51 ± 0.84 96.63 ± 0.41 96.19 ± 0.50 95.05 ± 0.69

SV-DKL 97.57 ± 0.54 97.00 ± 0.49 98.36 ± 0.18 98.08 ± 0.16 98.02 ± 0.37
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Figure 3.16 We show the full resolution reconstruction of ClustHD2 with the SV-DKL classification.
This result is the final Virgo output for the raw input in Fig. 3.11 and allows scalability to large
data sets. We state the accuracy of the recovery classification in Tab. 3.2. a) Labeled data set with
SV-DKL classifier of step 4) in Sec. 3.3.3. b) same as a), but rotated by 45◦. c) Same as a), but with
non-shock wave particles.

Discussion

We demonstrated the capability of Virgo to capture the irregular shapes of shock wave
surfaces. For future work, we propose using Virgo to improve large-scale galaxy-cluster
simulations by increasing the efficiency of particle injections at shock structures [DB14;
WVB17; Win+19; Bös+22] or to study supernovae remnants [Jan+12]. We determine the
linking length estimator from step 3) to be most prone to error and limitation. However, our
data sets are insufficient to construct an estimator for this hyperparameter without overfitting.
Also, labeling errors in step 3) will be propagated by the SV-DKL. The Gaussian process
might correct minor errors, but this will not fix larger misclassifications. For applications
to more complex data sets, Virgo should be combined with a better structure finder and a
criterion for actual shock wave detection. Future work should verify the robustness of our
chosen hyperparameters in a broader set of simulated data, as this might pose a challenge for
users. We also propose training the same DKL over different data sets with SV-DKL to yield
a more generalizable solution. The DKL could be combined with PCA and 𝑘-NN to achieve
better computational scalability, classification for an unknown number of shock waves in a
cluster, and robustness regarding the linking length hyperparameter, as the pre-trained DKL
could even replace or at least improve the subset labeling of step 2).

Due to the probabilistic and non-parametric nature, Gaussian processes remain state-of-the-
art for uncertainty quantification tasks [STM20; Abd+21] and are ideal for physics appli-
cations, as we can incorporate properties of physical systems. Furthermore, interpretable
model parameters set Gaussian processes apart from other machine learning methods. Gaus-
sian processes found applications in astrophysics [SKL12; HV14; Moo+16; Lec18; KCW22;
Mil+22], condensed matter physics [HMK21], and dynamical systems [CK15; GFV21], but
few in particle physics - presumably due to the size of data sets. However, expanded models
like SVGP and SV-DKL should diminish previous limitations.

To conclude, we introduced a novel, physically motivated, and scalable pipeline. We are
not aware of any preceding work having solved this unsupervised classification problem of
cosmological shock waves, in particular not with state-of-the-art resolution data sets.
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Figure 3.17 Graph and caption adapted from [Dor+23]: Schematic of the neutron beam-line op-
timization for 𝑛 = 4 neutron absorbing quadratic apertures with position and width as parameters.
Beam divergence and background are only drawn for illustration and not physically accurate.

3.3.4 Neutron Beam Line Design Optimization

As an example of how to use differentiable programming, see Sec. 3.2.2, I look at the
example of optimizing the aperture positions in a neutron beam line to match a desired
beam profile for high-precision particle physics experiments. Also, I outline the importance
of differential programming for low-energy particle physics. This section is a reprint with
minor adjustments of my contribution to [Dor+23]:

Low-energy particle physics provides many unique research opportunities to search for ex-
otic particle candidates or beyond Standard Model physics. They range from decay [GNS19;
DM21] to electric dipole moment (EDM) [Chu+19] and a variety of other measure-
ments [JR10]. Specifically, tritium decay [Ake+19], neutron decay [Sau+20; Sun+20;
Wan+19], neutron lifetime [Gon+21], and neutron EDM [Abe+20] experiments produce
key results. These experiments are high-precision measurements designed for specific pur-
poses, leading to complex designs. These experiments have many tunable parameters,
and we must design and operate them optimally to maintain continuous improvements of
experimental results. This quality requirement demonstrates the importance of advanced
methods based on differentiable programming in this field. Parameters for the optimization
of such experiments are case-specific. However, we aim to set global and local parameters
to improve measurement precision by reducing uncertainties. We may choose whether to
do end-to-end optimization for local or global experimental parameters, depending on the
complexity and effective dimensionality of the experiment. In some cases, differentiable
programming is not ideal, as other methods achieve better convergence, such as Bayesian
optimization [Sha+16] as mentioned in Sec. 3.2.1 and [Dur+20; RHE21; LBM22].

To illustrate the capabilities of differentiable programming for low-energy particle physics,
we choose the example of optimizing a neutron beam-line as used in [Sau+20; Wan+19]
by tuning aperture placements and their width for desired beam characteristics. We can
customize and adapt the optimization pipeline of [Dor+23] to the problem. Consider a
source of cold neutrons reaching an experiment through neutron guides and a velocity
selector. The neutrons have a known wavelength, transverse momentum, and position
distribution depending on the neutron guides and the velocity selector. We position a set of
𝑛 quadratic neutron apertures between the velocity selector and the experiment to shape the
resulting beam distribution, as shown in Fig. 3.17. The beam distribution can be calculated
analytically by trigonometry and a set of integrals, requiring no surrogate model [Abe+06;
Mär06; Wan13]. We can calculate the beam distribution 𝑄(𝑥) of the current setup for a
fixed detector position on the beam axis, with 𝑥 being the distance perpendicular to the
beam center. Optimizing the beam distribution is essential to reduce systematic effects,
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(a) (b)

Figure 3.18 Graph and caption taken from [Dor+23]: "Two different optimized beam-line dis-
tributions 𝑄(𝑥) for 𝑛 = 3 apertures. (a) uses only 𝐷KL and L2, enforcing a good distribution
approximation of 𝑃(𝑥) with equally sized apertures; (b) utilizes L as in Equation 3.25, sacrificing
function approximation quality for lower background levels."

maintain experiment confinements, or other constraints like costs. The two most significant
systematic effects are beam homogeneity and created background signals by the beam-line
through neutron absorption. We may encode the desired beam homogeneity or shape in
a target distribution 𝑃(𝑥). Therefore, we set the optimization objective as KL divergence
or relative entropy 𝐷KL [KL51] of 𝑃(𝑥) and the resulting beam distribution of the current
setup 𝑄(𝑥) as

𝐷KL(𝑄 | | 𝑃) =
∑︁
𝑥∈X

𝑄(𝑥) log
(
𝑄(𝑥)
𝑃(𝑥)

)
.

Furthermore, we can expand the objective value with additional terms addressing different
systematic effects. It is beneficial to place apertures further away from the experiment
to minimize beam-line-induced background. We add the distance 𝑝𝑖 of aperture 𝑖 to the
beam-line start as the first objective function adaption as

L1 =
𝛼1
𝑛

𝑛∑︁
𝑖=1

𝑝2
𝑛.

We also add aperture width 𝑤𝑖 of aperture 𝑖 as regularization

L2 =
𝛼2
𝑛

𝑛∑︁
𝑖=1

𝑤2
𝑛.

We use the weighting parameters 𝛼1 and 𝛼2 to tune the importance of each term. Therefore,
the total optimization objective L for the differential programming pipeline is

L = 𝐷KL(𝑄 | | 𝑃) + L1 + L2. (3.25)

We keep the model general by optimizing only aperture widths and positions, so that it
can be adapted to specific experiments. We present example results in Fig. 3.18 with
different regularization results for a Gaussian target distribution. The Julia code and pipeline
is available on GitHub11 and uses the ForwardDiff package [RLP16]. Beyond beam-
line optimization, we can also optimize the geometry of scintillation energy detectors for
optimal light transport, leading to better energy resolution and detector uniformity. Such
detectors are often used for low-energy particle physics, and we propose using a differentiable
programming optimization pipeline as described in [Dor+23] with a surrogate model from
simulations to achieve optimal detector performance.
11https://github.com/maxlampe/NobleAD

https://github.com/maxlampe/NobleAD
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Figure 3.19 Structural causal model for an input variable 𝑋 , a mediating variable 𝑍 , and an output
variable 𝑌 represented as directed acyclical graph. The variables are shown as nodes, and causal
relations are shown as directed edges. The functional relationships between variables are not shown.
Also plotted are two exogenous variables 𝑈𝑍 and 𝑈𝑋 that represent external, random influences not
accounted for in the model.

3.4 Other Approaches

3.4.1 Causal Inference

Contrary to frequentist or Bayesian statistics that analyze the correlations between variables,
causal inference studies causal relationships between variables using statistical methods.
With causal inference, we can determine whether changing one variable causes another
variable to change and establish causal relationships.

We use structural causal models as a framework for expressing causal relationships between
variables [Pea09b]. Structural causal models can be abstracted as directed acyclical graphs
that show the variables as nodes and relations as directed edges, as illustrated in Fig. 3.19
for an input variable 𝑋 , a mediating variable 𝑍 , and an output variable 𝑌 . Also plotted are
two exogenous variables 𝑈𝑍 and 𝑈𝑋 that represent external, random influences that are not
accounted for in the structural causal model. The required temporal order of variables for a
structural causal model is encoded in the directed acyclical property of the graphs. However,
the functional relationships 𝑓 between variables, i.e., 𝑍 = 𝑓𝑋 (𝑋,𝑈𝑍 ) or 𝑌 = 𝑓𝑌 (𝑋, 𝑍), are
not shown in Fig. 3.19. These functional relationships describe how changes in variables
propagate through the structural causal model and how they influence each other.

To avoid biases and inaccurate results, the structural causal model must contain all relevant
variables in temporal order and have independent exogenous variables. The functional
relationships 𝑓 are an input assumption to create the structural causal model, but not
necessarily required when using causal discovery algorithms [GZS19].

Using the structural causal model in Fig. 3.19, we can calculate the total effect TE on 𝑌 for
two different inputs 𝑥 and 𝑥′ as [Pea09a]

TE𝑥,𝑥′ (𝑌 ) = 𝔼 [𝑌𝑥 − 𝑌𝑥′]

Also, we can conduct causal mediation analysis to calculate the direct DE and indirect IE
effects of a mediating variable 𝑍 for two different inputs 𝑥 and 𝑥′ as [Pea09a]

IE𝑥,𝑥′ (𝑌 ) = 𝔼
[
𝑌𝑥,𝑍𝑥′ − 𝔼 [𝑌𝑥]

]
DE𝑥,𝑥′ (𝑌 ) = 𝔼

[
𝑌𝑥′ ,𝑍𝑥

− 𝔼 [𝑌𝑥]
] (3.26)

by replacing the value of the mediating variable 𝑍 for one input, while evaluating the
structural causal model for the respective other input. The principle of causal mediation
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Figure 3.20 Demonstrating causal mediation analysis to calculate the direct or indirect effect for two
different inputs 𝑥 and 𝑥′ for the mediating variable 𝑍 for the structural causal model in Fig. 3.19.
Shown is the indirect effect IE calculation as stated in Equ. (3.26). We estimate the change in 𝑌 for
setting 𝑋 = 𝑥 but changing 𝑍 to the value it would have had for 𝑋 = 𝑥′. The exogenous variables are
omitted for visualization.

analysis is also illustrated in Fig. 3.20. Calculating the direct and indirect effect estimates the
effect of a mediating variable 𝑍 on the total effect TE and can be interpreted as a measure of
the importance of 𝑍 for these inputs. The calculations in Equ. (3.26) generalize to structural
causal models of any sizes and number of mediating variables beyond the model in Fig. 3.20.

Causal inference is a separate research field from machine learning. However, we can
use machine learning methods to construct structural causal models by training surrogate
models from observations, as, e.g., neural networks are directed acyclical graphs by design.
Alternatively, we can use causal mediation analysis to study the importance of hidden states
as mediating variables for different inputs to make neural networks more interpretable. This
approach is successfully used for interpretability research on internal states of advanced
deep learning models, e.g., in large language models [Men+22; Wan+22; LR23].

We can also leverage these benefits for high-precision experiments. The detector response
models and signal chains of experiments are inherently directed acyclical graphs that contain
all or most of the relevant variables for the final signal. Therefore, we can determine
individual detector components’ direct and indirect effect on final quantities to determine
functional behavior or guide optimization. I use this in Sec. 6.1.7 to determine the direct
effect of individual signal charge integrator channels when studying the integrator non-
linearity. Using causal mediation analysis led to the hypothesis and study of integration
time-dependent systematic effects and the discovery of required future work.

3.4.2 Related Work

In the previous sections, I already discussed examples of existing physics applications of
Gaussian processes, Bayesian optimization, and differentiable programming. Many more
promising methods not covered in this work show significant potential for physical sciences.
As explaining these methodologies goes beyond the scope of this work, I only give a
curated overview of applications. These methodologies can be helpful for high-precision
experiments, especially for modeling, inference, and simulation applications.

Due to their flexibility and expressiveness, neural networks have been widely used in physical
sciences with applications ranging from quark tagging [Pea+17], to accelerator tuning
[XRE22], and to planet formation studies [Pfe+22]. Also, they are used for symbolic
regression [But+23] and for fluid simulations with Bayesian deep learning [Mue+22].
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Graph-neural networks are promising for physics applications as they propagate information
between neighboring nodes. This characteristic allows them to model local interactions that
accurately capture global properties. Graph-neural networks are successfully used, e.g.,
for pattern recognition in the IceCube experiment [Abb+22] and to model the scattering
behavior of cosmic muons in different materials [Lag+22]. Future studies might combine
topological machine learning [HMR21] to enhance Graph-neural network approaches for
physical sciences.

Generative models are advantageous for simulations of physical systems, as they learn a dis-
tribution from training data and can sample new data from the learned distribution for further
analysis. One example is generative adversarial networks, which were successfully used for
emulating cosmological multifields [AVH22] and for ultra-high-resolution detector simu-
lations [Has+23]. Other works applied diffusion models to generate astronomical spectra
[Doo+22] or normalizing flow models to gravitational wave studies [SSH22; Wil+23].

Learning policies for an agent with reinforcement learning by interacting with an environ-
ment by trial and error and reward maximization can lead to the discovery of novel strategies.
Thus, reinforcement learning found applications for string theory vacua discovery [HNR19],
for protein structure prediction [Jum+21], and for controlling the magnetic fields for tokamak
plasma [Deg+22].
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4 Experiment Setup

The physics goal is to look for BSM physics in neutron beta decay by precisely measuring the
electron energy spectrum of these decays, see Equ. (2.9) and (2.12). To this end, we use the
pre-existing spectrometer Perkeo III [Mär06; Mär+09], which was designed to study the
neutron beta decay and the correlation coefficients in Equ. (2.9). Recent scientific highlights
are high-precision measurements of the beta asymmetry 𝐴 and the Fierz interference term
𝑏 [Mär+19; Sau+20].

In this chapter, I present the experimental setup and how we adapted the spectrometer from
previous measurements for a high-precision measurement of the electron energy spectrum at
the Institut Laue-Langevin (ILL) in France. During the measurement campaign, I managed
the preparation of the scientific equipment, the logistics, and the conduction of the mea-
surement at the ILL. The ILL committee accepted our proposal for funding and instrument
access at the ILL [Lam19] as a scientific highlight, enabling a measurement campaign from
July 2019 to March 2020. Our team consisted of four constant scientists and up to twelve
people during the setup period.

4.1 Measurement Concept

In analogy to the discovery of parity violation [Wu+57], the core idea of Perkeo III is to
place the decaying neutrons in a magnetic field with the field lines going to two detectors,
as illustrated in Fig. 4.1. The magnetic field has its maximum in the decay volume and
decreases towards the detectors. Similar setups are also used in other neutron beta decay
experiments, e.g., Perkeo II [Mun+13] or UCNA [Sun+20].

This setup has multiple benefits: Firstly, the charged decay products gyrate towards the
detector in the direction of their initial emission due to the magnetic field. This guidance
enables a full 2×2𝜋 angular coverage, reducing statistical uncertainties of measurements and
corrections from electrons missing the detectors based on their energy-dependent gyration
radius. Secondly, this setup enables full energy reconstruction in cases of backscattering.

Detector 0 Detector 1

          n → p 

e

Magnetic Field Lines

Figure 4.1 Schematic of the Perkeo III measurement concept. A neutron decays in a magnetic
field and the electron gyrates toward one of the two detectors. Our setup is not sensitive to the other
decay products, e.g., protons, and they are not illustrated. The gradient of the magnetic field leads to
reflections of backscattered electrons due to the magnetic mirror effect.
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Figure 4.2 Graph taken from [Mes11]: Perkeo III schematic with beamline. The magnetic field
lines are drawn in orange. The distance from detector to detector is about 8 m. We adapt this setup
for our measurement by, e.g., removing the polarizer and spin flipper to increase the event rate.

If an electron backscatters off a detector, it only deposits a fraction of its kinetic energy in
the primary detector, creating energy losses critical for high-precision energy measurements
without a secondary detector. With our setup, the backscattered electron is either detected by
the other secondary detector or is reflected onto the primary detector through the magnetic
mirror effect induced by the magnetic field gradient, leading to the energy reconstruction
of the event. Thirdly, the field’s orientation from one detector to another can be used
as a quantization axis for the neutron spin when measuring neutron-spin-dependent decay
correlation coefficients. Besides these benefits, the setup reduces other systematic effects
related to neutron spin-dependent measurements [Mes11; Sau18; Roi18].

4.2 Perkeo III Spectrometer

The Perkeo III spectrometer [Mär06; Mär+09] is a realization of the measurement concept
in Fig. 4.1, and the experiment setup is shown in Fig. 4.2. We can divide the spectrometer
into four components: The beamline, the central decay volume, and two detector vessels.
The beamline connects the experiment to the ILL instrument site and produces a suitable
neutron beam for the experiment, see Sec. 4.2.4. The 50 copper coils of Perkeo III create
a magnetic field that separates the charged decay products from the neutron beam. The
neutrons fly parallel to the magnetic field direction in the central decay volume. If a neutron
decays in the magnetic field of the central decay volume, its charged decay products are
guided to the detectors. A beam stop absorbs any remaining neutrons after exiting the
central decay volume. More details on the Perkeo III setup are given in [Mär+09; Mes11;
Wan13; Sau+20], and I highlight any changes specific to the 19/20 measurement campaign
to determine the Fierz interference term in this section.

The support structure of the Perkeo III spectrometer is a vacuum vessel with mountings
and flanges. The central decay volume is a cylindrical vessel with 2.7 m length and 50
cm inner diameter. The two detector vessels on each side have a length of 3 m and a
rectangular cross-section of 50x50 cm2. There is no direct line-of-sight from the beam axis
to the detectors. We used turbomolecular pumps to reach a vacuum of 10−6 to 10−7 mbar
throughout the experiment. This vacuum is sufficient to avoid perturbations of the electron
energies.

The highest magnetic field 𝐵0 = 152 mT is in the middle of the central decay volume,
decreasing towards the detectors with 𝐵𝑑 = 82 mT. The magnetic field gradients are locally
homogeneous, allowing for adiabatic transitions with the Lorentz force, leading to circular
movements of the charged particles perpendicular to the field lines, so-called gyration. The
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Figure 4.3 The Perkeo III spectrometer with magnetic shielding and connected supplies at the PF1B
instrument site at the ILL, France. The PF1B instrument site is about 14 m long and 3.5 m deep and
we setup the experiment in about 6 weeks, visualizing the magnitude of the endeavour. Picture taken
standing on the beamline looking in the neutron beam direction. (Copyright: Laurent Thion, 2019)
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Figure 4.4 The number of detected events plotted against the neutron time-of-flight (ToF) to illustrate
the principles of a pulsed beam measurement. The time-of-flight time is calculated as the difference
between the detection time of an event to the last chopper rotation. The event rate corresponds to
the neutron pulse propagating through the experiment, e.g., the rate increases between 2 and 4 ms
when the neutron pulse enters the central decay volume and electrons from decays are guided to
the detectors. We use time-of-flight information to extract signal and background spectra, enabling
an accurate background subtraction every couple of ms. The signal and background measurement
windows are indicated, and I discuss them in Sec. 5.3.2.

gyration radius in the central decay volume for an electron with kinetic energy 𝐸 emitted at
an angle \ to the beam axis, mass 𝑚𝑒, and charge 𝑒 is given by [Jac75]

𝑟0 =
√︁
𝐸 (𝐸 + 2𝑚𝑒𝑐

2) sin(\)
𝑐𝑒𝐵0

. (4.1)

The magnetic field gradient between the central decay volume and the detectors leads to
a larger gyration radius at the detectors of 𝑟𝑑 = 𝑟0

√︁
𝐵0/𝐵𝑑 , derived through momentum

conservation [Jac75; Wan13]. Also, the magnetic field gradient leads to a forward focusing
of the charged particles. For example, an emitted electron with an approximately \0 = 90◦
angle to the beam and magnetic field axis has only a maximum angle of entry \𝑐 of 47◦ at
the detectors

\𝑐 = arcsin

(√︂
𝐵𝑑

𝐵0
sin(\0)

)
= 47◦. (4.2)

The forward focusing is relevant to reduce the backscattering probability, see Sec. 6.1.4. For
the Perkeo III experiment setup, [Wan13; Mes11; Sau18] discuss the magnetic field and
related effects, especially for neutron spin-dependent asymmetry measurements where the
deviation from symmetry of the magnetic field is a dominant systematic effect.

The experiment is situated at the PF1B instrument site at the ILL. The ILL reactor produces
thermal neutrons (average velocity 𝑣 ≈ 2200 m/s), which are cooled to cold neutrons
(𝑣 ≈ 800 m/s) for the PF1B with a liquid deuterium moderator. The PF1B offers the
strongest source of cold neutrons for particle physics in the world [Abe+06]. The high rate
of neutrons enables using a pulsed beam. With a pulsed beam, we measure not only the
background of the experiment itself but also from surrounding instruments between each
neutron pulse. The reduction in measured events and increased statistical uncertainty is
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a highly favorable trade-off, as it greatly reduces the systematic error from less accurate
background measurements [Mär+09]. We can illustrate the principles of a pulsed beam
measurement by plotting the number of detected events (event rate) against the time of a
detected event relative to the last pulse (neutron time-of-flight)for a 5 min measurement, as
seen in Fig. 4.4. For cold neutrons, the time-of-flight of electrons from the decay position
to the detectors is negligible. The event rate corresponds to the neutron pulse propagating
through the experiment. The event rate is the background rate when the neutron pulse enters
the spectrometer. Electrons from decays will be detected when the neutron pulse reaches the
central decay volume, increasing the event rate (at 3 ms). The event rate is approximately
constant and plateaus (at 4− 6 ms) as the number of neutrons is not significantly reduced by
decays. After the neutron pulse exits the central decay volume, the beam stop fully absorbs
the neutron pulse, leading to a high event rate of produced gamma radiation (at 8 − 10
ms). We can choose a neutron time-of-flight signal and background window to discriminate
the measured data and create background-free spectra through subtraction. The validity of
choice of the neutron time-of-flight windows is discussed in Sec. 5.3.2.

In Fig. 4.4, we can also differentiate between the event rates of the upstream detector (Det0)
and the downstream detector (Det1). Due to the magnetic mirror effect, the event rate is
higher for the upstream detector before the pulse reaches the maximum of the magnetic field
in the central decay volume. Also, the background for the upstream detector is dominated by
the constant background from the beamline, whereas the downstream detector has a smaller
constant background but is dominated by the gamma radiation from the beam absorption.

Shielding between the background sources and the detectors is necessary to minimize the
impact of constant, instantaneous, and delayed background events. To this end, we placed
shielding outside the vacuum vessel around the beamline and beam stop, which is already
present in Fig. 4.4. We used lead bricks and specialized materials containing boron for
shielding. The resulting signal-to-noise ratio is presented in Sec. 5.4.

The author of [Sau18] designed the beam stop that is made from 10B4C with a neutron
backscattering suppressing structure in front. The chosen materials produce more instan-
taneous gamma emissions but less delayed neutron emissions. The latter would be harder
to separate from the pulsed beam with the neutron time-of-flight windows, as shown in
[Mes11].

Difference to Previous Perkeo III Measurements

This measurement is the first application of Perkeo III with a setup optimized for purely
measuring the electron energy spectrum. It is the first measurement of Perkeo III using
an unpolarized beam, as we are not measuring a neutron spin-dependent quantity. This
simplification increases the experiment’s neutron flux and decreases the measurements’
statistical uncertainties, see Sec. 4.2.4.

Furthermore, new experiment components were explicitly made for this measurement cam-
paign: New detectors for a better energy resolution, a new robot to move the radioactive
calibration sources, and a new cooling system for a more stable measurement and to enable
higher magnetic fields. A picture of Perkeo III from the 2019/20 measurement campaign
with magnetic shielding and connected supplies at the PF1B instrument site at the ILL is
shown in Fig. 4.3, illustrating the size of the experiment.
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(a) Re-used graph from Sec. 3.3.1: The Perkeo III
scintillation detector schematic. Electrons deposit
their energy in the scintillator and produced photons
are detected by the PMTs.

(b) One of two assembled Perkeo III detec-
tors in 2019 with the scintillator at the front,
light guides at the sides, and PMTs in the
cooling reservoir.

Figure 4.5 The Perkeo III 2019/20 detector design. Compared to previous designs, this design uses
a thicker scintillator and light guides for improved uniformity and light yield. Also, the PMTs are
mounted in a greater cooling reservoir, and the scintillator is read out at the sides.

4.2.1 Detector Design

The Perkeo III detectors work on the principles described in Sec. 3.3.1: The detector com-
prises a plastic scintillator with acrylic light guides at the sides, connected to photomultiplier
tubes (PMTs) at the end of each light guide, as shown in Fig. 4.5. Plastic scintillators are
suited for this measurement, as they have a short response time, are less sensitive to gamma
background, and have a lower backscattering probability than Si-based detectors. When
an electron with kinetic energy 𝐸𝑒 hits the detector, it deposits its energy, and 𝑛𝛾 photons
are produced approximately proportional to the deposited electron energy 𝐸𝑒. A fraction
of the photons travel through the detector to the PMTs, creating a charge pulse 𝐴 through
the photoelectric effect and multi-stage amplification. The fraction of photons reaching the
detector for a fixed electron energy, the light yield, essentially defines the energy resolution
of the detector. A more detailed and accurate description of the detector model is given in
Sec. 6.1. The PMTs are fine-mesh type PMTs that can be operated in high magnetic fields.
We chose their photoelectric absorption range to match the scintillator’s emissions. The
produced PMT charge pulses are approximately 20 ns wide.

The measured charge 𝐴 is on an arbitrary scale, and contrary to the simplification in
Sec. 3.3.1, we cannot assume the energy reconstruction to be entirely linear

𝐴 = 𝑓Det(𝐸𝑒) (4.3)

with detector response function 𝑓Det. To determine 𝑓Det, we use calibrations sources, see
Sec. 4.2.2. I discuss different non-linear effects and the energy reconstruction in Sec. 6.1.

The detector design considers the geometrical limitations of the experiment, e.g., a minimum
scintillator size and thickness to detect all electron energies and positions, but also desired
performance, e.g., uniformity of response and energy resolution. The author of [Ber18] did
the core design of the detectors, designing new light-guide shapes for increased light yield,
a photon readout from the sides, and a cooling reservoir for added temperature stability. The
author of [Ant19] and I tested different scintillator designs for improved uniformity and light
yield and tested light guide components for their transmission properties. These tests lead
to the choice of using a thicker scintillator for the measurement campaign. Based on these
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(a) Schematic from [Kro20]: Render of the CaliBot
with calibration source holders. In this schematic,
the CaliBot source holder picks-up a source from
the storage arm and moves it to the center. The
remaining sources are in a movable storage arm.

(b) CaliBot in the central decay volume of
Perkeo III with a radioactive calibration source
on its support foil and holder. The "hole" in the
Mylar support foil is the ultra-thin C foil with the
radioactive calibration source.

Figure 4.6 The Perkeo III 2019/20 CaliBot (Calibration Robot) to move and store the radiactive
calibration sources. Compared to previous Perkeo III measurements, the chosen design only uses
one holder arm to move the sources all in the same transversal plane to the beam axis and utilized
more precise rotational encoders.

tests, we polished the light guides again for matching transmission properties and assembled
the light guides from individual parts in a clean room. To enable the deployment of the
detectors, I re-designed the support structure for the scintillator, light guides, and PMTs. The
final detector comprises a 240×240×15 mm3 BC-408 plastic scintillator [Sai21] and acrylic
light guides with the design from [Ber18]. Also, the detector is temperature stabilized using
an external and separate water cooling circuit.

4.2.2 Calibration Sources and Robot

Generally, the detector response 𝑓Det in Equ. (4.3) is non-linear due to multiple effects,
which are discussed in Sec. 5 and 6, and must be measured to precisely measure the electron
energy spectrum. To measure 𝑓Det, we need calibration sources with known energies for
references. These calibration measurements are essential for the overall energy-channel
relation, its change over time due to temperature-induced gain fluctuations, see Sec. 5.2.4,
and its dependence on the electron position on the detector, see Sec. 3.3.2.

We use five electron conversion sources that provide known peaks and auger electron
emissions ranging from a few keV up to 1 MeV, exceeding the electron endpoint energy
from the beta decay of 𝐸𝛽− ≈ 782 keV. Besides electrons, the sources also emit gamma
radiation, whose related systematic effects were negligible in past Perkeo III experiments.
Tab. 4.1 lists the sources with the approximate energies of the dominant energy peaks. The
energies are only approximate, as each peak consists of multiple combinations of different
transitions, see Sec. 7.1. The calibration sources are placed as a concentrated solution on
ultra-thin carbon foils (12 and 30 `g/cm2 area density, 10 mm diameter), supported by a
thin Aluminum-coated Mylar foil (25 `m thickness, ca. 140 mm diameter) to minimize
electron energy losses affecting the calibration measurement. The remaining energy losses
from electrons interacting with the foils were negligible in past experiments [Sau18; Roi18].
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Table 4.1 The calibration sources used for the Perkeo III 2019/20 measurement campaign with
approximate energies of the dominant energy peaks, decay modes, half-life, and event rate. EC refers
to electron capture transitions. Energy and half-life values taken from [Bé+16]. Event rate subtracted
with background event rate of ≈ 530 s−1.

Source Isotope Decay Mode Half-life Energies [keV] Event Rate [s−1]
109Cd EC + Auger 461.9 d 75 4700
139Ce EC + Auger 137.6 d 127 2700
207Bi EC + Auger 32.9 y 503, 995 4000
113Sn EC + Auger 115.1 d 369 2000
137Cs EC + Auger + 𝛽− 30.0 y 630 7200

Detector 0
(Upstream)

Detector 1
(Downstream)

Fan-Out

Trigger

Discriminator

QDC

Fan-Out

Charge Pulses

Figure 4.7 Schematic of the readout electronics and coincidence measurement setup that significantly
reduces the detection of background events. The signals from each detector are fed into linear fan-out
units to split the signal into two separate signal chains each. One half goes into a discriminator and
logic unit that provides a trigger signal for the charge integrating analog-to-digital converter (QDCs).
We feed the second half of the signals through delay lines (ca. 40 m), to allow for the processing
time for the discriminator and the logic unit, and into the QDCs to be measured.

To switch between the measurement of the electron energy spectrum from neutron decay
and the calibration sources, we need a robot to move the calibration sources from an idle
position to positions covering the neutron beam distribution in the central decay volume - the
CaliBot. This task is challenging, as the calibration sources are on fragile foils in a vacuum
and a magnetic field. The vacuum is critical for overheating motor components and limits
the choice of materials due to their outgassing. The magnetic field must stay uniform in the
central decay volume, and any added parts must be sufficiently non-magnetic. The design
and deployment of the CaliBot was the core topic of [Kro20], in which I was involved. A
schematic of the CaliBot and a picture of it in Perkeo III are shown in Fig. 4.6. The CaliBot
is located 50 cm out of center downstream in the neutron beam direction in the central decay
volume.

With the CaliBot and while switching off the neutron beam, we can move the calibration
sources to the center of the neutron beam distribution or move the sources on a 2D grid in
the plane perpendicular to the beam axis to measure the spatial detector response. During
the measurement campaign, we measured the detector calibration with all sources twice a
day, every hour with 113Sn for gain fluctuations and a daily 2D grid scan with 113Sn for the
spatial detector response.

4.2.3 Readout Electronics and Data Structure

We adapt the electronics from [Sau18] and [Roi18] to readout and digitize the electronic
signals from the detectors. The measurement follows the coincidence measurement principle
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and is illustrated in Fig. 4.7: The signals from all sixteen PMTs, eight per detector, are fed
into linear fan-out units to split each signal into two separate signal chains. One half
goes into a constant fraction discriminator unit with a timing resolution of 0.8 ns. It
provides a start trigger signal for each PMT input and connects to a logic unit. If at least
two PMTs from one detector trigger, the other half of the signals for all sixteen PMTs is
registered in charge integrating analog-to-digital converter (QDCs). We feed the second
half of the signals through delay lines (ca. 40 m) to allow for the processing time for
the discriminator and the logic unit. This coincidence measurement setup significantly
reduces the detection of background events and relies on sufficient photons being produced
in the scintillators to trigger multiple PMTs. Measuring all PMTs on each trigger enables
full energy reconstruction, where energies are split between PMTs or detectors to measure
below the trigger threshold, e.g., backscattering or low-energy events close to the trigger
threshold.

The QDCs sample with 100 MHz, i.e., every 10 ns, and integrate for 330 ns. The integra-
tion time needs to include the electronics induced own-signal and enough time to register
backscattered electrons to the opposite detector (electron time-of-flight about 40 − 100 ns).
I discuss the effect of the electronics-induced own-signal, dependency on the last event, and
QDC non-linearity in Sec. 5.2 and 6.1.7. After each trigger, the electronics system does not
accept new signals for approximately 1.5 `s, a so-called non-paralyzable dead time. I dis-
cuss the dead time effects in Sec. 5.3.1. The electronics are stored in temperature-controlled
cabinets.

The Pudel data acquisition software [Roi18] controls and monitors the readout electronics
and incorporates all other automated experiment components, e.g., the supply voltage of
the detectors. Each measurement is stored in ROOT1 files and organized in cycles of 10
s duration. Each cycle stores global information, e.g., beamline instrument parameters or
cycle validity. Each event within the cycles stores event-specific information, e.g., the trigger
times for both detectors or the QDC values for all PMT channels.

Readout Modes

We can take data in different modes to trade information for storage efficiency. We can
store each sampled value of the QDC, i.e., a value every 10 ns of the 330 ns integration
time, only the first and the last QDC value, or the difference of the first and the last QDC
value for each PMT channel. We label these modes "ALLMODE," "BOTHMODE," and
"DELTAMODE," respectively. Only storing the difference gives the total measured integral
of the QDC for each PMT for that event, as it subtracts the electronics-induced offset and
leaves the integrated charge. However, storing all QDC samples enables analysis, e.g., of the
non-linearity of the QDCs. For different event types and a few PMTs, I present "ALLMODE"
data in Fig. 4.9. We took data in all three modes during the measurement campaign, but only
a few hours with different sources in "ALLMODE" for the analysis of systematic effects.

Event Types

With the two-detector setup, a long integration time, and a trigger condition for each detector,
we can differentiate events and analyze them accordingly. There are mainly four types of
events: direct events, backscattering, correlated (quasi-instantaneous) events, and accidental

1https://root.cern/
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Figure 4.8 Different event types for detector 1 with a two-detector setup, a long integration time, and
a trigger condition for each detector. Each detector interaction can lead to a trigger or not (T or ¬T)
on that detector. Alternative scenarios are indicated with dotted lines. a) Direct event and electron
deposits full energy in one detector. b) Backscattering without reflection on the magnetic field
gradient. Detector 1 could be the primary or secondary detector. c) Backscattering with reflection on
the magnetic field gradient. d) Multi-electron events from correlated electron emissions or accidental
coincidentals.

coincidence events. I illustrate the different events and their possible trigger combinations
in Fig. 4.8. The differentiation is essential to measure low-energy events, as the trigger is
generally energy dependent. The energy dependence of the trigger, the trigger function, is
discussed in Sec. 6.1.3.

Some of the trigger combinations in Fig. 4.8 pose a challenge for precise energy measure-
ments. We can only differentiate backscattered events in the data by looking for events where
both detectors have triggered. Correlated and accidental coincidence events can be removed
by matching the time between the two detector triggers with the electron time-of-flight.
However, for example, an electron could backscatter but only deposit a small fraction of
its energy in the primary detector and not trigger the detector. The backscattered electron
would be detected later on the same (mirror effect) or opposite detector, but the fraction of
energy deposited on the first detector would be lost and undetected as there was no trigger.
This effect is called undetected backscattering and is discussed in Sec. 6.1.4.

Multi-electron events, like correlated and accidental coincidence events, can create other
issues. Correlated events are unavoidable in some cases, like with the calibration sources
due to short-lived atomic excitation states. If two or more electrons reach the detectors
within the time window of integration, their combined energy is detected. If their energies
are sufficiently large, they are harder to distinguish from other events using electron time-of-
flight information. This issue increases complexity when including trigger conditions and
is discussed in Sec. 6.1. These issues also highlight the necessity of a two-detector setup
for a high-precision measurement with Perkeo III and are a topic for future experiments
with, e.g., the PERC spectrometer [Wan+19] that circumvent this necessity with a strong
magnetic filter.

To illustrate different types of events, I present "ALLMODE" data examples in Fig. 4.9.
For visualization, only two QDC channels are plotted for each detector, each corresponding
to the readout of a single PMT. The variation in the first charge integration value is an
electronics-induced and QDC channel-specific offset, the so-called pedestal, see Sec. 5.2.1.
In the case of direct events, the electron fully deposits its energy in one detector, and the
produced photons are distributed onto the PMTs of that detector, leading to a full charge
integration of the pulses at the readout. If an electron backscatters, it can propagate to the
opposite detector or be mirrored onto the same detector to deposit the remaining energy.
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Figure 4.9 The charge integration with ALLMODE data for different event types, see Fig. 4.8.
PMTs 5 and 6 are from detector 0 (upstream) and PMTs 9 and 13 are from detector 1 (downstream).
(Top, left) Direct events: Energy is fully deposited in one detector. (Top, right) Backscattering
with magnetic mirror effect: Energy is fully deposited in one detector but in two charge integration
steps with the typical 40− 50 ns electron time-of-flight width. (Bottom, left) Backscattering without
magnetic mirror effect: Energy is split between the primary and secondary detector. The incoming
charge pulses are the typical 40 − 50 ns electron time-of-flight apart between detectors. (Bottom,
right) Higher-order backscattering: Energy is fully deposited in one detector but in three charge
integration steps with the typical 40 − 50 ns electron time-of-flight width. The electron backscatters
twice and is reflected each time by the magnetic mirror effect.
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In both cases, the charge integration has two "steps", with a typical width of 40 − 50 ns
electron time-of-flight, see also [Ber24]. The electron time-of-flight is similar for both
cases, as most mirrored electrons are reflected close to the maximum of the magnetic field
in the center of the central decay volume. Using the electron time-of-flight signature, we
can also distinguish events with higher-order backscattering and mirroring, where the charge
integration has multiple steps shifted by 40−50 ns electron time-of-flight. Multiple-electron
events are not included in Fig. 4.9, as they are less straightforward to visually distinguish
them from other events in a charge integration plot. They arrive within times of about our
time resolution of 10 ns or shorter times at the detectors and we need to model their impact
on the analysis with simulations, see Sec. 6.

4.2.4 Beamline Setup

We need a beamline to make the cold neutron beam match the experiment dimensions and
allow for a pulsed beam measurement. Perkeo III is installed at the PF1B instrument site
and connected to the ILL reactor through the neutron guide H113 [Abe+06]. The guide
delivers a neutron capture flux 𝜙𝑐 at the exit of the guide of

𝜙𝑐 = 1.35 · 1010 cm−2s−1.

and a typical off-axis FWHM beam divergence of ≥ 7 mrad [Abe+06].

For the pulsed measurement, we need to reduce the velocity spread of the neutrons, as the
neutron pulse would otherwise also spread over time and disturb the background measure-
ments, see Fig. 4.4. To this end, we use a neutron velocity selector comprising a boron-coated
turbine spinning at 425 Hz. It reduces the velocity distribution of the neutrons to a nearly
symmetric triangular distribution with a mean of 5 Å and a 12% width.

Deviating from past measurements that focus on neutron spin-dependent quantities, we did
not use a polarizer for a polarized neutron beam. Measuring with an unpolarized beam
increases the neutron flux in the experiment by a factor of four [Sau18]. We checked the
polarization with 3He cells and determined it to be sufficiently low with 𝑃 ≤ 10−4, as the
neutron guide might slightly polarize the neutron beam [Sol20]. Past measurements also
combined the polarizer with a spin flipper, enabling a mirrored experiment setup from the
neutron perspective. The spin flipper uses a rotating magnetic field in the neutron rest
frame to flip the neutron spin every few seconds, greatly reducing systematic uncertainties
of spin-dependent quantities [Mär+19; Sau+20]. However, we optimized our measurement
for a pure electron energy spectrum measurement and did not use a polarizer or spin flipper.

We use five absorption apertures to shape and collimate the neutron beam to the experiment
dimensions. Their positions determine the beam distribution and divergence in the exper-
iment. Also, they affect the magnitude of the background close to the upstream detector.
The resulting neutron beam distribution can be calculated, neglecting time dependencies,
through geometric integrals [Wan13; Sau18]. I present an example of how to optimize the
aperture positions in Sec. 3.3.4. For this measurement campaign, I tested different aperture
setups with a custom simulation to also consider the electron distribution on the detectors.
The apertures are made of 6LiF, have a 6x6 cm2 opening, and are positioned over the 4.3 m
long beamline in distances of 70 − 100 cm.

Finally, we need to pulse the beam at the experiment entry. We used the pre-existing disk
chopper from [Wer09] comprising 6LiF plates with a 22.11 deg opening and a frequency
of 83 Hz. The chopper frequency must match the neutron pulse velocity, i.e., the time
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(a) Horizontal neutron beam distribution at the start
of the central decay volume.

50 100 150
x [mm]

0.1

0.2

0.3

0.4

0.5

I [a.u.]

(b) Horizontal neutron beam distribution at the end
of the central decay volume.

Figure 4.10 Horizontal neutron beam profile measurement with irradiated medical imaging foils in
the plane perpendicular to the beam axis in Perkeo III for two different heights (blue, orange) at two
different positions in the central decay volume. The horizontal non-linear divergence of the neutron
beam is caused by different angular neutron beam components from the curved neutron guide.

that the neutron beam propagates through the experiment, and also guarantee the same
background environment for the signal and background neutron time-of-flight windows in
Fig. 4.4 since the chopper-produced background might vary with its rotation angle. I test
these requirements in Sec. 5.3.2.

To verify the neutron beam distribution in the experiment, we placed two medical radiation
testing foils2 in the central decay volume. Due to the high neutron flux at the PF1B
instrument site, we can darken these foils with irradiation damage. We use the magnitude
and location of irradiation damage on these foils to calculate the neutron beam profile. Using
high-resolution scanners and correcting the image for saturation effects, we can calculate
the neutron flux in the plane perpendicular to the beam axis at two locations: 7 cm into
the central decay volume and 6 cm before its end. The resulting horizontal distributions
are shown in Fig. 4.10. Due to the curvature of the neutron guide H113 [Abe+06], the
neutron beam comprises different angular components leading to the horizontal spread in
Fig. 4.10. In comparison, the vertical spread diverges linearly. The full-width neutron beam
cross-sections in the experiment are (horizontal × vertical, background to background)

10.59 (15) × 10.41 (10) cm2 (start),
16.32 (37) × 16.11 (22) cm2 (end).

Using gold foil activation by the neutron beam in the center of the central decay volume, we
determined the time-averaged neutron capture flux 𝜙𝑐 to be

𝜙𝑐 = 6.63(14) · 106 cm−2s−1,

agreeing with the observed number of detected electrons from neutron beta decays.

2GAFCHROMIC EBT2, self-developing film for radiotherapy dosimetry
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5 Creating Spectra From Measured Data

To precisely measure the electron energy spectrum from neutron beta decay, we must process
the measured data, apply corrections where necessary, and finally create these spectra with
quantified uncertainties to enable analyses of physical quantities. Non-energy spectra and
specific analyses to characterize systematic effects also require a similar process. This
chapter presents the data selection and application of corrections for spectra generation
from the measured data sets and discusses the induced systematic uncertainties of these
corrections.

The data reduction and processing is automated with a new data analysis framework, Pan-
ter, developed within this thesis. To create spectra, we must distinguish between single
event corrections, e.g., rate dependency effects, and spectral corrections, e.g., background
subtraction. Besides neutron beam data, i.e., measurements of electrons from neutron beta
decay, we also collected calibration data sets with electron conversion sources, see Sec. 4,
background measurements, and characterization measurements by varying hardware param-
eters. I explain the data sets used for each analysis. Much of this chapter’s analysis and
corrections build upon previous work in the Perkeo III collaboration [Sau18; Roi18]. These
corrections have been improved upon by considering more systematic effects and developing
better methodology.

5.1 Panter Analysis Framework

Due to the custom data structures and required analysis for this high-precision measurement
with Perkeo III, we need a data reduction and processing framework to enable the data
analysis. To this end, I developed a python package called Panter (Perkeo ANalysis Tool for
Evaluation and Reduction) for reducing, evaluating, and analyzing Perkeo III data with all
necessary tools in an automated manner. It is designed as a user-friendly option for older
Perkeo III data sets with similar structure, any analysis with the data set taken in my thesis,
and any future Perkeo III data sets.

Panter has a general toolset for data analysis with custom classes, can process all Perkeo III
data types and measurements with modular corrections, and automates Perkeo III specific
analysis. Also, Panter has a broad set of unit tests to ensure accurate results using bench-
marking and synthetic data sets, of which some were developed in collaboration with the
author of [Bes22]. Unless otherwise indicated, all data analysis results are done with Panter.

5.2 Single Event Corrections

We must first reconstruct the electron energies from measured events to create electron energy
spectra. To do so, we must account for systematic effects caused by our measurement setup
on single-event detection. Specifically, I look at electronics-induced effects during readout,
temperature-induced gain fluctuations, and detector fine-tuning. In previous Perkeo III

https://github.com/maxlampe/panter
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(a) Pedestal distribution for PMT2 on detector 0.
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(b) Pedestal distribution for PMT6 on detector 0.

Figure 5.1 Determination of the pedestal position 𝑃𝑖 𝑗 and width 𝑤𝑖 𝑗 by looking at events where only
the other detector triggered. The asymmetric fit range is necessary to reduce the bias for 𝑃𝑖 𝑗 and 𝑤𝑖 𝑗

towards larger values due to the long tails caused by undetected backscattering events visible in the
log plots.

analyses, single-event corrections were unnecessary [Sau18]. For our analysis, most but
not all systematic effects and corrections are still included in the theoretical description of
the detector response model and not treated as single-event corrections, see Sec. 6.1. We
reconstruct the electron energies of an event by summing up the integrated charges of all
PMT readouts and I state the energy reconstruction formulae at the end of this section.

5.2.1 Electronics Induced Effects

Pedestal Correction

The electronics-induced and QDC channel-specific offset is called pedestal, see Sec. 4.2.3
for a description of the electronic readout system. Since the electronic readout system
collects QDC samples before and after the integration of PMT pulses, we can subtract the
first QDC sample of the integration time, the pedestal, from the last QDC sample to obtain
the fully integrated charge of an event. However, the pedestal fluctuates, and subtracting the
QDC sample values still leads to a residual and QDC channel-specific offset that we must
correct for. For simplification, we label each QDC channel with the corresponding PMT
channel.

We can determine this electronics-induced signal for a QDC channel from measured data
by studying events without input on the respective QDC channel. Ideally, we want events
with no signal on that QDC channel. Practically, we do this by looking at events where
only the other detector is triggered and extract the pedestal value 𝑃𝑖 𝑗 and width 𝑤𝑖 𝑗 for each
of the eight QDC channels 𝑗 and each of the two detectors 𝑖. The resulting distribution
for two QDC channels is shown in Fig. 5.1. As discussed in Sec. 4.2.3, backscattering
events that fail to trigger a detector can lead to undetected energy losses [Roi+19]. Such
events also contaminate the pedestal distribution by creating long tails in Fig. 5.1 and bias
the extraction to larger values. This contamination was neglected in previous Perkeo III
analysis [Sau18]. The pedestal needs to be determined at least on a measurement file-by-file
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basis for each channel, and we lack further information to reduce the contamination with
undetected backscattering events post-measurement. Studies to reduce the contaminating
undetected backscattering with energy cuts on the other, triggered detector yields unreliable
results.

Hence, we extract the values of 𝑃𝑖 𝑗 and 𝑤𝑖 𝑗 with iterated fits of Gaussian distributions.
The first fit determines the fit ranges of the second one with an adaptive fit range as
[` − 1.1𝜎, ` + 0.5𝜎] with ` and 𝜎 being the mean and with of the first Gaussian fit. I
determined the asymmetric fit range by dividing the pedestal distribution summed over all
PMTs for one detector with an upper fit range limit by the total pedestal spectrum. The upper
fit range limit was set to minimize the amount of backscattering events while minimizing the
cut into the actual pedestal distribution. The resulting second fit with a Gaussian distribution
is shown in Fig. 5.1. With this approach, we can determine the values of 𝑃𝑖 𝑗 and 𝑤𝑖 𝑗 for
each file and correct the integrated QDC values.

We can use the individual pedestal widths 𝑤𝑖 𝑗 to calculate the total width of the integrated
charge of an event as

𝑤tot =
√︃
𝑤2

det0 + 𝑤
2
det1 =

√√√ 8∑︁
𝑗=1
𝑤2

1 𝑗 +
8∑︁
𝑗=1
𝑤2

2 𝑗 .

We use 𝑤tot to measure the electronics-induced fluctuation on the integrated charge of an
event.

Using neutron beam data, we can estimate the individual QDC channel uncertainty 𝜎(𝑃𝑖 𝑗)
for 𝑃𝑖 𝑗 as 𝜎(𝑃𝑖 𝑗) = 0.14(1) ch, leading to an uncertainty on the sum of 𝜎(𝑃) = 0.56(4)
ch. The individual QDC channel values 𝑃𝑖 𝑗 are in a range of about ±100 ch. Using a
calibration measurement with all five calibration sources as verification, we can estimate
the uncertainty for one detector as 𝜎(𝑃𝑖) = 0.42(14) ch, leading to an uncertainty on the
sum of 𝜎(𝑃) = 0.59(20) ch. Thus, the calibration source results agree with the neutron
beam result for the uncertainty of the pedestal correction.1 This agreement also implies that
we get the same systematic uncertainty from individual QDC channel corrections as from
correcting the sum of all channels for one detector, as is done for the calculation with the
calibration sources. The final systematic uncertainty on the measured amplitude offset is
given by the neutron beam result 𝜎(𝑃) = 0.56(4) ch. This correction is non-negligible for a
precise measurement of the Fierz interference term 𝑏 and I discuss its significance in Sec. 8.

To test a potential induced bias from the asymmetric fit range, I generated 500 synthetic data
sets from an ideal Gaussian distribution with matching parameters to the pedestals, equal
histogram parameters and equivalent event counts. Extracting the peak positions of these
data sets with symmetric and asymmetric fits induced a mean shift of Δ(`) = 1.6 · 10−3 ch
and is negligible.

The pedestal width𝑤𝑖 𝑗 for individual PMT channels from neutron data is𝑤𝑖 𝑗 = 29.25(22) ch
and the total width is 𝑤tot = 117.20(88) ch. Using this result, I can estimate the significance
of this uncertainty by varying 𝑤tot when extracting the Fierz interference term 𝑏 by fitting a
neutron beta spectrum. The systematic uncertainty 𝜎sys(𝑏) from the uncertainty of the total
width of the integrated charge of an event is 𝜎sys(𝑏) ≤ 10−5 for all tested fit ranges and is
thus negligible.

1The pedestal value is rate dependent and the pedestal values are different for each calibration source and the
neutron beam data. The rate dependency correction is discussed in Sec. 5.2.1.



5 Creating Spectra From Measured Data

60

t_0 t_1
Time t [a.u.]

Am
pl

itu
de

 A
 [a

.u
.]

Rate dep. shift

A_0 A_1

Figure 5.2 Schematic of variables to parametrize the rate dependency effect. Depending on the
amplitude 𝐴0 of and time 𝑡1 − 𝑡0 to the last event, the measured amplitude 𝐴1 of an event is decreased.

For future measurements with a similar setup, the systematic uncertainty from the pedestal
correction is limited by the asymmetric fit range, and we could reduce it by removing con-
taminating events, e.g., by shielding the detector from electrons for a pedestal measurement.
Alternatively, using studies of undetected backscattering, future work could derive a fit
model that includes the contamination to determine the pedestal position more precisely
without limiting the fit range.

Rate Dependency Correction

The rate dependency effect is illustrated in the schematic in Fig. 5.2, and we must correct it
to measure energy spectra precisely. An event’s measured amplitude 𝐴1 at time 𝑡1 is shifted
depending on the time 𝑡 = 𝑡1 − 𝑡0 to the last event and its amplitude 𝐴0. This effect is
already analyzed in a previous Perkeo III result [Sau18] with a similar electronic readout
system. However, previous work found the systematic effect of the rate dependency on the
spin-dependent measurement of the beta asymmetry to be minor, and only a total correction
was applied. In this thesis, I correct the rate dependency effect for each event and analyze
the induced systematic uncertainty for greater precision.

To measure the systematic effect, we separated the detectors from the readout electronics
and used two coupled pulse generators with slightly de-tuned frequencies and Gaussian
pulses with different amplitudes as inputs. The de-tuned frequencies lead to a uniform
distribution of times between events 𝑡. The results for two sets of amplitudes for a QDC
channel are shown in Fig. 5.3. We filter the measured data for intervals of times to last events
and extract a measured amplitude with a fit of a Gaussian distribution. For this analysis,
we must also correct the pedestal first, see Sec. 5.2.1, as the pedestal is also affected by
the rate dependency. For the measurements in Fig. 5.3, not all QDC channels were tested
simultaneously. We used this to estimate the pedestal of QDC channels from measurements
where others were tested. To reduce correlations between parameters, we determine the
width of the Gaussian distributions for large times between events and fix it for the analysis.
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(b) Testing the QDC channel of PMT0 with 200 and
500 mV pulses. Showing the rate dependency on the
measured 200 mV pulse.

Figure 5.3 Parametrizing the rate dependency effect by fitting the model in Equ. (5.1) to offline tests
with pulse generators. The pulse generators have de-tuned frequencies to cover all possible times
between events. The model describes the rate dependency effect well within statistical limits.

We can parametrize the effect in Fig. 5.3 as a function of the times 𝑡 between successive
events with an exponential saturation with a time scale 𝑘 , unperturbed amplitude 𝑐0 and rate
dependency correction 𝑐 as

𝑓 (𝑡) = 𝑐0 − 𝑐 · 𝑒−𝑡/𝑘 , (5.1)

for different amplitudes. We hypothesize a linear relation between 𝑐 and the current measured
amplitude 𝐴1, i.e.,

[ = 𝑐/𝐴1 = const., (5.2)

and that the effect has sufficient Markov properties, i.e., we only need to consider the last
event instead of accumulating the contributions of all previous events. This hypothesis
sufficed in previous analysis [Sau18].

We fit the rate dependency model in Equ. (5.1) to the data from Fig. 5.3. To further reduce
the correlation between parameters, we determine an average time scale 𝑘 = 99 `s for all
QDC channels and determine 𝑐0 and 𝑐 from the fits. We use these results to check our
hypothesis from Equ. (5.2) in Fig. 5.4. The hypothesis holds within statistical uncertainty
for all QDC channels.

We can derive an additive rate dependency correction 𝑅 for one event and for one QDC
channel from our hypothesis as

𝑅(𝑡) = 𝐴1 + 𝐴0 · [ · exp−𝑡/𝑘 . (5.3)

The resulting parameter values are shown in Tab. 5.1. Using the uncertainties in Tab. 5.1, I
can estimate the significance of this correction by varying all [𝑖 𝑗 in the spectrum generation
and test how it affects the extraction of the Fierz interference term 𝑏 when fitting a neutron
beta spectrum. An estimated upper limit for the combined systematic uncertainty 𝜎sys(𝑏)
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(a) Results for QDC channel of PMT0.
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(b) Results for QDC channel of PMT1.

Figure 5.4 Testing the rate dependency correction hypothesis from Equ. (5.2) that the rate dependency
correction 𝑐 is linear with the current measured amplitude 𝐴1, making the deviation [ constant. The
hypothesis holds within statistical uncertainty for all QDC channels. The measured amplitude pairs
are combinations of 50, 200, 300, and 500 mV.

Table 5.1 Resulting rate dependency correction parameters [𝑖 𝑗 for detector 𝑖 and QDC channel
of PMT 𝑗 . The combined systematic uncertainty on the Fierz interference term 𝑏 of all [𝑖 𝑗 is
𝜎sys (𝑏) ≤ 10−4 and thus negligible.

[0 𝑗 [10−3] [1 𝑗 [10−3]
PMT0 | PMT8 3.333 ± 0.017 3.100 ± 0.018
PMT1 | PMT9 3.310 ± 0.017 3.581 ± 0.018
PMT2 | PMT10 3.543 ± 0.017 2.769 ± 0.017
PMT3 | PMT11 3.882 ± 0.016 2.884 ± 0.017
PMT4 | PMT12 3.204 ± 0.020 3.500 ± 0.017
PMT5 | PMT13 3.305 ± 0.020 2.352 ± 0.026
PMT6 | PMT14 2.877 ± 0.020 3.325 ± 0.019
PMT7 | PMT15 3.507 ± 0.018 3.469 ± 0.019
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Table 5.2 Testing the rate dependency corrections on calibration sources, ordered by energy of the
fitted peak. Comparing the different sources is not straightforward, as they have different rates
and other energy peaks in their spectrum. Both effects lead to a different distribution of previous
amplitudes 𝐴0 and times to last events 𝑡1 − 𝑡0. Still, the rate dependency correction greatly reduces
the systematic deviation and works as expected.

Calibration Source Fitted Peak [keV] Corrected [ch] Uncorrected [ch]
109Cd 75 −0.8 ± 1.7 −4.1 ± 1.7
139Ce 127 −2.1 ± 1.9 −5.7 ± 1.9
113Sn 369 −2.9 ± 2.1 −10.3 ± 2.1
137Cs 630 −9.3 ± 7.8 −19.4 ± 7.8
207Bi 995 −10.7 ± 5.1 −32.9 ± 5.1

on the Fierz interference term 𝑏 from the total rate dependency correction is 𝜎sys(𝑏) ≤ 10−4

for all tested fit ranges and is thus negligible.

We use different calibration source measurements to verify the rate dependency correction.
We extract the peak positions with fits with Gaussian distributions for intervals of times to
last events, similar to Fig. 5.3, and show the results in Fig. 5.5.2 The peak positions for an
interval of times to last events for different measurements are combined by using a weighted
arithmetic mean. The spectra are only corrected for pedestal shifts and rate dependency, i.e.,
without background subtraction. Assuming the peak position for large times to last events
(𝑡 ≥ 300 `s) is the true peak position value, we can calculate the deviation 𝛿with and without
the correction using all times. The results are shown in Tab. 5.2, and the rate dependency
correction works as expected, although it does not entirely remove the rate dependency bias.
This effect might be caused by the smaller pulse generator with fixed frequencies leading
to an event rate of 2 kHz. The calibration source event rates are 2 − 7 kHz, and the times
between events are distributed stochastically.

I conduct an additional check to rule out any non-linearity induced by the rate dependency
correction with synthetic data. To generate the data, I use a Monte-Carlo-based simulation,
inverse cumulative distribution function sampling, and representative PMT amplitudes. The
correction adds a constant offset to the final spectra for frequencies up to 9 kHz and energies
above 1 MeV, inducing no additional non-linearity.

There are options to improve the correction for future work with similar readout electronics.
The individual QDC channel amplitudes are generally below channel 5000, and only the
50 and 200 mV signals from the pulse generator tests are in this range. More data in this
region would improve the analysis by decreasing the systematic uncertainty. Also, more
data would allow for better hypothesis testing and even determine if a linear dependence
is accurate when aiming to further minimize this systematic effect. Alternatively, it is
unclear why the pedestal is also rate dependent and why the subtraction of the first QDC
sample does not automatically correct for the rate dependency in the first place. For a better
understanding, analog electronic circuit simulation studies are being conducted within the
Perkeo III collaboration.

2The 503 keV 207Bi peak is missing in this analysis, as its position cannot be extracted accurately by fitting a
Gaussian distribution.
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(b) 113Sn results from ten combined measurements.

Figure 5.5 Validating the rate dependency correction of Equ. (5.3) for two calibration sources. We
extract the peak positions for intervals of times to last events, similar to Fig. 5.3. As expected, shorter
times are affected most, and the rate dependency correction significantly reduces the deviation at
these times.

5.2.2 Spatial Response Gain Fine-Tuning

As discussed in Sec. 3.3.2, achieving perfectly matching gain for all PMTs is practically
impossible. Besides imperfect detector components leading to a geometric asymmetry3,
relative gain deviations are a leading cause of a spatial dependency of the detector gain in
the 2019/20 Perkeo III detectors for unprocessed data. This spatial dependency and the
energy-dependent spatial distribution of electrons on the detector due to, e.g., gyration, lead
to an energy-dependent gain 𝑔(𝐸).

We want to reduce the contributions of relative gain deviations to the spatial dependency of
the detector gain by fine-tuning the individual PMT gain factors 𝑐𝑖 𝑗 . Ideally, this reduction
would only leave geometric asymmetry and other imperfections as the leading cause. How-
ever, we can also exploit the degrees of freedom of the individual PMT gain factors to form
the spatial response to be symmetric. This approach allows for some compensation between
contributions of both effects to the spatial dependency of the detector gain. Also, a more
symmetric and uniform spatial response reduces the systematic uncertainties from effects
related to detector misalignment and incoming electron distributions on the detectors.4

How to optimize the spatial dependency of the detector gain by fine-tuning individual PMT
gain factors 𝑐𝑖 𝑗 is discussed in Sec. 3.3.2, where one set of gain factors for one detector
𝑐0 𝑗 or 𝑐1 𝑗 is written as vector c. We conducted the 2D grid measurement with the CaliBot
using the 113Sn calibration source, see Sec. 4.2.2. Fine-tuning 𝑐𝑖 𝑗 is not a correction of a
systematic effect but a change in the arbitrary scale between the incoming electron energy
𝐸𝑒 and measured charge 𝐴 of the detector response 𝑓Det in Equ. (4.3). This approach slightly
skews the detector response 𝑓Det distribution but does not affect the shape of the final electron
energy spectrum by design.

The resulting maps for both detectors for one spatial response measurement are shown in
Sec. 5.4 with comparisons to previous Perkeo III detectors. I use the resulting maps to
calculate the gain difference based on electron distributions as correction in Sec. 6.1.2.

3Examples of geometric asymmetries are scintillator and light guide surface roughness leading to local light
yield losses or imperfect coupling of a light guide to a PMT.

4While other experiments want a sufficient spatial resolution, we see it as suffering from spatial dependence.
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Figure 5.6 Testing the calibration source positioning uncertainty with individual PMT spectra from
the hourly 113Sn in both "center" positions, plotted for four PMTs. The fit result is shown as a red
line with yellow uncertainty. The relative deviation 𝜌 between both position measurements is not
statistically constant, and thus, we cannot use individual PMT spectra for, e.g., calibrations.

The author of [Bes22] and I studied the optimization of the spatial response measurements
and conducted simulation studies of the detector response. For the first time, spatial response
measurements and simulations agree on the 1% level, Sec. 6.1. The comparison in [Bes22]
of optimization approaches from previous work in Perkeo III [Mes11; Kre04], ultimately
motivated our work [LBM22] presented in Sec. 3.3.2.

5.2.3 Source Positioning Uncertainty

Given that the new Perkeo III detectors have a light yield and energy resolution unprece-
dented in the collaboration, see Sec. 5.4, the question arises whether we can use individual
PMT spectra for analysis and corrections. Besides energy resolution, the answer also de-
pends on the precision of the calibration source positioning with the CaliBot. The CaliBot
targets positions based on rotational encoders, and end switches limit its action space. The
horizontal axis has a more coarse gear train, and is thus more susceptible to a systematic
positioning uncertainty. The center of the neutron beam distribution is targeted in encoder
steps, but an approximate center position is available via a switch on the horizontal axis as an
alternative. We took hourly detector gain measurement with 113Sn in both center positions as
reference measurements to monitor the calibration source positioning for potential changes
over time.

Theoretically, we know that both methods of moving to the center suffer systematic issues.
Encoders can lose steps due to the custom control software and implemented multiplexer
readout that was deployed. The motor moves faster with time of operation and gets slower
after standby, leading to affected reaction times on switch contacts. However, we assume
the switch targeted center position to be constant as its systematic effect should be smaller
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Figure 5.7 Testing the calibration source positioning uncertainty with detector spectra combining
the signals of the eight detector PMTs from the hourly 113Sn in both "center" positions. The fit
result is shown as a red line with yellow uncertainty. The relative deviation 𝜌 between both position
measurements is statistically constant and thus, we can use combined spectra for, e.g., calibrations.

in comparison. If the encoder targeted center position is constant over time, the relative
deviation 𝜌 between both measurements must also be constant. I test this hypothesis for
individual PMT data in Fig. 5.6. The 113Sn peak positions are extracted by fitting the data
with an exponentially modified Gaussian distribution.5 The requirement for 𝜌 = const. does
not hold for individual PMT spectra, as the data significantly deviates from a constant.

Repeating the test, we can reconstruct the measured spectra on one detector by summing over
all eight PMT signals of one detector for each event. The resulting spectrum is sufficiently
Gaussian, and we can extract the measured energy with the fit of a Gaussian distribution,
I repeat the test for the full detector data in Fig. 5.7, and 𝜌 is constant within statistical
limitations. We can verify the fitted value of 𝜌𝑖 of detector 𝑖 by comparing it to the measured
spatial response after fine-tuning using the difference in rotational encoder steps with linear
interpolation. The fitted values 𝜌0 = 1.003556(68) and 𝜌1 = 1.001321(68) agree with the
linear interpolation of 𝜌0 = 1.003602 and 𝜌1 = 1.001404. This result implies that while
the energy resolution of the detectors is sufficient to use individual PMT spectra for analysis
and corrections, the calibration source positioning would need to be more precise. The
detector is sensitive to horizontal positioning fluctuations, disabling, e.g., individual PMT
temperature-induced gain corrections. Using detector spectra combining the signal of the
detector PMTs for each event is robust to calibration source positioning uncertainties.

To further justify that using combined detector spectra is robust to positioning uncertainties,
I conduct two additional tests. The detectors are placed opposite of each other in the
experiment, and their measurements correlate regarding displacements perpendicular to
the beam axis. Thus, the relative deviation between the detectors must also be constant.
Also, the inter-detector spectra created by combining the signals of all PMTs from one side

5While more accurate descriptions of PMT spectra are available[Sau18; Diw20], determining their parameters
is complex and can increase systematic uncertainty. I found exponentially modified Gaussian distributions
to be good empirical models, motivated by [Diw20]. I hypothesize that the reason for this suitability is
the voltage divider with capacitors in the high voltage base of the PMTs and the discharge behavior when
producing a pulse.
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(perpendicular to the beam axis) must have a constant relation to the equivalent spectra from
the other side. Both tests are passed within statistical limitations.

5.2.4 Temperature Induced Gain Fluctuation Correction

We calibrate our detectors by precisely measuring the detector response 𝑓Det with five electron
conversion sources. However, the detector gain 𝑔 fluctuates over time, and we must correct
for these fluctuations between full calibration measurements. As described in Sec. 4.2.2,
we monitor the detector gain hourly with a 113Sn measurement between calibrations with
all five sources. I extract the 113Sn energy peak position by fitting a Gaussian distribution
for each detector and plot the results over time in Fig. 5.8. The detector energy resolution
is sufficient to correct individual PMTs for temperature-induced gain fluctuations, but the
source positioning is not precise enough, see Sec. 5.2.3, and we correct the detectors as a
whole.

We hypothesize that the gain 𝑔 mainly changes over time due to temperature-induced fluc-
tuations. The Perkeo III spectrometer consumes a lot of power and has a closed cooling
circuit. However, the heat exchanger is moderated with the thermally non-regulated ILL
cooling water stored outside the facility. Therefore, we suspect a delayed correlation and
long-time drift with the outside temperature. We expect that an increase in temperature
leads to a higher gain and therefore a smaller correction factor 𝑐𝑇 . We use Gaussian process
regression (GPR) to reconstruct the underlying signals in a non-parametric and Bayesian
way, as discussed in Sec. 3.3.1. The GPR constructs the temperature-induced gain fluctu-
ation correction 𝑐𝑇 𝑖 for detector 𝑖 that avoids correcting the noise, improving on previous
Perkeo III analysis [Sau18], where a linear interpolation between the 113Sn measurements
was sufficient. The correction results are also plotted in Fig. 5.8. We calculate the correction
as relative deviation from the weighted arithmetic mean of all 113Sn peak positions.

The systematic uncertainty of the correction 𝜎(𝑐𝑇 𝑖) between the 15th and 23rd of January
2020 is between 2 − 4 · 10−4 and on average 3 · 10−4 for each detector. The total systematic
uncertainty 𝜎sys(𝑔) on the detector gain 𝑔 caused by temperature-induced gain fluctuations
of both detectors is 𝜎sys(𝑔) = 4.2 · 10−4 ch / keV. As a precise energy measurement is highly
sensitive to systematic corrections of the gain, this correction is non-negligible for a precise
measurement of the Fierz interference term 𝑏 and I discuss its significance in Sec. 8.

I check our hypothesis by verifying the correlation of the temperature-induced gain fluctu-
ation correction with the GPR with the outside temperature in Grenoble in Fig. 5.8c and
find a significant correlation matching our expectations. The correlation is not ideal, as
we also expect other external events to influence the temperature of the cooling water and
instrument. Examples of such events would be power-consuming instruments being turned
on or off or user-caused changes, like an emergency shut-off of the experiment leading to a
longer period of reaching a temperature equilibrium. Nevertheless, we can correct all these
cases reliably with GPR, motivating our work [LBM22].

5.2.5 Energy Reconstruction Formula

With all corrections on single events analyzed, I derive the formula for the energy reconstruc-
tion of a single event, combining previous sections. For a measured QDC sample (𝐴1)𝑖 𝑗 with
detector 𝑖 (𝑖 ∈ {0, 1}) from PMT 𝑗 ( 𝑗 ∈ {0, ..., 7}), we subtract the pedestal 𝑃𝑖 𝑗 and calculate
the rate dependency correction amplitude 𝑅𝑖 𝑗 according to Equ. (5.3). The rate dependency
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(a) Re-used from Sec. 5.2.4: Temperature-induced gain fluctuation correction 𝑐𝑇 (𝑡) with GPR, recon-
structing the underlying signal for the upstream detector (Detector 0).
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(b) Temperature-induced gain fluctuation correction 𝑐𝑇 (𝑡) with GPR, reconstructing the underlying signal
for the downstream detector (Detector 1).
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Figure 5.8 Overview of the temperature-induced gain fluctuation (drift) correction.
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uses the previous measured sample (𝐴0)𝑖 𝑗 , time to previous signal Δ𝑡, and parameters [𝑖 𝑗
and 𝑘 . Finally, we multiply the individual PMT amplitudes with fine-tuning factor 𝑐𝑖 𝑗 , sum
over the eight PMTs in one detector, and multiply the temperature-induced gain fluctuation
correction 𝑐𝑇 𝑖 at measurement time 𝑡 before summing both detector amplitudes to get the
total event amplitude 𝐴 as

𝐴 =

2∑︁
𝑖=1

𝐴𝑖 =

2∑︁
𝑖=1

𝑐𝑇 𝑖

8∑︁
𝑗=1
𝑐𝑖 𝑗 · 𝑅𝑖 𝑗

𝑅𝑖 𝑗 = (𝐴1 − 𝑃)𝑖 𝑗 + (𝐴0 − 𝑃)𝑖 𝑗 · [𝑖 𝑗 · exp−Δ𝑡/𝑘

(5.4)

For the analysis for some of these corrections, I already used parts of Equ. 5.4, e.g., to
create the 113Sn spectra to determine the temperature-induced gain fluctuation correction
𝑐𝑇 𝑖 . Some analyses require studying detector signals independently and only summing over
𝑗 to get the total detector amplitudes 𝐴𝑖 .

Final Offset Correction

The initial pedestal correction in Sec. 5.2.1 removes the offsets for the individual PMT
spectra on a sub-ch level. However, the consecutive corrections lead to an induced offset of
0-3 ch, and we correct them with a second and final offset correction with the same filter
as for the pedestal calculation. This induced offset is caused by the single-event corrections
implemented for this analysis and not necessary for previous work. The offset correction has
the same uncertainty as the pedestal correction with 𝜎(𝑂) = 0.56(4) ch. It is non-negligible
for precisely measuring the Fierz interference term 𝑏, and I discuss its significance in Sec. 8.

5.3 Spectral Corrections

After correcting single events and reconstructing their energy, we use histograms 𝐻 to
approximate the probability density function of the energy spectra. For neutron beam mea-
surements and calibration measurements, we must subtract background events. We obtain
the signal 𝐻𝑠 and background 𝐻𝑏 spectra in neutron beam measurements by discriminating
with different neutron time-of-flight windows, see Sec. 4. For calibration measurements,
background measurements are taken between measuring with the calibration sources. In
both cases, we must correct the detected rate for each energy bin before subtracting 𝐻𝑠 and
𝐻𝑏. This requirement also holds for other operations combining spectra.

5.3.1 Dead Time Correction

Our measurement setup has a non-paralyzable dead time 𝜏 to allow for the electronics to
reset between recorded events. Contrary to a paralyzable dead time, events occurring during
the dead time are not registered and lost. Therefore, we must correct the number of measured
events 𝑘 in the time interval 𝑡, to correct the measured rate 𝑁 = 𝑘/𝑡 to obtain the true counts
without dead time 𝑘0 and true rate 𝑁0 = 𝑘0/𝑡. The correction factor 𝛿 is given as [Leo94]

𝛿 =
𝑘0
𝑘

=
1

1 − 𝜏𝑁 .
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(b) Times to last events for the five different calibration
sources, see Sec. 4.2.2.

Figure 5.9 Validating the dead time correction of Equ. (5.5) requirement of constant true rates 𝑁0
by plotting the observed counts for different times to last events. The observed rates are linear in
the logarithmic plot and therefore in agreement with an exponential distribution, implying a constant
rate. For the neutron measurement: The beamstop component (yellow) is shown to explain the
distribution without neutron time-of-flight cuts (black). The neutron time-of-flight data before and
after the signal window is not shown.

For our measurement, we apply neutron time-of-flight cuts Δ to our measurements, affecting
the number of detected events. We must also adjust the formula with a correction 𝛿𝑝 for the
chopper frequency a as 𝛿𝑝 = (Δ · a)−1, leading to

𝛿 =
1

1 − 𝛿𝑝𝜏 · 𝑁
. (5.5)

The measured rate of histogram 𝐻 is corrected with 𝛿. A requirement for the dead time
correction in Equ. (5.5) is a constant true rate 𝑁0. To check this requirement, I present the
distribution of times to last events for the neutron time-of-flight windows used to discriminate
signal and background spectra and for the five calibration sources in Fig. 5.9. The observed
rates are linear in the logarithmic plot and therefore in agreement with an exponential
distribution, implying a constant rate.

We set the dead time digitally for the measurement as 𝜏 = 1.5 `s, however, we observe a
dead time of 𝜏 = 1.660(3) `s from neutron beam and calibration source measurements and
use the measured value. We do not know the cause of this deviation. The correction factor
𝛿 is calculated for each measurement file. The average values of 𝛿 and their uncertainty are
shown in Tab. 5.3 for different sources. I assume Δ to be exact and without error, while the
fluctuations of 𝜏, 𝑁 , and a are considered in the results.

Despite the impression in Fig. 5.9, the detected rate is not entirely constant when looking
at very short times to last events (below 25 `s) and the cause of this deviation is unknown.
The last Perkeo III analysis [Sau18] estimated a shift from this effect on 𝛿 of 𝛿𝑐 = 𝛿 +
1.8 · 10−5. Using this result to increase the uncertainty of 𝛿 and combining the systematic
uncertainties for the signal and background neutron time-of-flight cuts in Tab. 5.3, I can
estimate the significance of this correction by varying the background subtraction in the
spectrum generation and test how it affects the extraction of the Fierz interference term 𝑏

when fitting a neutron beta spectrum. I obtain an upper limit on the combined systematic
uncertainty 𝜎sys(𝑏) on the Fierz interference term 𝑏 from the dead time correction as
𝜎sys(𝑏) ≤ 5 · 10−5 for all tested fit ranges, making it negligible.
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Table 5.3 Resulting dead time correction factors 𝛿 for all calibration sources and neutron beam data
detector. The different values are caused by different rates 𝑁 .

Source 𝛿 [a.u]
Beam (Full nToF) 1.006143(12)

Beam (Signal nToF) 1.007787(13)
Beam (Bg nToF) 1.002422(11)

109Cd 1.00887(16)
139Ce 1.00563(18)
207Bi 1.00770(18)
113Sn 1.00487(24)
137Cs 1.01294(17)
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Figure 5.10 Combined background measurement without magnetic fields as detected rate vs neutron
time-of-flight. The detected rate is normed with the fitted constant rate in the background window.
The final signal and background neutron time-of-flight windows are also shown. The signal time-of-
flight window cuts at 6 `s to avoid the time-dependent background rate increase.

5.3.2 Signal and Background Time-of-Flight Dependence

We must verify the background subtraction for the pulsed neutron beam measurement,
presented in Sec. 4. While the pulsed neutron beam measurement allows for a background
subtraction every chopper rotation, the measured background spectra must represent the
background when measuring the signal spectra. We expect the background measurement
to contain all pulsed beam-independent background sources, e.g., from other experiments
or gamma radiation from neutron absorption in the beamline. However, we must verify if
the pulsed beam-dependent background is representative, e.g., if delayed signals from the
beam stop or background variations from individual chopper disc tiles are included and if
the background created by the chopper is uniform.

To study the pulsed beam-dependent background, we used the Perkeo III setup as described
and measured for three days, but without magnetic fields leading to no electrons reaching
the detectors from neutron decays. With this data set, I can create a combined neutron
time-of-flight spectrum from background measurements as shown in Fig. 5.10.6 The sharp
decrease in detected events between 1 and 2 ms stems from the chopper opening and not
absorbing any neutrons. Delayed emissions from the beam stop, e.g., signals from the

6Before combining the data collected over three days with weighted arithmetic means, I verified that the
distribution of detected rates in each neutron time-of-flight bin is Gaussian within statistical limits.
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absoption of scattered neutrons, are causing the long tail up to 12 ms. These emissions
motivate a background neutron time-of-flight window between 12/0 ms and the chopper
opening again. The minor rate increase at 6.5 ms presumably stems from a chopper disc
tile and must be avoided in the signal neutron time-of-flight window. Thus, I chose the
neutron time-of-flight signal as 3.8 to 6.0 ms and the background window as 0 to 0.7 ms to
discriminate the measured data and create background-free spectra through subtraction. The
neutron time-of-flight signal window must also guarantee that the neutron pulse is within
the homogeneous region of the magnetic field to avoid systematic uncertainties from the
mapping of the beta decay electrons onto the detectors. The latter can be checked with the
detected rate in Fig. 4.4 and is fulfilled for the chosen window.

Three requirements must be fulfilled to verify if the measured background spectra represent
the background when measuring the signal spectra. The detected rate must be constant and
equal in both windows, and the energy spectrum must match. To this end, I fit the rate
in the background window and use it to normalize the detected rates in Fig. 5.10. The fit
of the rate is shown in Fig. 5.11 as 𝑐 = 1586.87(40) and is statistically constant with a
reduced 𝜒2 = 0.94 and p-value of 𝑝 = 0.55. The fit of the rate in the signal window is
also statistically constant with a reduced 𝜒2 = 1.06 and p-value of 𝑝 = 0.33, but the fitted
value of 𝑐 = 0.99972(14) deviates from 1. Similar to the dead time correction, I use this
deviation as systematic uncertainty to estimate an upper limit on the combined systematic
uncertainty 𝜎sys(𝑏) on the Fierz interference term 𝑏 from the background subtraction as
𝜎sys(𝑏) ≤ 3.6 · 10−4 for all tested fit ranges, making it negligible in comparison, see Sec. 8.

To test the energy dependence of the correction and if the energy spectra match in both
windows, I subtract both spectra, like for neutron beam data with magnetic fields, and
verify if the resulting spectrum is constant and in agreement with 0 for all energies. The
results are shown in Fig. 5.12 and statistically in agreement with 0 with 𝑐0 = 2.5(3.1) and
𝑐1 = 3.2(2.4). Moving the lower fit range up to channel 7000, ≈ 227 keV, the values further
improve 𝑐0 = 1.9(3.8) and 𝑐1 = 1.5(2.2). Thus, there is no added energy dependence from
the background subtraction, especially when fitting above channel 7000.

Compared to previous Perkeo III measurements [Sau18; Mes11], we have no measurable
slope of the rates in the background window. However, our selected background window is
30% smaller. The signal window is similar in previous measurements, as they also observed
the background rate increase at 6.5 ms [Sau18]. In contrast to the measurement with neutron
spin-dependent quantities highly sensitive to the magnetic mirror effect [Sau18], we do not
need to center our signal window around the neutron time-of-flight rates of both detectors.
Also, our measurement is less sensitive to systematic background corrections. For future
work with a similar setup, the time dependence of the background analysis can be improved
by exploiting the shorter signal window by moving the beam stop further inwards, allowing
for a longer background measurement and better statistics.

5.4 Data Quality

During the 2019/20 Perkeo III measurement campaign, about 5 · 108 neutron beta decay
events were detected, neglecting characterization measurements, making it the most ex-
tensive unpolarized data sets of its kind. Besides using the data set to measure the Fierz
interference term 𝑏, other applications are possible for future analysis that will build upon
the data set and its analysis tools of this thesis, e.g., looking for deviations in spacetime
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Figure 5.11 Testing the detected rates in the background and signal neutron time-of-flight windows
from the background measurements without magnetic fields from Fig. 5.10 to verify that the detected
rate in the background window is representative for the background rate in the signal window.
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Figure 5.12 Testing the energy dependence of the background subtraction with the background
measurements without magnetic fields and verifying that there is no added energy dependence from
the background subtraction.
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Figure 5.13 Signal and background measurement of six combined 5 min neutron beam measurements
with all corrections. The signal-to-noise ratio for the whole energy range is 3.007(4) for detector
0 and 3.968(7) for detector 1, improving on previous results by 50 − 100%. The background
measurement is corrected for the shorter measurement time from the neutron time-of-flight cut.

Table 5.4 Signal-to-noise ratios for different lower energy cuts for both detectors. A signal of 10000
ch is about 323 keV.

Lower cut-off [ch] S/N Detector 0 [a.u] S/N Detector 1 [a.u]
0 3.007 ± 0.004 3.968 ± 0.007

7000 5.393 ± 0.013 7.936 ± 0.025
10000 4.893 ± 0.014 7.278 ± 0.027

symmetry to probe Lorentz invariance [Dia14]. Thus, I discuss the quality of the data set,
compare it to previous Perkeo III results, and present consistency checks.

5.4.1 Detector Performance

A higher signal-to-noise ratio is a key indicator for the statistical precision and accuracy
of a measurement, as more information can be extracted from it. Due to optimizing our
measurement setup to measure the electron beta spectrum precisely, we did not use a neutron
spin polarizer. This setup leads to a higher neutron flux and overall detected rate, removes
the strong gamma background created from the neutron spin polarizer, and allows for the
first neutron absorbing aperture in the beamline to be further away from the detector. The
greater distance reduces the noise on the upstream detector, and all effects combined directly
improve the signal-to-noise ratio.

Compared to the 2009 Perkeo III measurement with the current most precise result of the
Fierz interference term 𝑏 [Sau+20] with a signal-to-noise ratio of ≈ 2 [Sau18], we improve
the signal-to-noise ratio by 50-100 %. Our signal-to-noise ratio results are presented in
Tab. 5.4 and illustrated in Fig. 5.13. The rate of background events is lower for detector 1,
as the leading background source during the signal neutron time-of-flight cut stems from the
beamline further upstream.

The light yield 𝑓pe is defined as the number of photons detected for one keV and is directly
related to the energy resolution of the measurement. A more detailed and accurate description
of the detector model is given in Sec. 6.1. Compare to the Perkeo III 2009 measurement with
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Figure 5.14 Illustrating the light yield improvement compared to previous detectors in 2009 with
113Sn and the caused increase in energy resolution after subtracting background.

𝑓pe = 0.230 keV−1 [Sau18], our improved detectors7 reach a light yield of 𝑓pe = 0.660 keV−1.
The light yield improvement is shown in Fig. 5.14 for a 113Sn measurement. Also, the light
yield is sufficiently high to potentially analyze individual PMT spectra, which was previously
not a viable option.

In the last Perkeo III measurement, the temperature-induced gain fluctuation correction is
one of the largest detector-related systematic uncertainties [Sau+20]. The last measurement
had a day-night variation of about 2% [Sau18], while our measurement has no visible
day-night variation and day-to-day changes of about 0.03%, Sec. 5.2.4. The significant
reduction is the cause of better detector design [Ber18] and cooling system, a better-suited
environment with colder cooling water, and due to more sophisticated analysis tools that
avoid correcting statistical fluctuations. Also, fine-tuning the individual PMT gain factors
before correcting temperature-induced gain fluctuations should reduce individual PMT gain
fluctuations to a certain extent.8 This improvement is essential for reaching the targeted
precision for measuring the Fierz interference term 𝑏.

The spatial dependence of the detector gain, quantified as detector uniformity, leads to an
energy-dependent gain 𝑔(𝐸). Comparing the uniformity of the spatial response measure-
ments between the Perkeo III 2009 (Fig. 5.15) and our measurement (5.16), the maximum
deviation is decreased and the symmetry greatly increased. This improvement enables a
more precise systematic correction for the spatial dependence of the detector gain and light
yield in Sec. 6.1.2.

5.4.2 Data Consistency and Quality Checks

Event Permutation

I verify that measurements are robust to event permutation to rule out specific correlations
between events from the readout electronics and data storing. Specifically, I extract the mea-
sured signal by fitting individual PMT 113Sn spectra with exponentially modified Gaussian
distributions while using only every 𝑛-th event. The total number of events used after the

7Detector calibration parameters are discussed in Sec. 7.2.
8The 2009 Perkeo III analysis also fine-tunes the individual PMT gain factors making it a fair comparison.
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Figure 5.15 Taken from [Mes11; Sau18]: Spatial response measurement of the 2009 Perkeo III
detectors after fine-tuning the detector response.
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(a) Reused from Sec. 3.3.2: Spatial response measure-
ment of detector 0 (upstream).
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(b) Spatial response measurement of detector 1 (down-
stream).

Figure 5.16 Spatial response for one 113Sn grid measurement with current data for both detectors after
fine-tuning the individual PMT gain factors. The resulting response for both detectors is significantly
more symmetric and uniform than previous Perkeo III measurements, see Fig. 5.15. Detector 1 is
less uniform than detector 0, requiring a larger spatial response correction in Sec. 6.1.2. The same
color scale was used for both plots.
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(b) Results for data of PMT10

Figure 5.17 Event permutation checks: Extracting measured signals of 113Sn using only every 𝑛-th
event in individual PMT spectra. The total number of events used after the permutation is kept
constant and only shown for two example PMTs that are representative of all PMTs. No permutation-
dependent effect is observed within statistical limitations.

permutation is kept constant to eliminate statistical uncertainty differences. The results are
shown in Fig. 5.17 and I detect no deviation for different event permutations. Also, I verify
that the fluctuations of every second (𝑛 = 2) and third (𝑛 = 3) event relative to the fitted
mean pass a random number generator test to rule out correlations.

Individual PMT Channel Saturation

We must verify that individual PMT channels do not saturate and induce additional non-
linearity. To this end, I study the behavior of the last 20 bins of individual PMT spectra
when measuring 207Bi. The maximum bin is given by the dynamic range of the QDC charge
integrator. The hypothesis is that the last bins follow an exponential decay as the tail of the
actual signal peak. The results of this test are shown in Fig. 5.18 for the PMT channels most
affected in the test for each detector. Using a cut-off at 34 kch (about 1.1 MeV) for both
detectors eliminates the effect and guarantees that it is not present in the measured data.

Anomalous PMT Behavior

When analyzing the number of detected events of individual PMT channels as integral
normed by the total number of events of that detector, PMT13 of detector 1 shows anomalous
behavior between the 13th and 15h of January 2020. All other PMTs are stable and fluctuate
in unison, while PMT13 strongly deviates and loses events or measured amplitude. The
effect is localized to that period and does not affect other measurements. To guarantee the
validity of this analysis, I do not use the data between the 13th and 15h of January 2020.
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(a) Fit result reduced 𝜒2 value for different PMTs with chosen cut-off at 𝑝 ≤ 1.4.
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(b) Fit result 𝑝 value for different PMTs with chosen cut-off at 𝑝 ≥ 0.05.

Figure 5.18 Test until which detected energy the last 20 bins in individual PMT spectra follow
exponential decay when measuring 207Bi. The reduced 𝜒2 and 𝑝 values are used to set a cut-off
energy to rule out individual PMT saturation effects. Only showing PMT channels with significant
saturation effects. Only including detected energies up to 34 kch ensures avoiding any saturation
effects.
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Correction Universality

A simple test of splitting a measured data set into disjunct sets, applying corrections, and
combining the spectra again must produce identical spectra without splitting the dataset and
applying the same corrections. This test must be fulfilled for all corrections and possibilities
to split the data set into disjunct tests. When using the Panter analysis framework, this test
is fulfilled for all tested combinations within numerical precision.

Different Measurement Modes

We must verify which QDC samples from data measured in the ALLMODE, e.g., used in
Fig. 4.9, produce the same results as data measured in the other modes, specifically DELTA-
MODE. The first and last QDC samples produce the same results when using six 113Sn
measurements for each mode and studying the quadratic deviations for all measurements.
Overall, no systematic deviation between the measurement modes is observed.
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6 Theoretical Model of Measured Spectra

To extract physical quantities like the Fierz interference term 𝑏 from measured data, we
must formulate a theoretical model to fit it to the data and determine its uncertainties. We
construct our hypothesis model by forward modeling from binned electron line spectra to
scintillator interactions and the charge integration in the QDCs. This approach is more
precise than applying all corrections to measured data, as unfolding the data distribution
leads to information losses, limits statistical accuracy, and insufficient precision for some
correction parameters. Instead, we assume the underlying models, e.g., for the non-linearity,
from physical motivation. In this chapter, I giev an overview how to derive the theoretical
spectra based on previous work, compare results to simulations to verify our understanding
of the data, and derive corrections that expand the theoretical spectra. Where applicable, I
point out future work for corrections.

6.1 Model of the Detector Response

The energy spectra for the electrons from neutron beta decay or the calibration sources must
be modeled under the scope of the detector response and experiment setup. This section
summarizes the work of [Sau18; Roi18].

The theoretical shape of former is described in Equ. (2.10) and the author of [Roi18] imple-
mented the software to go from conversion source transition energies to binned histograms
for the latter, see Sec. 7. The code considers emission combinations that could happen
simultaneously in the QDC integration time window and Auger electron emissions that
correlate with conversion electron emissions. The code also includes beta decay spectrum
generation, as for the neutron beta decay or the decay of 137Cs.

These single and multielectron events hit the scintillator of a detector. Electrons deposit their
energy 𝐸 , and due to fluor ex- and de-excitations, a number of photons 𝑛𝛾 (𝐸) is produced.
The number of produced photons 𝑛𝛾 (𝐸) follows a Poisson distribution. These photons
propagate in the scintillator, and 𝑛 = 𝑡 · 𝑛𝛾 (𝐸) reach a PMT through the light guides with
a transmission probability 𝑡 in a binomial process. Generally, the transmission probability
𝑡 = 𝑡 (x) is not constant and depends on the impact position x of the electrons, i.e., the
photon source. We assume 𝑡 to be constant and correct resulting effects afterwards, see
Sec. 6.1.2. At the PMT, the photosensitive layer converts the photons into 𝑛pe = 𝜎 · 𝑡 · 𝑛𝛾 (𝐸)
photo-electrons in another binomial process with the photon-conversion probability, also
referred to as quantum efficiency, 𝜎 ≈ 0.22 [Pho96]. A PMT produces charge pulses from
single photo-electrons through nineteen avalanche amplification stages with high-voltage
dividers. The amplification between stages is described with a Poisson distribution, and the
overall amplification can be modeled with a Galton-Watson process for population growth
[Sau18].

We can combine all these processes into a final Poisson distribution using the moment-
generating functions of the individual processes with the characteristic number of photo-
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electrons per detected energy 𝑓pe = 𝑎 · 𝑡 ·𝜎, where 𝑎 is the linear relation between the number
of photons per energy 𝑛𝛾 = 𝑎 · 𝐸 , as [Sau18]

𝑝pe(𝑛pe; 𝐸, 𝑓pe) =
( 𝑓pe · 𝐸)𝑛

𝑛pe!
exp (− 𝑓pe · 𝐸). (6.1)

The relation between incoming charge pulse A for an initial electron energy E is Gaussian
distributed for a channel 𝑐. Due to the pedestal subtraction in Sec. 5.2.1, we can assume the
gain 𝑔 as linear relation without offset as ` = 𝐴 · 𝑔 and 𝜎Q, leading to [Sau18]

𝑝Q(𝑐; 𝐴, 𝑔, 𝜎Q) = N(𝑐; 𝐴 · 𝑔, 𝜎Q).

This model gives us a simple framework to describe our spectra and implies that the widths of
peaks in the final spectra solely depend on the light output, and the relation of measured peak
positions and electron energies determines the gain. For example, this dependence means
we must correct the temperature-induced gain fluctuations in Sec. 5.2.4 as a gain correction
with an uncertainty, as neglecting it would lead to a broader electron beta spectrum with a
different energy resolution to the calibration measurements. We can expand the model in
Equ. (6.1) for a non-linear energy-channel relation by replacing 𝐸 with an effective 𝐸f(𝐸).
The model in Equ (6.1) holds for a readout with multiple PMTs where the light is distributed
between them. The final distribution combining all PMTs will have the same form but uses
an average value of 𝑓pe.

Scintillator Non-Linearity

Scintillators are known to have a non-linear energy-light output relation [Bir51; Pös+21] due
to processes like ionization quenching and other local saturation effects from high stopping
powers for low-energy electrons. Commonly, the Birks quenching model [Bir51] is used
to describe scintillator non-linearity. Ideally, we would assume a linear relation between
electron energy 𝐸 and light output 𝐿 = 𝑎 · 𝐸 . However, we must assume a non-linear
𝐿 = 𝑎 · 𝐸f(𝐸) relation with the effective energy 𝐸f deposited in the scintillator that is
proportional to the light yield. Writing the differential light yield along an infinitesimal
track length d𝑥 and the deposited energy d𝐸 as the effective energy 𝐸f deposited in the
scintillator, we obtain [Sau18]

d𝐸f
d𝑥

=

d𝐸
d𝑥

1 + 𝑘𝐵 · d𝐸
d𝑥
,

with the particle and scintillator dependent Birks coefficient 𝑘𝐵. The differential effective
energy 𝐸f for the initial electron energy is then

d𝐸f
d𝐸

=
1

1 + 𝑘𝐵 · d𝐸
d𝑥
.

We obtain the effective energy by integrating over the full deposited electron energy 𝐸 as

𝐸f(𝐸) =
∫ 𝐸

0

1
1 + 𝑘𝐵 · d𝐸′

d𝑥 (𝐸 ′)
d𝐸 ′. (6.2)

In my work, I use the implementation of Equ. (6.2) from [Sau18; Roi18] that uses a log-
log-linear interpolation for d𝐸 ′/ d𝑥 from the ESTAR data set [Ber+17] that is also used in
[Mär+19; Sau+20].
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Figure 6.1 Light transmission efficiency, also referred to as photon efficiency, map of one detector
combining the signal of all eight PMTs. The resulting map shows an estimated geometrical limit to
the achievable uniformity, as the distribution has a local asymmetry and is skewed over the entire
scintillator surface due to the light guide design [Ber18], readout at the sides, and surface roughness.
The simulated light sources are 3 mm below the scintillator surface, the surface roughness parameter
is 𝜌 = 0.8, and the results are normalized to the value in the center.

The author of [Sau18] conducted experimental tests and quantified the Birks coefficient 𝑘𝐵
for the scintillator used for the 2019/20 Perkeo III measurement as 𝑘𝐵 = 123± 14 nm/keV.
Possible scintillator surface effects, e.g., a non-scintillating dead-layer which would increase
the non-linearity for low-energy electrons, could not be discovered within statistical limits
and are therefore neglected within my thesis.

6.1.1 Spatial Dependence of the Light Yield

In Equ. (6.1), we assumed the light transmission probability 𝑡 to be uniform and constant
over the scintillator surface. However, in reality, 𝑡 = 𝑡 (x) is not constant and depends on
the impact position x of the electrons, i.e., the photon source. To study systematic effects
caused by this simplification, we use simulations of the light transmission efficiency in the
scintillator and light guides to create a model of 𝑡 (x) for corrections.

There are multiple causes of the spatial dependence of 𝑡. For example, one cause is the
localized readout with light guides at the sides, and the critical reflection angle at the
scintillator surface lead to different angular acceptances depending on the distance of a
light source to a light guide readout. Also, scintillators have an attenuation length of about
250 mm [Sai21] and non-ideal surfaces. Both effects lead to light losses depending on the
photon path length and the number of reflections on the path to a PMT. Furthermore, the light
guide components leading to one PMT for the detectors used on the 2019/20 Perkeo III
measurement campaign are not left-right symmetric and have different light transmission
probabilities.

The data sets were created in collaboration with [Bes22] using Geant4 [Ago+03], and more
details on the simulation setup and software can be found there. The non-ideal scintillator
surface is described with a surface roughness parameter ([0, 1], 1 is an ideal surface) of the
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Figure 6.2 Light transmission efficiency, also referred to as photon efficiency, map for individual
PMTs. The resulting map shows the causes of the skewed distribution over the entire scintillator
surface for the combined signal of all eight PMTs in Fig. 6.1 due to the asymmetric light guide
designs, readout at the sides, and surface roughness. The simulated light sources are 3 mm below
the scintillator surface, the surface roughness parameter is 𝜌 = 0.8, and the results are normalized to
the value in the center. These individual PMT maps can be used for advanced trigger models, see
Sec. 6.1.3 and [Roi18].
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Glisur model that parametrizes random micro-facets tilted against an ideal surface, leading
to light extraction. We modeled the light transmission efficiency for a grid of points in the
plane perpendicular to the incoming electron direction at a fixed depth. The resulting light
transmission efficiency maps are shown in Fig. 6.1 when combining all eight PMTs of one
detector and for individual PMTs in Fig. 6.2 for a light source depth of 3 mm.

The light transmission efficiency map for a whole detector in Fig. 6.1 shows a slight bathtub
shape horisontally with higher light transmission probabilities closer to sides with the light
guides. The light extraction rapidly increases close (about 10 mm) to the light guides and
more so for one of the two components making up a light guide for one PMT. These effects
lead to a local asymmetry and a skewed distribution over the entire scintillator surface. The
structure of the light transmission efficiency map is similar for other simulated light source
depths and mainly changes in the transmission probabilities.

For individual PMTs, the light transmission efficiency maps in Fig. 6.2 are normalized to
the center value of that of the whole detector in Fig. 6.1. The observed spatial dependence
verifies the observations in Fig. 6.1 and shows similar behaviors. These individual PMT
maps are essential for advanced trigger models, see Sec. 6.1.3 and [Roi18].

The observed uniformity with the 113Sn grid measurements in Sec. 5.4 and Fig. 5.16 is
locally weighted with the electron distribution resulting from the magnetic field setup in
Perkeo III, see Sec. 6.1.2. Compared to the 113Sn grid measurements, the simulated light
transmission probabilities are closer to the observed values than before in the Perkeo III
collaboration, highlighting the quality of the detectors. However, deviations remain.

The symmetry and uniformity-based objective value for fine-tuning the individual PMT
gain factors in Sec. 3.3.2 removes any nuances during the optimization by design. We tried
using the simulated light transmission probability maps as ground truth to be used for the
optimization. However, the simulated maps depend on the surface roughness parameter
that we could not verify with simulations alone [Bes22] and need to be targeted with future
experimental work to refine future analyses. Also, a critical result of [Bes22] is that the
different surfaces (scintillator top and sides and light guides) should have individual surface
roughness parameters. This result makes sense, as the surfaces are manufactured differently,
e.g., milled and polished, but it was neglected in previous work. Due to the remaining
ambiguity, we used a surface roughness parameter of 0.8 for all parts for the simulated light
transmission probability maps, in agreement with estimations in previous work [Ber18].

Additionally, we tried to determine whether 𝑡 = 𝑡 (x) is also energy-dependent 𝑡 (x, 𝐸), as
we must be aware of any non-linearity to determine the Fierz interference term 𝑏 accurately.
Thus, the author of [Bes22] used simulations to estimate the energy deposition at different
depths for the electron incident angles and combined the light transmission efficiency maps
for different depths as weighted sums for the energies of the calibration sources. Using the
distribution of electrons on the detector, see Sec. 6.1.2, we estimated the light transmission
probability for a given energy averaged over the corresponding spatial extent. However, we
found no significant non-linearity above 300 keV, and for lower energies, we observed a
dependence on the surface roughness parameter that could not be verified with simulations
alone [Bes22]. Therefore, further experimental work is needed to determine the surface
roughness parameters accurately.
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Electron Point Source

Electron Track

Detector Plane

2 r_0

Figure 6.3 Schematic to illustrate the spatial distribution of an electron point source in a homogeneous
magnetic field on a detector, the so-called point-spread function. The energy and emission angle-
dependent gyration of the electrons lead to a symmetric distribution on the detector that diverges in
the center and has a maximum extent of twice the gyration radius 𝑟0. Studying this effect analytically
or with simulations is crucial for the analysis of systematic effects in Perkeo III. The magnetic field
gradient is neglected in this schematic.

6.1.2 Spatial Dependence of the Detector Gain

Point-Spread Function

Due to the magnetic field, charged decay particles propagate with gyrating tracks to the
detectors, and due to the gradient of the magnetic field, their angular distribution is forward-
focussed, see Equ. (4.2) in Sec. 4. Generally, we require simulations with a model of the
magnetic field setup to describe the electron propagation and distribution at the detectors
accurately. However, an analytical approach enables studying individual effects directly,
isolated from other processes.

As studying the electron distribution at the detectors is essential for analyzing Perkeo III
systematic effects, this process has been studied extensively within the Perkeo III collabo-
ration, e.g., [Dub+14; DS16; Dub15; Roi18; Bes22]. For a point-like source with position
𝑥0, the probability density function 𝜙 for a position 𝑥 on the detector surface is called point-
spread-function (PSF) as illustrated in Fig. 6.3. It diverges around 𝑥0 on the detector, has
a maximum extent of twice the gyration radius 𝑟0 in Equ. (4.1), and is energy-dependent.
It is sufficient to neglect effects for the calibration sources with a fixed distance 𝑧 to the
detectors as studied in [Roi18], due to the long distances relative to the gyration radii. In
collaboration with [Bes22], I use a Monte-Carlo-based simulation to model the PSF 𝜙 for
different energies and the magnetic field setup as in the Perkeo III 2019/20 measurement.

Calculating Detector Gain For Neutron Beam Data

Contrary to the point-like calibration sources, the neutron beam in Perkeo III has a spatial
extent transversal to the beam direction, see Sec. 4. This spatial extent leads to a broader
electron distribution on the detectors for electrons from neutron beta decay than for the
electrons from the calibration sources. As the spatial response of the detectors is not
perfectly uniform, i.e., the light yield is not constant over the detector surface, a broader
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distribution receives a larger effective gain 𝑔s. Hence, to use a gain 𝑔 determined with
the calibration sources for the neutron measurement, we must correct 𝑔 for a neutron beam
measurement with a correction factor as 𝑔s = 𝑐s·𝑔. Correcting this effect as a pure spatial gain
correction 𝑐s neglects that the increased gain for a broader distribution stems from a higher
light transmission efficiency and therefore a larger value of the light yield 𝑓pe in Equ. (6.1).
This gain correlation thus also requires a correction of the light yield as 𝑓pe,s = 𝑐f,s · 𝑓pe. In
previous Perkeo III work, the spatial light yield correction was neglected, as the neutron
spin-dependent beta asymmetry is not sensitive to it.

First, we estimate the electron distribution from neutron beta decays on the detector. Using
the neutron beam profile measurements in Sec. 4, we construct a trapezoidal approximation
of the distribution at the start and end of the central decay volume and linearly interpolate
between these measurements along the neutron beam axis as described in [Bes22]. Using
the Monte-Carlo-based simulation of the PSF 𝜙, covering all electron emission angles and
a uniform electron energy distribution, we obtain a data set with impact positions (𝑥, 𝑦) and
energies 𝐸 . We create a subset of the data set weighted by the probability density function
of the electron spectrum from neutron beta decay in Equ. (2.1).1

Secondly, I construct a model for the spatial response from the measurements with 113Sn.
I estimate the uniformity function 𝐿 to reconstruct the true underlying uniformity function
𝑡 (𝑥) at scan point 𝑥0 as

𝐿Sn(𝑥0) =
∫ ∞

−∞
𝑡 (𝑥) · 𝜙Sn(𝑥 − 𝑥0) d𝑥,

with the PSF 𝜙Sn for electrons with the 113Sn peak energy as weighting function for the
integral. We can rewrite this integral using the equivalent uniform distribution of 𝜙Sn with
the standard deviation 𝜎Sn as

𝐿Sn(𝑥0) =
1

2𝜎Sn

∫ 𝜎Sn−𝑥0

−𝜎Sn−𝑥0

𝑡 (𝑥) d𝑥.

For a different source with a different energy and therefore different PSF 𝜙1 and standard
deviation 𝜎1, the integral becomes

𝐿1(𝑥0) =
1

2𝜎1
·
(
𝜎Sn𝐿Sn(𝑥0) +

∫ 𝜎1−𝑥0

𝜎Sn−𝑥0

𝑡 (𝑥) d𝑥 +
∫ −𝜎Sn−𝑥0

−𝜎1−𝑥0

𝑡 (𝑥) d𝑥
)
.

To finally calculate the relative uniformity𝑈 (𝑥) at position 𝑥 using the 113Sn spatial response
measurements as

𝑈 (𝑥) = 𝐿1(𝑥)
𝐿Sn(𝑥0)

.

To accurately determine𝜎𝑖 , I use a data set of Geant4 simulations of Perkeo III of the spatial
distributions on the detectors for the calibration sources from [Ber24].2 I use 𝑡h = 𝑎 ·cosh(𝑥)
and 𝑡v = 𝑎 · cosh(𝑦) − 𝑏 · 𝑦4 to approximate the horizontal and vertical shape of the
uniformity distribution 𝑡 from the 113Sn spatial response measurements with fits. Separating

1This correction is not sensitive to recoil corrections or BSM contributions of the electron beta spectrum.
2Ideally, we would also like to use such a simulation for the electron distribution from the neutron beam.

However, an accurate beam distribution requires extensive modeling of the pulsed beam with time resolution,
the beam line components, and the output distribution of the neutron guide itself. Such simulations are
planned for future work in [Ber24].
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Figure 6.4 Testing the stability of the spatial response correction over time to extract a correction
for each detector. The correction is stable for each detector within statistical fluctuations. This test
also verifies the form-stability of the individual PMT fine-tuning from Sec. 3.3.2. The correction is
calculated for each detector for all available 113Sn spatial response measurements between the 16th
and 22nd of January 2020.

the correction in this approach is only possible due to the symmetry of the spatial detector
response after fine-tuning the individual PMTs, see Sec. 3.3.2.

Finally, I use the generated data set for the electron distribution on the detector from neutron
beta decay and the relative uniformity 𝑈 (𝑥) to calculate the spatial gain correction 𝑐s,𝑖 for
each detector from one 113Sn spatial response measurement as 𝑐s,0 = 1.00694(21) and
𝑐s,1 = 1.00898(39) assuming a conservative total positioning uncertainty of ±5 mm in the
central decay volume, and combining the fit parameter uncertainties, horizontal and vertical
estimates and both detectors.

The individual PMT fine-tuning factors from Sec. 3.3.2 optimize for a symmetric and uniform
spatial detector response. However, we must verify that the resulting spatial response has
a stable form and does not add a systematic effect. Therefore, I calculate the spatial gain
correction 𝑐s,𝑖 for each daily 113Sn spatial response measurement to verify that it is constant
over time within statistical fluctuations, as the correction should be caused by geometric
effects alone. The spatial gain corrections for each detector are plotted for each day with
an available 113Sn spatial response measurement in Fig. 6.4. Both corrections are constant
within statistical fluctuations over the seven days, implying that the individual PMT fine-
tuning maintains form stability. The mean spatial gain correction 𝑐s,𝑖 for each detector is
then

𝑐s,0 = 1.00667(11)
𝑐s,1 = 1.00867(17).

The correction value of detector 1 is larger than that of detector 0, as detector 1 is less
uniform than detector 0, and the broader electron distribution from the neutron beam has
a higher impact. The combined total systematic uncertainty 𝜎sys(𝑔) on the detector gain 𝑔
from the spatial response correction is 𝜎sys(𝑔) = 2.0 · 10−4 ch/keV.
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Repeating the analysis for the spatial light yield correction 𝑐f,s to construct a light yield
uniformity and the generated data set for the electron distribution on the detector from
neutron beta decay, I obtain for each detector 𝑖 the correction as

𝑐f,s,0 = 1.00210(20)
𝑐f,s,1 = 1.00264(25).

The spatial response correction must be corrected for the gain and light yield together. There-
fore, this correction is non-negligible for a precise measurement of the Fierz interference
term 𝑏 and I discuss its significance in Sec. 8.

Induced Edge Effect

Due to the broad electron distribution on the detectors for electrons from neutron beta decay,
some electrons with large gyration radii 𝑟0(𝐸) can miss the scintillator and are not detected.
This effect leads to an energy-dependent spectral correction, affecting the end-point region
of the electron beta spectrum, and is called edge effect. Contrary to previous Perkeo III
measurements, the scintillator cross section is reduced in size to optimize for uniformity and
background reduction. They no longer ensure a full coverage of the electron distribution,
see [Raf16] for a discussion. In addition, contrary to the spatial gain correction estimation,
this analysis is strongly affected by recoil corrections or BSM contributions of the electron
beta spectrum. This analysis requires a more accurate model of the spatial distribution on
the detector, as the correction calculation only consists of events in the tails of the spatial
electron distribution. Such an accurate model will be studied with Perkeo III Geant4
simulations in [Ber24].

6.1.3 Trigger Function

The readout system registers an event when two out of the eight PMTs of each detector
measure a signal above the trigger threshold, as described in Sec. 4. For larger amplitudes
𝐴, i.e., electron energies, the probability for the readout system to trigger should be 100%.
For amplitudes closer to the trigger threshold, the probability decreases until it reaches zero.
The probability 𝑝 of a single photon for an amplitude A in channel is summarized in the
empirical trigger function [Mun06] from the binomial distribution as

𝑇 (𝐴) = 1 − (1 − 𝑝)𝑎·𝐴
(
1 + 𝑎 · 𝐴 · 𝑝

1 − 𝑝

)
, (6.3)

with the number of photons per measured amplitude 𝑎. The analysis in this thesis builds
upon the p3fit tool that uses the trigger function as described in Equ. (6.3). This model does
not accurately describe counting statistics and non-linearity [Roi18]. Besides reducing the
detected rates for lower energies, the trigger function affects types of events, see Fig. 4.8,
differently, as they differ in how their energy is distributed between detectors. In partic-
ular, undetected backscattering leads to systematic energy losses that we must correct for
measurements with Perkeo III [Roi+19].

We can construct 𝑇𝑖 (𝐴) for detector 𝑖 from binned amplitudes 𝐴 from measured data by
dividing the following spectra:

𝑇𝑖 (𝐴) =
𝑃B(𝐴)

𝑃O(𝐴) + 𝑃B(𝐴)
,



6 Theoretical Model of Measured Spectra

90

0 100 200 300 400 500 600 700 800 900
Energy [keV]

0.0

0.2

0.4

0.6

0.8

1.0
p 

Tr
ig

ge
r [

 ]

Beam Fit
All Srcs
Beam

(a) Full energy range from 0 − 900 keV.
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(b) Low-energy range from 0 − 160 keV.

Figure 6.5 The fitted trigger function in Equ. (6.3) to neutron beam data for the upstream detector
and measured data from neutron beam data and a combined calibration with all five sources. The
energy scale is given in keV and for orientation, but it neglects the non-linearity of the energy-channel
relation. The fitted model and the observed data deviate significantly. Potential causes are the short
trigger time window of 180 ns and the higher light yield of the detectors, requiring advanced trigger
models.

with 𝑃B(𝐴) being the measured spectrum of detector 𝑖 where both detectors have triggered
and 𝑃O(𝐴) being the spectrum of detector 𝑖 where only the opposite detector (1−𝑖) triggered.
The resulting trigger functions 𝑇 (𝐴) from beam data and from a combined calibration with
all five sources are shown in Fig. 6.5, as well as the fit of the empirical model in Equ. (6.3)
to beam data. The energy scale is given in keV for orientation, but it neglects non-linearity.

As can be seen in Fig. 6.5, both data sets do not reach 100% trigger probability for large
energies and therefore deviate from the expectation. This deviation implies either contam-
ination in 𝑃O(𝐴) or missing events in 𝑃O(𝐵), or both. The trigger time window is the
time interval for the individual detector triggers to be registered as one double trigger event.
Ideally, the trigger time window should be as long as the QDC integration time of 330 ns.
We observe that the trigger time window in the measurement campaign is about 180 ns,
which is smaller than the trigger time window from previous Perkeo III measurements, e.g.,
[Sau18].3 The shorter trigger time window affects 𝑃B(𝐴) and 𝑃O(𝐴), effectively “moving”
events from 𝑃B(𝐴) to 𝑃O(𝐴). This effect could lead to deviations and the implications of a
shorter trigger time compared to a longer integration time must be studied with a complete
simulation of Perkeo III with higher-order backscattering and electron time-of-flight, as is
currently done for [Ber24].

The goodness-of-fit for the trigger function in Equ. (6.3) deviates significantly and statisti-
cally rules out the model. The fitted trigger function deviates for both data sets especially
for energies below 140 keV. The trigger functions from both data sets decrease faster than
the fitted model with a larger non-linearity between 50 and 140 keV but maintain a higher
trigger probability between 30 and 50 keV. This deviation between the trigger function from
data and the fitted model is probably caused by the significant increase in light yield 𝑛𝛾 of the
2019/20 Perkeo III detectors, see Sec. 4. A greater light yield invalidates the simplification
in Equ. (6.3), as more photons are distributed to multiple PMTs and not all PMTs have the
same probability for a photon to reach them, see Fig. 6.2. A better trigger function model

3The trigger time window is independent of the QDC integration time window. The shorter trigger time
window was an oversight during the measurement campaign.
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using the spatial light transmission probabilities for individual PMTs and accurate photon
statistics is described in [Roi18] and should improve the description of the trigger function
below 140 keV.

The deviation between the trigger function constructed from beam data and the five cali-
bration sources combined has two causes. For one, the calibration sources emit correlated
multielectron events that increase 𝑃O(𝐴) more than 𝑃B(𝐴) for lower energies where 𝑝 < 0.8.
Also, the calibration source holders lead to absorption and energy losses that perturb the
distributions, see Sec. 6.2.

While the fitted trigger function does not accurately explain the observed data, we can still
extract trigger function parameters and verify stability over time to some extent. Fitting the
trigger function to beam data over the core measurement period in January 2020, the fitted
trigger function parameters are constant within statistical limits. We can extract the trigger
function values for each detector for the probabilities 𝑝𝑖 as

𝑝0 = 0.8106(17)
𝑝1 = 0.7497(23)

and for the conversion parameter 𝑎𝑖 as

𝑎0 = 2.014(6) · 10−3

𝑎1 = 2.158(9) · 10−3,

neglecting the bad goodness-of-fit of the trigger model. While it does not explain the
observed data, the fit results are stable, indicating promising results with the right trigger
function model. An estimation of the induced systematic uncertainty from these parameters
on the Fierz interference term 𝑏 does not make sense.

In conclusion, we currently do not have an accurate model to describe the trigger function
behavior of the measurement. Such a model is essential to analyze systematic effects
related to undetected backscattering [Roi+19; Roi18]. The authors of [Roi+19] calculate
a systematic correction shift of about −2.6 · 10−3 for measuring the Fierz interference
term 𝑏 with Perkeo III from an electron beta spectrum measurement with a fit range
from 180 keV upward. The authors also noted that the correction stems from incomplete
energy reconstruction, and a decreased trigger probability would have negligible influence.
Currently, we cannot verify this estimate and related systematic uncertainties. Furthermore,
the inaccurate fitted trigger function model should lead to visible deviations of the theoretical
models and measured data in Sec. 7, especially for energies below 200 keV, considering
backscattering.

Future work can significantly improve these issues and enable analysis for energies below
200 keV by studying the application of the advanced trigger function in [Roi18] to this
measurement. Also, the effect of the shorter trigger time window must be studied, requiring
a detailed simulation of Perkeo III with magnetic field setup, which will be studied in
[Ber24].

6.1.4 Electron Backscattering

Using the simulation framework Geant4, we studied electron backscattering off a scintil-
lation detector and its effects for the Fierz interference term 𝑏 with the setup described in
[Fal22]. The goal was to understand electron backscattering as an isolated process and its
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(a) Probability of an electron to backscatter depending on its initial energy and for different incident angles
\ perpendicular to the detector plane. The probability decreases with steeper incident angles and higher
energies, as the electrons propagate deeper into the scintillator and the scattering cross-section increases
at lower energies.
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(b) Average fraction of the initial electron energy being deposited on the primary detector when backscat-
tering. The average fraction increases for higher energies and steeper incident angles, as electrons that
have penetrated deeper into the scintillator also deposit more energy when scattering back out.
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(c) The fraction of backscattered electrons being reflected due to the magnetic mirror effect back onto
the primary detector. This effect mainly depends on the initial electron angle, as it affects the angular
distribution when backscattering.

Figure 6.6 Results of the simulated backscattering studies using data and code from [Fal22]. The
initial electron angular distribution at the detector has its maximum at \𝑐 = 47◦ and the expected
value \̂ = 35.7◦.
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parametrization for this analysis. For fixed incident angles \ of the electrons to the surface
normal of the scintillator, different quantities can be studied, e.g., the probability of an elec-
tron to backscatter, the emission angle of an electron after backscattering, and the fraction
of the original energy being deposited in the scintillator. The magnetic field is assumed to
have two values: the magnitude at the detectors or in the central decay volume. The results
can then be expanded with the angular distribution of electrons due to the magnetic field
gradient and the two-detector setup in Perkeo III to estimate the probability of electrons
being reflected by the magnetic mirror onto the same detector.

Using the data sets and analysis code from [Fal22], I reconstruct different backscattering
quantities in Fig. 6.6. The backscatter probability of an electron depends on its incident
angle \ and its energy. For steeper incident angles and higher energies, the probability
decreases, as the electrons propagate deeper into the scintillator, making backscattering less
likely. Also, the stopping power increases in the scintillator for lower energies. As a result,
the maximum angle of entry \𝑐 = 47◦ due to Equ. (4.2) has the maximum backscatter
probability of approx. 14%. The expected value of the incident angle \̂ = 35.7◦ has a
backscatter probability of approx. 9% and decreases to 7%.

Studying the mean fraction of the initial electron energy being deposited when backscattering
in Fig. 6.6b, a similar effect is observed, as electrons that have penetrated deeper into the
scintillator also deposit more energy when scattering back out. Although not shown, the
fractions of the initial electron energy being deposited range from 0 to 1 for all energies. The
results are also in agreement with previous Perkeo III results of electron backscattering
[Roi18; Roi+19]. Based on the results in Fig. 6.6, I create a surrogate model of the
backscattering process to be used for the simulation framework Smelt in Sec. 6.1.5.

As mentioned in Sec. 4 and 6.1.3, undetected backscattering leads to undetected electron
losses and skews the measured energy spectra to lower energies. Based on the calculated,
systematic effect of undetected backscattering on a Fierz interference term 𝑏 measurement
with Perkeo III in [Roi+19], we must accurately determine the impact on this measurement.
Analyzing this effect to reach lower fit ranges and extracting accurate and precise corrections
from the measured electron energy spectra is essential. Such studies are conducted for
[Ber24] and must expand on the results in [Roi18; Fal22] with more elaborate simulations
of the Perkeo III experiment, including multiple backscattering, angular distributions for
higher-order backscattering, and a more accurate model of the magnetic field without the
simplifications for the calculations here.

6.1.5 Smelt Simulation Tool

Motivated by the observed phenomena related to detector timing with the trigger function and
electron backscattering, I developed a Julia-based simulation tool called Smelt4 (SiMulation
of ELectron detection Timing) to study coincidence behavior and other effects for calibration
source measurements with Perkeo III. The goal was to understand the electron time-of-
flight spectra of the calibration sources, estimate rates for different event types, and study
systematic effects that require detection time resolution.

Compared to a full Perkeo III simulation with Geant4 as currently studied for [Ber24], Smelt
cannot calculate systematic corrections to be used on the Fierz interference term 𝑏 directly.
However, Smelt is designed for rapid hypothesis testing and systematic effect estimation to
reduce the ambiguity of results of more extensive simulations that are hard to verify. This

4https://github.com/maxlampe/smelt

https://github.com/maxlampe/smelt
https://github.com/maxlampe/smelt


6 Theoretical Model of Measured Spectra

94

20 10 0 10 20
Electron Time-of-Flight [10ns]

0

25

50

75

100

125

150

175

200
Co

un
ts

 [ 
]

n_ev = 3040.3
Mean = -0.08
StDv = 8.00

(a) Measured 109Cd electron time-of-flight spectrum. (b) Measured and simulated 109Cd spectrum overlaid.

Figure 6.7 Number of detected events for the differences in trigger times of the two detectors,
the so-called electron time-of-flight spectrum, of 109Cd. The Smelt generated simulation data with
correlated electron emissions explains the multipeak structure and time-of-flight distances inbetween
them. The asymmetric peak positions are explained by the CaliBot position about 50 cm out-of-
center towards the downstream detector. The simulation is shifted by one 10 ns time-of-flight bin.

is a crucial approach for high-precision measurements, as large, complex simulations can
induce their own biases.

The tool models the detection timing response with a 5 ns resolution, the angular distribution
of electrons at the detectors, and backscattering with the parametrization and interpolation
from Sec. 6.1.4. It also calculates the relativistic electron time-of-flight in Perkeo III for
backscattering with and without the magnetic mirror effect, applies the Birks non-linearity
from Sec. 6.1, and considers the fitted trigger function from Sec. 6.1.3 for the detection.
Calibration spectra are approximated with Gaussian distributions and the possibility of cor-
related electron with instantaneous or stochastic emission times.5 This approach simplifies
the complexity of the electron emission spectra of the calibration sources but is sufficient
for first-order studies of the correlated emissions to reveal the intricate time-of-flight de-
pendence.6 The distribution of energies to individual PMTs is done based on the light
transmission simulations from Sec. 6.1.1. Furthermore, Smelt has a broad set of physically
motivated unit tests to verify the results for individual processes and calculations.

With Smelt, we have a simulation tool to understand the detector response based on the
timing information and energy distribution between events and to study the different event
types in Fig. 4.8. For example, we can model the energy-dependent electron time-of-flight
and the energy distribution between detectors to set a limit on accidental coincidences and
verify correlated electron emissions. The listed processes can be switched on or off to
precisely link observed phenomena and effects to individual processes. The Smelt tool is
used for the analysis in Sec. 6.1.6, 6.1.7, and 6.1.8.

6.1.6 Electron Time-of-Flight

In the previous analyses in the Perkeo III collaboration, the electron time-of-flight spectra
from the calibration sources were not studied in detail. For this analysis, the understanding

5Using a Gaussian distribution for the total detector signal as the sum of eight Poisson distributions also works
well on measured data.

6See Sec. 7.1 for an overview and especially [Roi18] for a rich discussion of accurate and detailed spectra
generation of calibration sources.
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(a) Measured electron time-of-flight spectrum from
neutron beam data with no accidental coincidences or
correlated electron emissions at zero times-of-flight.
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(b) Measured 113Sn electron time-of-flight spectrum
with correlated electron emissions around zero times-
of-flight.

Figure 6.8 Measured electron time-of-flight spectrum from neutron beam and a 113Sn measurement.
A naive expectation is that there should be no events for zero times-of-flight due to the finite maximum
velocity of the electrons. Compared to the conversion electrons from the main peak, the correlated
Auger electrons in 113Sn do not have enough energy to create times-of-flight shorter than 30 ns.
This observation led to discovering previously neglected systematic effects of the calibration source
holder in Sec. 6.2.

of the calibration sources is more relevant, as the detectors have a higher energy resolution,
are sensitive to potential new systematic effects, and have a shorter trigger time window than
before.

To visualize the analysis of electron time-of-flight and different event types, I studied
measured and simulated 1D and 2D spectra where both detectors have triggered. This
double-trigger requirement limits the analysis to a subset of events but also yields a more
precise lever on phenomena like accidental coincidences, and it completely removes the
requirement of background subtraction. Regarding nomenclature, I refer to the difference in
trigger times between detectors as times-of-flight for historical reasons, which is accurate for
backscattering events between detectors but less straightforward when referring to trigger
time differences from two separate electrons as, e.g., in accidental coincidences. The Smelt
simulations in this section include all processes except the underlying non-linearity.

When looking at the measured electron time-of-flight spectra of calibration sources, in
particular, 109Cd in Fig. 6.7 or 207Bi in Fig. 6.9b, we observe multiple time-of-flight peaks.
From a naive perspective, one would expect two peaks symmetric around zero times-of-flight
with a time distance given by the spatial distances in Perkeo III from backscattering and
the relativistic velocity limit. The electron energy distribution then sets the shape and width
of these two peaks. There should be no events around zero times-of-flight due to the finite
maximum velocity of the electrons. The time-of-flight is positive or negative depending on
which detector triggered first in case of backscattering. We observe this structure for the
electron time-of-flight from neutron beta decay in Fig. 6.8a.

With Smelt, we can explain the observed structure in a principled way. It is straightforward to
prove that single electron emissions cannot explain multiple peaks, as they follow the naive
expectation. The calibration sources also emit, e.g., Auger electrons, whose emission is
correlated with the conversion electron emission. Some excitation states have short lifetimes,
also leading to correlated electron emission given the length of our QDC integration time.
For 109Cd, we can model the greatly simplified energy spectrum with a Gaussian peak and
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(a) Measured 2D histogram of the energies detected
in each detector for 207Bi. The diagonal lines between
the peaks show the fractions of energy deposited in the
case of backscattering.
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(b) Measured electron time-of-flight and detected en-
ergy in a 2D histogram for 207Bi. Marginalizing the
histogram onto the x-axis creates the equivalent time-
of-flight plot as for 109Cd in Fig. 6.7.

Figure 6.9 Measured 207Bi spectra with a double-trigger requirement to study different event types
in, e.g., electron time-of-flight studies. The correlated electron emissions from the 995 keV and 503
keV due to a 12 ps lifetime of the excited nuclear state forms islands (left) and a peak around zero
times-of-flight (right). Accidental coincidences form also isolated islands (left), as for two accidental
995 keV electrons, and broad bands to longer times-of-flight for each peak (right). The short trigger
time window of 180 ns is visible as electron time-of-flight cut-off on the right.

add instantaneous, correlated electron emission with a low percentage and the corresponding
Auger electron energies. With Smelt, we simulate the detection response with timing and
energy resolution and reconstruct the measured 109Cd electron time-of-flight spectrum in
a first-order approximation. As seen in Fig. 6.7, the simulated time-of-flight spectrum
creates matching asymmetric peak positions and time-of-flight distances, verifying that the
correlated electron emissions explain the multipeak structure of the time-of-flight spectrum.
Additionally, this result explains the asymmetric in the peaks solely with the CaliBot position
about 50 cm out-of-center downstream towards detector 1 in the central decay volume.

However, the widths of the time-of-flight peaks in Fig. 6.7 differ. Introducing decay times to
the correlated electron emissions of about 40 ns would produce matching peak widths, but
they are not physically meaningful as these nuclear processes work on shorter time scales.
Initial Geant4 simulations of a full Perkeo III setup show that a more detailed description
of the magnetic field setup explains the broader time-of-flight peaks and longer tails. This
result highlights the importance of future work in [Ber24] for precise studies of correlated
emissions with low energies in Perkeo III.

To further study correlated electron emissions, I look at the 207Bi electron time-of-flight and
energy detection, as shown in Fig. 6.9. Unlike 109Cd, 207Bi has three main energy peaks
with energies up to 1 MeV. Thus, we must look at 2D plots that also consider the detected
energy and its distribution between the detectors to distinguish different electron emissions
due to the finite velocity of the electrons that causes overlay of the electron time-of-flight
peaks for larger energies.

In Fig. 6.9b, I show the measured 207Bi electron time-of-flight plotted against the detected
energy summed over both detectors. The trigger time window of 180 ns is visible as a electron
time-of-flight cut-off. Projecting the histogram onto the x-axis creates the equivalent time-
of-flight plot as for 109Cd in Fig. 6.7. In doing so, the finite electron velocity is visible for
times-of-flight from backscattering for larger detected energies in Fig. 6.9b. Also, we observe
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(a) Simulated 2D histogram of detected electron en-
ergy between detectors for 207Bi with Smelt.

(b) Simulated 2D histogram of electron time-of-flight
and detected energy for 207Bi with Smelt.

Figure 6.10 Verifying the hypothesis with the simplified models in Smelt of Fig. 6.9 by toggling mod-
eled processes, e.g., removing the correlation between the high-energy peaks removes the respective
islands, and reducing the simulated QDC integration time removes the accidental coincidences. The
simulated measurement time is shorter than the equivalent real measurement time in Fig. 6.9.

a peak around zero times-of-flight due to the higher energies of the 207Bi electrons. This
structure is similar to 109Cd with two peaks, but they overlap for 207Bi due to greater electron
energies. This peak is from correlated electron emissions of a conversion electron from the
1 MeV state that transitions with a 12 ps lifetime and about 500 keV in the child nucleus
[Bé+16]. These two electrons can go to opposing detectors, creating the time-of-flight peak
with the double-trigger requirement.

This effect is also clearly visible when plotting the energy distribution onto the detectors, as
in Fig. 6.9a. Close to each axis, we see the expected main peaks detected on each detector
with an Auger electron from the opposite detector fulfilling the double-trigger requirement
without contributing much energy. The diagonal lines between the peaks stem from the
fraction of energy deposited in the primary detector in case of backscattering, as described
in Sec. 6.1.4. The most likely fractions are between 40 and 60%. Correlated events form
islands in Fig. 6.9a. Also, accidental coincidence events of the 1 MeV electrons are seen as
another island or as broad time-of-flight tails in Fig. 6.9b for each energy peak. The broad
time-of-flight tail is most prominent for the 1 MeV electron energy peak.

All explanations can be verified with 2D histograms simulated with Smelt, like the ones
shown in Fig. 6.10. The 207Bi energy spectrum is simplified and approximated with a
Gaussian mixture model, and correlations are included as for 109Cd with an additional
correlation of the 1 MeV and the 500 keV peak for the 12 ps excitation state. The simulated
2D histograms for the energy distribution between detectors and the electron time-of-flight
against detected energy agree with the histograms from measured data.

We can verify our hypothesis by toggling modeled processes in Smelt, e.g., removing the
correlation between the high-energy peaks removes the respective islands in Fig. 6.9a, and
reducing the simulated QDC integration time removes the accidental coincidences. This
approach also works for backscattering, as we can remove the diagonals by turning off the
backscattering model or reduce the diagonal to points and lines when only allowing fixed
angles or using only the mean fraction of energy deposited in the primary detector. Without
correlated electron emissions and backscattering, we see single counts of accidental coin-
cidences in the backscattering diagonal of energy deposition between detectors. However,
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the number of events is negligible given the calibration source rate, and we can exclude
accidental coincidences as relevant contributions to all calibration spectra.

Another observed deviation from the naive expectation in all calibration sources is that there
should be no events around zero times-of-flight due to the relativistic velocity limit. Corre-
lated electron emissions can explain this deviation for some calibration sources, e.g., 109Cd
and 207Bi. However, these explanations do not work for 113Sn where the bins in the range
close to zero times-of-flight contain events, as shown in Fig. 6.8. Although 113Sn also has
correlated low-energy electron emissions, the energy difference between the electrons from
the main peak with about 369 keV and the Auger electron energies is too large to create such
small electron time-of-flight differences between triggers. With Smelt, we determine that
detecting events in that time-of-flight range is impossible without another electron-creating
process with electron energies above 100 keV. This result motivated searches for previously
neglected systematic effects from the calibration source holders: Mainly secondary electrons
produced in the thin support foil and frame from gamma emissions of the calibration sources
and electron losses in the thin support foil and frame. The corrections from these effects
explain the observed deviation and are discussed in Sec. 6.2.

The findings of the electron time-of-flight analysis for calibration sources with Smelt show the
importance of hypothesis testing tools that allow for control beyond what general simulation
frameworks offer for high-precision experiments. These general frameworks are essential
for constructing precise and accurate results but can also offer hazy explanations and not
enough customizability, e.g., partially turning interactions and processes to test a specific
hypothesis. In addition, studying the measured data of Perkeo III in 2D histograms was
not done before in the collaboration and might offer important levers to study, e.g., the
non-linearity as curvature in the diagonal of backscattering events or room for advanced 2D
model fitting, see Sec. 6.1.7. A preliminary study to determine the non-linearity from 2D
calibration source histograms was inconclusive due to statistical limitations.

6.1.7 Charge Integrator Non-Linearity

Previous work established using the Birks non-linearity from Sec. 6.1 to model the non-
linearity of the Perkeo III detector response motivated by the assumption that the scintillator
is the source of the non-linearity. The author of [Sau18] measured the Birks coefficient for
a scintillator (BC408 [Sai21]) as 𝑘𝐵 = 123(14) nm/keV in offline measurements. However,
in the most recent Perkeo III results [Mär+19; Sau+20], an effective non-linearity of
𝑘𝐵 = 430.5(10.3) nm/keV was observed from fits with calibration sources that use the
Birks model to describe the non-linearity. To probe potential causes of this deviation, the
author of [Sau18] used offline tests with pulse generator and PMT data to rule out linear
fan-outs in the readout signal chain as the cause. The electron readout was assumed to
be the cause of the non-linearity. Also, other empirical non-linearity models were tested,
mainly a quadratic and an exponential model, in combination with a Birks model with a
fixed 𝑘𝐵 value from the scintillator measurement, but no model could be selected within
statistical certainty. Ultimately, the Birks model described the observed non-linearity with
the calibration sources sufficiently well within statistical limits.

Contrary to previous measurements of neutron spin-dependent quantities, we want to pre-
cisely measure the pure electron beta spectrum and are more sensitive to non-linearities.
To better understand and analyze the QDC integrator behavior and potentially induced non-
linearities, we measured a subset of the data during the 2019/20 Perkeo III measurement
campaign in the ALLMODE measurement mode, as described in Sec. 4. In this mode, we
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(a) Averaged, relative direct effect of the QDC sample
time of individual PMT channels on the detected energy
for different calibration sources using causal mediation
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(b) Schematic of the hypothesis that the gradient of
the QDC integrator sample value 𝐴 over QDC sample
time 𝑡 is amplitude-dependent and causes a previously
unidentified QDC non-linearity.

Figure 6.11 Initial observation of a QDC non-linearity that depends on the integration time and a
schematic of the formulated hypothesis (effect exaggerated) for an amplitude-dependent gradient of
the QDC sample time 𝑡 dependence. The gradient is extracted in a channel-specific analysis, and
delayed charge events are treated separately.

stored each sample of the 100 MHz integrator and measured a complete calibration with all
five sources and a few hours of neutron beam data with 113Sn drift measurements.

The signal chain of the measured QDC samples for individual PMT channels to the final
peak position fit in the energy spectrum forms a directed acyclical graph, including the data
processing and detector response model. Thus, we can view the signal chain as a structural
causal model [Pea09b], see Sec. 3.4.1. This view allows us to conduct causal mediation
analysis [Pea09a] and calculate the direct effect of a QDC sample at a chosen time 𝑡 for an
individual PMT on the total detected energy. The results of this test are shown in Fig. 6.11a
for three calibration sources of different energies. I plot the average relative direct effect for
all PMTs to visualize the different sources. The estimated direct effect increases linearly
with 𝑡, and the gradient of the linear relation is energy-dependent. This energy-dependence
of the QDC integrator must be studied further.

Based on the results of the direct effect calculations, I formulate the hypothesis that the gra-
dient of the QDC integrator sample value over QDC sample time 𝑡 is amplitude-dependent,
i.e., energy-dependent, as illustrated in the schematic Fig. 6.11b, and causes the observed
non-linearity.7 To test this hypothesis, I analyze the ALLMODE data combined for 207Bi,
113Sn, and 139Ce, for the QDC channels of individual PMTs to extract the relation between
the QDC gradient 𝑚 and the amplitude 𝐴 with pedestal subtraction at the last QDC time.
This amplitude 𝐴 is the value that we also extract in the other measurement modes.

To extract the gradient, I fit a linear model to the last 180 ns of QDC samples for events
without delayed charge in the integrator due to, e.g., backscattering or correlated electron
emissions. I do a separate linear fit to the last 110 ns of QDC samples for events with delayed
charge in the integrator. These cut-offs were estimated to separate events with and without
delayed charge and also guarantee enough integration time to avoid including the integration
of the signal rise time in this first-order analysis. This amplitude 𝐴 is corrected for pedestal

7A potential cause could be an amplitude-dependent leakage current over the silicon used in the QDC integrator.
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(a) Fit result without delayed-charge events for the
QDC channel of PMT0.
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(b) Regression results for four PMTs. The results of
all other PMTs lie between PMT7 and PMT11.

Figure 6.12 Using ALLMODE data from 113Sn, 207Bi, 139Ce, I extract the amplitude-dependence
of the QDC gradient with linear regression from this 2D histogram to parametrize the QDC non-
linearity in a first-order approximation. The measured amplitudes 𝐴 are corrected for pedestal and
rate dependency. As both corrections are additive, the extracted gradients need no correction. The
energy-channel relation is approximately 30 ch / keV for a full detector summing over all PMTs.

and rate dependency, as in Sec. 5. As both corrections are additive in our approach, the
extracted gradients need no correction. The relation of the resulting (𝐴, 𝑚) pairs is extracted
with linear regression and mean-square deviation minimization. The histogram for the
(𝐴, 𝑚) pairs for the QDC channel of PMT0 and the regression results for the QDC channels
of four PMTs are shown in Fig. 6.12. Repeating this test separately for 207Bi and 113Sn data
yields similar results, ruling out a higher-order energy or rate dependency.

All QDC channels have a positive offset for small amplitudes, and the QDC gradient 𝑚
decreases linearly with larger amplitudes. The linear regression offset and gradient determine
at which detected amplitude𝑚 changes sign. This relation also explains the causal mediation
analysis results in Fig. 6.11a, as for smaller detected amplitudes 𝐴, the QDC gradient 𝑚 is
positive for all or most QDC channels, leading to an amplitude increase when varying the
QDC sample time 𝑡. For large amplitudes, this effect reverses.

With a parametrization of the amplitude dependence of the QDC gradient 𝑚𝑖 = 𝑚𝑖 (𝐴) over
integration time 𝑡, we can create a first-order correction. With the correction, we reconstruct
the detected amplitudes 𝐴 to the estimated QDC sample value 𝐴𝑐 at the start of the fit ranges
Δ𝑡𝑖 to study the induced non-linearity of the amplitude dependence as

𝐴𝑐 = 𝐴 − 𝑚0 · Δ𝑡0 (6.4)
𝐴′
𝑐 = 𝐴 − 𝑚0 · Δ𝑡0 − (𝑚1 − 𝑚0) · Δ𝑡1, (6.5)

with 𝐴′
𝑐 being the corrected amplitude for delayed charge events, which make up about 10%

of all events. To accurately include the delayed charge events, I use Smelt and its modeling of
backscattering, energy distribution based on light transmission probabilities, and empirical
model of the energy-dependent energy resolution. Also, the Birks non-linearity model with
𝑘𝐵 = 123 nm/keV is applied as an underlying scintillator non-linearity.8

In Fig. 6.13, I use the simulation setup to model the effective QDC non-linearity for all
energies as a continuous line without uncertainty. Also, I create data points for the energy

8The fitted effective 𝑘𝐵 values in Fig. 6.13 barely change with other values, e.g., 𝑘𝐵 = 150 nm/keV [Abe+11].
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(a) Correcting synthetic data in Smelt with the four energy peaks of 207Bi, 113Sn, and 137Cs. Showing
the relative deviation between the corrected and uncorrected amplitudes from Equ. (6.5).

(b) Correcting synthetic data in Smelt with the energy peaks of the calibration sources. Showing the
relative deviation between the corrected and uncorrected amplitudes from Equ. (6.5).

Figure 6.13 Determining the effective QDC non-linearity with simulated data in Smelt in a first-
order parametrization. The simulated data is modeled using a continuous line (green, "Sim Full")
with energy resolution. The calibration source energy peaks are plotted as data points and used to
fit the Birks non-linearity model (orange, "Fit"), see Sec. 6.1 The effective non-linearity deviates
systematically from the Birks model.
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peaks of the calibration sources using the energy resolution and spread over different events
and both detectors as uncertainty estimation. Fitting a Birks non-linearity model to the
points from the calibration sources yields an estimate for the QDC non-linearity as it would
be measured with our calibration sources and parametrized by the implemented Birks non-
linearity model. Given the ambiguity with the trigger function that skews the measured data
below 200 keV, see Sec. 6.1.3, affecting 109Cd and 139Ce, the result fitting all six electron
energy peaks of the five sources is also ambiguous. The estimated QDC non-linearity
assuming a Birks model from a simulated first-order correction for high-energy calibration
sources is 𝑘𝐵 = 454(87) nm/keV.

Fitting the detector response from Sec. 6.1 to our measured high-energy calibration spectra,
we obtain 𝑘𝐵 = 471(23) nm/keV from a single calibration, see Sec. 7.2. Our fitted result
from measured data and the 2009 result agree within 1 to 3𝜎 with the simulated estimate.
This result strongly indicates that the observed non-linearity is linked to the QDC integrator
in a first-order approximation. Furthermore, the simulated QDC non-linearity deviates
systematically from the Birks model for smaller amplitudes, indicating that a different
functional form is required. This additional non-linearity must be applied after the Poisson
modeling in Equ. (6.1), while the scintillator non-linearity is applied to the energy going into
the Poisson distribution. The deviation effectively "tilts" the fitted non-linearity and causes
a larger 𝑘𝐵 value, which we currently cannot compare to measured data meaningfully due to
the trigger ambiguity. These results on the QDC non-linearity indicate that the model based
on a sole Birks non-linearity in Sec. 6.1 will not be able to accurately describe the measured
data for energies below 350 keV. It is unclear whether the previous measurement of neutron
spin-dependent quantities in [Mär+19; Sau+20] were sensitive to and affected by this effect,
but our current understanding and the results from [Sau18] indicate that they were not.

While these new insightful results create an understanding of the observed QDC non-
linearity, they cannot be used directly for correction. The simulated QDC non-linearity
might be biased for smaller amplitudes, where the linearity approximation, chosen fit ranges,
and the fitted linear model of the QDC sample gradient are difficult to verify. Thus, using the
simulated result to construct a correction would lead to significant systematic uncertainties
beyond the set precision goal. For the same reasons, deducing a functional form to fit the
calibration sources might also induce biases.

Future work can take three steps to accurately and precisely determine the QDC non-
linearity. First, using detailed offline tests with pulse generators should yield a more precise
estimation of the non-linearity and can motivate an empirical QDC non-linearity model.
Second, studying the electronic response in isolated simulations of the integrator hardware
boards should give an accurate model for the non-linearity. Third, extensively studying the
2D energy deposition between detectors or groups of PMTs for backscattering events in
an analysis of all calibration measurements should lead to additional information on QDC
channel-specific behavior. Especially, data from 139Ce and 113Sn have a high potential for this
analysis as the energy distribution between the detectors covers energies ranging between
40 and 100% of the main peak energy in the case of backscattering. The energy range
between 50 − 369 keV is highly impacted by the QDC non-linearity and potentially allows
for a parametrization of the non-linearity to enable fitting the electron energy spectrum from
neutron beta decay for lower energies. However, these studies must be linked with full
calibrations to extract exact values for the gain 𝑔 and the effective number of photoelectrons
𝑓pe to reduce correlations between parameters.
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6.1.8 Synchrotron Radiation Losses

Another potential source for an induced non-linearity on measured electron energy spectra is
losses from synchrotron radiation. The calculations in this section are based on the equations
in [Wal94]. An electron with charge 𝑒 propagating in a circular motion in a magnetic field
with local curvature radius 𝜌 emits synchrotron radiation with an instantaneous power 𝑃 of

𝑃 =
2
3
𝑒2𝑐𝛽4𝛾4

4𝜋𝜖0𝜌2 ,

with speed of light 𝑐, relativistic factors 𝛽 and 𝛾, and vacuum permeability 𝜖0. Thus, the
energy per turn 𝑢0 of circular motion is given by the path integral

𝑢0 =

∮
𝑃

𝛽𝑐
d𝑠 =

2
3
𝑒2𝑐𝛽3𝛾4

4𝜋𝜖0

∮
1
𝜌2 d𝑠.

Assuming a uniform bending radius in the bending magnets, i.e., an isomagnetic lattice, 𝑢0
becomes

𝑢0 =
𝑒2

3𝜖0

𝛽3𝛾4

𝜌
.

For 𝑢0 in eV, we get the relation

𝑢0 = 2.65 · 104 · 𝐸3 · 𝐵

for 𝐸 given in GeV and 𝐵 given in T.

Using the time-of-flight calculations, distances, and backscattering model in Smelt, I es-
timate the synchrotron losses for initial electron energies by averaging over the angular
distribution. Even though the synchrotron losses scale with 𝐸3, for the magnetic field
strength in Perkeo III with 𝐵max = 152 mT, the number of gyration rotations 𝑢0 calculated
with Smelt, and maximum energies of 𝐸max = 1 Mev, the effect only reaches a maximum loss
of 4.16(41) · 10−4 eV. These losses are negligible, given that one QDC integrator channel,
i.e., the resoltion, from the electronic readout is about 32 eV, and we do not need to model
synchrotron emission losses in our theoretical models as non-linearity. Even for future
experiments like PERC [Wan+19] with stronger magnetic fields and longer decay volumes,
this effect is negligible.

6.2 Calibration Source Holder Systematic Effects

The results of the Smelt electron time-of-flight studies in Sec. 6.1.6 motivated searches for
secondary electrons from the gammas emitted by the calibration sources and energy losses
of primary electrons through the calibration source holders. To this end, the author of
[Ber24] used a Geant4 simulation of the full Perkeo III setup with an accurate description
of the magnetic fields and backscattering to create data sets with these processes for a fixed
initial electron or gamma energy in two separate simulation studies. Using these data sets,
I create spectra matching the electronic readout and processing signature to create spectral
corrections to the theoretical spectra of the calibration sources.

The calibration sources are suspended on ultra-thin carbon foils (12 and 30 `g/cm2 area
density, 10 mm diameter) that are supported by a thin Aluminum-coated Mylar foil (25 `m
thickness, ca. 140 mm diameter). The Mylar foils are suspended on an arc-shaped 5 mm
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Figure 6.14 Simulated probabilities of electrons from calibration sources to be absorbed in the
calibration source holder or to interact with it, i.e., be perturbed and lose energy, for each detector
and different energies. The increasing gyration radius causes the energy-dependent trends of the
probabilities as the interaction with the source holder requires a minimum radius to bridge the distance
from the calibration source position to the Mylar support foil. In some cases, the perturbation can
occur before interacting with a detector but mainly happens after backscattering.

wide and 2 mm thick Aluminum frame, see Sec. 4.2.2. The contribution of the ultra-thin
carbon foils as a source of secondary electrons or energy losses is insignificant and therefore
neglected [Roi18; Ber24]. In the simulations, the calibration source holder is placed at the
calibration position in the plane transversal to the beam axis and the CaliBot position about
50 cm out of the center of the central decay volume. Also, the source holder is tilted by
10◦ towards the beam axis to account for the local waviness of the support foils and general
angle uncertainty of the holder.

6.2.1 Support Foil Induced Energy Losses

A number of 𝑛 electrons are simulated for a set of initial energies in separate simulations, with
a starting point at the center of the calibration source holder and isotropic emission. Besides
the detected electron energies, the simulation tracks the number of electrons interacting
with the source holder, giving the probability 𝑝t of an electron being perturbed for each
simulated electron energy. Also, we track the number of electrons being absorbed, giving
the absorption probability 𝑝a for each energy. The results for the probabilities are shown
in Fig. 6.14 and the average energy losses scaled for all or only the perturbed electrons in
Fig. 6.15.

Both probabilities 𝑝t and 𝑝a show an increasing trend for low energies. The increasing
gyration radius causes this trend as the interaction with the source holder requires a minimum
gyration to bridge the distance from the calibration source position to the Mylar support
foil. The absorption probability 𝑝a decreases again for higher energies, as the probability
of transmitting through the source holder without being absorbed increases with higher
energies. We see a minor increase for the highest energies up to 1 MeV, caused by large
enough gyration radii to interact with the comparatively thick (2 mm thick, 5 mm wide)
aluminum frame. The same reasons explain the trends of the average energy loss in Fig. 6.15.
The average energy loss calculated for all electrons, perturbed and unperturbed, shows this
correction is non-negligible, as most electrons lose 2 − 3 keV.
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(a) Mean energy loss calculated over all electrons, per-
turbed and unperturbed, for different initial energies.
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(b) Mean energy loss for perturbed electrons for dif-
ferent initial energies.

Figure 6.15 Simulated mean energy losses from interactions with the calibration source holder. The
observed energy dependence is explained by the minimum gyration radus required to interact with
the Mylar support foil. At large energies, some electrons start interacting with the Aluminum frame,
leading to greater energy losses.

Generally, both detectors show very similar behavior. Slight differences are caused by
the asymmetric CaliBot position about 50 cm out-of-center in the central decay volume
towards the downstream detector. This asymmetry causes effects, e.g., due to electrons
being emitted towards the center of the central decay volume (upstream) and being reflected
by the magnetic mirror effect at the maximum value of the magnetic field in the center.

To create a spectral correction of the source holder-induced energy losses, we must create
a surrogate model from the simulated data of fixed initial energies to get the perturbed
electron spectrum for the continuous space of possible initial energies. As the probabilities
for perturbation and absorption are already calculated, I normalize the spectra of perturbed
electrons to preserve details in the shapes for lower energies. A selection of the perturbed
electron spectra is shown in Fig. 6.16. The plot depth indicates the initial electron energy,
visualizing the changing shape of the perturbed electron spectrum towards higher energies.
The trend of a sharper energy peak at the initial electron energy continues for the tested
energies up to 1.1 MeV. Due to the shape of the perturbed electron distributions, the resulting
corrections mostly affect the low-energy tails of energy peaks in the calibration spectra.

The shown perturbed electron spectra are slices in the 2D space that we must interpolate
with a surrogate model. Due to their flexibility, I use neural networks as a surrogate model
with pre-training on the low-energy data to preserve the nuances of the changing shapes and
a mean square error deviation as an objective value. With a surrogate model, we can correct
each line 𝐸 in the theoretical line spectra as described in Sec. 6.1 by adding the perturbed
electron spectra for that energy 𝐸 with norm 𝑝t and rescale the original probability of 𝐸 by
the factor 𝛿 = 1− 𝑝t − 𝑝a. Thus, this correction has no direct free parameters in a calibration
source fit. However, this correction asymmetrically affects calibration energy peaks, leading
to non-negligible systematic uncertainties as it changes energy peak position, width, and
through its energy-dependence, also the non-linearity.

To verify the surrogate model interpolation of the perturbed electron spectra, I remove two
data sets for initial energies when training the model to see how accurate the interpolation
would model these energies. The results are shown in Fig. 6.17 for initial electron energies
of 250 and 700 keV. The surrogate model successfully models the missing energies by
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Figure 6.16 Visualization of the changing shapes of the normalized perturbed electron spectra
towards higher energies, as used for the interpolation for the correction. The plot depth indicates
different initial electron energies. The spectra are normalized to preserve details in low-energy
spectra which have smaller total probabilities for the interpolation. The trend of a sharper energy
peak at the initial electron energy continues for the tested energies of up to 1.1 MeV.

interpolating from the closes initial electron energies in the training data set, ±50 keV for
the 250 keV and ±100 keV for the 700 keV electron. Small deviations from the surrogate
model are caused by the statistical fluctuation of the training process and higher precisions
of the correction require more data.

I use this fluctuation and related effects to make a preliminary estimate of the systematic
uncertainty of the correction on calibration parameters of the detector response. The total
relative systematic uncertainty𝜎sys(𝑔) on the detector gain 𝑔 caused by induced energy losses
for both detectors is 𝜎sys(𝑔) = 2.59 · 10−4 ch/keV. The total absolute systematic uncertainty
𝜎sys( 𝑓pe) on the effective number of photoelectrons per keV 𝑓pe for one detector is𝜎sys( 𝑓pe) =
3.21·10−3 keV−1. The total absolute systematic uncertainty𝜎sys(𝑘𝐵) on the Birks coefficient
𝑘𝐵 for one detector is 𝜎sys(𝑘𝐵) = 3.19 nm/keV. As a precise energy measurement is highly
sensitive to systematic corrections of the detector response parameters, this correction is
non-negligible for a precise measurement of the Fierz interference term 𝑏 and I discuss its
significance in Sec. 8.

6.2.2 Induced Secondary Electrons

A number 𝑛 of gammas are simulated with an initial energy linked to one of the gamma
emissions from the calibration sources. The gamma source is at the center of the calibration
source holder. During the simulation, we track the number and energies of produced
secondary electrons, i.e., photoelectric and Compton electrons, that reach the detectors. The
probability 𝑝s of a secondary electron reaching a detector given a number of emitted gammas
is shown in Fig. 6.18 for each gamma energy. The probability increases with increasing
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Figure 6.17 Verification of the surrogate model interpolation of the perturbed electron energy PDF
for initial electron energies not present in the training data. The closest initial electron energies in the
training data are 200 and 300 and 700 and 800 keV, respectively. The surrogate model successfully
interpolates between energies in the training data, guaranteeing a meaningful model over the full
2D plane of initial electron energies and perturbed electron energy spectra. The minor deviations
between the surrogate model and the data are related to statistical fluctuations of the training process,
and I use them to estimate the induced systematic uncertainty.
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Figure 6.18 Simulated probability of a secondary electron reaching a detector for a produced gamma
for different initial gamma energies. The probability increases with increasing gamma energies, as
the produced secondary electrons also have a higher available energy. The secondary electrons are
produced within the Mylar support foil and aluminum frame and have a higher chance of escaping
the material with higher energies.
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Figure 6.19 Visualization of the changing shape of the normalized energy spectrum for the gamma-
induced secondary electrons, i.e., photoelectric and Compton electrons, in the source holder for
different initial gamma energies, indicated by the plot depth. The spectra are normalized to preserve
details in low-energy spectra which have smaller total probabilities for the interpolation and correc-
tion. The distinct Compton edge is visible for all energies.

gamma energies, as the produced secondary electrons also have a higher available energy.
The secondary electrons are produced within the Mylar foil and aluminum frame and have
a higher chance of escaping the material with higher energies. The difference between the
behavior of both detectors is caused by the asymmetric setup and the magnetic mirror effect
at the center of the decay volume.

We add the spectrum of the gamma-induced secondary electrons in the source holder to
the theoretical calibration spectra to create a correction for each calibration source. All
normalized secondary electron spectra from the simulated gamma energies are shown in
Fig. 6.19. The plot depth indicates the initial gamma energy, visualizing the changing shape
of the secondary electron spectrum towards higher gamma energies. The distinct Compton
edge is visible for all energies, and the resulting correction affects almost all energies below
the gamma energy due to the long tails over the entire energy range.

I estimate the uncertainty of this correction by splitting the simulated data set for the
interpolation into subsets and creating a set of corrections with greater statistical variety.
Using these varied corrections, I can estimate the significance of the overall correction by
varying it during the spectrum generation and test how it affects the extraction of the Fierz
interference term 𝑏 when fitting the resulting neutron beta spectrum. I obtain an upper
limit on the combined systematic uncertainty 𝜎sys(𝑏) on the Fierz interference term 𝑏 for
both detectors from the secondary electron emission as 𝜎sys(𝑏) ≤ 5 · 10−5 for all tested fit
ranges, making it negligible. The small systematic uncertainty is intuitive, given that the
correction mainly consists of long, almost flat energy tails below the energy of the causing
gammas. This shape and the distance of the Compton edge from the main peak cause the
systematic uncertainty to mainly affect the lower 500 keV 207Bi peak below the 995 keV peak
in calibration fits. However, the secondary electron spectra are necessary for our theoretical
model to successfully describe the observed calibration data.



109

7 Fitting Measured Spectra

After creating a theoretical description of our detector response model as our hypothesis,
we can check if it agrees with the observed and processed data by fitting. We use the
measurements with the five calibration sources to extract the remaining detector parameters
to fit the electron beta spectrum from neutron beta decay to ultimately extract the Fierz
interference term 𝑏. Due to the observed issues with the trigger function model and QDC
non-linearity discussed in Sec. 6.1.3 and 6.1.7, we expect statistically significant deviations
of our hypothesis. In this chapter, I conduct these fits, discuss the systematic deviations, and
link them to the studies in previous chapters.

7.1 p3fit Fitting Tool

The analysis and fitting tool p3fit was developed within the Perkeo III collaboration over
several data analyses and years, with the current version being mainly developed in [Roi18;
Sau18], and used for recent Perkeo III results, e.g., [Mär+19; Sau+20]. It comprises the
outlined detector response model from Sec. 6.1 and other detector models for comparison,
like non-linearity descriptions, from past analyses. In p3fit, energy spectra are modeled with
a broadening of theoretical line spectra through convolutions and represented as histograms,
as there are no simple closed-form solutions. The tool uses a detailed description to
accurately model the theoretical spectra of the electron beta decay and the calibration
sources with radiative, recoil, and Coulomb interaction corrections. The internal transitions
and correlated electron emissions of the calibration sources are modeled with decay channels,
consider the integration time and apply non-linearity correctly to multi-electron events. I
created all theoretical spectra and fits in this chapter with p3fit.

In the current implementation, I neglect multi-electron non-linearity handling to allow for
the corrections on the theoretical energy line spectra from the calibration source holder
systematic effects from Sec. 6.2. This description leads to minor deviations in the non-
linearity description that must be accounted for in future work. However, given the systematic
uncertainty of the calibration source holder corrections, see Sec. 8, and the required QDC
non-linearity measurements, see Sec. 6.1.7, these deviations are currently negligible. Also,
multi-electron handling and the calibration source holder’s systematic effects only apply to
the calibration sources and not to the electron beta spectrum measurement from neutron
decay. In addition, p3fit is blinded for an analysis of the Fierz interference term 𝑏 with a
relative and absolute distortion [Mär22].

Due to the significant increase in energy resolution, see Sec. 5.4, the previously implemented
internal conversion coefficients in p3fit are not accurate enough. Thus, I updated the
internal conversion coefficients for all calibration sources based on values in the DDEP
[Bé+16] database and using the BrIccFO [Kib+08] software. In particular, higher-order
contributions from other multipolarities for the internal conversion coefficients are essential
for a theoretical description of our measured calibration spectra. These contributions were
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negligible in past measurements and are only necessary now due to the increased energy
resolution.

7.2 Calibration Fits

High Energy Fits

Based on the known issues with the trigger function model and the QDC non-linearity
description, which significantly increase at lower energies (below 350 keV), I study the
high-energy calibration sources separately. For the high energy fits, I look at the 995 keV
and 503 keV peaks of 207Bi, the 630 keV peak of 137Cs, and the 369 keV peak of 113Sn. The
combined and simultaneous fit of all four energy peaks for the upstream detector is shown
in Fig. 7.1.

The theoretical model describes the measured calibration sources accurately within statistical
limitations (reduced 𝜒2 = 1.1, 𝑝 = 0.10). We also observe that the 503 keV 207Bi peak
is only successfully described by the theoretical model with the new internal conversion
coefficients and both calibration source holder corrections, highlighting the necessity of
these new corrections. The extracted detector parameters are gain 𝑔 = 30.934±0.021 ch/keV,
non-linearity Birks coefficient 𝑘𝐵 = 485 ± 18 nm/keV, and light yield 𝑓PE = 0.664 ± 0.015
keV−1.

Systematic deviations between our hypothesis and the processed data are visible. While both
207Bi peaks fit well individually, the respective other peak deviates as seen in the residuals
due to non-matching branching ratios. This deviation was already observed in the past in
other Perkeo III data sets and we fit these two peaks with a separate normalization. Also, all
theoretical descriptions of the detector response deviate at lower energies. This deviation is
mainly caused by the insufficient trigger function model. Additionally, the positive residuals
for the Auger electron peaks below channel 2000 may be explained by systematic deviation
of the measured and fitted trigger function in Fig. 6.5.

In addition, the residuals of 113Sn and 137Cs show some systematic deviations, presumably
due to the non-linearity description based on the Birks model. As seen in Fig. 6.13, the Birks
model does not accurately describe the QDC non-linearity in a first-order approximation,
and the deviation between the Birks and observed non-linearity diverges below 400 keV.
Reducing the statistical weight of the 113Sn peak for the fit by reducing its fit range lessens
the deviation for 137Cs as indicated in the residuals, and the Birks coefficient decreases to
𝑘𝐵 = 471 ± 23 nm/keV.

Due to the significant deviations at lower energies, the spectral analysis below 400 keV is
not meaningful with the current description of the detector response. This issue should be
mitigated with a more accurate model of the QDC non-linearity, see Sec. 6.1.7. Given the
sensitivity to higher-order effects in the theoretical description of the conversion sources
due to the excellent energy resolution, future high-precision measurements with similar
calibration schemes will benefit from new advances in nuclear studies of these calibration
sources.

Full Energy Range Calibration

Expanding the calibration fit from three to all five sources by also fitting 109Cd (75 keV peak)
and 139Ce (127 keV peak), we observe the same issues already hinted at by the high-energy
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(a) Fitting the high-energy peak of 207Bi with 995 keV.
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(b) Fitting the mid-energy peak of 207Bi with 503 keV.
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(c) Fitting the 369 keV peak of 113Sn.
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(d) Fitting the 630 keV peak of 137Cs.

Figure 7.1 Combined fit of the high-energy calibration sources of one calibration measurement on the
upstream detector (detector 0). The theoretical model describes the observed data within statistical
limitations (reduced 𝜒2 = 1.1, 𝑝 = 0.10). The theoretical model only successfully describes
the 503 keV 207Bi peak when using the new internal conversion coefficients and considering both
calibration source holder corrections, highlighting the necessity of these new corrections. The 207Bi
peaks fit well individually but require separate normalization due to non-matching branching ratios.
The insufficient trigger function model causes significant deviations and positive residuals at lower
energies. The residuals of 113Sn and 137Cs show some systematic deviations, presumably due to the
non-linearity description based on the Birks model. As the deviation between the Birks and observed
QDC non-linearity diverges below 400 keV, we see systematic tensions in the residuals of 113Sn and
137Cs.
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(a) Fitting the 75 keV peak of 109Cd.
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(b) Fitting the 127 keV peak of 139Ce.

Figure 7.2 Combined fit of all calibration sources of one calibration measurement on the upstream
detector (detector 0), only showing the two low-energy sources. The theoretical model does not
describe the observed data within statistical limitations (reduced 𝜒2 = 5.0, 𝑝 = 0.0). The systematic
deviations from the QDC non-linearity and the trigger function cause the peak positions of both
low-energy sources to pull the residuals and effective non-linearity in different directions. These
pulls are also seen as a tendency in the high-energy sources, similar to the "tilt" in Fig. 6.13 with all
five sources for the estimated QDC non-linearity with Smelt.

calibration sources regarding QDC non-linearity and the trigger function. Fig. 7.2 shows the
fits for Cd and Ce for the upstream detector resulting from a combined fit with all sources
The systematic deviations cause the peak positions of both low-energy sources to pull the
fitted non-linearity in different directions. Separating the effects of the QDC non-linearity
and the trigger function for these energies is not straightforward, as these effects are highly
correlated. The QDC non-linearity affects the peak position and the trigger function the peak
height differently at different energies. The theoretical model does not accurately describe
the measured calibration sources within statistical limitations (reduced 𝜒2 = 5.0, 𝑝 = 0.0).

The extracted detector parameters are gain 𝑔 = 30.916 ± 0.022 ch/keV, non-linearity Birks
coefficient 𝑘𝐵 = 439 ± 6 nm/keV, and light yield 𝑓PE = 0.663 ± 0.011 keV−1. The resulting
gain 𝑔 and light yield 𝑓PE are unchanged within statistical limits. However, the non-linearity
Birks coefficient 𝑘𝐵 decreases, and its uncertainty is significantly reduced. The latter is
intuitive, as the non-linearity parametrization is dominantly determined at lower energies.
The systematic deviations cause the smaller value of 𝑘𝐵 and can be verified by only adding
one of the two low-energy sources to the combined fit with the high-energy sources: Only
adding 109Cd results in a 𝑘𝐵 = 472 ± 7 nm/keV, agreeing with the high-energy fit, and
adding only 139Ce leads to 𝑘𝐵 = 385±9 nm/keV. This discrepancy highlights that a different
functional shape is required for the QDC non-linearity.

A sufficient theoretical description of all five measured calibration sources is required to
accurately describe non-linearity and use the extracted detector parameters to measure the
Fierz term 𝑏. Currently, this analysis is not possible and requires the future work outlined
in Sec. 6.
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(a) Fitting with the extracted detector parameters from
the high-energy calibration fit of Fig. 7.1.
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(b) Same as a), but with 𝑘𝐵 as free fit parameter to
illustrate the remaining systematic non-linearity.

Figure 7.3 Fitting the electron beta spectrum from neutron decay (approximately 3.7 · 105 events)
with the extracted parameters from the calibration. The fit range is approximately 250 - 750 keV,
but depends on the value of 𝑘𝑏. The beta spectrum requires a significant non-linearity that is not
accounted for in the current theoretical description of the detector model, and we see deviations below
channel 5000 based on the trigger model and QDC non-linearity as with the calibration measurements.
Further analysis requires future work as outlined in Sec. 6 and a new detector response model.

7.3 Electron Beta Spectrum Fits

Even though spectral analysis of the electron beta spectrum from neutron decays with
the current calibration is not meaningful, we can still test our theoretical description and
verify our previous observations. The fit using the detector parameters from the calibration
with the high-energy sources and correcting the gain 𝑔 and the light yield 𝑓PE with the
spatial corrections is shown in Fig. 7.3. I use the extracted non-linearity value of 𝑘𝐵
from the calibration in Fig. 7.3a and release 𝑘𝐵 as a free fit parameter in Fig. 7.3b (𝑘𝐵 =

854 ± 65 nm/keV). In both fits, the theoretical model does not accurately describe the
measured calibration sources within statistical limitations (reduced 𝜒2 = 2.6 and 𝜒2 = 2.0,
respectively). As expected, the beta spectrum requires a significant non-linearity to fit,
and we see similar deviations below channel 5000 based on the trigger model and QDC
non-linearity.

Adjusting the fit range to only higher energies and leaving 𝑘𝑏 unconstrained, we get 𝑘𝐵 ≈ 440
nm/keV which is close to the value for the high-energy calibration fit. The upper fit range
limit does also affect the non-linearity parameter 𝑘𝐵, indicating the necessity of an edge effect
correction, as discussed in Sec. 6.1.2 and planned in [Ber24]. Further analysis requires future
work as outlined in Sec. 6 and a new detector response model, especially a more accurate
QDC non-linearity description.

However, we must accurately determine the systematic uncertainties on the Fierz interference
term 𝑏 of the dominant corrections without biasing the results with the remaining systematic
effects. To this end, I developed a new simulation-based tool, which is described in the next
chapter.
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8 Systematic Uncertainty Estimation

Using a pure fitting tool like p3fit and a data set to calculate the systematic uncertainties
gives results specific to the used detector model and data set. While giving accurate
results, this approach does not allow for comparisons between different detector models, i.e.,
experiments, and data sets, i.e., studied beta decays, beyond the final systematic uncertainty.

To tackle this issue, I present a new simulation-based analysis tool that can be used to generate
and fit beta decay spectra with a detector model for systematic uncertainty quantification.
With this tool, I can determine the systematic uncertainty budget for the corrections studied
in this thesis while avoiding a potential bias of the remaining systematic effects of the trigger
function and QDC non-linearity. In addition, I study the scaling laws for the sensitivity of
individual detector parameter variations, look at their correlation, and compare the results
to previous measurements to discuss future optimization approaches.

8.1 Freya Analysis Tool

To study the systematic uncertainties of detector parameters precisely and without bias
from specific measurements, I developed a Julia package called Freya1 (FieRz Error and
sYstematics Analysis). The goal is to complement previous work on statistical kinematic
sensitivity of different decays [GN16] and statistical sensitivity studies [GJL95] with a more
experimental perspective with the estimation of systematic uncertainties. Such a perspective
would also allow for comparisons of experiments.

The Freya package implements the detector model in Equ. (6.1) with Poisson broadening of a
theoretical energy spectrum with an effective energy 𝐸f(𝐸 ; 𝑘𝐵) from the Birks non-linearity2

as

𝑝pe(𝑛pe; 𝐸, 𝑓pe) =
[ 𝑓pe · 𝐸f(𝐸 ; 𝑘𝐵)]𝑛

𝑛pe!
𝑒− 𝑓pe ·𝐸f (𝐸;𝑘𝐵 ) (8.1)

and Gaussian broadening for the electronics readout and pedestal width 𝜎Q as

𝑝Q(𝑐; 𝐴, 𝑔, 𝜎Q) = N(𝑐; 𝐴 · 𝑔, 𝜎Q). (8.2)

More details are given in Sec. 6.1.

To extract systematic uncertainties 𝜎sys(𝑏) of the Fierz interference term 𝑏, we must include
all energy-dependent contributions in the electron beta spectrum. Thus, I use the theoretical
neutron decay beta spectrum from Sec. 2 in Equ. (2.9) with corrections as

dΓ
d𝐸𝑒

∝ 𝐹 (𝑍, 𝐸𝑒) ·
[
1 + 𝛿𝑅 (𝐸𝑒, 𝐸𝛽− )

]
· 𝑝𝑒𝐸𝑒

[
𝐸𝛽− − 𝐸𝑒

]2
[
1 + 𝑏𝑚𝑒

𝐸𝑒

]
, (8.3)

1https://github.com/maxlampe/freya
2We use the Birks non-linearity model to describe the effective total non-linearity and not only for the scintillator

non-linearity, as it is used in the literature [Bir51; Pös+21].

https://github.com/maxlampe/freya
https://github.com/maxlampe/freya
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with electron-proton Coulomb interaction correction with the Fermi function 𝐹 (𝑍, 𝐸𝑒) and
radiative and recoil correction 𝛿𝑅 (𝐸𝑒, 𝐸𝛽− ) as function of the electron energy 𝐸𝑒 and end
point energy 𝐸𝛽− .

I use the implementation of outer radiative corrections (based on [Sir67]) and recoil cor-
rections (based on [Rei99; IPT13]) from p3fit [Roi18; Sau18] and port them to Julia. The
Fermi function is approximated as [MM33]

𝐹 (𝑍, 𝐸𝑒) ≈
2𝜋[

1 − 𝑒−2𝜋[ with [ =
𝛼𝑍

𝛽
,

with fine-structure constant𝛼, relativistic factor 𝛽, and nuclear charge 𝑍 . This approximation
works well for neutron beta decays and leads to a relative deviation of ≤ 10−3 for the neutron
decay spectrum [Roi18]. This deviation must be considered when fitting measured data but
is negligible for neutron decay studies with Freya, as the generating function is also the fit
function.

Potential Future Work

This framework can be easily expanded with other detector response models and beta decay
rates to generalize the results and compare experiments, reducing ambiguities. Different
systematic sensitivities of beta decays, e.g., for 14O or 6He, can be compared for the same
detector response model with the same parameters. However, such studies for larger values
of 𝑍 required a more accurate implementation of the Fermi function as given in [Fer34;
BB82].

Also, probing the systematic uncertainty of new QDC non-linearity models is also possible
by expanding 𝑝Q with effective amplitude 𝐴f and non-linearity parameter 𝑘Q as

𝑝Q, f(𝑐; 𝐴, 𝑔, 𝜎Q, 𝑘Q) = N(𝑐; 𝐴f(𝐴, 𝑘Q) · 𝑔, 𝜎Q).

This approach can also be used to compare different electronic readout systems before a
measurement. In general, Freya can be used to compare experiment design decisions or for
the data analysis of future high-precision experiments of beta decay searches of the Fierz
interference term 𝑏 and potentially other energy-dependent quantities.

Setup and Characterization

For the studies in this chapter, I determine the systematic uncertainty 𝜎sys(𝑏) by sampling
one or multiple parameters 𝑖, e.g., the detector gain 𝑔, with a fixed variation 𝜎𝑖 and study
the induced deviations of 𝑏. I assume a prior distribution of 𝑏 = 0.017 ± 0.021 based on
the current most precise result of [Sau+20]. This choice might induce a bias of the resulting
systematic uncertainties towards non-Standard Model values of 𝑏. An initial consistency
test limits this bias at ≤ 12% of the resulting uncertainties.

Each simulated electron beta spectrum is generated from the theoretical spectrum in Equ. (8.3)
with the broadening of the detector model as in Equ. (8.1) and (8.2) with 2.2 ·108 events. The
extraction of the induced deviations of 𝑏 with Freya achieves a bias and baseline precision
limit of 5 ± 12 · 10−5. This precision is tested for deviations up to Δ𝑏 = 5 · 10−2. Therefore,
we can conduct reliable studies of 𝜎sys(𝑏) with the current implementation of Freya in the
range of 1.2 · 10−4 to 5 · 10−2. The baseline uncertainty of 𝜎Freya(𝑏) = 1.2 · 10−4 is included
in all results.
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(a) Difference of two normed histograms with 4 · 108

events and different values of the Fierz term 𝑏. The 𝑏
value difference is twice the target precision (5 · 10−3).

(b) Fit range dependence of the systematic uncertainty
𝜎sys (𝑏) for a set gain uncertainty. The errorbars do not
show statistical fluctuations between data points.

Figure 8.1 Simulated spectral dependence for the systematic uncertainty 𝜎sys (𝑏) determination with
Freya. Due to the spectral shift for non-zero Fierz terms, the estimated systematic uncertainty
depends on the fit range. This fit range dependence is stronger for the dominant detector parameter
variations, e.g., as for the gain 𝑔 in Sec. 8.2.

I use the detector parameters from the high-energy calibration fit of Sec. 7 with minimum
tensions between the residuals of 113Sn and 137Cs for the studies in this chapter: Gain
𝑔 = 30.931 ch/keV, effective Birks coefficient 𝑘𝐵 = 470 nm/keV, and light yield 𝑓PE =

0.658 keV−1. The offset, i.e., pedestal, is given as 𝑃 = 0 and the pedestal width as
𝜎Q = 117.2, from the corrections in Sec. 5. The width 𝜎Q is not varied in these studies as it
is already shown to be insignificant given its uncertainties.

I chose three fit ranges to compare the results for the systematic uncertainty 𝜎sys(𝑏) estima-
tion. Firstly, I use 39 − 743 keV (5 − 95% of endpoint energy 𝐸𝛽− ) as the fit range would
allow for comparisons of the statistical uncertainty studies in [GN16]. The second fit range
is from 256 − 743 keV (33 − 95%), which shows good sensitivity, see Fig. 8.1, and is our
target fit range based on previous work [Sau18]. In the past, fits below ≈ 250 keV lead to
increasing systematic uncertainties related to the trigger function and non-linearity. Finally,
I also fit from 365−743 keV (47−95%) to probe the sensitivity for a fit range that avoids the
critical trigger and QDC non-linearity issues. I focus on varying the lower fit bound, as it
significantly affects the resulting systematic uncertainties. When varying 𝑘𝐵, the systematic
uncertainty on 𝑏 could be reduced by decreasing the upper fit bound, but the lower fit bound
is still more impactful. Also, for previous Perkeo III analyses, the edge effect correction
sets the upper fit bound, which is currently studied for [Ber24], and not the corrections
included here.

8.2 Individual Systematic Effects

First, I focus on the sensitivity to variations of individual detector parameters for differ-
ent orders of magnitude to obtain scaling laws for the systematic uncertainty 𝜎sys(𝑏) and
understand the importance of these parameters. Such scaling laws help predict systematic
uncertainties of future experiments with similar detector response models and give precise
estimations of how much to improve problematic corrections to reach a desired precision.
We can also directly obtain the systematic uncertainties for uncorrelated corrections, such
as the pedestal and temperature-induced gain fluctuation corrections that affect only the
channel offset and gain, respectively. The results for the four detector parameters are shown
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(a) Variation of gain 𝑔 (relative) (b) Variation of effective Birks coefficient 𝑘𝐵 (relative)

(c) Variation of light yield 𝑓PE (relative) (d) Variation of channel offset 𝑃 (absolute)

Figure 8.2 Simulated scaling behavior of the systematic uncertainty 𝜎sys (𝑏) for varying individual
detector parameters with Freya. The results for different fit ranges are slightly shifted for better
visualization. I indicate the targeted precision of 5 ·10−3 as a dashed line, and all relevant corrections
from Sec. 5 and 6 are shown as vertical lines. The most significant systematic correction is the
temperature-induced gain fluctuation correction ("Drift"). The calibration support foil uncertainty
("Cal Foil Unc") is only a preliminary estimate, and the correction is limited by simulation data
availability.
The systematic uncertainty 𝜎sys (𝑏) is most sensitive to variations of the gain 𝑔 and effective non-
linearity Birks coefficient 𝑘𝐵. However, both parameters are correlated, see Sec. 8.3, and typi-
cally obtained from calibrations together. This effect makes interpreting the 𝑘𝐵 result ambiguous.
The systematic uncertainties grow when increasing the lower fit bound for systematic uncertainties
𝜎sys (𝑏) ≤ 1 · 10−3.
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in Fig. 8.2. Besides the uncorrelated corrections of individual detector parameters, the
correlated corrections from previous sections are also plotted for comparison and analyzed
in Sec. 8.3.

The scaling of 𝜎sys(𝑏) for individual detector parameter variations follows a linear relation
in the log-log plots of Fig. 8.2 above the saturation at the precision limit of Freya at
1.2 · 10−4. This relation indicates a slight exponential relation, which is intuitive. The
systematic uncertainty 𝜎sys(𝑏) is most sensitive to variations of the gain 𝑔 and effective
non-linearity Birks coefficient 𝑘𝐵, while the variations of the light yield 𝑓PE and the channel
offset 𝑃 have little effect. For the parameters with the biggest impact on 𝜎sys(𝑏), the
systematic uncertainties slightly grow with when increasing the lower fit bound for systematic
uncertainties𝜎sys(𝑏) ≥ 1·10−3. With these results, we can accurately estimate the systematic
uncertainties of uncorrelated corrections.

It is important to highlight that interpreting the results for individually varying the effective
Birks coefficient 𝑘𝐵 is ambiguous. In this study, the other parameters are fixed, and
for realistic calibration corrections, the gain 𝑔 and the effective Birks coefficient 𝑘𝐵 are
extracted together and also correlated, see Sec. 8.3. Varying 𝑘𝐵 can also induce an offset 𝑃,
but due to the final offset correction, see Sec. 5, 𝑃 is fixed at 𝑃 = 0 for our calibration and
neutron beam fits. Furthermore, the Birks non-linearity model does not accurately describe
the QDC non-linearity, as seen in Fig. 6.13. Another non-linearity model should have a
different behavior in terms of the systematic uncertainty of its parametrization on 𝜎sys(𝑏).

Temperature-Induced Gain Fluctuation Correction

Based on the results in Sec. 5.2.4 of a relative gain uncertainty of 𝜎(𝑔)/𝑔 = 4.2 ·10−4 for the
temperature-induced gain fluctuations, I obtain a systematic uncertainty 𝜎sys(𝑏) for different
fit ranges as

𝜎sys(𝑏) = 3.58 ± 0.66 · 10−3 (39 − 743 keV)
𝜎sys(𝑏) = 4.24 ± 0.78 · 10−3 (256 − 743 keV)
𝜎sys(𝑏) = 4.59 ± 0.83 · 10−3 (365 − 743 keV),

making it a significant correction close to, but still below, the targeted precision of 5 · 10−3.
The systematic uncertainty increases with a higher lower fit bound.

Pedestal and Offset Correction

Based on the results in Sec. 5.2.1 of a channel offset uncertainty of 𝜎(𝑃) = 0.56 ch for the
pedestal and final offset correction, I obtain a combined systematic uncertainty 𝜎sys(𝑏) for
both effects and different fit ranges as

𝜎sys(𝑏) = 0.78 ± 0.22 · 10−3 (39 − 743 keV)
𝜎sys(𝑏) = 1.00 ± 0.25 · 10−3 (256 − 743 keV)
𝜎sys(𝑏) = 0.93 ± 0.24 · 10−3 (365 − 743 keV),

making it a relevant, but not critical, correction for all tested fit ranges.
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Radiative Corrections

Besides uncertainties from experimental and data processing corrections, we must also
consider theoretical uncertainties of radiative corrections 𝛿𝑅 and the Coulomb interaction
in 𝐹. Using the combined relative uncertainty of radiative, Coulomb and recoil corrections
of 𝜎(Δtot)/Δtot = 3.48 · 10−3 based on the values from [Cir+23] for the integrated beta
spectrum, I can estimate the systematic uncertainty 𝜎sys(𝑏) for different fit ranges as

𝜎sys(𝑏) = 1.8 ± 1.2 · 10−4 (39 − 743 keV)
𝜎sys(𝑏) = 2.1 ± 1.3 · 10−4 (256 − 743 keV)
𝜎sys(𝑏) = 2.8 ± 1.3 · 10−4 (365 − 743 keV),

making it a minor correction.

8.3 Correlation of Systematic Effects

Expanding the studies from variations of individual detector parameters to correlated vari-
ations, we can construct a correlation matrix for the relevant detector model parameters
and estimate the systematic uncertainty for correlated corrections, i.e., the spatial response
correction and the energy losses at the calibration holder support foils. The correlation
matrix is

𝜌(𝑔, 𝑘𝐵, 𝑓PE, 𝑃) =
©«

1.000 0.035 −0.221 −0.149
0.035 1.000 −0.090 −0.093
−0.221 −0.090 1.000 0.225
−0.149 −0.093 0.225 1.000

ª®®®¬ (8.4)

and robust under fit range variations. Most notably, the parameters with the biggest impact
on 𝜎sys(𝑏), the gain 𝑔 and effective Birks coefficient 𝑘𝐵, have a positive correlation. The
correlations of 𝑘𝐵 to other variables are comparatively smaller, but 𝑘𝐵 and its uncertainty
are, e.g., approximately 16 times larger than the gain 𝑔 and its uncertainty, respectively. To
estimate the systematic uncertainty of correlated corrections, I vary all affected parameters
combined with their respective uncertainty for each correction.

Spatial Response Correction

Based on the results in Sec. 6.1.2 of the spatial response correction uncertainty on the gain
𝜎(𝑔)/𝑔 = 2.0 · 10−4) and on the light yield 𝜎( 𝑓PE)/ 𝑓PE = 2.5 · 10−4, I obtain a combined
systematic uncertainty 𝜎sys(𝑏) for different fit ranges as

𝜎sys(𝑏) = 1.63 ± 0.30 · 10−3 (fit 39 - 743 keV)
𝜎sys(𝑏) = 1.93 ± 0.35 · 10−3 (fit 256 - 743 keV)
𝜎sys(𝑏) = 2.15 ± 0.40 · 10−3 (fit 365 - 743 keV),

making it a relevant, but not critical, correction similar to the offset correction.

Calibration Support Foil Energy Loss Correction

Based on the initial estimated result in Sec. 6.2 of the correction induced by the energy losses
in the calibration source holder with an uncertainty on the gain 𝜎(𝑔)/𝑔 = 2.6 ·10−4, the light
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Figure 8.3 Preliminary systematic uncertainty budget for the Fierz interference term measurement
with Perkeo III for a fit range of 256 - 743 keV. The overall systematic uncertainty for this fit range
is 𝜎sys (𝑏) = 4.79 ± 0.91 · 10−3 and within the targeted precision of 𝜎sys (𝑏) ≤ 5 · 10−3 in [Lam19].
The result is mainly set by the temperature-induced gain fluctuation and spatial response correction.

yield 𝜎( 𝑓PE)/ 𝑓PE = 3.2 · 10−3, and the effective Birks coefficient 𝜎(𝑘𝐵)/𝑘𝐵 = 6.8 · 10−3, I
obtain a combined systematic uncertainty 𝜎sys(𝑏) for different fit ranges as

𝜎sys(𝑏) = 1.11 ± 0.13 · 10−2 (fit 39 - 743 keV)
𝜎sys(𝑏) = 1.23 ± 0.17 · 10−2 (fit 256 - 743 keV)
𝜎sys(𝑏) = 1.35 ± 0.19 · 10−2 (fit 365 - 743 keV),

making it the potentially largest systematic uncertainty. However, this correction is presently
set by fluctuations in the interpolation function that are caused by a lack of available data
from the simulation studies. This correction has a great potential for improvement and is
studied for [Ber24]. Also, solving the QDC non-linearity issue and enabling calibration fits
with the lower energy sources 109Cd and 139Ce will decrease the systematic uncertainty and
set limits on the Birks coefficient, whose correlated uncertainty is one dominant cause of
the effect.

8.4 Systematic Uncertainty Budget

With the systematic uncertainties for all dominant corrections estimated with Freya and the
upper limits of minor corrections in Sec. 5 and 6, I can calculate the preliminary systematic
uncertainty for the corrections studied in this thesis as

𝜎sys(𝑏) = 4.04 ± 0.78 · 10−3 (fit 39 - 743 keV)
𝜎sys(𝑏) = 4.79 ± 0.91 · 10−3 (fit 256 - 743 keV)
𝜎sys(𝑏) = 5.18 ± 0.97 · 10−3 (fit 365 - 743 keV).

The systematic error budget is illustrated in Fig. 8.3. For fits from 39 and 256 keV, the
overall systematic uncertainty is within the targeted precision of 𝜎sys(𝑏) ≤ 5 · 10−3 as stated
in the proposal [Lam19]. Studies to extract the Fierz interference term 𝑏 with lower fits
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bounds of 365 keV would exceed the targeted precision. For all fit ranges, the result and
uncertainty are mainly set by the temperature-induced gain fluctuation and spatial response
correction. In this work, the statistical uncertainty 𝜎stat(𝑏) limitations are not discussed.
Based on the studies in [GN16], a simulation with 108 events leads to a statistical uncertainty
of 𝜎stat(𝑏) = 8 · 10−4. Neglecting the assumptions and simplifications in [GN16], this result
implies a required 2.5 ·106 events of detected neutron beta decays to reach𝜎stat(𝑏) = 5 ·10−3.
Our collected data set surpasses this requirement by two orders of magnitude, see Sec. 5.4.

Not included in the systematic uncertainty budget is the correction from the calibration
support foil induced energy losses, as it is currently limited by the available data and
including it is not meaningful. Also, not studied in the analysis are the discussed corrections
in Sec. 6 that require the further simulation studies for the edge effect and the trigger
function, and new experimental work for the QDC non-linearity. The simulation studies
for the calibration support foil induced energy losses, edge effect, and trigger function are
currently conducted for [Ber24].

8.5 Optimizing Detector Parameters

How can future measurements optimize their setup in order to reach a precision 𝜎sys(𝑏) ≤
5 · 10−3? With Freya, we can test the potential of optimizing individual detector parameters,
such as light yield 𝑓PE, to probe how this would change the sensitivity of the systematic
uncertainty 𝜎sys(𝑏).

We have a concrete example for a light yield 𝑓PE improvement when comparing the 2009 and
2020 Perkeo III detectors: The light yield improved from 𝑓PE ≈ 0.232 keV−1 to 𝑓PE ≈ 0.658
keV−1. I simulate the systematic uncertainty 𝜎sys(𝑏) for two detectors with these two values
to see if this affects the scaling laws from Fig. 8.2 for the two parameters with the biggest
impact on 𝜎sys(𝑏), the gain 𝑔 and the effective Birks non-linearity coefficient 𝑘𝐵. To only
capture the direct effect of the light yield change, all other parameters are the same as in the
previous section.

The results are shown in Fig. 8.4. The relative sensitivity to gain variations stays constant
with a weighted average change of +5(11)%, which is expected, given the functional relation
in Equ. (6.1). For the Birks coefficient, I obtain an indicated improvement of the relative
sensitivity of −29(16)% for 𝜎(𝑘𝐵)/𝑘𝐵 ≥ 10−3. I neglect the smaller 𝑘𝐵 variations, as they
are within the baseline precision limit 𝜎Freya. This result indicates that the extraction of
the Fierz interference term 𝑏 from the electron beta spectrum is slightly improved by the
increased energy resolution, and complements the relative sensitivity result in Fig. 8.2.

I repeat the test for a hypothetical non-linearity reduction, e.g., with new electronic readout
systems, from 𝑘𝐵 = 470 nm/keV to half the value 𝑘𝐵 = 235 nm/keV. The relative sensitivity
to gain variations shows indications of a slight improvement with a weighted average change
of −15(11)%. For the Birks coefficient, I obtain no measurable improvement when using
the same absolute uncertainty. Thus, an effective 𝑘𝐵 improvement could slightly reduce the
sensitivity of 𝜎sys(𝑏) to gain variations for future measurements.

Future Experiments and Goodhardt’s Law

For previous Perkeo III measurements, the main focus of improvement for detectors was
light yield, i.e., energy resolution, improvements, followed by temperature stability. Im-
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(a) Variation of gain 𝑔 (relative) (b) Variation of effective Birks coefficient 𝑘𝐵 (relative)

Figure 8.4 Comparing the sensitivity of the systematic uncertainty 𝜎sys (𝑏) when changing the
detector light yield with Freya. The sensitivity to gain variations does not change within statistical
limits, and there is a slight trend of improvement for Birks coefficient variations of −29(16)% of the
resulting systematic uncertainties.

proving the energy resolution improves the precision of calibration measurements with the
gain and non-linearity parametrization and also indirectly improves critical corrections as
the temperature-induced gain fluctuations and, arguably, the spatial response corrections.3
Furthermore, while the extraction of the Fierz interference term 𝑏 is barely sensitive to
energy resolution improvements, such improvements are still essential to test our detec-
tor response model hypothesis with calibration measurements and discover yet unknown
systematic effects that we must correct for.

Still, whether this policy suits future measurements that seek greater precision is worth
questioning. Better energy resolution requires more corrections to be considered and also
a higher precision of these corrections. As seen in this analysis of the 2019/20 Perkeo III
measurement, one of the two new calibration source holder corrections, albeit limited
by simulation data availability, affects the systematic uncertainty of 𝑏 and was negligible
in previous measurements. Also, the required higher-order contributions to the internal
conversion coefficients highlight the general sensitivity to systematic effects. Further energy
resolution increases will lead eventually to an even greater reliance on simulation results
and will require estimations for systematic uncertainties of the theoretical description of the
calibration sources.

This trend is a case of Goodhardt’s law: “When a measure becomes a target, it ceases to be a
good measure” [Hos96]. Not optimizing for greater energy resolutions for well-understood
follow-up experiments might be counter-intuitive but lead to higher overall precision. The
studies in this section support this approach. From a pure spectral perspective, improving
individual detector parameters does not significantly improve the sensitivity of 𝜎sys(𝑏) to
detector parameter uncertainties. However, improving the precision of individual corrections
and the relative uncertainties of these detector parameters has the greatest potential for
improvement for future measurements of 𝑏 instead of, e.g., reducing the overall non-linearity
value of new readout electronics or further increasing the light yield. This approach would
simplify the optimization problem, as we can factorize it into individual optimizations and
analyses of systematic effects to a certain extent. This strategy only works for searches of

3A greater light yield can correlate with better uniformity and, therefore, smaller spatial response correction,
but not necessarily the precision of the correction.
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gradient deviations, e.g., as the Fierz interference term 𝑏, and not for searches of localized
spectral deviations, e.g., as for light-particle searches.

To conclude, the optimization of high-precision experiments is becoming more complex,
requiring advanced modeling and optimization approaches, as discussed in Sec. 3 and
presented in our works [LBM22; Lam+22a; Dor+23]. We can continue driving the precision
boundaries by improving the systematic uncertainties of corrections and detector parameters.
Better energy resolutions are certainly necessary to verify any results, but innovative ideas
for the experiment design could also achieve crucial improvements.
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9 Summary

High-precision experiments are vital tools to test the existing Standard Model of particle
physics, gain insights into unknown fundamental processes, and advance our understand-
ing. These experiments are often complex and intricate, with many tunable parameters that
require exact calibrations, understanding, and precise quantification of systematic uncertain-
ties. Studies of neutron beta decay are prime examples of such high-precision experiments.
They provide an essential perspective to study the structure of the weak interaction and
search for left-handed scalar and tensor contributions. These contributions are quantified in
the Fierz interference term 𝑏, which is zero in the Standard Model. If non-zero, it would
add an energy-dependent phase-space correction to the differential decay rate. With a pre-
cise measurement of the electron beta spectrum, we can probe the structure of the weak
interaction for these contributions.

Within this thesis, we successfully conducted such a measurement with the Perkeo III
spectrometer at the Institut Laue-Langevin in France in 2019/20. I present the experimental
setup and how we designed new scientific equipment for this high-precision electron energy
measurement. Also, I explain the newly developed data analysis tool and pipeline with
corrections that expands on previous work for all studied corrections, introduce single-
event corrections, and discuss three new ones. In doing so, the individual corrections
are refined, leading to improvements of up to two orders of magnitude, and significant
overall quality advances of the data set are highlighted and compared to the previous
Perkeo III data set from 2009. Furthermore, my studies achieved important progress in
understanding systematic effects, such as correlated electron emissions and their times-of-
flight, the electronics integrator non-linearity, and spatial response corrections. The causes
of remaining systematic issues are discussed and tested with spectral analysis of calibration
source and neutron beta decay measurements. Relevant future studies with experiments and
simulations are discussed and pointed out.

In this work, I studied new methodologies for high-precision experiments, specifically
statistical machine learning and deep learning approaches to enhance experimental work by
integrating physical motivation and statistical goals where applicable. I present techniques
for post-experimental data analysis, pre-experimental optimization of experiment design,
and enhancing the analysis of large-scale simulation data. My studies cover applications
in low-energy particle physics to state-of-the-art computational astrophysics simulations
[LBM22; Lam+22a; Dor+23]. In doing so, I successfully developed four analysis tools
for data analysis, simulations, and hypothesis testing essential for analyzing the Perkeo III
2019/20 measurement. I derive the preliminary systematic uncertainty budget for the Fierz
interference term 𝑏 of all studied corrections as

𝜎sys(𝑏) = 4.79 ± 0.91 · 10−3,

which is in the targeted precision limit [Lam19] for the 2019/20 Perkeo III measurement
campaign. I determine limitations and single out areas of improvement with the greatest
potential to pave the way for improved searches of left-handed tensor contributions in the
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weak interaction with this data set. Also, I discuss experiment optimization strategies to
guide future high-precision experiments using new methodologies.
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