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Abstract: Protein crystallization is nowadays performed at the micro to macro scale in academia and
industry, being particularly interesting for pharmaceutical applications. Protein crystallization offers
an attractive alternative to chromatography as a downstream processing step in the biotechnology
industry, but also in the food and chemical industries. Monitoring of the protein crystallization
process is required to understand the crystal growth mechanism and to obtain the information
necessary for efficient process control, which needs to comply with the critical quality attributes of the
product. Since a wide range of monitoring techniques have already been developed and established,
this review focuses on the recent advances of selected techniques in monitoring protein crystallization
processes such as the focused beam reflectance method (FBRM), and machine learning-based image
analysis for solid-phase monitoring, as well as the spectroscopic methods for liquid-phase monitoring,
such as attenuated total reflectance Fourier transform infrared (ATR-FTIR) and UV/Vis spectroscopy.

Keywords: protein crystallization; monitoring techniques; machine learning (ML) based image analysis;
focused beam reflectance measurement (FBRM); attenuated total reflectance Fourier transform infrared
(ATR-FTIR) spectroscopy; UV/Vis spectroscopy; process analytical technology (PAT)

1. Introduction

The industrial production of biopharmaceuticals has increased rapidly in recent years [1],
which has accentuated the bottleneck in the efficient downstream processing of biomolecules.
Here, the designation of “anything but chromatography” evolved, with one potential alter-
native being crystallization [1]. Protein crystallization is a natural phenomenon that occurs
when molecules in solution are in a supersaturated state, until the solubility line is reached
through the metastable state. The supersaturated state can be artificially achieved by in-
creasing the molecule’s concentration while decreasing the temperature, by evaporation
or by adding an antisolvent. This increased protein density strengthens the electrostatic
and hydrophobic interactions. For a correct setting of the physical and chemical process
parameters, the interacting proteins eventually pass through intermediate nucleation steps
and arrange spatially in a periodic manner [2], forming crystals.

Crystals from macromolecules such as proteins, DNA, viruses and other large organic
molecules are produced for diverse academic and industrial purposes. While protein
crystallization has been broadly applied for structure determination, recent trends include
a consideration of it in the context of downstream processing for product separation,
purification, and formulation. Here, the high integrity and concentration levels of purified
protein crystals, the long shelf life, as well as the practical scalability of the crystallization
process, are attractive for industrial applications [2].

In general, crystallization processes can be carried out as batch, semi-batch or continu-
ous processes regardless of scale [3,4]. Nevertheless, batch processes are often preferred in
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the pharmaceutical industry since inline process control can be achieved effortlessly. There-
fore, the final crystals’ critical quality attributes such as crystal size, shape and homogeneity
can be controlled [5,6]. Despite the batch process being conceptionally simple, there are
currently no standard crystallization conditions that can be applied. Since each protein is
intrinsically different in regard to its complex structure, the protein’s biochemical character-
istics are affected [7]. It was demonstrated that protein crystallization processes and their
success are very sensitive even down to single amino acid exchanges [8–13]. In addition,
the crystallization process is challenging to control [14] and often needs to be optimized
empirically, especially as nucleation, which is the step prior to crystal growth, is a stochastic
phenomenon influenced by various parameters such as supersaturation, agitation, presence
of impurities, and non-ideal mixing conditions [14]. Therefore, crystallization optimization
procedures, as well as active process control in industrial settings, require reliable inline
monitoring capabilities. More specifically, it is important to monitor the crystallization
processes’ critical quality attributes in order to find the ideal crystallization conditions and
to enable higher process stability and product quality.

Monitoring (preparative) crystallization processes of small molecules have already
been reviewed extensively [6,14–17] and crystallization platforms with combinations of
monitoring devices are commonly available [18]. Additionally, process analytical tech-
nologies (PAT) for the quality control of protein crystallization with a focus on monitoring
with Raman spectroscopy were recently discussed [17]. Thus, Raman spectroscopy is not
covered in this overview.

However, studies monitoring small molecules cannot be completely transferred to
the crystallization of biomolecules such as proteins. This is because this process is highly
variable due to their complex biological structure and heterogeneity, and the biological
variation of the raw material [19,20].

In this work, recent advances focusing on the applicability of monitoring tools for
protein crystallization processes are reviewed. Here, the focused beam reflectance mea-
surement (FBRM) and the automated analysis of microphotographs by machine learning
(ML)-based image analysis are discussed as non-destructive solid-phase monitoring meth-
ods. Additionally, spectroscopic approaches, often coupled with supersaturation state
control, are reviewed for liquid-phase monitoring applications.

2. Solid-Phase Monitoring in Protein Crystallization Processes

Monitoring crystal morphology, porosity and size distribution during the crystal-
lization process is relevant, as these characteristics are directly linked to the following
downstream processing steps: filtration, sedimentation, and fluidization [21]. Crystal
morphology, the grade of polymorphism, the degree of agglomeration, and impurities
in the crystal lattice are also relevant variables for the pharmaceutical industry, for these
characteristics influence the purity, stability, dissolution properties [22], and shelf life [2] of
the final products.

2.1. Laser Backscattering; Focused Beam Reflectance Measurement (FBRM)

If crystal size is of primary interest during the protein purification process, FBRM is
largely applied as an in situ measurement tool. FBRM also provides information about
nucleation, growth, dissolution, and polymorphic transformation, in addition to the size
distribution data of the crystal population in the particle size range of 0.1–1000 µm [23,24].
FBRM can be applied as an inline measurement for chord length distribution (CLD), which
reflects in real time the size and shape of the protein, as well as the number of crystals
dispersed within the reactor (schematically illustrated in Figure 1).

Since FBRM analyzes backscattering from a rotating monochromatic laser beam, it
is able to be operated even in concentrated slurries. Therefore, additional dilution steps
or external sampling, which are required in online and offline measurements, are not
required [24]. This method is based on the reflection of scattered laser light which is
encountered in the particle system, so it is highly dependent on the optical properties of



Crystals 2023, 13, 773 3 of 12

the particles’ surface. FBRM is an alternative to offline particle size measurement methods,
such as laser diffraction or sieve analysis [24]. While FBRM is already established for
monitoring the crystallization of small molecules [24–28], only a few publications have
applied it to biological macromolecules.
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solution. The probe is inserted at an angle to ensure particle flow across the probe window. The 
rotating laser beam rapidly scans the particles flowing past the probe window. The backscattered 
light provides the chord length distribution data on the scattered particles (crystals are not in scale 
to probe). The sketch was generated using draw.io. 
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tablishment of a model to predict the kinetic parameters of nucleation for predetermining 
crystal size distribution data, FBRM was used as a final validation step. Despite the ad-
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crystal size measurement [29], as infinitely long length crystals were assumed for the 
model (invalid for the aspect ratio of 1). Additionally, this shape evolves during 

Figure 1. Schematic sketch of a focused beam reflectance measurement (FBRM) probe in a crystal
solution. The probe is inserted at an angle to ensure particle flow across the probe window. The
rotating laser beam rapidly scans the particles flowing past the probe window. The backscattered
light provides the chord length distribution data on the scattered particles (crystals are not in scale to
probe). The sketch was generated using draw.io.

Similarly to other protein crystallization monitoring techniques, FBRM is mainly
used in batch processes, with few exceptions that have been carried out in the continuous
mode. This mode of operation through a tubular crystallizer was applied for the selective
crystallization of L-glutamic acid [3]. In this study, FBRM was employed for in situ
measurement and control of the size distribution of the growing crystals, enabling the
selective production of the α-form of the amino acid with a uniform mean size of 130 µm.
As a limitation of FBRM was the output form, which was the particle counts and chord
length distribution, the evaluation of crystal size distribution became possible, as shown
when Pandit et al. [29] demonstrated the applicability of inversion models to convert chord
length distribution data from low-aspect-ratio crystals received from FBRM to crystal size
distribution data, using purified lysozyme, recombinant human insulin, and vitamin B12
solutions as model biopharmaceuticals crystallizing in a stirred batch vessel in accordance
with Smejkal et al. [30]. Within this study, the crystal size distribution was monitored in real
time for low-aspect-ratio crystals with tetragonal (lysozyme), rhombohedral (recombinant
human insulin), and polyhedral (vitamin B12) shapes [29]. FBRM is also a relevant method
for detecting the preliminary step of crystallization, nucleation, as many other methods fail
at detecting the initial nuclei in a large crystallizer [31]. As the impact of direct nucleation
on crystal size distribution data was already revealed before [32], the parameter estimation
of the secondary nucleation kinetics of biomolecules was determined in a simulation by
Unno et al. [33]. Using structurally less complex L-arginine for the establishment of a model
to predict the kinetic parameters of nucleation for predetermining crystal size distribution
data, FBRM was used as a final validation step. Despite the advantages of FBRM, it was
demonstrated that in the case of high-aspect-ratio (>4) crystals, e.g., needle-shaped crystals,
there is an intrinsic limitation to using FBRM for length-based crystal size measurement [29],
as infinitely long length crystals were assumed for the model (invalid for the aspect ratio
of 1). Additionally, this shape evolves during crystallization and FBRM relies on a single
size descriptor [34]. In addition, the robustness and accuracy of the data-driven model
need to be improved in order for it to be considered as a quantitative monitoring tool
for crystal size distribution [28,29]. It must be pointed out that one major challenge for
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FBRM is the occurrence of aggregation and/or precipitation in protein crystallization
processes [29], which might interfere with the focused laser beam and affect the pulse
intensity and duration of the backscattered light.

2.2. Microscopic Image Analysis

Crystal size, a random variable, is difficult to characterize during crystallization
processes. Noise factors during crystallization such as precipitation, aggregation or thin-
film effects affect the identification and shape definition of crystals through traditional
detection methods, as described in Gan et al. [35]. As an example, FBRM is easily influenced
by crystal properties or operating conditions [18]. As early as in the 1990s, this problem was
tackled by using microscopy [36]. While being non-invasive and cost-effective, microscopic
photography and the automated image evaluation of protein crystallization techniques
remain challenging.

The results of optical microscopy imaging depend on the illumination of the sample
and the system’s refractive index, as well as on sample composition with regard to noise
through aggregation, precipitation, and heterogeneous particles [37].

Additionally, morphology might vary for proteins that crystallize in different crystal
systems, or due to changes in the crystallization conditions, as can be seen in Figure 2.
For bright-field imaging, the crystals appear mainly transparent and their edges are only
partially visible, therefore complicating common image analysis methods. On the other
hand, imaging methods exist that are more selective towards the crystallized phase of
the crystallization slurry. For example, second-order nonlinear optical imaging [38] or its
complement two-photon-excited UV fluorescence microscopy [39] has many advantages
when it comes to robustness in the presence of noise, e.g., being able to distinguish between
protein crystals and salt crystals. However, even recent iterations require elaborate exper-
imental setups and data acquisition times of multiple seconds per image [40], rendering
them impractical for use in stirred industrial bioreactors. Additionally, image analysis and
the extraction of crystal size distributions are still left as challenges, especially in systems of
high protein crystal density.
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Initial work on image analysis was based on image preprocessing, segmentation, 
thresholding, and filtering steps that would detect crystal objects in the absence of noise 
in the images if their shape was known prior to the experiment [36,41]. The SHARC and 
M-SHARC algorithms were introduced as an alternative to segmentation-based ap-
proaches. They rely on a pattern matching strategy, in which nearby parallel edges are 

Figure 2. Bright-field photomicrographs of batch crystallization studies with purified protein, re-
sulting in different crystal shapes. Lactobacillus brevis alcohol dehydrogenase variants (left, middle)
crystallize in needle-shaped and cubes, respectively. Nostoc sp. PCC 7120 ene-reductase variant
(right) crystallizes in platelets (photomicrographs provided by the Chair of Biochemical Engineering,
Technical University of Munich, unpublished results).

Initial work on image analysis was based on image preprocessing, segmentation,
thresholding, and filtering steps that would detect crystal objects in the absence of noise
in the images if their shape was known prior to the experiment [36,41]. The SHARC and
M-SHARC algorithms were introduced as an alternative to segmentation-based approaches.
They rely on a pattern matching strategy, in which nearby parallel edges are matched and
analyzed together, with M-SHARC storing multiple internal crystal wire-frame models
to compare against [42,43]. For these manually implemented algorithms, susceptibility
to noise in images, and the partial visibility of crystal edges in low-contrast situations, as
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well as the required prior knowledge about the expected crystal shape remain challenges.
With the success of deep learning [44] and convolutional neural networks in image analysis
applications, novel tools for the detection of crystals from images started being developed.
Object detection of individual crystals using deep learning was first introduced using mask
region-based convolutional neural networks (Mask R-CNN) by He et al. [45] for α- and
β-forms of L-glutamic acid [46,47]. Two drawbacks of this model were the use of non-
oriented detection boxes leading to decreasing detection performance for dense systems of
elongated crystals and the use of a relatively slow two-stage detector model. The latter issue
was improved in later work by using a one-stage detector model based on RetinaNet [48,49].
Additionally, research focusing on the areal detection scenarios from satellite images pro-
gressed oriented object detection (OOD). The first application of an OOD model in protein
crystals was performed by Wu et al. [18] using the single-shot alignment network (S2A-Net)
by Han et al. [50] for a model system of taurine, experimentally validating the trained model
through FBRM. However, modern deep learning-based approaches train models with a
large number of parameters distributed across multiple successive layers. Using supervised
learning to train these networks means that large labeled data sets need to be accessible.
The number of images in this data set, their variety, labeling quality, and overall similarity
to microscopic images in a production environment contribute to the trained models’ per-
formance. With limited resources, these requirements cannot be met using human labeling.
Instead, Bischoff et al. [37] designed a synthetic data set of 332,558 photorealistic images
of protein crystals in suspension. While individual crystals in the data set were designed
to be unbiased with respect to the crystals’ sizes, their aspect ratio, and angle within the
image, the implementation of specialized data augmentations introduces synthetic noise to
more accurately modeled realistic experimental photomicrographs (see Figure 3). Synthetic
noise includes protein-specific noise (visible aggregation, precipitation, and heterogeneous
particles), as well as instrument-dependent noise (brightness gradients, reflections, and
contrast). These noise attributes were addressed by using blurring, brightness/contrast
variations, edges distortions, rounded corner overlay, thin-film interference patterns, Perlin
noise, per-object highlights, and random splines on the images to generate an augmented
synthetic data set [37].
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Figure 3. Experimental photomicrographs (left) as basis of an augmented synthetic data set (middle)
generated in accordance with Bischoff et al. [37]. Using this synthetic data set, a S2A-Net model was
trained that could detect crystals in the original experimental photomicrographs (right), even when
noise was present. The trained model directly output the crystal size distributions (length and width)
compared in the original publication for undiluted (top) and diluted (bottom) samples.

The trained models were again based on S2A-Net, with slight modifications to the
initial layers that improved the models’ capabilities to detect small crystals within the
image. Overall performance was evaluated using an augmented validation data set, as well
as using a joint evaluation of diluted and undiluted and therefore noisy samples from a
Lactobacillus kefir alcohol dehydrogenase (LkADH) crystallization process in 5 mL of a stirred
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crystallizer. No statistically significant differences were observed between the diluted and
undiluted samples during protein crystallization in an E. coli cell lysate, demonstrating
the high potential to be used as a low-cost, inline protein crystal size distribution data
monitoring tool for impure sources. However, the included example of evaluated real
bright-field photomicrographs in Figure 3 hints at a drawback of the presented method.
The labeled noisy photomicrograph (right) contains a few unlabeled crystals that might
have been included by human labeling. The reason for the absence of these labels is not
apparent, a drawback that is sometimes referred to as the explainability problem for deep
neural networks. Additional training that adjusts the behavior of the model for particular
systems requires additional computational resources and time-consuming fine-tuning steps
and data acquisition.

The software of the endoscopic probes is able to take photomicrographs usually at
>1–6 Hz [51–53], providing 2D pictures in real time. Nagy et al. [15] have already listed
the diversity of endoscopic probes for imaging developed by industry and academia in
2013. Since in situ microscopy probes are commonly available today from a diversity of
companies, the image-based monitoring tool is proving to be a promising concept for
industrial protein crystallization in combination with deep learning image analysis for
challenging protein crystallization process conditions such as those involving aggregates,
precipitated proteins, heterogeneous particles, and low-resolution imaging devices [37].

The previous work of Wu et al. [18] furthermore demonstrated the potential of com-
bining different monitoring modalities. Here, image analysis provided information from
the solid phase, while Raman spectroscopy provided information from the liquid phase.
The joint information helped to estimate the nucleation kinetics as well as crystal growth
kinetics. Based on the results obtained in an aqueous taurine solution saturated at 30 ◦C
and 40 ◦C, this approach proved to be more sensitive and provided more reproducible
nucleation detection compared to FBRM.

3. Liquid-Phase Monitoring in Protein Crystallization Processes

Spectroscopy is a technique used for analyzing molecules by observing how light and
matter interact. By examining the absorption and emission rate of a sample, the sample’s
constituents, properties, and volume can be characterized. Spectroscopy is known to be
a powerful technique in monitoring processes. It has been widely used to determine and
monitor detailed information about proteins’ primary, secondary, tertiary, and quaternary
structures [23], using different regions of the electromagnetic spectrum, such as the ultravi-
olet (UV; 190–380 nm), visible (Vis; 380–750 nm), or mid-infrared (MIR; 2.5–30 µm) light
regions [54]. Using visible or near-infrared (NIR; 750 nm–2.5 µm) radiation, Raman spec-
troscopy is a non-invasive inline method which provides data of the chemical composition
and molecular structure of small and large (bio)molecules. Recently, Raman spectroscopy
was discussed as a monitoring and controlling tool for biopharmaceutical applications [17].
For further information on the inline downstream monitoring of protein crystallization by
Raman spectroscopy, interested readers are encouraged to read the comprehensive review
of Esmonde-White et al. [17].

In this overview, two selected types of spectroscopy with relevance to industrial
applications are discussed with respect to their properties, monitoring capabilities and the
various applications in monitoring protein crystallization processes.

3.1. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy

Infrared spectroscopy is a technique based on the coupling of electromagnetic radiation
within the IR wavelength range and the associated vibrational modes of molecules. IR
spectroscopy is an important method for chemical analysis and research on functional
materials, as well as biological tests. It has been improved and developed to allow the study
of molecular conformation, biochemical reactions, protein function, and crystal structures,
for example [55]. Vibrational spectroscopy is significant because of the non-invasive and
non-destructive form of measurement in reactors [56].



Crystals 2023, 13, 773 7 of 12

In the biopharmaceutical industry, FTIR spectroscopy was formerly employed as
an at-line PAT method in downstream processing for the determination of product and
byproduct content, as well as for the determination of the content of host cell proteins. It
has been clearly proven that it can differentiate and quantify certain proteins inline based
on their secondary structure [57].

ATR-FTIR spectroscopy is particularly applicable in studying aqueous samples due
to the interaction of MIR light with the sample within a few microns of the surface of
the internal reflection element [58,59], as schematically depicted in Figure 4. As an ATR
probe tolerates suspended particles or bubbles, it is able to measure slurries with high
solid content [60]. Studies have demonstrated that ATR-FTIR can be used as an online
supersaturation monitoring method for the stirred crystallization of small molecules such
as D-mannitol [61], ibuprofen [62], and L-glutamic acid [63,64].
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Figure 4. Schematic illustration of ATR-FTIR with a multiple-bounce ATR cell. Polarized IR light is
sent into the crystal at a defined angle (α) to bounce through the crystal. The resulting evanescent
waves contain chemical and vibrational information about the molecules in the solution and deliver
it to the detector, whereby penetration depth (0.5–5 µm) is correlated to the wave number and thus
the absorbance intensity, influencing the sensitivity [65,66]. The sketch was generated using draw.io.

For seed crystallization, measuring the solution concentration with ATR-FTIR spec-
troscopy is highly effective for detecting seed points, as it has the ability to distinguish
between salt and protein crystals due to the highly localized amide II absorbance (spectral
region of 1585–1505 cm−1) on the image [58,67]. After seeding, the particle number and size
distribution can be measured with an in situ/online particle size and counting device to de-
termine seeding effectiveness [68]. Despite this, several studies successfully demonstrated
the measurement of protein crystal growth for lysozyme, thaumatin, and lobster alpha
crustacyanin [59] using ATR-FTIR spectroscopy in hanging-drop experiments [58,59,69],
mainly for crystallization condition screening [58]. Here, protein crystal growth can be
detected by an increase in the absorbance of the amide II band with a simultaneous decrease
in the band from the bending mode of water (spectral region of about 1640 cm−1) with op-
tical imaging methods being used as validation tools for crystal growth [59]. Additionally,
this method allows the detection of microcrystals due to its high spatial resolution [57,59].
So far, ATR-FTIR has been successfully used in micro approaches (hanging drop), but
not yet in preparative protein crystallization. However, it is already being used in other
industrial crystallization processes in combination with feedback loop control strategies,
which follow simple heuristic operating policies. For detailed explanations, the method of
supersaturation control/concentration feedback control is further described in Gao et al. [6].
Furthermore, in situ concentration measurements of ATR-FTIR spectroscopy and UV/Vis
spectroscopy have been mostly used in combination with feedback control techniques to
monitor crystallization processes [70]. For Öner et al. [71], the measurements provided
by these spectroscopic techniques provided information about the solute concentration
in the crystallizer, as well as the current solubility of the suspension. Combining this
information with a data-driven control strategy, a constant supersaturation state can be
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maintained by manipulating variables such as temperature or antisolvent feed rate. Fur-
thermore, the same combination of ATR-FTIR spectroscopy and feedback controls was
used by Montes et al. [70] in a promising model-based evaluation of a data-driven control
strategy for crystallization processes using radial basis functions, predictive control and
soft sensor control.

3.2. UV/Vis Spectroscopy

UV/Vis spectroscopy measures the absorption of proteins in the range between
240–340 nm based on the content of aromatic amino acids, in particular L-tryptophan
and L-tyrosine. Hence, for analyzing crystallization parameters such as nucleation, poly-
morphic transition, and supersaturation changes, UV/Vis spectroscopy is used, relying on
the qualitative and quantitative relationship between the protein structure and its compo-
sition, as well as its UV light absorption spectrum [72,73]. For correlating the measured
spectral intensity with the concentration of the solution, the full-spectrum quantitative
analysis technology of chemometrics is used [6]. Wegner et al. [20] successfully managed to
combine UV/Vis spectroscopy and chemometrics by creating a high-throughput crystalliza-
tion screening technique to quickly quantify individual species in a multicomponent matrix,
composed of lysozyme, ribonuclease A, and cytochrome C, by allowing the calculation of
process performance indicators in the early stage of process development. The combination
of partial least regression models with UV/Vis spectroscopy creates a highly accurate
and conceptionally simple tool with spectral analysis offering selective quantification and
yield calculation within minutes [20]. Protein phase transition can be specifically detected,
with growing protein crystals being easily distinguishable from salt crystals, resulting in a
promising method for monitoring the protein concentration of the protein of interest in a
multicomponent matrix during protein crystallization processes, with a future potential
application In protein crystallization from an E. coli cell lysate.

The use of ATR-UV/Vis spectroscopy in pharmaceutical crystallization as a monitor-
ing and concentration-measuring tool has been a subject of studies since the late 2000s
when Abu Bakar et al. [32] studied the impact of direct nucleation control on crystal size
distribution in pharmaceutical crystallization processes. ATR can improve the quality
of UV/Vis spectroscopy by the identification of solution-mediated transformations in
suspended solids under isothermal conditions [74].

With the recent development of ATR-UV/Vis in situ concentration measurement
methods [75], supersaturation control or concentration feedback control can be applied to
crystallization processes on laboratory and industrial scales. Here, the solution concentra-
tion measured in real time by ATR-FTIR and ATR-UV/Vis, combined with temperature
and solubility data, can calculate the current supersaturation state to maintain the target su-
persaturation set point in the phase diagram by adjusting the operating temperature [6,76].
Thus, to avoid an uncertain nucleation zone or undersaturation, the crystal growth process
can be controlled by following an operating trajectory, which is specified in the crystal
phase diagram and results in a cooling curve. By means of a standard tracking control
system, concentration feedback control can be implemented on the industrial scale [6].

Based on the information provided by ATR-FTIR and ATR-UV/Vis spectroscopy mea-
surements, state variables of the crystallization processes can be controlled. For example,
Griffin et al. [77] used ATR-FTIR and FBRM to expand the mass–count framework for
crystal size control and colloidal assembly by inferring the total crystal mass via a mass
balance. Simone et al. [73] used ATR-UV/vis and FBRM in combination with Raman and
NIR spectroscopy to monitor polymorphic transformations of a small molecule and to
establish real-time control of the crystal shape. These combinations of different monitoring
tools are promising in monitoring complex processes such as protein crystallization.

4. Conclusions

As stated in Scott et al. [78], the focus of industrial research for advances in the in-
process characterization of suspensions and slurries has been on particle size measurement,
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using primarily optical and imaging techniques. Machine learning resources can improve
the combination of monitoring protein crystallization processes with optical endoscopic
probes using image analysis for the real-time monitoring of protein crystal growth. Recent
research in the field of protein crystallization is mainly based on detecting the critical quality
attributes of crystals in real time, adjusting the final product for the required purposes
by applying sophisticated crystallization process control algorithms. Here, spectroscopic
methods are the most commonly used, and are often combined with control strategies
such as supersaturation or concentration feedback control. The combination of UV/Vis
spectroscopy with chemometrics is opening up the possibility of a promising application
for monitoring selected protein concentrations in a multicomponent matrix.

Overall, the solid-phase and liquid-phase monitoring techniques discussed here
(could) contribute to efficient protein crystallization process control, since protein crystal-
lization is an attractive alternative to chromatography as a downstream processing step in
the biotechnology, food, and chemical industries.
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