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Abstract: Perineural invasion is a prevalent pathological finding in head and neck squamous cell
carcinoma and a risk factor for unfavorable survival. An adequate diagnosis of perineural inva-
sion by pathologic examination is limited due to the availability of tumor samples from surgical
resection, which can arise in cases of definitive nonsurgical treatment. To address this medical need,
we established a random forest prediction model for the risk assessment of perineural invasion,
including occult perineural invasion, and characterized distinct cellular and molecular features based
on our new and extended classification. RNA sequencing data of head and neck squamous cell
carcinoma from The Cancer Genome Atlas were used as a training cohort to identify differentially
expressed genes that are associated with perineural invasion. A random forest classification model
was established based on these differentially expressed genes and was validated by inspection of
H&E-stained whole image slides. Differences in epigenetic regulation and the mutational landscape
were detected by an integrative analysis of multiomics data and single-cell RNA-sequencing data
were analyzed. We identified a 44-gene expression signature related to perineural invasion and
enriched for genes mainly expressed in cancer cells according to single-cell RNA-sequencing data.
A machine learning model was trained based on the expression pattern of the 44-gene set with the
unique feature to predict occult perineural invasion. This extended classification model enabled a
more accurate analysis of alterations in the mutational landscape and epigenetic regulation by DNA
methylation as well as quantitative and qualitative differences in the cellular composition in the tumor
microenvironment between head and neck squamous cell carcinoma with or without perineural
invasion. In conclusion, the newly established model could not only complement histopathologic
examination as an additional diagnostic tool but also guide the identification of new drug targets for
therapeutic intervention in future clinical trials with head and neck squamous cell carcinoma patients
at a higher risk for treatment failure due to perineural invasion.

Keywords: The Cancer Genome Atlas (TCGA); random forest; occult PNI; hypermethylation; somatic
mutation; multiomics; single-cell sequencing

1. Introduction

Haematogenic and lymphatic spread as well as local and perineural invasion (PNI)
encompass the main routes for solid tumor dissemination. PNI is a common threat in
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multiple cancers, including head and neck squamous cell carcinoma (HNSCC), and serves
as a prognostic indicator of unfavorable survival due to increased local recurrence rates
and a shorter time to tumor relapse [1–5]. Therefore, HNSCC with PNI require a more
aggressive and multimodal treatment for advanced stages including surgery, radiotherapy,
and chemotherapy [6]. Based on a histopathological inspection, PNI is broadly defined
as the extension of cancer cells around, into, or through nerves. Historically, it has been
thought to be a unilateral process dependent upon cancer invasion with a tumor invading
the perineural space through the path of least resistance. However, more recent studies
have elucidated a more complex picture of mutual cancer–neuron interaction in facilitating
PNI with a crucial role of the perineural microenvironment involving distinct molecular
and cellular constituents of peripheral nerves [7].

Despite the emerging clinical relevance, the determination of PNI by the histopatho-
logical examination of entire histological slides remains a major challenge and is subject
to a wide variance of reported incidence rates for HNSCC (between 6% and 90%). The
high variance can be explained in part because PNI can involve both small and large
nerves with sporadic distribution patterns in sometimes extremely large tissue samples,
making accurate pathological assessment a time consuming and tedious task. To solve this
problem, several recent studies focused on computational approaches to extract nerves
and PNI from histologically stained whole-slide images, utilizing deep learning networks
or artificial-intelligence-based classifiers (Table 1). Though a computer-assisted diagnosis
appears feasible, limitations to these studies are the small sample sizes and the lack of
independent validation in larger clinical cohorts, so far. In addition, these approaches
critically depend on whole-slide images from a surgical resection of the primary tumor,
which are not available for cases treated with definitive radio-/chemotherapy (RCT), where
pathological examination is hampered by small tumor specimens from biopsies [8,9]. Espe-
cially in early and in locoregionally advanced stages of laryngeal squamous cell carcinoma,
definitive RCT represents the favored treatment in many clinical centers [10–12]. In this
context, it is also worth noting that currently, no therapeutic intervention exists for PNI
in HNSCC patients. These issues illustrate the urgent medical need for reliable molecular
classifiers to support diagnostic PNI assessment and prognostic risk prediction, and to
explore the exact underlying molecular principles.

In the past, most studies focused on individual genes or signaling pathways, and
only a few explored PNI-related molecular differences at the omics level (Table 1). The
study by Saidak et al. identified a PNI-related gene expression profile enriched in muscle
genes and demonstrated increased activation levels of AKT/PKB and mTOR kinases for
HNSCC with PNI [13]. Zhang et al. established a PNI-associated coexpression module
consisting of genes (n = 357) that functioned in processes such as extracellular matrix
remodeling, collagen catabolic processes, and cell adhesion [14]. The analysis of single-cell
RNA sequencing (scRNA-seq) data revealed that the expression of genes in the PNI-
associated module resembled functional states of the epithelial-to-mesenchymal transition
(EMT), metastasis, and invasion in cancer cells. Both studies were limited to patients with
a confirmed PNI status and excluded cases lacking a histopathological assessment [13,14].
Hence, the potential of these gene expression profile or module to identify occult PNI
for HNSCC patients without a surgical resection of the primary tumor or a PNI-negative
assessment according to established diagnostic criteria is unknown. The latter issue might
be of particular clinical relevance considering the data of a more recent study on the spatial
and transcriptomic analysis of PNI in oral cancer [15]. In that study, patients with nerves
closer to the tumor had poor outcomes even if diagnosed as PNI-negative using established
histopathological criteria.
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Table 1. Literature review presenting in total 6 related studies and pointing out different study
designs and results.

Samples Dataset (Cases) Deliverables Reference

OSCC
H&E-stained whole-slide

images (training set n = 20,
validation set n = 60)

Simultaneous segmentation of
microvessels and nerves

Neural Comput &Applic 32,
9915–9928 (2020) [16]

HNSCC H&E-stained whole-slide
images (n = 334) Segmentation of nerves and PNI PMID: 36496513 [17]

OSCC
H&E-stained whole-slide
images (training set = 80,

validation set = 10)
PNI classifier PMID: 36353548 [18]

HNSCC
RNA-seq and clinical data

(TCGA. n = 351), scRNA-seq
(GSE103322, n = 18)

PNI-associated coexpression
module with 12 hub genes PMID: 31214495 [14]

HNSCC Multiomics and clinical data
(TCGA, n = 361)

PNI-related gene expression
profile (263 genes) PMID: 30409320 [13]

OSCC
H&E- an ICH- stained

whole-slide images (n = 142),
NanoString Spatial Profiling

Spatial and
transcriptomic analysis PMID: 35819260 [15]

The main objective of this study was the training of a machine learning (ML) model
based on a PNI-related gene set to enable the accurate prediction of occult PNI, which
could complement pathological examination, and to provide new insights into molecular
alterations which are associated with the presence of PNI in HNSCC.

2. Results
2.1. PNI as an Independent Prognostic Factor

To confirm the clinical relevance of perineural invasion (PNI) as an independent prog-
nostic factor for poor outcome, we performed a survival analysis based on the histopatho-
logic PNI status, including all PNI− and PNI+ tumors of the TCGA-HNSC cohort (n = 317)
with accessible survival data. Kaplan–Meier graphs and log-rank tests demonstrated sig-
nificant differences in 5-year overall survival (OS), disease-specific survival (DSS), and
progression-free intervals (PFI) for this cohort (Supplemental Figure S1A). A subgroup anal-
ysis confirmed significant differences in 5-year survival for oral squamous cell carcinoma
and laryngeal squamous cell carcinoma but not for oropharyngeal squamous cell carcinoma
(Supplemental Figure S1B). A crosstab analysis revealed a significant association of PNI+
tumors with oral squamous cell carcinoma (p = 1.14 × 10−5), tumor size (p = 8.93 × 10−5),
lymph node metastasis (p = 3.5 × 10−6), extracapsular spread (p = 3.64 × 10−6), and angi-
olymphatic invasion (p = 9.94 × 10−6) (Supplemental Table S2).

2.2. PNI-Related Gene Expression Signature

Next, we addressed the question of whether differences at the transcript level enabled
a risk assessment of PNI (Supplemental Figure S2). An analysis of bulk RNA-seq data
from TCGA-HNSC was performed using the limma and edgeR packages in R and re-
vealed 60 common differentially expressed genes (DEGs) between tumors with or without
annotated PNI (Supplemental Figure S3A–C; Supplemental Table S3). An unsupervised
hierarchical clustering based on the transcript levels of these DEGs revealed two main
clusters, which were enriched for either PNI− (cluster A) or PNI+ (cluster B) (Supplemental
Figure S3D). However, the cluster analysis highlighted a set of upregulated DEGs (n = 16)
in PNI+ tumors, which were related to muscle tissue and strongly enriched for tongue
squamous cell carcinoma (Supplemental Figure S3D), indicating a bias by the anatomical
subsite. The removal of these 16-gene set revealed a final PNI-related 44-gene signature of
which 7 genes were upregulated and 37 genes were down-regulated in PNI+ as compared
to PNI− HNSCC. The unsupervised hierarchical clustering based on transcript levels of
the PNI-related 44-gene set confirmed two main clusters A and B, the latter subdivided



Int. J. Mol. Sci. 2023, 24, 8938 4 of 19

in two subclusters B1 and B2 (Figure 1A). PNI+ tumors were strongly enriched in sub-
cluster B2 (Supplemental Table S4), and differences in gene set variation analysis scores
for up- (ANOVA p < 2.2 × 10−16) or downregulated (ANOVA p < 2.2 × 10−16) genes of
the PNI-related 44-gene set were highly significant between subcluster B2 and cluster A
or subcluster B1 (Figure 1B). HPV16-positive oropharyngeal squamous cell carcinoma
(HPV16+ OPSCC) was significantly enriched in cluster A, while no major difference was
evident for other risk factors (tobacco and alcohol, Supplemental Table S4). Concerning
the classification by Keck et al. [19], tumors with a basal subtype (BA) were more often in
subcluster B2 while tumors with a classical subtype (CL) were more frequent in cluster A
(p < 2.2 × 10−16) (Supplemental Table S4). A survival analysis confirmed a significant differ-
ence in overall (OS, HR = 1.838, p = 1.0 × 10−3), disease-specific survival (DSS, HR = 2.429,
p = 1.0× 10−4), and progression-free interval (PFI, HR = 1.671, p = 1.1 × 10−2) between
cases of clusters A/B1 and B2 similar to the stratification by the pathological PNI status
(Figure 1C). In summary, the PNI-related 44-gene signature enabled the stratification of
the TCGA-HNSC cohort with an annotated PNI status in molecularly defined groups with
distinct clinical features and prognosis.
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Figure 1. Identification of subgroups in TCGA-HNSC with annotated PNI status and distinct clinical
and prognostic features based on the PNI-related 44-gene set. (A) A heatmap shows an unsupervised
hierarchical clustering of tumors from TCGA-HNSC with an annotated PNI status (n = 348) based
on gene expression data of the PNI-related 44-gene signature and demonstrates two main groups:
cluster A (red, enriched for PNI−) and cluster B, subdivided in subcluster B1 (blue) and B2 (green,
enriched for PNI+). (B) Violin plots illustrate a significant difference in GSVA scores of up or
downregulated DEGs of the PNI-related 44-gene signature between cluster A (red) and subclusters
B1 (blue) and B2 (green). (C) Forest plot for the 5-year OS, DSS, and PFI of patients from TCGA-
HNSC with an annotated PNI status based on a univariate Cox regression model stratified by either
the pathological PNI status or classified by the PNI-related 44-gene signature. 1 Reference group.
* p < 0.05, *** p < 0.0005, **** p < 0.00005, as determined by an ANOVA and Tukey’s post hoc test.

2.3. Validation in TCGA-HNSC without Annotated PNI Status and Independent HNSCC Cohorts

To confirm the association of the PNI-related 44-gene signature with clinical features
and its prognostic value, its expression pattern was investigated for the TCGA-HNSC
cohort without annotated PNI status (TCGA-HNSC NA, n = 149) and for independent HN-
SCC cohorts (GSE117973, GSE65858, GSE41613). An unsupervised hierarchical clustering
revealed a similar stratification into cluster A and subclusters B1 and B2 in all validation
cohorts (Figure 2A, Supplemental Figure S4A–C).
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Figure 2. Expression of the PNI-related 44-gene set identifies clinically relevant subgroups in HNSCC
cohorts without annotated PNI status. (A) A heatmap shows an unsupervised hierarchical clustering
based on gene expression data of the PNI-related 44-gene signature and confirms two main clusters
A (red) and B, the latter subdivided into sub-cluster B1 (blue) and B2 (green) for tumors from TCGA-
HNSC without an annotated PNI status (n = 152). (B) Kaplan–Meier plots for 5-year overall survival
(OS, left) and 5-year progression-free intervals (PFI, right) for patients of TCGA-HNSC without an
annotated PNI status and independent HNSCC cohorts (GSE65858, GSE41613, GSE117973), which
were classified into cluster A/subcluster B1 (red) or subcluster B2 (green). Number of patients at risk
at the indicated time points are given below.
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As for the training cohort, a significant enrichment was evident for HPV16+ tumors
in cluster A for all cohorts for which the HPV16 status was available (Supplemental
Table S5). In addition, Kaplan–Meier plots and log-rank tests for the combined validation
cohorts of HNSCC revealed a significant difference between clusters A/B1 and B2 for OS
(p = 2.3 × 10−3) and PFI (p = 5.4 × 10−3) (Figure 2B). These data confirm the prognostic
value of the PNI-related 44-gene signature in HNSCC for which a histopathological PNI
status is not available.

2.4. Single-Cell RNA-Sequencing Analysis of the PNI-Related 44-Gene Signature

Single-cell RNA-sequencing fundamentally maps the cellular heterogeneity of tu-
mors and their microenvironment. In a recent study, Zhang et al. reported a prominent
expression of key genes from a PNI-associated coexpression module in fibroblasts and
concluded that these nonmalignant cells of the tumor microenvironment played an impor-
tant role in PNI [14]. To address the question of whether the genes of our newly defined
PNI-related 44-gene signature were also expressed in both malignant and nonmalignant
cells, including fibroblasts, we performed a single-cell RNA-sequencing analysis utilizing
data from GSE103322 and the TISCH2 online tool [20]. This analysis demonstrated that the
37 downregulated genes (including CDKN2A) as well as the 7 upregulated genes (including
IFNK) of the PNI-related 44-gene signature were preferably expressed in different subpopu-
lations of malignant cells. In contrast, expression values were significantly lower in stromal
cells, including fibroblasts, and were barely detectable in immune cells (Figure 3A,B). In
summary, these data indicate a cancer-cell intrinsic gene regulatory program in the estab-
lishment and maintenance of PNI, which might be modulated by cellular signals and the
matrix composition of the tumor microenvironment.
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Figure 3. Prominent expression of the PNI-related 44-gene signature in cancer cells and establishment
of a PNI classifier by a random forest model. (A) UMAP plot visualizing the different cell types given
in GSE103322 [17], with included figure legend (malignant, endothelial, mast cells, plasma, myocyte,
myofibroblasts, fibroblasts, CD4, CD8, monocytes, macrophages). Violin plot demonstrating the
statistical significance of malignant cell scores (blue) compared to immune (red) and stromal (green)
cell scores based on the 44-gene set. * p < 0.05, ** p < 0.005 as determined by an ANOVA and Tukey’s
post hoc test. (B) UMAP plots for the 37 downregulated (PNI down) and 7 upregulated (PNI up)
DEGs of the 44-gene signature as well as CDKN2A and IFNK illustrating the expression of these
genes in distinct cell types in GSE103322 [17]. (C) The bar plot summarizes the relative frequency
of PNI− (red) or PNI+ (green) tumors from TCGA-HNSC with an annotated PNI status, which
were classified as either cluster A and subcluster B2 by the PNI-related 44-gene signature or ML
A or ML B by the ML model. (D) Forest plot for 5-year OS, DSS, and PFI based on univariate Cox
regression models for patients from the indicated groups of TCGA-HNSC, which were stratified by
the ML model into ML A or B. 1 Reference group. (E) Representative pictures of digital images for
H&E-stained slides from the Cancer Digital Slide Archive of TCGA-HNSC confirms the presence of
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2.5. Establishment of a PNI-Related Machine Learning Model for Occult PNI

The next task was to establish a machine learning (ML) model to further improve
prognostic and diagnostic risk prediction by a molecular classification based on the expres-
sion of the PNI-related 44-gene signature. The TCGA-HNSC cohort with annotated PNI
status was split into a training (80%) and test (20%) dataset and clusters A (enriched for
PNI−) versus subcluster B2 (enriched for PNI+) was selected as category for the training
of individual machine learning models. We excluded subcluster B1 for the training of
the classification model due to the almost balanced distribution of PNI− and PNI+ cases
(Supplemental Table S4). Three commonly used classification models (random forest, neu-
ral network, and logistic regression [21,22]) revealed a comparable prediction accuracy for
the PNI status with similar positive and negative prediction values, but slight differences in
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sensitivity and specificity (Supplemental Table S6). Finally, we selected the random forest
model, which performed slightly better as compared to the other two models, for further
analysis (Supplemental Figure S4D–F, Supplemental Table S6). It is worth noting that the
moderate values for the prediction accuracy (0.68) and AUC (0.604) might be explained
by the expected frequency of false-negative PNI classifications for TCGA-HNSC. Based
on the random forest model, tumors of TCGA-HNSC were classified into ML A (enriched
for PNI−) and ML B2 (enriched for PNI+) (Figure 3C). Again, ML B2 classified HNSCC
exhibited an unfavorable overall survival (OS, HR = 1.540, p = 4.3 × 10−3), disease-specific
survival (DSS, HR = 1.803, p = 2.5 × 10−3), and progression-free interval (PFI, HR = 1.473,
p = 1.8 × 10−2) compared to its ML A counterparts (Figure 3D), and ML B2 served as an
independent risk factor for unfavorable survival in a multivariate Cox regression analysis
(Table S7). Strikingly, a substantial number of PNI− tumors based on a histopathological ex-
amination (n = 60) was assigned by the model as ML B2. These ML B2/PNI− tumors had a
significantly worse disease-specific survival (DSS, HR = 2.288, p = 3.8 × 10−2) and showed
a clear trend towards unfavorable overall survival (OS, HR = 1.711, p = 9.1 × 10−2) and
progression-free interval (PFI, HR = 1.669, p = 1.1 × 10−1) compared to ML A/PNI− tumors
(Figure 3D). These data indicated that our newly established classifier enabled the identifi-
cation of occult PNI in HNSCC, which were classified as PNI− after the histopathological
examination. To further support this assumption, we selected twelve ML B2 classified
tumors from TCGA-HNSC with a PNI− status (according to clinical annotation, n = 6) or
missing information on the PNI status (PNI NA, n = 6) for which H&E-stained whole-slide
images were available from the Cancer Digital Slide Archive (Supplemental Table S8). De-
spite the limited number of whole-slide images available for individual tumors (range 2–4),
six tumors showed histological evidence for PNI after a re-evaluation (Figure 3E).

The random forest model was also applied on bulk RNA-seq data from other solid
tumors of TCGA (Supplemental Table S9). As for HNSCC, ML B2 served as an unfavorable
risk factor for overall survival, which reached statistical significance for cervical squamous
cell carcinoma (CESC) and exhibited a clear trend for adenocarcinomas of the lung (LUAD),
pancreas (PAAD), and colon (COAD, Supplemental Figure S5A). In line with this finding,
an unsupervised hierarchical clustering of TCGA-CESC based on the expression values of
the PNI-related 44-gene set demonstrated a similar stratification of tumors into cluster A
and subclusters B1 and B2 (Supplemental Figure S5B).

2.6. PNI-Related Alterations in the Mutational Landscape

Next, we addressed the question of whether the PNI classification of HNSCC by
the random forest model was related to differences in the mutational landscape. The
analysis of global copy number alterations (CNAs) revealed a highly significant increase
in the global copy number alteration fraction for ML A compared to ML B2 for TCGA-
HNSC (p = 3.3 × 10−7) and identified distinct hotspot regions of copy number gain or loss
(Figure 4A, B). ML A head and neck squamous cell carcinoma were significantly enriched for
copy number losses of chromosomes 1p, 4, 13, 14q, 16q, and 20q, and gains in chromosomes
1q, 3q, 7q, and 19p, while ML B2 tumors exhibited a more prominent loss at chromosome
8p (Figure 4B, Supplemental Figures S6A,B and S7A,B). Interestingly, some genes of the
PNI-related 44-gene set were encoded at the affected genomic loci, which might explain
their differential expression between ML A and ML B2 tumors (Supplemental Table S3).
Moreover, total somatic mutation counts were significantly higher for ML A HNSCC
compared to their ML B2 counterparts (p = 4.6 × 10−3) (Figure 4C), and several MutSig
genes demonstrated a significant difference in somatic mutation frequency between both
groups (Figure 4D). The most prominent difference was detected for NSD1, which exhibited
a significant enrichment of somatic mutations for ML A.
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Figure 4. Differences in the mutational landscape, global DNA methylation, and gene regulatory
networks between ML A and ML B tumors. (A) Violin plot demonstrates a significant difference in the
fraction of altered genome between ML A (red) and ML B2 (green) tumors. (B) CNA plots illustrate
copy number gains (red) and losses (blue) for ML A and ML B2 tumors and demonstrate hot-spot
regions with significant differences as calculated by Fisher’s exact test. (C) Violin plot demonstrates a
significant difference in somatic mutation counts between ML A (red) and ML B2 (green) tumors.
(D) Bar plot shows MutSig genes with a significant difference in somatic mutation frequency between
ML A (red) and ML B2 (green) tumors. (E) Bar plot shows the relative frequency of tumors with
either missense (blue) or truncating (red) NSD1 mutations for ML A and ML B2 tumors. (F) Violin
plot demonstrates a significant difference in global DNA methylation between ML A (red) and ML
B2 (green) tumors. (G) Heatmap illustrates an unsupervised hierarchical clustering based on GSVA
scores for indicated HALLMARK gene sets from MSigDB. * p < 0.05, ** p < 0.005 as determined by a
chi-square test.
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Recent studies reported truncating NSD1 mutations in laryngeal squamous cell carci-
noma, which were accompanied with a better prognosis and global DNA hypomethyla-
tion [23,24]. As the majority of somatic NSD1 mutations in ML A tumors were truncating
mutations (Figure 4E), we analyzed the global DNA methylation pattern for TCGA-HNSC.
Indeed, a highly significant decrease in global beta mean values was evident for ML A
compared to ML B2 tumors (Figure 4F).

2.7. PNI-Related Alterations in the Immune Landscape

To address the potential impact of distinct immune cell subsets in the tumor microenvi-
ronment on the PNI risk prediction, the inferred abundance for immune cell and other stro-
mal cells from xCell, CIBERSORTx, and Kassandra was compared between ML A and ML
B2 tumors. This analysis demonstrated significantly higher number of B cells and T cells, in
particular CD4 T cells, in ML A compared to ML B2, while endothelial cells and fibroblasts
were significantly more abundant in ML B2 compared to ML A (Supplemental Figure S8).

2.8. PNI-Related Alterations in Gene Regulatory Networks and Pathway Activities

Finally, we explored differences in pathway activities between ML A and ML B2
classified tumors of TCGA-HNSC based on gene set variation analysis (GSVA) scores for
the hallmark gene sets from MSigDB (Supplemental Table S10). Top ranked gene sets
indicated an upregulation of processes related to the epithelial-to-mesenchymal transition
(EMT) and inflammation in ML B2 tumors, while ML A tumors showed the upregulation
of genes related to metabolic processes, E2F targets, and cell cycle regulation (Figure 4G).

3. Discussion

PNI represents a complex and mutual crosstalk between cancer cells and compo-
nents of peripheral nerves, which is partially triggered by secreted neurotrophic and
other growth factors affecting transcription, translation, and cytoskeletal reorganization
in cancer and neuronal cells [25–32], illustrating the importance of nerves in cancer cell
dissemination [33–35]. Despite the clinical relevance of PNI as a prognostic risk factor for
most solid cancers, including HNSCC, its histopathological assessment is hampered by
the limited availability of tumor tissue for pathological examination in cases of definitive
treatment with radio- and chemotherapy [10–12]. Hence, a reliable risk model for PNI
based on molecular characteristics is an unmet medical need to improve the diagnosis and
treatment decision making for primary HNSCC but also other solid tumors. It is also instru-
mental for a better understanding of the basic principles in the mutual interaction between
cancer cells and neurons to establish new strategies for therapeutic intervention aiming to
prevent cancer cell dissemination as a main cause of treatment failure and cancer-related
mortality [36,37].

In this study, we established a PNI-related 44-gene signature which enabled the classi-
fication of TCGA-HNSC as a training cohort and several independent HNSCC validation
cohorts into different subgroups with distinct clinical and molecular features as well as
prognosis. Based on the transcript levels of the PNI-related 44-gene signature, we trained
a random forest model which offered several novel and attractive options: (i) the iden-
tification of primary HNSCC with occult PNI despite a false-negative histopathological
assessment or the limited availability of biomaterial, (ii) an unprecedented in-depth molecu-
lar analysis of cancer-cell intrinsic and extrinsic alterations, such as the cellular composition
of the tumor microenvironment as a driving force of PNI, and (iii) the PNI-related prognos-
tic risk prediction in other solid cancers beyond HNSCC.

In 2018, Saidak et al. utilized transcriptome data from TCGA-HNSC to establish a PNI-
related gene signature and to explore the molecular mechanisms involved in PNI [13]. This
gene signature was highly enriched for genes related to muscle differentiation and function
and most likely resembled the high prevalence of tongue squamous cell carcinomas in the
PNI+ group of HNSCC. Though an altered expression of muscle-related genes in HNSCC
cancer cells and a potential impact on PNI could not be formally excluded [37], we assumed
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that their association with the PNI status was biased by the unequal distribution of tumor
subsites and therefore we excluded sixteen muscle-related genes from further analysis.
This assumption was supported by PNI-related gene sets from other solid tumors, e.g.,
gastric cancer or pancreatic ductal adenocarcinoma (PDAC), which were not enriched for
muscle-related genes [38,39]. In addition, Lee et al. proposed that only ACTA1 was related
to PNI for tongue squamous cell carcinoma considering an actin-associated gene set [40].

In another study, Zhang et al. identified PNI-associated gene coexpression mod-
ules [14]. One module containing 357 genes with 12 hub genes was correlated with gene
signatures related to the epithelial-to-mesenchymal transition, metastases, and invasion.
Among nonmalignant cells, fibroblasts had a relatively high expression of hub genes, indi-
cating a potential role of cancer-associated fibroblasts for PNI. Interestingly, 26 genes of the
PNI-associated gene coexpression module of that study were also part of our 44-gene signa-
ture and we also identified overlapping pathway activities (e.g., epithelial-to-mesenchymal
transition, angiogenesis) for ML B tumors classified by the random forest model. However,
single cell an RNA-sequencing analysis demonstrated a more prominent expression of the
44-gene signature in malignant cells and only minor or barely detectable expression in
stromal cells, including fibroblasts. Though these data do not formally exclude a critical role
of fibroblasts, they indicate a cancer cell intrinsic gene regulatory program in the formation
and maintenance of PNI, which might be modulated by a direct or indirect interaction with
matrix or cellular components of the tumor microenvironment.

In a more recent study, a closer nerve–tumor distance and larger nerves in the tumor
bulk were identified as predictors for unfavorable survival of oral cancer even if diagnosed
as PNI-negative tumors [15]. Spatial transcriptomic analyses illuminated specific patterns
of nerve–cancer interaction suggesting a cancer-induced modulation of neurogenesis. This
assumption was further supported by Amit et al. who demonstrated that the loss of p53 in
cancer cells led to neuronal reprogramming and axonogenesis in a mouse model and that
the somatic TP53 mutation status was associated with nerve density in a retrospective study
with oral cancers [25]. Hence, it is worth speculating that the strong inverse association
between PNI and HPV in this and previous studies [14] is due to the lack of somatic TP53
mutations in most HPV16+ oropharyngeal squamous cell carcinoma. A prominent p16
protein expression (encoded by CDKN2A), which is a surrogate biomarker for HPV16+
tumors. might represent another reason for low PNI frequency in HPV16+ oropharyngeal
squamous cell carcinoma. CDKN2A is one of the MutSig genes with a significantly higher
relative frequency of somatic mutations in ML B2 and limited p16INK4A function due to
CDKN2A mutation or deletion was associated with perineural invasion in nonsmoking and
nondrinking oral squamous cell carcinoma patients [38]. Moreover, the DNA methylation
of the CDKN2A promoter was a more frequent event in aggressive prostatic tumors with
PNI [41]. Several other studies demonstrated an association between the epigenetic reg-
ulation of specific candidate genes by altered DNA methylation and the development of
PNI [42–50]. Still, the DNA methylation status in head and neck squamous cell carcinoma
has not yet been studied sufficiently [50]. Consistent with these studies, genome-wide DNA
hypomethylation was evident in ML A HNSCC at least in part due to truncating NSD1
mutations. In summary, epigenetic regulation by DNA methylation (e.g., CDKN2A) could
represent a key driver affecting the nerve–cancer crosstalk leading to PNI in HNSCC and
serve as a promising drug target for therapeutic intervention in the cancer dissemination
via nerve tracks [51].

Matrix metalloproteinases (MMPs) are well understood to play a part in tumor inva-
sion and metastases being able to cause a degradation of the extracellular matrix (ECM) [48].
MMP1, which is part of our 44-gene set and is produced in malignant cells, initiates a
signaling pathway via neuronal protease-activated receptor 1 (PAR1) and carcinoma neu-
rokinin 1 receptor (NK1R). This is known to play a crucial role in tumor progression and
development of PNI [52]. In addition, MMP2 and MMP9 are well known to be involved in
metastases and tumor cell dissemination of several tumors [38,53,54]. So far, any attempts
to establish MMP inhibitors in tumor therapy proved unsuccessful in terms of survival
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and because of toxicity [49]. This failure might be explained by the use of broad-spectrum
MMP inhibitors, which consequently also counteracted antitumorigenic MMPs [55]. How-
ever, studies on novel highly specific MMP inhibitors targeting noncatalytic domains have
shown promising approaches and, as we can demonstrate with our results, may also be of
great importance in the future regarding tumor dissemination via PNI in HNSCC [56,57].

One limitation of this study includes the retrospective study design. In addition,
genome-wide transcriptome data were used to identify the PNI-related 44-gene set and to
train the random forest model, which are not determined in routine clinical practice for
HNSCC patients. However, our study provides compelling evidence that a quantitative
assessment of gene expression for a smaller number of selected genes could be utilized to
predict the risk for PNI, i.e., by quantitative RT-PCR or panel RNA-sequencing. For a more
feasible clinical application, future prospective studies could equally attempt to achieve
a risk assessment for PNI based on single genes of the 44-gene signature with a good
classification of patients similar to our random forest model. Additionally, by performing
a differential gene expression analysis, we used a rather conservative approach to set up
the study. Using emerging methods (i.e., deep learning network), it might be possible to
further improve our model by integrating multiple clinical, cellular, and molecular features
in future studies. Another limitation is linked to the use of publicly available databases
and their clinical annotations, which represents a risk for false-negative cases from a wrong
annotation of the PNI status. A false-negative PNI status could have an impact on the
identification of the PNI-related 44-gene signature. Nevertheless, we can assume that
a misclassification of the clinical PNI status can be compensated in our random forest
model. Moreover, the more precise prediction of the PNI status by the random forest model,
including a more precise assessment of cases with occult PNI and regardless of tumor
sample size, offers the unique possibility of analyzing molecular and cellular differences
more accurately, which could provide new insights and correlations in the development of
PNI in HNSCC but also in other solid tumors.

4. Materials and Methods
4.1. Data Collection and Key Resources

Detailed information about data collection of publicly available data and the use of
online tools and software is summarized in Supplemental Table S1. Statistical analyses
were performed in R software Version 3.5.3 [58] and SPSS Version 26 [59] with p < 0.05
as the significance level. For the head and neck squamous cell carcinoma cohort from
The Cancer Genome Atlas (TCGA-HNSC, n = 500) which served as the training cohort
in machine learning, RNA expression and clinical data were downloaded from https:
//portal.gdc.cancer.gov (accessed on 3 May 2019). As validation cohorts, we used three
independent cohorts with transcriptome data from primary head and neck squamous cell
carcinoma (GSE65858, GSE41613, and GSE117973) and other solid tumors from TCGA.

4.2. Survival Analysis

A Kaplan–Meier analysis was performed to estimate overall (OS), disease-specific
survival (DSS), and progression-free interval (PFI). Log-rank tests were conducted to
calculate statistically significant differences in survival. Univariate and multivariate Cox
regression models were performed by SPSS and R. Patients with a secondary tumor,
neoadjuvant treatment, an event in PFI or DSS within the first three months, a history of
other malignancies, and an M1 status were excluded from the survival analysis.

4.3. Differential Gene Expression Analysis

The analysis of differentially expressed genes (DEGs) was performed using the pack-
ages “limma” and “edgeR” [60,61]. The voom transformation was executed for the DEG
analysis with “limma”. DEGs between tumors with a positive or negative PNI status were
considered significant with FDR < 0.05 and |log2-fold change| > 1. Common DEGs of the
analysis with limma or edgeR were identified by a Venn diagram [62].

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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4.4. Unsupervised Hierarchical Clustering

Transcriptome count data of genes were ln(x + 1)-transformed and clustered using the
correlation distance and average linkage. ClustVis, a web tool for visualizing multivariate
data, was utilized for unsupervised hierarchical clustering and to visualize data in a
heatmap [63].

4.5. Single-Cell RNA-Sequencing Analysis

For the analysis of single-cell RNA sequencing data, we used the online tool “Tumor
Immune Single-cell Hub 2 (TISCH2)”, applied our gene signature, and selected single genes
(CDKN2A, IFNK) from two different datasets (GSE103322 [17]) [64]. We downloaded the
expression data for malignant, stromal, and immune cells for the statistical analysis in R on
14 January 2023.

4.6. Machine Learning Models and Review of Digital Slides

The “caret” package in R was used to train a machine learning (ML) model for clusters
A and subcluster B2 based on the transcript values (FPKM) of the PNI-related 44-gene
signature. To create a best performing model for the risk prediction of PNI, we used cluster
A and subcluster B2 but excluded subcluster B1 with an almost balanced ratio of PNI−
and PNI+ tumors. A cross-validation was used for parameter tuning with a tuning length
of 150 (80% training set and 20% validation set). We computed a confusion matrix and
plotted ROC curves for the three used classifiers (random forest, neural networks, logistic
regression). Finally, the random forest model was selected for further analysis, which also
had the advantage of dealing with relatively small datasets and binary variables compared
to neural networks. The trained random forest model was applied to other solid tumors
from TCGA, and some cohorts (BRCA, GBM, KIRC, LIHC, PRAD, SKCM, TGCT, THCA)
were excluded from the further analysis because of an unbalanced ratio (<10% in either ML
A or ML B2).

Digital images of H&E-stained whole slides from 12 tumors of TCGA-HNSC were
reviewed on 6 September 2022 in the Cancer Digital Slide Archive developed by researchers
from the Emory University and Winship Cancer Institute (https://cancer.digitalslidearchive.
org/#!/CDSA/hnsc). Selected tumors were classified as ML B by the random forest model
and were either PNI− (n = 6) according to clinical data or not analyzed (PNI NA).

4.7. Analysis of Multiomics Data, Epigenetic Alterations, and Immune Cell Deconvolution

Data for the tumor mutational burden and the fraction of copy number alteration were
downloaded from cBioPortal for TCGA-HNSC on 15 September 2020 [65,66]. TCGA-HNSC
methylome data [67] were normalized using the R package “watermelon”. Violin plots
were created in R using the packages “ggplot2” and “ggpubr”.

For the analysis of the copy number alteration values, a segment mean bigger than
0.5 was defined as a gain and lower than −0.5 as a loss. Copy number alteration summary
plots were created by IGV_2.7.2 (Integrative Genomics Viewer) [68]. The COnVaQ online
tool was applied for the statistical model using Fisher’s exact test [69].

A somatic mutation analysis was performed using Oncomaps in cBioportal [65,66].
Significant differences in the relative frequency of mutations between ML A and ML B2
were computed by crosstabs and chi-squared tests in R. Results were visualized as bar chart
using Excel.

Absolute immune cell scores including different subtypes of B cells (plasma cells,
non-plasma B cells), T cells (CD4, CD8), other immune cells (macrophages, NK cells),
and stromal cells (endothelium, fibroblasts) of xCell, CIBERSORTx, and Kassandra were
downloaded from https://science.bostongene.com/kassandra/downloads (accessed on 21
December 2022). p-Values were computed between ML A and ML B2 using a t-test.

https://cancer.digitalslidearchive.org/#!/CDSA/hnsc
https://cancer.digitalslidearchive.org/#!/CDSA/hnsc
https://science.bostongene.com/kassandra/downloads


Int. J. Mol. Sci. 2023, 24, 8938 15 of 19

4.8. Gene Set Variation Analysis

Gene set variation analysis (GSVA) scores were computed using the R package
“gsva”. The Hallmark gene sets were accessed from the Molecular Signatures Database
(MSigDB) [70] on 21 September 2022, and significant differences between ML A and ML B2
were identified with the “limma” package in R.

5. Conclusions

In conclusion, we trained a random forest classification model for the risk assessment
of perineural invasion that could improve the diagnosis and treatment decision making for
primary head and neck squamous cell carcinoma, independent of the quantity of available
tumor samples. In contrast to similar approach from previous studies, our model enabled
the detection of occult PNI and an extensive validation in different HNSCC cohorts as well
as in other solid tumors. With the unprecedented analysis of multiomics data, we were able
to provide new insights into the development of perineural invasion at the molecular level.
Thus, our machine learning model can also assist future studies in gaining an in-depth
knowledge on the basic principles of cellular and molecular alterations driving perineural
invasion and to establish new drug targets for innovative therapeutic strategies aiming at
the prevention of cancer cell dissemination.
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37. Izdebska, M.; Zielińska, W.; Grzanka, D.; Gagat, M. The Role of Actin Dynamics and Actin-Binding Proteins Expression in
Epithelial-to-Mesenchymal Transition and Its Association with Cancer Progression and Evaluation of Possible Therapeutic
Targets. BioMed Res. Int. 2018, 2018, 4578373. [CrossRef]

38. Jia, X.; Lu, M.; Rui, C.; Xiao, Y. Consensus-Expressed CXCL8 and MMP9 Identified by Meta-Analyzed Perineural Invasion Gene
Signature in Gastric Cancer Microarray Data. Front. Genet. 2019, 10, 851. [CrossRef]

39. Zhu, J.-H.; Yan, Q.-L.; Wang, J.-W.; Chen, Y.; Ye, Q.-H.; Wang, Z.-J.; Huang, T. The Key Genes for Perineural Invasion in Pancreatic
Ductal Adenocarcinoma Identified With Monte-Carlo Feature Selection Method. Front. Genet. 2020, 11, 554502. [CrossRef]

https://doi.org/10.1158/1078-0432.CCR-21-4543
https://doi.org/10.1007/s00521-019-04516-y
https://doi.org/10.1007/s11517-022-02711-z
https://doi.org/10.3389/fonc.2022.951560
https://doi.org/10.1158/1078-0432.CCR-14-2481
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1109/TCBB.2021.3089417
https://doi.org/10.1038/s41467-017-01877-7
https://doi.org/10.1158/1535-7163.MCT-17-0937
https://doi.org/10.1158/0008-5472.CAN-14-3180
https://doi.org/10.1158/0008-5472.CAN-04-0838
https://doi.org/10.1038/s41568-019-0237-2
https://doi.org/10.1038/s41586-020-1996-3
https://doi.org/10.1158/1078-0432.CCR-08-1164
https://doi.org/10.18632/oncotarget.27204
https://doi.org/10.1111/coa.13452
https://doi.org/10.1038/s41586-019-1564-x
https://doi.org/10.1038/s41586-019-1563-y
https://doi.org/10.1038/s41586-019-1576-6
https://doi.org/10.1002/hed.25170
https://doi.org/10.1002/hed.25110
https://doi.org/10.1155/2018/4578373
https://doi.org/10.3389/fgene.2019.00851
https://doi.org/10.3389/fgene.2020.554502


Int. J. Mol. Sci. 2023, 24, 8938 18 of 19

40. Lee, D.Y.; Kang, Y.; Im, N.; Kim, B.; Kwon, T.; Jung, K.; Baek, S. Actin-Associated Gene Expression is Associated with Early
Regional Metastasis of Tongue Cancer. Laryngoscope 2021, 131, 813–819. [CrossRef]

41. Koo, K.; Mouradov, D.; Angel, C.M.; Iseli, T.A.; Wiesenfeld, D.; McCullough, M.J.; Burgess, A.W.; Sieber, O.M. Genomic Signature
of Oral Squamous Cell Carcinomas from Non-Smoking Non-Drinking Patients. Cancers 2021, 13, 1029. [CrossRef]

42. Verdoodt, B.; Sommerer, F.; Palisaar, R.-J.; Noldus, J.; Vogt, M.; Nambiar, S.; Tannapfel, A.; Mirmohammadsadegh, A.; Neid, M.
Inverse association of p16INK4a and p14ARF methylation of the CDKN2a locus in different Gleason scores of prostate cancer.
Prostate Cancer Prostatic Dis. 2011, 14, 295–301. [CrossRef]
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