
Citation: Cao, L.; Song, P.; Wang, Y.;

Yang, Y.; Peng, B. An Improved

Lightweight Real-Time Detection

Algorithm Based on the Edge

Computing Platform for UAV Images.

Electronics 2023, 12, 2274.

https://doi.org/10.3390/

electronics12102274

Received: 15 April 2023

Revised: 12 May 2023

Accepted: 16 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Improved Lightweight Real-Time Detection Algorithm
Based on the Edge Computing Platform for UAV Images
Lijia Cao 1,2,3,4,* , Pinde Song 1 , Yongchao Wang 5, Yang Yang 1 and Baoyu Peng 4

1 School of Automation & Information Engineering, Sichuan University of Science & Engineering,
Yibin 644000, China; 321085404206@stu.suse.edu.cn (P.S.)

2 Artificial Intelligence Key Laboratory of Sichuan Province, Yibin 644000, China
3 Sichuan Province University Key Laboratory of Bridge Non-Destruction Detecting and Engineering

Computing, Yibin 644000, China
4 School of Computing Science and Engineering, Sichuan University of Science & Engineering,

Yibin 644000, China
5 Chair of Automatic Control Engineering, Technical University of Munich, 80333 Munich, Germany
* Correspondence: caolj@suse.edu.cn

Abstract: Unmanned aerial vehicle (UAV) image detection algorithms are critical in performing
military countermeasures and disaster search and rescue. The state-of-the-art object detection algo-
rithm known as you only look once (YOLO) is widely used for detecting UAV images. However,
it faces challenges such as high floating-point operations (FLOPs), redundant parameters, slow
inference speed, and poor performance in detecting small objects. To address the above issues, an
improved, lightweight, real-time detection algorithm was proposed based on the edge computing
platform for UAV images. In the presented method, MobileNetV3 was used as the YOLOv5 backbone
network to reduce the numbers of parameters and FLOPs. To enhance the feature extraction ability
of MobileNetV3, the efficient channel attention (ECA) attention mechanism was introduced into
MobileNetV3. Furthermore, in order to improve the detection ability for small objects, an extra pre-
diction head was introduced into the neck structure, and two kinds of neck structures with different
parameter scales were designed to meet the requirements of different embedded devices. Finally, the
FocalEIoU loss function was introduced into YOLOv5 to accelerate bounding box regression and
improve the localization accuracy of the algorithm. To validate the performance of the proposed
improved algorithm, we compared our algorithm with other algorithms in the VisDrone-Det2021
dataset. The results showed that compared with YOLOv5s, MELF-YOLOv5-S achieved a 51.4% reduc-
tion in the number of parameters and a 38.6% decrease in the number of FLOPs. MELF-YOLOv5-L
had 87.4% and 47.4% fewer parameters and FLOPs, respectively, and achieved higher detection
accuracy than YOLOv5l.

Keywords: lightweight; FocalEIoU; UAV image; attention mechanism; embedded device

1. Introduction
1.1. Background

In recent years, two methods have emerged for unmanned aerial vehicle (UAV) image
detection: traditional feature description and deep learning-based methods. Both of these
methods have shown excellent results in performing the detection task. Based on the
aforementioned methods, many researchers have conducted extensive research on UAV
image detection.

In the past decade, traditional manual feature methods were widely used to detect
UAV images, such as the Viola–Jones (VJ) detector [1], the histogram of oriented gradients
(HOG) [2], and the deformable part-based model (DPM) detector [3]. Wang et al. proposed
a method based on face detection (FD) and HOG to detect drones [4]. Xu et al. proposed a
new hybrid vehicle detection scheme using a VJ detector and a support vector machine
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(SVM) classifier with a HOG feature method [5]. Jiang et al. proposed a method based on
DPM to detect transmission towers [6]. However, the above methods rely heavily on the
rules of artificial design and can only learn features at the pixel level. In addition, these
methods have some limitations, such as poor generalization ability, poor detection ability,
and complex design processes.

With the development of deep learning, convolutional neural networks (CNNs) have
shown excellent feature extraction abilities and backbone networks such as AlexNet [7],
VGG [8], GoogleNet [9], and ResNet [10] have exhibited satisfactory performance in various
midstream and downstream tasks. Deep learning-based object detection algorithms can be
categorized into two types: region recommendation-based and regression-based.

Region Recommendation-Based Algorithms: In 2014, Ross et al. proposed a detection
algorithm [11] founded on AlexNet. The algorithm used Selective Search [12] to generate
region proposals, which were then individually fed into the neural network to perform de-
tection and classification. Although the region-based convolution neural network (RCNN)
applied neural networks to target detection for the first time, it still had many limitations:
(1) thousands of region proposals mostly overlapped each other, and the overlapping parts
were repeatedly extracted as features many times; (2) scaling the region proposals directly
to a fixed size destroyed the aspect ratio of the object and could lead to loss of local detail
in the object; and (3) excessive training time and complex training process. Ross et al. pro-
posed an improved algorithm [13], which addressed some of the limitations of RCNN, such
as the slow training and testing time. Fast-RCNN also used Selective Search to generate
region proposals, but instead of applying the neural network to each proposal, it applied
the network to the entire image and used a region of interest (ROI) pooling layer to map
each region proposal to the corresponding feature map location. Finally, Fast-RCNN used
Softmax to classify and regress the proposal positions to complete the detection. Despite
being a significant advancement over RCNN, Fast-RCNN essentially used Selective Search
to generate region proposals, which significantly slowed down the network’s detection
speed. On the basis of Fast-RCNN, Faster-RCNN [14] was proposed by He et al. in 2016.
The algorithm used a region proposal network (RPN) to automatically generate region
proposals for end-to-end training, while also optimizing the proposal extraction technique.
As a result, Faster-RCNN made tremendous progress in terms of detection speed and
accuracy. However, these algorithms, such as RCNN, Fast-RCNN, and Faster-RCNN, have
difficulty meeting the requirements of real-time detection.

Regression-Based Algorithms: Although RCNN series algorithms had satisfactory
detection accuracy, it was difficult to meet real-time requirements for complex scenes.
In 2015, Joseph et al. proposed a one-stage detection algorithm, which was based on
regression [15]. The algorithm fed the image into the network to obtain the regression
parameters, classification, and confidence. End-to-end detection was achieved by the you
only look once (YOLO) algorithm, which significantly sped up detection. However, it
was easy for YOLO to miss detection when the target object was much denser, and the
detection accuracy of this algorithm was significantly lower than that of other two-stage
detection algorithms. In 2016, Joseph et al. proposed the YOLOv2 algorithm [16], which
increased the regression parameters of each grid. This algorithm significantly improved
the detection ability. On the basis of YOLOv2, YOLOv3 was proposed by Joseph et al. [17].
The feature pyramid network (FPN) structure was introduced in YOLOv3, which achieved
multi-scale detection. In 2020, Alexey et al. proposed YOLOv4 [18]. The algorithm balanced
accuracy and speed by using methods such as lightweight cross stage partial (CSP) [19],
Mish activation function, better loss function, and path aggregation network (PANet). In
2021, Glenn et al. released YOLOv5, based on the YOLO family, which combined common
optimization strategies with more a complex network architecture design. In addition, the
lightweight modification CSP (C3) module was used as the backbone network of YOLOv5.
YOLOv5 was a highly effective, one-stage object detection algorithm that could make fast
and accurate predictions on a single GPU.
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In recent years, YOLOv5, the fastest algorithm in the YOLO series, has been widely
used in UAV image object detection tasks. Wang et al. proposed a YOLO-D model based
on a dual-attention mechanism for the detection of offshore UAV images [20]. Li et al.
proposed an improved attention module and added a small detection head to capture small
objects, thus enhancing the detection ability for small objects [21]. Based on YOLOv5, Zhu
et al. replaced the prediction head with transformer encoder blocks and added a small
object detection head for UAV image detection [22]. However, when the TPH-YOLOv5
algorithm was deployed to edge computing devices, it could not achieve real-time detection.
On the basis of YOLOv5, Jung et al. improved the backbone and activation function for
complex environments. A novel object detection algorithm was proposed by Li et al. for
drone cruising in large-scale maritime scenarios [23], which reduced the computational
cost by replacing the convolution operations with simpler linear transformations. Li et al.
designed a lightweight backbone network to reduce the computational cost [24]. The
algorithm achieved real-time detection in the Jetson AGX edge computing platform. Dong
et al. optimized the overall structure of the model based on YOLOv5s by introducing
channels and spatial attention mechanisms to the backbone network, while replacing the
1 × 1 convolution and C3 modules in the neck structure with the Ghost and C3Ghost
modules. However, due to the algorithm only having three detection heads, it still had
some limitations in the accuracy of small object detection. Cheng et al. proposed a real-time
object detection algorithm [25], but the number of parameters was over ten million and the
FPS only had a few frames in Jetson Nano.

1.2. Contributions

To balance detection accuracy and inference speed, we propose a lightweight real-time
detection algorithm in this paper. Figure 1 presents a performance comparison between
the MELF-YOLOv5 and YOLOv5 algorithms. The main contributions of this paper can be
summarized as follows:

(1) We compare the performance of the depthwise separable convolution module and the
C3 module in terms of parameter compression via calculations.

(2) The lightweight MobileNetv3 and ECA attention mechanism are used to compress
the backbone network of YOLOv5.

(3) A prediction head is added improve the detection ability of the model.
(4) The FocalEIoU loss function is introduced into YOLOv5 to improve the localization

accuracy.
(5) Two kinds of neck structures are designed to meet the needs of different embedded

devices.
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Figure 1. Comparisons between YOLOv5 and MELF-YOLOv5. (a) Shows the numbers of param-
eters and FLOPs and the mAP@0.5 of MELF-YOLOv5 and YOLOv5, where the area of the circle
represents the number of parameters; (b) shows the inference time and mAP@0.5 of MELF-YOLOv5
and YOLOv5.
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1.3. Organization

The paper is structured as follows: Section 2 provides an introduction to the principle
and structure of YOLOv5 and MobileNetV3. In Section 3, we propose the MELF-YOLOv5 al-
gorithm. Section 4 presents a discussion of the experimental results. Finally, the conclusion
is presented in Section 5.

2. Methods

YOLOv5 is an efficient, one-stage target detection algorithm that contains five models
with different parameter scales, such as YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. YOLOv5n has the highest inference efficiency and YOLOv5x has the best
detection accuracy among these models. In addition, these models are all composed of the
same structures, including the backbone, FPN [26], PAN [27], and prediction heads. The
detailed description of each module of the YOLOv5 model is as follows.

The YOLOv5 backbone network includes several modules, such as spatial pyramid
pooling fast (SPPF) Conv, and C3 module. The SPPF is an improvement based on spatial
pyramid pooling (SPP) [28], which can produce fixed-size output. Conv is a convolution
unit, which is composed of a convolution layer, batch normalization (BN) layer, and
activation function. As shown in Figure 2, the C3 module is composed of Conv, residual,
and serval CBS modules.
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In the FPN, top semantic information is fused into lower level layers to enhance their
expressiveness. Additionally, the targets of different scales can be assigned to different
layers for prediction.

The PANet transfers the positional feature from lower feature maps to upper feature
maps and combines the semantic information from the FPN to achieve both classification
and position.

There are three prediction head in YOLOv5, and each head outputs confidence, clas-
sification, and the positional information of the bounding box for three anchors. The
confidence and classification loss is BCE-WithLogitsLoss, which is essentially no different
from biniary crossentropy loss (BCELoss) except the value of BCELoss is processed by
sigmoid. The mathematical expression of BCELoss is:

loss(p, y) = − 1
n∑

i

[
yi log

(
pi
)
+
(

1− yi
)

log
(

1− pi
)]

(1)

where yi shows whether or not the category is predicted (yi = 0 refers to a non-predicted
category and yi = 1 refers to a predicted category), and pi is the probability that the
algorithm predicts the output of a category from the head.
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The bounding box loss function is complete intersection over union (CIoU) [29] in
YOLOv5. It can be computed as follows:

CIOUloss = 1− IOU +
ρ2(bp ,bgt)

c2 + αν

α = ν
(1−IOU)+ν

ν = 4
π2

(
arctan wgt

hgt − arctan w
h

)2
(2)

where α denotes the weight coefficient, ν is the aspect ratio similarity between the target
and predicted, c denotes the diagonal distance between the ground truth and prediction
boxes, ρ is the Euclidean distance, bgt is the coordinate information of the ground truth box,
bp is the coordinate information of the prediction box, and IOU is the intersection ratio of
the ground truth and prediction boxes.

2.1. MobileNetV3 Backbone Network

On the basis of MobileNetV1 (V1) [30] and MobileNetV2 (V2) [31], Howard et al. pro-
posed MobileNetV3 (V3) [32]. The Hardwish activation function was proposed and used in
the V3 backbone network. In addition, the squeeze and excitation (SE) [33] channel attention
mechanism was also introduced into the depthwise separable convolution module.

The SE channel attention mechanism was introduced in the depthwise separable
convolution module to improve the feature extraction ability of V3. As shown in Figure 3,
the SE channel attention mechanism consists of a pooling layer, two fully connected layers,
and a hard sigmoid activation function. The SE module focus certain information in
the channel and generates a weight for each feature channel, and then these weights are
multiplied with the input feature maps element-wise to obtain the final feature maps.
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Figure 4 illustrates the implementation of the depthwise separable module. The high-
dimensional feature maps are mapped to the lower dimension, which reduces the number
of parameters while enhancing the information correlation in the channels. Secondly,
depthwise convolution is used to extract the features. Then, the outputs are mapped to
higher dimensions to enhance feature interaction in the channels. Finally, the last feature
maps are processed by the SE channel attention mechanism, which allows the network to
focus more on specific feature information in each channel.
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In Figure 4, DF is the output size of a feature maps, DK is the size of the convolution
kernel, M is the number of filters, and N denotes the number of channels and filters.

When comparing the ordinary convolution module with the depthwise separable
convolution module, the FLOPs of the depthwise separable convolution module can be
calculated as:

Pd = DF × DF × N ×M + DF × DF × DK × DK ×M + DF × DF ×M× N (3)

As shown in Figure 3, the FLOPs of the SE channel attention mechanism can be
computed as:

QSE = DF × DF ×M + M× M
4

+
M
4
×M (4)

Under the same parameter conditions, we can calculate the FLOPs of ordinary convo-
lution as:

Po = DK × DK × N × DF × DF × N (5)

In accordance with Equations (3)–(5), we have:

PV3

Po
=

QSE + Pd
Po

=
M
N2 +

2M
N × D2

K
+

M
N2 + D2

K
+

M2

2N2 × D2
K × D2

F
(6)

where PV3 is the FLOPs of the depthwise separable convolution module, which is based on
the SE channel attention mechanism.

Because the number of filters M is much smaller than N2 × D2
K, and M2 is also much

smaller than 2N2 × D2
K × D2

F, we have:

M
N2 × D2

K
+

M2

2N2 × D2
K × D2

F
≈ 0 (7)

Then,
PV3

Po
≈ M

N2 +
2M

N × D2
K

(8)

In fact, the size of the filters is often smaller than the number of channels. In terms of
that, we scaled up the channels from M to N in order to simplify the calculation. The size
of the filters was set to 3. Thus, we have:

PV3

Po
≈ M

N2 +
M
N
× 2

D2
K
<

1
N

+
2

D2
K
≈ 2

D2
K
=

2
9

(9)

From Equation (9), it can be seen that the number of FLOPs of the ordinary convolution
is approximately 4.5 times that of the depthwise separable convolution module with SE.
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2.2. ECA Attention Mechanism

ECA is an efficient attention mechanism [34]. This module, bringing significant
performance gains by using a small number of parameters, overcomes the contradiction
between performance and complexity.

As shown in Figure 5, the ECA is a lightweight channel attention mechanism, given
a feature map F ∈ RM×DF×DF as input. Firstly, the input is dealt to a vector by average
pooling. Then, a convolution operation is used to extract channel information from the
vector. Finally, the sigmoid activation function is used for the vector. The overall attention
process can be summarized as:

F′ = σ
(

Favg(F)⊗W1
)

(10)

where W1 ∈ R1×1×3 denotes the weights of channel attention, ⊗ is a convolution operation,
Favg denotes average pooling operation, and σ is the sigmoid activation function.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 17 
 

 

3
2 2

2V

o K

P M M
P N N D

≈ +
×

 (8) 

In fact, the size of the filters is often smaller than the number of channels. In terms of 
that, we scaled up the channels from M  to N  in order to simplify the calculation. The 
size of the filters was set to 3. Thus, we have: 

3
2 2 2 2

2 1 2 2 2
9

V

o K K K

P M M
P N N D N D D

≈ + × < + ≈ =  (9) 

From Equation (9), it can be seen that the number of FLOPs of the ordinary convolu-
tion is approximately 4.5 times that of the depthwise separable convolution module with 
SE. 

2.2. ECA Attention Mechanism 
ECA is an efficient attention mechanism [34]. This module, bringing significant per-

formance gains by using a small number of parameters, overcomes the contradiction be-
tween performance and complexity. 

As shown in Figure 5, the ECA is a lightweight channel attention mechanism, given 
a feature map F FM D DF R × ×∈  as input. Firstly, the input is dealt to a vector by average 
pooling. Then, a convolution operation is used to extract channel information from the 
vector. Finally, the sigmoid activation function is used for the vector. The overall attention 
process can be summarized as: 

( )( )1avgF F F Wσ′ = ⊗  (10) 

where 1 1 3
1W R × ×∈  denotes the weights of channel attention, ⊗  is a convolution opera-

tion, avgF   denotes average pooling operation, and σ   is the sigmoid activation func-
tion. 

 
Figure 5. ECA channel attention mechanism. 

3. YOLOv5 Algorithm Improvement 
An object detection method based on YOLOv5 is proposed to balance the detection 

accuracy and inference speed of UAV image detection in this paper. The proposed method 
was designed to be lightweight and achieve real-time detection. Figure 6 shows the im-
proved YOLOv5 structure named MELF-YOLOv5. In the structure, as shown in Figure 6g, 
MobileNetV3 and the ECA module were introduced into the backbone network of 
YOLOv5. Additionally, in Figure 6h, a prediction head was added in the shallow layer, 
which enhanced the ability of model to focus on small objects. FocalEIoU [35] was used as 

Figure 5. ECA channel attention mechanism.

3. YOLOv5 Algorithm Improvement

An object detection method based on YOLOv5 is proposed to balance the detection
accuracy and inference speed of UAV image detection in this paper. The proposed method
was designed to be lightweight and achieve real-time detection. Figure 6 shows the im-
proved YOLOv5 structure named MELF-YOLOv5. In the structure, as shown in Figure 6g,
MobileNetV3 and the ECA module were introduced into the backbone network of YOLOv5.
Additionally, in Figure 6h, a prediction head was added in the shallow layer, which en-
hanced the ability of model to focus on small objects. FocalEIoU [35] was used as the
box regression of loss function. Finally, to meet the needs of different embedded devices,
two kinds of convolution blocks were introduced into the neck structure, as shown in
Figure 6e,f.

3.1. Improvement of the Backbone Network

In order to reduce the numbers of parameters and FLOPs inYOLOv5, the V3 backbone
network was introduced into YOLOv5, while the SE channel attention mechanism was
replaced by the ECA module to improve the feature extraction ability and reduce the
inference time.
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MobileNetV3 is a lightweight backbone network with fewer parameters and FLOPs
than the C3 module. As shown in Figure 4, the FLOPs of the depthwise separable convolu-
tion module can be calculated as Equations (3) and (4). Under the same conditions, given a
feature map DF × DF × N as input, the FLOPs of the C3 module are computed as:

PC3 = N × N
2 × DF × DF + N × N

2 × DF × DF + N × N × DF × DF

+3
(

N
2 ×

N
2 × DF × DF + DK × DF × N

2 ×
N
2 × DF × DF

)
= 2N2 × D2

F + 0.75N2 × D2
K × D2

F + 0.75N2 × D2
F

= N2 × D2
F ×

(
2.75 + 0.75D2

K
) (11)

To simplify the calculation, we scaled up the channels from M to N, and the size of
filter was set to 3. Additionally, we also ignored the impact of SE on the FLOPs. Thus,
we have:

PV3

PC3
=

DF × DF × N ×M + DF × DF × DK × DK ×M + DF × DF ×M× N
D2

F × N2 ×
(
2.75 + 0.75D2

K
) (12)

PV3

PC3
=

1
2.75 + 0.75D2

K
×
(

2 +
D2

K
N

)
=

1
9.5
×
(

2 +
9
N

)
<

2.5
9.5

=
5

19
(13)

From Equation (13), the number of FLOPs of the C3 module can be computed as
3.8 times that of the depthwise separable convolution module. Similarly, the calculation of
parameters can be approximated to 3.8. Obviously, the depthwise separable convolution
module can reduce the computational cost and compress the parameters of the model.

3.2. Improvement of the Prediction Head

Detecting small objects is a challenging task for object detection algorithms as they
have fewer pixels during the convolution process. As the network layers become deeper, it
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becomes easier for the features of large objects to be retained, while small objects are more
likely to be ignored. To address this issue, we added a prediction layer for small objects
(cf., Figure 7).
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In the prediction layer for small objects, in order to improve the detection ability
for small objects, we added feature maps with quadruple downsampling and a smaller
receptive field. The resulting fused features were then input into the PAN module to
enhance the ability of network to determine the objects’ positions.

3.3. Loss Function Improvement

The regression loss function used by YOLOv5 is CIoU. The loss function evaluates
the difference between the prediction and ground truth boxes based on the overlapping
area, center point distance, and aspect ratio. However, the anti-trigonometric function used
in CIoU results in an increase in computational cost and training time. In addition, the
CIoU loss function ignores the differences in width and height between the prediction and
ground truth boxes. Therefore, in this paper, FocalEIoU was used as the regression loss
function. It can be expressed as:

LEIoU = 1− IoU +
ρ
(
b, bgt)
c2 +

ρ
(
w, wgt)

c2
w

+
ρ
(
h, hgt)
c2

h
(14)

LFocalEIoU = IoUγLEIoU (15)

where ρ denotes the Euclidean distance; c denotes the diagonal distance enclosing box
covering the two boxes; cw and ch denote the width and height of the smallest enclosing
box covering the two boxes, respectively; bgt and b denote the central x-coordinates of the
ground truth and prediction boxes, respectively; w and wgt denote the widths of the ground
truth and prediction boxes, respectively; h and hgt denote the heights of the ground truth
and prediction boxes respectively; and γ denotes a hyperparameter.

Compared with CIoU, FocalEIoU addresses the problem of incorrectly enlarging
the side length between the prediction and ground truth boxes, resulting in better box
regression than CIoU.

4. Experiments
4.1. Experimental Introduction
4.1.1. Experimental Environment

The training environment for the experiments was the Ubuntu 18.04 operating system,
and the YOLOv5 algorithm was implemented using PyTorch. The training server had a
hardware configuration of dual Nvidia RTX8000 and Intel Xeon Gold 6254 processors. The
Nvidia Jetson AGX Xavier was used to test the performance on an embedded platform.
Furthermore, the image input size for all experimental models was 640 × 640 pixels.
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4.1.2. Experimental Dataset

To evaluate the proposed method, the VisDrone-DET2021 [36] dataset, including
10 categories, was used for the experiments. The training and validation sets had 6471 and
549 images, respectively. Because the format of this dataset did not match the one required
by the YOLOv5 algorithm, we converted the dataset in terms of position, size, and category.
Representative sample data from the perspective of UAVs are shown in Figure 8.
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4.1.3. Evaluating Indicators

To verify the performance off the proposed method, mAP@0.5, mAP@0.5:0.95, infer-
ence time, and the numbers of parameters and FLOPs were used as measurement indicators.
Precision was defined as the ratio of positive samples to the total number of samples pre-
dicted as positive. Recall was calculated as the proportion of correctly predicted targets to
the total number of actual targets.

According to precision and recall, the average precision (AP) and the mean average
precision (mAP) could be calculated as follows:

AP =
∫ 1

0
P(R)dR (16)

mAP =
∑N

i=1 APi

N
(17)

where mAP@0.5 refers to the mAP calculated at an IOU threshold of 0.5 for all categories,
while mAP@0.5:0.95 refers to the average mAP across different IOU thresholds ranging from
0.5 to 0.95 with a step size of 0.05. The inference time was the time of forward propagation.

4.2. Experimental Results and Comparisons

We compared our proposed method with the YOLOv5l algorithm in numbers of parame-
ters and FLOPs, mAP@0.5, mAP@0.5:0.95, and inference time. As shown in Tables 1 and 2,
the results of the ablation experiment are as follows.

Table 1 shows the effect of the different methods on model performance in numbers of
parameters and FLOPs and inference time. The numbers of parameters and FLOPs when
the backbone network of the baseline was replaced were 21.8 M and 40.2 G, respectively,
which were 52.8% and 62.7% less than those for YOLOv5l, and the inference speed was
35.7 ms lower than for YOLOv5l. The ME-YOLOv5 method, based on M-YOLOv5 but
replacing the SE module with the ECA attention mechanism, achieved faster inference
speed than M-YOLOv5. By redesigning the parameters of the neck structure and adding a



Electronics 2023, 12, 2274 11 of 15

prediction head, we obtained the MEL-YOLOv5-S and MEL-YOLOv5-L models. Compared
with ME-YOLOv5, the numbers of parameters and FLOPs were reduced by 16.9 M and
30.6 G for MEL-YOLOv5-S, and the inference speed was faster than for ME-YOLOv5.
There was a slight increase in the number of FLOPs for MEL-YOLOv5-L compared to
ME-YOLOv5, but there were fewer parameters than for ME-YOLOv5. On the other hand,
ME-YOLOv5 had a faster inference speed than YOLOv5l.

Table 1. Performance comparison of different methods in numbers of parameters and FLOPs and
inference time.

V3 ECA SL Method Params (M) FLOPs (G) Inference
Time (ms)

YOLOv5l (baseline) 46.2 107.9 65.5
X M-YOLOv5 21.8 40.2 35.7
X X ME-YOLOv5 20.3 40.2 34.5
X X X MEL-YOLOv5-S 3.4 9.6 21.8
X X X MEL-YOLOv5-L 5.8 56.8 43.5

Bold represents the optimal value of the current column. V3 denotes the MobileNetV3 backbone network, ECA
denotes the efficient channel attention mechanism, and SL denotes small object layer.

Table 2. Performance comparison between CIoU and FocalEIoU.

Method mAP@0.5(%) mAP@0.5:0.95(%)

MEL-YOLOv5-S 34.8 18.3
MELF-YOLOv5-S 34.8 18.7

MEL-YOLOv5-L 46.8 26.8
MELF-YOLOv5-L 46.9 27.7

Bold represents the optimal value of the current column.

From the experimental results in Table 2, the mAP@0.5 and mAP@0.5:0.95 of the
MELF-YOLOv5-S method based on the FocalEIoU loss function reached 34.8% and 18.7%,
respectively, which were better than the values based on CIoU. In addition, compared
with MEL-YOLOv5-L based on CIoU, the mAP@0.5:0.95 of MELF-YOLOv5-L based on
FocalEIoU was 0.9% higher.

4.3. Performance Comparison of Mainstream YOLO Series Algorithms

To further validate the performance of the proposed method, we compared it with
other YOLO series detection algorithms using different input sizes on the validation set.
The results are shown in Table 3 and Figure 9.

Table 3 reveals that the MELF-YOLOv5-S method achieved a state-of-the-art balance
between the numbers of parameters and FLOPs when compared to YOLOv3-Tiny, YOLOv4-
Tiny, and YOLOv5s. MELF-YOLOv5-S was not as fast as YOLOv4-Tiny in inference
speed, but the mAP@0.5 and mAP@0.5:0.95 were significantly superior to those of other
lightweight algorithms. In addition, the numbers of parameters and FLOPs of the MELF-
YOLOv5-L method were significantly less than those of other large model algorithms, and
the inference time of MELF-YOLOv5-L was lower than that of other algorithms.

Figure 9 shows that, compared with the lightweight YOLO series algorithms, MELF-
YOLOv5-S had the highest accuracy in mAP@0.5, and MELF-YOLOv5-L also had the
highest accuracy compared to other YOLO series methods. In addition, compared with
the same scale model, the proposed method had a faster inference speed than other YOLO
series algorithms.
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Table 3. Performance comparison of YOLO series algorithms with different input sizes.

Method Size mAP@0.5 (%) mAP@0.5:0.95 (%) Params (M) FLOPs (G) Inference Time (ms)

YOLOv3-Tiny
448 11.5 4.8

8.7 12.9
19.4

640 16.2 7.0 21.2
832 19.6 8.4 23.0

YOLOv4-Tiny
446 16.6 9.0

5.9 16.2
15.5

640 24.4 13.5 17.7
832 29.8 16.7 22.7

YOLOv5s
446 26.5 13.8

7.0 15.9
20.0

640 33.5 17.8 21.5
832 37.1 20.0 24.6

MELF-YOLOv5-S
446 29.1 14.4

3.4 9.8
20.4

640 34.8 18.7 21.8
832 39.3 21.2 29.6

YOLOv3
448 32.8 17.7

61.5 154.9
53.4

640 40.3 22.3 81.5
832 43.4 24.3 121.2

YOLOv4
446 36.5 21.3

64.0 141.6
67.2

640 45.3 27.3 67.6
832 50.4 30.8 83.3

YOLOv5l
446 31.5 17.3

46.2 107.9
44.2

640 39.6 22.5 65.5
832 43.4 25.0 99.1

YOLOv5x
446 33.2 18.6

86.2 204.2
78.5

640 41.0 23.6 118.2
832 44.9 26.0 175.5

MELF-YOLOv5-L
446 39.0 22.4

5.8 56.8
33.7

640 46.9 27.7 43.5
832 50.2 30.2 63.9

Bold represents the optimal value of the current column.
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Figure 10 shows the performance comparison of MELF-YOLOv5-S and lightweight
YOLO series algorithms in different scenes. In the original pictures, YOLOv3-Tiny, YOLOv4-
Tiny, and YOLOv5s missed the detection of a large number of objects shown in the red
boxes. In the first row of Figure 10, our proposed MELF-YOLOv5-S method showed
significant superiority in pedestrian detection compared to other compared algorithms. In
the red box of the second row, our proposed method had higher detection performance for
tricycles and motorcycles than other YOLO series algorithms. In the last row of Figure 10,
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our method significantly outperformed other mainstream algorithms in detecting small
distant objects, according to the comparison results.
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For YOLOv3, YOLOv4, and YOLOv5l, compared to their lightweight versions, the
detection performance was significantly improved for pedestrians from the perspective
of UAVs, as shown in Figure 11. However, there were still many missed objects in the red
boxed areas. Our proposed method further improved the detection ability for small objects.
In the red boxes of the second and third rows of Figure 11, although our proposed method
showed a slight improvement in detection performance compared to other mainstream
YOLO series algorithms, our method had fewer parameters, lower computation complexity,
and faster inference speed.
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5. Conclusions

A lightweight, real-time detection algorithm based on YOLOv5l was proposed in this
paper, which not only guaranteed high detection accuracy but also improved the inference
speed. The proposed method obviously had a reduced number parameters and FLOPs. To
reduce the model’s overall numbers of parameters and FLOPs, MobileNetV3 based on the
ECA attention mechanism was introduced into the backbone network of YOLOv5l. The
improved M-YOLOv5 decreased the numbers of parameters and FLOPs by 25.9 M and
67.7 G, respectively, and the inference speed was 47.3% faster than YOLOv5l. To meet the
needs of different UAV image scenarios and embedded devices, two kinds of neck structures
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were designed. MEL-YOLOv5-S was a method with fewer parameters and FLOPs and a
small object detection layer was added. It can be seen from Table 1 that MEL-YOLOv5-S
only had 4.8 M parameters and 9.8 G FLOPs. Although MEL-YOLOv5-L had 56.8 G FLOPs,
the number of parameters was 5.8 M, which was 87.4% lower than YOLOv5l. To address
the issue of incorrectly enlarging the side length between the prediction and ground truth
boxes, FocalEIoU was introduced into MELF-YOLOv5 based on YOLOv5l. As shown in
Table 2, the FocalEIoU loss function was slightly superior to CIoU. Finally, we compared
the proposed methods with mainstream YOLO series algorithms using different input
sizes. Compared to other lightweight YOLO series algorithms, MELF-YOLOv5-S reached
the highest mAP@0.5 and mAP@0.5:0.95 and achieved real-time inference speed. MELF-
YOLOv5-L had a faster inference speed than other large model YOLO series algorithms.
To sum up, this paper provides a lightweight, real-time algorithm to balance inference
speed and detection accuracy. Future work will primarily focus on two aspects: further
compressing the network parameters and FLOPs and enhancing the feature extraction
ability of the lightweight mode through re-parameterization techniques.
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