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Abstract

This cumulative thesis presents several novel high-order low-dissipation numeri-
cal schemes with improved robustness and performance. More specifically, a new
high-order framework which can flexibly adjust dissipation, a fast multi-resolution
essentially non-oscillatory (FMENO) scheme and a neuron-based method for con-
struct high-order schemes are proposed. These newly proposed methods provide
the new insight and new technique to develop a high-order low-dissipation numer-
ical schemes from three aspects, i.e. flexible framework to adjust dissipation, high
efficiency and classical methods integrated with machine learning. The newly pro-
posed methods in this thesis are demonstrated to improve the performance and ro-
bustness of high-order low-dissipation schemes and to deepen the understanding of
numerical scheme reconstruction.

First, a framework to construct arbitrarily high-order low-dissipation shock-
capturing schemes with flexible and controllable nonlinear dissipation for
convection-dominated problems is proposed. Based on the construction of TENO-
like candidate stencils with incremental width, each stencil is evaluated and indi-
cated as smooth or nonsmooth by the ENO-like stencil selection procedure proposed
in the targeted essentially non-oscillatory (TENO) scheme [Fu et al., Journal of Com-
putational Physics 305 (2016): 333-359]. Rather than being discarded directly as with
TENO schemes, the nonsmooth candidates are filtered by an extra nonlinear lim-
iter, such as a monotonicity-preserving (MP) limiter or total variation diminishing
(TVD) limiter. Compared with the standard TENO schemes, discarding completely
the nonsmooth candidate stencils is avoid and their contributions are filtered by a
nonlinear limiter. The filtered candidate stencil contributions are assembled to form
the final reconstruction with their respective optimal linear weights. In addition,
through deploying a wide range of limiters, such as TVD and MP, the new scheme
achieves adaptive nonlinear dissipation property without deteriorating the ground
resolution and properties of TENO.

Second, a new class of high-order fast multi-resolution essentially non-oscillatory
schemes is proposed with an emphasis on both the performance and the computa-
tional efficiency. To capture the local flow with multi-resolution scales, a set of can-
didate stencils ranging from high- to low-order (from large to small stencil) is con-
structed in a hierarchical manner. The candidate stencils are evaluated by the regu-
larity criterion introduced with MP limiter. If the reconstructed cell interface flux of
a candidate stencil locates within the MP lower and upper bounds, it is regarded to
be smooth. The multi-resolution stencil selection strategy will choose these smooth
stencils with better spectral property or higher-order accuracy. If all the candidate
stencils are judged to be nonsmooth, the targeted stencil which violates the MP cri-
terion the least is deployed as the final reconstruction instead. With this new frame-
work, the desirable high-order accuracy is restored in the smooth regions while the
sharp shock-capturing capability is achieved by selecting the targeted stencil satis-
fying the MP criterion most. Compared to the standard weighted/targeted essen-
tially non-oscillatory (W/TENO) schemes, the computational efficiency is dramat-
ically enhanced by avoiding the expensive evaluations of the classical smoothness
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indicators.
Last, the potential of integrating machine learning to design high-order low-

dissipation ENO schemes is investigated. Inspired by the work that weights of
candidate stencils containing discontinuities can be fully removed and this binary
selection can be predicted by a well-trained neural network, we introduce a deep
artificial neural network (ANN) that can detect locations of discontinuity and build
a six-point ENO-type scheme (NENO6) based on this detection. Compared with
classical TENO6-opt scheme, neural based indicator rather than classical smooth-
ness indicator is deployed to suggest an ENO-like sub-stencil selection. This new
framework makes use of the complex underlying input-output mapping in neural
network rather than empiricism smoothness indicators. We demonstrate that our
model can generate highly accurate predictions of several one dimensional bench-
mark examples in different hyperbolic equations. Compared with other neural
based schemes, NENO6 shows an improved universality, assured boundedness and
accuracy.
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Chapter 1

Introduction

In this thesis, my research in the Chair of Aerodynamics and Fluid Mechanics (AER)
at the Technical University of Munich (TUM) is presented. During this period, I have
been working on numerical schemes for hyperbolic problems and machine learning
for fluid mechanics.

The thesis is arranged as following: In Chapter 1, the motivation and the sci-
entific background of the thesis is first introduced. In addition, the objectives of
the entire thesis are summarized. In Chapter 2, several numerical methods are in-
troduced: The governing equation and its discretization methodology are first re-
viewed. Popular high-order schemes and their key ideas are discussed. In Chapter
3, the training strategy of a classical neural network and recent progress in machine
learning for fluid mechanics are discussed. Chapter 4 summarizes the main accom-
plishments achieved in the current thesis. Concluding remarks and future work are
presented in Chapter 5. A discussion with respect to the state of the art is concluded
in Chapter6. The e-prints of the publication accomplished in the current thesis are
attached in Appendix A.

1.1 Motivation

Compressible fluid dynamics problems which are relevant to high-speed aircraft, jet
engines, rocket motors, high-speed entry into a planetary atmosphere are often en-
countered in the areas of science and engineering. A typical shock-wave boundary
layer interaction is shown in Fig. 1.1. These fluid dynamics problems include a wide
range of spatial and temporal scales and shock waves. However, low numerical dis-
sipation is expected to resolve small-scale vortex accurately while adequate numer-
ical dissipation is expected to capture the shock stably. To analyze these complex
multi-scale and non-linear fluid phenomena, advanced numerical schemes which
can solve the contradictory requests are proposed.

1.2 An overview of numerical schemes in solving multiscale
flows

From a mathematical point of view, the governing equations behind many engineer-
ing problems are time-dependent, nonlinear hyperbolic PDEs. Two challenges in
solving the hyperbolic equations are low numerical dissipation with small error and
non-physical oscillations in the presence of shocks. In this section, we will briefly
review some of most important techniques in solving the hyperbolic problems.

Low-order schemes, i.e. first- or second-order schemes, are traditionally used to
keep monotonicity in capturing shock waves. First-order upwind Godunov scheme
[2] and first-order central Lax method [3] are two typical examples. However, the
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FIGURE 1.1: Sketch of an irregular shock-wave / boundary-layer interaction (SWBLI)
[1].

upwind scheme causes strong dispersion and dissipation problems. To cope with
the intrinsic inaccuracy in low-order schemes, high-order schemes are developed.
Even these linear high-order schemes are capable to gain solutions with high accu-
racy in smooth regions, they fail to suppress the spurious oscillations in the vicinity
of the discontinuities. In order to resolve the vast range of spatial and temporal
length-scales in complex fluid, the reconstruction of high-order and low-dissipation
schemes gains more and more attentions.

One proposed method to keep the high accuracy of higher-order as well as
to guarantee the monotone feature is the use of nonlinear limiters. According
to the variations of the limiters, total variation diminishing (TVD) scheme [4],
superbee limiter [5], van Leer limiter [6], Woodward limiter, Minmod limiter
[7] and the monotone upstream-centered scheme for conservation laws (MUSCL)
schemes[8] are the popular choices. Another popular methods [9] is the high-order
low-dissipation schemes based on the essentially non-oscillatory (ENO) scheme
[9][10][11][12][13][14][15]. Harten et al. [12] first propose the high-order ENO
scheme, which selects the smoothest stencil from a set of predefined candidate
stencils to avoid the Gibbs phenomenon near discontinuities. Following the idea
of identifying stencils with different smoothness, WENO scheme and its variants
[9][14][15]are proposed based on the smoothness indicators such that the desired
accuracy order is restored in smooth regions and the ENO property is preserved
near discontinuities. Although the performance of the high-order low-dissipation
schemes is enhanced by the aforementioned schemes, limitations in terms of fol-
lowing aspects, e.g. control dissipation with the flexible framework, high time effi-
ciency especially in a very high-order scheme construction and the robustness of the
schemes are still unsolved.
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1.3 Machine learning in fluid mechanics

In the past few years, we have experienced a renewed blossoming of ML applica-
tions in fluid mechanics. Much of this interest is attributed to the remarkable per-
formance of deep learning architectures, which hierarchically extract informative
features from data. As ML methods can provide an input-output mapping with a
high degree of complexity, it is potential to be combined into classical fluid mechan-
ics to assist the reduced-order modeling [16][17][18], shape optimization [19], tur-
bulence closure modeling [20][21][22], numerical schemes construction [23][24][25]
[26][27]and flow control [28][29].

Artificial neural networks (ANNs) are the most common structures, and they are
composed of layers of neurons, where input layer neurons receive an input data,
processes it through an activation function, and produces an output. Nonlinear op-
timization methods, such as backpropagation [30], are used to identify the network
weights to minimize the error between the prediction and labeled training data. In
particular, we consider a specific feed-forward network architecture known as multi-
layer perceptions (MLPs).

When the activation functions are expressed in terms of convolutional kernels,
convolutional neural networks (CNN) whose processing elements only have di-
rectly interactions within a finite local neighborhood [31] are developed. The CNNs
achieve a great success in image and pattern recognition. Another type of neural net-
work worth to be mentioned is recurrent neural networks (RNNs). The architecture
of RNN takes into account the inherent order of the data. However, their effective-
ness has been hindered by diminishing or exploding gradients that emerge during
their training. The renewed interest in RNNs is largely attributed to the develop-
ment of the long short-term memory (LSTM) [32] algorithms that deploy cell states
and gating mechanisms to store and forget information about past inputs, thus alle-
viating the problems with gradients and the transmission of long-term information
from which standard RNNs suffer. An extended architecture called the multidi-
mensional LSTM network [33] was proposed to efficiently handle high dimensional
spatiotemporal data.

1.4 Outline

The introduction highlights the progress of the high-order numerical schemes capa-
ble of capturing shock-wave and resolve small-scale fluid structures and the applica-
tion of machine learning in investigating numerical toolbox in fluid mechanics. The
objectives of the present work is to develop a high-order low-dissipation numerical
schemes from new insight and new technique.

First, a framework to construct arbitrarily high-order low-dissipation shock-
capturing schemes with flexible and controllable nonlinear dissipation for
convection-dominated problems is proposed. Through the adaptation of nonlinear
limiters, nonlinear dissipation in the newly proposed framework can be controlled
separately without affecting the performance in smooth regions. The work is pre-
sented in paper I which is available in Appendix A.1.

Second, a new class of high-order fast multi-resolution essentially non-oscillatory
(FMRENO) schemes is proposed with an emphasis on both the performance and
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the computational efficiency. Compared to the standard weighted/targeted essen-
tially non-oscillatory (W/TENO) schemes, the computational efficiency is dramat-
ically enhanced by avoiding the expensive evaluations of the classical smoothness
indicators. The work is presented in paper II which is available in Appendix A.2.

Third, we investigate the potential of integrating machine learning to design
high-order low-dissipation ENO schemes. We introduce an ANN that can detect
locations of discontinuity and build a six-point ENO-type scheme based on a set of
smooth and discontinuous training data. The work is presented in paper III which
is available in Appendix A.3.
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Chapter 2

Numerical methods

In this chapter, the concepts of numerical methods relevant to governing equation
and high order schemes are reviewed.

2.1 Hyperbolic Conservation Laws

In this section, the classical high-order low-dissipation finite-difference schemes and
Runge-Kutta method for solving hyperbolic conservation laws, i.e. Navier-Stokes
equations, are introduced.

2.1.1 Navier-Stokes equation

For compressible fluid dynamics, the conservative forms governing equations, i.e.
Navier-Stokes equations, can be written as

∂r

∂t
+r · (ru) = 0, (2.1)

∂(ru)
∂t

+r · (ruu + pd) = r · t, (2.2)

∂E
∂t

+r · (u(E + p)) = r · (u · t � q̇), (2.3)

where r, u and E are density, velocity and total energy respectively.
In the energy equation, q̇ is the heat flux, which can be calculated by Fourier’s

law. t is the viscous stress tensor, which can be defined as a function of dynamic
viscosity µ and the strain rate sensor S in the Stokes’ hypothesis for a Newtonian
fluid

t = 2µS � 2
3

µ(r · u)d, (2.4)

S =
1
2
(ru + (ru)T). (2.5)

2.1.2 Numerical discretization

Normally, the heat transfer term and viscous term are treated as source terms sepa-
rately. In this manner, the governing equations reduce to the Euler equations, which
can be further written as a system of hyperbolic conservation laws

∂Q
∂t

+r · F(Q) = 0, (2.6)
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where Q = [r, ru, E]T denotes the conservative variables and F = [ru, ruu +
pd, u(E + p)]T denotes the flux tensor.

As the conservative variables are coupled through the ideal-gas equations-of-
state (EOS) p = (g � 1)re, the discretizations of the convective terms in Eq. (2.6) are
typically applied in the characteristic space to avoid numerical oscillations induced
by the interaction between different characteristic waves [14].

Following the equation

qm = R�1
i+1/2Qm, fm = R�1

i+1/2Fm, (2.7)

all conservative variables and fluxes are projected to the characteristic space, where
m denotes for each characteristic field and the left eigenvector matrix R�1

i+1/2 can be
computed by the Roe average [34] at the cell interface.

In finite difference algorithm, the projected fluxes fm are split by flux splitting
methods as

f (l)± =
1
2
( f (l) ± l(l)

maxq(l)), (2.8)

where f (l) and q(l) denote the lth element of the vector f and q, the sign "+" and "�"
denote the positive and negative flux parts, such that d f (l)+

dq � 0 and d f (l)�
dq  0.

Normally, the eigenvalue of l(l)
max denotes the lth eigenvalue of ∂F/∂Q at cell i

and can be defined according to the splitting methods, such as the Rusanov splitting
method [35] and the Roe splitting method [34].

For instance, the mostly employed flux-splitting method, i.e. Rusanov splitting
method [35] is defined as

l(l)
max = max

���l(l)
m

��� , m = 1, . . . , n, (2.9)

over the entire computational flowfield.
The numerical flux at the cell interface i + 1/2 for each characteristic field is re-

constructed following
f̂i+1/2 = f̂+i+1/2 + f̂�i+1/2. (2.10)

At last, through a reverse projection of the flux in characteristic field, the flux in
the physical space can be obtained as

F̂i+1/2 = Ri+1/2f̂i+1/2. (2.11)

2.1.3 Runge-Kutta method

After discretizing the spatial derivatives of hyperbolic conservation laws Eq. (2.6), a
set of ODEs is formed as

dQ
dt

= L(Q). (2.12)

To advance the conservative variables in time, explicit high-order Runge-Kutta
method [36] are popular for resolving the transient flows. To ensure the strong
stability property for spatial discretization, Gottlieb et al. [36] proposed a class of
strong stability-preserving high-order time discretizations for semi-discrete method-
of-lines approximations of partial differential equations.
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An optimal third-order SSP Runge-kutta method [36] is given as

Q(1) = Qn + DtL(Qn)
Q(2) = 3

4 Qn + 1
4 Q(1) + 1

4 DtL(Q(1))
Qn+1 = 1

3 Qn + 2
3 Q(2) + 2

3 DtL(Q(2))
, (2.13)

for a sufficiently small timestep constrained by a CFL condition [37].

2.2 High-order schemes

In this section, the high-order low-dissipation shock-capturing schemes which are
essential numerical methods to reconstruct the flux F at the cell interface i + 1/2 in
compressible fluid problems are elaborated. Firstly, the general method to construct
high-order linear scheme is introduced. To solve the flow field which may involve
discontinuities and broadband flow scales with high-order schemes, many concepts
are introduced.

Several classical schemes, such as ENO, WENO and its variants and TENO
schemes are reviewed here [10][11][12][13][14][15]. The aims of these methods are to
concentrate on restoring high-order accuracy in smooth regions with low numerical
dissipation while preserving monotonicity near discontinuities[38][9][39].

2.2.1 General method to construct the high-order scheme

To facilitate the presentation of (W/T)ENO schemes, we first consider the gen-
eral method to construct a polynominal-based high-order scheme for the one-
dimensional scalar hyperbolic conservation law

∂q
∂t

+
∂

∂x
f (q) = 0, (2.14)

where q and f denote the conservative variable and the flux function respectively.
The characteristic signal speed is assumed to be positive ∂ f (q)

∂u > 0. The developed
schemes can be extended to systems of conservation laws and multi-dimensional
problems in a straightforward manner.

For a uniform Cartesian mesh with cell centers xi = iDx and cell interfaces
xi+1/2 = xi +

Dx
2 , the spatial discretization results in a set of ordinary differential

equations
dqi(t)

dt
= �∂ f

∂x
|x=xi , i = 0, · · · , n, (2.15)

where qi is a numerical approximation to the point value q(xi, t). The semi-
discretization with Eq. (2.15) can be further discretized by a conservative finite-
difference scheme as

dqi
dt

= � 1
Dx

(hi+1/2 � hi�1/2), (2.16)

where the primitive function h(x) is implicitly defined by

f (x) =
1

Dx

Z x+Dx/2

x�Dx/2
h(x)dx, (2.17)

and hi±1/2 = h(xi ± Dx
2 ).
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A high-order approximation of h(x) at the cell interface has to be reconstructed
from the cell-averaged values of f (x) at the cell centers. Eq. (2.16) can be written as

dqi
dt

⇡ � 1
Dx

( bfi+1/2 � bfi�1/2), (2.18)

where f̂i±1/2 denotes the approximate numerical fluxes and can be computed from
predefined stencils.

For a K-point stencil, a K-th order polynomial interpolation of function h(x) can
be assumed as

h(x) ⇡ f̂ (x) =
K�1

Â
l=0

alxl . (2.19)

After substituting Eq. (2.21) into Eq. (2.17) and evaluating the integral functions at
the stencil nodes, the coefficients al are determined by solving the resulting system
of linear algebraic equations.

It is worth to notice that a K-th order linear scheme is achieved following this
interpolation. However, the linear high-order scheme can not avoid the Gibbs phe-
nomenon near discontinuities. Different computational strategies are applied to con-
struct nonlinear high-order schemes with the predefined candidate stencils, the typ-
ical numerical schemes and their advantages are elaborated in the following.

2.2.2 WENO schemes

Among all the schemes, the idea of ENO is first proposed by Harten et al. [12],
which selects the smoothest stencil from a set of predefined candidate stencils to
avoid the Gibbs phenomenon near discontinuities. Based on the development of the
high-order ENO-family schemes, Liu et al. [13] propose the WENO scheme and find
that based on the same set of candidate sub-stencils in [12], the optimal global high-
order accuracy can be achieved if a convex combination of all candidate sub-stencils
is applied.

For the classical WENO schemes, the global Kth-order scheme is constructed
based on a set of low order candidate stencils ranging from S0 to S K+1

2 �1. All candi-
date stencils feature the same width as r. To obtain K = (2r � 1)th-order approxima-
tion for bfi+1/2, (r� 1)-degree polynomial distribution is supposed on each candidate
stencil as where f̂i+1/2 is assembled by a convex combination of r candidate stencil
fluxes

bfi+1/2 =
r�1

Â
k=0

wk bfk,i+1/2, (2.20)

where wk denotes the nonlinear weight for each candidate flux, and bfk,i+1/2 denotes
the r-th order approximate numerical flux similar to the definition in Eq. (2.21). And
each (r � 1)-degree candidate stencil can be assumed as

h(x) ⇡ f̂k(x) =
r�1

Â
l=0

al,kxl . (2.21)

After substituting Eq. (2.21) into Eq. (2.17) and evaluating the integral functions at
the stencil nodes, the coefficients al,k are determined like al in the general construc-
tion of high-order scheme.

For the five-point WENO schemes, the sketch of three candidate stencils S0, S1, S2
is shown in Fig. 2.1.
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FIGURE 2.1: Sketch of the candidate stencils for the five-point reconstruction WENO
scheme.

And based on the pre-defined candidate stencils, the expressions for the three
candidate fluxes are

f̂0,i+1/2 = 1
6 (2 fi�2 � 7 fi�1 + 11 fi),

f̂1,i+1/2 = 1
6 (� fi�1 + 5 fi + 2 fi+1),

f̂2,i+1/2 = 1
6 (2 fi + 5 fi+1 � fi+2).

(2.22)

For suppressing Gibbs oscillations in the presence of discontinuities, the weight of
candidate stencils which are crossed by discontinuities will be reduced. And the
weight of each candidate stencil can be decided by the smoothness indicator

ak =
dk

(bk,r + #)2 , k = 0, · · · , r � 1, (2.23)

where dk denotes the optimal weight that generates a (2r � 1)-th order scheme on
the full stencil with (2r � 1) points and # = 10�6 is introduced to prevent the zero
denominator. For the five-point WENO schemes, the overall fifth-order accuracy is
achieved with d0 = 0.1, d1 = 0.6, d2 = 0.3.

Following Jiang and Shu [14], bk,r can be given as

bk,r =
r�1

Â
j=1

Dx2j�1
Z xi+1/2

xi�1/2

✓
dj

dxj f̂k(x)
◆2

dx (2.24)

based on the L2 norm of the derivatives of the reconstructed candidate polynomials.
In smooth regions, the convex combination of r stencils produces (2r � 1)-th or-

der approximate numerical flux evaluated at the cell face. If one certain stencil con-
tains discontinuity, the weight of the corresponding stencil deteriorates to be nearly
zero and the scheme degenerates to r-th order reconstruction. For the five-point
WENO schemes, explicit expressions for the smoothness indicators are

b0 = 1
4 ( fi�2 � 4 fi�1 + 3 fi)2 + 13

12 ( fi�2 � 2 fi�1 + fi)2,
b1 = 1

4 ( fi�1 � fi+1)2 + 13
12 ( fi�1 � 2 fi + fi+1)2,

b2 = 1
4 (3 fi � 4 fi+1 + fi+2)2 + 13

12 ( fi � 2 fi+1 + fi+2)2.
(2.25)

Subsequently, based on the smoothness indicators of candidate stencils, the non-
linear weights wk are given as

wk =
ak

Âr�1
l=0 ak

, k = 0, · · · , r � 1, (2.26)

such that the contributions from the candidate stencils crossed by discontinuities
reduce and the high-order accuracy is restored asymptotically in smooth regions.
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2.2.3 Variants of WENO schemes

Practical implementations reveal that the classical WENO scheme [14] is rather dis-
sipative to solve turbulence flows. Based on this observations, several variants of
WENO schemes are proposed to further improve the performance.

The performance of the WENO schemes can be further enhanced by improv-
ing the nonlinear weighting strategy, e.g., the WENO-M [40] and WENO-Z [41][42]
schemes avoid the order degeneration near critical points through correcting the
nonlinear weights to be closer to the optimal linear ones. Henrick et al. [43] sug-
gest that restoring the optimal accuracy order near critical points can resolve the
over-dissipation issue. Necessary and sufficient conditions have been derived and a
mapping strategy based on classical WENO, referred as WENO-M, has been devel-
oped accordingly. However, as investigated by Borges et al. [44], the improvements
demonstrated by WENO-M [43] over classical WENO result from larger weights of
nonsmooth candidate stencils and less nonlinear adaptive dissipation, rather than
from higher accuracy near critical points. To further decrease the nonlinear adap-
tive dissipation, a new smoothness indicator has been proposed by Borges et al.
[44], which introduces a global high-order undivided difference into the weighting
strategy of the classical WENO scheme. As an alternative approach [45], the non-
linear dissipation adaptation can be controlled by comparing the ratio between the
largest and the smallest calculated smoothness indicator. By introducing a problem-
dependent threshold, adaptation is eliminated when the ratio is below the thresh-
old. The aforementioned WENO-like schemes reduce the dissipation of the classi-
cal WENO significantly. In [46], a new smoothness indicator that can decrease the
measured smoothness variances on different candidate stencils in smooth regions is
proposed. The resulting new schemes based on the same candidate stencils of clas-
sical WENO schemes are called WENO-S. However, they are still too dissipative for
resolving turbulence-like high-wavenumber fluctuations.

Besides decreasing the nonlinear adaptive dissipation, optimizing the back-
ground counterpart linear scheme of WENO can improve the overall dissipation
property too. The WENO-SYMOO [47] and WENO-CU6 [48] schemes optimize
the background scheme as a central scheme by introducing the contribution of the
downwind stencil. However, anti-dissipation is inherently built in for a certain
wavenumber range, which may be problematic for critical applications. There-
fore, in terms of designing low-dissipation shock capturing schemes, the strategy
of choosing a stable linear scheme with upwind-biased candidate stencils as a back-
ground scheme and then optimizing the nonlinear dissipation adaptation to its limit
is preferable. Other recent work following this direction includes the development
of WENO-Z+ scheme [49].

To show the enhencement of the WENO variants following different methods,
WENO-CU6 [48] scheme, WENO-Z [41][42] scheme and WENO-S [46] are reviewed
as following.

1) The WENO-CU6 scheme

To reduce the numerical dissipation in classical WENO schemes, a WENO-CU6 [48]
which adapts between central and upwind schemes is proposed. The WENO-CU6
is designed based on four candidate stencils shown in Fig. 2.2. A pure downwind
stencil is considered to reduce the dissipation.

Like WENO-family schemes [14][41], a global sixth order approximate numerical
flux can be computed from a convex combination of four candidate stencils with the



2.2. High-order schemes 11

FIGURE 2.2: Sketch of the candidate stencils for the six-point reconstruction WENO
scheme.

same width r = 3 as
bfi+1/2 =

3

Â
k=0

wCU6
k

bfk,i+1/2. (2.27)

In order to obtain a less dissipative scheme, and following Borges et al. [41], the
nonlinear weights are computed by

wCU6
k =

aCU6
k

Â3
k=0 aCU6

k
, (2.28)

aCU6
k = dk

✓
C +

t6

bk + #

◆q
, k = 0, 1, 2, 3 (2.29)

where the constant q = 1 , C = 20 and # = 10�40 is introduced to prevent the zero
denominator. The large value of C can reduce the nonlinear adaptation in smooth
regions and consequently the numerical dissipation is decreased. Here, the optimal
weights are d0 = 1

20 , d1 = 9
20 , d2 = 9

20 , d3 = 1
20 such that the combined scheme

recovers to the standard sixth-order central scheme in smooth regions.
To avoid a pure downwind reconstruction, which is numerically unstable, the

smoothness indicator b3 is derived from the full six-point stencil as

b3 = b6 =
1

120960
⇥
271779 f 2

i�2 + fi�2(�2380800 fi�1 + 4086352 fi � 3462252 fi+1

+ 1458762 fi+2 � 245620 fi+3) + fi�1(5653317 fi�1 � 20427884 fi

+ 17905032 fi+1 � 7727988 fi+2 + 1325006 fi+3)

+ fi(19510972 fi � 35817664 fi+1 + 15929912 fi+2 � 2792660 fi+3)

+ fi+1(17195652 fi+1 � 15880404 fi+2 + 2863984 fi+3)

+ fi+2(3824847 fi+2 � 1429976 fi+3) + 139633 f 2
i+3
⇤

. (2.30)

The new global reference smoothness indicator t6 is defined as

t6 = |b6 �
1
6
(b0 + b2 + 4b1)|. (2.31)

2) The WENO-Z scheme

With the WENO-family schemes [14][41], a global (K = 2r � 1)-th order approx-
imate numerical flux can be computed from a convex combination of r candidate
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stencils with the same width r as

bfi+1/2 =
r�1

Â
k=0

wZ
k
bfk,i+1/2, (2.32)

where wZ
k denotes the nonlinear weight for each candidate flux, and f̂k,i+1/2 denotes

the r-th order approximate numerical flux similar to the definition in Eq. (2.21).
For WENO-Z schemes [41], the nonlinear weight wZ

k of each stencil is renormal-
ized from the optimal linear weight dk as

wZ
k =

aZ
k

Âr�1
k=0 aZ

k
, (2.33)

and aZ
k =

dk

bZ
k

. (2.34)

In the WENO-Z scheme, the optimal linear weight dk is the corresponding coefficient
for each candidate stencil to achieve maximum accuracy order of the background
linear scheme.

Following [50], the calculation of the bZ
k function is obtained by

1
bZ

k
=

✓
1 + (

t2r�1

bk,r + e
)p
◆

, and p = 1 or 2, (2.35)

and # = 10�40 is introduced to prevent the zero denominator.
Following Jiang and Shu [14], the smoothness indicator bk,r for the k-th candidate

stencil can be given as

bk,r =
r�1

Â
j=1

Dx2j�1
Z xi+1/2

xi�1/2

✓
dj

dxj f̂k(x)
◆2

dx (2.36)

based on the L2 norm of the derivatives of the reconstructed candidate polynomials.
The global high-order smoothness indicator t2r�1 is defined with a linear combi-

nation of existing low-order smoothness indicators b0,r, ..., br�1,r as:

t2r�1 =

⇢
|b0,r � br�1,r|, if mod (r, 2) = 1,

|b0,r � b1,r � br�2,r + br�1,r|, if mod (r, 2) = 0. (2.37)

3) The WENO-S scheme

In [46], a new smoothness indicator that can decrease the measured smoothness vari-
ances on different candidate stencils in smooth regions is proposed. The resulting
new schemes based on the same candidate stencils of classical WENO schemes are
called WENO-S. For WENO-S schemes [46], the nonlinear weight wS

k of each stencil
is renormalized from the optimal linear weight dk as

wS
k =

aS
k

Âr�1
k=0 aS

k
, and aS

k = dk

 
1 + (

tS

bS
k + e

)

!
, (2.38)

and aS
k = dk

 
1 + (

tS

bS
k + e

)

!
, (2.39)
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where # = 10�40 is introduced to prevent the zero denominator and the formula of
the bS

k function is given by

bS
k = ( fi+k�3 � fi+k�2 � fi+k�1 + fi+k)

2+

|(� fi+k�3 � fi+k�2 + fi+k�1 + fi+k)(� fi+k�3 + 3 fi+k�2 � 3 fi+k�1 + fi+k)|.
(2.40)

For the seven-point WENO-S scheme, the global smoothness indicator tS can be
written as

tS =(� fi�3 + 4 fi�2 � 5 fi�1 + 5 fi+1 � 4 fi+2 + fi+3)
2+

+ |( fi�3 � 2 fi�2 � fi�1 + 4 fi � fi+1 � 2 fi+2 + fi+3)

( fi�3 � 6 fi�2 + 15 fi�1 � 20 fi + 15 fi+1 � 6 fi+2 + fi+3)|.
(2.41)

2.2.4 TENO schemes

To further reduce the dissipation by suppressing nonlinear adaptation and achieve
stable shock-capturing capability, a family of high-order TENO schemes has been
proposed by Fu et al. [15][51][52][53]. Unlike the WENO-like smooth convex combi-
nation, TENO either adopts a candidate stencil with its optimal weight for the final
reconstruction or discards it completely when crossed by a genuine discontinuity.
This procedure is ensured by a cut-off parameter CT, which identifies the smooth
and nonsmooth regions. In smooth regions, nonlinear adaptation is unnecessary
and the numerical dissipation is reduced to that of the linear background scheme. In
nonsmooth regions, nonlinear dissipation is introduced to suppress oscillations and
to achieve the robust shock-capturing capability. This strategy successfully reduces
the numerical dissipation so that turbulence-like high-wavenumber fluctuations can
be sustained [51]. The construction of TENO schemes is reviewed as following.

x
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i+1 x
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FIGURE 2.3: Candidate stencils with incremental width towards high-order TENO re-
constructions. All candidate stencils possess at least one upwind point.

1) Candidate stencils

Different from WENO schemes, arbitrarily high-order TENO schemes are con-
structed from a set of candidate stencils with incremental width [15], as shown in
Fig. 2.3.
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The sequence of stencil width r varying versus the global accuracy order K is as

{rk} =

8
>>>>>><

>>>>>>:

{3, 3, 3, 4, · · · ,
K + 2

2| {z }
0,··· ,K�3

}, if mod (K, 2) = 0,

{3, 3, 3, 4, · · · ,
K + 1

2| {z }
0,··· ,K�3

}, if mod (K, 2) = 1.
(2.42)

2) Scale-separation procedure

To effectively isolate discontinuities from smooth regions, smoothness indicators
with strong scale-separation capability are given as [15]

gk =

✓
C +

tK

bk,r + #

◆q
, k = 0, · · · , K � 3, (2.43)

where # = 10�40 is introduced to prevent the zero denominator and tK is relevent to
bK, which measures the global smoothness on the K-point full stencil, .

In a six-point TENO scheme, the parameters C = 1 and q = 6 are adopted for
strong scale separation. Similarly to WENO schemes, bk,r can be defined as Eq. (2.36)
[14].

A sixth-order t6, which allows for good numerical stability with a reasonably
large CFL number, can be constructed as [51]

t6 =

����b6 �
1
6
(b1,3 + b2,3 + 4b0,3)

���� = O(Dx6). (2.44)

3) ENO-like stencil selection

For TENO schemes [15], the measured smoothness indicators are first normalized as

ck =
gk

ÂK�3
k=0 gk

, (2.45)

and subsequently filtered by a sharp cut-off function

dk =

⇢
0, if ck < CT,
1, otherwise. (2.46)

In sixth-order TENO scheme, the parameter CT = 10�6 can be determined by spec-
tral analysis [15]. In such a way, all candidate stencils are then identified to be either
sufficiently smooth or nonsmooth with a discontinuity crossing the stencil.

4) Nonlinear adaptation strategy for CT

Although the above weighting strategy is sufficient to separate smooth regions from
discontinuities, overestimated numerical dissipation is generated for turbulence-like
high-wavenumber fluctuations since they are treated in a similar manner as discon-
tinuities. Previous research reveals that the low-order undivided difference is more
sensitive to distinguish high-wavenumber fluctuations from genuine discontinuities
than high-order undivided differences [52][54][55].
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Motivated by Ren et al.[56], the local smoothness of flow field can be indicated
by ⇢

m = 1 � min(1, hi+1/2
Cr

),
hi+1/2 = min(hi�1, hi, hi+1, hi+2),

(2.47)

where

hi =
|2D fi+1/2D fi�1/2|+ e

(D fi+1/2)2 + (D fi�1/2)2 + e
, (2.48)

D fi+1/2 = fi+1 � fi, e =
0.9Cr

1 � 0.9Cr
x2, (2.49)

and the parameters x = 10�3, Cr = 0.23 are used for the eight-point TENO schemes
[54]. Low numerical dissipation for turbulence-like high-wavenumber fluctuations
is achieved by adjusting the cut-off parameter CT as

8
<

:

g(m) = (1 � m)4(1 + 4m),
b = a1 � a2(1 � g(m)),

CT = 10�[b],
(2.50)

where [b] denotes the maximum integer which is not larger than b. g(m) is a smooth-
ing kernel based mapping function, and a1 = 10.5, a2 = 3.5 are set for the eight-point
TENO schemes [54].

5) The final high-order reconstruction

In order to remove contributions from candidate stencils containing discontinuities,
optimal weights dk subjected to the cut-off dk are re-normalized as

wk =
dkdk

ÂK�3
k=0 dkdk

. (2.51)

The Kth-order reconstructed numerical flux evaluated at cell face i + 1
2 is assembled

as

f̂ K
i+1/2 =

K�3

Â
k=0

wk f̂k,i+1/2. (2.52)

In such a way, candidate stencils are identified to be either sufficiently smooth
or nonsmooth sharply, and the contributions from candidate stencils containing dis-
continuities are fully removed. For smooth regions, all candidate stencils are judged
to be smooth with dk = 1 and thus the high-order accuracy of the background opti-
mal linear scheme is restored exactly without degeneration.

Note that, in order to get better resolution for small-scale flow structures, the
optimal weights dk can be further optimized such that better spectral properties are
obtained on the full stencil [51].

2.3 Classical limiters

Extensive numerical experiments demonstrate that nonlinear limiters are able to
eliminate the numerical oscillations by limiting the flux’s gradient variation. These
limiters are utilized to improve the stability of the high-order scheme and will in-
fluence the performance of the resulting high-order schemes. For instance, TVD



16 Chapter 2. Numerical methods

nonlinear limiters [57] enforce the TVD property by introducing the slope function
f(r) to limit the gradient variation. Several second- and third-order TVD schemes
with different slope functions have been developed, e.g. with the Minmod limiter,
the Superbee limiter and the Van Leer limiter [7][5][4]. Classical nonlinear limiters,
such as Van Albada limiter [58] and MP limiter [59] are reviewed in the following.

1) Van Albada limiter

Here, we take the Van Albada limiter as an example to exemplify the construction of
nonlinear limiter. Following [58], the slope function of a Van Albada limiter f(r)VA
is defined as

fVA(r) =
2r

r2 + 1
, (2.53)

and the slope ratio r based on a three-cell stencil centered at i is

r = d+/d�, (2.54)

where d� = fi � fi�1, d+ = fi+1 � fi.

2) MP limiter

Suresh and Huynh [59] propose a monotonicity-preserving method to bound the
high-order reconstructed data at cell interface by distinguishing smooth local ex-
trema from genuine discontinuity. The resulting monotonicity-preserving schemes
allow for the local extremum to develop in the evaluation of cell interface data and
is robust for shock-dominated flows.

The minmod function with two arguments is

minmod(x, y) =
1
2
[sgn(x) + sgn(y)]min(|x| , |y|), (2.55)

and the minmod function with four arguments is

minmod(a, b, c, d) =
1
8
[sgn(a) + sgn(b)]

|[sgn(a) + sgn(c)][sgn(a) + sgn(d)]|min(|a| , |b| , |c| , |d|).
(2.56)

The median function is

median(x, y, z) = x + minmod(y � x, z � x). (2.57)

While the curvature at the cell center i can be approximated by

di = fi+1 � 2 fi + fi�1, (2.58)

the curvature measurement at the cell interface i + 1/2 can be defined as

dM4
i+1/2 = minmod(4di � di+1, 4di+1 � di, di, di+1). (2.59)

This definition is more restrictive since the room for local extrema to develop is re-
duced when the ratio di+1/di is smaller than 1/4 or larger than 4.
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In order to define the minimum and maximum bounds of data at the interface
xi+1/2, the left-side upper limiter is given as

f UL
i+1/2 = fi + a( fi � fi�1), (2.60)

where the choice of a in principle should satisfy the condition that CFL  1/(1 + a)
for stability.

The median value of the solution at xi+1/2 is given by

f MD
i+1/2 =

1
2
( fi + fi+1)�

1
2

dMD
i+1/2. (2.61)

The left-side value allowing for a large curvature in the solution at xi+1/2 can be
given by

f LC
i+1/2 = fi +

1
2
( fi � fi�1) +

b

3
dLC

i�1/2, (2.62)

where it is recommended to set b = 4.
Following [59] and [60], dMD

i+1/2 = dLC
i+1/2 = dM4

i+1/2 is adopted.
In numerical validations, the parameters in MP limiters will influence the inher-

ent dissipation of the MP limiter.
The bounds are given by

f L,min
i+1/2 = max[min( fi, fi+1, f MD

i+1/2), min( fi, f UL
i+1/2, f LC

i+1/2)],
f L,max
i+1/2 = min[max( fi, fi+1, f MD

i+1/2), max( fi, f UL
i+1/2, f LC

i+1/2)],
(2.63)

and the monotonicity preserving value for data at the interface xi+1/2 is obtained by
limiting the predicted value from other reconstructions as

f MP
i+1/2 = median( bfi+1/2, f L,min

i+1/2, f L,max
i+1/2 ). (2.64)
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Chapter 3

Machine learning in fluid
mechanics

In this chapter, technical details and challenges regarding the machine learning
methods are presented. The fundamental concepts of machine learning and its ap-
plications, i.e. neural network algorithm and the applications in fluid mechanics are
discussed.

3.1 Machine learning

Fluid mechanics can be analyzed by experiments and numerical simulations. The
numerical simulations are conducted by governing equations, which describes the
complex nonlinear dynamics of multi-scale fluid structures. Machine learning which
serves as an input-output mapping with a high degree of complexity, provides a new
technique to analyze the underlying fluid mechanics behind the fluid field [61][62].

Indeed, with the enhanced capability of machine learning to elaborate the non-
linear mapping between input and output information, machine learning is now
rapidly introduced into different fields of fluid mechanics. As proposed in refer-
ences, machine learning is applied as a powerful tool to solve the challenges such
as reduced-order modeling [16][17][18], shape optimization [19], turbulence closure
modeling [20][21][22], numerical scheme construction [23] [24][25][26][27]and flow
control [28] [29]. In the following, we will discuss the classical machine learning al-
gorithm and the application of machine learning combined with classical fluid me-
chanics.

3.1.1 Classical neural network algorithm

Neural networks are the most well-known supervised machine learning algorithms.
The basic architectures of neural networks are layers of neurons, where signals are
processed from input to output through intermediate layers and activation func-
tions [18]. According to the statements of Hornik et al. [63], any function may be
approximated by a sufficiently large and deep network. Moreover, the theory of
backpropagation proposed by Rumelhart et al. enables the development of neural
networks with increasing depths [30]. With the development of different activation
function, various advanced deep neural networks are developed.

Multi-layer perceptions

The simplest ANN are based on a large collection of connected simple units. Typi-
cally, neurons are connected in layers, and signals travel from the first (input), to the
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last (output) layer. We are interested in approximating a function of the form

F = Rdin ! Rdout , (3.1)

using artificial neural networks. In particular, we consider a specific feed-forward
network architecture known as MLP.

This multivariate compound function is comprised of successive linear and non-
linear operations, which maps the input vector X through a number of intermediate
steps to the output vector Y. The first layer is called the input layer, and has the
purpose of providing an input signal to the network. The last layer is the output
layer, while all the intermediate layers are known as the hidden layers. In machine
learning terminology, an MLP of depth K corresponds to a network with an input
layer, K � 1 hidden layers and an output layer. Each layer of the network receives
the output from the previous layer and performs an affine linear transformation of
the form

xl�1 ! yl = wlxl�1 + bl , (3.2)

where wl and bl are respectively the weights and biases with the layer l.
The output yl is then acted component-wise by a nonlinear activation function

to form the input for the next layer. The activation function prevents the neural net-
work from collapsing into a single affine linear transformation. Several choices for
activation functions have been proposed. Here, we take the ELU activation function
as an example [64],

f ELU
act (yl) =

⇢
exp(yl � 1), if y < 0,

yl , if y � 0,
(3.3)

as it can avoid the vanishing gradient problem and yields smooth output. In order
to train a network with the aformentioned architecture, i.e. to refine the weights and
biases, the output Y for a given input is computed in a forward pass by applying
Eq. (3.2) and Eq. (3.3) along the network graph. The error between the prediction Y
and the true output Ŷ is measured by a cost function C(Y, Ŷ). Through a backpropa-
gation, which computes the partial derivatives of the cost function, an optimization
of ANN is conducted to reduce the cost function.

3.2 Applications of machine learning in computational fluid
mechanics

In fluid flows, solving the governing equations is the dominant method to precisely
quantify the underlying physical mechanisms. However, due to the multiple spa-
tiotemporal scales property of fluid structures, scale-resolving simulations, espe-
cially for high Reynolds number problems, are beyond our current computational
resources. Considerable effort has been taken to cope with the contradiction be-
tween obtaining accuracy and efficiency.

In the scope of traditional numerical tools, high-order scheme, empirical turbu-
lence model and super-resolution are proposed. The recent blossoming machine
learning algorithms provide a new insight to estimate the nonlinear associations be-
tween inputs and outputs. In the following, applications of machine learning in
terms of solving ordinary and partial differential equations, turbulence closures and
numerical schemes are elaborated.
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3.2.1 Solving ordinary and partial differential equations

One typical method in solving differential equations using neural network is map-
ping the solution of a linear system of equations to the architecture of a Hopfield
neural network. For instance, Dissanayake and Phanthien [65] proposed that partial
different equations can be solved by neural-network based method. They trans-
formed the PDE problems to an unconstrained minimization problem by a "univer-
sal approximator" constructed by a neural network and point collocation. Other
similar applications can be found in [66] [67][68].

Unlike the approaches mentioned above, Lagaris et al. [69] proposed a general
method which can be applied to both ODEs and PDEs. A trial solution of the differ-
ential equation is written as a sum of representatives of the initial/boundary condi-
tions and a feed-forward neural network part. Through satisfying the construction
of the initial/boundary conditions, the network is trained to satisfy the differential
equation.

Inspired by that the physical conservation laws and prior physical knowledge
can be encoded into the networks [69], Raissi et al. [70] introduce PINN that enables
the synergistic combination of mathematical models and data. Unlike any classical
numerical method for solving partial differential equations, PINN predicted spatio-
temporal solution along with the locations of the initial and boundary training data
without any sort of discretization of the spatio-temporal domain. In [71], the appli-
cations of PINN in different types of PDEs, including integro-differential equations
[72], fractional PDEs [73][74], and stochastic PDEs[75] [76][77] are presented.

However, in order to model problems with long-time integration of PDEs, PINN
has to train model with large size of data. The traditional parallel approaches used
in fluid mechanics [78][79], which decomposes the long-time domain and solves the
subdomains in parallel, may have difficulties in treating PDE problems when only
partial observations on the boundary/initial conditions are available. To solve this
problem, Meng et al. [80] propose an improved physics-informed neural network to
split one long-time problem into many independent short-time problems supervised
by an inexpensive coarse-grained solver.

3.2.2 Turbulence closures

The use of ML to develop turbulence closures is an active area of research as the
scales in turbulent flows is exceedingly costly to resolve all scales in simulation even
now. To avoid the unacceptable computational cost in a full scale turbulent flow
modeling, common approaches, such as RANS and LES, are attempt to truncate
small scales and model their effects on the large scales with a closure model. How-
ever, these models may require careful tuning to match data from fully resolved
simulations or experiments.

Compared with classical models restricted to limited flow variables, the neural-
based model provides an improved prediction accuracy with higher-dimensional
information extracted [81][82]. In [83], a deep neural networks are proposed to learn
a model for the Reynolds stress anisotropy tensor with high-fidelity simulation data.
Sarghini et al. [84] propose to a NN-hybrid LES modeling, where all relevant vari-
ables involved in the calculation of the original SGS model are introduced as input
vector. NNs are performed as a self organize black-box to give out a more computa-
tionally efficient NN representation. In addition, to advance the time efficiency, Beck
et al. [85] employs artificial NNs to predict the turbulence source term from coarsely
resolved quantities.
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3.2.3 Numerical schemes

Recently, data-driven methods have been incorporated into the development of
shock-capturing schemes, e.g. to function as a discontinuity indicator [25][26][27],
and to enhance the performance of specific discretization schemes [23][24]. An ex-
ample of shock detection based on neural network is presented in [27], where the
network is trained to serve as a troubled-cell indicator for constructing the hybrid
shock-capturing scheme in the framework of RKDG method, and an extension to
two-dimensional problems is given in [86]. Morgan et al. [87] propose a MLP based
shock detector for a high-order finite-element method. However, as these efforts
are taken to train a data-driven indicator to control the switch between different
schemes, the performance of the resultant shock-capturing schemes is more dom-
inated by the component linear and nonlinear schemes rather than the indicator
itself.

As an alternative approach, Stevens and Colonius [24] and Bar-Sinai et al. [23]
deploy neural networks to modify the coefficients of the baseline polynomial-based
high-order schemes directly. It is shown in [24] that the resulting WENO-NN scheme
fails to preserve the optimal accuracy order and generates strong overshoots for
under-resolved simulations. Moreover, the data-driven scheme coefficients for the
spatial derivatives may be equation-specific and thus lack the generality and robust-
ness [23]. More recently, Jung and Kwon [88] show that the neural network can
function as a numerical model, as long as the training database is well normalized
and constructed.
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Chapter 4

Summaries of publications

In this chapter, the selected publications and main accomplishments during my PhD
stage are briefly summarized. The current state-of-the-arts regarding each topic are
presented too in each section. For more details, I refer to Appendix A.1, A.2 and A.3
respectively.

4.1 A low-dissipation shock-capturing framework with flex-
ible nonlinear dissipation control

Y. Li, L. Fu and N.A. Adams (2021)

4.1.1 State of the art

Low-dissipation shock-capturing schemes are necessary in order to solve compress-
ible fluid problems involving discontinuities. Harten et al. [12] first propose the
high-order ENO scheme, which selects the smoothest stencil from a set of prede-
fined candidate stencils to avoid the Gibbs phenomenon near discontinuities. To
achieve the optimal global high-order accuracy on the same set of candidate sten-
cils, Liu et al. [13] propose the WENO scheme which applies a nonlinear convex
combination of all candidate stencils. The optimal linear weights are modulated
based on the smoothness indicators such that the desired accuracy order is restored
in smooth regions and the ENO property is preserved near discontinuities. How-
ever, the excessive numerical dissipation of WENO (as main typical flaw of WENO-
family schemes) need to be further enhanced to solve turbulence shockwave interac-
tion flow. In state of the art, a family of high-order TENO schemes has been proposed
by Fu et al. [15][51][52][53] to further reduce the dissipation by suppressing nonlin-
ear adaptation and achieve stable shock-capturing capability. Unlike the WENO-
like smooth convex combination, TENO either adopts a candidate stencil with its
optimal weight for the final reconstruction or discards it completely when crossed
by a genuine discontinuity. This procedure is ensured by a cut-off parameter CT,
which identifies the smooth and nonsmooth regions. In smooth regions, nonlinear
adaptation is unnecessary and the numerical dissipation is reduced to that of the
linear background scheme. In nonsmooth regions, nonlinear dissipation is intro-
duced to suppress oscillations and to achieve the robust shock-capturing capability.
This strategy successfully reduces the numerical dissipation so that turbulence-like
high-wavenumber fluctuations can be sustained [51].

However, based on many observations [51][53], tailored nonlinear dissipa-
tion instead of constant low dissipation is needed in nonsmooth regions to
mitigate numerical artifacts caused by the low-dissipation linear background
schemes. Therefore, a framework to construct arbitrarily high-order low-dissipation
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shock-capturing schemes with flexible and controllable nonlinear dissipation for
convection-dominated problems is essential.

4.1.2 Summary of the publication

In this paper a flexible framework for constructing new shock-capturing TENO
schemes is proposed. Six- and eight-point new schemes are developed, and their
performance is demonstrated by conducting a set of critical benchmark cases. The
conclusions are as follows.

The new framework establishes a unified concept of TENO schemes with clas-
sical nonlinear limiters for shock-capturing. Three stages are involved, (a) evaluat-
ing of candidate numerical fluxes and labelling each candidate stencil as smooth or
nonsmooth by a ENO-like stencil selection procedure; (b) filtering the nonsmooth
candidate stencils by an extra nonlinear limiter; (c) formulating the high-order re-
construction by combing the candidate stencils with optimal linear weights.

In smooth regions, all candidate stencils are identified as smooth by the TENO
stencil selection procedure and consequently new scheme recovers to TENO. In non-
smooth regions, stable shock-capturing capability is achieved since the nonsmooth
candidates contributed to the final reconstructions are filtered to be oscillation-free
by extra limiters.

The present framework can be applied to a wide range of limiters, such as TVD
and MP. Such different nonlinear limiters are deployed straightforwardly to con-
struct a flexible framework with shock-capturing low-dissipation TENO schemes.
These new schemes enable flexible control of dissipation in nonsmooth regions.
A wide range of adjustable nonlinear dissipation can be considered in the current
framework without affecting global dissipation and detriment to accuracy in low-
wavenumber regions.

4.1.3 Individual contributions of the candidate

This article Appendix A.1 was published in the international peer-reviewed journal
Journal of Computational Physics. My contribution to this work was the development
of the method and the code. I have performed numerical validations, analyzed the
results, and wrote the manuscript.
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4.2 A family of fast multi-resolution ENO schemes for com-
pressible flows

Y. Li, L. Fu and N.A. Adams (2023)

4.2.1 State of the art

To improve the numerical robustness of the very-high-order schemes, schemes with
recursive-order-reduction [89] are proposed. For instance, Zhu and Shu [90] develop
the finite-difference and finite-volume multi-resolution WENO schemes based on
a hierarchy of nested unequal-sized central spatial stencils. Following the nonlin-
ear weighting concept of central WENO schemes [91][92], arbitrary positive linear
weights can be employed and the resulting schemes have a gradual degrading of
accuracy near discontinuities. As the most recent innovation, the high-order TENO
schemes improve the numerical robustness and reduce the unnecessary numerical
dissipation by a new candidate stencil arrangement and a novel ENO-like stencil
selection strategy [15][51][93]. In contrast to the WENO-like smooth convex com-
bination of candidate stencils, the TENO scheme either deploys a candidate stencil
with its optimal linear weight or discards it completely when crossed by a disconti-
nuity. The TENO scheme has been extended to unstructured meshes [94] and multi-
resolution methods.

However, the aforementioned WENO and TENO schemes are rather expensive
especially for the very-high-order reconstructions. In addition, the construction of
odd and even-point scheme reconstruction is not in a unified framework. In this
paper, we aims to propose an efficient very-high-order scheme with improved ro-
bustness and gradual degrading of accuracy order near discontinuities.

4.2.2 Summary of the publication

In this work, a new family of high-order shock-capturing FMRENO schemes has
been proposed. The major contributions are summarized as follows: Based on the
MP concept, the construction of the new FMRENO schemes consists of three main
phases, i.e., (1) preparing polynomial-based candidate stencils from high- to low-
orders in a hierarchical manner; (2) providing a local regularity criterion by calcu-
lating the MP upper and lower bounds. A candidate stencil is judged to be smooth
only when the reconstructed cell interface flux locates within the MP bounds; (3) for-
mulating the final cell interface reconstruction scheme by selecting the higher-order
(or better spectra) candidate stencil, which is judged to be smooth. If all candidate
stencils are judged to be nonsmooth by the MP criterion, the smoothest stencil, with
which the reconstructed cell interface flux departs from the MP bounds the least,
will be adopted as the final reconstruction scheme.

The new framework achieves the multi-resolution property by adaptively se-
lecting the targeted reconstruction scheme from the candidate stencils of different
orders according to the local flow regularities. Specifically, in smooth regions, the
candidate stencil with the largest stencil width will be adopted for restoring the de-
sired high-order accuracy. In the vicinity of discontinuities, the good non-oscillatory
property will be achieved by selecting the candidate reconstruction satisfying the
MP criterion. For the wave-like structures, the low-dissipation property can be ap-
proached by choosing the smooth candidate stencils with higher accuracy order or
better spectral properties.
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The present framework can be straightforwardly extended to arbitrarily very-
high-order reconstructions with a tiny complexity increase. Compared to the stan-
dard W/TENO schemes, the computational efficiency of FMRENO schemes is sub-
stantially higher by avoiding the expensive evaluations of the smoothness indica-
tors. Moreover, the efficiency improvement is more impressive with higher-order
reconstructions.

4.2.3 Individual contributions of the candidate

This article Appendix A.2 was published in the international peer-reviewed journal
Journal of Scientific Computing. My contribution to this work was the development
of the method and the code. I have performed numerical validations, analyzed the
results, and wrote the manuscript.



4.3. A six-point shock-capturing scheme with neural network 27

4.3 A six-point shock-capturing scheme with neural network

Y. Li, L. Fu and N.A. Adams (2021)

4.3.1 State of the art

Inspired by the observation that different measurement methods of non-smooth sub-
stencils can affect the schemes’ performance significantly, several smoothness indi-
cators are proposed to get a larger variation as the sub-stencil moves from a smooth
profile to a discontinuous profile. In WENO schemes, smoothness of sub-stencils are
measured depending on functions of low-order or high-order derivatives. TENO
[15] and WENO-CU6 [95] schemes introduce scale separation to guarantee a distin-
guish identification of non-smooth sub-stencil. Additional, Wu et al. [46] proposed a
four stencil smoothness indicator which is constant for sine functions and has good
stability near discontinuities. These newly proposed smoothness indicators try to in-
troduce more variants, i.e sine map function or total variations, to detect occurrence
and location of a shock before applying any of weighting strategies more accurately.

However, these smoothness indicators are designed at some level of empiricism.
Given the rise of the interest in data-driven methods in fluid mechanics, it is not
surprising that these methods have also been investigated for the construction of
smoothness indicator. As the data-driven methods can provide high degree of com-
plexity of the underlying input-output mapping, it is helpful to expand the possibil-
ity to design powerful smoothness indicators rather than being restricted to common
used feature variables.

Regarding to numerical reconstruction schemes, two main approaches have been
found in recent researches: (i) data-driven shock indicator [25][26], and (ii) data-
driven enhancement of specific discretization scheme [23][24]. An example of shock
detection based on neural network architectures is presented in [27], where the net-
work is trained to serve as a troubled-cell indicator and an extension to two dimen-
sional is present in [86]. Morgan et al. also propose an MLP based shock detector
for a high order finite element scheme [87]. However, as the efforts are taken to train
a data-driven indicator to control the switch between different schemes, the design
of high-order scheme is decoupled from the network training. As an alternative ap-
proach, [23][24] train different types of neural networks to modify the coefficients of
a baseline polynomial high-order schemes directly. The drawbacks of these designs
are that solutions are suffering numerical oscillations, particularly in the vicinity of
the shock. Moreover, as the coefficients predicted by the models are trained by the
solution manifold, the trained coefficients are indeed equation-specific approxima-
tions for the spatial derivatives schemes.

4.3.2 Summary of the publication

In this work, we propose an alternative technique based on ANNs, which can be
interpreted as parameter-free, universal black-box to suggest the smoothness of the
sub-stencil. We introduce a neural network architecture, i.e MLP to provide a high
degree of complexity of the underlying input-output mapping. This mapping are
conducted through grouped neuron layers, which process data from an input of flow
field information to an output of the choice of sub-stencils which serve as binary la-
bels. After training the neural network with a properly constructed dataset, it is able
to predict the output labels for scaled samples not in the training set. As the neu-
ral based model is only used to suggest the selection sub-stencils, this operator may
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additionally ensure the boundedness of the solution by appropriate limiting. Be-
sides, as the labels are binary options which indicate the smoothness of sub-stencils,
implicit neural based ENO is obtained.

The new framework establishes a novel concept of the neural based ENO scheme
for shock-capturing. As the ENO-like stencil selection can be decoupled from the
design of high-order numerical schemes, results may ensure the boundedness of the
solution by appropriate global smooth function.

The present framework can be applied to different types of hyperbolic functions,
such as linear advection function and Euler functions. In practical applications, the
NENO scheme can be deployed straightforwardly as a classical high-order schemes,
which shows an improved universality compared to other neural based high-order
schemes.

For now, while the network is capable of essentially mimicking or even improv-
ing the state-of-the-art high order schemes, the number of neurons and the associ-
ated cost of the network are substantial which is a common problem in [96]. How-
ever, it is a pre-concept study to demonstrate the potential of using neural network
to design applicable high-order schemes.

4.3.3 Individual contributions of the candidate

This article was published in the international peer-reviewed conference paper Pro-
ceedings of International Conference of Numerical Analysis and Applied Mathematics IC-
NAAM 2021. My contribution to this work was the development of the method and
the code. I have performed numerical validations, analyzed the results, the perfor-
mance tests, and wrote the manuscript.
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Chapter 5

Conclusions and outlooks

5.1 Conclusions

In this work, several numerical methods are developed from new insight and new
technique to construct high-order low-dissipation schemes. First, a framework to
construct arbitrarily high-order low-dissipation shock-capturing schemes with flex-
ible and controllable nonlinear dissipation for convection-dominated problems is
proposed. Through the adaptation of nonlinear limiters, nonlinear dissipation in the
newly proposed framework can be controlled separately without affecting the per-
formance in smooth regions. Second, a new class of high-order fast multi-resolution
essentially non-oscillatory schemes is proposed with an emphasis on both the per-
formance and the computational efficiency. Third, we investigate the potential of
integrating machine learning to design low-dissipation ENO schemes. We introduce
a deep artificial ANN that can detect locations of discontinuity and build a six-point
ENO-type scheme based on a set of smooth and discontinuous training data.

Paper I is inspired by the observations [51][53] that tailored nonlinear dissipation
instead of constant low dissipation is needed in nonsmooth regions to mitigate nu-
merical artifacts caused by the low-dissipation linear background schemes. The new
framework establishes a unified concept of TENO schemes with classical nonlinear
limiters for shock-capturing. With an extra nonlinear limiter, nonsmooth candidate
stencils are filtered to be smooth, and the high-order reconstruction are formulated
by combing all candidate stencils with optimal linear weights. The main contri-
bution of paper I is that different nonlinear limiters are incorporated to construct
a low-dissipation high order scheme in a non-classical way. The key idea is that
each nonsmooth candidate stencil contains necessary flow field information, there-
fore their contributions need to be considered rathar than discarding completely.
Following this idea, non-smooth candidate stencils are filtered and their contribu-
tions are assembled to form the final reconstruction with their respective optimal
linear weights. On smooth candidate stencils, the nonlinear limiter will not be ac-
tivated and consequently the properties of TENO schemes in smooth regions are
maintained. Different choices of the nonlinear limiter are possible, such that a new
family of schemes with adjustable nonlinear dissipation in nonsmooth regions is
obtained. The new scheme achieves adaptive nonlinear dissipation property with-
out deteriorating the spectral resolution properties of TENO in low-wavenumber
regions.

Part II is inspired by the observation that the robustness of very-high-order
WENO scheme is limited and the computational efficiency of W/TENO scheme is
expensive since the evaluations of the smoothness indicators. To improve the per-
formance, a family of FMRENO schemes for both the odd- and even-order recon-
structions in a unified framework is proposed. With a set of predefined candidate
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stencils as the multi-resolution representation of local flow scales, a novel stencil se-
lection strategy is proposed to form the final reconstruction. The selection criterion
is provided by the MP limiter [59], with which a candidate stencil is regarded to be
smooth if the reconstructed cell interface flux locates within the upper and lower
bounds of the MP limiter. Then, the optimal smooth stencil with higher-order accu-
racy or better spectral property will be adopted as the final reconstruction scheme.
As a result, the FMRENO scheme achieves the multi-resolution property by adap-
tively selecting the targeted candidate stencil according to the local flow regularity
and degenerates from high- to low-order reconstruction when approaching the dis-
continuities. Moreover, the computational efficiency is improved when compared to
W/TENO since the evaluations of the smoothness indicators are unnecessary.

Part III is an experiment to show the potential of exploiting neural network to
design more advanced high-order numerical method for hyperbolic conservation
laws. we introduce a deep ANN that can detect locations of discontinuity and build
a six-order ENO scheme based on a set of continuous and discontinuous training
data. The new framework establishes a novel concept of the neural based ENO
scheme for shock-capturing. Two stages are involved, (a) use a neural network as
a black box to assist the ENO-like stencil selection procedure; (b) formulating of
the high-order reconstruction by combing the candidate stencils with optimal linear
weights. Compared with other neural based schemes, NENO shows an improved
universality, assured boundedness and accuracy.

5.2 Outlooks

Although several high-order low-dissipation schemes are developed in this work,
the strategy of designing arbitrarily high-order low-dissipation shock-capturing
schemes is still worth being analyzed.

In terms of the adaptive-dissipation schemes, methods to adjust parameters to
control the dispersion and dissipation according to the local flow-field properties
that are quantified by the scale sensor can be considered.

Regarding to the neural-based scheme developed in this work, the current form
is still considerably more expensive than the classical numerical schemes from in
terms of the performance. Compared with other neural based schemes, the NENO
scheme shows an improved universality, assured boundedness and accuracy, espe-
cially the resolution independence. To enhence the performance, future develop-
ment can be considered through the following aspects: (1) using the neural network
to train the coefficient of classical smoothness indicator; (2) train a resolution depen-
dence scheme so a low-resolution solving can be used to replace the high-resolution
results.
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Chapter 6

Concluding discussion with
respect to the state of the art

Despite substantial progress in the development of numerical schemes in the last
decades, the simulation of compressible flows with low-dissipation high-order
schemes remains to be a challenge worldwide. Compressible fluid dynamics prob-
lems which are relevant to high-speed aircraft, jet engines, rocket motors, high-speed
entry into a planetary atmosphere are often encountered in the areas of science and
engineering. Nowadays, scientific research is increasingly focused on the precise
prediction of fluid dynamics problems including a wide range of spatial and tem-
poral scales and shock waves. To analyze these complex multi-scale and non-linear
fluid problems, advanced numerical schemes which can solve the contradictory re-
quests that capture shock-wave stably and resolve multi-scale vortex precisely are
proposed.

Popular high-order low-dissipation schemes [9][10][11][15][13][14] based on the
classical ENO scheme [12] are well-documented in literature. Among all the high-
order low-dissipation schemes, WENO schemes [13][14] are seen as a major mile-
stone because of the great benefits to suppress the spurious oscillations in the vicin-
ity of the discontinuities. However, the excessive numerical dissipation of WENO
schemes and the robustness of very-high-order WENO schemes remains to be two
unsolved flaws.

In order to reduce dissipation while maintaining high-order accuracy in smooth
regions and shock-capturing capability, two main methods have been introduced:
(i) decreasing the nonlinear adaptive dissipation [43][44][45], and (ii) optimizing
the background counterpart linear scheme [47][48]. Among all the schemes, TENO
schemes [15] show great improvement in reducing dissipations. However, based on
many observations [51][53], tailored nonlinear dissipation instead of constant low
dissipation is needed in nonsmooth regions to mitigate numerical artifacts caused
by the low-dissipation linear background schemes. Up to now, the flexible frame-
work to adjust dissipation or computational order between smooth or discontinuity
regions has not been proposed in literature so far. In this thesis, a framework which
can adjust numerical dissipation flexibly has been proposed and analyzed. The key
idea is that rather than discarding completely the nonsmooth candidate stencils,
their contributions are filtered by a nonlinear limiter. The filtered candidate sten-
cil contributions are assembled to form the final reconstruction with their respective
optimal linear weights. On smooth candidate stencils, the nonlinear limiter will not
be activated and consequently the properties of TENO schemes in smooth regions
are maintained. Different choices of the nonlinear limiter are possible, such that a
new family of schemes with adjustable nonlinear dissipation in nonsmooth regions
is obtained.
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Another widespread challenge in the high-order low-dissipation scheme is the
robustness. To improve the numerical robustness of the very-high-order WENO re-
constructions, monotonicity-preserving WENO schemes [59], positivity-preserving
WENO schemes [97], WENO schemes with recursive-order-reduction [89] and cen-
tral WENO schemes [91][92] are proposed. Zhu and Shu [90] develop the finite-
difference and finite-volume multi-resolution WENO schemes based on a hierar-
chy of nested unequal-sized central spatial stencils. However, the aforementioned
schemes are rather expensive especially for the very-high-order reconstructions
since the calculations of smoothness indicators are inevitable. In this thesis, novel
schemes for both the odd- and even-order reconstructions without smoothness cal-
culation in a unified framework is proposed. With a set of predefined candidate
stencils as the multi-resolution representation of local flow scales, a novel stencil se-
lection strategy is proposed to form the final reconstruction. The selection criterion
aims to select the targeted candidate stencil according to the local flow regularity
and the resulting FMRENO scheme achieves the multi-resolution property through
degenerating from high- to low-order reconstruction when approaching the discon-
tinuities adaptively. Moreover, the computational efficiency is improved when com-
pared to W/TENO since the evaluations of the smoothness indicators are unneces-
sary.

Inspired by the observation that different measurement methods of non-smooth
sub-stencils can affect the schemes’ performance significantly, several smoothness
indicators are proposed to get a larger variation as the sub-stencil moves from a
smooth profile to a discontinuous profile [46][95]. However, these smoothness in-
dicators are designed at some level of empiricism. Given the rise of the interest
in data-driven methods in fluid mechanics, it is not surprising that these methods
have also been investigated for the problem at hand. As the data-driven methods
can provide high degree of complexity of the underlying input-output mapping, it
is helpful to expand the possibility to design powerful smoothness indicators rather
than being restricted to common used feature variables. In this thesis, an alternative
technique based on ANNs, which can be interpreted as parameter-free, universal
model are proposed to suggest the choice of the sub-stencil. Inspired by the design
of TENO that the weight of candidate stencils containing discontinuities can be fully
removed, we focus on a neural network architecture, i.e MLP to provide a high de-
gree of complexity of the underlying input-output mapping. This mapping are con-
ducted through grouped neuron layers, which process data from an input of flow
field information to an output of the choice of sub-stencils which serve as binary la-
bels. After training the neural network with a properly constructed dataset, it is able
to predict the output labels for scaled samples not in the training set. As the neu-
ral based model is only used to suggest the selection sub-stencils, this operator may
additionally ensure the boundedness of the solution by appropriate limiting. Be-
sides, as the labels are binary options which indicate the smoothness of sub-stencils,
implicit neural based ENO is obtained.

The findings presented in this thesis improve the performance and robustness
of high-order low-dissipation schemes and the proposed modifications are easy to
apply to many commonly applied methods.
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In this work, a framework to construct arbitrarily high-order low-dissipation shock-
capturing schemes with flexible and controllable nonlinear dissipation for convection-
dominated problems is proposed. While a set of candidate stencils of incremental width 
is constructed, each one is indicated as smooth or nonsmooth by the ENO-like stencil 
selection procedure proposed in the targeted essentially non-oscillatory (TENO) scheme 
(Fu et al. 2016 [9]). Rather than being discarded directly as with TENO schemes, the 
nonsmooth candidates are filtered by an extra nonlinear limiter, such as a monotonicity-
preserving (MP) limiter or a total variation diminishing (TVD) limiter. Consequently, 
high-order reconstruction is achieved by assembling candidate fluxes with optimal linear 
weights since they are either smooth reconstructions or filtered ones which feature good 
non-oscillation property. A weight renormalization procedure as with the standard TENO 
paradigm is not necessary. This new framework concatenates the concepts of TENO, 
WENO and other nonlinear limiters for shock-capturing, and provides a new insight to 
designing low-dissipation nonlinear schemes. Through the adaptation of nonlinear limiters, 
nonlinear dissipation in the newly proposed framework can be controlled separately 
without affecting the performance in smooth regions. Based on the proposed framework, 
a family of new six- and eight-point nonlinear schemes with controllable dissipation is 
proposed. A set of critical benchmark cases involving strong discontinuities and broadband 
fluctuations is simulated. Numerical results reveal that the proposed new schemes capture 
discontinuities sharply and resolve the high-wavenumber fluctuations with low dissipation, 
while maintaining the desired accuracy order in smooth regions.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

High-order and high-resolution shock-capturing schemes are popular numerical methods to solve compressible fluid 
problems, which may involve discontinuities. However, there still is a need for flexible environments to design such schemes 
that are highly accurate in smooth regions with low numerical dissipation and can capture discontinuities with low parasitic 
noise in smooth regions near discontinuous.

Among all the schemes, weighted essentially non-oscillatory (WENO) schemes, first proposed by Liu et al. [1] and further 
improved by Jiang and Shu [2], probably are the most widely accepted discretization schemes. These schemes are devel-

* Corresponding author.
E-mail addresses: yue06.li@tum.de (Y. Li), linfu@stanford.edu (L. Fu), nikolaus.adams@tum.de (N.A. Adams).
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oped from the essentially non-oscillatory (ENO) concept [3], which selects the smoothest stencil from a set of candidates 
to prevent the reconstruction from crossing discontinuities. Instead of selecting the smoothest candidate, WENO deploys 
a convex combination of all candidate stencils to achieve high-order accuracy in smooth regions. In nonsmooth regions, 
reduced weights are assigned to the stencils through nonlinear smoothness indicators. Thus, spurious numerical oscillations 
can be largely avoided. However, practical implementations reveal that the WENO-JS scheme [2] is rather dissipative and 
may lose the accuracy order near critical points due to the strong nonlinear adaptation within the weighting strategy.

In order to reduce dissipation while maintaining high-order accuracy in smooth regions and shock-capturing capability, 
two main methods have been introduced: (i) decreasing the nonlinear adaptive dissipation [4][5][6], and (ii) optimizing 
the background counterpart linear scheme [7][8]. Henrick et al. [4] suggest that restoring the optimal accuracy order near 
critical points can resolve the over-dissipation issue. Necessary and sufficient conditions have been derived and a mapping 
strategy based on classical WENO, referred to as WENO-M, has been developed accordingly. However, as investigated by 
Borges et al. [5], the improvements demonstrated by WENO-M [4] over WENO-JS result from larger weights of nonsmooth 
candidate stencils and less nonlinear adaptive dissipation, rather than from higher accuracy near critical points. To further 
decrease the nonlinear adaptive dissipation, a new smoothness indicator has been proposed by Borges et al. [5], which 
introduces a global high-order undivided difference into the weighting strategy of the WENO-JS scheme. As an alternative 
approach [6], the nonlinear dissipation adaptation can be controlled by comparing the ratio between the largest and the 
smallest calculated smoothness indicator. By introducing a problem-dependent threshold, adaptation is eliminated when 
the ratio is below the threshold. The aforementioned WENO-like schemes reduce the dissipation of the classical WENO 
significantly. However, they are still too dissipative for resolving turbulence-like high-wavenumber fluctuations. Besides 
decreasing the nonlinear adaptive dissipation, optimizing the background counterpart linear scheme of WENO also can 
improve the overall dissipation property. The WENO-SYMOO [7] and WENO-CU6 [8] schemes optimize the background 
scheme as a central scheme by introducing the contribution of the downwind stencil. However, anti-dissipation is inherently 
built in for a certain wavenumber range, which may be problematic for critical applications. Therefore, in terms of designing 
low-dissipation shock capturing schemes, the strategy of choosing a stable linear scheme with upwind-biased candidate 
stencils as a background scheme and then optimizing the nonlinear dissipation adaptation to its limit is preferable.

To further reduce the dissipation by suppressing nonlinear adaptation and achieve stable shock-capturing capability, a 
family of high-order targeted ENO (TENO) schemes has been proposed by Fu et al. [9][10][11][12]. Unlike the WENO-like 
smooth convex combination, TENO either adopts a candidate stencil with its optimal weight for the final reconstruction or 
discards it completely when crossed by a genuine discontinuity. This procedure is ensured by a cut-off parameter CT , which 
identifies the smooth and nonsmooth regions. In smooth regions, nonlinear adaptation is unnecessary and the numerical 
dissipation is reduced to that of the linear background scheme. In nonsmooth regions, nonlinear dissipation is introduced to 
suppress oscillations and to achieve the robust shock-capturing capability. This strategy successfully reduces the numerical 
dissipation so that turbulence-like high-wavenumber fluctuations can be sustained [10]. However, based on many observa-
tions [10][12], tailored nonlinear dissipation instead of constant low dissipation is needed in nonsmooth regions to mitigate 
numerical artifacts caused by the low-dissipation linear background schemes.

An alternative solution is to introduce the hybrid concept, for which the efficient linear scheme is applied in smooth 
regions while the expensive nonlinear scheme is adopted in the vicinity of discontinuities. Adams and Shariff [13] have 
introduced the concept of hybridization of a high-resolution compact scheme with the nonlinear high-order ENO scheme. 
Pirozzoli [14] proposes a conservative hybrid scheme for resolving the compressible turbulent flows by combining a compact 
scheme with WENO. However, the performance of these hybrid methods strongly depends on an effective discontinuity 
indicator [15], which is mostly case-sensitive.

In this paper, we propose an extended framework based on the TENO concept. The main objective is to achieve adaptive 
nonlinear dissipation property without deteriorating the spectral resolution properties of TENO in low-wavenumber regions. 
The key idea is that rather than discarding completely the nonsmooth candidate stencils, their contributions are filtered by 
a nonlinear limiter. The filtered candidate stencil contributions are assembled to form the final reconstruction with their 
respective optimal linear weights. On smooth candidate stencils, the nonlinear limiter will not be activated and consequently 
the properties of TENO schemes in smooth regions are maintained. Different choices of the nonlinear limiter are possible, 
such that a new family of schemes with adjustable nonlinear dissipation in nonsmooth regions is obtained.

The rest of this paper is organized as follows. In section 2, the concept of the finite-difference high-order reconstruction 
schemes and the construction of standard TENO schemes are briefly reviewed. In section 3, a general framework to construct 
nonlinear shock-capturing schemes is proposed and the filtering strategy for nonsmooth candidate stencils are elaborated. 
In section 4, a set of benchmark cases is considered for assessment of the developed schemes. The concluding remarks are 
given in the last section.

2. Concepts of standard TENO schemes for hyperbolic conservation laws

To facilitate the presentation, we consider a one-dimensional scalar hyperbolic conservation law

∂u
∂t

+ ∂

∂x
f (u) = 0, (1)

2
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where u and f denote the conservative variable and the flux function respectively. The characteristic signal speed is assumed 
to be positive ∂ f (u)

∂u > 0. The developed schemes can be extended to systems of conservation laws and multi-dimensional 
problems in a straight-forward manner.

For a uniform Cartesian mesh with cell centers xi = i"x and cell interfaces xi+1/2 = xi + "x
2 , the spatial discretization 

results in a set of ordinary differential equations

dui(t)
dt

= −∂ f
∂x

∣∣x=xi , i = 0, · · · ,n, (2)

where ui is a numerical approximation to the point value u(xi, t). The semi-discretization with Eq. (2) can be further 
discretized by a conservative finite-difference scheme as

dui

dt
= − 1

"x
(hi+1/2 − hi−1/2), (3)

where the primitive function h(x) is implicitly defined by

f (x) = 1
"x

x+"x/2∫

x−"x/2

h(ξ)dξ , (4)

and hi±1/2 = h(xi ± "x
2 ). A high-order approximation of h(x) at the cell interface has to be reconstructed from the cell-

averaged values of f (x) at the cell centers. Eq. (3) can be written as

dui

dt
≈ − 1

"x
( f̂ i+1/2 − f̂ i−1/2), (5)

where f̂ i±1/2 denotes the high-order approximate numerical fluxes and can be computed from a convex combination of 
K − 2 candidate-stencil fluxes

f̂ i+1/2 =
K−3∑

k=0

wk f̂k,i+1/2. (6)

A (rk − 1)-degree polynomial is assumed for each candidate stencil as

h(x) ≈ f̂k(x) =
rk−1∑

l=0

al,kxl, (7)

where rk denotes the point number of candidate stencil k. After substituting Eq. (7) into Eq. (4) and evaluating the inte-
gral functions at the stencil nodes, the coefficients al,k are determined by solving the resulting system of linear algebraic 
equations.

For hyperbolic conservation laws, discontinuities may occur even when the initial condition is smooth enough. The 
challenge is to develop a reconstruction scheme which is high-order accurate in smooth regions and captures discontinuities 
sharply and stably in nonsmooth regions. In the following, we recall essential elements of the recently proposed TENO 
[9][10][11][12][16] concept.

2.1. Candidate stencil arrangement

As shown in Fig. 1, arbitrarily high-order TENO schemes are constructed from a set of candidate stencils with incremental 
width [9]. The sequence of stencil width r varying versus the accuracy order K is as

{rk} =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{3,3,3,4, · · · ,
K + 2

2︸ ︷︷ ︸
0,··· ,K−3

}, if mod (K ,2) = 0,

{3,3,3,4, · · · ,
K + 1

2︸ ︷︷ ︸
0,··· ,K−3

}, if mod (K ,2) = 1.
(8)

Note that, although the general candidate stencil arrangement of classical WENO schemes has some limitations [9], the 
following ideas discussed will still be applicable even if it is employed.

3
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Fig. 1. Candidate stencils with incremental width towards high-order reconstruction. While the first three stencils are identical to that of the classical 
fifth-order WENO-JS scheme, all candidate stencils possess at least one upwind point. The maximum K th-order scheme can be constructed by combin-
ing candidates ranging from S0 to S K−3. The advantage of such candidate stencil arrangement over that of classical WENO schemes is the robustness 
improvement in very-high-order versions.

2.2. Scale-separation procedure

To isolate effectively discontinuities from smooth regions, smoothness indicators with strong scale-separation capability 
are given as [9]

γk =
(

C + τK

βk,r + ε

)q

, k = 0, · · · , K − 3, (9)

where ε = 10−40 is introduced to prevent the zero denominator. The parameters C = 1 and q = 6 are chosen for strong scale 
separation. Following Jiang and Shu [2], by counting all the possible high-order undivided differences, βk,r can be given as

βk,r =
r−1∑

j=1

"x2 j−1

xi+1/2∫

xi−1/2

(
d j

dx j
f̂k(x)

)2

dx. (10)

A sixth-order τK , which allows for good stability with a reasonable large CFL number, can be constructed as [10]

τK =
∣∣∣∣βK − 1

6
(β1,3 + β2,3 + 4β0,3)

∣∣∣∣ = O ("x6), (11)

where the βK measures the global smoothness on the K -point full stencil.

2.3. ENO-like stencil selection

For TENO schemes [9], the measured smoothness indicators are first normalized as

χk = γk∑K−3
k=0 γk

, (12)

and subsequently filtered by a sharp cut-off function

δk =
{

0, if χk < CT ,

1, otherwise.
(13)

In such a way, all candidate stencils are then identified to be either sufficiently smooth or nonsmooth with a discontinuity 
crossing the stencil.

2.4. Nonlinear adaptation strategy for CT

Although the above weighting strategy is sufficient to separate smooth regions from discontinuities, undesirable numer-
ical dissipation is generated for turbulence-like high-wavenumber fluctuations since they are treated in a similar manner 
as discontinuities. Previous research reveals that the low-order undivided difference is more sensitive to distinguish high-
wavenumber fluctuations from genuine discontinuities than high-order undivided differences [11][17][18].
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Motivated by Ren et al. [19], the local smoothness of flow field can be indicated by

{
m = 1 − min(1,

ηi+1/2
Cr

),

ηi+1/2 = min(ηi−1,ηi,ηi+1,ηi+2),
(14)

where

ηi = |2" f i+1/2" f i−1/2| + ϵ

(" f i+1/2)2 + (" f i−1/2)2 + ϵ
, (15)

" f i+1/2 = f i+1 − f i, ϵ = 0.9Cr

1 − 0.9Cr
ξ2, (16)

and the parameters ξ = 10−3, Cr = 0.23 are used for the eight-point TENO schemes [17]. Low numerical dissipation for 
turbulence-like high-wavenumber fluctuations is achieved by adjusting the cut-off parameter CT as

⎧
⎪⎨

⎪⎩

g(m) = (1 − m)4(1 + 4m),

β = α1 − α2(1 − g(m)),

CT = 10−[β],

(17)

where [β] denotes the maximum integer which is not larger than β . g(m) is a smoothing kernel based mapping function, 
and α1 = 10.5, α2 = 3.5 are set for the eight-point TENO schemes [17]. The eight-point TENO scheme with CT adaptation 
is referred to as TENO8A in this paper.

2.5. The final high-order reconstruction

In order to remove contributions from candidate stencils containing discontinuities, optimal weights dk subjected to the 
cut-off δk are renormalized as

wk = dkδk∑K−3
k=0 dkδk

. (18)

The K th-order reconstructed numerical flux evaluated at cell face i + 1
2 is assembled as

f̂ K
i+1/2 =

K−3∑

k=0

wk f̂k,i+1/2. (19)

3. New framework with flexible nonlinear dissipation control

In this section, we describe the details of the new reconstruction framework for TENO with flexible nonlinear dissipation 
control. The new schemes are referred to as TENO-M schemes hereafter. The advantages of TENO-M schemes are not only in 
keeping the contribution of nonsmooth stencils but also maintaining the performance improvement of TENO. The possibility 
of keeping nonsmooth stencils rather than abandoning them entirely is achieved by a flexible filtering procedure. As the 
nonsmooth stencils are filtered to be oscillation free by an extra limiter, they are able to contribute to the final reconstruc-
tion without detriment to computational stability. In regions of smooth stencils, nonlinear limiters will not be activated and 
consequently the performance of TENO in terms of restoring the background linear scheme in low-wavenumber regions is 
maintained.

3.1. Evaluation of the candidate numerical fluxes and label stencils based on smoothness indicator

As shown in Fig. 1, arbitrarily high-order TENO schemes, i.e. both odd and even order, are constructed from a set of 
candidate stencils with incremental width [9]. The numerical flux f̂k,i+1/2 of the candidate stencil Sk is evaluated by solving 
the linear system results from Eq. (7) and Eq. (4). The corresponding coefficients for TENO schemes up to eighth-order 
accuracy are presented in Table 1.

Based on the smoothness indicator, each candidate stencil is identified as smooth or nonsmooth by the ENO-like stencil 
selection procedure, i.e. Eq. (12) and Eq. (13).
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Table 1
Numerical flux ̂ fk,i+1/2 = ∑

m cm fm evaluated from the candidate stencil Sk .

f̂k,i+1/2 ci−3 ci−2 ci−1 ci ci+1 ci+2 ci+3 ci+4

k = 0 − 1
6

5
6

2
6

k = 1 2
6

5
6 − 1

6

k = 2 2
6 − 7

6
11
6

k = 3 3
12

13
12 − 5

12
1

12

k = 4 − 3
12

13
12 − 23

12
25
12

k = 5 12
60

77
60 − 43

60
17
60 − 3

60

3.2. Filtering of the nonsmooth stencils with an extra limiter

Different from the standard TENO schemes, where the detected nonsmooth stencils will be discarded completely, in the 
present framework, they are filtered by a specific nonlinear limiter and then adopted for the final reconstruction by

f̂ M
k,i+1/2 =

{
f lim
k,i+1/2 if δk = 0,

f̂k,i+1/2, otherwise,
(20)

where f lim
k,i+1/2 denotes the numerical flux filtered by a nonlinear limiter. A monotonicity-preserving limiter [20], a fifth-

order TVD limiter [21] and a second-order Van Albada limiter [22][23] are deployed to derive the f lim
k,i+1/2 and are referred to 

as f MP
k,i+1/2, f TVD5

k,i+1/2, and f VA
k,i+1/2 respectively. Consequently, the nonlinear numerical dissipation property of TENO schemes 

can be tailored by deploying different nonlinear limiters to the nonsmooth stencils. The accuracy order and low-dissipation 
property of the resulting TENO schemes are maintained in smooth and low-wavenumber regions.

This new framework connects the concepts of TENO and other nonlinear limiters for shock-capturing. Although only 
three nonlinear limiters are considered in this paper, any other established limiters can be introduced into Eq. (20).

3.2.1. TVD nonlinear limiter
Following [24], TVD nonlinear limiters enforce the TVD property by introducing the slope function φ(r) to limit the 

gradient variation. Several second- and third-order TVD schemes with different slope functions have been developed, e.g. 
with the Minmod limiter, the Superbee limiter and the Van Leer limiter [25][26][27]. Here, we take a Van Albada limiter as 
an example to exemplify its implementation. Following [28], the slope function of a Van Albada limiter φ(r)VA is defined as

φVA(r) = 2r
r2 + 1

, (21)

and the slope ratio r based on a three-cell stencil centered at i is

r = δ+/δ−, (22)

where δ− = f i − f i−1, δ+ = f i+1 − f i . Therefore, the reconstruction scheme filtered by a Van Albada limiter can be written 
as

f VA
i+ 1

2
= f i + φVA

4
[(1 − κφVA)δ− + (1 + κφVA)δ+]. (23)

In smooth regions, a third-order reconstruction is restored by setting κ = 1/3 and the resulting TENO schemes are 
referred to as TENO-M-VA.

However, these reconstructions fail to incorporate concrete information of the variation of δ+ except for the monotonicity 
constraint. Kim et al. [21] propose to incorporate the curvature information of δ+ into TVD limiters by the proper choice of 
an optimal variation function β and develop a class of high-order TVD limiters. As suggested in [21], the slope function of 
a high-order TVD limiter φ(r)TVD5 based on a five-cell stencil centered at i is defined as

φTVD5(r) = max(0,min(α,αr,β)), (24)

where α = 2 and β is given as

β = −2/r j−1 + 11 + 24r j − 3r jr j+1

30
. (25)

A reconstruction scheme filtered by a high-order TVD limiter can be written as

f TVD5
i+ 1

2
= f i + 1

2
φTVD5δ

−. (26)

The resulting TENO schemes with this fifth-order limiter are referred to as TENO-M-TVD5.
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3.2.2. Monotonicity-preserving limiter
Suresh and Huynh [20] propose a monotonicity-preserving method to bound the high-order reconstructed data at cell 

interface by distinguishing smooth local extrema from genuine discontinuity. The resulting monotonicity-preserving schemes 
allow for the local extremum to develop in the evaluation of cell interface data and is robust for shock-dominated flows. 
The minmod function with two arguments is

minmod(x, y) = 1
2
[sgn(x) + sgn(y)]min(|x| , |y|), (27)

and the minmod function with four arguments is

minmod(a,b, c,d) = 1
8
[sgn(a) + sgn(b)] |[sgn(a) + sgn(c)][sgn(a) + sgn(d)]| min(|a| , |b| , |c| , |d|). (28)

The median function is

median(x, y, z) = x + minmod(y − x, z − x). (29)

While the curvature at the cell center i can be approximated by

di = f i+1 − 2 f i + f i−1, (30)

the curvature measurement at the cell interface i + 1/2 can be defined as

dM4
i+1/2 = minmod(4di − di+1,4di+1 − di,di,di+1). (31)

This definition is more restrictive since the room for local extrema to develop is reduced when the ratio di+1/di is smaller 
than 1/4 or larger than 4.

In order to define the minimum and maximum bounds of data at the interface xi+1/2, the left-side upper limiter is given 
as

f UL
i+1/2 = f i + α( f i − f i−1), (32)

where the choice of α in principle should satisfy the condition that CFL ≤ 1/(1 + α) for stability. In our simulations, α =
1.25 is employed to enable a choice of CFL = 0.4.

The median value of the solution at xi+1/2 is given by

f MD
i+1/2 = 1

2
( f i + f i+1) − 1

2
dMD

i+1/2. (33)

The left-side value allowing for a large curvature in the solution at xi+1/2 can be given by

f LC
i+1/2 = f i + 1

2
( f i − f i−1) + β

3
dLC

i−1/2, (34)

where it is recommended to set β = 4. Following [20] and [29], dMD
i+1/2 = dLC

i+1/2 = dM4
i+1/2 is adopted. In numerical validations, 

the parameters in MP limiters are set as di+1/2 = dM4
i+1/2 and β = 4. The bounds are given by

f L,min
i+1/2 = max[min( f i, f i+1, f MD

i+1/2),min( f i, f UL
i+1/2, f LC

i+1/2)],
f L,max

i+1/2 = min[max( f i, f i+1, f MD
i+1/2),max( f i, f UL

i+1/2, f LC
i+1/2)],

(35)

and the monotonicity preserving value for data at the interface xi+1/2 is obtained by limiting the predicted value from other 
reconstructions as

f MP
i+1/2 = median( f̂ i+1/2, f L,min

i+1/2, f L,max
i+1/2 ). (36)

This monotonicity-preserving limiter is implemented in the new framework through Eq. (20), and the resulting scheme 
is referred to as TENO-M-MP.
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3.2.3. Implementation discussions
Within the TENO-M framework, the implementation of the MP limiter is slightly different from the TVD-type limiter. 

With a MP limiter, the minimum and maximum bounds of flux at the interface xi+1/2 are first computed. Afterwards, these 
bounds are used to filter the candidate fluxes on the nonsmooth stencils identified by TENO, ensuring that the filtered nons-
mooth flux is within the bounds computed by the MP limiter. In terms of the TVD-type limiters, a second-order (fifth-order) 
scheme with the Van Albada limiter (the TVD limiter) can be constructed based on the fixed three-cell (five-cell) stencil 
centered at i. Once a candidate stencil is identified as nonsmooth by the TENO weighting strategy, the nonsmooth flux will 
be replaced by the predefined second-order (fifth-order) flux. Both strategies yield flexible and controllable dissipation for 
the resulting TENO-M schemes.

Note that, in principle, the TVD-type limiter can also be applied to each identified nonsmooth candidate stencils and 
the filtering procedure will be similar to that of the MP limiter. The present choice, however, reduces the computational 
operations since only one limited flux is computed on fixed cells, and provides similar performance.

3.3. Full high-order construction

Since the candidate reconstructions are either smooth or filtered by nonlinear limiters, the high-order reconstruction at 
the cell interface xi+1/2 can be achieved by a linear combination

f̂ K
i+1/2 =

K−3∑

k=0

wk f̂ M
k,i+1/2, k = 0, · · · , K − 3, (37)

where wk = dk , which denotes the optimal linear weights. A weight renormalization procedure as with the standard TENO 
paradigm, Eq. (18), is not needed. In practice, optimal weights dk can either be optimized to approach the maximum 
accuracy order or to achieve better spectral properties with low dissipation and low dispersion.

3.4. Spectral property

The spectral properties of the nonlinear shock-capturing schemes, i.e. dissipation and dispersion property, can be ana-
lyzed by the approximate dispersion relation (ADR) [30]. As shown in Fig. 2, the numerical dissipation and dispersion of 
the newly proposed six- and eight-point TENO-M schemes are evaluated by computing the imaginary and real parts of the 
modified wavenumber. The dissipation and dispersion spectra of the standard WENO-CU6 [8], TENO6 [9], and TENO8A [17]
schemes are also plotted for comparison.

It is observed that the good spectral resolutions of TENO6 and TENO8A are generally maintained by both TENO6-M and 
TENO8A-M schemes, which show remarkable improvements over the WENO-CU6 scheme. Both TENO and TENO-M schemes 
recover the dispersion and dissipation property of the background optimal linear schemes up to the wavenumber of about 
1.5. The adjustment of nonlinear dissipation of TENO-M schemes are restricted to high-wavenumber regions. Owing to the 
flexibility of the present framework to choose nonlinear limiters, the dissipation property of TENO-M schemes in the high-
wavenumber regions can be further manipulated by deploying different nonlinear limiters. For the limiters in the present 
paper, the low- and high-order TVD-type limiters provide more dissipation than the standard TENO schemes. As for the MP 
limiter, the numerical dissipation of TENO-M-MP schemes can be less than that of the counterpart TENO schemes in certain 
regions. These results demonstrate that with different choices of nonlinear limiters, the newly proposed framework conveys 
a broad range of nonlinear-dissipation variations in high wavenumber regions. By the proposed extension, TENO-M schemes 
can be tailored to handle different kinds of physical computations, such as shocks and turbulence, by a suitable choice of 
nonlinear limiter.

4. Numerical validations

In this section, a set of benchmark cases involving strong discontinuities and broadband flow scales is simulated. The 
proposed TENO-M schemes are extended to multi-dimensional problems in a dimension-by-dimension manner. For systems 
of hyperbolic conservation laws, the characteristic decomposition method based on the Roe average [31] is employed. The 
Rusanov scheme [32] is adopted for flux splitting. The third-order strong stability-preserving (SSP) Runge-Kutta method [33]
with a typical CFL number of 0.4 is adopted for the time advancement. Numerical results from WENO-CU6 [8], TENO6 [9]
and TENO8A [17] are compared. The parameters in TENO6 and TENO8A schemes are identical to those in [9] and [17].

4.1. Advection problems

4.1.1. Accuracy test
We first consider the one-dimensional Gaussian pulse advection problem [34]. The linear advection equation

∂u
∂t

+ ∂u
∂x

= 0, (38)

8
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Fig. 2. Spectral properties. Top: dissipation (a) and dispersion (b) properties of the six-point TENO and TENO-M schemes; bottom: dissipation (c) and 
dispersion (d) properties of the eight-point TENO and TENO-M schemes.

with initial condition

u(x,0) = e−300(x−xc)
2
, xc = 0.5, (39)

is solved in a computational domain 0 ≤ x ≤ 1 and the final time is t = 1. Periodic boundary conditions are imposed at 
x = 0 and x = 1.

As shown in Fig. 3, the desired accuracy order is achieved for both TENO6-M and TENO8A-M schemes. As all solutions 
are identified as smooth, optimal accuracy order is achieved.

4.1.2. Multi-wave advection
This case is taken from Jiang and Shu [2]. We solve the advection equation

∂u
∂t

+ ∂u
∂x

= 0, (40)

9
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Fig. 3. Convergence of the L∞ error from the TENO6-M (a) and TENO8A-M (b) schemes. N denotes the grid number.

with the initial condition

u(x,0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
6 [G(x − 1,β, z − θ) + G(x − 1,β, z + θ) + 4G(x − 1,β, z)], if 0.2 ≤ x < 0.4,

1, if 0.6 ≤ x ≤ 0.8,

1 − |10(x − 1.1)|, if 1.0 ≤ x ≤ 1.2,
1
6 [F (x − 1,α,a − θ) + F (x − 1,α,a + θ) + 4F (x − 1,α,a)], if 1.4 ≤ x < 1.6,

0, otherwise,

(41)

where

G(x,β, z) = e−β(x−z)2
, F (x,α,a) =

√
max(1 − α2(x − a)2,0). (42)

The parameters in Eqs. (41)–(42) are given as

a = 0.5, z = −0.7, θ = 0.005, α = 10, β = log 2
36θ2 . (43)

The initial distribution consists of a Gaussian pulse, a square wave, a sharply peaked triangle and a half-ellipse arranged 
from left to right in the computational domain x ∈ [0, 2]. The computation is performed with N = 200 uniformly distributed 
mesh cells and the final simulation time is t = 2.

As shown in Fig. 4, for the advection of the square wave, all schemes are free from numerical oscillations. Concerning 
the advection of the half-ellipse wave, TENO-M schemes eliminate the overshoots generated by the standard TENO and 
WENO-CU6 schemes. Qualitatively, TENO-M-VA schemes exhibit best symmetry preservation.

4.2. Gas dynamics

4.2.1. Shock-tube problem
The Lax problem [35] and the Sod problem [36] are considered. The initial condition for Lax problem [35] is

(ρ, u, p) =
{

(0.445,0.698,3.528), if 0 ≤ x < 0.5,

(0.5,0,0.5710), if 0.5 ≤ x ≤ 1,
(44)

and the final simulation time is t = 0.14.
The initial condition for Sod problem [36] is

(ρ, u, p) =
{

(1,0,1), if 0 ≤ x < 0.5,

(0.125,0,0.1), if 0.5 ≤ x ≤ 1,
(45)

and the final simulation time is t = 0.2. The computations are done on 100 uniformly distributed grid points.
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Fig. 4. Numerical results of advection of multi-wave with TENO6-M (a) and TENO8A-M (b) schemes. Discretization is on 200 uniformly distributed grid 
points.

As shown in Fig. 5 and Fig. 6, both the proposed TENO6-M and TENO8A-M schemes recover the shock-capturing capa-
bility of standard TENO schemes with the nonsmooth stencils being filtered by nonlinear limiters.

4.2.2. Shock density-wave interaction problem
This case is proposed by Shu and Osher [37]. A one-dimensional Mach-3 shock wave interacts with a perturbed density 

field generating both small-scale structures and discontinuities. The initial condition is

(ρ, u, p) =
{

(3.857,2.629,10.333), if 0 ≤ x < 1,

(1 + 0.2 sin(5(x − 5)),0,1), if 1 ≤ x ≤ 10.
(46)

The computational domain is [0,10] with N = 200 uniformly distributed mesh cells and the final evolution time is t = 1.8. 
The exact solution for reference is obtained by the fifth-order WENO-JS scheme with N = 2000.

Fig. 7 shows the computed density distributions from both six- and eight-point TENO-M schemes. It is observed that the 
proposed TENO6-M and TENO8A-M schemes resolve the high-wavenumber fluctuations with very low numerical dissipation 
while capturing the shocklets as sharply as the WENO-CU6 and standard TENO schemes. Among TENO-M schemes, the 
TENO-M-TVD5 and TENO-M-VA schemes provide slightly more dissipation than the standard TENO schemes in the under-
resolved regions while the TENO-M-MP schemes are less dissipative with better wave-resolution property. By adapting 
the nonlinear limiters, the numerical dissipation in nonsmooth regions is tuned accordingly without sacrificing the shock-
capturing capability and the high-order accuracy with this new TENO framework.

4.2.3. Interacting blast waves
The two-blast-waves interaction problem taken from [38] is considered. The initial condition is

(ρ, u, p) =

⎧
⎪⎨

⎪⎩

(1,0,1000), if 0 ≤ x < 0.1,

(1,0,0.01), if 0.1 ≤ x < 0.9,

(1,0,100), if 0.9 ≤ x ≤ 1.

(47)

The simulation is performed on a uniform mesh with N = 400 and the final simulation time is t = 0.038. The exact solution 
for reference is computed by the fifth-order WENO-JS scheme on a uniform mesh with N = 2500. For this case the Roe 
scheme with entropy-fix is employed as numerical flux function.

As shown in Fig. 8, all schemes generate good results and the TENO6-M and TENO8A-M schemes perform better than 
WENO-CU6 in resolving the density peak at x = 0.78. In addition, TENO-M-MP schemes provide similar dissipation compared 
to the standard TENO schemes while TENO-M-TVD5 and TENO-M-VA schemes provide more dissipation, which confirms that 
a broad range of nonlinear-dissipation variations can be achieved through adopting different nonlinear limiters.
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Fig. 5. Shock-tube problem: the Lax problem. Top: density profile (a) and velocity profile (b) of WENO-CU6, TENO6 and TENO6-M schemes; bottom: density 
profile (c) and velocity profile (d) of the TENO8A and TENO8A-M schemes. Discretization is on 100 uniformly distributed grid points and the final simulation 
time is t = 0.14.

4.2.4. Rayleigh-Taylor instability
The inviscid Rayleigh-Taylor instability case proposed by Xu and Shu [39] is considered here. The initial condition is

(ρ, u, v, p) =
{

(2,0,−0.025c cos(8πx),1 + 2y), if 0 ≤ y < 1/2,

(1,0,−0.025c cos(8πx), y + 3/2), if 1/2 ≤ y ≤ 1,
(48)

where the sound speed c =
√

γ p
ρ with γ = 5

3 . The computational domain is [0, 0.25] × [0, 1]. Reflective boundary conditions 
are imposed at the left and right side of the domain. Constant primitive variables (ρ, u, v, p) = (2, 0, 0, 1) and (ρ, u, v, p) =
(1, 0, 0, 2.5) are set for the bottom and top boundaries, respectively.

In Fig. 9, the computed density contours with the proposed TENO6-M and TENO8A-M schemes at resolution of 64 × 256
are shown. The results show that the newly proposed TENO6-M and TENO8A-M schemes resolve finer small-scale structures 
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Fig. 6. Shock-tube problem: the Sod problem. Top: density profile (a) and velocity profile (b) of WENO-CU6, TENO6 and TENO6-M schemes; bottom: density 
profile (c) and velocity profile (d) of TENO8A and TENO8A-M schemes. Discretization is on 100 uniformly distributed grid points and the final simulation 
time is t = 0.2.

than WENO-CU6 scheme. For all newly proposed schemes, the nonsmooth contact interface regions are captured sharply. 
In terms of vortex structures, TENO6-M-MP and TENO6-M-TVD5 schemes generate finer structures compared with TENO6-
M-VA. While TENO6-M-MP exhibits breaking of flow symmetry, better symmetry preservation is visible for TENO6-M-VA. 
Similar observations can be seen for TENO8A and TENO8A-M.

4.2.5. Double Mach reflection of a strong shock
This two-dimensional case is taken from Woodward and Colella [38]. The initial condition is

(ρ, u, v, p) =
{

(1.4,0,0,1), if y < 1.732(x − 0.1667),

(8,7.145,−4.125,116.8333), otherwise.
(49)
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Fig. 7. Shock density-wave interaction problem: solutions from the WENO-CU6, TENO and TENO-M schemes. Top: density distribution (a) and a zoom-in 
view of the density distribution (b) of WENO-CU6, six-point TENO6 and TENO6-M schemes; bottom: density distribution (c) and a zoom-in view of the 
density distribution (d) of eight-point TENO8A and TENO8A-M schemes. Discretization is on 200 uniformly distributed grid points and the final simulation 
time is t = 1.8.

The computational domain is [0, 4] × [0, 1] and the final simulation time is t = 0.2. The boundary condition setup is the 
same as [38].

As shown in Fig. 10, Fig. 11 and Fig. 12, TENO and TENO-M schemes perform better than WENO-CU6 in resolving the 
small-scale structures. The shock-wave patterns are captured sharply without spurious numerical oscillations. Compared 
with the results of the TENO6-M-MP scheme, that of TENO6-M-TVD5 and TENO6-M-VA are slightly more dissipative.

Moreover, to address the flexibility of the unified framework, it is worth noting that the effect of the MP limiter can be 
adjusted through tuning of the curvature measurement dM4

i+1/2 and β . In the following, we test the dissipation property of 
MP limiter with a smaller β = 2 and a less restrictive curvature measurement dMM

i+1/2 at the cell interface i + 1/2 which is 
defined as

dMM
i+1/2 = minmod(di,di+1). (50)
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Fig. 8. Interacting blast waves problem: solutions from the WENO-CU6, TENO and TENO-M schemes. Top: density distribution (a) and a zoom-in view 
of the density distribution (b) of WENO-CU6, six-point TENO and TENO-M schemes; bottom: density distribution (c) and a zoom-in view of the density 
distribution (d) of the eight-point TENO and TENO-M schemes. Discretization is on 400 uniformly distributed grid points and the final simulation time is 
t = 0.038.

As shown in Fig. 13, the dissipation property is more sensitive to β , which determines the amount of freedom allowing 
for large curvature. And Fig. 13 shows that, a more restrictive curvature measurement results in a less dissipative MP 
limiter.

We further perform simulations with a low-dissipation flux-splitting method and higher resolution. In Fig. 14 and Fig. 15, 
simulations with the resolution of N = 1200 × 300 are performed on uniform meshes with TENO6 and TENO6-M schemes. 
Following Fleischmann et al. [40], to cure the grid-aligned shock instability in low-dissipation computations, the newly 
proposed Roe-M flux-splitting method is deployed to perform the simulations. With additional nonlinear limiters to filter 
the nonsmooth candidate stencils, TENO6-M-TVD5 and TENO6-M-VA can pass the case without difficulties. As shown in 
Fig. 15, TENO6-M schemes capture the shock-wave pattern sharply. In terms of the vortex structures, TENO6-M-TVD5 and 
TENO6-M-VA schemes generate these small scale structures with reduced numerical noise.
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Fig. 9. Rayleigh-Taylor instability: density contours from the WENO-CU6 (a), TENO6 (b), TENO6-M (c)(d)(e), TENO8A (f) and TENO8A-M (g)(h)(i) schemes at 
simulation time t = 1.95. Resolution is 64 × 256. This figure is drawn with 25 density contours between 0.9 and 2.2.

4.3. Turbulent flows

4.3.1. Inviscid incompressible isotropic Taylor-Green vortex (TGV)
In order to assess the proposed TENO-M scheme for implicit large eddy simulations (ILES), we consider the typical 

incompressible isotropic Taylor-Green vortex case. The initial condition follows

u(x, y, z,0) = sin(x)cos(y)cos(z) ,

v(x, y, z,0) = -cos(x)sin(y)cos(z),

w(x, y, z,0) = 0,

ρ(x, y, z,0) = 1.0,

p(x, y, z,0) = 100 + 1
16 [(cos(2x)+cos(2y))(2+cos(2z)) − 2].

(51)

The computational domain is [0, 2π ] × [0, 2π ] × [0, 2π ] with periodic boundary conditions applied on the six boundaries. 
The mesh resolution is 643. The evolution of normalized total kinetic energy is shown in Fig. 16(a). The kinetic energy 
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Fig. 10. Double Mach reflection of a strong shock: density contours from WENO-CU6 for reference at simulation time t = 0.2. Resolution is 800 × 200. This 
figure is drawn with 42 density contours between 3.27335 and 20.1335.

decays as t−1.2, which agrees well with [41]. For very large Reynolds number incompressible TGV flows, three-dimensional 
statistically isotropic turbulence develops, and the kinetic-energy spectra E(k) ∝ k−5/3 is observed within the inertial sub-
range after t ≃ 9. As shown in Fig. 16(b), although TENO8A-M is slightly more dissipative than TENO8A (for which the 
built-in parameters are particularly optimized for this case [17]) at high wavenumbers, it can faithfully reproduce the Kol-
mogorov scaling up to 2/3 of the cut-off wavenumber at t = 10. The present results suggest that TENO8-A-M scheme can 
be applied to under-resolved simulations without parameter tuning and has potential to function as an ILES model.

4.3.2. Viscous incompressible isotropic Taylor-Green vortex
With finite Reynolds numbers, the favorable numerical method is expected to reproduce the flow transition and the 

developed turbulence. Viscous incompressible isotropic case with a Reynolds number of 800 is computed with coarse res-
olutions of 643 and 963. Results from the implicit LES model ALDM [42] and the dynamic Smagorinsky model (DSGS) [43]
are also provided for comparisons. As shown in Fig. 17, TENO8A-M-MP exhibits slightly higher dissipation than ALDM and 
TENO8A (both are optimized for this case [17][42]) at the time stage from t = 5 to t = 8 on the coarse mesh of 643. How-
ever, the result is better than that of the dynamic Smagorinsky model. With the finer mesh of 963, TENO8A-M-MP scheme 
shows good agreement with the DNS reference (computed on a mesh of 2563 [44]) and predicts the peak dissipation rate 
at the later time stage very well. Therefore, TENO8A-M-MP can be applied as a physically-consistent ILES model without 
parameter tuning on coarse meshes.

4.4. Extreme simulations

In this part, we consider two challenging cases to demonstrate the advantage of the newly proposed framework. Fol-
lowing [45], the positivity-preserving flux limiter [46] is applied to guarantee positivity of pressure and density. With the 
present MP limiter, a less restrictive curvature parameter dMM

i+1/2 and β = 1 are adopted to eliminate artificial local extrema 
generated by spurious oscillations.

4.4.1. Noh problem
The Noh problem [47] is a challenging case to test shock-capturing algorithms, where a uniform inwards radial inflow 

generates an infinitely strong shock wave moving outwards at a constant speed. The computational domain is [0, 0.256] ×
[0, 0.256] × [0, 0.256] and the initial condition is described as (ρ, u, v, w, p) = (1, −x/r, −y/r, −z/r, 1 × 10−6). The final 
simulation time is 0.6 and the mesh resolution is 643.

As shown in Fig. 18, the position of the shock wave is well captured and the density distributions from TENO and TENO-
M show good agreement with the exact solution. Unlike the density drop caused by wall over-heating at the center observed 
with WENO schemes, e.g. see Fig. 10 in [48], no artificial wall heating appears with the TENO and TENO-M schemes. 
Moreover, compared with the classical TENO schemes, TENO-M-TVD5 and TENO-M-MP show an improved suppression of 
spurious oscillations.
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Fig. 11. Double Mach reflection of a strong shock: density contours from TENO6 (a) and TENO6-M schemes (b)(c)(d) at simulation time t = 0.2. Resolution 
is 800 × 200. This figure is drawn with 42 density contours between 3.27335 and 20.1335.

4.4.2. Le Blanc problem
The Le Blanc problem [49] is a challenging case with very strong discontinues. The initial condition is

(ρ, u, p) =
{

(1,0, 2
3 × 10−1), if 0 ≤ x < 3,

(10−3,0, 2
3 × 10−10), if 3 ≤ x ≤ 9.

(52)

The mesh resolution is N = 900 and the final simulation time is t = 6. The reference solutions are computed with the 
fifth-order WENO-JS scheme at a resolution N = 2500. The adiabatic coefficient is γ = 5

3 .
As shown in Fig. 19, the TENO8A scheme leads to obvious numerical oscillations in density and velocity profiles. For the 

density profile, TENO8A-M-MP eliminates the overshoot at x = 6 generated by the standard TENO8A scheme. In addition, 
TENO8A-M-MP preserves the monotonicity well in the velocity profile.
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Fig. 12. Double Mach reflection of a strong shock: density contours from TENO8A (a) and TENO8A-M schemes (b)(c)(d) at simulation time t = 0.2. Resolution 
is 800 × 200. This figure is drawn with 42 density contours between 3.27335 and 20.1335.

4.5. Computational efficiency

In order to assess the computational efficiency of the proposed TENO-M scheme, we consider typical two-dimensional 
simulations, see Table 2. And the cases involved are the Rayleigh-Taylor instability with a resolution of 64 × 256 and the 
double Mach reflection of a strong shock with a resolution of 800 × 200 respectively. All simulations are conducted on the 
same desktop workstation. The results show that the cost of TENO8A-M scheme depends on the computational complexity 
of the limiters. For simple limiters, the computational efficiency of TENO8A-M can be even higher than that of TENO8A 
as the renormalization procedure of TENO is not needed. The TENO8A-M-MP scheme is slightly more expensive than the 
TENO8A scheme by about 10%. For TVD-type limiters (TVD5 and VA), the computational efficiency of TENO8A-M is almost 
the same as the classical TENO8A scheme. Regarding to the good performance and flexibility of the new framework, we 
believe that the proposed method is promising for a wide range of applications.

19



Y. Li, L. Fu and N.A. Adams Journal of Computational Physics 428 (2021) 109960

Fig. 13. Double Mach reflection of a strong shock: parameter study of monotonicity-preserving limiter. Density contours from TENO6-M-MP with dM4
curvature measurement and β = 4.0 (a), TENO6-M-MP with dM4 curvature measurement and β = 2.0 (b), TENO6-M-MP with dMM curvature measurement 
and β = 4.0 (c) and TENO6-M-MP with dMM curvature measurement and β = 2.0 (d) at simulation time t = 0.2. Resolution is 800 × 200. This figure is 
drawn with 42 density contours between 3.27335 and 20.1335.

5. Conclusions

In this paper a flexible framework for constructing new shock-capturing TENO schemes is proposed. Six- and eight-point 
TENO-M schemes are developed, and their performance is demonstrated by conducting a set of critical benchmark cases. 
The conclusions are as follows.

• The new framework establishes a unified concept of TENO schemes with classical nonlinear limiters for shock-capturing. 
Three stages are involved, (a) evaluating of candidate numerical fluxes and labeling each candidate stencil as smooth 
or nonsmooth by a ENO-like stencil selection procedure; (b) filtering the nonsmooth candidate stencils by an extra 
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Fig. 14. Double Mach reflection of a strong shock: density contours from TENO6 at simulation time t = 0.2. Resolution of 1200 × 300. This figure is drawn 
with 42 density contours between 3.27335 and 20.1335.

Fig. 15. Double Mach reflection of a strong shock: density contours from TENO6-M schemes: TENO6-M-TVD5 (a) and TENO6-M-VA (b) at simulation time 
t = 0.2. TENO6-M-MP fails to pass. Resolution of 1200 × 300. This figure is drawn with 42 density contours between 3.27335 and 20.1335.

Table 2
The averaged computational time (in the parentheses) and the normalized values with respect to the computational time of TENO8A.

Case Grid number TENO8A TENO8A-MP TENO8A-TVD5 TENO8A-VA

Rayleigh-Taylor instability 64 × 256 1(228.44 s) 1.088(248.58 s) 0.988(225.72 s) 0.997(227.89 s)

Double Mach reflection of 
a strong shock

800 × 200 1(1153.49 s) 1.123(1295.31 s) 0.985(1137.11 s) 0.993(1145.91 s)

nonlinear limiter; (c) formulating the high-order reconstruction by combining the candidate stencils with optimal linear 
weights.
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Fig. 16. Inviscid Taylor-Green vortex problem: solutions from the TENO8A and TENO8A-M schemes. The evolution of normalized total kinetic energy (a) and 
the energy spectrum within resolved inertial subrange at t = 10 compared to the Kolmogorov scaling E(k) ∝ k−5/3 (b). Discretization is on 643 uniformly 
distributed grid points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 17. Taylor-Green vortex problem with Reynolds number 800: comparison of energy dissipation rate. Left: comparison on a 643 mesh (a). Right: com-
parison on a 963 mesh (b). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

• In smooth regions, all candidate stencils are identified as smooth by the TENO stencil selection procedure and con-
sequently TENO-M recovers to TENO. In nonsmooth regions, stable shock-capturing capability is achieved since the 
nonsmooth candidates contributed to the final reconstructions are filtered to be oscillation-free by extra limiters.

• The present framework can be applied to a wide range of limiters, such as TVD and MP. Such different nonlinear limiters 
are deployed straightforwardly to construct a new family of high-order TENO-M schemes. TENO-M schemes enable 
flexible control of dissipation in nonsmooth regions. A wide range of adjustable nonlinear dissipation can be considered 
in the current framework without affecting global dissipation and detriment to accuracy in low-wavenumber regions.

• A set of critical benchmark cases is simulated. Numerical results demonstrate the capability of the new schemes in 
terms of recovering high-order accuracy in smooth regions, preserving low dissipation for resolution of fluctuations, and 
sharp capturing of discontinuities (eliminating spurious oscillations particularly in extreme cases). Moreover, different 
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Fig. 18. Noh problem: solutions from the TENO and TENO-M schemes. Top: density distribution (a, b) of six-point TENO6 and TENO6-M schemes; bottom: 
density distribution (c, d) of eight-point TENO8A and TENO8A-M schemes. Discretization is on 64 × 64 × 64 uniformly distributed grid points and the final 
simulation time is t = 0.6. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

nonlinear limiters are tested. The results show that adapting nonlinear numerical dissipation in nonsmooth regions can 
be controlled by the choice of limiter function.
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Fig. 19. Le Blanc problem: solutions from the TENO and TENO-M schemes. Density distribution (a) and velocity distribution (b) of eight-point TENO8A and 
TENO8A-M schemes. Discretization is on 900 uniformly distributed grid points and the final simulation time is t = 6. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)
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Abstract
In this paper, a new class of high-order fast multi-resolution essentially non-oscillatory
(FMRENO) schemes is proposedwith an emphasis on both the performance and the computa-
tional efficiency. First, a newcandidate stencil arrangement is developed for amulti-resolution
representation of the local flow scales. A set of candidate stencils ranging from high- to
low-order (from large to small stencils) is constructed in a hierarchical manner. Second, the
monotonicity-preserving (MP) limiter is introduced as the regularity criterion of the candidate
stencils. A candidate stencil, with which the reconstructed cell interface flux locates within
the MP lower and upper bounds, is regarded to be smooth. Third, a multi-resolution stencil
selection strategy, which prioritizes the stencils with better spectral property or higher-order
accuracy meanwhile satisfying the MP criterion, is proposed. If all the candidate stencils
are judged to be nonsmooth, the targeted stencil that violates the MP criterion the least is
deployed as the final reconstruction instead. With this new framework, the desirable high-
order accuracy is restored in the smooth regions while the sharp shock-capturing capability is
achieved by selecting the targeted stencil satisfying theMP criterionmost.Moreover, the new
FMRENO schemes feature low numerical dissipation for resolving the broadband physical
fluctuations by adaptively choosing the candidate stencil with better spectra or higher accu-
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racy order based on the local flow regularity. Compared to the standard weighted/targeted
essentially non-oscillatory (W/TENO) schemes, the computational efficiency is dramatically
enhanced by avoiding the expensive evaluations of the classical smoothness indicators. A set
of benchmark simulations demonstrate the performance of the new FMRENO schemes for
handling complex fluid problems with a wide range of length scales.

Keywords WENO · TENO ·Multi-resolution · High-order schemes · Shockwaves ·
Compressible flow · Turbulence

1 Introduction

High-order and high-resolution shock-capturing schemes are essential numerical methods to
solve compressible fluid problems, which may involve discontinuities and broadband flow
scales [1–4]. The main objectives are to restore the high-order accuracy in smooth regions
with low numerical dissipation while capturing discontinuities sharply without generating
spurious oscillations. Among all the concepts proposed in the past decades to cope with this
issue [5–10], the family of essentially non-oscillatory (ENO) schemes belongs to one of the
most popular methods [2, 11, 12].

The development of the ENO-family schemes and the related variants are briefly reviewed
in the following. Harten et al. [7] first propose the high-order ENO scheme, which selects the
smoothest stencil from a set of predefined candidate stencils to avoid the Gibbs phenomenon
near discontinuities. Widely accepted discretization schemes, weighted essentially non-
oscillatory (WENO) schemes, first proposed by Liu et al. [8] and further improved by Jiang
and Shu [9], are developed from the ENO concept. Instead of selecting the smoothest can-
didate, WENO deploys a convex combination of all candidate stencils to achieve high-order
accuracy in smooth regions. The optimal linear weights are modulated based on the smooth-
ness indicators such that the desired accuracy order is restored in smooth regions and the
ENO property is preserved near discontinuities. The performance of the WENO schemes
can be further enhanced by improving the nonlinear weighting strategy, e.g., the WENO-M
[13] andWENO-Z [14, 15] schemes avoid the order degeneration near critical points through
correcting the nonlinear weights to be closer to the optimal linear ones. On the other hand,
the excessive numerical dissipation of WENO (as another typical flaw of WENO-family
schemes) can be remedied by freezing the nonlinear adaptation when the ratio between the
largest and the smallest calculated smoothness indicator is belowaproblem-dependent thresh-
old [16]. Alternatively, to reduce the numerical dissipation of the fifth-order WENO scheme,
an adaptive central-upwind sixth-orderWENO-CU6 [17] scheme is proposed by introducing
the contribution of an additional downwind stencil. Other recent work following this direction
includes the development of WENO-Z+ scheme [18]. To improve the numerical robustness
of the very-high-order WENO reconstructions, monotonicity-preserving WENO schemes
[19], positivity-preserving WENO schemes [20], and WENO schemes with recursive-order-
reduction [21] are proposed. More recently, Zhu and Shu [22] develop the finite-difference
and finite-volume multi-resolution WENO schemes based on a hierarchy of nested unequal-
sized central spatial stencils. Following the nonlinear weighting concept of central WENO
(CWENO) schemes [23, 24], arbitrary positive linear weights can be employed and the
resulting schemes have a gradual degrading of accuracy near discontinuities. However, the
aforementioned WENO schemes are rather expensive especially for the very-high-order
reconstructions since the calculations of smoothness indicators are inevitable.
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As the most recent innovation, the high-order TENO schemes improve the numerical
robustness and reduce the unnecessary numerical dissipation by a new candidate stencil
arrangement and a novel ENO-like stencil selection strategy [10, 25–33]. In contrast to the
WENO-like smooth convex combination of candidate stencils, the TENO scheme either
deploys a candidate stencil with its optimal linear weight or discards it completely when
crossed by a discontinuity. The TENO scheme has been extended to unstructured meshes
[34] and multi-resolution methods [35].

In this paper, a family of FMRENO schemes for both the odd- and even-order recon-
structions in a unified framework is proposed. With a set of predefined candidate stencils
as the multi-resolution representation of local flow scales, a novel stencil selection strategy
is proposed to form the final reconstruction. The selection criterion is provided by the MP
limiter [19], with which a candidate stencil is regarded to be smooth if the reconstructed
cell interface flux locates within the upper and lower bounds of the MP limiter. Then, the
optimal smooth stencil with higher-order accuracy or better spectral property will be adopted
as the final reconstruction scheme. As a result, the FMRENO scheme achieves the multi-
resolution property by adaptively selecting the targeted candidate stencil according to the
local flow regularity and degenerates from high- to low-order reconstruction when approach-
ing the discontinuities. Moreover, the computational efficiency is improved when compared
to W/TENO since the evaluations of the smoothness indicators are unnecessary.

The rest of this paper is organized as follows. In Sect. 2, the basic concepts of the WENO
and TENO schemes are briefly reviewed. In Sect. 3, a general framework to construct arbi-
trarily high-order FMRENO schemes is proposed. In Sect. 4, the explicit expressions of
FMRENO schemes ranging from fifth- to eighth-order are given. In Sect. 5, a set of bench-
mark cases is considered to assess the proposed schemes. The concluding remarks are given
in the last section.

2 Basic Concepts of W/TENO Schemes

To facilitate the presentation, we consider a one-dimensional scalar hyperbolic conservation
law

∂u
∂t

+ ∂

∂x
f (u) = 0, (1)

where u and f denote the conservative variable and the flux function, respectively. Without
losing the generality, the characteristic signal velocity is assumed to be positive ∂ f (u)

∂u > 0
in the entire computational domain hereafter.

For a uniform Cartesian mesh with cell centers xi = i"x and cell interfaces xi+1/2 =
xi + "x/2, the spatial discretization results in a set of ordinary differential equations

dui (t)
dt

= −∂ f
∂x

∣∣x=xi , i = 0, . . . , n, (2)

where ui denotes the numerical approximation to the point value u(xi , t). Eq. (2) can be
further discretized by a conservative finite-difference scheme as

dui
dt

= − 1
"x

(hi+1/2 − hi−1/2), (3)
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where the primitive function h(x) is implicitly defined by

f (x) = 1
"x

∫ x+"x/2

x−"x/2
h(ξ)dξ , (4)

and hi±1/2 = h(xi ± "x/2). For the purpose of achieving global high-order accuracy of
spatial discretization, a high-order approximation of the function h(x) at the cell interface
has to be reconstructed from the cell-averaged values of f (x) at the cell centers. Eq. (3) can
be written as

dui
dt

≈ − 1
"x

( f̂i+1/2 − f̂i−1/2), (5)

where f̂i±1/2 denotes the approximate numerical fluxes and can be computed from different
stencils. For a K -point stencil, a K -th order polynomial interpolation of function h(x) can
be assumed as

h(x) ≈ f̂ (x) =
K−1∑

l=0

al xl . (6)

After substituting Eq. (6) into Eq. (4) and evaluating the integral functions at the stencil
nodes, the coefficients al are uniquely determined by solving the resulting system of linear
algebraic equations.

For solving hyperbolic conservation laws, discontinuities may occur in the computational
domain evenwhen the initial condition is smooth enough. The long-term numerical challenge
is to develop a reconstruction scheme that is high-order accurate in smooth regions and
captures discontinuities sharply and stably in nonsmooth regions. In the following, we recall
the essential elements of different strategies to ensure the above properties.

2.1 TheWENO-Z Scheme

With the WENO-family schemes [9, 14], a global (K = 2r − 1)-th order approximate
numerical flux can be computed from a convex combination of r candidate stencils with the
same width r as

f̂i+1/2 =
r−1∑

k=0

wk f̂k,i+1/2, (7)

where ωk denotes the nonlinear weight for each candidate flux, and f̂k,i±1/2 denotes the r -th
order approximate numerical flux similar to the definition in Eq. (6). For WENO-Z schemes
[14], the nonlinear weight ωk of each stencil is renormalized from the optimal linear weight
dk as

ωk =
αZ
k∑r−1

k=0 αZ
k

, and αZ
k = dk

βZ
k

. (8)

In the WENO-Z scheme, the optimal linear weight dk is the corresponding coefficient for
each candidate stencil to achieve maximum accuracy order of the background linear scheme.

Following [36], the calculation of the βZ
k function is obtained by

1

βZ
k

=
(
1+ (

τ2r−1

βk,r + ϵ
)p

)
, and p = 1 or 2. (9)
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Following Jiang and Shu [9], the smoothness indicator βk,r for the k-th candidate stencil can
be given as

βk,r =
r−1∑

j=1

"x2 j−1
∫ xi+1/2

xi−1/2

(
d j

dx j f̂k(x)
)2

dx (10)

based on the L2 norm of the derivatives of the reconstructed candidate polynomials.
The global high-order smoothness indicator τ2r−1 is defined with a linear combination of

existing low-order smoothness indicators β0,r , . . . ,βr−1,r as:

τ2r−1 =
{ |β0,r − βr−1,r |, if mod (r , 2) = 1,
|β0,r − β1,r − βr−2,r + βr−1,r |, if mod (r , 2) = 0.

(11)

2.2 TheWENO-S Scheme

In [37], a new smoothness indicator that can decrease the measured smoothness variances
on different candidate stencils in smooth regions is proposed. The resulting new schemes
based on the same candidate stencils of classical WENO schemes are called WENO-S. For
WENO-S schemes [37], the nonlinear weight ωS

k of each stencil is renormalized from the
optimal linear weight dk as

ωS
k = αS

k∑r−1
k=0 αS

k

, and αS
k = dk

(

1+ (
τ S

βS
k + ϵ

)

)

, (12)

where the formula of the βS
k function is given by

βS
k = ( fi+k−3 − fi+k−2 − fi+k−1 + fi+k)

2+
|(− fi+k−3 − fi+k−2 + fi+k−1 + fi+k)(− fi+k−3 + 3 fi+k−2 − 3 fi+k−1 + fi+k)|.

(13)

For the seven-point WENO-S scheme, the global smoothness indicator τ S can be written as

τ S =(− fi−3 + 4 fi−2 − 5 fi−1 + 5 fi+1 − 4 fi+2 + fi+3)
2+

+ |( fi−3 − 2 fi−2 − fi−1 + 4 fi − fi+1 − 2 fi+2 + fi+3)

( fi−3 − 6 fi−2 + 15 fi−1 − 20 fi + 15 fi+1 − 6 fi+2 + fi+3)|.
(14)

2.3 The TENO Scheme

Different from WENO schemes, arbitrarily high-order TENO schemes can be constructed
from a set of candidate stencils with incremental width [10, 25], as shown in Fig. 1. The
sequence of stencil width r varying versus the global accuracy order K is as

{rk} =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{3, 3, 3, 4, . . . , K + 2
2︸ ︷︷ ︸

0,...,K−3

}, if mod (K , 2) = 0,

{3, 3, 3, 4, . . . , K + 1
2︸ ︷︷ ︸

0,...,K−3

}, if mod (K , 2) = 1.
(15)
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Fig. 1 Sketch of the candidate stencils with incremental width towards high-order TENO reconstructions. The
candidate stencils for the eight-point TENO reconstruction scheme are shown in this plot

AsWENO schemes, the K th-order reconstructed numerical flux by TENO at the cell face
i + 1/2 is given as

f̂i+1/2 =
K−3∑

k=0

wk f̂k,i+1/2, (16)

where the nonlinear weight ωk of each stencil is renormalized from the optimal linear weight
dk as

wk =
dkδk∑K−3

k=0 dkδk
, (17)

and δk , given as

δk =
{
0, if χk < CT ,

1, otherwise,
(18)

is a sharp cut-off function with the parameter CT which controls the numerical dissipation
and can be determined by spectral analysis [10].

χk is a normalized function of the smoothness indicator γk , which can be defined as

χk =
γk∑K−3

k=0 γk
, (19)

and

γk =
(
C + τK

βk,r + ε

)q

, k = 0, . . . , K − 3. (20)

Here, τK is the high-order smoothness indicator which allows for good stability with a
reasonably large CFL number and can be constructed as [25]

τK =
∣∣∣∣βK − 1

6
(β1,3 + β2,3 + 4β0,3)

∣∣∣∣ = O("x6), K ≥ 5 (21)

where βK measures the global smoothness on the K -point full stencil, for any K th-order
TENO scheme (higher than fourth-order). ε = 10−40 is introduced to prevent the zero
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denominator. Moreover, the parameters C = 1 and q = 6 are adopted for strong scale
separation, which means that discontinuities can be isolated from smooth regions effectively.
Similarly to WENO schemes, βk,r can be defined following Eq. (10) [9].

3 Framework for Constructing the High-Order FMRENO Schemes

The previous work of TENO [26] demonstrates that the high-order accuracy and the ENO
property can be enforced by properly selecting the targeted stencil from a set of predefined
candidates and the linear/nonlinear convex combination is not necessary. The main flaw of
TENO schemes [26], which applies to the WENO-family schemes [9, 14] as well, is that
the evaluation of the smoothness indicators is expensive, particularly for very-high-order
reconstructions [29].

The objective of this work is to propose a new family of FMRENO schemes, which
is computationally cheap and also competitive in terms of performance. In this section,
the three main phases for constructing the high-order FMRENO schemes are elaborated in
detail, i.e. (1) prepare the hierarchically nested candidate stencils; (2) provide the regularity
criterion based on the MP concept; (3) form the final high-order reconstruction by a new
multi-resolution stencil selection strategy.

3.1 The Hierarchical Nested Candidate Stencil Arrangement

Motivated by the construction of TENO schemes [26], the candidate stencil arrangement of
a K -th order reconstruction should satisfy the following principles: (1) in order to achieve a
multi-resolution representation of the local flow scales, a set of candidate stencils with inter-
polation polynomials of order k = 3, . . . , K is constructed in a hierarchical nested manner;
(2) all candidate stencils contain at least one-point upwinding such that no pure downwind
stencil can be deployed for the final reconstruction. As shown in the standard TENO schemes
[10], this condition ensures the good numerical stability of even-order reconstructions in non-
smooth regions; (3) the candidate stencil arrangement allows that, in nonsmooth regions, at
least one candidate stencil is not crossed by discontinuities to ensure the ENO property.

Following the above principles, the candidate stencil arrangements for the five-, six-,
seven- and eight-point FMRENO schemes are given in Figs. 2, 3, 4 and 5, respectively. It is
worth noting that, such a candidate stencil arrangement is applicable for arbitrarily high-order
reconstructions, i.e., for both the odd- and even-order FMRENO schemes.

For each candidate stencil Sr ,m , a polynomial interpolation function (typically r -th order
with r stencil points) for h(x) can be constructed similar to the definition in Eq. (6) and
the resulting flux function evaluated at i + 1/2 is denoted as f̂ rm,i+1/2. Among all candidate
stencils with the same width r , a priority sequence (as indicated by the value m) to form the
final reconstruction is: the high-order central schemes, the optimized central schemes (if there
are), the downwind-biased schemes, and the upwind-biased schemes. Such an arrangement
ensures that the candidate stencil with higher accuracy order or better spectral property
features the priority to be selected for the final reconstruction.

3.2 MP-Based Regularity Criterion

Extensive numerical experiments demonstrate that the MP scheme proposed by Suresh and
Huynh [19] is able to distinguish smooth local extrema from genuine discontinuities and is
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Fig. 2 Hierarchically nested candidate stencils for five-point FMRENO scheme: admissible stencils with
stencil point number r = 3, 4, 5. For candidate stencil Sr ,m , m denotes the sequence order among all the
r -point candidates and a smaller value indicates a higher priority to be selected for the final reconstruction

Fig. 3 The hierarchically nested candidate stencils for six-point FMRENO scheme: admissible stencils with
stencil point number r = 3, 4, 5, 6. For candidate stencil Sr ,m , m denotes the sequence order among all the
r -point candidates and a smaller value indicates a higher priority to be selected for the final reconstruction.
Also included is the stencil S6,1 represented with the dashed line, which is generally an optimized six-point
scheme for a better spectral property by relaxing the accuracy-order constraint. Note that, for the odd-order
reconstruction, such an additional optimal scheme is not necessary

robust for shock-dominated flows [38–40]. Instead of deploying theMP limiter to modify the
reconstructed cell interface flux for suppressing numerical oscillations as in [19] and [40], in
this work, we propose to utilize the MP limiter as a local regularity criterion, which judges
the candidate stencil to be smooth or not. More specifically, one candidate stencil is judged
to be smooth only when the reconstructed cell interface flux locates within the MP upper and
lower bounds, which will be defined as follows.

As given in [19] and [40], the lower and upper bounds of the cell interface flux at i + 1/2
are given by

f̂ min
i+1/2 = max[min( fi , fi+1, f̂ MD

i+1/2),min( fi , f̂ ULi+1/2, f̂
LC
i+1/2)],

f̂ max
i+1/2 = min[max( fi , fi+1, f̂ MD

i+1/2),max( fi , f̂ ULi+1/2, f̂
LC
i+1/2)],

(22)

where f̂ ULi+1/2, f̂ MD
i+1/2 and f̂ LCi+1/2 denote the left-side upper limiter, the median value of the

solution, and the left-side value allowing for a large curvature in the solution, respectively.
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Fig. 4 Hierarchically nested candidate stencils for seven-point FMRENO scheme: admissible stencils with
stencil point number r = 3, 4, 5, 6, 7. For candidate stencil Sr ,m , m denotes the sequence order among all the
r -point candidates and a smaller value indicates a higher priority to be selected for the final reconstruction.

Fig. 5 Hierarchically nested candidate stencils for eight-point FMRENO scheme: admissible stencils with
stencil point number r = 3, 4, 5, 6, 7, 8. For candidate stencil Sr ,m , m denotes the sequence order among all
the r -point candidates and a smaller value indicates a higher priority to be selected for the final reconstruction.
Also included is the stencil S8,1 represented with the dashed line, which is generally an optimized eight-point
scheme for a better spectral property by relaxing the accuracy-order constraint.
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Specifically, the left-side upper limiter is given by

f̂ ULi+1/2 = fi + α( fi − fi−1), (23)

where α = 2.5 is employed to enable stability.
The median value of the solution at xi+1/2 is given by

f̂ MD
i+1/2 =

1
2
( fi + fi+1) − 1

2
dMD
i+1/2. (24)

The left-side value allowing for a large curvature in the solution at xi+1/2 can be given by

f̂ LCi+1/2 = fi +
1
2
( fi − fi−1)+

β

3
dLCi−1/2, (25)

where it is recommended to set β = 4. Following [19] and [40], dMD
i+1/2 = dLCi+1/2 = dMi+1/2

is adopted, and the curvature measurement at the cell interface i + 1/2 can be defined as

dMi+1/2 = minmod(di , di+1), (26)

with di = fi+1 − 2 fi + fi−1, and di+1 = fi+2 − 2 fi+1 + fi .

3.3 AMulti-resolution Stencil Selection Strategy

In order to restore the optimal high-order accuracy in smooth regions and enforce the ENO
property near discontinuities, a multi-resolution stencil selection strategy is proposed based
on the new candidate stencil arrangement and the MP-based regularity criterion as described
in previous subsections. The detailed algorithms are summarized as in Algorithm 1.

Specifically, the regularity of each candidate stencil is examined by theMP-based criterion
in a one-by-one manner and the priority is given to the stencil with higher accuracy order
(typically with larger stencil width r ) or with better spectral property (e.g., with a smaller
value of m in Figs. 2, 3, 4 and 5). Once one candidate stencil satisfies the regularity crite-
rion, i.e. judged to be smooth by the MP criterion, it is assigned as the final reconstruction
scheme without further turning to candidate stencils with lower priorities. If all predefined
candidate stencils fail to enforce the MP criterion, then the smoothest candidate, with which
the predicted cell interface value departs from the MP upper and lower bounds the least, will
be adopted as the final reconstruction for numerical stability.

As a result, (i) in smooth regions, the first largest stencil will be adopted as the final
reconstruction scheme ensuring that the desired high-order accuracy is restored; (2) for
wave-like structures, the reconstruction tends to select the stencil assigned with a higher
priority, i.e. higher accuracy order or better spectral property, according to the local flow
regularity. This multi-resolution type stencil selection ensures low numerical dissipation for
resolving the broadband physical fluctuations; (3) near discontinuities, the reconstruction
gradually degenerates to a smaller stencil with lower priority until it is judged to be smooth
by the MP regularity criterion or the so-called smoothest candidate flux which minimizes
| f̂ rm,i+1/2 − 1

2 ( f̂
max
i+1/2 + f̂ min

i+1/2)| for all r and m.
When compared to the standard W/TENO schemes, the expensive evaluation of the

smoothness indicators is avoided and the linear combination of candidate stencils is not nec-
essary. Moreover, with increasing targeted reconstruction accuracy order, the cost increase of
the FMRENO scheme is negligible whilst that of W/TENO scheme is generally substantial.
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Algorithm 1 Pseudo-code for constructing the K th-order FMRENO scheme
1: Build the hierarchically nested candidate stencils according to the method described in

Sect. 3.1;
2: Compute the MP upper and lower bounds, i.e. f̂ max

i+1/2 and f̂ min
i+1/2, following Sect. 3.2 as

the stencil selection criterion;
3: function multi- resolution stencil selection
4: r = K , m = 0;
5: while r >= 3 do
6: Calculate the reconstructed cell interface flux f̂ rm,i+1/2 for the candidate stencil

Sr ,m ;
7: if f̂ min

i+1/2 − ϵ0 < f̂ rm,i+1/2 < f̂ max
i+1/2 + ϵ0 then ◃ ϵ0 = 10−6 is a small number to

avoid the effects of the machine round-off;
8: f̂i+1/2 = f̂ rm,i+1/2;

9: return f̂i+1/2; ◃ terminate the stencil selection;
10: else
11: while m ∈ [0,mmax − 1] for r -point stencils do
12: m ← m + 1 ;
13: go to line 6 ;
14: end while
15: r ← r − 1 ;
16: go to line 5 ;
17: end if
18: end while
19: for all r , m do ◃ select the smoothest candidate f̂s ;
20: f̂s = f̂ rm,i+1/2, if | f̂ rm,i+1/2 − 1

2 ( f̂
max
i+1/2 + f̂ min

i+1/2)| is smaller;
21: end for
22: f̂i+1/2 = f̂s ;
23: return f̂i+1/2; ◃ terminate the stencil selection;
24: end function

4 Explicit Expressions of FMRENO Schemes

In this section, the formulas for fifth- to eighth-order FMRENO schemes are explicitly given.
It is worth noting that the candidate schemesmay also be constructed as other non-polynomial
functions [41].

4.1 Five-Point FMRENO Scheme

All candidate stencils used to construct a five-point FMRENO scheme (referred to as
FMRENO5) are given as
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f̂ 50,i+1/2 = − 1
60 (−2 fi−2 + 13 fi−1 − 47 fi − 27 fi+1 + 3 fi+2),

f̂ 40,i+1/2 = − 1
12 ( fi−1 − 7 fi − 7 fi+1 + fi+2),

f̂ 41,i+1/2 = 1
12 ( fi−2 − 5 fi−1 + 13 fi + 3 fi+1),

f̂ 30,i+1/2 = 1
6 (2 fi + 5 fi+1 − fi+2),

f̂ 31,i+1/2 = 1
6 (− fi−1 + 5 fi + 2 fi+1),

f̂ 32,i+1/2 = 1
6 (2 fi−2 − 7 fi−1 + 11 fi ).

(27)

4.2 Six-Point FMRENO Scheme

All candidate stencils used to construct a six-point FMRENO scheme (referred to as
FMRENO6) are given as

f̂ 60,i+1/2 = 1
60 ( fi−2 − 8 fi−1 + 37 fi + 37 fi+1 − 8 fi+2 + fi+3),

f̂ 61,i+1/2 = − 57
6000 (−2 fi−2 + 13 fi−1 − 47 fi − 27 fi+1 + 3 fi+2)+

43
6000 (−3 fi−1 + 27 fi + 47 fi+1 − 13 fi+2 + 2 fi+3),

f̂ 50,i+1/2 = 1
60 (−3 fi−1 + 27 fi + 47 fi+1 − 13 fi+2 + 2 fi+3),

f̂ 51,i+1/2 = − 1
60 (−2 fi−2 + 13 fi−1 − 47 fi − 27 fi+1 + 3 fi+2),

f̂ 40,i+1/2 = − 1
12 ( fi−1 − 7 fi − 7 fi+1 + fi+2),

f̂ 41,i+1/2 = 1
12 (3 fi + 13 fi+1 − 5 fi+2 + fi+3),

f̂ 42,i+1/2 = 1
12 ( fi−2 − 5 fi−1 + 13 fi + 3 fi+1),

f̂ 30,i+1/2 = 1
6 (2 fi + 5 fi+1 − fi+2),

f̂ 31,i+1/2 = 1
6 (− fi−1 + 5 fi + 2 fi+1),

f̂ 32,i+1/2 = 1
6 (2 fi−2 − 7 fi−1 + 11 fi ),

(28)

where f̂ 61,i+1/2 denotes a central scheme with optimized dispersion-dissipation relation [25].

4.3 Seven-Point FMRENO Scheme

All candidate stencils used to construct a seven-point FMRENO scheme (referred to as
FMRENO7) are given as

f̂ 70,i+1/2 = 1
420 (−3 fi−3 + 25 fi−2 − 101 fi−1 + 319 fi + 214 fi+1 − 38 fi+2 + 4 fi+3),

f̂ 60,i+1/2 = 1
60 ( fi−2 − 8 fi−1 + 37 fi + 37 fi+1 − 8 fi+2 + fi+3),

f̂ 61,i+1/2 = − 1
60 ( fi−3 − 7 fi−2 + 23 fi−1 − 57 fi − 22 fi+1 + 2 fi+2),

f̂ 50,i+1/2 = 1
60 (−3 fi−1 + 27 fi + 47 fi+1 − 13 fi+2 + 2 fi+3),

f̂ 51,i+1/2 = − 1
60 (−2 fi−2 + 13 fi−1 − 47 fi − 27 fi+1 + 3 fi+2),

f̂ 52,i+1/2 = 1
60 (−3 fi−3 + 17 fi−2 − 43 fi−1 + 77 fi + 12 fi+1),

f̂ 40,i+1/2 = − 1
12 ( fi−1 − 7 fi − 7 fi+1 + fi+2),

f̂ 41,i+1/2 = 1
12 (3 fi + 13 fi+1 − 5 fi+2 + fi+3),

f̂ 42,i+1/2 = 1
12 ( fi−2 − 5 fi−1 + 13 fi + 3 fi+1),

f̂ 43,i+1/2 = 1
12 (−3 fi−3 + 13 fi−2 − 23 fi−1 + 25 fi ),

f̂ 30,i+1/2 = 1
6 (2 fi + 5 fi+1 − fi+2),

f̂ 31,i+1/2 = 1
6 (− fi−1 + 5 fi + 2 fi+1),

f̂ 32,i+1/2 = 1
6 (2 fi−2 − 7 fi−1 + 11 fi ).

(29)
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4.4 Eight-Point FMRENO Scheme

All candidate stencils used to construct an eight-point FMRENO scheme (referred to as
FMRENO8) are given as

f̂ 80,i+1/2 = − 1
840 (3 fi−3 − 29 fi−2 + 139 fi−1 − 533 fi − 533 fi+1 + 139 fi+2 − 29 fi+3 + 3 fi+4),

f̂ 81,i+1/2 = −0.007723837710877 fi−3 + 0.05728582585522101 fi−2

−0.2148478198727312 fi−1 + 0.6852858258552214 fi
+0.6152858258552207 fi+1 − 0.1728478198727316 fi+2
+0.04328582585522106 fi+3 − 0.005723831837710886 fi+4,

f̂ 70,i+1/2 = − 1
420 (−4 fi−2 + 38 fi−1 − 214 fi − 319 fi+1 + 101 fi+2 − 25 fi+3 + 3 fi+4),

f̂ 71,i+1/2 = 1
420 (−3 fi−3 + 25 fi−2 − 101 fi−1 + 319 fi + 214 fi+1 − 38 fi+2 + 4 fi+3),

f̂ 60,i+1/2 = 1
60 ( fi−2 − 8 fi−1 + 37 fi + 37 fi+1 − 8 fi+2 + fi+3),

f̂ 61,i+1/2 = − 1
60 (2 fi−1 − 22 fi − 57 fi+1 + 23 fi+2 − 7 fi+3 + fi+4),

f̂ 62,i+1/2 = − 1
60 ( fi−3 − 7 fi−2 + 23 fi−1 − 57 fi − 22 fi+1 + 2 fi+2),

f̂ 50,i+1/2 = − 1
60 (−12 fi − 77 fi+1 + 43 fi+2 − 17 fi+3 + 3 fi+4),

f̂ 51,i+1/2 = 1
60 (−3 fi−1 + 27 fi + 47 fi+1 − 13 fi+2 + 2 fi+3),

f̂ 52,i+1/2 = − 1
60 (−2 fi−2 + 13 fi−1 − 47 fi − 27 fi+1 + 3 fi+2),

f̂ 53,i+1/2 = 1
60 (−3 fi−3 + 17 fi−2 − 43 fi−1 + 77 fi + 12 fi+1),

f̂ 40,i+1/2 = − 1
12 ( fi−1 − 7 fi − 7 fi+1 + fi+2),

f̂ 41,i+1/2 = 1
12 (3 fi + 13 fi+1 − 5 fi+2 + fi+3),

f̂ 42,i+1/2 = 1
12 ( fi−2 − 5 fi−1 + 13 fi + 3 fi+1),

f̂ 43,i+1/2 = 1
12 (−3 fi−3 + 13 fi−2 − 23 fi−1 + 25 fi ),

f̂ 30,i+1/2 = 1
6 (2 fi + 5 fi+1 − fi+2),

f̂ 31,i+1/2 = 1
6 (− fi−1 + 5 fi + 2 fi+1),

f̂ 32,i+1/2 = 1
6 (2 fi−2 − 7 fi−1 + 11 fi ),

(30)

where f̂ 81,i+1/2 denotes a central scheme with optimized dispersion-dissipation relation [25].

5 Numerical Validations

In this section, a set of critical benchmark cases involving strong discontinuities and
broadband flow length scales is simulated. With the finite-difference framework, the
proposed FMRENO schemes are extended to multi-dimensional problems in a dimension-
by-dimension manner. For systems of hyperbolic conservation laws, the characteristic
decompositionmethod based on the Roe average [42] is employed for effectively suppressing
numerical oscillations. The Rusanov scheme [43] is adopted as the flux splittingmethod if not
mentioned otherwise. The third-order strong stability-preserving (SSP) Runge-Kutta method
[44] with a typical CFL number of 0.4 is adopted for the time advancement. Meanwhile, the
numerical results from WENO5-Z, WENO7-S [37], WENO-CU6 [45] and TENO8 [27] are
compared.

To facilitate the accurate measurement of the computational time with one CPU (avoiding
the effects of parallelization), the simulation resolution of some 2D cases, i.e., 2D Riemann
problems, will be decreased.
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Table 1 Convergence statistics of
numerical error with L∞ norm
from five-point schemes for the
linear advection problem

N WENO5-Z FMRENO5
L∞ error Order L∞ error Order

25 1.04E−04 – 1.04E−04 –

50 3.27E−06 4.99 3.27E−06 4.99

75 4.32E−07 4.99 4.32E−07 4.99

100 1.02E−07 5.00 1.02E−07 5.00

150 1.35E−08 5.00 1.35E−08 5.00

Table 2 Convergence statistics of
numerical error with L∞ norm
from six-point schemes for the
linear advection problem

N WENO-CU6 FMRENO6
L∞ error Order L∞ error Order

25 1.11E−05 – 1.12E−05 –

50 1.76E−07 5.99 1.76E−07 5.99

75 1.55E−08 5.99 1.55E−08 5.99

100 2.76E−09 6.00 2.76E−09 6.00

150 2.43E−10 6.00 2.43E−10 6.00

5.1 Accuracy Verifications

5.1.1 Advection Problem

We first consider the one-dimensional Gaussian pulse advection problem [46]. The linear
advection equation

∂u
∂t

+ ∂u
∂x

= 0, (31)

with initial condition

u(x, 0) = sin(πx), (32)

is solved in a computational domain 0 ≤ x ≤ 2 and the final time is t = 2. Periodic boundary
conditions are imposed at x = 0 and x = 2.

As shown in Tables 1, 2, 3 and 4, the desired accuracy order is achieved for all the present
FMRENO schemes.

5.1.2 Burgers Problem

Further, we consider the 2D inviscid nonlinear Burgers equation [47]

∂u
∂t

+ ∂( u
2

2 )

∂x
+ ∂( u

2

2 )

∂ y
= 0. (33)

The equation with an initial condition u(x, y, 0) = sin(π(x + y)/2) is solved in a compu-
tational domain [0, 4] × [0, 4] and periodic boundary conditions are imposed at the left and
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Table 3 Convergence statistics of
numerical error with L∞ norm
from seven-point schemes for the
linear advection problem

N WENO7-S FMRENO7
L∞ error Order L∞ error Order

10 7.60E−04 – 7.60E−04 –

20 6.62E−06 6.84 6.62E−06 6.84

30 3.91E−07 6.98 3.91E−07 6.98

40 5.27E−08 6.97 5.27E−08 6.97

60 3.10E−09 6.98 3.10E−09 6.98

Table 4 Convergence statistics of
numerical error with L∞ norm
from eight-point schemes for the
linear advection problem

N TENO8 FMRENO8
L∞ error Order L∞ error Order

10 2.07E−04 – 2.07E−04 –

20 9.10E−07 7.83 9.10E−07 7.83

30 3.63E−08 7.95 3.63E−08 7.95

40 3.66E−09 7.97 3.66E−09 7.97

60 1.44E−10 7.98 1.44E−10 7.98

right boundaries. The simulation is conducted up to t = 0.5/π , when the solution is still
smooth.

Numerical error statistics and accuracy orders for theWENO5-Z,WENO-CU6,WENO7-
S, TENO8 and FMRENO schemes are shown in Tables 5, 6, 7 and 8, respectively. The
presented data shows that FMRENO schemes can achieve the desired accuracy order even
in nonlinear advection problems.

Figure 6 shows the L∞ numerical error versus the total CPU computational time from
the WENO5-Z, WENO-CU6, WENO7-S, TENO8, and FMRENO schemes. It is observed
that to achieve the same level of numerical error, the required computational cost from the
present scheme is lower than that from the corresponding classical W/TENO scheme of the
same accuracy order.

Note that, the order of convergencewithWENO7-S andTENO8schemes is not as expected
in Tables 7 and 8. This is consistent with the report by [13, 15] that the magnitude of ϵ may
change the order of convergence of the schemewhen themachine round-off error accumulates
in smooth regions of flowwith"x→ 0. In order to study the sensitivity based on the adopted
computer with double precision, in Tables 9 and 10, we show the convergence statistics of
WENO7-S and TENO8 schemes with ϵ = 10−8, ϵ = 10−10 and ϵ = 10−40 for the Burgers
problem, respectively. The expected accuracy order is restored for both schemes when a
proper value of ϵ is adopted. The default value of ϵ = 10−40 is applied in this work, simply
as recommended by the original reference papers [25, 37].
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Table 5 Convergence statistics of
numerical error with L∞ norm
from the five-point schemes for
the Burgers problem

Resolution WENO5-Z FMRENO5
L∞ error Order L∞ error Order

20 × 20 5.41E−03 – 6.91E−03 –

40 × 40 6.17E−04 3.13 6.35E−04 3.44

80 × 80 2.20E−05 4.81 2.21E−05 4.84

120 × 120 2.95E−06 4.96 2.95E−06 4.97

160 × 160 6.84E−07 5.08 6.83E−07 5.08

Table 6 Convergence statistics of
numerical error with L∞ norm
from the six-point schemes for
the Burgers problem

Resolution WENO-CU6 FMRENO6
L∞ error Order L∞ error Order

20 × 20 4.07E−03 – 4.32E−03 –

40 × 40 3.50E−04 3.54 3.50E−04 3.63

80 × 80 8.23E−06 5.41 8.23E−05 5.41

120 × 120 8.88E−07 5.49 8.88E−06 5.49

180 × 180 9.29E−08 5.57 8.17E−08 5.88

Table 7 Convergence statistics of
numerical error with L∞ norm
from the seven-point schemes for
the Burgers problem

Resolution WENO7-S FMRENO7
L∞ error Order L∞ error Order

20 × 20 2.31E−03 – 3.19E−03 –

40 × 40 2.25E−04 3.36 2.24E−04 3.83

80 × 80 3.39E−06 6.05 3.44E−06 6.02

120 × 120 3.27E−07 5.77 2.20E−07 6.79

180 × 180 4.30E−08 5.00 1.25E−08 7.08

Table 8 Convergence statistics of
numerical error with L∞ norm
from the eight-point schemes for
the Burgers problem

Resolution TENO8 FMRENO8
L∞ error Order L∞ error Order

20 × 20 2.23E−03 – 2.09E−03 –

40 × 40 1.38E−04 4.01 1.38E−04 3.92

80 × 80 7.25E−06 4.25 1.68E−06 6.37

120 × 120 2.49E−06 2.63 8.01E−08 7.50

180 × 180 7.81E−07 2.86 3.27E−09 7.89
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Fig. 6 Burgers equation: the L∞ numerical error versus the total CPU computational time from the WENO5-
Z, WENO-CU6, WENO7-S, TENO8, and FMRENO schemes. Discretization is on 20×20, 40×40, 80×80,
120 × 120, and 180 × 180 uniformly distributed grid points

Table 9 Convergence statistics of
numerical error with L∞ norm
from WENO7-S scheme for the
Burgers problem with various ϵ

Resolutionϵ = 10−8 ϵ = 10−10 ϵ = 10−40

L∞ error OrderL∞ error OrderL∞ error order

20 × 20 2.31E−3 – 2.31E−3 – 2.31E−3 –

40 × 40 2.25E−4 3.36 2.25E−4 3.36 2.25E−4 3.36

80 × 80 3.39E−6 6.05 3.39E−6 6.05 3.39E−6 6.05

120 × 120 2.20E−7 6.74 2.20E−7 6.74 3.27E−7 5.77

180 × 180 1.25E−8 7.08 1.25E−8 7.08 4.30E−8 5.00

Table 10 Convergence statistics
of numerical error with L∞ norm
from TENO8 scheme for the
Burgers problem with various ϵ

Resolutionϵ = 10−8 ϵ = 10−10 ϵ = 10−40

L∞ error OrderL∞ error OrderL∞ error order

20 × 20 2.23E−3 – 2.23E−3 – 2.23E−3 –

40 × 40 1.38E−4 4.01 1.38E−4 4.01 1.38E−4 4.01

80 × 80 1.68E−6 6.37 1.80E−6 6.26 7.25E−6 4.25

120 × 120 8.01E−8 7.50 8.01E−8 7.68 2.49E−6 2.63

180 × 180 3.63E−9 7.63 3.63E−9 7.63 7.81E−7 2.86

200 × 200 1.59E−9 7.86 1.59E−9 7.86 4.78E−7 5.27

5.2 Shock-Tube Problem

Lax’s problem [48] and Sod’s problem [49] are considered here. The initial condition for
Lax’s problem [48] is

(ρ, u, p) =
{
(0.445, 0.698, 3.528), if 0 ≤ x < 0.5,

(0.5, 0, 0.5710), if 0.5 ≤ x ≤ 1,
(34)
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Fig. 7 Lax’s problem: solutions from the WENO5-Z, WENO-CU6, WENO7-S, TENO8, and FMRENO
schemes. Discretization is on 100 uniformly distributed grid points and the final simulation time is t = 0.14

and the final simulation time is t = 0.14.
The initial condition for Sod’s problem [49] is

(ρ, u, p) =
{
(1, 0, 1), if 0 ≤ x < 0.5,
(0.125, 0, 0.1), if 0.5 ≤ x ≤ 1,

(35)

and the final simulation time is t = 0.2. Both computations are performed on 100 uniformly
distributed grid points.

As shown in Figs. 7 and 8, for both problems, the proposed FMRENO schemes show good
shock-capturing properties. In addition, the efficiency improvement based on the scheme
reconstruction time (referred to as Efficiency improvement 1) and that based on the total
CPU computation time (referred to as Efficiency improvement 2)with FMRENOschemes are
shown in Table 11. The results show that the computational time of FMRENO schemes only
varies slightly when the present framework is extended to very-high-order reconstructions,
whereas that of the standard high-order W/TENO schemes increases remarkably due to the
expensive evaluations of the smoothness indicators.
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Fig. 8 Sod’s problem: solutions from the WENO5-Z, WENO-CU6, WENO7-S, TENO8, and FMRENO
schemes. Discretization is on 100 uniformly distributed grid points and the final simulation time is t = 0.2

5.3 Shock Density-Wave Interaction Problem

This case is proposed byShu andOsher [50].Aone-dimensionalMach-3 shockwave interacts
with a perturbed density field generating both small-scale structures and discontinuities. The
initial condition is

(ρ, u, p) =
{
(3.857, 2.629, 10.333), if 0 ≤ x < 1,
(1+ 0.2 sin(5(x − 5)), 0, 1), if 1 ≤ x ≤ 10.

(36)

The computational domain is [0,10] with N = 200 uniformly distributed mesh cells and
the final evolution time is t = 1.8. The inflow boundary condition and outflow boundary
condition are applied at x = 0 and x = 10, respectively. The “exact” solution for reference
is obtained by the fifth-order WENO5-JS scheme with N = 2000.

The computed density profiles from the WENO5-Z, WENO-CU6, WENO7-S, TENO8,
and FMRENO schemes are given by Fig. 9. For the five-point schemes, the FMRENO
schemes show obvious improvement with regard to resolving the high-wavenumber fluc-
tuations when compared to the corresponding WENO5-Z schemes. For the six-, seven-,
and eight-point schemes, compared with WENO-CU6, WENO7-S, and TENO8, the present
FMRENO schemes perform better in capturing the shocklets and maintaining the wave
amplitude, except in the vicinity of x = 6.
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Table 11 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computa-
tion time
(s)

Efficiency
improve-
ment 1
(%)

Efficiency
improve-
ment 2
(%)

Sod’s problem WENO5-Z 0.040 0.142 – –

FMRENO5 0.042 0.153 −4.91 −7.71

WENO-CU6 0.051 0.158 − −
N = 100 FMRENO6 0.041 0.148 18.15 6.74

WENO7-S 0.049 0.172 – –

FMRENO7 0.043 0.168 13.12 2.04

TENO8 0.092 0.214 – –

FMRENO8 0.041 0.156 55.10 26.93

Efficiency comparisons between various schemes are given in Table 12. All the proposed
schemes show an efficiency improvement when compared to the corresponding classical
W/TENO schemes of the same accuracy order.

5.4 Interacting BlastWaves

The two-blast-waves interaction problem taken from [51] is considered. The initial condition
is

(ρ, u, p) =

⎧
⎨

⎩

(1, 0, 1000), if 0 ≤ x < 0.1,
(1, 0, 0.01), if 0.1 ≤ x < 0.9,
(1, 0, 100), if 0.9 ≤ x ≤ 1.

(37)

The computational domain is [0,1], and symmetry boundary conditions are applied at x = 0
and x = 1, respectively. The simulation is performed on a uniform mesh with N = 400 and
the final simulation time is t = 0.038. The “exact” solution for reference is computed by the
fifth-order WENO5-JS scheme on a uniform mesh with N = 2000. For this case, the Roe
scheme with entropy-fix is employed for flux splitting.

As shown in Fig. 10, while WENO7-S fails this case as reported by [37] due to the lack
of numerical robustness, the results from all other considered schemes agree well with the
reference solution. Moreover, the FMRENO5 and FMRENO6 schemes perform better than
WENO5-Z and WENO-CU6 in resolving the density peak at x = 0.78, respectively.

Efficiency comparisons between various schemes are given in Table 13 and the efficiency
improvement from the present schemes is substantial.
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Fig. 9 Shock density-wave interaction problem: solutions from the WENO5-Z, WENO-CU6, WENO7-S,
TENO8, and FMRENO schemes. Discretization is on 200 uniformly distributed grid points and the final
simulation time is t = 1.8

5.5 Rayleigh–Taylor Instability

The inviscid Rayleigh-Taylor instability case proposed by Xu and Shu [52] is considered
here. The initial condition is

(ρ, u, v, p) =
{

(2, 0,−0.025c cos(8πx), 1+ 2y), if 0 ≤ y < 1/2,
(1, 0,−0.025c cos(8πx), y + 3/2), if 1/2 ≤ y ≤ 1,

(38)

where the sound speed c =
√

γ p
ρ with γ = 5

3 . The computational domain is [0, 0.25]×[0, 1].
Reflective boundary conditions are imposed at the left and right sides of the domain. Constant
primitive variables (ρ, u, v, p) = (2, 0, 0, 1) and (ρ, u, v, p) = (1, 0, 0, 2.5) are set for the
bottom and top boundaries, respectively.

The computed density contours with the FMRENO and various W/TENO schemes at
a resolution of 120 × 480 are shown in Fig. 11. It is observed that the newly proposed
FMRENO5 and FMRENO7 schemes resolve finer small-scale structures than WENO5-Z
and WENO7-S, respectively. On the other hand, the FMRENO6 and FMRENO8 schemes
perform similarly to WENO-CU6 and TENO8.
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Table 12 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Shock/
density
wave
interaction
N = 200

WENO5-Z 0.295 1.008 – –

FMRENO5 0.287 1.007 2.51 0.12

WENO-CU6 0.330 1.063 – –

FMRENO6 0.293 1.015 11.08 4.50

WENO7-S 0.335 1.182 – –

FMRENO7 0.302 1.165 9.80 1.43

TENO8 0.597 1.510 – –

FMRENO8 0.313 1.179 47.52 21.88

As shown in Table 14, a substantial efficiency improvement can be observed for all the
considered FMRENO schemes when compared to classical W/TENO schemes of the same
accuracy order.

5.6 Riemann Problem: Configuration 3

Two-dimensional Riemann (2D) problems, first proposed in [53], are classical benchmark
cases for verifying numerical methods by solving the Euler equations. Here, we consider the
2D Riemann problem of configuration 3. The computational domain is [0, 1] × [0, 1] and
the final simulation time is t = 0.3. The initial condition is given as

(ρ, p, u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

(0.5323, 0.300, 1.206, 0.000), if 0.0 < x < 0.5, 0.5 < y < 1.0,
(1.5000, 1.500, 0.000, 0.000), if 0.5 < x < 1.0, 0.5 < y < 1.0,
(0.1380, 0.029, 1.206, 1.206), if 0.0 < x < 0.5, 0.0 < y < 0.5,
(0.5323, 0.300, 0.000, 1.206), if 0.5 < x < 1.0, 0.0 < y < 0.5.

(39)

As shown in Figs. 12 and 13, the FMRENO5, FMRENO6, and FMRENO7 schemes
capture the shockwave patterns, and the small-scale flow structures better than WENO5-
Z, WENO-CU6 and WENO7-S, respectively. For the eight-point schemes, the present
FMRENO8 scheme is a bit more dissipative and at the same time generates less spurious
numerical noise than the standard TENO8 scheme.

Efficiency comparisons between various schemes have been given in Table 15. Except for
the five-point schemes, the present schemes show a much better efficiency in terms of both
criteria.

123



Journal of Scientific Computing (2023) 94 :44 Page 23 of 39 44

Fig. 10 Interacting blast waves problem: solutions from theWENO5-Z,WENO-CU6, TENO8, and FMRENO
schemes. Discretization is on 400 uniformly distributed grid points and the final simulation time is t = 0.038.
WENO7-S also fails due to the lack of numerical robustness as reported by [37]

5.7 Riemann Problem: Configuration 6

The 2D Riemann problem of configuration 6 is considered. The computational domain is
[0, 1] × [0, 1] and the final simulation time is t = 0.3. The initial condition is given as

(ρ, u, v, p) =

⎧
⎪⎪⎨

⎪⎪⎩

(2.0, 0.75, 0.5, 1.0), if 0.0 < x < 0.5, 0.5 < y < 1.0,
(1.0, 0.75,−0.5, 1.0), if 0.5 < x < 1.0, 0.5 < y < 1.0,
(1.0,−0.75, 0.5, 1.0), if 0.0 < x < 0.5, 0.0 < y < 0.5,
(3.0,−0.75,−0.5, 1.0), if 0.5 < x < 1.0, 0.0 < y < 0.5.

(40)

As shown in Figs. 14 and 15, the performance of the present FMRENO schemes is much
better than that of the corresponding W/TENO schemes in terms of capturing the interfacial
instabilities. It is worth noting that the solution of FMRENO8 is free from the numerical
noise generated by TENO8.

Efficiency comparisons between various schemes have been given in Table 16. Overall
speaking, the efficiency improvement from the present schemes increases remarkably as the
reconstruction order increases.
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Fig. 11 Rayleigh–Taylor instability problem: solutions from the WENO5-Z, WENO-CU6, WENO7-S,
TENO8, and FMRENO schemes. Resolution is 120 × 480, and the final simulation time is t = 1.95
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Table 13 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Interacting
blast
waves
N = 400

WENO5-Z 2.123 6.557 – –

FMRENO5 1.966 6.430 7.39 1.95

WENO-CU6 2.540 7.138 – –

FMRENO6 2.157 6.574 15.06 7.90

WENO7-S – – – –

FMRENO7 2.131 7.420 – –

TENO8 4.289 9.855 – –

FMRENO8 2.229 7.446 48.03 24.45

Table 14 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Rayleigh-
Taylor
instability
120 × 480

WENO5-Z 1593.90 3826.97 – –

FMRENO5 1398.24 3402.42 12.28 11.09

WENO-CU6 2350.64 4343.55 – –

FMRENO6 1600.40 3591.29 31.92 17.32

WENO7-S 2736.94 4859.31 – –

FMRENO7 1438.90 3527.78 47.43 27.40

TENO8 3733.35 5975.54 – –

FMRENO8 1732.64 3882.27 53.59 35.03

5.8 Double Mach Reflection of a Strong Shock

This 2D case is taken from Woodward and Colella [51] with the initial condition as

(ρ, u, v, p) =
{
(1.4, 0, 0, 1), if y < 1.732(x − 0.1667),
(8, 7.145,−4.125, 116.8333), otherwise.

(41)
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Fig. 12 2D Riemann problem of configuration 3: solutions from the WENO5-Z, WENO-CU6, FMRENO5,
and FMRENO6 schemes. The simulation time is t = 0.3 and the grid resolution is 1200 × 1200. This figure
is drawn with 30 density contours between 0.2 and 1.8

The computational domain is [0, 4]× [0, 1] and the final simulation time is t = 0.2. Initially,
a right-moving Mach 10 shock wave is placed at x = 0.1667 with an incident angle of 60◦

to the x-axis. The post-shock condition is imposed from x = 0 to x = 0.1667 whereas a
reflecting wall condition is enforced from x = 0.1667 to x = 4 at the bottom. For the top
boundary condition, the fluid variables are defined to exactly describe the evolution of the
Mach 10 shock wave. The inflow and outflow conditions are imposed for the left and right
sides of the computational domain. The computed density contours are shown in Figs. 16
and 17. For the five-, six- and eight-point reconstructions, the present FMRENO schemes
perform similarly to or slightly better than the correspondingW/TENO schemes. On the other
hand, the seven-point FMRENO7 scheme performs significantly better than WENO7-S in
resolving the small-scale vortical structures in the blow-up regions.
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Fig. 13 2D Riemann problem of configuration 3 (continued): solutions from the WENO7-S, TENO8,
FMRENO7, and FMRENO8 schemes. The simulation time is t = 0.3 and the grid resolution is 1200× 1200.
This figure is drawn with 30 density contours between 0.2 and 1.8

Moreover, it is worth noting that the effect of the MP limiter can be adjusted by tuning
the curvature measurement dM4

i+1/2 and the parameters α, β. In the following, we test the
dissipation property of FMRENO8 with a more restrictive curvature measurement d4Mi+1/2 at
the cell interface i + 1/2 which is defined as

dM4
i+1/2 = minmod(4di − di+1, 4di+1 − di , di , di+1). (42)

As shown in Figs. 17h and 18c, a more restrictive curvature measurement will tighten the
MP-based regularity criterion, which results in a more dissipative FMRENO8 scheme. In
Fig. 18a, d, the dissipation property changes with the parameter β, which determines the
amount of freedom allowing for large curvature. And Fig. 18b, d show that, a larger α results
in a less dissipative FMRENO8 scheme.

Efficiency comparisons between various schemes are given in Table 17. The efficiency
improvements from the present schemes of the same accuracy order are remarkable.
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Table 15 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements (the simulation resolution is 400 × 400)

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Riemann
problem 3
400 × 400

WENO5-Z 504.94 1308.76 – –

FMRENO5 621.39 1425.99 −23.06 −8.86

WENO-CU6 973.74 1786.28 – –

FMRENO6 653.82 1472.10 32.85 17.59

WENO7-S 821.50 1682.07 – –

FMRENO7 657.02 1550.46 20.02 7.82

TENO8 1580.06 2501.81 – −
FMRENO8 695.15 1585.24 56.01 36.64

Table 16 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements (the simulation resolution is 400 × 400)

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Riemann
problem 6
400 × 400

WENO5-Z 413.06 1058.35 – –

FMRENO5 493.69 1137.27 −19.51 −7.46

WENO-CU6 778.65 1440.18 – –

FMRENO6 531.74 1192.61 31.71 17.19

WENO7-S 668.77 1379.46 – –

FMRENO7 515.18 1217.01 22.97 11.78

TENO8 1248.04 1979.51 – –

FMRENO8 576.29 1302.32 53.82 34.21

5.9 Single-Material Triple Point Problem

A modified triple point problem with a single material rather than multiple materials is
presented [54]. The computational domain is [0, 7]× [0, 3] and the initial condition is shown
in Fig. 19. An outflow condition is applied to the right boundary while a slip-wall condition
for all other boundaries. A uniform mesh with the resolution of 1120× 480 is employed for
all computations.
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Fig. 14 2D Riemann problem of configuration 6: solutions from the WENO5-Z, WENO-CU6, FMRENO5,
and FMRENO6 schemes. The simulation time is t = 0.3 and the grid resolution is 1200 × 1200. This figure
is drawn with 30 density contours between 0.24 and 3.3

As shown in Fig. 20, the present FMRENO schemes generate finer small-scale structures
in the roll-up regions and along the contact discontinuities than the correspondingWENO5-Z,
WENO-CU6, and WENO7-S schemes, respectively. Also as shown by Fig. 21, FMRENO8
further improves the performance of the lower-order FMRENO schemes while the standard
TENO8 scheme fails this case in the high-resolution simulation with 1120× 480 because of
the positivity-preserving issue.

Efficiency comparisons between various schemes have been given in Table 18. For very-
high-order reconstructions, the efficiency improvements from the present schemes of the
same accuracy order are remarkable for both criteria.
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Fig. 15 2D Riemann problem of configuration 6 (continued): solutions from the WENO7-S, TENO8,
FMRENO7, and FMRENO8 schemes. The simulation time is t = 0.3 and the grid resolution is 1200× 1200.
This figure is drawn with 30 density contours between 0.24 and 3.3

5.10 Regular Shock Reflection

The regular shock reflection is a typical two-dimensional steady flow [55]. The computational
domain is [0, 4] × [0, 1]. Initially, an impinging shock with impinging angle θ of 29◦ and
upstream flow of Mach number 2.9 is imposed by the Rankine–Hugoniot relationship [56].
The evolution histories of the averaged residue for the various schemes are analyzed. Here,
the averaged residue is defined as

ResA =
N∑

i=1

|Ri |
N

, (43)

where Ri is the local residue defined as

Ri =
ρn+1
i − ρn

i

δt
, (44)

and N is the total number of grid points, and n denotes the time step.
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Fig. 16 Double Mach reflection of a strong shock: zoomed-in views of density contours from the WENO5-Z,
WENO-CU6, FMRENO5, and FMRENO6 schemes at the simulation time t = 0.2. The grid resolution is
1280 × 320. This figure is drawn with 42 density contours between 1.887 and 20.9

The computed density distributions are shown with 20 contours between 0.98 and 2.7 in
Fig. 22. The results show that the numerical oscillations ofWENO-CU6 andTENO8 aremore
severe than those ofWENO5-Z.This can be seenmore clearly in Fig. 23. The averaged residue
ofWENO5-Z settles down to the smallest value around 10−2.8, followed by that of WENO7-
S which settles down to a value around 10−2.0. The averaged residues of WENO-CU6 and
TENO8 decrease to a relatively larger value, which is around 10−1.7 and 10−0.9, respectively.
For the newly proposed five-, six-, seven-, and eight-point FMRENO schemes, the averaged
residue settles down to a value around 10−2.8, 10−2.2, 10−2.6 and 10−2.4, respectively. These
results clearly show that the FMRENO5 scheme has a comparable convergence behavior
with WENO5-Z. When comparing with the low-dissipation WENO-CU6, WENO7-S, and
TENO8 schemes, the present FMRENO6, FMRENO7, and FMRENO8 schemes show better
convergence behavior.
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Fig. 17 Double Mach reflection of a strong shock (continued): zoomed-in views of density contours from the
WENO7-S, TENO8, FMRENO7, and FMRENO8 schemes at the simulation time t = 0.2. The grid resolution
is 1280 × 320. This figure is drawn with 42 density contours between 1.887 and 20.9

6 Conclusions

In this work, a new family of high-order shock-capturing FMRENO schemes has been pro-
posed. The major contributions are summarized as follows:

• Based on the MP concept, the construction of the new FMRENO schemes con-
sists of three main phases, i.e., (1) preparing polynomial-based candidate stencils
from high- to low-orders in a hierarchical manner; (2) providing a local regular-
ity criterion by calculating the MP upper and lower bounds. A candidate stencil
is judged to be smooth only when the reconstructed cell interface flux locates
within the MP bounds; (3) formulating the final cell interface reconstruction scheme
by selecting the higher-order (or better spectra) candidate stencil, which is judged
to be smooth. If all candidate stencils are judged to be nonsmooth by the MP
criterion, the smoothest stencil, with which the reconstructed cell interface flux
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Fig. 18 Double Mach reflection of a strong shock: zoomed-in views of density contours from FMRENO8
schemes with dM4 curvature measurement and various parameters at the simulation time t = 0.2. a α = 0.5
and β = 4.0; b α = 2.5 and β = 2.0; c α = 2.5 and β = 4.0; d α = 0.5 and β = 2.0. The grid resolution is
1280 × 320. This figure is drawn with 42 density contours between 1.887 and 20.9

Fig. 19 The sketch of the computational domain and the initial condition for the triple point problem

123



44 Page 34 of 39 Journal of Scientific Computing (2023) 94 :44

Table 17 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Double
Mach
reflection
1280×320

WENO5-Z 4832.10 12181.80 – –

FMRENO5 4754.20 12052.50 1.61 1.06

WENO-CU6 8357.38 15218.60 – –

FMRENO6 4938.72 11896.80 40.91 21.83

WENO7-S 7515.97 15594.20 – –

FMRENO7 5171.17 13308.30 31.20 14.66

TENO8 13184.40 20866.50 – –

FMRENO8 5328.61 12853.10 59.59 38.40

Fig. 20 Single-material triple point problem: normalized density gradient contours from the WENO5-Z,
WENO-CU6, WENO7-S, and various FMRENO schemes at the simulation time t = 5. The grid resolution is
1120 × 480. This figure is drawn with 19 normalized density gradient contours between 0.05 and 1.95.
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Fig. 21 Single-material triple point problem (continued): normalized density gradient contour from the
FMRENO8 scheme. Note that the standard TENO8 scheme fails in this case

Table 18 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Single-
material
triple point
1120×480

WENO5-Z 10258.7 25363.6 – –

FMRENO5 10972.9 26337.6 −6.96 −3.84

WENO-CU6 18709.2 34147.4 – –

FMRENO6 12414.3 27341.7 33.65 19.93

WENO7-S 21341.8 38338.6 – –

FMRENO7 12271.1 29165.3 42.50 23.93

TENO8 – – – –

FMRENO8 13365.7 29745.9 – –

departs from the MP bounds the least, will be adopted as the final reconstruction
scheme.

• The new framework achieves the multi-resolution property by adaptively selecting the
targeted reconstruction scheme from the candidate stencils of different orders accord-
ing to the local flow regularities. Specifically, in smooth regions, the candidate stencil
with the largest stencil width will be adopted for restoring the desired high-order
accuracy. In the vicinity of discontinuities, the good non-oscillatory property will be
achieved by selecting the candidate reconstruction satisfying the MP criterion. For
the wave-like structures, the low-dissipation property can be approached by choosing
the smooth candidate stencils with higher accuracy order or better spectral proper-
ties.

• The present framework can be straightforwardly extended to arbitrarily very-high-
order reconstructions with a tiny complexity increase. Compared to the standard
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Fig. 22 Regular shock reflection: density contours from the WENO5-Z, WENO-CU6, WENO7-S, TENO8,
FMRENO5, FMRENO6, FMRENO7, and FMRENO8 schemes at the simulation time t = 50. The grid
resolution is 128 × 32. This figure is drawn with 20 density contours between 0.98 and 2.7

Fig. 23 Regular shock reflection: the evolution histories of the averaged residue with the WENO5-Z, WENO-
CU6, WENO7-S, TENO8, FMRENO5, FMRENO6, FMRENO7, and FMRENO8 schemes

W/TENO schemes, the computational efficiency of FMRENO schemes is substan-
tially higher by avoiding the expensive evaluations of the smoothness indicators.
Moreover, the efficiency improvement is more impressive with higher-order reconstruc-
tions.

• A set of critical benchmark cases is simulated to validate the performance of the proposed
FMRENO schemes. Numerical results demonstrate the capability of the new schemes in
terms of recovering the targeted high-order accuracy in smooth regions, preserving the
low numerical dissipation for resolving wave-like structures, and capturing the discon-
tinuities sharply. In all the considered cases, the present FMRENO schemes show either
a similar or an improved performance when compared to the corresponding W/TENO
schemes.
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Considering the high computational efficiency and the competitive performance of the
present FMRENO schemes, future workwill focus on the applications to complex geometries
and multi-physics problems.
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Abstract. A recent study of low-dissipation shock-capturing scheme [Fu et al., Journal of Computational Physics 305 (2016):
333-359] proposed a nonlinear sharp selection function to remove the contributions of candidate stencils containing discontinuities
from the final reconstruction. In this paper, we train a neural network to replace this empirical level nonlinear selection function in
the six-order TENO6-opt scheme. The performance and robustness of the neuron-based six-point scheme are demonstrated with
the advection function and 1D Euler equations.

INTRODUCTION

High-order and high-resolution shock-capturing schemes are essential numerical methods to solve compressible fluid
problems, which may involve discontinuities and broadband flow scales. Lack of solution regularity invokes the Gibbs
phenomenon and may lead to nonlinear instability. Among the concepts proposed to deal with this issue, targeted ENO
(TENO) schemes [1] deploy a candidate stencil with its optimal linear weight or discard it completely when crossed
by a discontinuity. However, the selection strategy of candidate stencils in TENO schemes as well as the original ENO
schemes relies on human intuition in the calculation of smoothness indicators and weighting functions.

The relationship between flow features and the selection of candidate stencils can be interpreted as an input-
output function with neuron networks. We train a simple neuron network to explore this non-linear function and to
replace the selection procedure in the six-point TENO6-opt scheme. The newly achieved scheme is tested and en-
couraging results from di↵erent governing equations have been obtained. This paper presents results for the achieved
neuron-based six-point shock-capturing ENO (NENO6) scheme. We discuss the performance of the NENO6 scheme
and check the robustness when it is applied to 1D advection function and 1D Euler equations.

NUMERICAL METHODOLOGY

Key concept of TENO6-opt scheme
The core idea of the TENO scheme is the binary selection of the candidate stencils based on the smoothness indicators
with su�cient scale separation. The smoothness indicator for a six-point TENO6-opt scheme is

�k =

 
C +

⌧6

�k,r + "

!q

, k = 0, · · · , 3, (1)



⌧6 =

������6 �
1
6

(�1,3 + �2,3 + 4�0,3)
����� = O(�x6), (2)

where C = 1, " = 10�40, q = 6 are adopted for strong scale separation and �k,r can be defined as [2]. And subsequently
the binary selection is achieved by

�k =

(
0, if �k < CT ,
1, otherwise, (3)

where �k is the normalized measured smoothness indicator

�k =
�kPK�3

k=0 �k
, (4)

and the parameter CT = 10�6 in this work can be determined. Such a procedure can be interpreted as a nonlinear
input-output mapping between the local flow field features and the binary selection of candidate stencils. By training
an artificial neural network (ANN) with a properly constructed database, ANN can act as a black-box to mimic the
TENO6-opt selection procedure.

The architecture and training Of the Neural Network
We train a deep neural network known as multilayer perceptron (MLP) to approximate a classifier of the form

F = R6 ! R4. (5)

The element of input vector for the neural network is the normalized cell value given by

f̄k =
fk

max(| fi�2|, | fi�1|, | fi|, | fi+1|, | fi+2|, | fi+3|, 1)
, k = i � 2, i � 1,· · · , i + 3, (6)

and the output indicates the probability vector which suggests the selection of each candidate stencil for the final
reconstruction. The MLP neural network has four hidden layers, whose widths are 64, 32, 16 and 8 from the input
layer to the output layer, respectively. Each hidden layer performs an a�ne transformation with the output from the
previous layer and is activated component-wise by the rectified linear unit (RELU) activation function to form the input
for the succeeding layer. For the training of a MLP with the ENO-like stencil selection property, 709000 input samples
X0 including smooth profiles, high-wavenumber profiles, and genuine discontinuities and their corresponding label Ŷ
(referred to as the ground truth) are generated. The labelled ground-truth datasets are generated from both the analytic
and non-analytic functions with di↵erent mesh resolutions. The labels of analytic functions are given straightforwardly
while the labels of non-analytic functions are analyzed by the optimal TENO6-opt weighting strategy and the ground-
truth labeled data is obtained correspondingly.

The cost function deployed to train the model is given by the binary cross entropy function

LBCE = �
1
m

X

m

2
666664

1
S

SX

k=1

[Ŷ1
k log(Y1

k ) + (1 � Ŷ1
k ) log(1 � Y1

k )]
3
777775

m

, (7)

where S denotes the number of neurons for the output layer, m denotes the size of mini-batch and Y1
k , Ŷ1

k are the
predicted and ground-truth non-smooth stencil probability distribution for a given sample respectively. The training
is performed 1000 epochs using Adam [3] training optimizer. Learning rate is initialized as Lr = 0.0001, which will
reduce successively by a factor of 50% at the epoch [40, 90, 160, 300, 700].

FIGURE 1. reports the convergence history of the loss function LBCE throughout the optimization procedure
with the samples belonging to both the training and validation datasets. It is observed that, with the number of epochs
increasing, the loss function LBCE decreases monotonically until convergence. Good convergence is also obtained
for the validation dataset and no overfitting is observed. Based on the binary outputs from the well-trained MLP, the
neuron-based reconstruction is formed by the convex combination of the candidate stencils following Eq. (27) and
Eq. (28) in [1].



FIGURE 1. Convergence history of the loss function LBCE for the training and validation datasets.

ANALYSIS OF RESULTS

The NENO6 scheme is deployed to two di↵erent types of hyperbolic conservation laws to demonstrate its perfor-
mance, including the linear advection equation and the 1D Euler equation.

Linear advection
In this section, we first consider the linear advection equation

@u
@t
+
@u
@x
= 0, (8)

with the initial condition of multi-waves [2], which consists of a Gaussian pulse, a square wave, a sharply peaked
triangle and a half-ellipse arranged from left to right in the computational domain x 2 [0, 2]. The computation is
performed with TENO6-opt and NENO6 on N = 150 uniformly distributed mesh cells and the final simulation time
is t = 6.

FIGURE 2. Numerical results of advection of multi-wave with TENO6-opt and NENO6 schemes. Discretization is on 150
uniformly-distributed grid points.

As shown in FIGURE 2. that both schemes generate slight overshoots for the advection of the half-ellipse wave.
Concerning the advection of the square wave, NENO6 resolves the discontinuities sharper than TENO6-opt.



Lax’s problem
In this section, the NENO6 is deployed to 1D Euler equations. The characteristic decomposition method based on the
Roe average [4] is employed and the Rusanov scheme [5] is adopted for flux splitting. Afterwards, fluxes are treated
as inputs of the MLP and the selections of sub-stencils used to compute interface flux are provided by the output of
the MLP. The third-order strong-stability-preserving (SSP) Runge-Kutta method [6] with a typical CFL number of 0.4
is adopted for the time advancement.

The Lax’s problem [7] is considered. The computation is performed with TENO6-opt and NENO6 on N = 150
uniformly distributed mesh cells and the final simulation time is t = 0.14. FIGURE 3. shows that both the contact
and the shock waves are well captured with the NENO6 scheme, which demonstrates the generality of the NENO6
scheme when it is applied to other governing equations without any parameter tuning.

(a)

FIGURE 3. Numerical results of the Lax’s problem with TENO6-opt and NENO6 schemes: (a) density profile, (b) velocity profile.
Discretization is on 150 uniformly-distributed grid points.

CONCLUSION

In this paper, a six-point data-driven high-order shock-capturing NENO6 scheme is proposed and its good capability
in terms of sharp capturing of discontinuities, low numerical dissipation, and improved model generality are demon-
strated. This work reveals that a classical stencil selection procedure can be replaced by a properly trained neural
network, which suggests the potential of exploiting neural network to design more advanced high-order numerical
method for hyperbolic conservation laws.
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