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Abstract

Prefrontal cortex (PFC) plays a vital role in goal-directed behaviours, by enabling exec-
utive functions like working memory, planning, decision-making, and inhibitory control.
This thesis comprises two projects that explored different aspects of prefrontal executive
function in conjunction with other brain regions.

The first project investigated how PFC categorises sensory information and main-
tains it in working memory (WM) for future action, and how coordinated cross-regional
neuronal activity enables the storage of multiple WM items while preserving individ-
ual representation and protecting against distractions. Using paired recordings in the
prefrontal and parietal cortex of monkeys performing a numerosity discrimination task,
WM content was found to be organised by frequency-specific oscillatory activity. Beta-
band signalling from the parietal to frontal cortex conveyed information about the most
recent numerical input, while theta-band coupling from the frontal to parietal cortex
differentiated between multiple memorised numerosities. Task-relevant and distracting
stimuli were embedded within the spiking activity of single prefrontal neurons, but could
be segregated by decoding spikes at specific phases of parietal theta oscillations. These
findings suggest that the fronto-parietal network utilises frequency-specific communica-
tion channels to facilitate both sequential bottom-up and parallel top-down information
transmission, providing a crucial mechanism for safeguarding WM against interference.

The second project examined how sensory information is used by the prefrontal cor-
tex to guide and prepare future action in decision-making in mice. Auditory movement
instructions indicated the direction in which animals should rotate a response ball in a
two-alternative forced choice task. Prior context cues were either predictive or not for
the upcoming movement instruction. Predictive context cues improved task performance
and response times. Submovements detected in context epoch ball rotation indicated
motor preparation, and their quantity and characteristics suggested a left-default be-
havior. Electrophysiological recordings from the prelimbic cortex (PL) and mediodorsal
thalamic nucleus (MD) were obtained during task performance. Neuronal responses
to the non-predictive context cue were immediate, while responses to predictive cues
were delayed, indicating differential processing of the context types. Individual neuronal
units varied in their context responsiveness, with most responding to the non-predictive
cue and fewer to the cue allowing left-response preparation, potentially linked to the
observed default behavior. Context information was high in both brain regions, but
MD encoded upcoming instructions earlier and for a longer duration compared to PL.
Prior contexts minimally influenced neuronal responses to and encoding of movement in-
struction, but partially shifted the subpopulations of responsive neurons and altered the
timing of activation for context-invariant units. These findings suggest that mice employ
efficient asymetric behavioural strategies, supported by prefrontal top-down inhibitory
control and MD-driven movement preparation. Additionally, despite varying neuronal
implementations induced by contexts, population-based mechanisms could provide ro-
bust encoding for task-relevant information.
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Zusammenfassung

Der präfrontale Cortex (PFC) spielt eine entscheidende Rolle bei zielgerichteten Verhal-
tensweisen, indem er exekutive Funktionen wie Arbeitsgedächtnis, Planung, Entschei-
dungsfindung und inhibitorische Kontrolle ermöglicht. Diese Dissertation umfasst zwei
Projekte, die verschiedene Aspekte der präfrontalen exekutiven Funktionen in Verbin-
dung mit anderen Hirnregionen untersucht haben.

Das erste Projekt untersuchte, wie der Präfrontalcortex sensorische Informationen
kategorisiert und im Arbeitsgedächtnis für zukünftige Handlungen aufrechterhält, und
wie koordinierte neuronale Aktivität zwischen verschiedenen Hirnregionen die Speiche-
rung mehrerer Elemente im Arbeitsgedächtnis ermöglicht, während individuelle Re-
präsentationen erhalten bleiben und vor Ablenkungen geschützt werden. Durch simul-
tane Datenaufnahme im präfrontalen und parietalen Cortex von Affen, die eine Aufga-
be zur Unterscheidung von Anzahlen (Numerositäten) durchführten, wurde festgestellt,
dass der Inhalt des Arbeitsgedächtnis durch frequenzspezifische oszillatorische Aktivität
organisiert ist. Die Signalübertragung im Beta-Band vom parietalen zum frontalen Cor-
tex lieferte Informationen über den aktuellsten numerischen Eingabewert, während die
Kopplung im Theta-Band vom frontalen zum parietalen Cortex zwischen den verschie-
denen gemerkten Numerositäten unterschied. Für die Aufgabe relevante als auch ablen-
kende Reize wurden zur gleichen Zeit durch die Raten von Aktionspotentialen einzelner
präfrontaler Neuronen repräsentiert, konnten jedoch durch das Dekodieren von Aktions-
potentialen zu bestimmten Phasen der parietalen Theta-Oszillationen getrennt werden.
Diese Ergebnisse legen nahe, dass das frontoparietale Netzwerk frequenzspezifische Kom-
munikationskanäle nutzt, um sowohl eine sequenzielle Bottom-up- als auch eine paralle-
le Top-down-Informationsübertragung zu ermöglichen, was somit einen entscheidenden
Mechanismus zur Absicherung des Arbeitsgedächtnisses gegen Störungen bereitstellt.

Das zweite Projekt untersuchte, wie sensorische Informationen vom präfrontalen Cor-
tex verwendet werden, um zukünftige Handlungen bei der Entscheidungsfindung von
Mäusen zu lenken und vorzubereiten. Auditorische Bewegungsanweisungen gaben die
Richtung vor, in der die Tiere einen Antwortball in einer Aufgabe mit zwei Antwortmög-
lichkeiten drehen sollten. Vorherige kontextuelle Hinweise sagten die bevorstehende Be-
wegungsanweisung entweder voraus (prädiktiv) oder nicht (nicht-prädiktiv). Prädiktive
kontextuelle Hinweise verbesserten die Ausführung und Reaktionszeiten der Aufgabe.
In der Kontextphase der Ballrotation wurden Teilbewegungen festgestellt, die auf ei-
ne motorische Vorbereitung hinwiesen, und ihre Menge und Merkmale deuteten auf ein
standardmäßiges Verhalten nach links hin. Während des Verhaltens wurden elektro-
physiologische Ableitungen aus dem prälimbischen Cortex (PL) und dem mediodorsalen
Thalamus (MD) durchgeführt. Die neuronale Reaktion auf den nicht-prädiktiven kontex-
tuellen Hinweis erfolgte sofort, während die Reaktionen auf prädiktive Hinweise verzögert
waren, was auf eine unterschiedliche Verarbeitung der Kontextarten hinweist. Individu-
elle Neuronen zeigten unterschiedliche Reaktionen auf den Kontext, wobei die meisten
auf den nicht-prädiktiven Hinweis reagierten und weniger auf den Hinweis, der eine Vor-
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Zusammenfassung

bereitung der Linksbewegung ermöglichte, was möglicherweise mit dem beobachteten
Standardverhalten zusammenhängt. Die Kontextinformation war in beiden Hirnregio-
nen hoch, aber der MD kodierte bevorstehende Anweisungen früher und für eine längere
Dauer im Vergleich zum PL. Vorherige Kontexte beeinflussten neuronale Reaktionen
auf und die Kodierung von Bewegungsanweisungen minimal, änderten jedoch teilweise
die Subpopulationen reagierender Neuronen und änderten den Zeitpunkt der Aktivie-
rung für kontextinvariante Einheiten. Diese Ergebnisse legen nahe, dass Mäuse effiziente
asymmetrische Verhaltensstrategien einsetzen, die durch präfrontale top-down inhibito-
rische Kontrolle und MD-gesteuerte Bewegungsvorbereitung unterstützt werden. Trotz
unterschiedlicher neuronaler Implementierungen, die durch den Kontext induziert wer-
den, könnten populationsbasierte Mechanismen eine robuste Repräsentation der für die
Aufgabe relevanten Informationen bereitstellen.
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1 Introduction

1.1 Perception-Action Cycle and Goal-directed Behaviour

Organisms interact with their environment in an endless cybernetic loop of sensation
and action. In its simplest form the loop comprises an organism that senses external
stimuli from the environment, leading to an action by the organism, thus modifying the
environment. The modified environment leads to a modified stimulation of the organism,
and so on (Fig. 1.1a). When involving the cerebral cortex, sensations lead to perceptions
and the loop becomes the perception-action cycle.

A key feature of animals with more complex brains is their ability to show goal-
directed behaviours which transcend simple stimulus-response associations and innate
behaviours. Goal-directed behaviours intuitively integrate into the cycle of reciprocal
interaction between organisms and their environment (Fig. 1.1b). Here, a perception
doesn’t trigger an immediate action anymore but is processed in the light of internally
represented future goals. In order to attain these goals, individual actions are then
orchestrated in new ways.

As an example, consider something as simple as perceiving the presence of potential
food. A simple response might be to immediately eat it. However, dependent on internal
goals, with potentially different scopes, this might not be the most optimal action. For
example, one might defer immediate eating and temporarily store the food in order to
satiate expected future hungriness. In a different context abstract rules could require
holding off until certain other factors are fulfilled, e.g. so as to display characteristics
desirable by other members of a social group one wants integrate in (in order to gain
future benefits of being member of that group). Regardless of the if and when, the act
of eating might require a more or less complex sequence of actions, e.g. to extract edible
parts. For this, an internal representation of the food’s anatomy, acquired by similar
prior experiences and updated by the currently perceived instance, is beneficial. This
representation can be manipulated and used to decide which actions in which temporal
order are most favourable for the attainment of a goal.

1.2 Executive Functions

Goal-directed behaviours are made possible by a set of cognitive processes called ex-
ecutive functions. Here, the term executive means that these functions are suited to
support the organisation of action sequences used to carry out (i.e. execute) deliberate
plans (Norman & Shallice, 1986; E. K. Miller & Cohen, 2001; Tanji & Hoshi, 2008; E. K.
Miller & Wallis, 2009; Diamond, 2013). They are the components that integrate into
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Figure 1.1: The cybernetic loop between organisms and their environment. (a)
Simple stimulus-response mapping within the sensation-action cycle. After von Uexküll (1926).
(b) Executive control at the top of the perception-action cycle allows organisms to organise
behaviour according to internal goals. Executive control does not only influence action but also
perception. After Fuster (2022).

the perception-action cycle, mainly by influencing actions after perception but also by
influencing perception itself (Fig. 1.1b). Typically, goal-directed behaviour is dependent
on the orchestrated interplay of several executive functions. Thus, no executive function
works in isolation. It is nevertheless useful to conceptualise them into distinct compo-
nents. Dependent on the goal and the current progression towards it, the deployment of
different components is more or less pronounced. In the following the executive functions
that are especially important for this thesis will be briefly introduced.

Working memory The ability to temporarily persist information in the absence of
external stimuli is central to goal-directed behaviour (A. D. Baddeley, 1983). Without
it, only simple stimulus-response associations with stereotyped behaviour would be pos-
sible. In contrast, working memory fills the temporal gap between stimuli and delayed
actions, providing a flexible substrate to guide behaviour according to internal plans (A.
Baddeley, 2012; Fuster, 2015). Importantly, working memory as it is thought of today is
not simply short-term memory on its way to long-term storage. Rather, it is an active
process that likely involves the activation of preexisting long-term memories of percepts
along with those of rules and possible actions (Fuster, 2022). This co-activation, mal-
leability and future-directedness by goals are important characteristics that distinguish
working memory from simple short-term memory.

As a practical example, consider being told the address of a location. This might
activate memories of the location’s neighbourhood, along with memories of going there
previously (possible actions) and rules (traffic regulations, urgency of arriving).

Planning The previous example of working memory will naturally transition into a
phase of planning (”Which streets do I have to go along?”, ”When do I need to take a
turn and to what side?”, ...).

3
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Planning is thus the process of laying out an ordered sequence of temporally separated
actions for attaining a goal (Diamond, 2013; Fuster, 2015). That is, the process of plan-
ning creates new cross-temporal contingencies between the goal and expected sensory
inputs as well as individual acts along the way. The individual components of a plan
can be rooted in memory, and thus, planning can be conceptualised as a rearrangement
of these memories with new objectives, orders and time schedules. In addition, plans
can be recalled and retained and, as such, planning has been aptly referred to as the
”memory of the future” (Ingvar, 1985).

Decision-making Similar to the proverbial truth that many roads lead to Rome, there
are many possible sequences of action to attain a goal. Intimately linked to planning,
decision-making is the selection of a plan or action amongst multiple possible alter-
natives, with the intention of execution (Fuster, 2015). During this process, different
factors like basic biological drives, expected but uncertain rewards and costs need to be
reconciled in order to arrive at a suitable decision (Tanji & Hoshi, 2008).

Continuing with the previous example, possible factors that influence the choice of
route would be expected benefits (”Do I want to arrive fast or enjoy a walk?”), costs
and consequences (”What if I arrive late?”).

Attentional set Cognitive resources are finite and need to be allocated to relevant
processes to most efficiently serve an animal for its survival. Attentional set primes
sensory and perceptual structures in expectation of sensory stimulation (perceptual set),
as well as motor and higher executive structures in the preparation of an action or a plan
(executive set) (Tanji & Hoshi, 2008). Intuitively, a concentration of resources always
brings about a selection of a smaller number of effectors at the cost of others. Thus,
attentional set has both facilitatory and suppressive aspects.

A common life example of this is the failure of immediately recognising people in
uncommon contexts. Concretely, if one is in a leisure time context meeting colleagues
from work might be surprising because perceptual set would have increased expectation
of one group of persons while suppressing expectations of others.

Inhibitory control All functions mentioned above entail or require some degree of
suppression of inappropriate processes (Fuster, 2015; Diamond, 2013). Working memory,
for example, is a function that focuses on relevant internal representations and thus is
inherently susceptible to interference by distracting external stimuli. Here, interference
can originate from very salient but irrelevant stimuli or from stimuli that elicit percepts
that are similar to current memoranda. Since working memory has been suggested
to involve activation of previous long-term memories (Fuster, 2022), it must also be
resilient to activation of previously relevant information that in the current context is
inappropriate.

Lack of this cross-temporal distractor resilience leads to perseverant behaviour, as it is
famously tested in the Wisconsin Card Sorting Test (WCST) (Milner, 1963). In the test,
the subjects need to sort cards according to shape, quantity or colour of symbols printed
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on the cards. The rule that governs the sorting is changed periodically. Thus, rule
changes require inhibition of prior rules and a shift to attend to the currently relevant
feature.

Another standard test to assert inhibitory control is the Stroop task (Stroop, 1935).
Here, subjects are asked to either read colour words or name the colour in which they
are presented. If the word and the colour of the letters conflict it is especially difficult to
name the colour. This is because when seeing words we learned to attend the meaning
of the letters and ignore their colour. Reversing the rule thus requires the suppression
of strong habitual but inappropriate responses and an attentional shift towards a less
salient feature.

1.3 Prefrontal Cortex: Neuronal Substrate of Executive
Functions

Executive functions integrate multisensory information and internal states to guide be-
haviour. Thus, a structure that supports these functions needs to be connected to

1. sensory areas to receive sensory input and influence perception,

2. subcortical regions to receive input about internal states like motivation, affect
and other biological drives, and

3. motor areas to implement and execute plans of action.

The prefrontal cortex (PFC) receives visual, auditory and somatosensory input from
association cortices in parietal, temporal and occipital lobes (Barbas et al., 2011) and is
also connected to motor structures like supplementary motor area, cerebellum and su-
perior colliculus (E. K. Miller & Cohen, 2001). Most of these connections are reciprocal
and not to primary sensory or motor areas but association areas. In addition, the pre-
frontal cortex (PFC) is connected to many other subcortical structures, either directly
or via thalamus, including hypothalamus, subthalamus, mesencephalon, amygdala and
hippocampus (E. K. Miller & Cohen, 2001; E. K. Miller & Wallis, 2009; Tanji & Hoshi,
2008; Fuster, 2015). Thus, it receives information about movement execution and coor-
dination, internal state and motivation. Together, the numerous reciprocal connections
to these brain structures make the PFC a prime candidate to be involved in executive
functions (Figs. 1.2a and 1.2b).

Indeed, lesion studies suggested the PFC to be prominently involved in executive func-
tions. Probably the most famous case is that of a man called Phineas Gage, who in the
mid-19th century suffered from impaired planning and impulse control after an iron bar
had penetrated his skull during a work accident, lesioning most of his left orbitomedial
prefrontal cortex (Harlow, 1868). More intentional and scientifically rigorous studies
with more focused lesions supported the notion that PFC is critical for behaviours in-
volving working memory (Malmo, 1942; Spaet & Harlow, 1943; Mishkin, 1957; Glick
et al., 1969; Goldman & Rosvold, 1970; Levy & Goldman-Rakic, 1999; Milner et al.,
1985; Marshuetz, 2005), distractor resilience (Malmo, 1942; Chao & Knight, 1995; Stuss
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Figure 1.2: Prefrontal connectivity. Lateral aspect of the human brain. Afferents to (a)
and efferents from (b) PFC. Vectorised from Fuster (2015).

et al., 1982), attentional set (Milner, 1963; Milner, 1964; Dias et al., 1996), inhibitory
control (Stuss et al., 1982; Chao & Knight, 1995; Mishkin, 1957; Butter, 1969; Goldman
& Rosvold, 1970; Dias et al., 1996; Dias et al., 1997; Vendrell et al., 1995), planning
(Goel & Grafman, 1995; Volle et al., 2011; Shallice, 1982; Karnath & Wallesch, 1992),
and decision-making (Levy & Goldman-Rakic, 1999; Bechara et al., 1994; Goldberg &
Podell, 2000; Baudry & Monperrus, 2022).

Neurophysiology While lesion studies were useful to demonstrate the involvement
of PFC in executive function, they are undoubtedly limited in terms of temporal pre-
cision, validity in non-pathological conditions, and the discovery of neural mechanisms.
Electrophysiological recordings of prefrontal activity at different spatial levels have been
of paramount importance to characterise the neurophysiology associated with executive
functions.

The earliest studies which used electroencephalography (EEG) in a cognitive paradigm
found that human frontal cortex generates a characteristic negative evoked potential dur-
ing the delay between a ”warning” stimulus and an ”imperative” stimulus that required
an action (Walter et al., 1964; Walter, 1964). Importantly, this so-called contingent
negative variation (CNV) occurred irrespective of the sensory modality (visual, audi-
tory, tactile) and only if the paradigm involved an upcoming action, i.e. the stimuli
were associated with goal-directed behaviour. The CNV is generally considered to be a
manifestation of selective attention and expectancy (Tecce, 1972; Chennu et al., 2013;
Holmes et al., 2021).

Soon after the discovery of the CNV single neuronal units in the prefrontal cortex of
monkeys were found to have elevated activity during the presentation of behaviourally
relevant stimuli or the ensuing delay epoch in delayed response (DR) (Fuster & Alexan-
der, 1971) and delayed match-to-sample (DMS) tasks (Fuster et al., 1982). Again, this
cue-invariant sustained activity can be interpreted as a reflection of general behavioural
relevance of stimuli and attention.

6



1 Introduction 1.3 Neuronal Substrate of Executive Functions

sample delay saccade

time

90

45 0 315

270

225180135

Figure 1.3: Delay epoch activity of a prefrontal neuron in an oculomotor delayed
response task. Top: At the beginning of the task one of nine visuospatial targets is shown on a
screen. After this a delay epoch follows, during which the target location must be remembered.
At the end of the delay epoch a go cue instructs the animal to make a saccade to the cued
location on the screen. Bottom: Spike rasters and peri-stimulus time histograms for five target
locations are shown (135◦ to 225◦ omitted for brevity). The example neuron specifically elevates
its firing rate in trials when the target is at 90◦ (plot with green border). This can be interpreted
as the a neuronal representation of target memory and its contingent action plan. Modified from
Arnsten (2009) after a classical experiment by Funahashi et al. (1989).

Behavioural tasks that require the retention of some properties of distinct external
stimuli for later use, e.g. delayed comparison with test stimuli (DMS), typically find
an additional kind of prefrontal neuronal activity: cells whose delay activity varies with
different stimuli, i.e. they encode a memorandum (Fig. 1.3). In this respect PFC can
encode manifold properties of stimuli of diverse modalities, as long as the properties are
important for solving the task, e.g. colour (Fuster et al., 1982; Kubota et al., 1980; M.
Watanabe, 1986), location (Rainer et al., 1998), motion (Zaksas & Pasternak, 2006),
shape (E. K. Miller et al., 1996), vibration frequency (Romo et al., 2002), tone pitch
(Fuster et al., 2000), category (Freedman et al., 2001), and numerosity (Nieder et al.,
2002). Thus, this prefrontal delay activity is a neuronal correlate of working memory
which is required to achieve a cross-temporal transfer of task-relevant information.

Whereas tasks involving working memory typically require PFC, their neural correlates
are also found in many areas of posterior cortex (Christophel et al., 2017; Bisley et al.,
2004; Chelazzi et al., 2001; Fuster & Jervey, 1982). Importantly, though, working
memory information in those areas is generally specific to modality or certain properties
that the respective area is specialised in. Conversely, PFC activity is, by and large,
invariant and thus represents the highest abstractions. This suggests that PFC plays a
central role in working memory by its interaction with other cortices, by coordinating
their activation.

These interactions have been shown, for instance, by reversibly decreasing neuronal
activity through cooling either PFC or another cortex. In addition to generally decreas-
ing delay activity in the other, non-cooled cortex, this also decreases working memory
information, for example in a DMS task requiring the retention of colour information
(Fuster et al., 1985). This has often been interpreted as evidence for recurrent excitation
between PFC and the respective association areas, leading to reverberating delay activ-
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thus, to increased or decreased spiking probabilities (right). Copied from Gupta et al. (2016).

ity (Amit, 1995; Goldman-Rakic, 1995; X. J. Wang, 2001). Indeed, many computational
studies support this idea using recurrently connected spiking units that can sustain in-
formation during delays without external stimulation (Zipser et al., 1993; Durstewitz
et al., 2000; Carter & Wang, 2007; Pulvermüller & Garagnani, 2014; Bouchacourt &
Buschman, 2019; J. X. Wang et al., 2018).

Oscillations It is plausible that re-entry between PFC and associated structures dur-
ing working memory synchronously activates large groups of neurons, thus leading to
oscillatory activity (for an excellent review of possible mechanisms see X.-J. Wang, 2010).

In brief, every synaptic input leads to currents across the neuronal membrane (Kandel
et al., 2021). This not only changes the voltage potential of the neuronal membrane but
the entire neighbourhood (Fig. 1.4a). Parallel orientation of large numbers of neurons
and synchronous synaptic input to them subsequently leads to a summation of the
extracellular potential (Fig. 1.5) which can be recorded at different spatial resolutions
in the EEG, electrocorticography (ECoG) and local field potential (LFP) (Fig. 1.6).

Indeed, studies investigating executive functions commonly find task-related modu-
lation of prefrontal oscillatory activity as measured by the LFP, EEG and magnetoen-
cephalography (MEG) (Roux & Uhlhaas, 2014). In humans, frontal EEG/MEG power is
modulated at theta, alpha, beta or gamma frequency bands (Fig. 1.7) during retention of
verbal (Jensen & Tesche, 2002; Onton et al., 2005; Meltzer et al., 2008), somatosensory
(Spitzer et al., 2010), and visual information (Tallon-Baudry et al., 1999; Roberts et al.,
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1 Introduction 1.3 Neuronal Substrate of Executive Functions

Figure 1.5: Extracellular potentials, neuronal population. Simulation of how synaptic
input leads to extracellular potentials. A: Column of 10 000 cortical layer V pyramidal cells with
recording locations represented by dots along the vertical axis. B: Synaptic input at different
locations and times. C: Resulting raw signal after synaptic inputs. D: Corresponding lowpass
filtered LFP signal. E: Corresponding highpass filtered MUA spiking activity. Copied from Ness
et al. (2021, Fig. 4).
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Figure 1.7: Frequency bands. Raw LFP
and signals derived by bandpass filtering
within commonly used frequency bands in
LFP, EEG and MEG research.

2013). Similarly, in monkeys working memory tasks modulate prefrontal LFP power
at various frequencies (Liebe et al., 2012; Lundqvist et al., 2016; Buschman & Miller,
2007).

In addition to intra-regional effects the relationship between oscillations in different
regions has been of particular interest. Oscillations of the LFP lead to modulation of
local neurons’ excitability and thus to windows of opportunity for integration of infor-
mation (Gupta et al., 2016, Fig. 1.4b). In the recent years evidence accumulated for
the communication through coherence hypothesis (Fries, 2005) which posits that distant
brain regions can communicate more efficiently during windows of enhanced excitability
by alignment (i.e. synchronisation) of their oscillatory activity. For instance, working-
memory related synchronisation has been found between PFC and visual area V4 (V4)
(Liebe et al., 2012), parietal cortex (Sauseng et al., 2005; Salazar et al., 2012; Antzoulatos
et al., 2016; Buschman & Miller, 2007), temporal cortex (Fiebach et al., 2006), hippocam-
pus (Brincat & Miller, 2015), and other brain regions (Helfrich & Knight, 2016). Similar
to modulation of local power, cross-regional phase-synchronisation occurs at various fre-
quencies, possibly reflecting distinct resonant frequencies of different neuronal networks
activated by different attributes of a memorandum, as well as possible upcoming actions
(X.-J. Wang, 2010; Fuster, 2015).

Effects of interference/distraction Cognitive functions that are temporally de-
tached from external stimuli require internal representations of memoranda and/or plans.
By some viewed as essentially being forms of attention (Fuster, 2015), these self-sustained
processes are prone to distraction by external and internal interference.
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Effects of interference on planning and working memory can be shown in DR and
DMS tasks. For instance, an early study by Fuster (1973) using a DR task showed
unstructured external visual and auditory distractors during the delay epoch decreased
firing of prefrontal units in monkeys. Multi-tasking can also be regarded as a source of
interference: Embedding a DR task within a change detection task diminished informa-
tion about the upcoming response location in monkey lateral prefrontal cortex (lPFC)
(K. Watanabe & Funahashi, 2014).

In contrast, a study using a visuospatial DR task with intervening distractor locations
found suppression of distractor information in dorsolateral prefrontal cortex (dlPFC)
but not parietal cortex (Suzuki & Gottlieb, 2013). Parthasarathy et al. (2017) added
to this the finding that the presentation of the distractor severely changed the neuronal
population code in dlPFC across the two delay epochs. Further analyses of this dataset
found that information stability and consequently resistance to interference was achieved
within a neuronal subspace that was consistent throughout the trial (Parthasarathy et
al., 2019).

Resilience of PFC to distractors was also found in working memory and selective atten-
tion tasks. For example, in a DMS task involving the matching of visual shapes the delay
epoch presentation of non-matches did not affect activity of PFC neurons but inferior
temporal area (IT) activity was disturbed (E. K. Miller et al., 1996). Additionally, PFC
seems to suppress responses to distracting stimuli in sensory cortices, as for example
focal dlPFC lesions lead to larger responses evoked by auditory distractors in auditory
cortex (Chao & Knight, 1998). Similarly, in a visuospatial DMS task the presentation of
non-match locations left dlPFC neurons largely unaffected (Qi et al., 2010). Consistent
with this notion of distractor resilience in PFC, in visual search and change detection
tasks PFC neurons did not represent information about the distracting item (Lennert &
Martinez-Trujillo, 2011; Cosman et al., 2018).

However, some studies using different stimuli found notable exceptions. In a study
that required human participants to match faces in a DMS task the presentation of in-
terfering faces during the retention period did not affect PFC encoding of the sample
face. Conversely, presentation of categorically different pictures (natural scenes) selec-
tively degraded sample information (Yoon et al., 2006). PFC has also been shown to
encode both relevant and irrelevant, i.e. distracting, information at the same time. For
example, in a DMS task that required monkeys to remember the number of items (nu-
merosity) in a visual display PFC encoded both the sample and interfering numerosities
(Jacob & Nieder, 2014, Fig. 1.10a). Another task that required the discrimination of
stimuli based on one of two features whose relevance was signalled by a context cue
found the simultaneous encoding of both relevant and irrelevant features in dlPFC via
a multidimensional code (Aoi et al., 2020).

In sum, keeping in mind those exceptions it appears that PFC is mostly robust to
interfering information. If distractors are encoded, different mechanisms ensure that
relevant information is preserved.
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1.4 Related Brain Structures Investigated in this Thesis

Executive functions are inherently integrative. Therefore, as a key structure that enables
those functions PFC cannot work in isolation but requires input from and exerts influ-
ences onto other brain regions. In the following, two areas that are strongly associated
with PFC and that are important for this thesis will be briefly introduced.

1.4.1 Ventral intraparietal cortex

In the macaque brain the ventral intraparietal cortex (VIP) is located in the fundus of the
intraparietal sulcus (IPS) and thus part of posterior parietal cortex (PPC) (Fig. 1.8a).
While the location of a homologue in humans has been less clear, in a recent review
Foster et al. (2022) suggested the presence of a human ”VIP complex” comprising three
parietal areas based on functional homologies.

Initially, macaque VIP was found to receive inputs from middle temporal area (MT)
and medial superior temporal area (MST) (Maunsell & van Essen, 1983; Boussaoud
et al., 1990). Later retrograde tracing found that in addition to those visual associa-
tion areas VIP receives input from numerous areas of posterior cortex associated with
somatosensory, vestibular, auditory and multisensory processing, as well as from frontal
cortex including motor association and prefrontal cortices (J. W. Lewis & Van Essen,
2000). Consistent with what this hodological data suggests, VIP has been shown to be
involved in unimodal higher sensory processing, multisensory integration, and notably,
cognitive functions (Foster et al., 2022).

Within the latter, ventral intraparietal cortex (VIP) is especially relevant for process-
ing of discrete quantities, namely numerosities and enumeration, i.e. the quantity of
concurrent and sequential items (”counting”), respectively. Monkeys can memorise the
number of dots in a visual display and match it to a test quantity (Fig. 1.8b; Nieder
et al., 2002; Nieder & Miller, 2004a). Besides prefrontal cortex (PFC), VIP contains an
especially high number of neurons whose firing rates during stimulus presentation and
memory delays systematically vary with numerosity (Fig. 1.8c; Nieder & Miller, 2004b).
Furthermore, VIP neurons are spontaneously selective for numerosity in näıve animals
that were not trained to discriminate numerosities (Viswanathan & Nieder, 2013) and
even encode empty sets (Ramirez-Cardenas et al., 2016). Hierarchically, VIP appears to
be at an earlier stage of number processing, as neurons in VIP have a shorter latency
than PFC to encode numerosity, and are more sensitive to lower level visual properties
(Nieder & Miller, 2004b). In addition, VIP neurons also encode the accumulated number
of visual or auditory items shown in a sequence, but compared to PFC a smaller number
is invariant to the sensory modality, suggesting a lower level of abstraction (Nieder et al.,
2006; Nieder, 2012).

All in all, there is a large body of evidence that suggests VIP is part of a fronto-parietal
network that is critically important for temporal integration of quantity, two aspects of
which are temporal summation and cross-temporal bridging via working memory.
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Figure 1.8: Numerosity coding in PFC and VIP. (a) Locations of PFC and VIP in the
macaque brain. (Left): Lateral view. PFC is labelled in green. Dashed line: Position of coronal
slice shown on the right. (Right): Coronal slice. Fundus of intraparietal sulcus (IPS) (i.e. VIP)
is labelled in purple. cs: central sulcus; ips: intraparietal sulcus; ls: lateral sulcus; ps: principal
sulcus; a: anterior; p: posterior; d: dorsal; v: ventral; l: lateral; m: medial. Modified from Jacob
et al. (2018). (b) Delayed match-to-numerosity task. Modified from Nieder and Dehaene (2009).
(c) Firing rates of example neurons varied with the shown numerosity. (Top): Example neuron
from PFC. (Bottom): Example neuron from VIP. Modified from Nieder and Dehaene (2009).

13



1 Introduction 1.4 Related Brain Structures

1.4.2 Mediodorsal thalamic nucleus

PFC has commonly been defined as the cortex projected to by the mediodorsal thala-
mic nucleus (MD) (Rose & Woolsey, 1948; Uylings & van Eden, 1991; Fuster, 2015).
Reciprocal connections between the two areas are strong and are in fact PFC’s most
prominent ones to subcortical areas (Fuster, 2015).

In contrast to the classical view of thalamus as a simple relay of sensory information
on its way to neocortex (Fig. 1.9a; Hubel & Wiesel, 1979), MD with its main driver
inputs from cortical layer 5 neurons has more recently been designated a higher-order
relay nucleus that is used for trans-thalamic cortico-cortical communication (Fig. 1.9b;
Sherman & Guillery, 1998; Sherman, 2016). Notably, in the latter view, the presence
of parallel trans- and extra-thalamic cortico-cortical pathways has been interpreted as
efference copies. Similar to PFC, MD receives input from numerous subcortical areas,
namely from the reticular thalamic nucleus, and structures in the striatum (dorsal and
ventral striatum), midbrain (ventral tegmental area (VTA), substantia nigra pars reticu-
lata (SNr)), hypothalamus, and brainstem (Mitchell, 2015; Ouhaz et al., 2018) and thus
has access to behavioural parameters like motivation, state and drive.

Lesions of MD often lead to behavioural deficits similar to PFC lesions. Due to its
location deep in the brain, studies of human MD are limited to lesions inflicted by in-
farctions. Standard testing batteries of executive functions (including tests of attention,
working memory, interference control and planning like WCST, Tower of London (ToL)
and Stroop) commonly find impairments in patients whose MD is damaged (Van der
Werf et al., 2003; Carlesimo et al., 2011; Danet et al., 2015). Consistent with these
findings, animal studies, which allow for targeted lesions or inactivation of MD found
deficits in tasks requiring response alternation (Isseroff et al., 1982; Chauveau et al.,
2005), reversal learning (Dolleman-van der Weel et al., 2009; Chudasama et al., 2001;
Parnaudeau et al., 2013) or some sort of working memory (Isseroff et al., 1982; Stokes
& Best, 1990; Parnaudeau et al., 2013; Bolkan et al., 2017).

Connection-specific analyses and experiments demonstrate the close relationship be-
tween MD and PFC. For example, Parnaudeau et al. (2013) found in mice that MD neu-
rons had increased phase-locking to medial prefrontal cortex (mPFC) beta oscillations
during the delay epoch of a T-maze task. Further, a reversible selective inhibition of MD
using the designer receptors exclusively activated by a designer drug (DREADD) system
led to a decrease in beta band phase-locking selectively during the delay epoch. In a later
study by the same research group using the same behavioural paradigm direction-specific
optogenetic inhibition was used to further dissect reciprocal communication of MD and
PFC (Bolkan et al., 2017). Inhibition of MD terminals in mPFC or vice-versa dur-
ing an entire trial decreased behavioural performance in trials with long, but not short
delays, suggesting a role of both regions for cross-temporal retention of information.
In addition, trial-epoch specific inhibition of the two pathways showed that reciprocal
MD-mPFC communication during the delay epoch, and unidirectional influences from
mPFC during the choice epoch, are important for successful behaviour. Electrophys-
iological recordings showed that functional directionality shifts in an epoch-dependent
manner from MD-to-mPFC during the delay to mPFC-to-MD during the choice. Fi-
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Figure 1.9: Models of thalamic functions (modified from Nakajima and Halassa (2017) after
Sherman (2016)). (a) In the classical relay model sensory input is simply relayed via thalamic
nuclei, e.g. visual information from the retina to LGN to V1. (b) Based on the driver input
to thalamic nuclei, Sherman and Guillery (1998) proposed that first-order relays are driven by
sensory input while higher-order relays are driven by cortical input. Cortico-thalamo-cortical
pathways parallel to cortico-cortical pathways were proposed to contain efference copies. (c)
Based on findings that MD can sustain prefrontal delay activity ((d)) it was proposed that some
higher order thalamic nuclei maintain neuronal states in different cortical areas by for example
influencing local cortical functional connectivity. (d) PFC neurons’ activity can tile the memory
epoch in behavioural tasks. (top): Recent findings in mice suggest that under normal conditions
MD sustains prefrontal functional connectivity that is required for intra-prefrontal hand-over of
information during delays. (bottom): If MD function is impaired functional connectivity in PFC
degrades, thus abolishing delay epoch tiling. Copied from Parnaudeau et al. (2018).
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nally, the authors found that inhibition of MD terminals in mPFC disrupted the delay
epoch tiling of mPFC units’ firing peaks, suggesting that MD is important for sustained
mPFC delay activity (Fig. 1.9d).

A similar tiling of mPFC unit activity throughout a memory epoch was found in stud-
ies by the Halassa lab, when mice were instructed by rule cues to selectively attend to
one of two sensory modalities to guide their subsequent choice. Enhancing MD excitabil-
ity increased delay epoch functional connectivity between putative prefrontal pyramidal
neurons and mPFC rule encoding and improved behavioural performance (Schmitt et
al., 2017). Furthermore, a follow-up study found that MD activity is important for
context-switching by increasing neuronal representations in mPFC of currently relevant
contexts and conversely suppressing representations of the irrelevant one (Rikhye et al.,
2018).

Together, these findings led to the recent proposal of a refined model of thalamic
function in addition to sensory and cross-cortical relay functions: Some thalamic nuclei,
amongst them MD, might support cognitive function by enabling/sustaining certain
local cortical states, characterised e.g. by modulation of local functional connectivity,
that are conducive to cognitive functions (Nakajima & Halassa, 2017, Fig. 1.9c).

1.5 Model Organisms in Systems Neuroscience

1.5.1 Monkey

Neuroscientists have utilised various model organisms to unravel the complexities of
brain function, ranging from invertebrates such as worms and fruit flies to vertebrates
like fishes and rodents (Bovenkerk & Kaldewaij, 2015; Friedrich et al., 2010; Kazama,
2015; Sengupta & Samuel, 2009). However, non-human primates, particularly macaque
monkeys, have played a pivotal role as model organisms for several decades because
they offer a unique opportunity to study the neural mechanisms that underlie complex
cognitive and behavioral functions, such as decision-making, attention, memory, and
language.

One of the main advantages of using macaque monkeys as a model organism is their
close evolutionary relationship to humans (Gibbs et al., 2007). They possess highly
developed brain structures that closely resemble those of humans, including intricate
cortical organization and connectivity (Caminiti et al., 2015; Mantini et al., 2013).

Another notable aspect is their advanced sensory and motor systems. Monkeys ex-
hibit fine motor skills, dexterity, and hand-eye coordination comparable to humans.
This similarity allows researchers to investigate the neural underpinnings of motor con-
trol and sensorimotor integration, crucial for understanding movement disorders and
developing neuroprosthetic devices (Castiello & Dadda, 2019; Morissette & Di Paolo,
2018). Additionally, monkeys’ visual system closely resembles that of humans, making
them invaluable in unraveling the neural mechanisms of visual perception and processing
(Felleman & Van Essen, 1991; Markov, Vezoli, et al., 2014; Orban et al., 2004).

Beyond their neurobiological similarities, monkeys also exhibit complex social behav-
iors and cognitive capabilities that parallel certain aspects of human behavior. They
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live in hierarchical social structures, engage in cooperative interactions, and display in-
tricate social dynamics. These traits make them particularly well-suited for studying the
neural basis of social cognition, empathy, decision-making, and social reward processing
(Testard et al., 2021). Moreover, monkeys can be trained to perform complex behav-
ioral tasks, facilitating the investigation of higher cognitive functions such as attention,
memory, and learning (Fuster, 2015).

However, it is important to acknowledge the drawbacks associated with using monkeys
as model organisms. They require large housing facilities and specialised care from highly
trained staff. Moreover, practical and ethical considerations often limit the number of
animals used in studies involving monkeys, leading to low statistical power and scientific
generalisability. Additionally, methods for manipulating neuronal circuits in monkeys
are often lagging behind those found in other model organisms (Roelfsema & Treue,
2014).

In conclusion, monkeys have played a crucial role in the investigation of highly complex
brain functions. While their use as model organisms has some limitations, it is important
to consider other species alongside monkeys to overcome these drawbacks.

1.5.2 Mouse

Whereas neuroscientific research in monkeys is arguably an important pillar in our un-
derstanding of the brain (Gray & Barnes, 2019), the field of system neuroscience has seen
a steady rise in the number of rodent studies concerned with cognition, especially using
mice. Mice are relatively easy to care for and readily available, thus facilitating stan-
dardisation of experimental protocols and consequently increasing statistical robustness
(The International Brain Laboratory et al., 2021; The International Brain Laboratory
et al., 2022). Equally importantly, short development cycles of tools compared to pri-
mates promoted the availability of an extensive molecular and genetic toolkit in mice
(van der Weyden et al., 2011; Kaczmarczyk & Jackson, 2015). Most notably for systems
neuroscience, the combination of mouse lines with robust conditional (cell-type specific
or driven by recombinases) expression of genetic constructs, such as markers, reporters
and promotors, and viruses with antero- or retrograde axonal transport can provide the
opportunity for detailed manipulations and measurements of defined neuronal circuits
(Nassi, Cepko, et al., 2015; Kim et al., 2017).

As a concrete example, the influence of dopaminergic cells from the VTA onto mPFC
could be investigated using a double virus injection strategy. First, a DAT-Cre virus
injected into VTA would lead to local expression of Cre-recombinase. Second, a retro-
grade virus injected into mPFC would be transported to VTA cells projecting to mPFC.
If that retrograde virus contained a Cre-dependent DIO opsin the opsin would only be
expressed in VTA cells projecting to mPFC. Thus, illumination of the injection site in
mPFC would locally modulate dopaminergic neuron activity.

In addition to optogenetic modulators, another kind of widely used genetic constructs
in the mouse are reporter proteins whose fluorescence is dynamically modulated by
biophysical processes. In this way, researchers can optically measure neuronal activity
with high spatial resolution (Emiliani et al., 2015), using sensors for Ca2+ (Grienberger
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& Konnerth, 2012) or, more recently, for voltage (Knöpfel & Song, 2019; Bando et al.,
2021), neurotransmitters and neuromodulators (Sabatini & Tian, 2020).

In contrast to these advantages, the use of mice arguably comes with downsides that
concern the generalisability of findings to humans. First, behavioural tasks that mice can
be trained to need to be catered to the ecological niche into which mice have evolved. On
the one hand this means that tasks involving spatial, olfactory and auditory modalities
are expected to be easier to learn. On the other hand, mice’s cognitive capacity limits
complexity of tasks, so that concreteness, both temporally (i.e. short or no memory
delays) and in response modalities (e.g. licking, moving to locations), are favoured over
abstractness. Even so, recent years have seen a rise in the development and use of more
complex behavioural tasks in mice (Carandini & Churchland, 2013; Liu et al., 2014;
Wimmer et al., 2015; Rikhye et al., 2018), albeit at the price of increasing the duration
of animal training up to multiple months (Halassa, 2017, Q&A). Second, because of their
evolutionary distance there is no definite consensus on functional homologues of primate
PFC in mice. In contrast to primates, what has been called PFC in rodents is lacking a
granular cortical layer IV, precluding the definition based on cytoarchitecture (Laubach
et al., 2018). Furthermore, using the MD-projection criterion can also be problematic
in so far as MD subregions in rodents project to secondary motor cortex (M2). Based
on hodological and functional arguments, the latter has been proposed to be a rodent
analogue of primate frontal eye field (FEF) (Reep et al., 1987), an area that is regarded
not to be part of PFC by some researchers (E. K. Miller & Cohen, 2001). Possibly due
to these under-specifications, the use of the term PFC and its subregions is inconsistent
across studies in mice. To alleviate these issues, recent efforts have been made to more
robustly define mouse PFC (Laubach et al., 2018; J. A. Harris et al., 2019; Le Merre
et al., 2021).

Despite certain shortcomings, the tools that are available in mice have proven useful
to gain more mechanistic insights into neuronal processes. Along with methodological
advances in non-human primates (Stauffer et al., 2016; Nassi, Avery, et al., 2015; El-
Shamayleh & Horwitz, 2019; Tremblay et al., 2020) systems neuroscience research in
mice is therefore an important piece in the puzzle of understanding brain function.

1.6 Aims of the Thesis

This thesis comprises two projects with the overarching goal to further elucidate the
role of the prefrontal cortex (PFC) in executive functions, particularly in the translation
of sensory information into future action and the safeguarding of that information in
working memory against interference.

1.6.1 Structuring of Abstract Working Memory Content by
Fronto-Parietal Synchrony in Primate Cortex

Working memory is a distributed process that involves the interaction of PFC with
association areas in posterior cortex. Extensive research suggests that a distributed net-
work comprising PFC and PPC as central hubs plays a crucial role in working memory
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(Chafee & Goldman-Rakic, 2000; Dotson et al., 2014; Rottschy et al., 2012; Salazar et
al., 2012; Wendelken et al., 2008). The complexity of behaviour requires the flexible and
structured composition of transient widespread neuronal networks that enable different
aspects of working memory (Bressler & Menon, 2010; Mesulam, 1990; Tononi et al.,
1998). How typically weak long-distance cortico-cortical connections allow controlled
cross-areal communication is an open question (Markov, Ercsey-Ravasz, et al., 2014). A
growing number of studies suggests that synchronous large-scale neural activity at dis-
tinct oscillation frequencies might functionally couple distributed brain areas and thus
support integrative processes (Buschman & Miller, 2009; Buzsáki & Draguhn, 2004; Fell
& Axmacher, 2011). Individual neurons in PFC show mixed selectivity, i.e. their ac-
tivity can simultaneously contain information about different, possibly conflicting, task
variables (Parthasarathy et al., 2017; Rigotti et al., 2013). Thus, while the formation of
cross-area functional networks is one aspect of long-range communication, it is equally
important to segregate relevant from irrelevant information (Tognoli & Kelso, 2014).
However, the neuronal mechanisms that enable this kind of filtering are not clear. Local
field potentials (LFPs) modify the excitability of individual neurons in an oscillating
manner and could thus provide temporal windows to disambiguate multiplexed informa-
tion (Gupta et al., 2016). Indeed, one study that explored this hypothesis found that
multiple behaviourally relevant memory items that were simultaneously represented by
neuronal activity in PFC could be separated by considering action potentials at different
phases of the LFP (Siegel et al., 2009), suggesting that downstream receiver populations
could ”tune in” to phase-defined groups of more informative spikes in order to extract
respective information.

To further explore the mechanisms of distributed working memory and the selection
of behaviourally relevant information, the first project in this thesis explored the role of
LFPs in frontoparietal communication in a task that required the resilience of abstract
working memory to interference by distractors.

Non-human primates had been trained in a delayed match-to-sample (DMS) task that
required the retention of the number of visual items (numerosity) across a delay epoch
of several seconds (Figs. 1.10 and 2.1, Jacob & Nieder, 2014). To test the influence of
distractors, the delay epoch was interrupted by the display of a behaviourally irrelevant
numerosity. While the animals were performing the task microelectrodes were used to
record electrophysiological signals from lateral PFC and VIP. Contrary to the expecta-
tion that PFC would mostly suppress responses to irrelevant information, as suggested
by studies involving less abstract memoranda (Everling et al., 2002; di Pellegrino & Wise,
1993; Lennert & Martinez-Trujillo, 2011; Qi et al., 2010; Suzuki & Gottlieb, 2013), a
previous analysis of single-unit activity (i.e. action potentials) showed that in PFC the
interfering numerosity strongly decreased the information about the sample numerosity
and led to representation of both relevant and irrelevant items in working memory. De-
spite initial breakdown of relevant information, PFC recovered it towards the end of the
delay epoch. At the same time, VIP neurons also encoded both items but representa-
tions of the relevant item were stronger (Jacob & Nieder, 2014, Figs. 1.10a and 1.10b).
However, from the examination of the two regions in isolation it was unclear how this
recovery and filtering of relevant information could have been achieved mechanistically.
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(a)
sample distractor test

(b)
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Figure 1.10: Neuronal coding for relevant and irrelevant numerosities in PFC (a) and
VIP. (b). Animals were required to remember a sample numerosity and match it to a later test
numerosity. An irrelevant distractor numerosity was shown during the memory epoch. Modified
from Jacob and Nieder (2014).

1.6.2 Neuronal Signatures of Contextual Decision-Making in Mouse
Prefrontal Cortex and Mediodorsal Thalamus

The nervous system’s ability to predict future events based on prior information is funda-
mental to optimising upcoming behavior by preparing actions or allocating attention to
sensory structures (Teufel & Fletcher, 2020). Predictive cues, in comparison to neutral
cues, generally improve performance and decrease response times in behavioural tasks
(Dalmaso et al., 2019; Mukherjee et al., 2021).

Representations of action planning in the form of preparatory behaviours prior to
responses have mainly been studied in oculomotor tasks in humans. For example, only
predictive cues lead to pre-saccades to the cued location (Jones et al., 2008) and rates
and latencies of micro-saccades are modulated by predictiveness (Denison et al., 2019;
Weaver et al., 2014). However, research into equivalent preparatory behaviours for non-
primate species is lacking.

Prefrontal cortex has been shown to be involved in the processing of predictiveness.
For example, ramping preparatory neuronal activity of single units towards an upcoming
motor act, which is often found in timed behavioural tasks (Guo et al., 2017), exhibits
smaller gradients in some monkey PFC neurons after ambiguous sensory cues that predict
the required prospective behavioural response with some degree of uncertainty (Quintana
& Fuster, 1999). In an auditory discrimation task in mice, PFC single units were shown
to selectively respond to predictive but not unpredictive sensory cues (Nakajima et al.,
2019). While predictive cues improved sensory discrimination on a behavioural level,
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little is known about how varying states of uncertainty impact prefrontal processing of
response instructions.

Efficient switching of cognitive states involving selective attention is linked to an MD-
mediated increase of intra-prefrontal functional connectivity (Nakajima et al., 2019;
Schmitt et al., 2017). Similarly, the shift of behavioural strategies in predictive and
ambiguous contexts is associated with increased inter-regional functional connectivity
between PFC and MD, the strength of which scales with the degree of current ambiguity
(Hummos et al., 2022; B. A. Wang & Pleger, 2020). Consistent with this, mouse MD
has recently been shown to track task uncertainty (Mukherjee et al., 2021). Thus, the
structures and processes that enable rapid switching of ambiguity-dependent states are
becoming increasingly well studied. However, it is unclear how various states themselves
are characterised, for example in terms of neuronal recruitment within the brain areas
of interest.

In order to investigate preparatory behaviour in a non-primate species, the effect of
varying degrees of ambiguity on neuronal coding and neuronal states, the second project
in this thesis combined a response device that allowed moment-to-moment readout of
movements at millisecond precision (Sanders & Kepecs, 2012) with an auditory discrim-
ination task that embedded the animals into predictive or ambigous cognitive contexts.
One kind of context enabled the preparation of an action plan for a delayed response,
while the other required deferring of planning until ambiguity was resolved by an in-
struction cue.

Thus, in unambiguous trials it would be beneficial to prepare motor structures for an
efficient response (i.e. executive set). The enforced delay until the response requires
two aspects of inhibitory control in these kinds of trials. Since a selected plan doesn’t
lead to immediate action but is future directed (”memory of the future”), it must be
resilient against interference from other alternative plans, including but not limited to
routine action sequences. In addition, this sustained kind of inhibitory control should be
accompanied by a more immediate inhibition of action at inappropriate times — even if
those actions are part of an appropriate plan.

Similarly, ambiguous trials in which animals had to defer their planning required
resilience against the selection and immediate execution of routine plans. Furthermore,
in contrast to the other kind of trials in which motor structures could be prepared for
specific actions, ambiguous trials would benefit from preparing perceptual structures to
more efficiently discriminate instruction cues (i.e. perceptual set).

Taken together, the different contexts not only deploy particular executive functions
on the level of individual trials, but also require the flexible switching of cognitive states
across trials.

Detailed analysis of the behavioural data revealed preparatory behaviour that var-
ied with ambiguity. In addition, extracellular recordings from mPFC and MD during
behaviour was used to characterise different neuronal states and investigate effects of
ambiguity on processing of movement instructions.
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2 Structuring of Abstract Working
Memory Content by Fronto-Parietal
Synchrony in Primate Cortex1

2.1 Behavioural Task

In order to investigate how distractor resilience could be implemented for abstract work-
ing memory information, two monkeys were trained to remember the quantity of black
circles (numerosity) shown in a visual display (Fig. 2.1). After a memory delay of 2500 ms
this sample numerosity had to be matched to a test numerosity. An outcome-irrelevant
numerosity (distractor) was shown during the memory delay in 80 % of trials. The re-
maining 20 % of trials showed a blank grey circle instead of an interfering stimulus, thus
serving as a control. Thus, each trial comprised five distinct epochs: sample presentation
(S ) from 0 ms to 500 ms, first delay/memory (M1 ) from 500 ms to 1500 ms, distractor
presentation (D) from 1500 ms to 2000 ms, second delay/memory (M2 ) from 2000 ms to
2500 ms, and the tests in which the animals had to signal a match or non-match.

2.1.1 Open questions from previous analyses

Wideband neuronal signals were recorded from PFC and VIP (Figs. 2.2a and 2.2b), brain
regions in which neurons are tuned to abstract numerosities (Foster et al., 2022). In a
previous analysis of this dataset both areas were shown to contain information about
both the behaviourally relevant sample numerosity as well as the irrelevant distractor
numerosity (Fig. 1.10, Jacob & Nieder, 2014). While most numerosity-selective single
neurons in both areas were sample-selective, a larger number showed mixed selectivity for
sample and distractor in PFC than VIP. Furthermore, representation of the distractor
was in general lower in VIP. Because the animals had been previously trained on a sim-
pler task without an interfering distractor in which all numerosities were behaviourally
relevant (Jacob & Nieder, 2014; Nieder et al., 2006), it is possible that a low-level com-
putational module extracted abstract numerosities and made that information available
to upstream regions. The resolution of the relatively new introduction of a conflict of
behavioural relevance was likely delegated to downstream areas.

This dual representation of relevant and irrelevant information did not prevent the
animals from performing the task successfully (monkey R: 72 %, monkey W: 71 %).
Through some mechanism, sample information and its behavioural relevance was pro-
tected from interference and could be read out at the appropriate time in the trial. In

1 The data shown in this chapter was published in Jacob et al. (2018).
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Sample
500 ms

Memory1
1000 ms

Pre-sample
500 ms

Distractor
500 ms

Memory2
1000 ms

Match

Test1
1000 ms

Test2
1000 ms

Time

50 %

50 %

Response

Non-Match Match

Response

Figure 2.1: Delayed match-to-numerosity task. A Sample numerosity had to be memo-
rised for 2500 ms and matched with test numerosities Test1 or Test2. An irrelevant interfering
Distractor numerosity during the memory delay had to be resisted. Modified from Jacob et al.
(2018).

the following, I explored how cross-regional communication could have been established
via LFPs and how mixed information could have been demixed.

2.2 Intra-regional Strength of LFP Oscillations: Power

2.2.1 Spectro-temporal modulation by task events

The spectral power of a signal is associated with the amplitude of oscillations at specific
frequencies and thus quantifies how strongly different frequencies are represented in the
combined signal. To quantify if and how different LFP frequencies varied with the task
events, a sliding-window based approach was used to calculate LFP power relative to a
baseline epoch (−500 ms to 0 ms before sample presentation, Figs. 2.2c and 2.2d).

Power was modulated in frequency-specific dynamics throughout the trial in both
PFC and VIP. In PFC the onsets of the sample and distractor stimuli were accompa-
nied by strong transient wideband increases in the theta, beta, and high gamma bands
(Fig. 2.2c). Notably, increases in the theta and beta bands were markedly stronger for
the distractor onset. Power in the high gamma band stayed relatively high during stim-
ulus presentation, while it returned to baseline for theta and decreased below baseline
for beta. The memory delays (M1 and M2) were both characterised by elevated delta
(2 Hz to 4 Hz) to theta power and below-baseline power in beta. All in all, in PFC
the spectro-temporal dynamics of power modulation were virtually identical in the two
trial halves (Sample and Memory1 from 0 ms to 1500 ms, Distractor and Memory2 from
1500 ms to 3000 ms).
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Figure 2.2: Local field potentials (LFPs) in monkey prefrontal and ventral intra-
parietal cortex. (a) Recording location of extracellular neuronal signals. (b) Time-domain
LFP in PFC, filtered at beta 12 Hz to 32 Hz and theta 4 Hz to 10 Hz frequency ranges. (c, d)
Sliding-window analysis of spectro-temporal LFP power in PFC and LFP, z-scored to pre-sample
task epoch (−0.5 s to 0 s). Dashed vertical lines: trial epoch boundaries, S: sample presentation,
M1: memory 1, D: distractor presentation, M2: memory 2. Modified from Jacob et al. (2018).
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At first glance, LFP power in VIP showed similar spectro-temporal dynamics like PFC.
However, a few noteworthy differences were observed (Fig. 2.2d). During the sample
presentation only high gamma power increased. In contrast to PFC, the presentation
of the distractor numerosity was associated with a very strong increase of theta power
in addition to high gamma. While in PFC delta band power sustained increased levels
throughout both memory delays, in VIP it only increased in the second half of the
first memory delay and stayed at baseline levels after the presentation of the distractor
numerosity.

Taken together, power was tightly regulated by the task. Distinct recruitment at
functionally different task epochs suggests functional specialisation of frequency bands.
Furthermore, intra-band differences between the first and second trial halves suggest
that information about the numerosities’ behavioural relevance was present already at
the power level.

2.2.2 Numerosity-dependent oscillation intensity

The previous section demonstrated that LFP power modulation was dependent on the
time in the trial and behavioural relevance of the most recent numerosity. To test if
power also contained information about sample and distractor numerosity, I used Näıve
Bayes classifiers. Classifiers were trained to find numerosity-dependent differences in
power at individual frequencies at specific times (i.e. a single spectro-temporal ”pixel”).
Classifier training was performed on a random class-matched subset of 75 % of trials.
The remaining 25 % were used to test the classifiers’ prediction accuracy for sample and
distractor numerosities.

Sample and distractor numerosities could be decoded with above-chance accuracy in
multiple frequency bands (Figs. 2.3a to 2.3d). Prediction accuracy was generally higher
in PFC than in VIP. During sample presentation, first memory delay and distractor pre-
sentation, sample numerosity could be decoded from power in the lower (delta and theta)
as well as higher frequencies (beta, gamma) (Figs. 2.3a and 2.3b). In PFC decoding was
especially strong in the delta and beta bands. Interestingly, during the presentation of
the distractor numerosity, sample information in the beta band was especially high. In
contrast, during the second memory delay sample information was almost lost in the
beta band and shifted towards lower frequencies. The distractor numerosity could be
decoded from power in the delta, theta and beta bands. Distractor information was
especially strong during the presentation of the distractor stimulus and was almost lost
during the second memory delay.

Classifier analyses can discover numerosity-dependent covariation of LFP power but
don’t provide information about the concrete organisation of different classes. During
the second memory delay power in the low-frequency delta band was in fact ordered
as a monotonically increasing function of sample numerosity (Figs. 2.3e and 2.3f, left).
Distances between subsequent sample numerosities decreased in accordance with the
Weber-Fechner law (Nieder, 2016). In contrast, there was no such order when sorted
by the distractor numerosity. In the beta band power was less ordered and separation
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(c) PFC, distractor information
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(d) VIP, distractor information
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Figure 2.3: Numerosity dependent separation of power (a) Classification accuracy for
sample (chance level: 25 %) of Näıve Bayes classifiers using LFP power in PFC as features. (b)
Same analysis like in (a) for classifiers trained and tested on VIP LFP power. (c, d) same as
(a, b) for the distractor numerosities. Dashed vertical lines: trial epoch boundaries. S: sample
presentation, M1: memory 1, D: distractor presentation, M2: memory 2. (e) PFC power in the
second memory delay (M2) as a function of sample/distractor numerosity in the 2 Hz to 4 Hz
(delta, left) and 12 Hz to 32 Hz (beta, right) bands. (f) same analysis like (e) for VIP. Power
values were normalised to values in trials with numerosity 1. Error bars: SEM across sites.
∗∗∗p < 0.001 (Wilcoxon signed-rank test, sample vs. distractor). Modified from Jacob et al.
(2018).
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between numerosities less pronounced, possibly explaining the lower decoding accuracy
in this frequency band (Figs. 2.3e and 2.3f, right).

In sum, LFP power did not only vary with task epochs but distinct frequencies carried
information about working memory content. Spectro-temporal dynamics of information
suggest a functional specialisation of distinct frequency bands. Importantly, during
the second memory delay LFP power was preferentially organised by the behaviourally
relevant sample numerosity, as demonstrated by numerosity-dependent ordering as well
as increased sample information.

2.3 Cross-regional Communication: Functional
Connectivity

The findings in the previous section suggest that within PFC and VIP LFP oscillations
were organised into functionally separate frequency channels. Because of inter-regional
similarities in the task-related activation of those channels it is likely that LFP signals
were coordinated. Synchronised activity is thought to be conducive to long-range com-
munication (Fries, 2005) and might therefore support the fronto-parietal exchange of
working memory information in order to solve the task.

2.3.1 Task-related fronto-parietal synchrony in distinct frequency
bands

As a first step in order to find out if oscillations in PFC and VIP synchronised during
the task, I quantified cross-regional synchrony using the phase-locking value (PLV).
Briefly, the PLV quantifies how consistent the phase difference of two oscillatory signals
was across observations (e.g. at a certain time in the task across trials, Lachaux et al.
(1999)), irrespective of the direction of the interaction.

High cross-regional synchronisation was found for the delta, theta and beta frequency
bands (Fig. 2.4). In contrast to the increases in gamma band power that were associated
with stimulus presentations (Figs. 2.2c and 2.2d), synchronisation at higher frequency
bands was absent. PFC and VIP synchronised strongest in the beta frequency band
at the onsets of the numerosity displays. Synchrony during the presentation of the
distractor was stronger than during sample presentation (Fig. 2.4a), a trend that was
consistent with higher LFP power during distractor presentation (Figs. 2.2c and 2.2d).
These synchronisation peaks were additional to an elevated beta synchrony that persisted
throughout the trial, also in trials without an interfering numerosity (Fig. 2.4b). In
comparison, fronto-parietal synchrony in the lower frequencies (delta, 2 Hz to 4 Hz) was
highest during the memory delays, i.e. when the sample information in the power in
these frequencies was highest (compare with Figs. 2.3a and 2.3b). Notably, omission of
the distractor still resulted in a precisely timed reduction of delta band synchrony. In
these trials delta band synchrony during the second memory delay was especially high
and shifted to earlier times (Fig. 2.4b).
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Figure 2.4: Task- and frequency specific cross-regional synchrony. Phase-locking
value (PLV) PFC-VIP for different distractor conditions. (a) Trials in which the distractor
numerosity was different from the sample numerosity. (b) Trials in which a blank circle was
shown instead of an interfering numerosity. S: sample presentation, M1: memory 1, D: dis-
tractor presentation, M2: memory 2. Dashed vertical lines represent trial epoch boundaries.
Pseudocolour scales across plots were normalised to pre-sample ranges for visual comparability.
This was necessary because of varying numbers of trials for individual conditions and the PLV’s
bias to 1 for small sample sizes. Modified from Jacob et al. (2018).

In summary, PFC and VIP showed task-dependent cross-regional synchronisation in
distinct frequency channels. Synchrony was precisely timed and also varied with be-
havioural relevance of the numerosities.

2.3.2 Distinct frequency bands for direction-specific synchrony

To assert if cross-regional synchronisation was dominated by fronto-parietal (PFC to
VIP) or parieto-frontal (VIP to PFC) cross-regional communication, I extended the
non-directed PLV analysis to directed metrics.

The phase-slope index (PSI) quantifies the dominant direction of information flow
across regions (Nolte et al., 2008). Interestingly, information flow was not symmetrical
but strongly directed (Fig. 2.5a). Directionality was segregated between lower and higher
frequencies. Positive values indicated predominant information flow from PFC to VIP in
the delta band during the memory delays. The opposite net direction (VIP to PFC) was
characteristic of the beta band, both for the presentation of the stimuli as well as the
sustained synchrony throughout the trial. Thus, compared to baseline, fronto-parietal
information flow increased during the memory delays and parieto-frontal flow increased
during sample and distractor presentation (Fig. 2.5b).

In trials without a distracting numerosity the fronto-parietally dominated flow in the
delta band was interrupted during the omission of the distractor numerosity (Fig. 2.5c),
similar to what was found for the non-directed synchrony (compare Fig. 2.4b). Similarly,
fronto-parietal net information flow increased earlier than in trials with a distractor, but
not as early as the non-directed synchrony.
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Figure 2.5: Net cross-regional information flow (phase-slope index (PSI)). (a) Time-
frequency representation of net information flow in trials with a distracting numerosity. Positive
values (green colours) indicate net flow from PFC to VIP, while negative values (purple) indicate
the opposite direction. (b) Modulation of net direction in comparison to baseline (−0.5 s to 0 s)
at 3 Hz (delta band) and 20 Hz (beta band) in (a). (c) same analysis like in (a). for trials without
a distracting numerosity. S: sample presentation, M1: memory 1, D: distractor presentation, M2:
memory 2. Dashed vertical lines represent trial epoch boundaries. Modified from Jacob et al.
(2018).
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Since the PSI quantifies the net or dominant direction of information flow, it is not
clear if cross-regional information flow seen in Figure 2.5 was in fact bi-directional and
dominated by one direction or exclusively uni-directional. To answer this question, I
extended the analysis of directional functional connectivity to Granger Causality (GC),
which allows the quantification of uni-directional information flow. This analysis shows
that most information flow was indeed uni-directional. In the delta band high GC
values in Figure 2.6a indicate high fronto-parietal information flow, while low values in
Figure 2.6b suggest almost none from VIP to PFC. On the other hand, the beta band
was characterised by almost exclusively uni-directional parieto-frontal flow. In addition
to the PSI analysis during the presentation of the distractor there was some feedback
information flow from PFC in the beta band.

In the trials without an interfering numerosity the non-directed PLV had found in-
creased delta band synchrony immediately after the omission of the distractor (Fig. 2.4b),
whereas the PSI analysis had found fronto-parietal net information flow slightly later
(Fig. 2.5c). GC analysis resolves this apparent discrepancy. In fact, fronto-parietal infor-
mation flow in the delta band was high immediately after distractor omission (Fig. 2.6c).
Of note, however, in these trials an equally strong parieto-frontal flow was discovered at
the same time (Fig. 2.6c), that was totally absent in trials with a distractor. Because
this information flow from VIP decreased more rapidly during the second memory delay,
the net dominance of fronto-parietal flow was lagged.

LFPs predominantly measure spatially and temporally coordinated synaptic activity
close to the recording electrode (Kajikawa & Schroeder, 2011). To investigate directed
communication in a more explicit way, in the following I quantified the synchronisation
of spikes from a sending population (since action potentials are the unequivocal output
of neurons) to the LFP signal of a receiving region (Pesaran et al., 2008; Salazar et al.,
2012; Liebe et al., 2012). A total of 4956 PFCunit-VIPLFP and 3525 VIPunit-PFCLFP

pairs were tested for significant spike-field (SF) locking, i.e. whether spikes from a
neuronal unit did not occur at random LFP phases2. During the second memory delay,
the delta to theta band and the beta band displayed especially high numbers of locked
SF pairs, thus dividing the frequency scale into separate channels similar to what was
found with the LFPs alone (Fig. 2.7a). Furthermore, more neuronal PFC units were
locked to VIP LFP phases in the delta band than VIP units to PFC LFPs, while the
opposite was true for the beta band3. Similarly, the locking strength across all neuronal
units, as quantified by SF-PLV, was higher for the fronto-parietal direction in the delta
band and parieto-frontal signalling dominated in the beta band4 (Fig. 2.7b).

All in all, distinct frequency bands were separated by largely uni-directional cross-
regional communication. Whereas higher frequencies in the beta band were dominated
by information flow from VIP to PFC, fronto-parietal signalling was present at the lower

2 p < 0.05, Rayleigh test for circular uniformity
3 locked pairs at 3Hz: 1745 vs. 973

locked pairs at 20Hz: 990 vs. 1149
odds-ratio 2.081, p < 10 · 10−35, Fisher’s exact test

4 Wilcoxon rank-sum test: p = 0.007 (3Hz), p = 5.107 · 10−7 (20Hz)
total number of neurons: 444 (PFC), 359 (VIP)
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(c) PFC → VIP
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(d) VIP → PFC
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Figure 2.6: Granger Causality with and without distractor numerosity. Granger
Causality for directed top-down (PFC to VIP, (a, c)) or bottom-up (VIP to PFC, (b, d)) syn-
chrony in trials with (a, b) and without (c, d) interfering numerosity. S: sample presentation, M1:
memory 1, D: distractor presentation, M2: memory 2, WGC: Wiener-Granger Causality. Dashed
vertical lines represent trial epoch boundaries. Note that the visual appearance differs because
of the transformation from a linear to a logarithmic frequency scale (due to the computational
algorithm). Modified from Jacob et al. (2018).
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Figure 2.7: Interregional spike-field locking. (a) Percentage of locked spike-LFP pairs
(from total: PFCunit - VIPLFP n = 4956, VIPunit - PFCLFP n = 3525) as a function of LFP
frequency quantifying if spikes of single neuronal units occurred at specific phases of individual
sites’ LFPs (Rayleigh test for circular uniformity p < 0.05 per combination of single unit, LFP
site and frequency). (b) Spike-field locking strength quantified by the PLV shows how accurately
spikes occurred at specific LFP phases (z-score from shuffled null distribution and sem across
neurons). Modified from Jacob et al. (2018).

frequencies that comprise the delta and theta bands. Analyses with locally referenced
LFP signals that controlled for sensitivity of synchrony measures to the referencing
scheme produced virtually indistinguishable results (Fig. S1).

2.3.3 Task- and memory-content dependent fronto-parietal synchrony

To test if the frequency-specific directed connectivity was a fixed network property (e.g.
”fitted” by training) or if it varied with task demands, SF-PLV for numerosity-coding
PFC units to parietal LFP sites was computed for the memory delays. During the first
memory delay, i.e. when the sample numerosity was the only memory item, phase-
locking of sample-coding PFC units was highest in the beta band (Fig. 2.8a). After
the presentation of the distracting numerosity, however, high locking of sample-selective
units shifted to the lower theta and higher gamma frequencies. Thus, locking in the
theta band was higher in the second memory delay, while for the beta band it was
higher in the first memory delay5. PFC units whose spiking coded the second memory
item, i.e. the distractor, showed SF-PLV that was especially strong in the beta frequency
range, where it was stronger than for sample-selective units6 (Fig. 2.8b). Thus, PFC
units that encoded the most recent memory item were phase-locked most strongly to
parietal beta frequencies. Since phase-estimation is less robust with lower LFP power,

5 Wilcoxon rank-sum p < 0.01
6 Wilcoxon rank-sum p < 0.01
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Figure 2.8: Spike-field locking strength (PLV) for fronto-parietal pairs with signifi-
cant sample or distractor coding. (a) Locking strength during the first and second memory
delays for pairs of frontal sample-numerosity coding single units and parietal LFPs at sites
where sample-coding units were recorded (memory 1: n = 47; memory 2: n = 46 PFC units;
z-score from shuffled null-distribution, shading across neurons). Inset: Cross-epoch comparisons
of locking strength at the 5 Hz (theta) and 20 Hz (beta) frequencies (Wilcoxon rank-sum test,
**p < 0.01). (b) Same analysis like in (a) for pairs of frontal distractor-coding single units and
parietal LFPs at site where distractor-coding units were recorded during the second memory
delay (n = 19 PFC units; sample-coding units from (a) as comparison). Inset: Comparisons of
locking strength at the 5 Hz (theta) and 20 Hz (beta) frequencies across sample and distractor-
coding pairs (Wilcoxon rank-sum test, **p < 0.01). Modified from Jacob et al. (2018).

this analysis was repeated for power-stratified observations, which produced the same
trends (Figs. S2a and S2b).

Fronto-parietal synchrony changed if the distractor was omitted (Figs. 2.4b, 2.5c,
2.6c and 2.6d). Did it also change for different sample and distractor numerosities,
i.e. did synchrony also contain abstract numerosity information? The possibility of
consistent variation of PFCLFP-VIPLFP PLV with numerosities was explored using the
phase-locking selectivity index (PLSI).

Information about the sample numerosity was very high in the delta/theta and beta
frequency bands during stimulus presentation (Fig. 2.9a). During the first memory delay
and distractor presentation sample information was still above baseline levels. In the
second memory delay, after the presentation of the distractor, sample information in the
delta/theta bands increased, while it virtually vanished in the beta band. In contrast,
information about the distractor was only found during distractor presentation in the
delta/theta bands and, especially strong, in the beta band (Fig. 2.9b).

To summarise, task requirements changed fronto-parietal synchrony, with working
memory item specific spike-field locking and strength of LFP-LFP synchrony.
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Figure 2.9: Phase-locking selectivity index (PLSI) PFC-VIP. (a) PLSI quantifying how
much and consistently fronto-parietal synchrony varied with sample numerosity. (b) Same as (a)
but quantifying variability across distractor numerosities. S: sample presentation, M1: memory 1,
D: distractor presentation, M2: memory 2. Dashed vertical lines represent trial epoch boundaries.
Modified from Jacob et al. (2018).

2.3.4 Phase- and frequency dependent information

The previous analyses suggested that during the second memory delay the delta/theta
bands were especially important for communication from PFC to VIP and maintain-
ing sample information. Prefrontal neuronal units’ spiking activity during the second
memory delay was informative of both the sample and distractor numerosities (Jacob &
Nieder, 2014, Fig. 1.10). LFP oscillations change a neuron’s excitability and can modu-
late presynaptic spikes’ impact on the postsynaptic membrane potential, thus acting as
filtering reading frame (Gupta et al., 2016). To test if a receiving parietal population
could demix multiplexed sample and distractor information from prefrontal neurons, I
quantified how much information prefrontal spikes binned into ranges of phases of VIP
LFPs contained. The rationale behind this approach is that some (groups of) spikes
might be more informative than others (Fig. 2.10).

During the first memory delay sample information was not distributed uniformly across
spikes from prefrontal sample-selective units (n = 98, Figs. 2.11a and 2.11c). Rather,
spikes that occurred around optimal phases of theta and beta/gamma oscillations in
VIP carried significantly more information than at other phases7. Notably, prefrontal
sample information was distributed even more non-uniformly across VIP phases during
the second memory delay (n = 73, Figs. 2.11b and 2.11c). Whereas phase-dependent
coding during the first memory delay was higher in the beta than the theta bands, in
the second delay it was strongly shifted to lower frequencies8 (Fig. 2.11c). Additionally,
the optimal phase for sample readout in the theta band shifted from −1

4π in the first
to −3

4π in the second memory delay. The strong phase-dependent concentration of aug-

7 p < 0.01, permutation test
8 p < 0.05, permutation test
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Figure 2.10: Schematic for phase-resolved spike information. Left: spikes (horizontal
lines) were grouped by the LFP phase at which they occurred (represented by the corresponding
colouring). Right: individual ”phase groups” of spikes were then subjected to an information
analysis.

mented sample information suggests that other phases in the theta band could enhance
readout of the distractor numerosity. Indeed, in the same memory epoch distractor
information from distractor-selective prefrontal neurons was non-uniformly distributed
across parietal theta phases (n = 73, Figs. 2.11d and 2.11e). Of note, the optimal theta
phases for sample and distractor readout were well separated9 (Fig. 2.11f). Strikingly,
the distractor numerosity occupied the same optimal readout theta phase as the sample
numerosity did in the first memory delay. This was reminiscent of the ”taking-over ef-
fect” that was observed in the spike-field phase-locking value (Fig. 2.8). To control for
possible effects of preprocessing on phase estimation, the same analysis was performed
without the subtraction of evoked potentials (Fig. S3). Consistent with the previous re-
sults, phase-dependency of information was similarly distributed across frequencies and
optimal readout theta readout phases were significantly different10.

Within PFC numerosity information was also enhanced at specific phases of PFC
LFP oscillations (Fig. 2.12). Similar to the cross-regional perspective, both sample and
distractor information were phase-dependent in the theta band and their optimal readout
phases were significantly separated11 (Figs. 2.12c and 2.12d). Additionally, distractor but
not sample information was significantly phase-dependent in the beta band (Fig. 2.12c).
Accordingly, optimal readout phases in that frequency band did not differ12 (Fig. 2.12d).

The phase differences of optimal theta readout phases between cross- and intra-
regional were around half a period. Since this was also the average phase difference
between cross-regional LFPs (Fig. 2.13a), which in turn is a consequence of common-
average referencing (Shirhatti et al., 2016), a control analysis is warranted. Complex
mediation analysis (Pascual-Marqui et al., 2017) was used to test if the LFP signal in
VIP was mediated by frontal LFP. Indeed, the highest contribution was found in the

9 sample: 134± 24◦, distractor: 26± 25◦, p = 0.03, permutation test
10 sample: 126± 27◦, distractor: 32± 22 , p = 0.03, permutation test
11 sample: 34± 20◦, distractor: 134± 31◦, p = 0.03, permutation test
12 sample: 151± 66◦, distractor: 130± 52◦, p = 0.64, permutation test
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Figure 2.11: Prefrontal numerosity information dependent on parietal oscillation
phase. (a) Normalised sample information (ω2) in spike counts from sample-selective prefrontal
neurons at specific phases of VIP LFP during the first memory delay. (b) same analysis like
(a) during the second memory delay. (c) Percentage of phase-dependent sample information in
PFC spikes as a function of parietal LFP frequency. Shading: bootstrap SEM. Horizontal bars:
significant phase-dependency (p < 0.01, permutation test). (caption continued on next page)
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delta/theta bands during the memory delays (Fig. 2.13b). Notably, however, mediation
by PFC oscillations never exceeded 25 %, suggesting that most of the fronto-parietal
phase dependent coding was not an artefact of intra-frontal phase-dependency.

All in all, both sample and distractor information was non-uniformly distributed across
VIP LFP phases, especially in the theta band. Phase-dependence was especially strong
during the second memory delay, when both numerosities were held in working memory
and possibly competed for resources. This competition could theoretically be resolved by
a downstream receiver population because optimal readout phases were well separated.

2.3.5 Behavioural relevance

Did fronto-parietal connectivity impact behaviour? If so, the presented metrics should
co-vary with behavioural performance. Figure 2.14a shows the difference in fronto-
parietal LFP synchrony PLV for the fastest and slowest 25 % of correct trials. During
the second memory delay, theta synchrony was higher for faster trials, while delta or
beta synchrony were not predictive of the response time (p < 10−4, Wilcoxon rank sum
test, Fig. 2.14b).

Next, the phase-dependence of sample and distractor spike information was assessed
for error trials. To ensure statistical comparability trials numbers were matched with the
analysis for correct trials (compare Figs. 2.11b and 2.11d). Due to the relatively small
number of error trials, a random subset of correct trials was replaced with all available
error trials in respective behavioural sessions, thus possibly underestimating effects (on
average 37 % of trials were replaced, Siegel et al. (2009)). For sample information the
replacement with error trials did not have an effect on the phase dependence in delta
and alpha bands (Fig. 2.14c). Optimally encoding phases for these bands as well as the
percentage of phase-dependent information were similar to the same analyses that used
only correct trials (Fig. 2.14e). Notably, however, sample information in the theta band
was less and in the beta band was more phase-dependent than in purely correct trials13.
The same analysis for the distractor numerosity, again, shows similar phase dependency
and optimal phase in the delta band (Figs. 2.14d and 2.14f). In contrast, increased

13 p < 0.05, permutation test

Figure 2.11 (continued from previous page): Inset: mean ratio of phase-dependency in the
delta and beta bands (whiskers: bootstrap SEM, p < 0.05 permutation test). (d) same analysis
like (b) for distractor information contained in spike counts of distractor-selective neurons. (e)
same analysis like (c) for the distractor information during the second memory delay (sample-
information from (c) for reference). (f) Top, polar plots: Normalised prefrontal sample and
distractor information as a function of VIP theta phase. Circle markers and associated error
bars indicate mean normalised information and bootstrap SEM at the individual phase bin.
Solid closed traces are cosine fits. Short solid lines along the polar dimension and orthogonal
partial circles indicate optimal readout phases and bootstrap SEM. Bottom: Location of optimal
phases with bootstrap SEM on the LFP oscillation in the time domain (cosine). Modified from
Jacob et al. (2018).
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Figure 2.12: Prefrontal numerosity information dependent on prefrontal oscillation
phase. (a) Normalised sample information (ω2) in spike counts from sample-selective prefrontal
neurons at specific phases of PFC LFP during the second memory delay. (b) same analysis
like (a) for distractor information contained in spike counts of distractor-selective neurons. (c)
Percentage of phase-dependent sample or distractor information in PFC spikes as a function of
prefrontal LFP frequency. Shading: bootstrap SEM. (caption continued on next page)
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Figure 2.12 (continued from previous page): Horizontal bars: significant phase-dependency
(p < 0.01, permutation test). Inset: mean ratio of phase-dependency in the delta and beta
bands (whiskers: bootstrap SEM, p < 0.05 permutation test). (d) Top, polar plots: Normalised
prefrontal sample and distractor information as a function of PFC theta phase. Circle markers
and associated error bars indicate mean normalised information and bootstrap SEM at the
individual phase bin. Solid closed traces are cosine fits. Short solid lines along the polar dimension
and orthogonal partial circles indicate optimal readout phases and bootstrap SEM. Bottom:
Location of optimal phases with bootstrap SEM on the LFP oscillation in the time domain
(cosine). (e) same analysis like (d) for beta frequency band. Modified from Jacob et al. (2018).
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Figure 2.13: Fronto-parietal interactions. (a) Mean phase differences between LFPs from
PFC and VIP in the theta frequency band. (b) Complex mediation analysis. Percentage of
VIP-LFP signal mediated by PFC-LFP and not mediated by PFC-spikes. Modified from Jacob
et al. (2018).
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Figure 2.14: Behavioural relevance of fronto-parietal connectivity. (a) Difference in
fronto-parietal synchrony (PLV) for the fastest and slowest 25 % of trials. (b) Normalised fronto-
parietal synchrony in the delta, theta and beta bands during the second memory delay for the
fastest and slowest 25 % of trials. ∗∗ : p < 10−4, Wilcoxon rank sum test. (c) Normalised sample
information (ω2) in spike counts from sample-selective prefrontal neurons at specific phases of
VIP LFP during the second memory delay in error trials (compare Fig. 2.11b). (e) Percentage of
phase-dependent sample information in PFC spikes in error trials as a function of parietal LFP
frequency. Correct trials for reference (compare Fig. 2.11e). Shading: bootstrap SEM. Horizontal
bars: significant phase-dependency (p < 0.01, permutation test). (d, f) same analysis like (c, e)
for the distractor numerosity. Modified from Jacob et al. (2018).
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phase-dependence in the alpha and decreased in the beta band were predictive of error
trials.

In summary, fronto-parietal connectivity, especially in the theta band, was predictive
of behaviour.
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3 Neuronal Signatures of Contextual
Decision-Making in Mouse Prefrontal
Cortex and Mediodorsal Thalamus

3.1 Behaviour

3.1.1 Response ball task to test executive function in mice

To investigate how sensory information is translated into future action, including its
representation in working memory and its utilisation in decision-making, as well as how
these processes are influenced by different contexts, a behavioral setup was constructed
to train and test head-fixed mice. This setup extended a response device that was
originally developed by Sanders and Kepecs (2012) (Fig. 3.1). While in the setup the
animals rested their forepaws on a ping pong ball that was the manipulandum of the
response device (henceforth called response ball). The ball was fixed on an axis parallel
to the animal’s anterior-posterior axis, thus allowing only left or right rotations via paw
movements. Binary choices were indicated by rotating the response ball by a pre-defined
angle in one or the other direction (i.e. left or right) until it exceeded a threshold which
was equal for correct and wrong choices (see example traces in Fig. 3.5). Distance to the
threshold was not explicitly signalled to the animal but rather learned implicitly during
training and varied across animals. The distance to the threshold was dependent on the
cumulative rotated angle to both sides, i.e. if there was a rotation to the wrong side the
required rotation angle to the correct side was effectively increased.

Mice were trained in an auditory two-alternative forced choice (2AFC) task that can
be conceptualised into two major trial epochs: a context epoch followed by an instruction
epoch (Fig. 3.2).

response
ball

reward
spout

monitor
speaker speaker

Figure 3.1: Core elements of the behavioural
testing setup An animal was head-fixed in front of
a computer monitor. Its forepaws rested on the re-
sponse ball. Auditory stimuli were played from two
speakers next to the monitor. The response ball could
be rolled left or right. Correct rotation resulted in
water dispensal from the reward spout.
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Figure 3.2: Two-alternative forced choice task with continuous read-out of response
ball rotations. Head-fixed animals rested their forepaws on a ping-pong ball while being located
in front of a computer screen. A grey screen signalled the availability of and being in a trial. To
initiate a trial animals were required to hold the ball still for 500 ms. If during hold-still epochs
the admissible range (thresholds: dotted lines) was exceeded (grey rotation traces), the recorded
angle as well as the hold still timer were reset (grey arrows and dashed reset pulses). In these
cases the epochs were extended until a continuous stretch of quiescence was registered. After
initiation one of three randomly selected auditory cues was played for 100 ms to inform animals
if the upcoming response could be prepared (coloured rectangles) or the choice must be deferred
to later in the trial. This was followed by a delay epoch in which animals were again required to
hold the ball still for 500 ms. After this delay one of two instruction cues was played for up to
100 ms. If the context was non-predictive, the instruction cue was selected randomly. On hearing
the instruction cue the animal could turn the ball left or right. If a threshold of required rotation
angle was hit, the potentially still playing instruction cue stopped and the grey screen turned off.
Hitting the correct side’s threshold lead to dispensal of a water reward. After an incorrect choice
as well as not rotating the ball sufficiently far within 5000 ms (”missing”) reward was omitted.

44



3 Contextual Decision-Making in Mice 3.1 Behaviour

Table 3.1: Possible trial conditions and respective percentages of total trials.

instruction

context go-left (50 %) go-right (50 %)

prepare-left (25 %) left-prepare (25 %) - (0 %)
prepare-right (25 %) - (0 %) right-prepare (25 %)
defer (50 %) left-defer (25 %) right-defer (25 %)

The primary task was an auditory discrimination during the so-called instruction
epoch. One of two auditory movement instructions (go-left or go-right , sinusoidal up-
(11 kHz to 14 kHz) or down-sweeps (15 kHz to 12 kHz), respectively, maximum duration
1000 ms, Fig. 7.2) signalled the required response side. Animals could respond as soon as
the instruction was started. A correct response by ways of exceeding a rotation threshold
was followed by a water reward. An incorrect response immediately aborted the trial.

The instruction epoch was preceded by the so-called context epoch. It comprised a
stimulus presentation of fixed duration of 100 ms followed by a delay of at least 500 ms
(dependent on the animal’s behaviour, see below). Short auditory context cues played at
the beginning of the context epoch informed the animal about the upcoming instruction.
Two contexts, referred to as prepare-left (white-noise lowpass-filtered at 8 kHz) and
prepare-right (white-noise highpass-filtered at 14 kHz), were predictive of the instruction,
giving the animal the possibility to prepare its upcoming action after the instruction. In
contrast, the third context cue (unfiltered white-noise) was uninformative, thus I refer
to it as the defer context because the animal had to defer its choice until the instruction
epoch. Predictive and non-predictive contexts were shown pseudo-randomly with equal
probability (i.e. 50 % non-predictive, 50 % predictive, of which half were predictive of
either the go-left or the go-right instruction). Together, this constitutes four different
trial conditions dependent on combination of context and instruction (Table 3.1).

Importantly, the response ball was required to be held still during the context epoch;
animals could not simply continuously rotate it throughout the delay. This was controlled
by smaller thresholds set on the cumulative rotation angle. These thresholds were set
as small as possible but were not at 0 for practical reasons (physiological tremor, noise
in response device). If either threshold was exceeded, the timer for the delay epoch was
reset to 0, thus effectively extending the context epoch. Since this delayed the possibility
for reward, animals were thus incentivised to keep the delay as short as possible.

3.1.2 Mice learned abstract goal-directed behaviour and used context
advantageously

In order to assert if animals had successfully learned the behavioural task and if con-
text cues were used, task performance (percent correct) and response times (time from
instruction to successful crossing of rotation threshold) were investigated per condition
(instruction × context).
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Summary statistics:

le� prep le� defr right prep right defr
count 53.000000 53.000000 53.000000 53.000000
mean 0.905082 0.870978 0.817866 0.765174
std 0.101117 0.115253 0.094280 0.117636
min 0.520000 0.592920 0.620000 0.520000
25% 0.859649 0.809524 0.764706 0.692308
50% 0.934066 0.894737 0.827160 0.796117
75% 0.979381 0.962264 0.886792 0.850746
max 1.000000 1.000000 1.000000 0.962963

Shapiro test (normality): ShapiroResult(statistic=0.9449607133865356, pvalue=3.2475674061061e-07)
Bartlett test (equal variances, normal): BartlettResult(statistic=3.4169384741734055, pvalue=0.33169577737010875)
Levene test (equal variances, non-normal): LeveneResult(statistic=1.4582885215450714, pvalue=0.22702687117971126)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 0.493652 0.493652 42.708028 4.811216e-10
C(ctx, Sum) 1.0 0.099818 0.099818 8.635674 3.668598e-03
C(ins, Sum):C(ctx, Sum) 1.0 0.004578 0.004578 0.396085 5.298089e-01
Residual 208.0 2.404220 0.011559 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 21.213139 1.0 52.0 0.000027
ctx 29.501788 1.0 52.0 0.000001
ins:ctx 1.700065 1.0 52.0 0.198022
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Summary statistics:

le� right
count 53.000000 53.000000
mean 0.034103 0.052692
std 0.060239 0.092326
min -0.124068 -0.155094
25% 0.000000 -0.005772
50% 0.023256 0.029688
75% 0.062500 0.103283
max 0.172115 0.301495

Shapiro test (normality): ShapiroResult(statistic=0.9578710794448853, pvalue=0.0019721481949090958)
Bartlett test (equal variances, normal): BartlettResult(statistic=9.119365499927959, pvalue=0.0025291766991321243)
Levene test (equal variances, non-normal): LeveneResult(statistic=5.482037958243362, pvalue=0.021119241565147745)
ttest: le� against 0: Ttest_1sampResult(statistic=4.121557678658868, pvalue=0.0001356279901391206)
Wilcoxon: le� against 0: WilcoxonResult(statistic=231.0, pvalue=8.706983755485861e-05)
ttest: right against 0: Ttest_1sampResult(statistic=4.154844079368892, pvalue=0.0001216282722710402)
Wilcoxon: right against 0: WilcoxonResult(statistic=291.0, pvalue=0.00017127785181260613)
ttest equal var: le� vs right: Ttest_indResult(statistic=-1.227553469788638, pvalue=0.22238592179716352)
ttest unequal var: le� vs right: Ttest_indResult(statistic=-1.227553469788638, pvalue=0.22283425959449768)
ttest paired: le� vs right: Ttest_relResult(statistic=-1.3038652761886917, pvalue=0.19802222923391669)
Wilcoxon: le� vs right: WilcoxonResult(statistic=611.0, pvalue=0.35490666191461684)

all_rec_sess
Figure 3.3: Task performance as fraction correct (excluding missing trials) in valid
recording sessions. (a) Performance per condition (instruction × context). Statistically higher
performance in go-left trials: repeated-measures two-way ANOVA, main factor instruction
F (1, 52) = 21.21, p = 2.7 · 10−5; statistically higher performance in prepare trials: repeated-
measures two-way ANOVA, main factor context F (1, 52) = 29.50, p = 1 · 10−6. (b) Performance
difference of prepare and defer per instructed side. Context effect was similarly strong in go-left
and go-right trials: Wilcoxon signed-rank test, T = 611, p = 0.35. Variance was higher in go-right
trials: Levene test for equal variances, W = 5.48, p = 0.02. Every dot is the mean performance
in one session; see methods for description of raincloud plots.

Overall, animals showed a high task performance of 83.98 % (Fig. 3.3a). Of note,
animals were significantly better in performing go-left trials in comparison to go-right
trials1 (Fig. 3.3a). Furthermore, they consistently showed higher performance in trials
in which they received a prepare context as compared to when they had to defer their
decision2 (Figs. 3.3a and 3.3b).

While the average effect of the prepare context on task performance was similar for
both instructed sides3, the range of values was higher for go-right trials4 (Fig. 3.3a).

The response time is the duration from the onset of the instruction to the first point
in time when the cumulative response ball angle exceeded the threshold value for the
instructed side. Overall, animals responded very fast (Fig. 3.4a, 310.82 ± 104.25 ms,
correct trials, session medians). Since this value is well below the maximum duration of
the instruction cue (1000 ms), this means that in most correct trials the instruction cue
was not fully played.

1 88.83± 10.39% (go-left) vs. 79.20± 9.65% (go-right)
repeated-measures two-way ANOVA, main factor instruction F (1, 52) = 21.21, p = 2.7 · 10−5

2 86.15± 9.77% (prepare) vs. 81.81± 11.65% (defer)
repeated-measures two-way ANOVA, main factor context F (1, 52) = 29.50, p = 1 · 10−6

3 Wilcoxon signed-rank test, T = 611, p = 0.35
4 means within instructed side: 3.41± 6.20% (go-left) vs. 5.27± 9.23%

Levene test for equal variances, W = 5.48, p = 0.02
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Summary statistics:

le� prep le� defr right prep right defr
count 53.000000 53.000000 53.000000 53.000000
mean 270.122642 272.009434 339.679245 361.462264
std 85.079482 83.951880 116.732481 131.229205
min 163.000000 181.000000 170.500000 180.000000
25% 213.500000 219.000000 254.000000 278.000000
50% 248.000000 248.000000 321.500000 329.000000
75% 309.000000 303.500000 388.000000 398.500000
max 633.000000 629.500000 700.000000 804.500000

Shapiro test (normality): ShapiroResult(statistic=0.8684971928596497, pvalue=1.4164726249571435e-12)
Bartlett test (equal variances, normal): BartlettResult(statistic=15.634274463545037, pvalue=0.001347538241222257)
Levene test (equal variances, non-normal): LeveneResult(statistic=2.1689753878860754, pvalue=0.09276738169873608)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 3.350130e+05 335013.001179 29.690513 1.425564e-07
C(ctx, Sum) 1.0 7.423445e+03 7423.444575 0.657902 4.182286e-01
C(ins, Sum):C(ctx, Sum) 1.0 5.245143e+03 5245.142689 0.464851 4.961242e-01
Residual 208.0 2.346969e+06 11283.503220 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 24.923364 1.0 52.0 0.000007
ctx 3.680097 1.0 52.0 0.060564
ins:ctx 2.888362 1.0 52.0 0.095197

all_rec_sess
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Summary statistics:

le� right
count 53.000000 53.000000
mean -1.886792 -21.783019
std 27.852918 83.009065
min -59.000000 -380.500000
25% -18.500000 -50.000000
50% -2.000000 -15.500000
75% 14.000000 1.000000
max 85.000000 178.000000

Shapiro test (normality): ShapiroResult(statistic=0.8169417977333069, pvalue=3.8277700453726027e-10)
Bartlett test (equal variances, normal): BartlettResult(statistic=52.07680909750922, pvalue=5.337155219276221e-13)
Levene test (equal variances, non-normal): LeveneResult(statistic=10.578858455889554, pvalue=0.0015427866187680698)
ttest: le� against 0: Ttest_1sampResult(statistic=-0.4931640063840746, pvalue=0.6239730269436228)
Wilcoxon: le� against 0: WilcoxonResult(statistic=650.0, pvalue=0.5619829383191917)
ttest: right against 0: Ttest_1sampResult(statistic=-1.9104271416252248, pvalue=0.061599644861732396)
Wilcoxon: right against 0: WilcoxonResult(statistic=454.5, pvalue=0.02085089980041887)
ttest equal var: le� vs right: Ttest_indResult(statistic=1.6543067047108289, pvalue=0.10108036215908797)
ttest unequal var: le� vs right: Ttest_indResult(statistic=1.6543067047108289, pvalue=0.10299566643990782)
ttest paired: le� vs right: Ttest_relResult(statistic=1.6995181321494075, pvalue=0.09519701330303774)
Wilcoxon: le� vs right: WilcoxonResult(statistic=514.5, pvalue=0.07516470697676468)

all_rec_sess

Figure 3.4: Response time (time from instruction onset to threshold crossing) for
correct trials in valid recording sessions. (a) Response time per condition (instruction ×
context). Response times were statistically shorter in go-left trials: repeated-measures two-way
ANOVA, main factor instruction F (1, 52) = 24.92, p = 7 · 10−6 (b) Response time difference of
prepare and defer per instructed side. Context only had an effect on response times in go-right
trials: Wilcoxon signed-rank tests against 0, T = 454.5, p = 0.02 (go-right), T = 650.0, p = 0.56
(go-left). Variance was statistically higher in go-right trials: Levene test for equal variances,
W = 10.58, p = 1.54 · 10−3. Every dot is the median response time in one session; see methods
for description of raincloud plots.
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Figure 3.5: Response ball example traces.
Traces coloured blue and orange represent cumula-
tive rotation (y-axis) of the response ball across time
(x-axis) in one example trial each with go-left and
go-right movement instruction, respectively. Verti-
cal dashed line represents the time of the onset of
the movement instruction (go-left or go-right), before
which (t < 0) was the context epoch and after which
(t > 0) was the instruction epoch. Horizontal dotted
lines represent the (implicit, hidden to the animal)
thresholds to which the animal was required to rotate
the response ball. Parts of the response ball traces
after the first crossing of the thresholds were desat-
urated to signify that this was not relevant for the
outcome of the task.

Animals were faster in go-left trials, consistent with the higher task performance in
those trials5 (Fig. 3.4a). A prior prepare context decreased response times in trials with
go-right6 but not go-left7 instructions8 (Fig. 3.4b). Similar to task performance the
effect of context was more variable across sessions for go-right trials9 (Fig. 3.4b).

Together, this shows that animals successfully learned the mapping of an abstract
behavioural response and external stimuli. Context cues were used advantageously and
increased trial performance and, to a lesser extent, response times. Notably, behaviour
in trials with go-left and go-right responses significantly differed.

3.1.3 Covert movements during context epoch correlated with task
performance and response times

Using the continuous read-out of the response ball’s rotation throughout the entire trial,
the decision-making process can be dissected in more detail. Figure 3.5 shows to cumu-
lative response ball rotation across time for one trial each with a go-left and go-right
movement instruction. In the figure the traces were aligned to movement instruction
onset. Thus, parts of the traces that are at times t < 0 are part of the context epoch,
while parts at times t >= 0 are part of the instruction epoch.

In the instruction epoch (t >= 0) the two traces not only differ in the side at which the
threshold was crossed, but also in the movements that were made beforehand. While the
blue trace for the go-left trial shows a relatively straight rotation towards the threshold
after a short delay, the orange trace for the go-right trial is more complex. Here, the ball
was slowly rotated towards the right threshold, then moved back quickly and, finally,

5 269.82± 83.58ms (go-left) vs. 344.72± 144.68ms (go-right)
repeated-measures two-way ANOVA, main factor instruction F (1, 52) = 24.92, p = 7 · 10−6

6 Wilcoxon signed-rank test against 0 (go-right), T = 454.5, p = 0.02
7 Wilcoxon signed-rank test against 0 (go-left), T = 650.0, p = 0.56
8 per side differences prepare - defer of session medians: −1.89 ± 27.85ms (go-left) vs. −21.78 ±

83.01ms (go-right)
9 Levene test for equal variances, W = 10.58, p = 1.54 · 10−3
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quickly moved to cross the right threshold. The desaturated part of the trace shows that
after the initial threshold crossing the ball was slowly rotated back left. In contrast,
the post-threshold trace of the go-left trial (desaturated blue) shows that in that trial
the ball was further rotated left even after threshold crossing. Since the trial outcome
was determined by the side of the first threshold crossing the rotation after threshold
crossing was not subject to any reinforcement (hence the desaturated colouring).

The parts of the traces before the onset of the movement instruction (t < 0) are parts
of the context epoch. Animals were required to hold the response ball still during this
epoch, which translated into smaller measured rotations. Due to technical reasons move-
ments within a very small ”grace threshold” were not penalised, which is demonstrated
by the fact that at t = 0 the ball rotation values of two example traces are not at exactly
0. Furthermore, the two examples demonstrate a relatively active context epoch for the
go-left trial, while there was almost no movement in the go-right trial.

The small grace thresholds of the response ball during the context epoch open up the
opportunity to investigate micro-movements and their influence on trial outcome and
response time. Thus, in the following these psychometric parameters were investigated
in subsets of trials. First, the relative movement activity 0 ms to 600 ms from context cue
onset was used to classify trials by active or calm context epoch. Second, the dominant
side of movement 0 ms to 600 ms from context cue onset was captured by the movement
tendency that defines subsets of trials with dominant left-ward movement (leftish) and
dominant right-ward movement (rightish).

Movement activity Figure 3.6a shows that, on average, the task performance was
not affected by how much an animal moved during the context epoch10. In contrast,
response times differed dependent on context epoch activity (Fig. 3.6b): Responses in
the instruction epoch were consistently faster if animals had been more active before11.

Movement side tendency Context movement side tendency could be either consis-
tent or inconsistent with the upcoming movement instruction (Table 3.2). Concretely,
if during the context epoch there was more covert movement to the left (leftish context
epoch) and the later movement instruction was go-left , context movement tendency was
consistent with instruction. Conversely, had context movement tendency been rightish
in go-left trials, they would be inconsistent.

Figure 3.7a shows a clear effect of context epoch tendency on task performance. Except
for go-left-prepare trials12 all conditions had a higher task performance if the tendency
was consistent with the upcoming instruction13.

10 Wilcoxon signed-rank test: pgo-left−prepare = 0.118, pgo-left−defer = 0.193, pgo-right−prepare = 0.539,
pgo-right−defer = 0.901

11 Wilcoxon signed-rank test: pgo-leftprepare = 0.002, pgo-leftdefer = 9.37·10−7, pgo-rightprepare = 1.84·10−8,
pgo-rightdefer = 5.24 · 10−6

12 Wilcoxon signed-rank test, pgo-left−prepare = 0.7
13 Wilcoxon signed-rank test, pgo-left−defer = 0.022, pgo-right−prepare = 0.018, pgo-right−defer = 0.016
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Figure 3.6: Performance and response times dependent on movement activity (active
and calm) during the context epoch (0 ms to 600 ms). (a) Mean task performances per
trial condition in calm and active trials. Performance was not significantly influenced by context
movement activity: Wilcoxon signed-rank test: pgo-left−prepare = 0.118, pgo-left−defer = 0.193,
pgo-right−prepare = 0.539, pgo-right−defer = 0.901. (b) Median response times per trial condition in
calm and active trials. Response time was significantly shorter in context-active trials: Wilcoxon
signed-rank test: pgo-leftprepare = 0.002, pgo-leftdefer = 9.37 · 10−7, pgo-rightprepare = 1.84 · 10−8,
pgo-rightdefer = 5.24 · 10−6. Every dot represents the average per session and trial condition.
Colours represent trial conditions. Big × markers represent the mean across sessions.

In contrast to performance, the response times were not consistently affected by move-
ment tendency during the context epoch14 (Fig. 3.7b).

Together, these findings show that very simple trial classifications based on the contin-
uous read-out of response ball roll provide a more detailed view onto the decision-making
process.

14 Wilcoxon signed-rank test, pgo-left−prepare = 0.750, pgo-left−defer = 0.646, pgo-right−prepare = 0.004,
pgo-right−defer = 0.311

Table 3.2: Consistency of context epoch movement side tendency with upcoming movement
instruction.

instruction

side tendency
(context epoch) go-left go-right

leftish consistent inconsistent
rightish inconsistent consistent
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Figure 3.7: Performance and response times dependent on movement tendency (left-
ish and rightish) during the context epoch (0 ms to 600 ms). (a) Mean task perfor-
mances per trial condition in leftish and rightish trials. Performance was significantly better
in trials in which tendency was consistent with instruction, except for go-left prepare trials:
Wilcoxon signed-rank test, pgo-left−prepare = 0.7, pgo-left−defer = 0.022, pgo-right−prepare = 0.018,
pgo-right−defer = 0.016. (b) Median response times per trial condition in leftish and rightish
trials. Response times were not significantly different depending on tendency, except for go-
right prepare trials: Wilcoxon signed-rank test, pgo-left−prepare = 0.750, pgo-left−defer = 0.646,
pgo-right−prepare = 0.004, pgo-right−defer = 0.311. Every dot represents the average per session
and trial condition. Colours represent trial conditions. Big × markers represent the mean across
sessions.

3.1.4 Submovement decomposition

3.1.4.1 Response ball rotation traces can be decomposed into individual
submovements

While the simple approach described in the previous Section already demonstrated the
usefulness of a continuous readout of movement, the ball rotation data allowed for even
finer dissection of the ongoing processes. Previous work in humans, non-human primates
and, more recently, mice (Flash & Hogan, 1985; Flash & Hochner, 2005; Bollu et al.,
2018) has established that complex limb movements are composed of multiple simple
kinematic primitives. These discrete primitives or submovements (SMs) can be concep-
tualised as realisations of a more continuous, ongoing decision making process that is
comprised of micro-decisions (Fishbach et al., 2007).

Leveraging this conceptual framework, I developed an efficient algorithm that fits bell-
shaped so-called minimum-jerk SMs to the continuous ball rotation traces (see Submove-
ment decomposition for detailed description). While minimum-jerk SMs were chosen for
their simplicity, other primitives are viable alternatives: e.g. the support-bounded log-
normal (Plamondon et al., 1993; Rohrer & Hogan, 2006) or be based on extrema of
temporal derivatives of trajectories speed minima and curvature (Viviani & Terzuolo,
1982; speed minima and curvature: Bollu et al., 2018; jerk and snap extrema (”soft-
symmetry”): Fishbach et al., 2005).
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Figure 3.8: Decomposition of the ball rota-
tion time-series into kinematic primitives.
Shown is a short segment from an example trial,
starting from the instruction cue onset. (a) Ro-
tation or path length of moved ball circumference
in mm (positive and negative values for left and
right rotations). Horizontal dashed line represents
the (correct) threshold that had to be crossed.
Trace after the first crossing is when the animal
received and consumed its reward. (b) Ball
velocity with minimum-jerk submovements fitted
(blue and orange). (c) Original velocity and the
reconstruction from summed submovements in (b)

In the approach chosen here, the response ball rotation trace (Fig. 3.8a) is first con-
verted into a (rotational) velocity trace (Fig. 3.8b, black trace). The algorithm then
iteratively fits minimum-jerk SMs to the velocity trace (coloured bell-shaped curves in
Fig. 3.8b). Since the response ball could be rotated left or right around the anterior-
posterior rotational axis, individual SMs can be either leftward or rightward. In Fig. 3.8b
this is represented by colouring of SMs in blue and orange, respectively, as well as pos-
itive and negative velocities. More complex velocity profiles are realised by the partial
overlapping of individual SMs of different strength (peak velocity) and duration. Finally,
super-positioning all extracted SMs reconstructs (green dashed curve in Fig. 3.8c) the
original velocity trace with high fidelity.

3.1.4.2 Prior context decreased delay to response initiation but did not
affect duration of execution

Response times are often used as a proxy for the duration of decision-making. However,
they measure a mixture of at least two components: First, the time after a stimulus
that is required to start a motor response, and, second, the time it takes to execute
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init. ex. Figure 3.9: Explanation of response initiation
and execution. Two example response ball rotation
traces across time (compare Fig. 3.5). Response ini-
tiation (init.) is the point in time after movement
instruction onset at which the first submovement oc-
curred. Response execution (ex.) is the duration from
response initiation until the first crossing of the re-
sponse threshold. In the examples response initiation
is earlier in the orange than in the blue trace. Con-
versely, response execution is much shorter in the blue
than in the orange trace. Vertical dashed line: move-
ment instruction onset. Horizontal dotted lines: rota-
tion thresholds.

the movement that is part of the response. Arguably, the first component, the response
initiation, is more concerned with internal processes of decision-making, while the second
component, the response execution, is more a reflection of mechanical processes (Dotan
et al., 2019).

Therefore, to better understand the response after a movement instruction was shown,
and to investigate if prior contexts differentially affected different components of the
response, I used the extracted SMs to define the response initiation and execution.
Response initiation is the time of the onset of the first SM, while the response execution
is the duration from that onset to the first crossing of the rotation thresholds.

In the explanatory Figure 3.9 both components differ quantitatively for the two ex-
amples. The blue rotation trace of a go-left example trial has slightly later response
initiation but a very short, i.e. fast, response execution. In contrast, the orange trace of
a go-right example trial has an earlier response initiation time but a lengthy, convoluted
response, and thus, a long response execution time.

In most sessions the median response initiation was within the first 98.40 ± 27.29 ms
after the instruction onset. Responses in go-left trials were initiated earlier than in
go-right trials15 (Fig. 3.10a).

Similarly, the response execution time was faster in go-left trials16 (Fig. 3.10b). A
prior prepare context made response initiation faster in go-left17 but not go-right trials18.
Conversely, response execution was not affected by prior context19.

In sum, the continuous response ball data extends simple response times by enabling
the dissection of the response into initiation and execution. Consistent with the com-
pound response times, it was found that responses in go-left trials were initiated and
executed earlier and faster. Additionally, the dissection found a distinctive effect of prior
context only on the initiation of go-left trials.

15 89.88± 38.46ms (go-left) vs 106.88± 35.35ms (go-right)
repeated-measures two-way ANOVA, main factor instruction F (1, 49) = 19.41, p = 5.7 · 10−5

16 173.48± 53.72ms (go-left) vs 222.950± 85.315 (go-right))
repeated-measures two-way ANOVA, F (1, 49) = 13.89, p = 5.03 · 10−4

17 Wilcoxon signed-rank test against 0: T = 334.5, p = 0.003
18 Wilcoxon signed-rank test against 0: T = 589.0, p = 0.815
19 Wilcoxon signed-rank test against 0: go-left : T = 612.0, p = 0.806; go-right : T = 498.0, p = 0.178
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.00000 50.000000
mean 88.110000 91.640000 107.04000 106.720000
std 18.927706 19.532819 33.93599 36.764579
min 52.000000 58.000000 63.00000 60.500000
25% 73.000000 75.250000 83.25000 80.625000
50% 87.000000 87.750000 102.00000 98.250000
75% 102.875000 108.375000 124.00000 117.500000
max 126.000000 126.000000 213.50000 231.500000

Shapiro test (normality): ShapiroResult(statistic=0.8903641104698181, pvalue=6.381705580649211e-11)
Bartlett test (equal variances, normal): BartlettResult(statistic=34.422010770848736, pvalue=1.6136949701756214e-07)
Levene test (equal variances, non-normal): LeveneResult(statistic=3.5676318205919983, pvalue=0.015122675345085832)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 14458.50125 14458.501250 17.833078 0.000037
C(ctx, Sum) 1.0 185.28125 185.281250 0.228525 0.633152
C(ins, Sum):C(ctx, Sum) 1.0 128.80125 128.801250 0.158863 0.690639
Residual 196.0 158910.66500 810.768699 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 19.414997 1.0 49.0 0.000057
ctx 2.438136 1.0 49.0 0.124853
ins:ctx 1.397027 1.0 49.0 0.242926

first movement onset instruction, ins to thrx, correct, all_rec

(b) response execution
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 174.810000 172.140000 226.870000 219.020000
std 54.890419 52.572112 89.413441 81.221664
min 95.000000 97.000000 106.000000 117.500000
25% 137.000000 133.250000 172.125000 162.500000
50% 158.750000 162.000000 198.250000 202.500000
75% 206.875000 195.750000 241.000000 244.000000
max 353.000000 296.500000 502.000000 427.000000

Shapiro test (normality): ShapiroResult(statistic=0.8742958903312683, pvalue=7.670201279674771e-12)
Bartlett test (equal variances, normal): BartlettResult(statistic=20.69062045941384, pvalue=0.00012205628500814759)
Levene test (equal variances, non-normal): LeveneResult(statistic=2.2554380925620254, pvalue=0.08322961890046494)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 122364.045 122364.045000 24.030047 0.000002
C(ctx, Sum) 1.0 335.405 335.405000 0.065867 0.797721
C(ins, Sum):C(ctx, Sum) 1.0 1383.380 1383.380000 0.271670 0.602802
Residual 196.0 998056.850 5092.126786 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 13.886027 1.0 49.0 0.000503
ctx 0.376508 1.0 49.0 0.542316
ins:ctx 1.384949 1.0 49.0 0.244945

response execution time, ins to thrx, correct, all_rec
Figure 3.10: Response initiation and execution for correct trials (during the instruction
epoch). (a) Response initiation, the time from instruction cue onset to the first extracted sub-
movement. Initiation was significantly earlier in go-left than go-right trials: repeated-measures
two-way ANOVA, main factor instruction F (1, 49) = 19.41, p = 5.7 · 10−5. Prior prepare con-
text was associated with significantly earlier initiation of go-left but not go-right responses:
Wilcoxon signed-rank test against 0: go-left : T = 334.5, p = 0.003 go-right : T = 589.0,
p = 0.815. (b) Response execution, response initiation to exceeding the rotation threshold.
Execution was significantly earlier in go-left than go-right trials: repeated-measures two-way
ANOVA, F (1, 49) = 13.89, p = 5.03 · 10−4). Prior context did not significantly affect the execu-
tion: Wilcoxon signed-rank test against 0: go-left : T = 612.0, p = 0.806; go-right : T = 498.0,
p = 0.178. Every dot is the median time in one session; see methods for description of raincloud
plots. Black lines across the conditions connect arithmetic means.
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context: first movement onset

Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 134.660000 115.590000 112.420000 119.180000
std 52.296587 30.086218 24.473301 34.768588
min 72.000000 75.000000 69.500000 70.000000
25% 107.500000 90.250000 94.625000 98.250000
50% 125.250000 109.250000 115.250000 113.750000
75% 135.500000 130.125000 126.875000 128.000000
max 333.000000 219.000000 177.000000 229.000000

Shapiro test (normality): ShapiroResult(statistic=0.8217028975486755, pvalue=2.195799253957697e-14)
Bartlett test (equal variances, normal): BartlettResult(statistic=31.68744721046481, pvalue=6.090469383466042e-07)
Levene test (equal variances, non-normal): LeveneResult(statistic=1.6900105281592843, pvalue=0.17046337210135762)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 4347.78125 4347.781250 3.192256 0.075533
C(ctx, Sum) 1.0 8339.86125 8339.861250 6.123346 0.014190
C(ins, Sum):C(ctx, Sum) 1.0 1894.20125 1894.201250 1.390773 0.239704
Residual 196.0 266947.62500 1361.977679 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 4.795051 1.0 49.0 0.033332
ctx 7.842566 1.0 49.0 0.007283
ins:ctx 2.153626 1.0 49.0 0.148623

first movement onset context, ctx (0, 600), correct, all_rec

Figure 3.11: Movement initiation (context epoch), the
time of onset of the first extracted submovement, for correct
trials. Every dot is the median time in one session; see meth-
ods for description of raincloud plots. Black lines across the
conditions connect arithmetic means.

3.1.4.3 Informative contexts delayed initiation of covert submovements in
the context epoch

As stated earlier, the task required animals to keep the response ball still during the
context epoch, in order to proceed to the instruction epoch. Small movements that were
nevertheless acceptable by the task logic could be decomposed into SMs. To see if timing
of covert SMs was affected by the context, the onsets of the first SMs were quantified.

Figure 3.11 shows that in most sessions the median initiation of a detectable sub-
movement was at 120.46 ± 37.41 ms, that is, shortly after the offset of the context cue.
Variability of initiation times across sessions was comparable to that in the instruction
epoch, demonstrating good detectability of sub-threshold SMs. The presentation of a
prepare context consistently delayed the onset of SMs20.

3.1.4.4 Default surplus of left submovements and context-modulation of
only right submovements

Movements to both sides could occur in any condition, e.g. the go-left trials were not
restricted to movements that only went to the left side. What was the balance of SMs
to either side at different trial epochs and how did context and instruction influence
it? Using the decomposition of velocity traces, one can independently investigate the
occurrence of these events.

In the following, the aforementioned balance was quantified per trial by the difference
of left submovements (LSMs) and right submovements (RSMs) normalised by their sum.
This side index is defined from −1 to 1, with 0 indicating perfect balance and positive
values indicating a surplus of SMs to the left.

During the delay after presentation of the context cue animals were required to hold
the response ball still for 500 ms in order to proceed to the instruction epoch. Rotation

20 126.92± 43.53ms (prepare) vs. 114.01± 27.28ms (defer)
repeated-measures two-way ANOVA, main factor context F (1, 49) = 7.72, p = 7.7 · 10−3
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 0.107829 0.055455 0.049750 -0.080296
std 0.189825 0.217079 0.190583 0.168310
min -0.277324 -0.361045 -0.407857 -0.401181
25% -0.041731 -0.117860 -0.072636 -0.205984
50% 0.091126 0.073224 0.070008 -0.092166
75% 0.259299 0.204419 0.201306 0.051241
max 0.495956 0.528571 0.383929 0.341284

Shapiro test (normality): ShapiroResult(statistic=0.9903197288513184, pvalue=0.19888247549533844)
Bartlett test (equal variances, normal): BartlettResult(statistic=3.155911817002377, pvalue=0.3682056797327281)
Levene test (equal variances, non-normal): LeveneResult(statistic=1.2585718956749632, pvalue=0.2898371119437311)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 0.469628 0.469628 12.709232 0.000457
C(ctx, Sum) 1.0 0.075411 0.075411 2.040797 0.154721
C(ins, Sum):C(ctx, Sum) 1.0 0.415965 0.415965 11.256988 0.000952
Residual 196.0 7.242540 0.036952 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 24.941373 1.0 49.0 0.000008
ctx 4.145746 1.0 49.0 0.047164
ins:ctx 21.913257 1.0 49.0 0.000023

SI count, ctx (0, 600), correct, all_rec

(b) LSM
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 2.398602 2.480311 2.569984 2.480802
std 0.826673 0.796993 0.820351 0.590152
min 1.272727 1.111111 0.961538 1.142857
25% 1.702156 1.815476 2.042878 1.983333
50% 2.226496 2.345238 2.500000 2.510870
75% 2.945055 3.061136 3.000000 2.875000
max 3.966667 4.444444 4.545455 3.898551

Shapiro test (normality): ShapiroResult(statistic=0.9796968698501587, pvalue=0.005388758610934019)
Bartlett test (equal variances, normal): BartlettResult(statistic=6.824644793181871, pvalue=0.07770200668998754)
Levene test (equal variances, non-normal): LeveneResult(statistic=2.334785301031501, pvalue=0.07516857800075229)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 0.369255 0.369255 0.631247 0.427859
C(ctx, Sum) 1.0 0.365046 0.365046 0.624053 0.430500
C(ins, Sum):C(ctx, Sum) 1.0 0.000698 0.000698 0.001194 0.972472
Residual 196.0 114.652229 0.584960 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 1.478223 1.0 49.0 0.229878
ctx 1.716251 1.0 49.0 0.196285
ins:ctx 0.004347 1.0 49.0 0.947698

count le�, ctx (0, 600), correct, all_rec

(c) RSM
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 2.003687 2.216296 2.313649 2.886006
std 0.514005 0.563381 0.667285 0.763304
min 0.857143 0.636364 0.933333 1.644444
25% 1.738161 2.000000 1.898325 2.371064
50% 2.009259 2.251462 2.234583 2.887626
75% 2.388958 2.464286 2.674603 3.376818
max 3.153846 3.487805 4.069767 4.862069

Shapiro test (normality): ShapiroResult(statistic=0.9756406545639038, pvalue=0.001494280295446515)
Bartlett test (equal variances, normal): BartlettResult(statistic=9.058381725042626, pvalue=0.028524656208777806)
Levene test (equal variances, non-normal): LeveneResult(statistic=3.033651732490826, pvalue=0.030393753115464453)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 11.996950 11.996950 29.815314 1.428189e-07
C(ctx, Sum) 1.0 1.617736 1.617736 4.020465 4.632705e-02
C(ins, Sum):C(ctx, Sum) 1.0 7.702148 7.702148 19.141695 1.970556e-05
Residual 196.0 78.865586 0.402375 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 43.346488 1.0 49.0 2.928884e-08
ctx 5.449760 1.0 49.0 2.371364e-02
ins:ctx 34.606815 1.0 49.0 3.545724e-07

count right, ctx (0, 600), correct, all_rec
Figure 3.12: Submovement counts (context epoch, 0 ms to 600 ms) for correct trials.
(a) Movement balance (side index, SI), trial-wise difference of LSMs and RSMs normalised by
their sum. Positive values indicate LSM surplus, negative values RSM surplus. Side index
was significantly modulated by upcoming instruction and context: repeated-measures two-way
ANOVA: main factor upcoming instruction, F (1, 49) = 24.94, p = 8 · 10−6, interaction context
× upcoming instruction, F (1, 49) = 21.91, p = 2.3 · 10−5. (b) Number of LSMs. Number was
statistically invariant to conditions: repeated-measures two-way ANOVA, main factor upcoming
instruction, F (1, 49) = 1.478, p = 0.230, interaction context × upcoming instruction, F (1, 49) =
0.004, p = 0.948 (c) Number of RSMs. Number was statistically varied with prepare-side and
context: repeated-measures two-way ANOVA, main factor upcoming instruction, F (1, 49) =
43.35, p = 2.93 · 10−8, interaction context × upcoming instruction, F (1, 49) = 34.61, p = 3.55 ·
10−7. Every dot is the mean in one session; see methods for description of raincloud plots. Black
lines across the conditions connect arithmetic means.

of the response ball across small thresholds would have extended the delay after the
presentation of the context cue (Fig. 3.2).

Notably, in this epoch (0 ms to 600 ms from context cue onset) the side index varied
with the conditions: both context and prepare-side significantly modulated the balance21

(Fig. 3.12). Both prepare contexts pushed that balance to their respective sides, that is,
the side index for prepare-left was the most positive (0.11±0.19) while the negative values
in prepare-right trials (−0.08 ± 0.17) indicate a surplus of RSMs. Moreover, positive
average values in the defer conditions (0.05 ± 0.20) indicate a surplus of LSMs in the
non-informative context. Interestingly, the extra modulation from this supposed baseline
in prepare-left trials was weaker than for prepare-right trials (differences prepare-defer
per side: 0.05 ± 0.18 (left) vs −0.13 ± 0.20 (right)).

How were these different balances implemented in terms of SMs to individual sides?
Was the occurrence of SMs to one or the other side differentially modulated within var-

21 repeated-measures two-way ANOVA: main factor upcoming instruction, F (1, 49) = 24.94, p = 8 ·
10−6, interaction context × upcoming instruction, F (1, 49) = 21.91, p = 2.3 · 10−5
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ious contexts? Remarkably, the number of LSMs was invariant to the type of context22

(Fig. 3.12b). Instead, all the aforementioned modulations of balance were implemented
by changes in the number of SMs to the right, which varied with context as well as
with prepare-side23 (Fig. 3.12c). This detailed view also shows that the increase of the
number of RSMs in the prepare-right context was stronger than the decrease in numbers
in the prepare-left context, consistent with what was found for the balances.

Together, quantification of the number of SMs in the context epoch discovered a
default imbalance towards more left SMs that is only inverted in prepare-right trials.
Furthermore, the balance between SMs was only modulated by changes in the numbers
of right SMs, while the number of LSMs remained unaffected by the different conditions.

3.1.4.5 Submovement balance consistent with instructed side but distinct
modulation of left and right submovements

While the previous subsection showed a possibly unexpected preparatory effect on be-
haviour during the context epoch, correct responses in the instruction epoch are expected
to be correlated with large movement balances to the instructed side. Figure 3.13a shows
that this was the case for the time from instruction onset to the detection of a threshold
crossing.

In trials with the go-left instruction the balance was shifted to very positive (i.e.
leftish) values (0.580±0.208), while, conversely, it was shifted to very negative (rightish)
values in go-right trials24 (Fig. 3.13a, −0.60 ± 0.15). As opposed to what was found in
the context epoch, however, there was no effect of context in the instruction epoch25.
Notably, the absolute values clustered around 0.59, indicating that responses were not
purely composed of SMs to the instructed side.

Absolute values of movement balances were similar for go-left and go-right trials, which
could be a sign of similar implementations by mixing left and right SMs. Zooming in to
the occurrence of SMs to individual sides, to the contrary, indicated a slightly different
picture. As expected, both the occurrence of LSMs (Fig. 3.13b) and RSMs (Fig. 3.13c)
varied with the instruction side: more LSMs were made in go-left than in go-right trials26,
and vice-versa for SMs to the right27. However, the modulation was stronger for RSMs
(Fig. 3.13c) than for LSMs. This was achieved by a higher number of RSMs in go-right
trials than the number of LSMs in go-left trials. In addition, the prepare-right context
was associated with a specific further down-regulation of SMs to the left28.

22 repeated-measures two-way ANOVA, main factor upcoming instruction, F (1, 49) = 1.478, p = 0.230,
interaction context × upcoming instruction, F (1, 49) = 0.004, p = 0.948

23 repeated-measures two-way ANOVA, main factor upcoming instruction, F (1, 49) = 43.35, p = 2.93 ·
10−8, interaction context × upcoming instruction, F (1, 49) = 34.61, p = 3.55 · 10−7

24 repeated-measures two-way ANOVA, main factor instruction: F (1, 49) = 995.31, p = 3.26 · 10−34

25 repeated-measures two-way ANOVA, interaction instruction × context: F (1, 49) = 0.08, p = 0.37
26 3.11 ± 0.58 (go-left) vs. 1.39 ± 0.77 (go-right), repeated-measures two-way ANOVAs, main factor

instruction: LSMs: F (1, 49) = 236.24, p = 2.25 · 10−20

27 1.24 ± 0.72 (go-left) vs. 3.70 ± 0.82 (go-right) repeated-measures two-way ANOVAs, main factor
instruction: RSMs: F (1, 49) = 467.70, p = 1.03 · 10−26

28 repeated-measures two-way ANOVA, interaction instruction × context: F (1, 49) = 5.17, p = 0.027
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 0.581312 0.581404 -0.593756 -0.608603
std 0.198358 0.217534 0.142360 0.159060
min 0.169980 0.107636 -0.835611 -0.919451
25% 0.467067 0.471400 -0.700415 -0.730180
50% 0.617023 0.647244 -0.611744 -0.656892
75% 0.749434 0.746282 -0.497274 -0.482790
max 0.874234 0.900762 -0.327905 -0.262996

Shapiro test (normality): ShapiroResult(statistic=0.8486868739128113, pvalue=3.715314189113583e-13)
Bartlett test (equal variances, normal): BartlettResult(statistic=10.882408509754203, pvalue=0.012379031401259571)
Levene test (equal variances, non-normal): LeveneResult(statistic=2.989269198926251, pvalue=0.032203551276874805)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 69.919792 69.919792 2115.038491 5.784835e-107
C(ctx, Sum) 1.0 0.002790 0.002790 0.084384 7.717492e-01
C(ins, Sum):C(ctx, Sum) 1.0 0.002721 0.002721 0.082318 7.744839e-01
Residual 196.0 6.479447 0.033058 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 995.305936 1.0 49.0 3.259627e-34
ctx 0.985726 1.0 49.0 3.256669e-01
ins:ctx 0.802095 1.0 49.0 3.748464e-01

SI count, ins to thrx, correct, all_rec

(b) LSM
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 3.133965 3.076814 1.452572 1.333526
std 0.577809 0.576620 0.788900 0.744492
min 2.170213 2.057143 0.489362 0.169492
25% 2.777903 2.637156 0.879340 0.782486
50% 3.035119 3.115966 1.195238 1.156561
75% 3.484363 3.449118 1.785767 1.709449
max 5.391304 4.722222 3.464286 3.000000

Shapiro test (normality): ShapiroResult(statistic=0.9502149820327759, pvalue=1.9792068997048773e-06)
Bartlett test (equal variances, normal): BartlettResult(statistic=7.913563789186733, pvalue=0.04783227009105367)
Levene test (equal variances, non-normal): LeveneResult(statistic=1.7734134187654462, pvalue=0.15354460507041598)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 146.605378 146.605378 318.190862 6.442342e-43
C(ctx, Sum) 1.0 0.047887 0.047887 0.103933 7.475037e-01
C(ins, Sum):C(ctx, Sum) 1.0 0.388065 0.388065 0.842253 3.598812e-01
Residual 196.0 90.306346 0.460747 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 236.204365 1.0 49.0 2.250550e-20
ctx 0.515559 1.0 49.0 4.761519e-01
ins:ctx 5.168644 1.0 49.0 2.741713e-02

count le�, ins to thrx, correct, all_rec

(c) RSM
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 1.254759 1.226895 3.767733 3.639394
std 0.692239 0.754954 0.867263 0.782213
min 0.278481 0.240964 2.564103 2.525424
25% 0.700639 0.613946 3.188158 3.043090
50% 1.171673 1.046537 3.428955 3.436981
75% 1.582428 1.589286 4.095259 4.253072
max 2.928571 2.950000 5.964286 5.686275

Shapiro test (normality): ShapiroResult(statistic=0.9483449459075928, pvalue=1.311061964770488e-06)
Bartlett test (equal variances, normal): BartlettResult(statistic=2.5501172818660147, pvalue=0.46630181443773056)
Levene test (equal variances, non-normal): LeveneResult(statistic=0.13782778408935076, pvalue=0.9373147966918388)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 303.253445 303.253445 502.667618 5.351512e-56
C(ctx, Sum) 1.0 0.126191 0.126191 0.209172 6.479236e-01
C(ins, Sum):C(ctx, Sum) 1.0 0.304993 0.304993 0.505551 4.779164e-01
Residual 196.0 118.244488 0.603288 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 467.696027 1.0 49.0 1.025458e-26
ctx 0.830038 1.0 49.0 3.667219e-01
ins:ctx 3.046774 1.0 49.0 8.716594e-02

count right, ins to thrx, correct, all_rec
Figure 3.13: Submovement counts (instruction epoch, from instruction onset to
threshold crossing) for correct trials. (a) Movement balance, trial-wise difference of LSMs
and RSMs normalised by their sum. Positive values indicate LSM surplus, negative values RSM
surplus. Balances significantly varied with instruction but not with prior context: repeated-
measures two-way ANOVA, main factor instruction, F (1, 49) = 995.31, p = 3.26 · 10−34), inter-
action instruction × context, F (1, 49) = 0.08, p = 0.37. (b) Number of LSMs. (c) Number of
RSMs. Both number of LSMs and RSM significantly varied with instruction: repeated-measures
two-way ANOVAs, main factor instruction: LSMs: F (1, 49) = 236.24, p = 2.25 · 10−20; RSMs:
F (1, 49) = 467.70, p = 1.03 · 10−26. Every dot is the mean in one session; see methods for
description of raincloud plots. Black lines across the conditions connect arithmetic means.
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3 Contextual Decision-Making in Mice 3.1 Behaviour

Together, this shows that the balance of SM numbers during the instruction epoch
was consistent with the instructed side and not influenced by prior context. While
modulation happened for both the number of left and right SMs it was stronger for the
latter.

3.1.4.6 Submovement side-specific effects of context on strength and
duration

Adjusting the number of discrete submovements to sway the balance to one or the other
side is one way of motor preparation or achieving the goal of rotating the response ball
to the desired side. Another way is to employ SMs with different scales. In order to
investigate if the animals also modulated the SMs properties, in the following they were
quantified on the level of strength and duration.

Similar to their count (Fig. 3.12b) the strength of SMs to the left was largely invariant
to trial conditions (Fig. 3.14a), with the exception of a weak increase for both prepare
contexts29.

On the other hand, their duration did covary significantly with different contexts
(Fig. 3.15a): LSMs were longer-lasting if the animals were informed that the upcoming
instruction would be left and, conversely, shorter-lasting if they were informed of the
opposite30.

In contrast, the strength of RSMs varied consistently with the effects on their counts31

(Fig. 3.14b). They were strongest in the prepare-right context and weakest in the prepare-
left context32. Of note, the strength in the prepare-left context was more similar to the
defer trials, reminiscent of the effect for the counts of SMs.

RSM durations also varied with conditions, but in a different pattern (Fig. 3.15b). As
expected, duration was longest for the prepare-right trials (71.98 ± 6.05 ms). Notably,
however, trials in the prepare-left context did not show the shortest-lasting RSMs (69.11±
7.69 ms). Instead, there was a pattern which only involved the main factors, i.e. prepare
context trials and the trials with upcoming go-right instruction had longer durations33.

Together, this data shows that preparation in the context epoch was not only imple-
mented by executing varying numbers of SMs but also had an effect on how these were
realised. In addition, there was a dissociation of the affected parameters. While LSMs
were mainly tuned by varying durations RSMs were modulated both in strength and
duration.

29 repeated-measures two-way ANOVA, main effect context, F (1, 49) = 4.78, p = 0.03
30 71.93± 6.07mm/s (prepare-left) vs. 69.29± 6.41mm/s (prepare-right); repeated-measures two-way

ANOVA, interaction context × upcoming instruction F (1, 49) = 8.60, p = 5.11 · 10−3

31 repeated-measures two-way ANOVA, interaction context × upcoming instruction F (1, 49) =
39.85, p = 7.69 · 10−8

32 50.13± 12.37mm/s (prepare-right) vs. 38.23± 7.67mm/s (prepare-left)
33 repeated-measures two-way ANOVA, main factor upcoming instruction F (1, 49) = 9.24, p = 3.79 ·

10−3, main factor context F (1, 49) = 5.12, p = 0.028
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 0.046784 0.045056 0.044668 0.046883
std 0.009948 0.009796 0.010990 0.011254
min 0.028989 0.030528 0.023981 0.030804
25% 0.038502 0.035812 0.034607 0.037468
50% 0.049954 0.046890 0.044331 0.046683
75% 0.054181 0.050561 0.050189 0.053146
max 0.070363 0.064674 0.068130 0.077599

Shapiro test (normality): ShapiroResult(statistic=0.9768037796020508, pvalue=0.0021427914034575224)
Bartlett test (equal variances, normal): BartlettResult(statistic=1.4183842424527826, pvalue=0.7012310775249468)
Levene test (equal variances, non-normal): LeveneResult(statistic=0.25833280230741196, pvalue=0.8553323347270358)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 0.000001 0.000001 0.009395 0.922882
C(ctx, Sum) 1.0 0.000194 0.000194 1.758026 0.186414
C(ins, Sum):C(ctx, Sum) 1.0 0.000003 0.000003 0.026695 0.870383
Residual 196.0 0.021675 0.000111 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 0.022571 1.0 49.0 0.881196
ctx 4.779588 1.0 49.0 0.033605
ins:ctx 0.066771 1.0 49.0 0.797180

vpeak le�, ctx (0, 600), correct, all_rec

(b) RSM
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 0.038231 0.040518 0.041082 0.050129
std 0.007669 0.009409 0.010306 0.012365
min 0.024699 0.026607 0.026380 0.027746
25% 0.032370 0.033776 0.034485 0.039649
50% 0.037308 0.038356 0.038367 0.049516
75% 0.044890 0.046055 0.045857 0.057891
max 0.056004 0.064070 0.075413 0.076556

Shapiro test (normality): ShapiroResult(statistic=0.9376397132873535, pvalue=1.4353713595482986e-07)
Bartlett test (equal variances, normal): BartlettResult(statistic=11.25993926012915, pvalue=0.01040020694403331)
Levene test (equal variances, non-normal): LeveneResult(statistic=3.441834965770529, pvalue=0.017830919199085003)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 0.001941 0.001941 19.103159 0.000020
C(ctx, Sum) 1.0 0.000571 0.000571 5.621242 0.018714
C(ins, Sum):C(ctx, Sum) 1.0 0.001605 0.001605 15.798644 0.000099
Residual 196.0 0.019916 0.000102 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 40.723307 1.0 49.0 6.026415e-08
ctx 9.608276 1.0 49.0 3.206646e-03
ins:ctx 39.853032 1.0 49.0 7.693795e-08

vpeak right, ctx (0, 600), correct, all_rec
Figure 3.14: Submovement strength in the context epoch (0 ms to 600 ms from con-
text cue onset) for correct trials. (a) Submovement strength, quantified as submovements’
peak velocity, for left submovements (LSMs). LSMs were significantly modulated by context:
repeated-measures two-way ANOVA, main factor context, F (1, 49) = 4.78, p = 0.03. (b) same
like (a) for right submovements (RSMs). RSMs were significantly modulated by combination of
context and upcoming instruction: repeated-measures two-way ANOVA, interaction context ×
upcoming instruction F (1, 49) = 39.85, p = 7.69 · 10−8. Every dot is the mean in one session; see
methods for description of raincloud plots. Black lines across the conditions connect arithmetic
means.
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 0.071934 0.069936 0.070269 0.069285
std 0.006073 0.006455 0.007311 0.006411
min 0.063867 0.059811 0.055829 0.058077
25% 0.066590 0.066124 0.065306 0.065543
50% 0.071821 0.067845 0.069100 0.068601
75% 0.075508 0.071279 0.073465 0.072885
max 0.084230 0.087706 0.090291 0.087241

Shapiro test (normality): ShapiroResult(statistic=0.9569617509841919, pvalue=9.408087862539105e-06)
Bartlett test (equal variances, normal): BartlettResult(statistic=1.849888478982617, pvalue=0.6041392792020346)
Levene test (equal variances, non-normal): LeveneResult(statistic=0.40153424505340113, pvalue=0.7520519090884142)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 0.000067 0.000067 1.548714 0.214811
C(ctx, Sum) 1.0 0.000013 0.000013 0.297453 0.586104
C(ins, Sum):C(ctx, Sum) 1.0 0.000111 0.000111 2.568905 0.110593
Residual 196.0 0.008482 0.000043 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 5.814291 1.0 49.0 0.019690
ctx 1.271640 1.0 49.0 0.264951
ins:ctx 8.595394 1.0 49.0 0.005110

duration le�, ctx (0, 600), correct, all_rec
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 0.069105 0.068721 0.069708 0.071980
std 0.007694 0.007702 0.007923 0.006050
min 0.055121 0.054809 0.054993 0.061975
25% 0.064099 0.062912 0.064217 0.067756
50% 0.066856 0.066491 0.068861 0.071111
75% 0.075517 0.074579 0.073584 0.075630
max 0.088618 0.084972 0.086449 0.087591

Shapiro test (normality): ShapiroResult(statistic=0.9785324335098267, pvalue=0.0037015536800026894)
Bartlett test (equal variances, normal): BartlettResult(statistic=4.244066250450413, pvalue=0.2362868830820492)
Levene test (equal variances, non-normal): LeveneResult(statistic=1.1363244097544072, pvalue=0.33554648748360744)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 0.000186 0.000186 3.423505 0.065780
C(ctx, Sum) 1.0 0.000088 0.000088 1.617929 0.204888
C(ins, Sum):C(ctx, Sum) 1.0 0.000045 0.000045 0.817078 0.367146
Residual 196.0 0.010677 0.000054 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 9.240426 1.0 49.0 0.003793
ctx 5.121010 1.0 49.0 0.028104
ins:ctx 2.549043 1.0 49.0 0.116791

duration right, ctx (0, 600), correct, all_rec
Figure 3.15: Submovement duration in the context epoch (0 ms to 600 ms from context
cue onset) for correct trials. (a) Submovement duration for left submovements (LSMs). LSMs
were significantly modulated by combination of context and upcoming instruction: repeated-
measures two-way ANOVA, interaction context × upcoming instruction F (1, 49) = 8.60, p =
5.11·10−3. (b) same like (a) for right submovements (RSMs). RSMs were significantly modulated
by only by context and upcoming instruction: repeated-measures two-way ANOVA, main factor
upcoming instruction F (1, 49) = 9.24, p = 3.79 · 10−3, main factor context F (1, 49) = 5.12, p =
0.028. Every dot is the mean in one session; see methods for description of raincloud plots. Black
lines across the conditions connect arithmetic means.
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3 Contextual Decision-Making in Mice 3.1 Behaviour

3.1.4.7 Instruction epoch submovement parameters modulated by
instruction but not prior context

Because in the instruction epoch animals were required to rotate the response ball to the
instructed side, they greatly increased the frequency of the corresponding submovements
(Fig. 3.13). This alone could have been sufficient to reach the goal. However, a more
efficient solution would be to also increase strength and duration of SMs.

Indeed, SMs comprising the response were not only modulated in number but also
in strength and duration (Figs. 3.16 and 3.17). Accordingly, LSMs were stronger34 and
longer-lasting35 in go-left trials than in go-right (Figs. 3.16a and 3.17a). In go-right
trials, both parameters were downregulated to levels as low as during the context epoch.

The same was true for RSMs: they were stronger36 and longer-lasting37 in go-right
than in go-left trials (Figs. 3.16b and 3.17b). Strength and duration in go-left trials were
also close to context epoch levels.

Consistent with SM frequency prior context had no effect on either strength nor du-
ration of LSMs or RSMs.

In sum, SMs that were consistent with the movement instruction were strongly up-
regulated not only in terms of frequency but also in their properties.

3.1.5 Summary behaviour

Mice learned to use an abstract goal-directed behaviour, namely, directed rotations of a
response ball, to obtain rewards. In addition, they successfully acquired the association
of arbitrary sounds as movement instructions or preparatory contexts. Effects of prepa-
ration were present at different behavioural levels. Informative contexts improved task
performance and response times (Figs. 3.3 and 3.4).

The use of continuously measured response ball rotation greatly extended the psy-
chometric repertoire. Using simple trial subsetting I showed that consistent movement
tendencies during the context epoch improved task performance (Fig. 3.7a) and that
activity in that epoch propagated to the instruction epoch (Fig. 3.6b). An even more
detailed view of the response ball data revealed that the measured rotations were com-
posed of discrete submovements (SMs) (Fig. 3.8). During both trial epochs these SMs
were modulated in numbers (Figs. 3.12 and 3.13), strength (Figs. 3.14 and 3.16) and
duration (Figs. 3.15 and 3.17), thus providing multiple behavioural substrates affected
by contexts and instructions.

Of note, there was a consistent behavioural left-preference, indicated by both classic
psychometrics as well as detailed dissection of the response ball data. The findings

34 122.68 ± 30.21mm/s (go-left) vs. 47.28 ± 10.12mm/s (go-right); repeated-measures two-way
ANOVAs, main factor instruction F (1, 49) = 352.74, p = 4.95 · 10−24

35 83.36± 8.64ms (go-left) vs. 61.86± 6.62ms (go-right); repeated-measures two-way ANOVAs, main
factor instruction F (1, 49) = 256.64, p = 4.10 · 10−21

36 43.34±7.90mm/s (go-left) vs. 96.12±12.71mm/s (go-right), repeated-measures two-way ANOVAs,
main factor instruction F (1, 49) = 863.76, p = 8.85 · 10−33

37 59.81± 8.99ms (go-left) vs. 79.88± 6.98ms (go-right), repeated-measures two-way ANOVAs, main
factor instruction F (1, 49) = 157.99, p = 6.02 · 10−17
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 0.121624 0.123730 0.046726 0.047825
std 0.028676 0.031755 0.010082 0.010151
min 0.082830 0.086056 0.027239 0.025893
25% 0.098182 0.100493 0.039833 0.040272
50% 0.114633 0.115311 0.045073 0.047603
75% 0.142204 0.144414 0.055190 0.054166
max 0.201836 0.241796 0.067455 0.068031

Shapiro test (normality): ShapiroResult(statistic=0.9154265522956848, pvalue=2.725393688507438e-09)
Bartlett test (equal variances, normal): BartlettResult(statistic=99.301955110236, pvalue=2.1957487145921468e-21)
Levene test (equal variances, non-normal): LeveneResult(statistic=17.88314273520145, pvalue=2.668970773845358e-10)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 0.284269 0.284269 558.660456 2.762056e-59
C(ctx, Sum) 1.0 0.000013 0.000013 0.024924 8.747202e-01
C(ins, Sum):C(ctx, Sum) 1.0 0.000128 0.000128 0.252497 6.158866e-01
Residual 196.0 0.099733 0.000509 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 352.737482 1.0 49.0 4.953507e-24
ctx 0.384208 1.0 49.0 5.382319e-01
ins:ctx 1.959776 1.0 49.0 1.678371e-01

vpeak le�, ins to thrx, correct, all_rec

(b) RSM
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 0.043593 0.043082 0.095721 0.096506
std 0.007630 0.008163 0.013369 0.012052
min 0.028577 0.027608 0.064945 0.067311
25% 0.039424 0.038338 0.087138 0.087973
50% 0.044102 0.042756 0.096276 0.095517
75% 0.045817 0.046434 0.105376 0.106997
max 0.071337 0.070529 0.127823 0.118246

Shapiro test (normality): ShapiroResult(statistic=0.893402099609375, pvalue=9.744924311938519e-11)
Bartlett test (equal variances, normal): BartlettResult(statistic=22.045459982713904, pvalue=6.38256948960026e-05)
Levene test (equal variances, non-normal): LeveneResult(statistic=7.669280107265024, pvalue=7.146477990408925e-05)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 1.392651e-01 1.392651e-01 1241.099185 9.866126e-87
C(ctx, Sum) 1.0 2.098945e-05 2.098945e-05 0.187053 6.658560e-01
C(ins, Sum):C(ctx, Sum) 1.0 9.438259e-07 9.438259e-07 0.008411 9.270202e-01
Residual 196.0 2.199337e-02 1.122111e-04 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 863.763291 1.0 49.0 8.854320e-33
ctx 0.825897 1.0 49.0 3.679100e-01
ins:ctx 0.053073 1.0 49.0 8.187593e-01

vpeak right, ins to thrx, correct, all_rec
Figure 3.16: Submovement strength in the instruction epoch (instruction onset to
threshold crossing) for correct trials. (a) Submovement strength, quantified as submovements’
peak velocity, for left submovements (LSMs). LSMs were significantly modulated by instruction:
repeated-measures two-way ANOVAs, main factor instruction F (1, 49) = 352.74, p = 4.95 ·10−24

. (b) same like (a) for right submovements (RSMs). RSMs were significantly modulated by in-
struction: repeated-measures two-way ANOVAs, main factor instruction F (1, 49) = 863.76, p =
8.85 ·10−33. Every dot is the mean in one session; see methods for description of raincloud plots.
Black lines across the conditions connect arithmetic means.
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 0.083400 0.083314 0.062523 0.061188
std 0.008788 0.008486 0.006960 0.006282
min 0.068049 0.069839 0.044992 0.049808
25% 0.075636 0.075957 0.058242 0.057015
50% 0.083794 0.083082 0.063194 0.061943
75% 0.091268 0.089722 0.065624 0.065515
max 0.098174 0.103421 0.076848 0.074379

Shapiro test (normality): ShapiroResult(statistic=0.9723109006881714, pvalue=0.0005498335231095552)
Bartlett test (equal variances, normal): BartlettResult(statistic=7.299146853596112, pvalue=0.06295014208630487)
Levene test (equal variances, non-normal): LeveneResult(statistic=3.9651799108508397, pvalue=0.008978737988714102)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 0.023116 0.023116 389.898059 1.726359e-48
C(ctx, Sum) 1.0 0.000019 0.000019 0.328857 5.669903e-01
C(ins, Sum):C(ctx, Sum) 1.0 0.000025 0.000025 0.425313 5.150617e-01
Residual 196.0 0.011620 0.000059 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 256.635769 1.0 49.0 4.104496e-21
ctx 1.926210 1.0 49.0 1.714526e-01
ins:ctx 1.555294 1.0 49.0 2.182838e-01

duration le�, ins to thrx, correct, all_rec
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Summary statistics:

le� prep le� defr right defr right prep
count 50.000000 50.000000 50.000000 50.000000
mean 0.059590 0.060026 0.079993 0.079762
std 0.008052 0.009920 0.006865 0.007085
min 0.045551 0.044347 0.066494 0.066379
25% 0.052924 0.053919 0.073070 0.074024
50% 0.060536 0.057158 0.081308 0.080910
75% 0.064166 0.065341 0.086219 0.085210
max 0.078140 0.097655 0.091004 0.091531

Shapiro test (normality): ShapiroResult(statistic=0.9613848328590393, pvalue=2.8009775633108802e-05)
Bartlett test (equal variances, normal): BartlettResult(statistic=8.57566543147685, pvalue=0.0354984925329447)
Levene test (equal variances, non-normal): LeveneResult(statistic=0.9020201704117747, pvalue=0.4411825533349666)

Standard 2-way ANOVA:

df sum_sq mean_sq F PR(>F)
C(ins, Sum) 1.0 2.013933e-02 2.013933e-02 309.153454 3.682238e-42
C(ctx, Sum) 1.0 5.563599e-06 5.563599e-06 0.085405 7.704108e-01
C(ins, Sum):C(ctx, Sum) 1.0 5.231152e-07 5.231152e-07 0.008030 9.286875e-01
Residual 196.0 1.276812e-02 6.514348e-05 NaN NaN

Repeated measures 2-way ANOVA:

F Value Num DF Den DF Pr > F
ins 157.989416 1.0 49.0 6.022229e-17
ctx 0.364746 1.0 49.0 5.486682e-01
ins:ctx 0.032068 1.0 49.0 8.586164e-01

duration right, ins to thrx, correct, all_rec
Figure 3.17: Submovement duration in the instruction epoch (instruction onset to
threshold crossing) for correct trials. (a) Submovement duration for left submovements (LSMs).
LSMs were significantly modulated by instruction: repeated-measures two-way ANOVAs, main
factor instruction F (1, 49) = 256.64, p = 4.10 · 10−21 (b) same like (a) for right submove-
ments (RSMs). RSMs were significantly modulated by instruction: repeated-measures two-way
ANOVAs, main factor instruction F (1, 49) = 157.99, p = 6.02 · 10−17. Every dot is the mean
in one session; see methods for description of raincloud plots. Black lines across the conditions
connect arithmetic means.
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from SMs decomposition indicate that in many cases the behaviour in non-informative
context epochs was closer to that in informative prepare-left ones. Conversely, behaviour
in prepare-right context epochs was modulated more. Consistent with this, left SMs
were more invariant to contexts, while all parameters of right SMs displayed context-
dependent variations.
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(a) PL

(b) MD

(c) +1.94mm

1 mm

(d) -1.34mm

1 mm

Figure 3.18: Recording locations
(a, b) Mouse brain coronal schematics of recording sites for (a) PL and (b) MD. Modified
from Allen Brain Atlas (Q. Wang et al., 2020). (c, d) Histological example brain slices with
DyeI labelling of silicon probe tracts for (c) PL (at bregma +1.94 mm) and (d) MD (at bregma
-1.34 mm). Slicing and microscopy images courtesy Ajit Ranganath.

3.2 Neurophysiology

3.2.1 Firing rates in single neuronal units and regional populations

A total of 1020 prelimbic cortex (PL) and 711 MD single units38 were recorded acutely
in 38 sessions. Of these, 629 (PL) and 420 (MD) units matched the inclusion criteria
in 37 sessions from 4 animals (Table 3.3; correct probe locations could not be verified
for one of the five trained animals). Simultaneous recordings from PL and MD were
made in 13 sessions (156 PL units, 312 MD units, 2 animals), with the remainder of the
sessions being single-region recordings (22 sessions / 473 units and 2 sessions / 108 units
in PL and MD, respectively).

38 In this section the term single unit is used interchangeably with the term unit and neuron. In
all cases this refers to the same putative biological entity that is thought to be the source of well
isolated action potentials.
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Table 3.3: Number of single neuronal units, sessions and animals. Note that the grand total of
sessions does not sum across rows because of the inclusion of sessions with simultaneous PL and
MD recordings. Similarly, numbers of animals do not add across rows because single-region and
bi-regional recordings were performed in the same animals.

region recording units sessions animals

PL single region 473 22 3
simultaneous 156 13 2

total 629 35 3

MD single region 108 2 1
simultaneous 312 13 2

total 420 15 2

grand total 1049 37 4

To get a first impression of the neuronal responses to contexts and instructions, in
the following I will start by showing example single neuronal units from PL and MD.
Afterwards, to identify trends in the populations and possible inter-regional differences
between PL and MD, I will show regional-averaged activity profiles, as well as firing rate
peak latencies.

3.2.1.1 Single unit activity in PL and MD varied with context cue and
instruction and showed heterogeneous response profiles

Figures 3.19 and 3.20 show the firing rates in the different contexts and instructions for
two example single units each in PL and MD. Neurons both in PL and MD responded to
context and/or instruction. Typically, neurons quickly increased their firing rates after
the onset of a stimulus. After an early peak, many neurons showed decreasing sustained
activity throughout the context delay or during the instruction epoch. Peak values as
well as latencies within a neuron often varied with context and/or instruction.

Example single units

The first sample PL neuron showed maximum activity in trials with the prepare-
right context, peaking after the offset of the context stimulus presentation and showing
lower but sustained firing during the context delay (orange colour, Figs. 3.19a and 3.19b).
In defer context trials (grey colour) this neuron’s activity peaked during stimulus pre-
sentation and slowly decayed its activity to baseline levels afterwards. The prepare-left
context (blue colour) elicited the lowest and most delayed peak response in this neuron.
As a consequence of this the context cue information contained in the spiking activity
is high throughout the context epoch (Fig. 3.19c).

On the other hand, the go-left instruction, which is contingent on the latter context,
led to a very fast response within the first 100 ms which, notably, varied with previous
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Figure 3.19: Firing activity and contained information of examples single units from
PL. (a) Raster plot of action potentials aligned to context cue onset at 0 ms. Trials sorted and
coloured by condition. (b) Smoothed firing rates of the single unit from (a). (c) Information
about the context cue contained in firing variations of this single unit. (d–f) same single unit
as in (a–c), but aligned to instruction onset and sorted by instruction side and prior context.
(f) shows information about the instruction side (ins), context (ctx ), and their interaction (i*c).
(g–l) same as in (a–f), but for a different example single unit in PL.
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context (dark and light blue colours, Figs. 3.19d and 3.19e): While the prepare context
led to a transient early activity increase, followed by decreased but sustained activity, in
trials following a defer context the go-left response only showed a plateau with higher
sustained activity. Conversely, the onsets of the response to the go-right instruction were
delayed and more similar in prepare and defer trials.

Another neuron recorded in PL showed a response profile that shared some proper-
ties with the previously described example neuron but differed in others. Response pro-
files to the different contexts were qualitatively similar to the previous neuron (Figs. 3.19g
and 3.19h): The peak latency for the defer trials was earlier than for prepare contexts
and the activity slowly decayed after the respective peaks. Quantitatively, however, this
neuron did not maximally respond to the prepare-right but the defer context. In fact,
the response to the prepare-right context was the lowest in this neuron.

Similar to the first example neuron, responses to the go-left instructions peaked earlier
than for the go-right instructions (Fig. 3.19k). In contrast, however, the instruction
responses did not vary with prior context. Furthermore, the response to the go-left
instruction was more transient and did not show a sustained plateau.

Neurons in the MD often show delay activity that is similar to PFC (Fuster &
Alexander, 1971; Schmitt et al., 2017). It is therefore instructive to also investigate the
firing rate profiles of MD single units (Fig. 3.20).

The first example MD single unit quickly increased activity after onset of the stim-
uli for defer and prepare-right contexts, peaking during their presentation (Figs. 3.20a
and 3.20b). While activity for both contexts peaked around the same time, the mag-
nitude was three times larger in defer trials. After peak activity in those trials firing
decreased rapidly to levels in the prepare-right context, and then, similarly slowly de-
cayed until about 300 ms to 400 ms. Trials in the prepare-left context, on the other hand,
slowly increased this neuron’s activity until peaking between 100 ms to 200 ms, i.e. after
the offset of the cue. Thereafter it decayed with the same speed as the initial increase.
Consistent with this response profile during the context epoch, this unit had very high
context information during the first 100 ms (Fig. 3.20c).

In the instruction epoch this neuron showed context-modulated responses to the in-
structions (Figs. 3.20d and 3.20e). Trials with the go-left instruction showed low latency
peak activity within the first 50 ms after instruction onset. Importantly, trials with a
prior prepare context had higher go-left responses than trials with a prior defer context.
go-right trials, on the other hand, had a slower activity increase and decay, but still
showed differential activity dependent on the prior context. Thus, the the neuron had
high information about the instruction, as well as some context information in the first
100 ms (Fig. 3.20f).

The last example single unit in MD again showed varying peak latencies for different
contexts and instructions. During the context epoch the strongest response was in defer ,
followed by prepare-right trials (Figs. 3.20g and 3.20h). Responses for the prepare-left
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Figure 3.20: Firing activity and contained information of examples single units from
MD. (a) Raster plot of action potentials aligned to context cue onset at 0 ms. Trials sorted and
coloured by condition. (b) Smoothed firing rates of the single unit from (a). (c) Information
about the context cue contained in firing variations of this single unit. (d–f) same single unit
as in (a–c), but aligned to instruction onset and sorted by instruction side and prior context.
(f) shows information about the instruction side (ins), context (ctx ), and their interaction (i*c).
(g–l) same as in (a–f), but for a different example single unit in MD.
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trials were virtually at baseline. The peak latency for the defer context again was
very short, during the presentation of the stimulus, while the peak for prepare-right
context was shortly after stimulus offset. Accordingly, the context information was high
throughout the first 100 ms (Fig. 3.20i).

Responses to the different instruction cues were similar to each other in this unit
(Figs. 3.20j and 3.20k). Activity rapidly increased after instruction onset, peaking be-
tween 100 ms to 200 ms. However, a small latency difference was present: Response onset
as well as peak activity for go-right trials was slightly offset, thus resulting in reasonably
good instruction information (Fig. 3.20l).

Together, these example neurons show that single-unit activity realised heteroge-
neous response profiles for different contexts and instructions. Typically, neurons showed
low-latency activity peaks that were followed by a slower decay. Peak times and mag-
nitudes for different contexts and instructions varied within and across the example
cells. Spiking activity in single-units showed information about behaviourally relevant
parameters.

3.2.1.2 Firing rate averages and peak latencies across single units show
distinct response profiles for context and instruction in PL and MD

In order to detect general trends in the two regions’ activity profiles, it is informative
to investigate population activity. To this end, two complementary views incorporating
raw firing rates are shown. Firstly, the standardised firing rates across all included single
units of a region were plotted (Figs. 3.21 and 3.23). Since those profiles are suggestive
of latency differences, secondly, single unit peak latencies were considered (Figs. 3.22
and 3.24).

Context epoch In the context epoch the PL population had its peak activity for the
defer context during the presentation of the context cue around 50 ms (Fig. 3.21a, grey).
In trials with either of the two prepare contexts, on the other hand, average activity
increased later and had its peak activity in the delay after context cue presentation,
shortly before 200 ms (Figs. 3.21a and 3.22a, blue and grey). Notably, peak magnitudes
for prepare-left context (blue line) were much lower than those in defer and prepare-right
trials. Peak magnitudes orderly descended from defer to prepare-right to prepare-left .

After the initial peak, average activity in all conditions was still elevated for another
400 ms to 500 ms, indicating sustained delay epoch activity of numerous PL units. In-
terestingly, in this late context epoch average firing rates for prepare-left and defer trials
were similar to each other (Fig. 3.21a, blue and grey, starting at around 300 ms). Activity
for prepare-right trials (orange), on the other hand, was more distinct.

In the MD population the averaged activity during the context epoch showed similar
trends as observed in PL (Fig. 3.21b). Consistent with PL, peak magnitudes in response
to the defer and prepare-right contexts were clearly higher than in response to the
prepare-left context. Likewise, the activity peaks for the prepare contexts occurred later
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Figure 3.21: Average firing rates across
single neuronal units (context epoch).
Plotted are the standardised (z-scored) fir-
ing rates averaged across single units in PL
(n = 629, (a)) and in MD (n = 420, (b))
from −200 ms before to 600 ms after context
cue onset. Different colours represent the
different context cues for defer , prepare-left
and prepare-right . Shading: SEM across sin-
gle units. Horizontal dashed lines: Onset
and offset times of context cue presentation.

than for the defer context (Fig. 3.22b). Furthermore, the magnitude of the sustained
activity in the later context epoch was highest for the prepare-right context.

Conversely, notable differences to PL activity were found in MD. The range of peak
magnitudes was greater in MD than in PL, ranging from approximately 1 z to 6 z vs. 2 z
to 4 z. For the defer and prepare-right contexts they were higher in MD than in PL, while
the magnitude for the prepare-left was only about half of the one in PL (Fig. 3.21b).
In contrast to the clear ordering of magnitudes observed in PL, the peak magnitudes
for defer and prepare-right were virtually identical. Consistent with similar magnitudes,
and in contrast to more heterogeneous profiles in PL, the temporal activity profiles in
defer and prepare-right trials were very similar in MD, almost like time-shifted copies.

The comparison of peak latencies showed clear cross-regional differences. In the
population-averaged activity, peaks for the prepare contexts in the MD preceded those
in PL by about 100 ms to 150 ms (Figs. 3.21a and 3.21b). By comparison, peak latencies
for the defer context were almost the same in PL and MD. Notably, however, the small
latency difference that was present indicated that MD activity was lagging PL. This was
further corroborated by analysis of single units’ peak latencies39 (Figs. 3.22a to 3.22c).

39 population peak difference PL - MD: defer : −10ms to −5ms, p = 0.04; prepare-left : 50ms to
170ms, p = 0.004; prepare-right : 50ms to 240ms, p = 0.002; bootstrap 95% confidence interval
(CI), permutation test
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Figure 3.22: Single units’ peak latencies during the context epoch split by conditions
(a) ζ-test derived latencies for firing rates in PL. Each coloured dot represents the peak latency
of one single unit. See methods for explanation of the remainder of raincloud plots. Distributions
were statistically not different from uni-modal: Hartigan’s dip test for unimodality: defer : 0.011,
p = 0.91 prepare-right : 0.011, p = 0.90 prepare-left : 0.013, p = 0.78. (b) same as (a) but for
single units from md. Distributions of defer and prepare-right condition were statistically not
different from uni-modal, but prepare-left was: Hartigan’s dip test for unimodality: defer : 0.012,
p = 0.97, prepare-right : 0.020, p = 0.28, prepare-left : 0.028, p = 0.021. (c) Differences of the
distributions’ kdes’ modes from (a, b). Dots represent differences (PL - MD): whiskers represent
bootstrapped 95 % CI. Values of CI and p-value permutation test): defer : −10 ms to −5 ms,
p = 0.04; prepare-left : 50 ms to 170 ms, p = 0.004; prepare-right : 50 ms to 240 ms, p = 0.002.
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Figure 3.23: Average firing rates
across single neuronal units (instruc-
tion epoch). Plotted are the standard-
ised (z-scored) firing rates averaged across
single units in PL (n = 629, (a)) and in
MD (n = 420, (b)) from −200 ms before
to 400 ms after movement instruction on-
set. Colours represent the movement in-
structions (blue go-left , orange go-right)
and the prior context (saturated prepare,
desaturated defer). Shading: SEM across
single units. Horizontal dashed lines On-
set time of movement instruction presen-
tation.

Instruction epoch In terms of the behavioural task, the instruction stimulus resolved
ambiguity in the trials with a prior defer context and served as a go-cue after prepare
contexts (Fig. 3.2). In general, neuronal activity during the instruction epoch was con-
siderably higher than during the context epoch. Furthermore, both regions’ activities
varied with the instruction side, with higher and earlier responses to the go-left instruc-
tion (Figs. 3.23a and 3.23b).

The temporal dynamics of activity increase in PL showed a two-component process
(Fig. 3.23a). In the first 50 ms activity rapidly increased until a short saddle of about
20 ms characterised by smaller increases was reached. After this saddle the activity
increased again more rapidly, until the activity arrived at its maximum around 150 ms
to 200 ms. Following this, activity slowly decreased. Interestingly, the majority of the
differences between prepare and defer contexts occurred during this first component.
Here, activity in trials within a defer context was lower40. Conversely, at subsequent
times context-dependent modulation could not be reliably detected41.

This two-component activity profile could be obtained if individual neurons displayed
two-component profiles or if the latencies of individual neurons’ peak activities concen-
trated at two distinct times. Analysis of individual neurons’ peak latencies provided evi-
dence for the latter hypothesis: In all but one condition (right-prepare) the distributions

40 prepare vs. defer , 0ms to 100ms: pgo-left = 4.636 ·10−5, pgo-right = 0.010, Wilcoxon signed-rank test
41 prepare vs. defer , 100ms to 200ms: pgo-left = 0.090, pgo-right = 0.146, Wilcoxon signed-rank test

72



3 Contextual Decision-Making in Mice 3.2 Neurophysiology

(a) PL

0 100 200 300
latency [ms]

le� prep

le� defr

right prep

right defr

cn
d

PL max IFR peak pζ ≤ 1
cnd le� defr le� prep right defr right prep
count 621.000000 626.000000 622.000000 626.000000
mean 143.209340 141.616613 159.908360 158.507987
std 84.243836 86.990261 87.194046 87.973655
min 1.000000 1.000000 1.000000 1.000000
25% 70.000000 68.250000 92.250000 85.250000
50% 146.000000 136.000000 164.500000 167.000000
75% 211.000000 212.000000 235.500000 234.000000
max 299.000000 299.000000 299.000000 299.000000
dip 0.022872 0.026278 0.021589 0.016485
pdip 0.026730 0.004282 0.045956 0.304507

(b) MD

0 100 200 300
latency [ms]

le� prep

le� defr

right prep

right defr

cn
d

MD max IFR peak pζ ≤ 1
cnd le� defr le� prep right defr right prep
count 420.000000 420.000000 419.000000 419.000000
mean 137.002381 134.935714 149.658711 142.835322
std 85.014178 84.121677 87.620487 84.557554
min 1.000000 1.000000 2.000000 2.000000
25% 66.000000 60.750000 76.500000 69.000000
50% 123.500000 127.000000 139.000000 136.000000
75% 205.000000 204.500000 229.500000 207.000000
max 299.000000 299.000000 299.000000 299.000000
dip 0.018139 0.017308 0.026221 0.014320
pdip 0.473584 0.560561 0.044651 0.861339

(c) PL-MD
go le� (prepare)

go le� (defer)

go right (prepare)

go right (defer)

go le�

(prepare)
go le�

(defer)
go rig

ht

(prepare)
go rig

ht

(defer)

Figure 3.24: Single units’ peak latencies during the instruction epoch split by condi-
tions
(a) ζ-test derived latencies for firing rates in PL. Each coloured dot represents the peak latency
of one single unit. See methods for explanation of the remainder of raincloud plots. Distribu-
tions were significantly different from unimodal for go-left (prepare), go-left (defer) and go-right
(defer): Hartigan’s dip test for unimodality: go-left (prepare): p = 4.28 · 10−3, go-left (defer):
p = 2.67 · 10−2, go-right (prepare): p = 0.305, go-right (defer): p = 4.60 · 10−2. (b) same as
(a) but for single units from MD. Distributions were not significantly different from unimodal
except for go-right (prepare): Hartigan’s dip test for unimodality: go-left (prepare): p = 0.561,
go-left (defer): p = 0.474, go-right (prepare): p = 4.47 · 10−2, go-right (defer): p = 0.861. (c)
Differences of the distributions’ kdes’ modes from (a, b). Dots represent differences (PL - MD):
whiskers represent bootstrapped 95 % CI. CI (p-value permutation test): left-prepare: p = 0.30;
left-defer : p = 0.28; right-prepare: p = 0.12; right-defer : p = 0.17.
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of peak latencies from PL single units were significantly non-unimodal42 (Fig. 3.24a).
Furthermore, no single units with a saddle-like activity profile were found by visual
inspection.

In contrast to the two components present in the PL population, the temporal dy-
namics across MD single units were simpler (Fig. 3.23b). Following instruction onset,
firing rates increased rapidly but steadily and peaked between 100 ms to 150 ms. Con-
sistent with the simpler one-component response profiles the distributions of individual
single units’ peak latencies were statistically not different from unimodal except for one
condition43 (Fig. 3.24b). The average peaks appeared to be temporally embedded be-
tween the first and second component of PL activity increase. Due to the differences
in distribution shapes (unimodal vs. multimodal) no statistical evidence for which re-
gion was leading could be found (Fig. 3.24c). Finally, and also in contrast to PL, no
robust context-dependent modulation of the instruction response was found in MD on
a population level44.

In summary, the investigation of firing rates and peak latencies found distinct re-
sponse profiles in PL and MD that shared some condition-specific relationships. Peak
responses for the uninformative defer context always preceded the peak responses to
the predictive prepare contexts. MD’s peak responses to prepare contexts clearly pre-
ceded PL’s, whereas, in contrast, PL was minimally leading MD for the defer context.
Magnitudes for defer and prepare-right contexts were considerably higher than for the
prepare-left context. This effect was especially pronounced in MD.

Responses to the instruction were greater than to the contexts and responses to go-left
were higher than to go-right . In PL the response to instruction was a two-component
process that might have been achieved by different neuronal subgroups. Prior contexts
had effects on the first component. MD’s responses were simpler and not modulated by
prior context.

3.2.2 Neuronal responsiveness and preference

The population-averaged magnitudes of firing rates in the previous section can be sug-
gestive of differential activity modulation dependent on the external stimuli. However,
different magnitudes could have arisen differently. For example, one could envision sub-
populations of single neuronal units that were exclusively modulated by one context cue
and/or movement instruction. Different quantitative population averages in the firing
rates would then be achieved by differently sized subpopulations. Another possibility
would be that single neuronal units had overall similar firing rate profiles with quanti-
tatively distinct activations consistent with the population averages.

42 Hartigan’s dip test for unimodality: go-left (prepare): p = 4.28·10−3, go-left (defer): p = 2.67·10−2,
go-right (prepare): p = 0.305, go-right (defer): p = 4.60 · 10−2

43 Hartigan’s dip test for unimodality: go-left (prepare): p = 0.561, go-left (defer): p = 0.474, go-right
(prepare): p = 4.47 · 10−2, go-right (defer): p = 0.861

44 prepare vs. defer , 0ms to 100ms: pgo-left = 0.108, pgo-right = 0.398, Wilcoxon signed-rank test;
prepare vs. defer , 100ms to 200ms: pgo-left = 0.135, pgo-right = 0.446, Wilcoxon signed-rank test

74



3 Contextual Decision-Making in Mice 3.2 Neurophysiology

Furthermore, neuronal information metrics like analysis of variance (ANOVA)-derived
ω2 can be indicative of consistent firing rate differences across conditions. However, they
lack information about the source of the variation. For example, in the case with two
trial conditions a neuron’s firing could carry high information because it is only activated
in one or it is activated to different extents in the two conditions. The ”magnitude” of
activation or responsiveness to individual conditions, however, cannot be extracted from
neuronal information measures.

To further dissect single unit activity in different task conditions, in the following I
employed measures derived from the parameter-free Zenith of Event-based Time-locked
Anomalies (ZETA) test (Montijn et al., 2021). Briefly, ZETA is calculated as follows.
Individual neuronal units’ spike times are aligned to events of interest, e.g. stimulus
presentations. Event-relative spike times pooled across multiple instances of the event
of interest, e.g. across trials, are used to generate an empirical cumulative distribution as
a function of time relative to the event. Positive or negative deviations of this cumulative
distribution function (CDF) from a linear baseline indicate the modulation of a neuron’s
firing rate by the event. Statistical significance is assessed against a null distribution that
is generated by randomly jittering event onset. Thus, the ZETA test does not require
the specification of arbitrary analysis bins like the standard approach of comparing
firing rates before and after an event using a two-sample t-test (or its nonparametric
alternatives) would.

First, the numbers of single units that were statistically responsive to individual con-
ditions were quantified. This was done in order to ascertain various questions about
specialised subpopulations:

1. Epoch specialisation: Were single units responsive both to context cues and move-
ment instructions, or were distinct subpopulations activated?

2. Condition specialisation:

a) single vs. mixed responsiveness: were there specialised subpopulations of
neurons that were exclusively responsive to a single context/instruction or
did neurons show mixed responsiveness?

b) distributions: if condition-specialised subpopulations existed, were they sim-
ilarly sized?

3. Context-dependent instruction-responsiveness

a) prepare vs. defer : were the same single units instruction-responsive after both
context types (context-stable)?

b) quantitative modulation: was instruction-responsiveness modulated by prior
context?

Secondly, the neuronal preferences were analysed in order to see if there were neu-
ronal subpopulations defined by behavioural contingency. As a concrete example, this
asked whether a single unit that preferred the prepare-right context also preferred the
behaviourally contingent go-right instruction; and similarly for the other contingencies.
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3.2.2.1 Partially overlapping subpopulations with epoch-specific and
-invariant responsiveness

A large proportion of PL and MD neurons was responsive to one or more contexts
(0 ms to 600 ms from context cue onset) or instructions (0 ms to 300 ms from movement
instruction onset) (PL: 74.1 %, MD: 81.2 %, bright green and pink, as well as the dark
green overlap areas in Fig. 3.25 and Table 3.4). The proportion of single units satisfying
this most inclusive criterion was significantly higher in MD than in PL45. Not all of those
cells were responsive in both task epochs: Only half of responsive single units were so
both to context and instruction (PL: 35.6 % of total, MD: 38.1 % of total, dark green
area in Fig. 3.25, Table 3.4). The single units that were responsive in only one task epoch
were not distributed equally. In both regions significantly more units were responsive to
the movement instructions than to the context cues46 (Fig. 3.25, bright green and pink
areas, respectively).

Together this shows that responsiveness to context and instruction was realised by
partially overlapping, but not distinct, groups of single neuronal units.

3.2.2.2 Most single units were exclusively responsive to one context;
responsiveness was inhomogeneously distributed

In both regions about half of all cells were responsive to one or more contexts (Figs. 3.26a
and 3.26b and Table 3.5, PL: 48.8 %, MD: 52.1 %). Interestingly, most of these cells
were responsive to only a single context. As a consequence, only a quarter of context-
responsive cells showed mixed responsiveness (PL: 35.8 % vs. 13.0 %; MD: 36.0 % vs.
16.2 %; single-responsive vs. multi-responsive).

Responsiveness to different contexts was inhomogeneously distributed. Similar to the
graded magnitudes in the firing rates (Fig. 3.21) the number of responsive cells showed
a clear descending order with most units being responsive to defer , less to prepare-

45 χ2(1, N = 1049) = 6.78, p = 0.009
46 PL: 48.8% context vs. 60.9% instruction: χ2(1) = 18.11, p = 2.087 · 10−5

MD: 52.1% context vs. 67.1% instruction: χ2(1) = 19.01, p = 1.304 · 10−5

Table 3.4: Responsive cells. Percentage of cells that were responsive to context (0 ms to
600 ms from context cue onset) and/or instruction (0 ms to 300 ms from movement instruction
onset). A cell was responsive if pzeta < 0.05 for Zenith of Event-based Time-locked Anomalies
(ZETA) test. Total number of cells: nPL = 629, nMD = 420

% total

responsiveness to PL MD

context or instruction 74.1 81.2
context and instruction 35.6 38.1
context (one or more) 48.8 52.1
instruction (go-left or go-right) 60.9 67.1
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Figure 3.25: Single units responsive to context (0 ms to 600 ms from context cue on-
set) or instruction. (a) Area-proportional Euler diagrams showing the numbers of responsive
cells within the total set of cells. brown: non-responsive; pink: exclusively context-responsive;
green: exclusively instruction-responsive; grey overlap: context- and instruction-responsive. (b)
Same as (a) but for MD. Responsiveness is defined as a pζ < 0.05. Proportion of context-
or instruction-responsive cells within set of total number of cells significantly higher in MD
than in PL: χ2(1, N = 1049) = 6.78, p = 0.009. Proportion of context- and instruction-
responsive cells (intersect) within set of all responsive cells not significantly different across
regions: χ2(1, N = 807) = 0.60, p = 0.807.

Table 3.5: Context-responsive cells. Percentage of cells that were responsive to individual
contexts (0 ms to 600 ms from context cue onset). A cell was responsive if pzeta < 0.05 for ZETA
test. Total number of cells: nPL = 629, nMD = 420

% total

responsiveness to PL MD

context (one or more) 48.8 52.1
one context only 35.8 36.0
multiple contexts 13.0 16.2

defer (one or more) 36.7 38.3
prepare-left (one or more) 9.5 6.9
prepare-right (one or more) 16.9 24.8
defer and prepare-left 4.3 3.8
defer and prepare-right 8.9 13.1
prepare-left and prepare-right 2.4 2.6
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Figure 3.26: Units responsive to individual contexts (0 ms to 600 ms from context cue
onset).
(a, b) Area proportional Euler diagrams showing the numbers of cells that were responsive to in-
dividual contexts. grey: defer ; blue: prepare-left ; orange: prepare-right ; Overlaps represent cells
that were responsive to multiple contexts. Responsiveness is defined as a pζ < 0.05. Relative pro-
portions of responsiveness to individual contexts (defer , prepare-left , prepare-right) significantly
different across regions: χ2(2, N = 526) = 8.14, p = 0.017. Proportionally significantly more
prepare-right than prepare-left responsive cells in MD vs. PL: χ2(1, N = 298) = 7.18, p = 0.007.
Proportions of defer and prepare responsive cells not significantly different across regions:
χ2(1, N = 658) = 1.26, p = 0.262.
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right and the fewest to prepare-left47 (Figs. 3.26a and 3.26b and Table 3.5). While
the descending order was qualitatively similar in PL and MD the relative proportions of
context-responsive cells were significantly different across regions48. Of note, the different
proportions were realised primarily by a shift in the balance of prepare responsive single
units: In MD there were proportionally more prepare-right than prepare-left responsive
cells than in PL49.

As a consequence, in MD the difference between the number of cells responsive to
defer or prepare-right contexts was smaller than in PL. This is reminiscent of the less
clear difference between these contexts in MD firing rate magnitudes (Fig. 3.21b).

Finally, relative multi-responsiveness (i.e. overlap/intersect) was not proportionally
distributed across contexts. About half of the prepare-responsive cells each were also
responsive to the defer context. In contrast, cells that were responsive to both prepare
contexts were far less common50.

Together, this shows that there was a large fraction of cells with single context re-
sponsiveness, i.e. a strong specialisation. General responsiveness was inhomogeneously
distributed across the three contexts and sizes of subpopulations followed a clear trend,
matching the firing rate magnitudes (Fig. 3.21).

3.2.2.3 More single units responsive to go-left instruction; less
specialisation than for contexts

Approximately two thirds of the cells were responsive to either of the two instructions
(Table 3.6 and Figs. 3.27a and 3.27b; PL: 60.9 %, MD: 67.1 %). The go-left instruction
modulated significantly more cells’ activities in both regions (PL: 50.2 % vs. 40.2 %51;
MD: 52.6 % vs. 38.8 %52; go-left vs. go-right). Proportionally, PL and MD displayed a
similar asymmetry53. In contrast to relatively strong specialisation of context-responsive
cells (Figs. 3.26a and 3.26b), many cells showed significant responsiveness to both instruc-
tions.

Even so, the fraction of single units that were specialised, i.e. exclusively responsive to
a single instruction, was about half amongst all instruction-responsive cells54. Notably,
specialisation was stronger for the go-left instruction: The quantities of exclusively go-
left-responsive single-units were about twice as many as exclusively go-right-responsive
units55.

47 PL: 36.7%, 16.9%, 9.5%; MD: 38.3%, 24.8%, 6.9%; defer , prepare-right , prepare-left , respectively
48 χ2(2, N = 691) = 8.14, p = 0.017
49 Proportions prepare-right to prepare-left responsive cells in MD vs. PL: χ2(1, N = 298) = 7.18, p =

0.007. Proportions defer to prepare responsive cells in MD vs. PL: χ2(1, N = 658) = 1.26, p = 0.262.
50 PL: 4.3%, 8.9%, 2.4%; MD: 3.8%, 13.1%, 2.6%; defer AND prepare-left, defer AND prepare-right,

prepare-left AND prepare-right, respectively
51 χ2(1− way,N = 529) = 6.98, p = 0.008
52 χ2(1− way,N = 384) = 8.76, p = 0.003
53 χ2(1, N = 953) = 0.30, p = 0.583.
54 PL: 29.3% vs. 32.0% MD: 29.3%) vs. 32.9%; multi-responsive vs. single-responsive, respectively
55 single-responsive go-left as fraction of go-left vs. single-responsive go-right as fraction of go-right :

PL: 41.8% vs. 27.3%; MD: 44.3% vs. 24.5%
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Table 3.6: Instruction-responsive cells. Percentage of cells that were responsive to individual
instructions (0 ms to 300 ms from movement instruction onset). A cell was responsive if pzeta <
0.05 for ZETA test. Total number of cells: nPL = 629, nMD = 420

% total

responsiveness to PL MD

instruction (go-left or go-right) 60.9 67.1
one instruction only 32.0 32.9
both instructions (intersect) 29.3 29.3

go-left (with intersect go-right) 50.2 52.6
go-left (both contexts) 26.2 23.6
go-left (prepare only) 13.0 12.9
go-left (defer only) 11.0 16.2

go-right (with intersect go-left) 40.2 38.8
go-right (both contexts) 16.9 16.0
go-right (prepare only) 10.2 11.2
go-right (defer only) 13.2 11.7

(a) PL

go rightgo left

184 69132

(b) MD

go rightgo left

123 4098

Figure 3.27: Units responsive to individual instructions (0 ms to 300 ms from movement
instruction onset).
(a, b) Area proportional Euler diagrams showing the numbers of cells that were responsive
to individual instructions. blue: go-left ; orange: go-right ; Overlaps represent cells that were
responsive to both instructions. Responsiveness is defined as a pζ < 0.05. More cells were
responsive to go-left than go-right instruction: χ2(1 − way,N = 529) = 6.98, p = 0.008 (PL),
χ2(1−way,N = 384) = 8.76, p = 0.003 (MD). Similar proportions across PL and MD: χ2(1, N =
953) = 0.30, p = 0.583.
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Table 3.7: Instruction-responsive single units dependent on prior context. Percentage
of all cells that were responsive to instruction (0 ms to 300 ms from movement instruction onset),
dependent on prior context. A cell was responsive if pzeta < 0.05 for ZETA test. Total number
of cells: nPL = 629, nMD = 420

% total

responsiveness to PL MD

go-left (both contexts) 26.2 23.6
go-left (prepare only) 13.0 12.9
go-left (defer only) 11.0 16.2

go-right (both contexts) 16.9 16.0
go-right (prepare only) 10.2 11.2
go-right (defer only) 13.2 11.7

Together this shows that responsiveness to movement instructions was asymmetrically
distributed towards more go-left-responsive cells, matching the firing rate magnitudes
(Fig. 3.23). Subpopulations overlapped more than for contexts, i.e. specialisation was
less pronounced. While responsiveness to prepare contexts was differentially distributed
for contexts, proportions for instruction-responsive cells were remarkably similar across
PL and MD.

3.2.2.4 Context-dependent shift of instruction-responsive single-unit
subpopulations

The stimuli for movement instruction were always presented after a context cue had
been shown (Fig. 3.2). Therefore, to ascertain the effect of prior context on neuronal
processing of the instruction, the responsiveness of instruction-modulated single units
(see Table 3.6) was investigated in trials with different contexts.

Notably, in about half of instruction-responsive cells both in PL and MD the prior
context determined whether a single unit’s firing rate would be modulated by the instruc-
tion (Table 3.7, symmetric differences in Figs. 3.28a to 3.28d). These context-exclusive
cells, which were only instruction-responsive if either a prepare or defer context had been
shown, existed in contrast to context-stable cells, which were instruction-responsive re-
gardless of prior context (intersections in Figs. 3.28a to 3.28d). The proportions of
context-exclusive to -stable cells were significantly different in PL. While only 47.8 % of
go-left-responsive cells were context-exclusive, a higher proportion of go-right-responsive
PL cells was specialised to responses after only one of the contexts56 (58.1 %, Figs. 3.28a
and 3.28b). This difference was not observed in MD: Here, the fractions of context-
exclusive single units were consistently higher than that of the context-stable groups57

(go-left : 55.2 %; go-right : 58.9 %, Figs. 3.28c and 3.28d).

56 χ2(1, N = 569) = 5.59, p = 0.018
57 χ2(1, N = 384) = 0.38, p = 0.537
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Figure 3.28: Instruction-responsive single units dependent on prior context. (a) Area-
proportional Euler diagram depicting the numbers of single units in PL that were responsive to
go-left instruction after the contexts prepare-left (darker blue circle to the left), defer (lighter blue
circle to the right), or after both (intersection in the middle). No significant difference between
the proportions of prepare-exclusive and defer -exclusive units: χ2(1−way,N = 151) = 1.12, p =
0.290. (b) same as (a) for single units in PL that were responsive to go-right instruction after the
contexts prepare-right (darker orange circle to the left), defer (lighter orange circle to the right),
or after both (intersection in the middle). No significant difference between the proportions of
prepare-exclusive and defer -exclusive units: χ2(1 − way,N = 147) = 2.46, p = 0.117.
In the main text the single units within the symmetric set difference are called context-exclusive,
while those within the intersection are called context-stable. Proportion of context-exclusive vs. -
stable was higher for go-right- than for go-left-responsive units: χ2(1, N = 569) = 5.59, p = 0.018.
(c) same as (a) for single units in MD. No significant difference between the proportions of
prepare-exclusive and defer -exclusive units: χ2(1−way,N = 124) = 1.61, p = 0.205. (d) same as
(b) for single units in MD. No significant difference between the proportions of prepare-exclusive
and defer -exclusive units: χ2(1 − way,N = 96) = 0.04, p = 0.838. Proportion of context-
exclusive vs. -stable was not significantly different for go-right- than for go-left-responsive units:
χ2(1, N = 384) = 0.38, p = 0.537.
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Figure 3.29: Modulation of instruction-responsiveness by context (PL). (a, b) Re-
sponsiveness magnitudes (ζ, 0 ms to 300 ms after instruction onset) for single cells in prepare and
defer trials. Every dot is one unit. Overlay is the KDE across units. Horizontal and vertical
lines at 1.96 specify the threshold of deeming a unit responsive. Quadrants created by these
lines divide the population into non-responsive (lower-left), defer -exclusive (upper-left), prepare-
exclusive (lower-right), context-stable (upper-right). Every dot one unit.

Cells that were exclusively responsive after one context were equally distributed. In
other words, neither after prepare nor defer context were statistically more cells respon-
sive to any of the instructions or in any of the regions58 (Figs. 3.28a to 3.28d). Rather,
the exact cells that responded changed, as evidenced by the overlapping sets described
above.

Functional gradients across subregions are a common feature in the brain (Fuster,
2015; Hardung et al., 2017). In order to test if the observed partial shift of respon-
sive subpopulations was accomplished by employing different subregions, the channel
depths along the recording probe of the different single unit subsets were investigated.
Figures S4a to S4d shows the channel depths for single units that were part of different
subsets in responsiveness to instructions. One-way ANOVAs with pairwise Tukey’s HSD
post-hoc tests found no statistically significant differences across the subsets.

Together this shows that prior contexts partially shifted the neuronal populations
that were responsive to the instructions. However, no evidence was found for spatial
segregation. In addtion, neither of the contexts led to a higher number of responsive
cells.

3.2.2.5 Prior context smoothly modulated and did not bias magnitude of
instruction-responsiveness

Although there was no evidence for specialised localisation of context-stable and -
exclusive single units it is possible that there was a further distinction on the functional

58 exclusively responsive after prepare or defer ; PL: 13.0% vs. 11.0% (go-left), χ2(1 − way,N =
151) = 1.12, p = 0.290 and 10.2% vs. 13.2% (go-right) χ2(1− way,N = 147) = 2.46, p = 0.117
MD: 12.9% vs. 16.2% (go-left) χ2(1 − way,N = 124) = 1.61, p = 0.205 and 11.2% vs. 11.7%
(go-right) χ2(1− way,N = 96) = 0.04, p = 0.838
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Figure 3.30: Modulation of instruction-responsiveness by context (MD). (a, b) Re-
sponsiveness magnitudes (ζ, 0 ms to 300 ms after instruction onset) for single cells in prepare and
defer trials. Every dot is one unit. Overlay is the KDE across units. Horizontal and vertical
lines at 1.96 specify the threshold of deeming a unit responsive. Quadrants created by these
lines divide the population into non-responsive (lower-left), defer -exclusive (upper-left), prepare-
exclusive (lower-right), context-stable (upper-right). Every dot one unit.

level. In order to follow this idea, in the following I investigated the magnitude of single
units’ responsiveness to the movement instruction after different contexts.

Previously, a single unit’s responsivity was threshold dependent. Thus, context-
exclusive units’ responsiveness magnitude exceeded the threshold for trials with only
one context, while the same metric was statistically significant after both contexts in
context-stable units. To find out if these categories were distinct and formed clusters,
single units’ magnitudes of instruction-responsiveness in trials after prepare and defer
contexts was plotted in Figures 3.29a, 3.29b, 3.30a and 3.30b.

Responsiveness magnitudes were smoothly, but not uniformly, distributed and no ap-
parent clusters were found. Especially the groups of context-stable cells were noticeably
outside of the bulk of the distribution. However, neither context-stable nor context-
exclusive cells formed distinct clusters.

Did one of the contexts bias the populations’ instruction-responsiveness magnitudes?
For example, even though the same numbers of single units were instruction-responsive
exclusively after the prepare context, was their instruction-responsiveness higher than
that of units that were exclusively responsive after defer contexts? Figures S5a, S5b,
S6a and S6b show that neither context consistently activated context-exclusive cells that
were more or less instruction-responsive59.

Similarly, instruction-responsiveness was not consistently swayed in context-stable sin-
gle units (Figs. S5c and S6c). Only in context-stable go-right-responsive MD cells was
the magnitude significantly higher in trials with a prior prepare context60.

59 PL: go-left : Mann-Whitney-U: p = 0.584; go-right : Mann-Whitney-U: p = 0.266
MD: go-left : Mann-Whitney-U: p = 0.565; go-right : Mann-Whitney-U: p = 0.433

60 PL: go-left : 0.001±0.102, p = 0.941 (one-sample Wilcoxon test against 0 mean); go-right : −0.002±
0.110, p = 0.903 (one-sample Wilcoxon test against 0 mean)
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In sum, the data presented in Sections 3.2.2.1 to 3.2.2.5 shows very similar trends in
neuronal responsiveness in PL and MD. Many single units were responsive to at least one
of the context cues or movement instructions. In general, populations were not distinct
but overlapping. A higher distinction of subpopulations was found for responsivity
to contexts, while for movement instructions the overlaps were higher. Prior contexts
partially changed which cells were instruction-responsive, but this was not realised via
different brain locations nor by different responsiveness magnitudes.

3.2.2.6 Preference

The analyses in Sections 3.2.2.1 to 3.2.2.5 were primarily focussed on whether single
units were responsive to one or multiple contexts and/or instructions. In case of multi-
responsiveness (i.e. statistically responsive to multiple contexts or instructions) it is
unclear which condition a single unit ”preferred”. However, the information about which
condition most strongly modulated a neuron’s activity and, thus, which one it mostly
represented, might be useful to further evaluate differential processing of those cues.
Therefore, in the following I defined a significantly responsive single unit’s preference as
the context or instruction at which maximum responsiveness (argmax of ζ value) was
achieved. Analysis windows were the same as in the previous section, i.e. 0 ms to 600 ms
after context cue onset for the context-preference, and 0 ms to 300 ms after movement
instruction onset for the instruction-preference.

The analysis is comprised of two parts. First, I investigated if preferences were dis-
tributed disproportionately to responsiveness observed in the previous section. Second,
in order to see if single units’ preferences represented behavioural contingencies, the
preferences across trial epochs were tested.

3.2.2.7 Higher preference for go-left instruction than expected from
responsiveness

As shown in Sections 3.2.2.2 and 3.2.2.3 responsiveness to contexts and instructions
were inhomogeneously distributed. Briefly, in the group of context-responsive cells most
were responsive to the defer context and a decreasing number of cells were respon-
sive to prepare-right and prepare-left contexts (Table 3.5 and Fig. 3.26). Similarly,
most instruction-responsive cells were responsive to the go-left instruction (Table 3.6
and Fig. 3.27). It doesn’t follow, however, that the same ranking was realised via prefer-
ence. For example, because of the high number of multi-responsive single units it would
be possible that even though more single units were responsive to the go-left than to the
go-right instruction, more preferred the latter.

This theoretically possible scenario was not observed. In both regions the rankings
of preferred context and instruction were consistent with the proportions of responsive

MD: go-left : 0.010± 0.107, p = 0.457 (one-sample Wilcoxon test against 0 mean); go-right : 0.045±
0.107, p = 0.002 (one-sample Wilcoxon test against 0 mean)
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Figure 3.31: Proportions of single units’ responsiveness and preference. (a) Left:
Percentages of context-responsive PL single units that were responsive to the individual con-
texts. Right: Percentage of context-responsive PL single units that preferred an individual
context. Context-preferences were not equally distributed: χ2(1 − way,N = 307) = 152.94, p =
6.16 · 10−34. Proportions of context-preference were not significantly different from those of
context-responsiveness: (χ2(2, N = 704) = 4.62, p = 0.099. (b) Left: Percentages of instruction-
responsive PL single units that were responsive to the individual instructions. Right: Percentage
of instruction-responsive PL single units that preferred an individual instruction. Instruction-
preferences were not equally distributed: χ2(1 − way,N = 383) = 42.11, p = 8.62 · 10−11.
More single units preferred go-left than expected from responsiveness: χ2(1, N = 952) =
11.18, p = 8.29 · 10−4; (c) same as (a) but for MD single units. Context-preferences were
not equally distributed: χ2(1 − way,N = 219) = 118.05, p = 2.32 · 10−26. Proportions of
context-preference were significantly different from those of context-responsiveness: all contexts:
χ2(2, N = 513) = 7.31, p = 0.026; Higher fraction of defer -preferring than prepare-left-preferring
than expected from responsiveness: defer and prepare-left : χ2(2, N = 341) = 5.38, p = 0.020.
(d) same as (b) but for MD single units. Instruction-preferences were not equally distributed:
χ2(1−way,N = 282) = 30.01, p = 4.29 ·10−8); More single units preferred go-left than expected
from responsiveness: χ2(1, N = 666) = 4.89, p = 0.027).
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cells. That is, most context-responsive cells preferred defer , followed by prepare-right
and prepare-left61 (Figs. 3.31a and 3.31c). Similarly, the go-left instruction was preferred
by more units than the go-right instruction62 (Figs. 3.31b and 3.31d).

Although the extreme scenario of preference rankings distinct from those in respon-
siveness was not observed, it is still possible that preferences differently distributed than
what would be expected from the proportions of responsive cells. That is, the inhomoge-
neous distribution of preferences could be more or less extreme than what was observed
for the responsiveness. To investigate that possibility, proportions from preference and
responsiveness were compared.

In PL context preference was indeed similarly distributed as expected from the pro-
portions of responsiveness63 (Fig. 3.31a). In contrast, MD showed a higher number of
defer -preferring neurons over prepare-left-preferring ones than expected from respon-
siveness64 (Fig. 3.31c).

In comparison, neurons in both PL and MD disproportionately preferred the go-left
instruction, thus deviating from what was expected from the proportions of respon-
siveness65 (Figs. 3.31b and 3.31d). In other words, in the majority of cells that were
responsive to both instructions the activity was more strongly modulated by the go-left
instruction.

3.2.2.8 Cross-epoch preferences: Most neurons likely to prefer go-left ;
prepare-right-preferring most ”loyal”

The two prepare contexts were predictive and, thus, much of their information was con-
sistent with that conferred by the instructions (Fig. 3.2). This begs the question if single
units that preferred one prepare context were more likely to prefer the behaviourally con-
tingent movement instruction (e.g. did cells that preferred the prepare-right context also
prefer to go-right instruction?). Complementary to this, which instruction was preferred
by the majority of cells that preferred the neutral defer context?

Figure 3.32 shows the flows of preferences across epochs. At first glance it is already
evident that single units that preferred one context did not uniformly prefer one of the
instructions. Rather, the go-left- and go-right-preferring groups were heterogenously
constituted.

To answer the question about consistency in cross-epoch preference, the instruction
preferences of single units preferring individual contexts were tested. In PL significantly
more prepare-left-preferring single units also preferred the behaviourally contingent go-
left instruction66. For the prepare-right-preferring cells about equal numbers of cells were

61 PL: 32.3%, 10.7%, 5.9%, χ2(1 − way,N = 307) = 152.94, p = 6.16 · 10−34 MD: 33.6%, 16.2%,
2.4%, χ2(1− way,N = 219) = 118.05, p = 2.32 · 10−26), defer , prepare-right , prepare-left

62 PL: 40.5%, 20.3%, χ2(1 − way,N = 383) = 42.11, p = 8.62 · 10−11), MD: 44.5%, 22.6%, χ2(1 −
way,N = 282) = 30.01, p = 4.29 · 10−8), go-left , go-right

63 χ2(2, N = 704) = 4.62, p = 0.099).
64 all contexts: χ2(2, N = 513) = 7.31, p = 0.026 defer and prepare-left : χ2(2, N = 341) = 5.38, p =

0.020
65 PL: χ2(1, N = 952) = 11.18, p = 8.29 · 10−4; MD: χ2(1, N = 666) = 4.89, p = 0.027
66 χ2(1− way,N = 23) = 5.26, p = 0.022
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go-left- or go-right-preferring. Thus, for these cells the proportion of later preference for
go-left/go-right instruction was less extreme than for the previous group67. A similar
trend was found for prepare-context preferring MD cells: the proportion of go-left to
go-right preferring units was less imbalanced in prepare-right-preferring than in prepare-
left-preferring units. However, due to small sample size statistical power was lower and
both proportions were significantly not different68.

Single units that preferred one of the prepare contexts were the minority (Figs. 3.31a
and 3.31c). The majority of context-responsive neurons was most strongly modulated
by the defer context. Furthermore, an even higher fraction was not significantly context-
responsive (Fig. 3.25). From a behavioural point of view these cells can be categorised as
neutral. Did these neutral cells prefer one or the other movement instruction? Indeed,
defer -preferring and cells that had been non-responsive to context were about twice as
likely to prefer the go-left than the go-right movement instruction. This was consistent
between PL and MD69.

Since these cells can be conceived of as being context-neutral, it is possible that
the likelihood to become go-left-preferring was smaller than for cells that preferred the
prepare-left context. In other words, was the likelihood for go-left-preference even higher
in prepare-left cells, similar to the more extreme imbalance for movement tendency in
prepare-left trials (Fig. 3.12)? No evidence was found for this hypothesis: the propor-
tions of go-left vs go-right were statistically not different in prepare-left-, defer -preferring
or non-context-responsive cells70.

As already demonstrated by the only partial overlap of single units that were both
context- and instruction-responsive (Fig. 3.25), many cells that had been context-re-
sponsive became non-responsive to instructions and vice versa. Was one of the context-
preferring groups more involved in cross-epoch representation of task variables? To test
this, the proportion of cells that became instruction-responsive was compared with the
one that become non-responsive to instructions. In both PL and MD the single units that
preferred the prepare-left context were equally likely to be responsive or non-responsive
to the instructions71. In contrast, cells that showed preference for prepare-right or defer
contexts were at least 2.5 times more likely to also be responsive to an instruction than

67 χ2(1− way,N = 52) = 0.69, p = 0.405
68 prepare-left-preferring units: χ2(1 − way,N = 5) = 1.8, p = 0.180; prepare-right-preferring units:

χ2(1− way,N = 54) = 3.63, p = 0.057;
69 PL: to go-left vs. to go-right (from defer -preferring) χ2(1−way,N = 149) = 30.13, p = 4.046 ·10−8;

to go-left vs. to go-right (from non context-responsive) χ2(1−way,N = 159) = 11.63, p = 6.49·10−4;
MD: to go-left vs. to go-right (from defer -preferring) χ2(1−way,N = 101) = 20.05, p = 7.54 ·10−6;
to go-left vs. to go-right (from non context-responsive)

70 proportions go-left- vs go-right-preferences; PL from prepare-left vs from defer χ2(1, N = 172) =
0.01, p = 0.91; χ2(1, N = 182) = 0.55, p = 0.48; from prepare-left vs from non-context-responsive
MD from prepare-left vs from defer χ2(1, N = 106) = 0.02, p = 0.89; from prepare-left vs from
non-context-responsive χ2(1, N = 127) = 0.11, p = 0.74;

71 PL χ2(1− way,N = 37) = 2.19, p = 0.139; MD χ2(1− way,N = 10) = 0, p = 1;
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Figure 3.32: Cross-epoch flow of single-unit preferences. (a) Bar heights proportional
to number of PL units that preferred the corresponding context or instruction. Left: Preferences
for context, or lack thereof. Right: Preferences for instruction, or lack thereof. Black bar on the
left: scale bar (number of units). (b) same as (a) for MD.

not being responsive72. Between prepare-right and defer preferring cells the probabilities
were statistically comparable73.

In sum, if a cell was responsive to an instruction it was much more likely to pre-
fer the go-left instruction, irrespective of the preference for a context. Notably, this
was less pronounced in cells that had preferred the prepare-right context. In contrast,
prepare-left-preferring cells were not more likely to become go-left-preferring than defer -
preferring or context-non-responsive cells. Thus, weak behavioural contingency was only
observed for prepare-right-preferring single units, while others had a shared probability
for movement instruction preference.

3.2.3 Neuronal recruitment

So far, the time resolution of analyses of single units’ activity was limited to trial epochs.
We now know per trial epoch how many neurons were significantly responsive to indi-
vidual contexts and instructions, which conditions they preferred and what individual
neurons’ preferences were across epochs. In addition to these trial-epoch resolved mea-
sures, it is of interest when cells were recruited, in order to investigate if external cues
might have been processed differently.

72 PL: (from prepare-right-preferring) to instruction-responsive vs. to non-responsive χ2(1−way,N =
67) = 20.43, p = 6.18 · 10−6; (from defer -preferring) to instruction-responsive vs. to non-responsive
χ2(1− way,N = 203) = 2.19, p = 2.60 · 10−11; MD: (from prepare-right-preferring) to instruction-
responsive vs. to non-responsive χ2(1−way,N = 68) = 2.19, p = 1.23·10−6; (from defer -preferring)
to instruction-responsive vs. to non-responsive χ2(1− way,N = 141) = 2.19, p = 2.79 · 10−7;

73 instruction-responsive vs. non-responsive: PL: from prepare-right vs. from defer χ2(1, N = 270) =
0.27, p = 0.60; MD: from prepare-right vs. from defer χ2(1, N = 209) = 1.07, p = 0.30;
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Figure 3.33: Neuronal recruitment profiles (context epoch). (a) Empirical CDFs for
the recruitment (pζ < 0.05) of new single units in PL throughout the epoch in different contexts.
Distributions were different between defer and prepare contexts, but not between prepare-left
and prepare-right : defer vs. prepare-left W2 = 0.35, p = 1.09 · 10−5, defer vs. prepare-right
W2 = 0.36, p = 1.17 · 10−8, prepare-right vs. prepare-left W2 = 0.12, p = 0.63, (Epps-Singleton
two-sample test). (b) same as (a) for MD cells. Distributions were different between defer
and prepare contexts, but not between prepare-left and prepare-right : defer vs. prepare-left
W2 = 0.29, p = 0.02, defer vs. prepare-right W2 = 0.24, p = 1.23 · 10−3, prepare-right vs.
prepare-left W2 = 0.15, p = 0.66; (Epps-Singleton two-sample test).

In the following, the latency of a single unit’s recruitment was derived from the ZETA-
test. First, the recruitment profiles for individual contexts and instructions were com-
pared. Afterwards, the effect of prior context on instruction epoch recruitment was
assessed. Here, the prior identification of context-stable and context-exclusive single
units was leveraged.

3.2.3.1 Distinct recruitment profiles in defer and prepare contexts

Figures 3.33a and 3.33b show CDFs of the recruitment times of significantly respon-
sive PL and MD cells for various contexts during the context epoch. For better visual
comparison the CDFs were normalised to the total number of cells recruited for the cor-
responding context (compare Figs. 3.26a and 3.26b). In both regions cells were recruited
throughout the context epoch, as indicated by the steady increase of the curves.
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The temporal dynamics of recruitment for the defer context were clearly visually and
statistically different from the dynamics in the prepare contexts74. Across the two pre-
pare contexts, in contrast, the recruitment profiles were similar and statistically not
different75. In both regions the majority of defer responsive cells were recruited within
the first 100 ms. Afterwards the recruitment of cells slowed down but didn’t entirely
stop. Conversely, recruitment for the prepare contexts was slower. PL units were al-
most uniformly recruited throughout the first 400 ms (50 % after 200 ms, Fig. 3.33a).
The recruitment speed was halved in the latter third of the context epoch. While the
prepare recruitment speed in MD was slower than for defer , it was not as slow as in PL
(Fig. 3.33b). Here, most cells were recruited within the first 200 ms, followed by a slower
recruitment speed from 200 ms to 600 ms.

In sum, recruitment profiles during the context epoch were clearly distinct between
defer and prepare conditions, while with the prepare conditions no difference was found.
Across PL and MD recruitment profiles were very similar apart from only minor devia-
tions.

3.2.3.2 Instruction-epoch recruitment distinct in PL but similar in MD

Similar to the context epoch recruitment profiles during the instruction epoch showed
recruitment throughout the entire epoch. The rates of recruitment differed between PL
MD. In PL, recruitment speeds showed several phases (Fig. 3.34a). During the first 50 ms
there was a fast increase of newly recruited cells. This was followed by a brief phase
of about 50 ms with slower speeds, which evolved into a phase with higher recruitment
speeds. This pattern is reminiscent of the firing rate dynamics in PL (Fig. 3.23a). In
contrast, responsive cells in MD were initially recruited fast (50 % in the first 100 ms)
and then recruitment rates slowly tapered off (Fig. 3.34b). Interestingly, recruitment
dynamics for go-left and go-right were statistically different in PL but not in MD76.

Together, recruitment profiles in the context epoch were similar across regions but differ-
ent within, i.e. across contexts. Conversely, recruitment in the instruction epoch differed
more between the regions.

3.2.3.3 Prior contexts led to similar recruitment profiles but distinct
recruitment sequences of context-stable cells

At least in PL the recruitment profiles differed already at early times of the instruc-
tion epoch. This could have been caused by prior prepare contexts. Thus, in order to

74 PL: defer vs. prepare-left W2 = 0.35, p = 1.09 · 10−5, defer vs. prepare-right W2 = 0.36, p =
1.17 · 10−8; MD: defer vs. prepare-left W2 = 0.29, p = 0.02, defer vs. prepare-right W2 = 0.24, p =
1.23 · 10−3, Epps-Singleton two-sample test for equality of distribution functions

75 PL: prepare-right vs. prepare-left W2 = 0.12, p = 0.63; MD: prepare-right vs. prepare-left W2 =
0.15, p = 0.66; Epps-Singleton two-sample test for equality of distribution functions

76 Epps-Singleton two-sample test for equality of distribution functions; PL: W2 = 0.229, p =
5.43d− 7, MD: W2 = 0.106, p = 0.22
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(a) PL
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(b) MD
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Figure 3.34: Neuronal recruitment profiles (instruction epoch). (a) Empirical CDFs
for the recruitment (pζ < 0.05) of new single units in PL throughout the epoch in dif-
ferent instructions. Distributions were different between go-left and go-right instructions:
W2 = 0.229, p = 5.43 · 10−7 (Epps-Singleton two-sample test). (b) same as (a) for MD cells.
Distributions were not different: W2 = 0.106, p = 0.22 (Epps-Singleton two-sample test).

see if there was an effect of prior context on instruction epoch recruitment that was
possibly diluted by collective examination, recruitment was investigated separately for
trials after prepare and defer contexts. Prior contexts could have affected recruitment in
different neuronal subpopulations: either large population of cells that were significantly
instruction-responsive after both contexts (context-stable, Figs. 3.28a to 3.28d) or the
non-overlapping populations of cells that were instruction-responsive after only one type
of context (context-exclusive, Table 3.7).

In context-stable single units the prior contexts did, by definition, not affect if a cell
was significantly responsive to an instruction (Table 3.7). Furthermore, the magnitude
of responsiveness was not or only marginally influenced by prior contexts (Figs. 3.29
and 3.30). Were these cells also ”stable” in terms of recruitment during the instruction
epoch?

Figures 3.35a to 3.35d show that there were striking cross-context similarities in the
recruitment dynamics for the different instructions in PL and MD. Concretely, the cu-
mulative numbers of recruited cells in prepare trials were indistinguishable from defer
trials in any condition during the epoch77.

77 PL: go-left : W2 = 0.067, p = 0.858, go-right : W2 = 0.066, p = 0.872; MD: go-left : W2 = 0.141, p =
0.276, go-right : W2 = 0.090, p = 0.953; Epps-Singleton two-sample test for equality of distribution
functions (prepare vs. defer)
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Figure 3.35: Recruitment profiles of context-stable single units during instruction,
split by prior context. (a) CDF of recruitment times of context-stable single units from PL
that were significantly responsive to go-left instruction. Sorting was done within the different
conditions, y-axis doesn’t reflect cell identity. (b) same as (a) for go-right-responsive single units.
Distributions were not different between prepare and defer : go-left : W2 = 0.067, p = 0.858, go-
right : W2 = 0.066, p = 0.872 (Epps-Singleton two-sample test). (c, d) same as (a, b) for
context-stable single units in MD. Distributions were not different between prepare and defer :
go-left : W2 = 0.141, p = 0.276, go-right : W2 = 0.090, p = 0.953). (Epps-Singleton two-sample
test).
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Figure 3.36: Recruitment times, sorted by prepare trials, in context-stable
instruction-responsive single units. (a) Recruitment times of context-stable go-left-
responsive single units from PL, sorted by times in prepare trials. Per definition, the recruitment
sequence in prepare trials is reproduced. Recruitment sequence was statistically not the same in
defer trials: τ = −0.010, p = 0.846. (b) same as (a) for context-stable go-right-responsive PL
cells. Recruitment sequences were statistically not the same: go-right : τ = −0.009, p = 0.894.
(c, d) same as (a, b) for MD single units. Recruitment sequences were statistically not the same:
go-left : τ = 0.033, p = 0.631, go-right : τ = 0.046, p = 0.585. All statistical tests: Kendall’s τ for
correspondence between rankings.
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Sequential activity (”tiling”) is a phenomenon that has been observed in mouse PL
(Parnaudeau et al., 2018). The implicit assumption in studies that show this is that
information is sequentially passed on from one neuron to the next. Since the recruit-
ment profiles of context-stable cells were virtually indistinguishable between trials with
prior defer and prepare context, it seemed likely that recruitment sequences did not
substantially change across contexts. To test this idea, neurons were ordered according
to their recruitment time sorted in the respective prepare trials (Figs. 3.36a to 3.36d).
Notably, applying the same sorting on the recruitment times in defer trials showed that
recruitment sequences considerably varied across contexts78.

In contrast to the previous neuronal subpopulations, context-exclusive cells were
non-overlapping groups. Prior context did, by definition, modulate their instruction-
responsiveness. Did the context also influence when single units were recruited?

Visually, in PL recruitment in prepare trials appeared to be faster than in defer trials
(Figs. 3.37a and 3.37b). However, this trend was statistically significant only for go-
right trials79. Conversely, recruitment in MD had less clear dynamics. Some defer -
exclusive neurons in go-left trials were recruited at a faster pace after 100 ms, while for go-
right recruitment for prepare-exclusive units tended to be faster (Figs. 3.37c and 3.37d).
Overall, however, the CDFs were statistically not different80.

Together, the data shown here demonstrated that while recruitment profiles were
stable across contexts in single units with context-stable instruction-responsiveness, their
times of recruitment were not context-stable, thus constituting different recruitment
sequences. In addition, recruitment profiles for context-exclusive cells were more distinct,
especially in PL.

All in all, the data described in Section 3.2.3 shows similar neuronal recruitment prop-
erties in PL and MD. Recruitment profiles during the context epoch were mainly dis-
tinguished by the abstract split of defer against prepare contexts. The biggest differ-
ences between the regions was found for the recruitment profiles during the instruction
epoch. Here, profiles differed within PL but not within MD. Further investigation of
cross-context within-instruction recruitment again showed similar characteristics across
regions. While cross-context recruitment profiles for instructions were virtually identical,
recruitment sequences differed.

78 PL: go-left : τ = −0.010, p = 0.846, go-right : τ = −0.009, p = 0.894; MD: go-left : τ = 0.033, p =
0.631, go-right : τ = 0.046, p = 0.585; ranking prepare vs. ranking defer , Kendall’s τ for correspon-
dence between rankings

79 go-left : W2 = 0.179, p = 0.157, go-right : W2 = 0.244, p = 0.021 (Epps-Singleton two-sample test
for equality of distribution functions)

80 go-left : W2 = 0.190, p = 0.197, go-right : W2 = 0.178, p = 0.375 (Epps-Singleton two-sample test
for equality of distribution functions)
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Figure 3.37: Recruitment profiles of context-exclusive single units during instruction,
split by prior context. (a) CDF of recruitment times of context-exclusive single units from
PL that were significantly responsive to go-left instruction. Distributions were not different
between prepare and defer : W2 = 0.179, p = 0.157. (b) same as (a) for go-right-responsive cells.
Distributions were statistically different between prepare and defer : W2 = 0.244, p = 0.021.
(c, d) same as (a, b) for MD cells. Distributions were not different between prepare and defer :
go-left : W2 = 0.190, p = 0.197, go-right : W2 = 0.178, p = 0.375. All tests: Epps-Singleton
two-sample test for equality of distribution functions.

96



3 Contextual Decision-Making in Mice 3.2 Neurophysiology

0 10
unit 1 [Hz]

5.0

7.5

10.0
un

it 
2 

[H
z]

Figure 3.38: Schematic of a classification using a sup-
port vector machine in 2D space. Dots represent firing rates
of two neuronal units in different trials. Different colours rep-
resent firing rates in different conditions. The support vector
machine finds the hyperplane (solid line) that separates the two
conditions with the biggest margins (dashed lines) to the next
data point (circled blue dot). Different neuronal coding would
be represented by the groups of dots occupying different regions
and a different resultant hyperplane. Thus, the hyperplane is
a proxy of neuronal coding. Adding more neurons’ firing rates
results in a high-dimensional hyperplane.

3.2.4 Population coding

So far, the analysis focused on activity of single neurons in response to the contexts and
instructions. This disregards the fact that neurons do not work in isolation but in wider
networks. By ways of interplay between neurons, neuronal networks can thus lead to
emergent effects. One of these effects can be improved / more robust encoding of task
variables.

In this section I employed Support-Vector Machine (SVM) classifiers in order to in-
vestigate coding of task variables in neuronal populations. Classifiers were trained on
the combined spiking activity of hundreds of single units. Thus, a classifier trained at
one point in time represents a high-dimensional fingerprint of the neuronal population
code at that time (Fig. 3.38). This fingerprint can be used in two complementary ways.
First, testing a classifier at the same point in time that it was trained in shows how
robust the population code was across trials. Secondly, using the same classifier but
testing at points in time in which it was not trained shows the cross-temporal stability
of the neuronal code (E. M. Meyers, 2018). In other words, this shows if and how fast
the population code changed.

In the following, the classifier approach was applied to check coding strength and
stability for context cues and movement instruction. Furthermore, to find out if prior
contexts changed robustness and cross-temporal generalisability, population codes for
movement instructions were dissected by context. Finally, to leverage behavioural data
recorded via the response ball, I investigated if population coding was affected by micro-
movements during the context epoch.

3.2.4.1 PL and MD populations strongly encoded context cues

During the context epoch three different contexts were shown (defer , prepare-left , prepare-
right). Thus, a random ”guess” of a trial’s context would on average lead to an accuracy
of 33.3 %. This would be the case if the classifier would not have been able to extract any
information from the population’s activity. Figures 3.39a and 3.39c show the temporal
evolution of information about the context contained in the firing rates of PL and MD
populations within the context epoch. In both populations the information rapidly in-
creased after the onset of the context cue and peaked at around 80 %. The peak occurred
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Figure 3.39: Context cue information in neuronal populations. (a) Classification accu-
racies of SVM classifiers trained on the neuronal activity of the PL pseudopopulation and tested
at the same points in time, aligned to context cue onset. Saturated line: Mean across pseudotrial
shuffles (n = 100). Blue shading: Standard deviation across pseudotrial shuffles. Grey shading:
Time of context stimulus presentation. Horizontal dashed line: Chance level. (b) same as (a)
but with data aligned to instruction cue. (c, d) same as (a, b) but for the MD pseudopopulation.

about 100 ms after cue offset in PL and at offset in MD. After the peak the information
in the populations decayed close to chance level.

The length of the context epoch varied across trials. At the minimum it was 600 ms if
an animal did not move the response ball more than a certain small ”grace rotation”. If,
however, an animal moved the response ball across the acceptable threshold the context
epoch was extended by 100 ms increments (Fig. 3.2 and Section 7.4.3). Thus, progression
into the instruction epoch was dependent on terminating response ball movements. In
order to see if context information kept decaying or if it was reactivated shortly before the
instruction epoch, classifiers were also trained on population activity that was aligned
to the onset of the instruction epoch. Figures 3.39b and 3.39d show that both regions’
context information was almost absent shortly before the instruction epoch (negative
times, left parts of the plots). Only small traces of context information were observed
for MD. Context information increased after the onset of the instruction epoch, as ex-
pected by the behavioural contingency of prepare contexts with the respective movement
instructions.

To further explore how preparative information was processed the accuracies to dis-
tinguish between the two prepare contexts was assessed (Fig. 3.40). Peak coding of the
to-be-prepared side was significantly earlier in MD than in PL81. Furthermore, in MD

81 difference: 78ms, p < 0.01 (permutation test, n = 1000)
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Figure 3.40: Comparison of population coding
of upcoming action in PL and MD. Classifica-
tion accuracies of classifiers trained on the neuronal
activity of the pseudopopulations in prepare-left and
prepare-right trials and tested at the same points in
time, aligned to context cue onset. Saturated line:
Mean across pseudotrial shuffles (n = 100). Shad-
ing: Standard deviation across pseudotrial shuffles.
Vertical dashed line: Time of context stimulus pre-
sentation. Horizontal grey dashed line: Chance level.
Coloured lines at the top: significant coding (p < 0.01,
permutation test).

significant coding had a lower latency and was sustained throughout the context epoch82.

3.2.4.2 Population code for context was partially generalisable within the
context epoch but distinct from code in the instruction epoch

As alluded to earlier in the introductory paragraph of this section, classifier analyses can
be used to assess the stability of the neuronal code. If neuronal code was stable (i.e.
did not change) across a certain time interval, high decoder accuracy is expected for
classifiers trained and tested on different time points within the interval. On the other
hand, if the code rapidly changed, only classifiers that were trained and tested on the
same point in time would achieve high classification accuracy.

Cross-temporal coding stability of context cue information was in investigated via
cross-temporal testing. Figure 3.41 shows the classifier accuracies represented by pseu-
docolours. Accuracies for classifiers tested at the same time points that they were trained
in are plotted at the main diagonal that spans from the top left to the bottom right.
Off-diagonal pixels represent cross-temporal accuracies. Onset of the context and in-
struction epochs are represented by vertical and horizontal dashed lines. If the code
was entirely stable within the context epoch, the lower right quadrant of Figures 3.41a
and 3.41c would be expected to have uniform colouring. In contrast, the experimentally
observed code stability varied within the context epoch. Cross-temporal generalisability
was relatively low in the first half of the context epoch and subsequently increased, as
represented by the funnel-like structure.

Due to the behavioural contingency of prepare contexts and movement instructions
it is possible that the same population code was used across epochs. In Figures 3.41b
and 3.41d the top right quadrants show cross-temporal coding from context epoch to
instruction epoch, and the bottom left quadrants show the inverse. ”Cool” pseudocolours
in those quadrants show that in general population codes were distinct across the epochs.
One notable exception were the first 100 ms of the instruction epoch in PL. At that time
the same code that was found during the context epoch was weakly reactivated.

82 PL: 115ms to 472ms; MD: 38ms to 600ms
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Figure 3.41: Cross-temporal code stability of context cue information in neuronal
populations. (a) Cross-temporal classification accuracy (mean across pseudotrial shuffles),
represented as pseudocolours. Decoders were trained on data from time points shown on the
y-axis and tested on data from time points shown on the x-axis. Vertical and horizontal dashed
lines represent time of stimulus alignment. Diagonal dashed line represents equal train and test
times (see Figure 3.39). Classification accuracies of SVM classifiers trained on the neuronal
activity of the PL pseudopopulation and tested at the same points in time, aligned to context
cue onset. (b) same as (a) but with data aligned to instruction cue. (c, d) same as (a, b) but
for the MD pseudopopulation.
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In sum, Sections 3.2.4.1 and 3.2.4.2 show that the context was strongly encoded in
both regions but decayed towards the end of the context epoch. Upcoming instructions
were encoded earlier and longer in MD than in PL. Analysis of cross-temporal coding
revealed an evolution from highly dynamic to more generalisable codes. Generalisability
was, however, mostly restricted to the context epoch and did not propagate substantially
into the instruction epoch.

3.2.4.3 Movement instruction was very robustly encoded and persisted
after trial outcome

As shown in previous sections, both PL and MD displayed high firing rates (Fig. 3.23)
and contained a higher number of single units that were responsive (Fig. 3.25) to the two
movement instructions go-left and go-right . In order to investigate how this translated
into the population code, the classifier approach was extended to these task variables.

Using the population activity the instructions of single trials could be decoded almost
perfectly, as represented by accuracies close to 100 % (Figs. 3.42a and 3.42c). Due to the
exact behavioural contingencies of prepare contexts and respective movement instruc-
tions the classifier accuracies were above chance level (> 50 %) before the instruction
epoch started. Shortly after the onset of the instruction accuracies increased rapidly
and reached peak values at around 150 ms (PL, Fig. 3.42a) and 200 ms (MD, Fig. 3.42c).
Subsequently, information decreased only slowly and retained high levels.

This persistence of information might be a side effect of the varying durations across
trials that were needed to rotate the response ball across the target threshold. Therefore,
to investigate the evolution of movement instruction information up to and after this im-
portant trial event, data was also aligned to threshold crossing. Figures 3.42b and 3.42d
show that, indeed, information built up to maximum levels shortly before threshold
crossing. Although instruction information decreased subsequently it remained high
even during the times when the animal received and consumed reward. Notably, while
in PL information decayed immediately after threshold crossing, information in MD
persisted at peak levels for about 200 ms before decaying.

Together, this shows that movement instruction was very rapidly and robustly encoded
by both PL and MD. Information built up until threshold crossing and subsequently
persisted for long durations.

3.2.4.4 Code stability for movement instruction varied strongly in PL but
not MD

To assess the code stability of the population code for movement instruction, cross-
temporal decoding was used, similar to what was done for decoding the context.

In PL coding stability varied considerably within the instruction epoch (Fig. 3.43a).
Coinciding with the initial information increase and peak after instruction onset the code
was very dynamic in the first 150 ms, as represented in the plot by the very narrow band
of high accuracy off the diagonal. Subsequently, however, the code became much more
generalisable. Interestingly, aligning to the crossing of the target threshold revealed
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(d) aligned to threshold
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Figure 3.42: Movement instruction information in neuronal populations. (a) Classifi-
cation accuracies of SVM classifiers trained on the neuronal activity of the PL pseudopopulation
and tested at the same points in time, aligned to onset of movement instruction. Saturated line:
Mean across pseudotrial shuffles (n = 100). Blue shading: Standard deviation across pseudotrial
shuffles. Vertical dashed line: Time of instruction stimulus presentation. Horizontal dashed line:
Chance level. (b) same as (a) but with data aligned to threshold crossing. (c, d) same as (a, b)
but for the MD pseudopopulation.
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Figure 3.43: Cross-temporal code stability of movement instruction information in
neuronal populations. (a) Cross-temporal classification accuracy (mean across pseudotrial
shuffles), represented as pseudocolours. Decoders were trained on data from time points shown
on the y-axis and tested on data from time points shown on the x-axis. Vertical and horizontal
dashed lines represent time of trial event alignment. Diagonal dashed line represents equal train
and test times (see Figure 3.42). Classification accuracies of SVM classifiers trained on the
neuronal activity of the PL pseudopopulation and tested at the same points in time, aligned
to onset of movement instruction. (b) same as (a) but with data aligned to threshold crossing
(c, d) same as (a, b) but for the MD pseudopopulation.

that the code in PL was very stable within the epoch after threshold crossing, since
the same classifier achieved good accuracies at virtually every time point (Fig. 3.43b).
Furthermore, this alignment uncovered that there were two other phases of code stability
in PL: up to 250 ms before threshold crossing was a phase of relatively high stability,
which was followed by a highly dynamic phase in the remaining time before the target
was hit.

In contrast to PL code stability in MD did not vary substantially. Here, the code
generalised to around 250 ms almost from the beginning of the instruction epoch and
remained at that bandwidth at later times (Fig. 3.43c). Alignment to the crossing of
the threshold was consistent with this: generalisability was at the same bandwidth and
did not change (Fig. 3.43d). Consequently, this means that overall code stability was
not boosted after threshold crossing like it was observed for PL.

In sum, code stability for movement instruction differed between the regions. While
there were two to three metastable periods in PL, the stability bandwidth of the code
in MD did not change.
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3.2.4.5 Prior context only weakly influenced strength of instruction coding
but shifted its onset

Figure 3.42 showed that the neuronal populations encoded movement instruction almost
perfectly, even if no distinction was made between trials of different prior context. Does
that mean that movement instruction coding was so robust that prior context did not
have any influence? Intuitively, prepare contexts might have been able to boost coding
levels because these contexts were perfectly predictive of the upcoming movement in-
structions. To further assess this, classifiers were trained and tested exclusively on either
prepare or defer trials.

As expected, in prepare trials there was high instruction information before the onset
of the instruction (Figs. 3.44a and 3.44d). Similarly consistent with expectation, no
significant instruction coding was found in defer trials (Figs. 3.44b and 3.44e). Directly
comparing both kinds of trials shows that indeed information content was consistently
significantly higher in prepare trials83 (Figs. 3.44c and 3.44f). However, this was mainly
an effect of earlier coding onset in prepare trials than in defer trials, while temporal
dynamics and peak information were similar.

3.2.4.6 Population code for movement instruction conserved across contexts

In the previous section it was shown that maximum decoder accuracy, as a proxy for
information content in the neuronal population, was only weakly influenced by prior
context. Conversely, similar information profiles appeared to be simply offset in time.

Did the contexts only shift instruction coding onsets or was the population code itself
changed? The similar but shifted accuracy profiles in Figures 3.44c and 3.44f open up
the possibility that the same code was economically reused but time-shifted in trials with
different prior contexts. In order to test this possibility, classifiers trained in one context
were compared to classifiers trained in the other context. As stated earlier, classifiers
extract a kind of ”fingerprint” of the neuronal activity across the entire population.
The parametrisation of this profile specifies a high-dimensional hyperplane which can
be thought of as a proxy of the neuronal code. Thus, comparing the hyperplane angles
across different classifiers indicates how similar the neuronal code was in the trials that
were used for classifier training. If the codes were merely shifted in time, this would be
visible as an off-diagonal line of low hyperplane angles (i.e. high similarity) in a plot
comparing cross-context codes at different points in time. Concretely, if the code in defer
trials was simply the code of prepare trials but delayed by 100 ms, the angles of defer
classifier hyperplanes at time t would be smallest in comparison to prepare classifier
hyperplanes at time t− 100 ms.

In contrast to this time-shift hypothesis, Figures 3.45a and 3.45d show that for the
majority of the instruction epoch, the codes across contexts were most similar at the
same points in time (i.e. on the main diagonals of the respective plots). Notably, the
codes’ similarity varied during the epoch. In the first 100 ms codes started out dissimilar

83 Cluster-corrected permutation tests p < 0.01
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Figure 3.44: Effect of prior context on population coding of movement instruction.
(a) Classification accuracies of SVM classifiers in prepare trials trained on the neuronal activity
of the PL pseudopopulation and tested at the same points in time, aligned to onset of movement
instruction. Saturated line: Mean across pseudotrial shuffles (n = 100). Blue shading: Standard
deviation across pseudotrial shuffles. Vertical dashed line: Time of instruction stimulus presen-
tation. Horizontal dashed line: Chance level. (b) same as (a) for defer trials. (c) Comparison
of classifier accuracies from prepare (a) and defer (b). Cluster-corrected permutation test, hor-
izontal bars: thick p < 0.01, thin p < 0.05. Included in the comparison were times −50 ms to
600 ms from instruction to avoid spurious clusters from the context epoch. (d–f) same as (a–c)
for the MD pseudopopulation.
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and became more similar. After a period of high code similarity from 100 ms to 300 ms
the hyperplane angles increased again.

Since the above suggests that neuronal codes for instruction were conserved across
contexts it should be possible to use a classifier trained in one context to decode move-
ment instruction in trials with the other prior context. Indeed Figures 3.45b, 3.45c, 3.45e
and 3.45f show that cross-contextual decoding (solid lines) was almost as good as using
intra-contextual classifiers (dashed lines, data from Figs. 3.44c and 3.44f). Notably, in
PL the classifier trained on defer trials was worse than the intra-context classifier in
the first 100 ms of prepare trials84 (Fig. 3.45b). The opposite way, decoding instruction
in defer trials using a classifier trained on prepare trials, achieved accuracies that were
indistinguishable from the intra-context classifier during that time interval (Fig. 3.45c).
Interestingly, this ”uni-directional” effect was absent in MD. Here, even though a delayed
coding onset had been detected in defer trials (Fig. 3.44f), during the first 200 ms the de-
fer classifier achieved similar decoding accuracies in prepare trials like the intra-classifier
and vice-versa (Figs. 3.45e and 3.45f). Strong differences between the accuracies were
only present in defer trials after 200 ms, when the intra-classifier (trained on defer trials)
decoded instruction significantly better than the cross-classifier.

In sum, this shows that the population code for movement instruction was strongly
conserved across trials with different prior contexts. This conservation also extended to
the temporal evolution of code.

3.2.4.7 Neuronal coding was degraded in wrong trials

So far, Sections 3.2.4.1 to 3.2.4.6 showed data from correct trials. If that neuronal
information was relevant for the animals’ behaviour, it should correlate with it. Because
of the animals’ very good task performance (Fig. 3.3) only a small number of error trials
in which the response ball was turned to the wrong side was available. In order to have
comparable statistical power, I therefore replaced correct trials with the available error
trials before training the decoders (see e.g. Jacob et al., 2018; Siegel et al., 2009). Due to
the high number of correct trials that remain part of the trial set this serves as a lower
bound on the effect of error trials.

Figures 3.46a and 3.46b show that in both PL and MD context information was
consistently significantly higher in correct trials than in datasets substituted with error
trials.85

Similarly, instruction information after instruction onset was consistently higher in
datasets containing only correct trials (Fig. 3.47). Notably, the degradation effect ap-
peared to be stronger in trials with prior defer context (Figs. 3.47b and 3.47d) than in
those with prior prepare context (Figs. 3.47a and 3.47c).

Together this shows that response errors correlated with degraded coding of the rel-
evant variables. Information seemed to be more robust in trials with prior prepare
context.

84 Cluster-corrected permutation tests p < 0.01
85 Cluster-corrected permutation tests p < 0.01
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(e) prepare trials
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Figure 3.45: Stability of movement instruction coding across prior contexts. (a)
Angles between hyperplanes of classifiers trained on PL population activity in defer trials vs.
prepare trials as a proxy of code similarity. Warmer colours indicate higher similarity. Hyper-
planes were not only compared for classifiers that were trained at the same time (main diagonal
dashed line) but also at different times (off-diagonal pixels). Horizontal and vertical dashed
lines: instruction onset. (d) same as (a) for MD population. (b) Decoder accuracies in PL for
instruction (go-left vs. go-right) for held-out prepare test trials. Dashed time-course: Decoder
was trained and tested on prepare trials (intra-context). Solid time-course: Decoder was trained
on defer and tested on prepare trials (cross-context). (c) Same as (b) but tested on held-out
defer trials. Dashed and solid time courses are intra- and cross-context decoders, thus identities
are flipped. (e, f) Same as (b, c) but for MD. Vertical dashed line: instruction onset. Hori-
zontal dashed line: chance level. Horizontal bars above line plots: significant clusters (p < 0.01,
cluster-corrected permutation test).
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Figure 3.46: Degraded context information in error trials. (a) Decoding accuracies in
PL for correct trials (green) and after replacing correct trials with error trials (magenta, ”wrong
mixed-in”), aligned to context cue onset. (b) same as (a) for MD. Horizontal bars: Significant
differences between correct and error-trial-substituted data (p < 0.01, cluster-corrected permu-
tation test). Only data from after the context cue onset was used for statistical tests.

3.2.4.8 Higher and more generalisable context information in trials with
covert rightwards movements

Although the context epoch was enforced to be a time during which the animals should
not make large response ball movements, the dissection of the behaviour in that epoch
(0 ms to 600 ms after context cue onset) showed that micro-movements within the ac-
ceptable range of rotation did occur (Section 3.1.3).

In order to test if covert movements during the context epoch correlated with neuronal
coding, in the following I investigated classifier accuracies for trials with relatively more
left (”leftish”) and right (”rightish”) submovements (compare Section 3.1.3). Impor-
tantly, the subsetting of relative movement tendency was done per context, so that in
each trial subset the same number of trials was present for each context.

Figures 3.48a, 3.48b, 3.49a and 3.49b show that indeed context information differed
dependent on response ball movement. If animals covertly moved the ball relatively
more to the left side, as was their more common behaviour (Figs. 3.3 and 3.12), context
information was high in the beginning of the context epoch but quickly degraded and did
not generalise well across time (Figs. 3.48a and 3.49a). In contrast, context information
was higher, longer lasting and more temporally generalisable, especially after 200 ms into
the epoch, if animals moved the response ball relatively more to the right (Figs. 3.48b
and 3.49b).

Together, this shows that covert right-wards movements occurred especially if context
information was high.
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Figure 3.47: Degraded instruction information in error trials. (a) Decoding accuracies
in prepare trials in PL for correct trials (green) and after replacing correct trials with error trials
(magenta, ”wrong mixed-in”) aligned to movement instruction onset. (b) same as (a) for defer
trials. (c, d) same as (a, b) for MD. Horizontal bars: Significant differences between correct
and error-trial-substituted data (p < 0.01, cluster-corrected permutation test). Only data from
after the instruction was used for statistical tests.
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Figure 3.48: Neuronal population coding of context information dependent on covert
movement tendency (PL). Cross-temporal classifier accuracies for context from activity in
PL pseudopopulation in trials with relatively more covert left-wards (a) and right-wards (b)
movements (0 ms to 600 ms after context cue onset).
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Figure 3.49: Neuronal population coding of context information dependent on covert
movement tendency (MD). Cross-temporal classifier accuracies context from activity in for
MD pseudopopulation in trials with relatively more covert left-wards (a) and right-wards (b)
movements (0 ms to 600 ms after context cue onset).

In sum, Sections 3.2.4.7 and 3.2.4.8 showed that both context and movement instruction
could be robustly decoded from the population activity in PL and MD. This coding
was relevant for successful behaviour. The temporal evolution of population code for
movement instruction was conserved across trials with different prior contexts.
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Table 3.8: Significant GC links during the context epoch (0 ms to 600 ms).

link direction nsignificant/ntotal (% total)

source target defer prepare-left prepare-right

PL PL 2701/14 728 (18.3) 1642/11 442 (14.4) 1469/9192 (16.0)
MD MD 1218/12 858 (9.5) 593/8684 (6.8) 897/11 084 (8.1)
PL MD 283/3457 (8.2) 156/2654 (5.9) 180/2640 (6.8)
MD PL 271/3457 (7.8) 110/2654 (4.1) 193/2640 (7.3)

3.2.5 Functional connectivity

Many analyses shown in the previous sections assumed more or less independent neurons
that, as a whole, give rise to different phenomena. Obviously, neurons within areas are
actually tightly linked into neuronal systems and their communication, which can vary
with task requirements, is of major importance for proper brain functions. In addition
to within-area communication, PL and MD are well known to be anatomically densely
interconnected and functionally dependent (Fuster, 2015). Thus, it is very likely that
functional connectivity within and across these areas varied with task requirements.

To gain insight into this topic, therefore, I employed the analytical framework of GC
(Barnett & Seth, 2015). Briefly, GC assumes that a cause A precedes the effect B and
contains unique information about it. Spike trains of pairs of simultaneously recorded
single units within and across regions were thus tested for significant functional links.

3.2.5.1 Fractions of significant functional connections were consistently
ordered by context

In the context epoch from 0 ms to 600 ms after context stimulus onset the fraction
of significant GC links was asserted. Fractions of significant functional links varied
significantly with context, i.e. fractions were not equal (Table 3.9). The highest fraction
of links was found in the context epoch of trials with defer context, followed by prepare-
right and, lastly and leastly, prepare-left (Fig. 3.50 and Table 3.8). Although this order
was found in all directions, it was only statistically significant amongst the links within
PL or MD (Table 3.9, source PL, target PL; source MD, target MD), not fronto-thalamic
or thalamo-frontal (Table 3.9, source PL, target MD; source MD, target PL).

Intra-regional links were more common than cross-regional ones, with PL and MD
ranging from 14.35 % to 18.34 % and 6.8 % to 9.47 %, respectively, while across they
ranged from 5.88 % to 8.19 % and 4.14 % to 7.84 %, for fronto-thalamic and thalamo-
frontal, respectively (Table 3.8).
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Figure 3.50: Significant GC links during context epoch. (a) Percentage of significant
functional links between source cells in PL and target cells in PL. (b–d) same as (a) but for MD
to MD, PL to MD and MD to PL, respectively. Vertical error bars show 95 % bootstrap CI.
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Table 3.9: χ2 contingency tests for significant GC links during context epoch.

source target comparison χ2 p df

PL PL all 54.900 1.198 · 10−12 2
defer/prepare-left 52.946 3.429 · 10−13 1
defer/prepare-right 15.308 9.132 · 10−5 1
prepare-left/prepare-right 7.692 5.545 · 10−3 1

MD MD all 41.194 1.135 · 10−9 2
defer/prepare-left 39.640 3.053 · 10−10 1
defer/prepare-right 11.646 6.434 · 10−4 1
prepare-left/prepare-right 9.446 2.116 · 10−3 1

PL MD all 10.887 0.004 2
defer/prepare-left 10.101 0.001 1
defer/prepare-right 3.257 0.071 1
prepare-left/prepare-right 1.589 0.208 1

MD PL all 32.775 7.640 · 10−8 2
defer/prepare-left 30.498 3.341 · 10−8 1
defer/prepare-right 0.444 5.053 · 10−1 1
prepare-left/prepare-right 21.376 3.775 · 10−6 1

3.2.5.2 Functional links during instruction epoch varied with prior context
within PL but were context-invariant within MD

Similar to the context epoch, during the instruction epoch the highest fractions of links
were found again in PL (Table 3.10 and Fig. 3.51). In contrast to the context epoch, the
proportions of GC-significant links during the instruction epoch (0 ms to 300 ms from
instruction) varied with link direction (Fig. 3.51a).

Within PL the highest fraction of significant links were in the go-left instruction after
the prepare context. The go-right instruction after the prepare condition, in contrast,
had the fewest significant links. Finally, if an instruction had been preceded by a defer
context the fractions of links were between those extrema. Furthermore, in those trials
there was no difference between the instructions (Table 3.11). Thus, the fraction of
functional links within PL was dependent on which of the three contexts had been
shown.

Conversely, within MD the fraction of significant links only varied with instruction,
while the prior context did not have an effect (Fig. 3.51b and Table 3.11). More GC links
were found in go-left trials. Looking across regions the fraction of significant links ranged
from 6.32 % to 8.10 % and 6.16 % to 7.12 %, for PL to MD and MD to PL, respectively
(Figs. 3.51c and 3.51d). The proportions of cross-regional links did not vary significantly
with context or instruction (Table 3.11).
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Figure 3.51: Significant GC links during instruction epoch. (a) Percentage of significant
functional links between source cells in PL and target cells in PL. (b–d) Same as (a) but for
MD to MD, PL to MD and MD to PL, respectively. Vertical error bars show 95 % bootstrap CI.

Table 3.10: Significant GC links during the instruction epoch (0 ms to 300 ms).

link direction nsignificant/ntotal (% total)

source target go-left go-left go-right go-right
defer prepare defer prepare

PL PL 1293/10 674 (12.1) 1545/11 442 (13.5) 1065/8628 (12.3) 958/9192 (10.4)
MD MD 764/9416 (8.1) 752/8684 (8.7) 643/9560 (6.7) 741/11 084 (6.7)
PL MD 164/2563 (6.4) 215/2654 (8.1) 122/1779 (6.9) 167/2640 (6.3)
MD PL 158/2563 (6.2) 177/2654 (6.7) 116/1779 (6.5) 188/2640 (7.1)

114



3 Contextual Decision-Making in Mice 3.2 Neurophysiology

Table 3.11: χ2 contingency tests for significant GC links during instruction epoch.

source target comparison χ2 p df

PL PL all 35.824 8.159 · 10−8 3
go-left : prepare/defer 7.258 7.060 · 10−3 1
go-right : prepare/defer 12.823 3.424 · 10−4 1
prepare: go-left/go-right 35.426 2.649 · 10−9 1
defer : go-left/go-right 0.166 6.840 · 10−1 1
go-left/go-right (pooled) 15.732 7.299 · 10−5 1
defer/prepare (pooled) 0.047 8.283 · 10−1 1

MD MD all 35.104 1.158 · 10−7 3
go-left : prepare/defer 1.418 2.338 · 10−1 1
go-right : prepare/defer 0.007 9.355 · 10−1 1
prepare: go-left/go-right 23.054 1.575 · 10−6 1
defer : go-left/go-right 11.286 7.808 · 10−4 1
go-left/go-right (pooled) 33.240 8.148 · 10−9 1
defer/prepare (pooled) 0.211 6.459 · 10−1 1

PL MD all 7.157 0.067 3
go-left : prepare/defer 4.618 0.032 1
go-right : prepare/defer 0.354 0.552 1
prepare: go-left/go-right 5.149 0.023 1
defer : go-left/go-right 0.249 0.618 1
go-left/go-right (pooled) 1.593 0.207 1
defer/prepare (pooled) 1.184 0.276 1

MD PL all 1.721 0.632 3
go-left : prepare/defer 0.410 0.522 1
go-right : prepare/defer 0.438 0.508 1
prepare: go-left/go-right 0.304 0.581 1
defer : go-left/go-right 0.146 0.703 1
go-left/go-right (pooled) 0.642 0.423 1
defer/prepare (pooled) 1.065 0.302 1
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In sum, this analysis shows two trends. First, functional connectivity during the con-
text epoch consistently varied with the context shown, a pattern that is reminiscent
of responsiveness (Table 3.5). Second, connectivity within PL was context-dependent,
while in MD it was context-invariant and instruction-dependent. Control analyses that
equalised trial counts across conditions (stratification) yielded qualitatively similar re-
sults (Figs. S7 and S8).
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4 Structuring of Abstract Working
Memory Content by Fronto-Parietal
Synchrony in Primate Cortex

The presented data demonstrate that local field potentials (LFPs) in the prefrontal
and parietal cortices can be involved in the maintenance, long-range transmission and
selection of abstract working memory information. Distinct frequency bands showed
functional specialisation and served as direction-specific communication channels. A
phase-dependent code could be used to disentangle simultaneously encoded sample and
distractor numerosities from prefrontal spiking activity.

4.1 Working memory dependent balance of beta and
gamma power

Recently, beta and gamma oscillations in prefrontal cortex have been suggested to re-
flect working memory maintenance and retrieval, and stimulus encoding, respectively
(Lundqvist et al., 2016). Similarly, in the presented behavioural task power in these
bands was anti-correlated (Figs. 2.2c and 2.2d). During task epochs of putative in-
formation encoding, gamma power was up-regulated and beta power down-regulated.
Conversely, during the memory delays, the balance of these bands was reversed and
trial-to-trial fluctuations in the beta band carried information about the sample and
distractor numerosities (Fig. 2.3), consistent with a role of the beta frequencies in main-
tenance and retrieval of working memory content.

4.2 Dominant parieto-frontal (feedforward)
communication in the beta band

The data presented here extend those findings to those frequency bands’ roles in long-
range communication within the wider fronto-parietal network. Gamma band oscilla-
tions were found to be only involved in local signalling. This is consistent with their
short cycle periods which might preclude the simultaneous recruitment of neuronal pop-
ulations that are located further apart (Harmony, 2013; but see Liebe et al., 2012, for
long-range synchrony in PFC and V4).

Beta oscillations, on the other hand, established a sustained parieto-frontal feed-
forward communication channel (Figs. 2.4, 2.5, 2.6b, 2.6d and 2.7). Strong beta band
synchrony between prefrontal and parietal cortices was found in earlier studies using
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behavioural tasks that required the maintenance of a single item in working memory
(Antzoulatos et al., 2016; Salazar et al., 2012). Similar to the latter study, I found in-
creasing phase-synchrony and parieto-frontally directed communication towards the end
of the last memory delay, temporally close to the upcoming test stimulus (Figs. 2.6b
and 2.6d). Together this suggests that not only local increases in beta oscillations, but
synchronisation of inter-regional beta phases is conducive to working memory retrieval,
extending Lundqvist et al. (2016)’s hypothesis.

4.3 Delay epoch prefrontal-to-parietal (feedback)
communication via low frequency oscillations

The lower frequency delta and theta bands were prominently present during the memory
delays. Power was strongly elevated in those epochs and carried ordered information
about the relevant sample numerosity (Figs. 2.2 and 2.3). Furthermore, these bands
served as the primary transmission channel for feedback information from PFC to VIP
(Figs. 2.4 to 2.7). Together, this suggests a role of these bands in maintenance and/or
retrieval of working memory information. In a prior analysis of this dataset it was
shown that information about the sample numerosity contained within spiking activity
increased towards the end of the memory delays (Jacob & Nieder, 2014). The primarily
fronto-parietal communication found in the present analyses now suggests that prefrontal
sample information could have been transmitted via the delta/theta band and thus be
responsible for a large amount of information in VIP. It’s possible that mechanistically
this represents a re-entry loop that continuously reactivates numerosity representations
in VIP, sustained by driving input from PFC (Bodner et al., 2005; X.-J. Wang, 2006).
If distractors were omitted, frontal drive still stopped after memory delay 1 at the low
frequencies, which is an example of perceptual set in VIP in expectation of a numerosity
display that could have been caused by PFC at the end of the first memory delay.
Interestingly, when distractors where omitted this channel also enabled parieto-frontal
(feedforward) along with strong fronto-parietal communication (Figs. 2.6c and 2.6d),
thus demonstrating functionality that can flexibly adapt to different task demands.

A recent study found that VIP neurons represent empty sets categorically different
from non-zero numerosities (Ramirez-Cardenas et al., 2016). Although the authors of
that study didn’t explicitly test for it, it is possible that, in addition, different neuronal
sub-populations in VIP are activated. In contrast to that study, an empty set was not
explicitly signalled to the animals in the present task. However, the fixed time frame
of the task and, thus, the expectation of seeing a set of dots make the omission of a
distractor numerosity comparable to that study’s empty set. It is thus likely that VIP
neurons transmitted information about the presence of an empty set to prefrontal cortex.
The presence of this categorically different signal might have elicited a strong feedback
drive from prefrontal cortex, ”pushing” relevant sample numerosity information to VIP.
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4.4 Delta/theta phase separates multiplexed parallel
information

Previously, it was shown that during the second memory delay of this task informa-
tion about both sample and distractor numerosities increased to equal levels in PFC. In
VIP, on the other hand, information about the sample during that epoch was remark-
ably higher than about the distractor, suggesting a process that filtered out irrelevant
information (Jacob & Nieder, 2014).

The analyses presented here provide a possible mechanism for this by leveraging lo-
cal field potentials. During this task epoch, sample and distractor information from
prefrontal neurons showed strong dependence on the phase of parietal delta/theta oscil-
lations (Fig. 2.11). Interestingly, phase-dependency was low in the first memory delay,
suggesting that the fronto-parietal network flexibly adapts the coding mechanism ac-
cording to task demands. Different levels of neuronal excitability in VIP caused by
LFPs (Gupta et al., 2016) could serve as a reading frame enabling the selective readout
of relevant information at an ”optimal” phase.

This mechanism was previously proposed in a task involving two behaviourally relevant
ordered working memory items (Siegel et al., 2009). There, phase-dependent information
within PFC was prominent in the delta and beta bands and working memory items could
be distinguished by phase only in the latter. In the present task phase-dependency of
sample and distractor information was also found intra-PFC for the delta/theta bands
but only for the distractor in the beta band. Different from the task in Siegel et al. (2009)
our task is critically dependent on VIP’s role in numerosity processing and, arguably,
its connectivity with PFC. Long-range feedback communication was prominent in the
lower frequencies, which might have required a shift of phase-dependent coding to that
band.

Possibly due to their prominent association with non-REM slow-wave sleep (Léger
et al., 2018), and intractability in fast-paced behavioural tasks, little is known about
the role of delta oscillations in cognition. Studies have shown functional synchronisation
of prefrontal and parietal delta rhythms in decision-making tasks involving the compar-
ison of a sample memory item with a test stimulus (Antzoulatos et al., 2016; Nácher
et al., 2013). More generally, prefrontal delta oscillations have been hypothesised to be
involved in inhibition of interfering motor behaviours and inappropriate neural activity
via ”functional deafferentiation” (Harmony, 2013). While this mechanism might appear
inconsistent with prominent synchronisation in the task presented here, delta oscilla-
tions might be helpful in the isolation of the entire fronto-parietal network involved in
numerosity processing. However, while clear phase-dependency was found in both delta
and theta bands, only phase-dependency of the sample in the theta band was predic-
tive of task performance. Together with the response-acceleration for higher theta band
synchrony during this epoch, this suggests a critical role for theta signalling, similar to
a previous study investigating connectivity of PFC and V4 (Liebe et al., 2012). Consis-
tent with this, theta phase has been suggested to represent a frame to store sequentially
presented items (Voytek et al., 2015; Heusser et al., 2016). More generally, theta-band
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connectivity of the prefrontal and parietal cortices is associated with cognitive control,
goal-directed attention and working memory maintenance and manipulation (Cooper
et al., 2015; Fellrath et al., 2016; Sarnthein et al., 1998; Sauseng et al., 2004; Sauseng
et al., 2005; Schack et al., 2005).

Interestingly, error trials were associated with lower phase-dependent coding of the
distractor in the alpha band (8 Hz to 12 Hz). Alpha oscillations have been implied in the
selective suppression of to-be-ignored items (Noonan et al., 2018; Schroeder et al., 2018;
Sghirripa et al., 2021; van Zoest et al., 2021; Wöstmann et al., 2019). The presented
data suggest a possible mechanism for this: Broadcasting the distractor numerosity in
this band might help to guard working memory by for example preparing downstream
circuits.

4.5 Direction-specific communication via separate
frequency bands

Oscillations in the low frequency ranges (delta, theta) were largely dominated by feed-
back (fronto-parietal) communication, while the higher frequency alpha/beta bands sub-
served feedforward communication from VIP to PFC. According to studies made in
primate visual cortical areas feedforward communication predominantly occurs in the
gamma band while feedback communication is associated with the beta band (Bastos
et al., 2015; Michalareas et al., 2016; van Kerkoerle et al., 2014). While this general
concept of higher frequency bottom-up and lower frequency top-down communication is
consistent with the presented data, a general shift to lower frequencies was observed for
communication between PFC and VIP. Lower frequency oscillations with their larger
temporal windows by cycle might be required to synchronise brain regions that are far-
ther apart than various visual areas (Harmony, 2013). In addition, higher-cognitive areas
might in general use lower frequencies for inter-regional communication, as demonstrated
by other studies (Johnson et al., 2017; Phillips et al., 2014). Future work should inves-
tigate if this shift to lower frequencies is a general feature of long-range communication
in the fronto-parietal network.

4.6 Outlook

Many studies have demonstrated flexible frequency-specific modulation and inter-regional
synchronisation of local field potentials in a multitude of cognitive tasks (Liebe et al.,
2012; Siegel et al., 2009; Buschman et al., 2012; Brincat & Miller, 2015; Buschman &
Miller, 2007). Extending those observational studies, in recent years an increasing num-
ber of studies was published that investigated mechanistic roles of LFPs in cognition, for
example by computational modelling (Sherfey et al., 2020) or exogenously establishing
or disrupting inter-regional phase synchronisation (Polańıa et al., 2012). In addition to
the notion that perception and memory are ”more than spikes” (Watrous et al., 2015),
local field potentials are more than spatial and temporal averages, but have specific fea-
tures in distinct cortical layers (Bastos et al., 2018), travel spatially across areas (Zhang
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et al., 2018), differentially engage distinct cell-types (Tseng & Han, 2019), and are actu-
ally short-lived, distinct, and heterogeneous events (Lundqvist et al., 2016; E. K. Miller
et al., 2018; Cole & Voytek, 2017). Future work should therefore investigate how these
features are related to the findings in the present study.
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5 Neuronal Signatures of Contextual
Decision-Making in Mouse Prefrontal
Cortex and Mediodorsal Thalamus

This project investigated executive functions in mice at a finer temporal scale than
traditional studies that employ simple binary responses. To this end, I examined the
influence of external contexts on the concrete expression of goal-directed behaviour and
neuronal representations in PL and MD, two brain areas that are strongly interconnected
and have been associated with executive control.

In an auditory decision-making task mice successfully learned to use an abstract goal-
directed behaviour to receive reward. Prior informative and non-informative context
cues were incorporated into the animals’ behaviour. Leveraging continuous read-out of
a behavioural variable, the behavioural effects of contexts could be analysed at sub-trial
precision, showing distinct motor implementations.

Extracellular electrophysiological recordings in PL and MD during the behavioural
task showed neuronal signatures of preparation and default-overriding signals in activity
profiles, responsiveness and preference, neuronal recruitment and population coding.

5.1 Response abstractness via the lack of feedback
coupling

In this study a ping-pong ball that was fixed in one axis was used as a response device.
Mice successfully learned to rotate the ball left or right in response to auditory movement
instructions in order to receive water reward, thus demonstrating goal-directed behaviour
(Fig. 3.2). The use of a directional response as behavioural paradigm is advantageous
to a go/no-go task because it avoids the inherent asymmetries of action suppression and
execution (Carandini & Churchland, 2013). This particular response device was chosen
because it enabled the continuous read-out of a behavioural variable, thus extending the
possibility to dissect responses. Similar to the original study by Sanders and Kepecs
(2012) that introduced this response device, animals in this study did not receive any
feedback regarding ball position while they rotated the response ball. This makes the
behaviour they exhibited quite abstract because mice have to learn that the cumulative
signed rotation, i.e. all movements, early and late, influence trial outcome. While
the abstractness of the response likely limited the number of animals that could be
included in the task (Section 5.10), it is possible that it ensured involvement of higher-
order cognitive brain areas even after extensive training (Fuster, 2015). Nevertheless,
a study that coupled the response ball’s rotation to visual feedback reported partial
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dependence on mouse PFC to inhibit incorrect choices (Huda et al., 2018). Due to
the decreased training time when using direct feedback (Section 5.10), it is likely that
a possible outsourcing of cognitive processes to lower-order brain areas was not yet
completed in that study.

5.2 Multiple levels of behaviour affected by context cues

In the behavioural task that was used in this project animals were instructed about
the required movement side by one of two auditory movement instructions. Prior to the
instructions one of three context cues was presented. Two of these cues were predictive of
the upcoming movement instruction, whereas one was non-predictive (Fig. 3.2). Because
no comparison with the context cues was required the task can also be solved by solely
attending to the movement instructions. However, the animals used the context cues to
their advantage: task performance (Fig. 3.3) as well as response times (Fig. 3.4) were
improved in trials with a prepare context. This is in line with previous research that
usually shows better performance and response times if facilitatory, i.e. predictive, cues
are presented (Blaukopf & DiGirolamo, 2005; Hoffmann & Sebald, 2005; Lim et al.,
2019; Moon et al., 2016). However, mice have also been shown to sporadically ignore
facilitatory cues (Toptaş et al., 2022).

The use of the continuous data of the response ball rotation provided a richer insight
into behaviour. Small movements during the context epoch that were consistent with
the upcoming movement instruction improved task performance (Fig. 3.7). This is rem-
iniscent of effects in primate research using smooth visual pursuit tasks: incompatible
(i.e. inconsistent with the target) anticipatory eye movements usually lead to lower task
performance (de Hemptinne et al., 2006).

Response ball rotation data could be further unpacked by decomposing movement
into kinematic primitives, called submovements (Fig. 3.8). Quantity of submovements
during the context epoch was shown to be modulated in a way that was consistent with
predictive cues (Fig. 3.12). Similarly, strength and duration of consistent movements
were upregulated in those trials (Figs. 3.14 and 3.15). This is further evidence for
the successful use of the context cues and suggests a rehearsal-like behaviour during
the context epoch. Again, this is similar to oculovisual smooth pursuit tasks: cuing
the direction of upcoming movement leads to anticipatory eye movements in the cued
direction, scaled by predictiveness of the cue (Kowler et al., 2019; Santos & Kowler,
2017).

Interestingly, context effects were not observed on submovements during the instruc-
tion epoch (Figs. 3.13, 3.16 and 3.17). Similarly, response execution times were invariant
to prior context (Fig. 3.10b). This suggests that the exact motor implementations of
the responses were very stable. It is possible that this is an effect of the relatively late
introduction of context cues during training. By that time the learned motor responses
might be consolidated and resistant to change. Another possibility is that the reported
metrics are not suitable to uncover context effects during the instruction epoch. Further
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analyses could investigate motor implementations at an even finer scale, for example by
investigating sequences (motifs) of different types of submovements.

5.3 Distinct motor implementations and go-left as a
default behaviour

Despite the expected equivalence of responses to the two sides a recurring finding were
disparities in the two conditions. Task performance was higher and responses were faster
in go-left than in go-right trials (Figs. 3.3 and 3.4). Consistent with this, the beneficial
effect of a prepare context on task performance was more variable in go-right trials
(Fig. 3.3b) and absent for response times in go-left trials (Fig. 3.4b). This suggests that
left responses were more optimised and less pliable than right responses.

The trend was also apparent on a finer scale when investigating the response ball
rotation. Not only the compound response times were faster in go-left trials, but correct
left responses were initiated earlier and executed faster than correct right responses
(Fig. 3.10). Furthermore, consistent ”anticipatory” movements during the context epoch
increased the probability of a correct trial in all but the ”go-left-prepare-left ” trials
(Fig. 3.7a), again supporting the hypothesis that go-left responses were optimised.

Moreover, motor implementations in the context epoch were distinct. Informative
prepare context cues shifted the balance of left and right submovements towards the cued
side (Fig. 3.12a), similar to studies in primates that show a reduction of incompatible
anticipatory movements in direction-cued trials (de Hemptinne et al., 2006). Notably, in
trials with the non-informative context cue the balance of submovements was left-shifted
(Fig. 3.12a). Additionally, the effect of prepare context in pushing the balance to the
cued side was weaker for the prepare-left than for the prepare-right trials. Together,
this suggests that in defer trials there was a left-default that was overridden by the
prepare-right context cue.

Further unpacking of the submovement balances revealed that context effects only
applied to submovements to the right (Fig. 3.12c), whereas the number of left submove-
ments was invariant to trial condition (Fig. 3.12b). Combined with a similar effect for the
submovement strength (Figs. 3.14a and 3.14b) this suggests that the motor implemen-
tation for left movements was more robust and less pliable. This might also explain why
the responses in go-right trials were slower: If left submovements were the default, addi-
tional right submovements would increase the path length towards a successful threshold
crossing.

Why was there such a left-default in the behaviour in the first place? Direction biases
in mouse behaviour have been reported in earlier studies and often behavioural training
involves strategies that are aimed at reducing them (Huda et al., 2018; The International
Brain Laboratory et al., 2021; Timothy et al., 2021). The small number of response sides
and external stimuli in the current task might have favoured a strategy in which a de-
fault behaviour was established. If required by the current trial this default might be
overridden in a graded way. This might be more economical and easier to implement for
animals with limited cognitive capacities like mice. For example, lower neuronal activ-

125



5 Contextual Decision-Making in Mice 5.4 Neuronal Processing

ity is observed in mouse prefrontal cortex for habitual than for goal-directed behaviour
(Barker et al., 2018). Furthermore, a strategy with an implicit default might increase de-
tectability of the context cue for the preparation of the ”non-default” behaviour, because
mice respond well to ”unexpected” stimuli (Rogalla et al., 2020). Thus, if the prepare-left
context would be considered the ”expected” stimulus the decreased detectability would
need to be offset by a higher baseline probability of executing left behaviour.

However, those economical and ecological considerations don’t explain the consistent
effect of a left default behaviour. One explanation could be intrinsic characteristics of
the batch of animals that were used. Mice are known to have strong paw lateralisation,
similar to handedness in humans (Manns et al., 2021). In contrast to humans, however,
who show an overall prevalence of around 90 % right-handedness (Papadatou-Pastou et
al., 2020), no population asymmetries have been observed in mice. This even holds for
strongly inbred and laterality-selected mice, precluding a population asymmetry in the
small in-house breeding facility from which our mice originated (Collins, 1985; Manns et
al., 2021; Signore, Chaoui, et al., 1991; Signore, Nosten-Bertrand, et al., 1991). Despite
those arguments on the population-level, it is still possible that the small sample in this
study had a strong lateralisation asymmetry (binomial probability px=5 = 0.03125). If
that was the case, responses to one side might have been easier to execute for those
animals, similar to how humans show better motor performance if using their preferred
hand.

Other possible explanations of behavioural left-preference are based in methodology.
First, the auditory stimuli that were used as context cues and movement instructions
might have been perceived with different salience (Section 5.10). One reason for different
perceptability could be the age-related hearing loss of high frequency auditory stimuli
in C57BL/6 mice (Ison et al., 2007; Walton et al., 1995).

In addition to stimulus properties, asymmetries in the behavioural hardware setup
and training might have played a role in establishing a preference for left movements.
For practical reasons, the setup was accessible to the experimenter from the left side.
This might have introduced a behavioural asymmetry caused by favouring the less ”dis-
ruptive” interior of the setup that was on the animals’ right.

Finally, because the training regime started with large blocks of repeated movements
to one side, movements to the left might have been more extensively practised in the
beginning of training. Easy-to-implement controls for those issues would be rotation of
the setup and randomising movement sides from the very beginning of the training.

5.4 Processing of context and instruction in PL and MD

Extracellular recordings of neuronal activity were made in PL and MD while the animals
performed the behavioural task. The majority of included single neuronal units in both
brain regions exhibited activity that was modulated by one of the contexts or movement
instructions (Fig. 3.25). On a population level both regions strongly encoded both con-
text and instruction (Figs. 3.39 and 3.42). Furthermore, population coding deteriorated
in incorrect trials (Figs. 3.46 and 3.47). Together this suggests that both PL and MD
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were important for the processing of those signals and that the neuronal representation
contributed to successful behaviour. This is consistent with a growing body of literature
that shows that variables related to goal-directed behaviour are encoded in rodent PFC
(Le Merre et al., 2021; Pinto & Dan, 2015; Rikhye et al., 2018) and MD (Courtiol &
Wilson, 2016; Kawagoe et al., 2007; R. L. A. Miller et al., 2017; Mukherjee et al., 2021;
Rikhye et al., 2018).

5.5 Behavioural importance of instruction reflected by
neuronal representation

Although both the context and movement instruction were represented neuronally, the
dominant factor seemed to be the movement instruction. More single units’ activity
was modulated by the instruction than by the context (Fig. 3.25), firing rate was about
twice as high for instruction than for context (Figs. 3.21 and 3.23), and the population
encoded it virtually perfectly (Fig. 3.42).

Why did the instruction consistently have a higher neuronal impact? A possibility is
the difference in the two stimulus types’ behavioural importance. The prepare contexts
could be used to solve the task without listening to the instruction. However, they only
appeared in half of the trials, which made them a less reliable source of information for
goal-directed behaviour. Furthermore, the contexts were more temporally detached from
the actual required behaviour, whereas the instruction was a signal to take a concrete
and immediate action.

Nevertheless, two alternative explanations cannot be excluded. Since the the context
cues were introduced relatively late in the behavioural training the different amounts of
neural representation could be a function of time (see Section 5.10). Other than that, the
use of a single set of instruction stimuli did not allow to distinguish between cognitive
rules and movement-related activity. Indeed, it has recently been shown that mouse
cortical activity, including PFC, is dominated by movements (Musall et al., 2019). The
authors of that study found that especially uninstructed movements, i.e. those that
had not been reinforced by training, resulted in strong widespread cortical signals. In
contrast, instructed movements had very weak contributions. However, in their task
the instructed movements were directional licks, while whole-limb movements were an
example of uninstructed ones. Arguably, tongue movements are smaller and smoother
and thus have smaller contributions to cortical activity than movements of entire body
parts (Bollu et al., 2021, compare low number of tongue-movement selective units).
In contrast, the instructed movements in the behavioural task presented in this thesis
required the use of at least one forelimb in order to sufficiently rotate the response
ball. Often, mice would not only move their forelimbs but use their entire body as a
counterweight for stabilisation (data not shown). Thus, our instructed movement might
have indeed dominated the neuronal signal, explaining the stronger representation of the
instruction.

For these reasons, since the neuronal signal was likely a mixture of go-cue, the stimulus
properties themselves, the animal’s choice and its movement, it would be interesting
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for follow-up projects to investigate the individual contributions. Possible methods for
decoupling would be generalised linear models (Goltstein et al., 2021; Park et al., 2014),
demixed principal component analysis (Kobak et al., 2016), or vector orthogonalisation
(Inagaki et al., 2022).

5.6 Neuronal signatures of uncertainty and action
preparation

Contexts were distinctly neuronally signalled. Signalling of the defer context was strik-
ingly different from the prepare contexts. For instance, peak latencies were shortest
(Figs. 3.22a and 3.22b) and neuronal recruitment fastest (Figs. 3.33a and 3.33b) in de-
fer trials, while for the two prepare conditions these metrics were similar, suggesting a
categorical difference in the processing of those cues. Furthermore, for defer condition
peak firing rates were highest (Fig. 3.21), most context-responsive neurons showed re-
sponsivity (Figs. 3.26a and 3.26b) and an even higher fraction preferred this condition
(Figs. 3.31a and 3.31c).

Why was this non-informative cue represented so strongly? It is possible that this is a
way that uncertainty was explicitly signalled, which might have had top-down prepara-
tory effects on sensory systems to improve sensory discrimination of the upcoming action-
determining instruction (i.e. perceptual set, Fuster, 2015). A common finding in humans
is that prefrontal neural activity increases with increasing predictive uncertainty (Catena
et al., 2012; Huettel et al., 2005; Kéri et al., 2004). Similarly, mice mPFC has been shown
to shape downstream neural responses specifically in tasks involving uncertainty (Hamm
et al., 2021; Starkweather et al., 2018).

The two prepare contexts are in opposition to the defer context: since they allow for
the preparation of an upcoming action they don’t signal uncertainty. This might explain
why activity was lower, fewer neuron were responsive and preferred those contexts.
However, since they signal the correct action it is possible that PFC readied motor
structures for the upcoming response.

Thus, for future studies using this task it would be interesting to first, modulate
behavioural uncertainty to probe graded activation of PFC, and second, record from or
silence prefrontal input to possible effector regions in order to investigate preparatory
top-down effects, e.g. in auditory cortex in uncertain trials and premotor cortex in
prepare trials.

5.7 Neuronal representation of default behaviour

The two prepare contexts had similar neuronal recruitment dynamics and peak latencies
(Figs. 3.22 and 3.33). However, although prepare-left and prepare-right contexts could
have been expected to have equivalent behavioural relevance, namely preparation to
move to one or the other direction, striking asymmetries were found in other metrics.
Many more single units were responsive to and preferred the prepare-right over the
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prepare-left context (Figs. 3.31a and 3.31c). Similarly, average firing activity was very
low for prepare-left (Fig. 3.21).

This suggests a differential processing of the prepare contexts. Apart from distinct
sensory properties of the stimuli (Fig. 7.2), this asymmetry might be best viewed in the
light of the observed behaviour. As described above, the animals showed behaviour that
suggested left-moving as a default behaviour. It is known that mice react especially
well to unexpected stimuli (Rogalla et al., 2020) and that mouse prefrontal cortex shows
reduced activity during default behaviour (Barker et al., 2018) as well as down-regulates
neuronal responses to expected stimuli in sensory cortex (Hamm et al., 2021). Thus, if
left-behaviour was considered the default for the animals, it is possible that the context
cue that signalled this default as the upcoming required action was only weakly encoded
neuronally. In contrast, the context cue that prepared for the right-movement action
would be ”surprising” and would also require a behavioural override signal. This might
be represented by the high neuronal activity and number of responsive neurons. Strong
override signals to abandon current default behaviour have been found previously in
neuronal subtypes of mouse PFC in a foraging task (Kvitsiani et al., 2013; Pearson et
al., 2014). Reducing activity to cues for default behaviour and only signalling overrides
might be an economical way of encoding different behavioural options in task with low
degrees of freedom.

At first glance this interpretation might be in conflict with the findings for instructions.
If the default left-behaviour does not need to be signalled strongly, why was there dom-
inant neuronal responsivity and preference for the go-left over the go-right instruction
(Figs. 3.31b and 3.31d)? One possibility is that the low representation of prepare-left
is a compensation of the strong go-left representation. Another interpretation of this
discrepancy is the superposition of different events during the instruction epoch. This
epoch simultaneously involved the resolution of previous inhibition of large movements,
the behavioural rule of the required motor action and its immediate execution. Future
experiments should therefore try to more clearly disambiguate these events.

In any case, the default behaviour and signalling interpretation raises the question
of what came first: was the behavioural strategy first implemented and the neuronal
signals followed or was the observed left default a consequence of the distinct signalling?
Following the evolution of neuronal signals during learning of the task might shed more
light on this question.

5.8 The effect of contexts on instruction signalling

The neuronal signalling of movement instruction was partially dependent on the prior
context. Not all neuronal units that were responsive to an instruction were so after both
prepare and defer contexts. Rather, populations of context-stable and context-exclusive
cells were observed (Figs. 3.28a to 3.28d). This suggests that, dependent on prior context,
the same instruction was processed by different sets of cells: One context-invariant ”core”
population and distinct additional, smaller subpopulations that were only responsive
after one or the other context. Notably, the context-exclusive sub-populations were of
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comparable sizes. This might be surprising considering the predictive nature of the
prepare contexts, after which one might expect more cells that were responsive to the
cued instruction. However, it is consistent with the observation that on a population level
none of the contexts biased responsiveness to higher magnitudes (Figs. 3.29 and 3.30).

Consistent with the lack of a contextual responsiveness bias, recruitment profiles for
context-stable cells were not affected by prior context (Fig. 3.35), indicating that the
speed of activation of individual cells was similar. Previously, it was hypothesised that
task-relevant information is handed over by sequential sparse activation (also referred
to as ”tiling”) of mouse prefrontal neurons (Bolkan et al., 2017; Parnaudeau et al.,
2018; Schmitt et al., 2017). Thus, the recruitment speed of context-stable cells was
suggestive of a similar effect. Notably, however, the points in time when individual cells
were activated were not invariant to prior context (Fig. 3.36), dismissing the idea of
stable information hand-over. It is possible that this randomness in activation delay
was introduced by the additional recruitment of the distinct subpopulations of context-
exclusive cells, the inclusion of which could have led to distinct sequences. In addition,
the instruction epoch did not involve any behavioural delay, whereas tiling had previously
been shown during task epochs without sensory stimulation.

Although the prior contexts activated partially distinct subsets of cells the popula-
tional coding of instruction was exceptionally good in both prepare and defer contexts
(Fig. 3.44). Indeed the only difference was that early in the instruction epoch the coding
was slightly worse in defer than in prepare contexts. This could be explained by residual
coding that was carried over from the late context epoch. While the population code
of contexts and instructions was different, as evidenced by the lack of cross-epoch code
stability (Figs. 3.43a and 3.43c), it is possible that a small number of cells exhibited
similar firing activity during both epochs.

Furthermore, across contexts the population code for instruction was remarkably sta-
ble (Fig. 3.45). This might be surprising considering the random activation delays of
individual context-stable cells, as described above. However, in recent years a more
integrated view has highlighted the importance of neuronal networks in coding over in-
dividual neurons. Thus, it is possible that different configurations of individual neurons
encoded instruction in stable, low-dimensional subspaces (Gallego et al., 2017; Gallego
et al., 2018; P. Gao et al., 2017; Murray et al., 2017; Recanatesi et al., 2022; Rule et al.,
2020). In future analyses it would be interesting to see if the contextual subpopulations
have distinct contributions to coding.

5.9 Cross-regional timing differences suggestive of ordered
interplay

Neuronal responses in PL and MD exhibited overall similarities. Both regions displayed
comparable variations in responsiveness and preference towards individual contexts and
instructions. Furthermore, the influence of prior contexts on instruction responsiveness
and coding showed similar patterns. These cross-regional consistencies are in line with
a recent study that showed that more than 90 % of MD cells exhibited activity that
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was consistent with those of mPFC neurons, i.e. MD cells ”mirrored” PFC cells, in a
spatially-guided delayed response task in rats (R. L. A. Miller et al., 2017).

Other than the mentioned consistencies I found cross-regional timing differences.
Peaks for the defer context were earlier in PL than MD and the converse was found
for the prepare contexts (Fig. 3.22c). This further supports the interpretation that the
prepare contexts were processed as one category distinct from the defer context. Sim-
ilarly, the lead of PL in defer context suggests that there might have been a top-down
signal for the inhibition of motor preparation. The clear lead of MD for the prepare
contexts, on the other hand, suggests a primary role of MD in the preparation of the
action plans. This is further corroborated in population coding: The response side to-
be-prepared was encoded earlier in MD than PL. MD also sustained this information
longer than PL, up until the onset of the instruction (Fig. 3.40). This putative higher
involvement of MD in action planning might also carry over into the instruction epoch:
Intra-regional Granger-causality links in MD were only modulated by instruction, while
in PL they were dependent on context.

Together, these observations are reminiscent of previous findings. For example, two
studies from the Kellendonk lab showed that in a delayed response task in mice beta
oscillations in mouse MD lead those in PFC specifically in the delay epoch (Bolkan et al.,
2017; Parnaudeau et al., 2013), suggesting a role in the coding of upcoming action plans.
Similarly, a study in monkeys that performed a conceptually similar task found that
MD neurons contributed more and earlier to processing of prospective information (Y.
Watanabe & Funahashi, 2012; Y. Watanabe et al., 2009). Finally, the afore-mentioned
study by R. L. A. Miller et al. (2017) that found MD neurons mirroring PFC neurons
also found a higher proportion of MD cells modulated by upcoming motor responses.

5.10 Limitations and recommendations for future studies

Like every study this project has several limitations (Ross & Bibler Zaidi, 2019), some
of which have briefly been alluded to before.

The data and interpretation is purely descriptive because no manipulations were made.
Therefore, future studies should use drug interventions and/or targeted optogenetic ma-
nipulation of neuronal activity to gain mechanistic insights.

Behavioural training, especially initial instrumental learning, required a large amount
of time. This is most probably a consequence of using the ball rotations as responses.
The lack of continuous feedback with regards to goal-progression introduced a high level
of abstraction. This abstraction delayed or even prevented animals from learning the
responses. Consequentially, the animals’ ages might not have been optimal for cogni-
tive tasks. Furthermore, the implant for head-fixation might have led to abnormal skull
growth during this extended period of time, thus reducing target accuracy of neuronal
recordings. A possible improvement in training time could be achieved by the intro-
duction of direct coupling of ball rotations with an external stimulus. Indeed, more
recent studies that use a variant of the response ball use visual feedback coupled to
the instantaneous response device rotation and stress its importance for robust and re-
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producible training of high numbers of mice (Aoki et al., 2017; Huda et al., 2018; The
International Brain Laboratory et al., 2021). Similar advantages of coupling of response
device rotation with external visual, auditory and multimodal stimuli in contrast to its
omission have been observed in a comparative study from our laboratory (Ranganath
et al., 2022). A different approach that also reduces response abstractness is the use of
a more concrete response device. For example, Bollu et al. (2018) used a paw-operated
response joystick that has ”built-in” feedback, via both applied force and absolute, i.e.
directly observable, device position during the response.

During the majority of the progression of behavioural training only movement instruc-
tion stimuli were presented. In contrast, context cues were introduced only after animals
had very high response accuracy in discrimination of movement instructions. This means
that instructions had a longer time to impact behaviour and neuronal implementations
than contexts. In addition, because contexts were not required to solve the behavioural
task, their possible impact was reduced further. Other than changing the behavioural
paradigm it could be advantageous to introduce context cues earlier in training.

The choice of external stimuli might have had unanticipated effects on the animals’
behaviour and might have limited the interpretability of the data. Age-related hear-
ing loss of the C57BL6 mouse strain primarily affects the perception of high-frequency
sounds (Ison et al., 2007; Walton et al., 1995). Thus, highpass-filtered white noise
sound for prepare-right and high-starting-frequency sinusoidal downsweeps for go-right
might have been perceived less clearly and/or later. However, neuronal representa-
tion of contexts is converse to perception bias expected from high-frequency hearing
loss: prepare-right context (orange lines in Fig. 3.21), which was signalled by suppos-
edly badly perceptible highpass filtered white noise sounds (Fig. 7.2c), was represented
strongly, whereas prepare-left context, (blue lines in Fig. 3.21), which was signalled by
supposedly well-perceived lowpass filtered white noise sounds (Fig. 7.2a), was weakly
represented. Furthermore, similar peak latencies (Fig. 3.21) suggest that the two pre-
pare cues were perceived at the same times, further excluding sensory effects. With
regards to movement instruction the beginning frequencies of the signalling sounds were
only spaced apart by a few kHz (Figs. 7.2d and 7.2e), thus probably reducing the in-
fluence of selective hearing loss. Furthermore, the cited studies investigated hearing
thresholds, meaning they determined at what low sound pressure level (SPL) animals
could not detect the sound. The auditory stimuli used in this project, on the other hand,
were presented at much higher SPLs to ensure robust detection.

Nevertheless, with the current choice of a single set of stimulus-response contingencies
it is not possible to determine if observed effects were dependent on stimulus features
or the rules encoded by them. Follow-up studies should therefore randomise stimulus-
response contingencies and/or introduce more than one stimulus per rule, possibly in a
different sensory modality, to separate cognitive from sensory variables.

As described above, the ”blind” ball rotations that were required as responses in-
creased complexity for the animals. On the other hand, only binary choices, i.e. whether
the left or the right threshold was exceeded, were tested by the behavioural paradigm.
These binary choices could have also been tested using more concrete behaviours, like
directional licking (Z. Gao et al., 2018; Inagaki et al., 2022) or lever pressing (Caran-
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dini & Churchland, 2013). One argument for using the response ball is the continuous
readout of a behavioural variable, thus possibly giving insight into an evolving deci-
sion. However, modern analyses of videos of behaving animals can provide similar or
richer insights, identifying distinct behavioural states (Graving & Couzin, 2020) and
movement progressions (Bollu et al., 2021) in behaviours that might be more natural
for mice. Even so, the response ball could be used for other types of tasks that require
non-binary responses, like parameterised accuracy tests. Because of the abstractness
of the responses using the response ball, it might still be valuable to instead use more
concrete response devices, like paw-operated choice-sticks (Bollu et al., 2018) that also
increase response data to two dimensions. In any case, combination with recording of
behavioural videos should be considered in those tasks, because of the low additional
effort and high potential return.

In addition to the general behavioural paradigm more concrete methodological chal-
lenges of this project have to be considered.

The processing of the continuous behavioural data was impacted by transformations
of ball rotation data. Concretely, raw digital data was transformed into an analog
signal which was then used as an input to the measurement devices that digitised the
signal for use in the computer (Fig. 7.1). The device that did the digital-to-analog
transformation required a ”resetting” of the analog signal to baseline levels at task
epoch boundaries and during times of enforced calm periods. During the resetting no
behavioural data was recorded, leading to gaps in the data that needed to be inferred
by interpolation using Gaussian processes (Section 7.6.3). In addition, the software that
was used for orchestrating the presentation of task-related stimuli limited the recording
of behavioural data to the trial itself, thus ignoring behaviour in inter-trial-intervals.
These discontinuities precluded analysis methods that require long continuous data, like
certain GLMs or VAE-SNE. Future projects should avoid discontinuities and conversion
noise by directly connecting raw digital sensor signals to computer peripherals and should
use more recent versions of the behaviour orchestration software that allow continuous
recording across trials.

With regards to the recording of neurophysiological signals the choice of acute ex-
tracellular recordings should be challenged. First, movements might have deteriorated
signal. Even though the animal’s skull was fixed in the setup, body movements led to
brain tissue movements. Because the neural probes were more stationary the move-
ments might have caused additional noise in the recordings that would make analysis of
local field potentials difficult. Furthermore, a well-known problem in acute extracellular
recordings is the neural drift (Hill et al., 2011). Small movements of the surrounding
brain tissue lead to different relative positions of neurons to the recording electrodes,
thus changing the signal. This is typically observed in the first minutes after the initial
insertion of a neural probe into the brain tissue. To ease this, one needs to wait for
the brain tissue to ”settle” in order to receive stable neural signals. Unfortunately, this
waiting period had a high impact on our animal’s motivation, thus decreasing data yield.
Furthermore, possibly due to large body movements we still observed neuronal unit drift,
so that most units were not observed for the entirety of a session. This also resulted in a
low number of simultaneously recorded units, which precluded more elaborate analyses
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of functional connectivity, especially across regions. Second, acute recordings required to
first train the animals on the behavioural task and then perform surgery for craniotomy.
All surgical procedures entail the risk of losing animals due to complications or at the
least damaging brain tissue. Furthermore, several days of recovery are required after a
surgery with general anaesthesia. During this time, animals received water ad libitum
and were not trained in the task. Consequently, on the first days of recording, animals
were only weakly motivated to perform the task and behavioural yield was low.

Due to these disadvantages of acute recordings it should be considered to instead
perform chronic implantation of neural probes in the initial surgery before training.
This would make a second surgery obsolete, make initial targeting of the probes more
accurate, probably lead to more stable recordings, and would allow for interruption-free
behaviour and even the investigation of learning effects. Potential downsides would be
the increased effort in implantation and post-mortem extraction of the neural probe,
and build-up of neural scar tissue that decreases signal. However, the latter could be
alleviated by using movable microdrives (Wimmer et al., 2015).

To sum up, I recommend follow-up projects to implement more behavioural controls,
more fully embrace the strengths of the response device in accuracy-testing paradigms,
and perform chronic neural recordings to increase signal stability.

5.11 Concluding summary

All in all, this project showed both behavioural and neuronal signatures of action prepa-
ration and its inhibition. To the best of my knowledge, this is the first study that dis-
sected with sub-trial resolution the continuous behavioural data that is recorded with the
kind of response device that was used. The combination of this finer-grained behavioural
data with neuronal data suggested a cognitive strategy that involves an implicit default
response that can be overridden. Many similarities between neuronal data from PL and
MD suggest a similar involvement of the two brain areas in solving the behavioural task.
Furthermore, cross-regional timing differences suggest cross-regional collaboration and
higher contribution of MD in action preparation. Future experiments are needed to in-
vestigate if similar cognitive strategies are typical of mice performing behavioural tasks
with low degrees of freedom and if the observed neuronal signatures are a mechanism of
implementing those strategies.
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6 Monkey Project1

6.1 Experimental model and subject details

Two adult male rhesus monkeys (Macaca mulatta, monkey R and monkey W, 12 and
13 years old) were used in this study. All experimental procedures were in accordance
with the guidelines for animal experimentation approved by the national authority, the
Regierungspräsidium Tübingen.

6.2 Method details

6.2.1 Surgical procedures

Monkeys were implanted with two right-hemispheric recording chambers centered over
the principal sulcus of the lateral prefrontal cortex (PFC) and the ventral intraparietal
cortex (VIP) in the fundus of the intraparietal sulcus (IPS).

6.2.2 Task and stimuli

A detailed description of the monkeys’ task and behavioral performance is provided
elsewhere (Jacob & Nieder, 2014). The animals grabbed a bar to initiate a trial and
maintained eye fixation (ISCAN, Woburn, MA) within 1.75◦ of visual angle of a cen-
tral white dot. Stimuli were presented on a centrally placed gray circular background
subtending 5.4◦ of visual angle. Following a 500 ms pre-sample (pure fixation) period, a
500 ms sample stimulus containing 1 to 4 dots was shown. The monkeys had to mem-
orize the sample numerosity for 2500 ms and compare it to the number of dots (1 to
4) presented in a 1000 ms test stimulus. Test stimuli were marked by a red ring sur-
rounding the background circle. If the numerosities matched (50 % of trials), the animals
released the bar (correct Match trial). If the numerosities were different (50 % of trials),
the animals continued to hold the bar until the matching number was presented in the
subsequent image (correct Non-match trial). Match and non-match trials were pseudo-
randomly intermixed. Correct trials were rewarded with a drop of water. In 80 % of
trials, a 500 ms interfering numerosity of equal numerical range was presented between
the sample and test stimulus. The interfering numerosity was not systematically related
to either the sample or test numerosity and therefore not useful for solving the task. In
20 % of trials, a 500 ms gray background circle without dots was presented instead of an
interfering stimulus, i.e. trial length remained constant (control condition, blank). Trials
with and without interfering numerosities were pseudo-randomly intermixed. Stimulus

1 This methods chapter was modified from Jacob et al. (2018).
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presentation was balanced: a given sample was followed by all interfering numerosities
with equal frequency, and vice versa. Throughout the monkeys’ training on the dis-
tractor task, there was never a condition where a stimulus appearing at the time of the
distractor was task-relevant.

Low-level, non-numerical visual features could not systematically influence task per-
formance (Jacob & Nieder, 2014; Nieder et al., 2002): in half of the trials, dot diameters
were selected at random. In the other half, dot density and total occupied area were
equated across stimuli. CORTEX software (NIMH, Bethesda, MD) was used for experi-
mental control and behavioral data acquisition. New stimuli were generated before each
recording session to ensure that the animals did not memorize stimulus sequences.

6.2.3 Electrophysiology

Up to eight 1 MΩ glass-insulated tungsten electrodes (Alpha Omega, Israel) per chamber
and session were acutely inserted through an intact dura with 1 mm spacing. To access
VIP, electrodes were passed along the course of the intraparietal sulcus to a depth
of 9 mm to 13 mm below the cortical surface (Jacob & Nieder, 2014; Nieder et al.,
2006; Ramirez-Cardenas et al., 2016). Correct positioning of the electrodes in VIP
was verified by physiological criteria (responses to moving visual stimuli and tactile
stimulation). A total of 616 PFC sites (monkey R: 368, monkey W: 248) and 614 VIP
sites (monkey R: 376, monkey W: 238) was recorded from. Extracellular neuronal signals
were acquired with a unity-gain headstage and hardware bandpass-filtered into spiking
activity (0.1 kHz to 8 kHz, sampling rate 40 kHz) and local field potentials (LFPs) (0.7 Hz
to 170 Hz, sampling rate 1 kHz). Single units were recorded at random; no attempt was
made to preselect for particular response properties. Signal amplification, filtering and
digitalization were accomplished with the MAP system (Plexon, Dallas, TX). Waveform
separation was performed offline (Plexon Offline Sorter).

6.3 Quantification and statistical analysis

Data analysis was performed with MATLAB (Mathworks, Natick, MA) using custom
scripts, the FieldTrip toolbox (Oostenveld et al., 2011) and the CircStat toolbox (Berens,
2009). Figures were replotted for this thesis using matplotlib 3.4.2 (Caswell et al.,
2021) in python 3.8.10 (Van Rossum & Drake, 2009). To account for neuronal response
latencies in prefrontal and parietal cortex (Jacob & Nieder, 2014), the starting and end
points of all trial epochs were offset by 100 ms for analysis.

6.3.1 Preprocessing

Single units were included in the analysis if the following criteria were met: (a) their
average firing rate across trials was at least 1 Hz; (b) they were recorded for at least
one correct trial in all 20 conditions (4 sample numerosities x 5 interfering numerosities
including the control [0] condition); (c) they modulated their firing rate in the course
of the trial (task-related neurons, one-way ANOVA with average firing rates in the
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presample [fixation], sample, first memory, interfering stimulus, and second memory
periods; evaluated at p < 0.05).

LFP traces were mean-centered, filtered for line noise removal (4th order Butterworth
notch at 50 Hz and first and second harmonics), and re-referenced to the average of
all prefrontal and parietal electrodes within a session, unless stated otherwise. Sig-
nals phase-locked to stimulus presentation (i.e. event-related potentialss (ERPs)) were
removed by subtracting the average across trials from individual trials, unless stated
otherwise. ERP subtraction was performed separately for all analyzed trial subsets.

6.3.2 Spectral transformation

Complex time-frequency representations X of single LFP trials were estimated by con-
volution of signal x with complex kernels k:

X(t, ω) = x(t) ∗ k(t, ω) (6.1)

where t and ω are time and frequency, respectively, ∗ is the convolution operator and k
represents frequency-dependent Hanning-tapered complex sinusoids:

k(t, ω) = A

(
1 − cos(

2πtω

q
)

)
e2iπtω (6.2)

where A is a constant normalizing k to unit power, q is the kernel width in number of
cycles. Except for the analysis of Wiener-Granger Causality (see below), which required
a linear frequency axis for algorithmic reasons, frequencies ranging from 2 Hz to 128 Hz,
logarithmically spaced in steps of 21/8, and kernel widths of 3 were used. For spike-
LFP measures complex Fourier coefficients were obtained from X at the individual spike
times.

6.3.3 Power

The time-varying power powx of signal x at frequency ω was computed as the squared
norm of its time-frequency transformation:

powx(t, ω) = |(X(t, ω))|2 (6.3)

Power was averaged across trials, sessions and electrodes and z-scored to baseline (500 ms
pre-sample epoch):

zpowx(t, ω) =
powx(t, ω) − µBL(ω)

sBL(ω)
(6.4)

where µBL(ω) and sBL(ω) are the mean and standard deviation, respectively, of powx(t, ω)
during baseline at frequency ω.

6.3.4 Phase

The time-varying phase φx of signal x at frequency ω is the argument of the complex
Fourier coefficients X:

φx(t, ω) = arg(X(t, ω)) (6.5)
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6.3.5 Cross-spectrum

The complex time- and frequency dependent cross-spectrum crsxy of signals x and y is
the product of their conjugated spectral decompositions X and Y :

crsxy(t, ω) = X(t, ω)Y (t, ω)∗ (6.6)

where ∗ is the complex conjugate.

6.3.6 Phase Locking Value

The frequency-dependent PLV was computed as the norm of the average across observed
phases:

PLV (ω) =

∣∣∣∣∣ 1

R

R∑
r=1

eiφ(r,ω)

∣∣∣∣∣ (6.7)

where φ(r, ω) is the cross-channel phase arg(crsxy(ω)) at trial r and frequency ω (LFP-
LFP PLV) or the spike phase of spike r at frequency ω (spike-LFP PLV), and R is
the number of observations (trials or spikes, respectively). Because the PLV is biased
towards 1 for low sample sizes the minimum number of observations was set to 50.

Spike-field PLVs for individual units were computed for all available unit-LFP pairs,
averaged across pairs and then z-scored using the mean and standard deviation of a null
distribution obtained by randomly shuffling the association of single-trial spike train
and corresponding LFP trace within a session before spike phase estimation (n = 1000)
(Buschman et al., 2012). In an additional analysis to control for effects of varying LFP
power on the robustness of spike phase estimation, spikes were stratified according to
their associated LFP magnitude. At both 5 Hz and 20 Hz, histograms of the spike-
associated LFP magnitudes were computed in the two conditions that were compared
(e.g. first and second memory delay). This yielded a ratio of spike counts at every
magnitude bin, which were used as probabilities for random subsampling of spikes. A
spike was included in the PLV analysis if a sample drawn from a uniform distribution
on [0, 1] was less than or equal to the magnitude-associated probability.

For the PLV analysis in fast and slow trials, correct match trials were separated into
quartiles based on reaction times (non-match trials were not included because the second
test image following the non-match was always a match and therefore predictable). Trial
types (no distractor, repeat sample, true distractor) were matched across subsets, i.e.
a given condition appeared equally often in the first and fourth quartile. ERPs were
computed and subtracted separately for each subset.

6.3.7 Phase Locking Selectivity Index

To determine whether neuronal synchrony was stimulus-specific, a PLSI was computed,
based on an approach reported in (Salazar et al., 2012), exchanging coherence for PLV.
PLSI is a mutual information measure and was computed as a function of time and

139



6 Monkey Project 6.3 Quantification and statistical analysis

frequency:

PLSI(t, f) =
∑
r

∑
s

P (s)P (r|s) log2
P (r|s)
P (r)

(6.8)

with
P (r) =

∑
s

P (r|s)P (s) (6.9)

where P (r), P (s) and P (r|s) are the probabilities of the response (i.e. PLVs), the stimu-
lus (i.e. numerosities) and the conditional probability of the response given the stimulus
(i.e. PLVs at individual numerosities). Since the PLV is an average measure across
trials, P (r|s) was estimated in increments of 0.01 on [0, 1] using a normal distribution
with mean µ = PLVs and standard deviation σ estimated using a jackknife procedure:

σ =

√√√√n− 1

n

n∑
t=1

(xt − x̄)2 (6.10)

with n being the number of trials for a given stimulus, xt the jackknife PLV with trial
t left out and x̄ the mean across jackknife samples. For statistical assessment a semi-
generalized surrogate distribution of the PLSIsurr was computed. At each of 1000
iterations condition labels were randomly shuffled across trials and PLSI was computed
for one randomly chosen combination of channels. To mitigate underestimation of the
bias of PLSI due to the use of a semi-generalized procedure, PLSI values were corrected
by a factor α which sets the average PLSI across frequency and time bins during the
baseline to 0:

PLSIcorr = αEPLSI (6.11)

with

α =

∑
t,f PLSI∑
t,f EPLSI

(6.12)

where t are the time bins during the baseline −0.5 s to 0 s, f are all frequency bins [2, 128]
and EPLSI is the expected value from the surrogate distribution:

EPLSI =
∑
n

PLSIsurr(n)P (PLSIsurr(n)) (6.13)

evaluated at n = 500 bins.

6.3.8 Phase Slope Index

The PSI is used to infer dominant unidirectional interactions, i.e. the net flow of infor-
mation. It is based on the idea that the time lag required for a signal to travel from
one location to another constitutes a frequency-dependent inter-regional phase difference
which results in a phase slope across frequencies. The frequency-dependent PSIxy of
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signals x and y was computed from the conjugated complex coherencies of neighbouring
frequencies:

PSIxy(ωf ) = ℑ

f+1∑
f

coh∗xy(ωf )cohxy(ωf+1)

 (6.14)

where ℑ(·) is the imaginary part, and

cohxy(ωf ) = crsxy(ωf )/
√
powx(ωf )powy(ωf ) (6.15)

the complex coherency and ∗ the complex conjugate.

6.3.9 Wiener-Granger Causality

Wiener-Granger Causality (WGC) quantifies how the inclusion of past values of signal
y improves the prediction of signal x in comparison to an autoregressive model of x
(Granger, 1969) frequency-dependent WGCx→y(ω) from signal x to y at frequency ω
was calculated as follows:

WGCx→y(ω) = ln

 powy(ω)

powy(ω) −
(

Σxx − Σ2
yx

Σyy

)
|Hyx(ω)|2

 (6.16)

where powy(ω) is the power of signal y at frequency ω, Σxx and Σyy noise variances of
signal x and y, respectively, and Σyx the noise covariance of signals x and y in their
auto-regressive models and Hyx(ω) is the spectral transfer matrix. The noise covariance
matrix Σ and Hyx(ω) was derived by spectral factorisation of the trial-averaged cross-
spectral density crsxy using the Wilson-Burg algorithm as implemented in FieldTrip.

6.3.10 Näıve Bayes decoding

The amount of information about the sample or distractor numerosity contained in local
oscillatory activity was quantified using a Näıve Bayes classifier (MATLAB Machine
Learning Toolbox) (C. M. Lewis et al., 2016). For each time-frequency bin a classifier
was trained on the power of 75 % of randomly chosen trials. The feature vector comprised
data from all prefrontal or parietal recording sites of an individual session. The remaining
25 % of trials were used to test the classifier. The numerosity with the highest posterior
probability was interpreted as the classifier’s prediction for a given trial. Accuracy was
calculated as the ratio of correctly predicted trials to all test trials. For decoding of
the distractor numerosity, the control condition trials (i.e. no distractor presented) were
excluded. Accuracy was z-scored to baseline and averaged across sessions.

6.3.11 Phase Dependent Coding

To quantify the phase-dependent information about the sample and distractor numeros-
ity that was carried by a neuron’s spiking activity, spikes were grouped by LFP phase
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into 12 equally spaced bins (Siegel et al., 2009). The information I(ω, b, s) of spikes at
frequency ω and in phase bin b about stimulus s was computed using explained variance
measure:

I(ω, b, s) =
SSeff − dfeffMSerror

SStotal + MSerror
(6.17)

where the individual terms are derived from a one-way ANOVA across trials: SSeff is the
sum of squares of the effect, dfeff are the degrees of freedom for the effect, MSerror is the
mean square of the error and SStotal is the total sum of squares. I(ω, b, s) of individual
units with LFP channels of interest were combined into ”sites” by averaging across pairs.
Subsequently, I(ω, b, s) was smoothed with a two-dimensional Hanning kernel (0.5 octave
by 90°, FWHM). I(ω, b, s) was averaged across sites and then normalized to the average
information across phase bins per frequency:

Inorm(ω, b, s) =
1
U

∑U
u Iu(ω, b, s)

1
B

∑B
b

1
U

∑U
u Iu(ω, b, s)

(6.18)

where U is the number of sites and B is the number of phase bins.
Phase-dependent information (PDI) was quantified by the peak-to-mean modulation

of a cosine fit to the phase-binned information Iu(ω, b, s) which was normalized to the av-
erage information across phase bins. The modulation is a measure of the non-uniformity
of the magnitudes of the phase-binned information around an origin-centred circle in the
complex plane:

PDI(ω, s) = 4
|∑U

u

∑B
b Iu(ω, b, s)eiλb |∑U

u

∑B
b Iu(ω, b, s)

(6.19)

The standard error of the mean (SEM) was estimated from bootstrapping across sites
(n = 1000) Significant PDI against zero was calculated by shuffling phase labels within
frequencies of I(ω, b, s) before smoothing (n = 10000). Observed values that exceeded
the 99th percentile and that were present for more than one frequency bin were labelled
significant.

To investigate the relevance of phase-dependent coding on behaviour, a subset of
correct trials was replaced with the available error trials before computing I(ω, b, s).
Differences in PDI were statistically tested using a null distribution of differences which
was generated by shuffling outcome labels of smoothed Iu(ω, b, s) (n = 1000, α = 0.05,
two-tailed).

The optimally encoding phase φopt(ω, s) is the peak phase of a cosine fit to I(ω, b, s)
or the phase of the average vector across phases and sites:

φopt(ω, s) = arg

(
U∑
u

B∑
b

Iu(f, b, s)eiλb

)
(6.20)

SEM of phase and Inorm(ω, b, s) was computed after smoothing by bootstrapping
across sites (n = 10000).
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6.3.12 Complex mediation

The influence of prefrontal LFPs on the synchrony between prefrontal spikes and parietal
LFPs was investigated using complex mediation analysis. This allows us to quantify the
influence of an independent variable x on a dependent variable y taking into account
the influence of a third, mediating variable z. Classically, in the univariate real case
this has been calculated by using regression coefficients c and c′ of y regressed on x
and x and z: y = cx and y = c′x + bz (MacKinnon et al., 2007). Here, c represents
the overall effect of x on y, while c′ represents the partial effect of x on y taking into
account the partial effect of z on y. Thus, the proportion mediated is given by 1− (c′/c).
An alternative approach to mediation analysis uses (partial) correlation coefficients,
which is advantageous because the mediation effect is not dependent on the variance of
the underlying data (Boca et al., 2014). Similarly, the proportion mediated would be
1 − (rxy|z/rxy), with rxy and rxy|z the correlation coefficient of x and y and the partial
correlation coefficient of x and y conditioned on z, respectively.

A more generalized approach to mediation analysis of complex valued multivariate
data is the use of the RV coefficient of Escoufier (Escoufier, 1973; Pascual-Marqui et
al., 2017). In the univariate real case the RV coefficient is equivalent to the squared
correlation coefficent, which is why the proportion mediated θm was computed as

θm = 1 −
√
RVxy|z/RVxy (6.21)

with the RV coefficient

RVx,y =
tr(Sx,yS

∗
x,y)√

tr(S2
x,x)
√
tr(S2

y,y)
(6.22)

and the partial RV coefficient

RVxy|z =
tr[(Szx − SzyS

−1
yy Syx)(Szx − SzyS

−1
yy Syx)∗]√

tr[(Szz − SzyS
−1
yy Syz)2]

√
tr[(Sxx − SxyS

−1
yy Syx)2]

(6.23)

where Sxy is the variance-covariance matrix of matrices x and y, tr(·) is the trace of a
matrix and ∗ denotes the complex conjugate. Here, the matrices x, y and z are complex
valued Fourier coefficients grouped as blocks of subcomponents, i.e. all channels PFC-
LFP, all channels VIP-LFP and all channels PFC spike per session.
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7 Mouse Project

7.1 Animal procedures

All animal procedures were performed in accordance with approvals by the local gov-
ernment (Regierung von Oberbayern). Animal health was monitored and scored daily.
Male mice (wild type C57BL/6, in-house breeding, Institute for Neuroscience, Technical
University Munich) were used for experiments. At surgery, animals were around 8-10
weeks old. After surgery, animals were singly housed under a regular 12 h/12 h light-
dark cycle. Access to food and water was ad libitum. When in behavioural training, a
controlled water schedule was applied that aimed for the animals to receive their daily
water intake during the training session. If an animal did not succeed to receive at least
1500 μL of water during training, animals were supplemented to that amount.

7.2 Surgery

7.2.1 Pre-surgery procedures

Animals were anaesthetised with isoflurane (2 % (vol/vol) in O2) and transferred onto
a heating pad. Body temperature was continuously monitored via a rectal probe and
kept to 37.5 ◦C via adjustments to the heating pad’s temperature. The animal’s upper
front teeth were then fitted into the tooth bar of a stereotaxic frame (Model 900LS,
Kopf Instruments, USA, extended with computer-controlled motors for each axis: Drill
and Nanoinjection Robot, Neurostar, Germany). Inhalation anaesthetic was then de-
livered via the snout component of the stereotaxic frame and isoflurane concentration
was lowered to 0.8 % to 1.5 %, and adjusted depending on the animal’s breathing rate
and foot pinch reflex. Analgesia (metamizole, 200 mg/kg body weight) was administered
subcutaneously. Eyes were covered with eye cream (Augen- und Nasensalbe, Bepanthen,
Germany) to avoid drying.

7.2.2 Head plate implantation

The animal’s scalp was exposed by removing head hair using electric clippers. Local
anaesthetic (lidocaine, 2 % in 0.9 % NaCl solution) was administered subcutaneously at
the scalp. The animal’s head was then fixed by fitting stereotaxic ear bars. The scalp
was disinfected using 70 % ethanol, then excised. The periosteum was removed using
forceps and the skull’s surface was roughened using a scalpel blade. Afterwards, the skull
surface was thoroughly cleaned with 0.9 % NaCl solution. A small craniotomy posterior
and lateral to the skull lambda landmark was made using a dental drill and a stainless

144



7 Mice 7.2 Surgery

steel screw attached to a metal pin, that was later used as an electrical reference, was
implanted.

Next, skull alignment was optimised using the calibration functionality of Neurostar’s
stereotaxic navigation software. First, the three-dimensional location of skull landmarks
bregma and lambda were measured to determine skull yaw, pitch and scale. Two points
500 μm left and right to the line described by the two skull landmarks were used to
determine skull roll. If rotation was not optimal the skull was realigned and calibration
repeated.

After calibration the skull was covered with light-curing adhesive (Optibond All-in-
One, Kerr, Germany) and hardened using blue light. In order to have accurate entry
sites for later acute recordings, stereotaxically-guided markings were made. The target
regions were selected in the navigation software, as if planning an injection. A drill
was automatically moved vertically above the target site and lowered until the skull was
reached. The drill was used to make clearly visible markings into the solid adhesive and
the superficial layers of the skull.

A small bar made of aluminium was then implanted as the component for head-
fixation in the behavioural setup. Dental cement (Tetric EvoFlow, Ivoclar Vivadent,
Germany) was applied onto the skull at the site of implantation, anterior of lambda.
The stereotaxic frame was used to position the metal bar horizontally into the liquid
dental cement. After solidifying the cement using blue light, the metal bar was detached
from the stereotaxic frame. To ensure a stable implantation the entire exposed skull was
then covered with multiple layers of dental cement, excluding the marked entry points
for later electrophysiological recordings. The recording entry points were instead covered
with rapid-curing silicone elastomeres (Kwik-Cast, World Precision Instruments, United
Kingdom).

7.2.3 Pre-recording craniotomy

After animals reached behavioural criterion they were prepared for craniotomy by giv-
ing ad libitum access to water the day prior to surgery. Pre-surgery procedures were
done as described above. Silicone elastomeres covering the recording entry points were
removed and the exposed skull was thoroughly cleaned using 70 % ethanol, followed by
0.9 % NaCl solution. The markings made in the first surgery were used as a visual guide.
Craniotomies were made using a dental drill and covered with rapid-curing silicone elas-
tomeres (Kwik-Cast, World Precision Instruments, United Kingdom).

7.2.4 Post-surgery procedures

After both head plate implantation and pre-recording craniotomy, long-acting analgesic
(meloxicam, 1.5 mg/kg body weight) was administered subcutaneously. The animal was
then removed from the surgery setup and transferred into its home cage, which was
heated. The following three days long-acting analgesic (meloxicam, 1.5 mg/kg body
weight) was administered daily.
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7 Mice 7.3 Behavioural setup

7.3 Behavioural setup

7.3.1 High-level overview

Behavioural training and experiments were performed in a custom-made sound-atten-
uating chamber. Components for behavioural procedures were mounted on an optical
breadboard. Animals were head-fixed at 10 cm elevation using the head bar that was
implanted during surgery. The animal’s body was located in a cut plastic tube, which
allowed free movement. Forepaws were resting on the response ball (see below). A
blunt cannula was placed in front of the animal’s mouth for water delivery. The cannula
was connected to a water-filled 5 mL syringe that was dispensed by an electronically
operated syringe pump (NE-500, New Era Pump Systems, USA). A 10 inch LCD mon-
itor (FT10TMB, Faytech, Germany). was located 15 cm in front of the animal. One
electrostatic speaker (ES1, Tucker Davis Technology, USA) each was located to the left
and right of the monitor for delivery of auditory stimuli. Speakers were driven by the
accompanying electrostatic speaker driver (ED1, Tucker Davis Technology, USA). In-
terfacing of inbound and outbound signals to a general purpose personal computer was
done via a breakout panel (BNC-2090A, National Instruments, USA) connected to a
data acquisition device (PCIe-6321, National Instruments, USA).

7.3.2 Response device

The response device was a ping-pong ball, the rotation of which was fixed by one polar
axis using a small metal rod. This rotation axis was positioned parallel to the ground
and to the animal’s anterior-posterior axis. Thus, only left and right rotations (i.e. roll)
were possible. A diametrically magnetised disc magnet was attached to the anterior pole
of the metal rod. Rotations of the ball rotated the magnet. The rotation was measured
using a Hall-effect rotary encoder (MIB22H, Megatron, Germany), the digital signals
of which were transformed to an analog signal via a custom-made converter (design
Christian Obermayer) before being transmitted into the breakout panel. Briefly, the
transformation was done as follows (Fig. 7.1). Two-channel digital signals from the
rotary encoder were used to determine rotation direction of the current step. The value
of one of two digital counters was incremented dependent on the step rotation direction.
Using digital-to-analog converters, each digital counter’s sum was then mapped to an
analog voltage. Finally, the two analog voltage signals were subtracted, to receive an
analog signal that scaled with cumulative rotation. TTL pulses were required to reset
the digital counters, in order to reset the analog signal back to baseline and to avoid
counter overflows. During these reset TTL pulses no rotation data could be acquired.

7.3.3 Orchestration of behavioural task

Monkeylogic 1 (version 2014-10, Asaad et al. (2013)) with NIMH toolbox (version 2017-
01-05, Hwang et al. (2019)) running in MATLAB 2017a 64 bit (Mathworks, USA),
Windows 8 64-bit (Microsoft, USA) was used for behavioural control. The software used
the incoming analog voltage signal from the response device to position a cursor between
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Figure 7.1: Transformations of behavioural signals.

two targets. The targets’ distance from the centre scaled with the cumulative rotation
that was needed to be registered as a left- or right-response. Outgoing digital (i.e. TTL)
signals via the breakout-panel controlled water dispensal via the syringe pump and reset
the converter circuit for the incoming response device rotation data. Outgoing analog
signals were voltage waveforms for the electrostatic speaker driver. Task dependent
control of timing and waveform selection was done via custom-written MATLAB scripts,
which can be found at https://gitlab.lrz.de/jacob lab/behavioral tasks/-/tree/master/
ML1/Ball.

7.4 Behavioural training

7.4.1 Habituation

Prior to instrumental training mice were habituated, similar to published protocols (Guo
et al., 2014). They were manually handled by the experimenter and received up until
1500 μL water from a pipette. Afterwards, familiarisation with the body tube was sup-
ported by baiting it with water droplets, so that animals would be motivated to enter
the tube themselves. Next, mice were habituated to head-fixation. Whilst inside the
body tube they were moved into the setup, so that the body tube was just posterior to
the response ball. Self-initiated exits from the front of the body tube were motivated
by baiting the response ball with water droplets. Mice were then head-fixed using the
implanted head bar. The water spout was moved in front of their snout and water was
dispensed from it, in order to associate head-fixation with reward. These steps were
typically done in different sessions on subsequent days.

7.4.2 Pre-training

In order to teach animals to use the response ball to receive reward, small rotations of the
ball triggered water dispensal from the reward spout. We typically started with small
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rotation thresholds of around 3.5 mm of the ball’s circumference and large reward sizes
of 8 μL. Movement training was done in blocks, i.e. in one block animals had to move
the ball left, in others right. Multiple side blocks were presented within one session.
Trial availability was signalled by showing a grey screen (RGB 0.1, 0.1, 0.1), that was
on throughout a trial and turned off after a threshold crossing. Monitor was black at
background luminance between trials. Incorrect rotations (i.e. to the wrong side) were
not rewarded and corresponding trials were immediately repeated.

7.4.3 Auditory decision making task

First stage: movement instructions Behavioural training with auditory stimuli
was done in stages. The task from pre-training was extended as follows. After the onset
of the grey screen animals had to hold the ball still for 50 ms. Trial progression was
stalled until that duration. Afterwards, one of two auditory stimuli, sinusoidal up- and
down-sweeps (11 kHz to 14 kHz, 15 kHz to 12 kHz, at around 78 dB sound pressure level
Fig. 7.2) of duration of 1000 ms, was played. These sinusoidal sweeps were the movement
instructions, with upsweeps signalling go-left and downsweeps signalling go-right . The
ball response could be made immediately after onset of the sweep. Animals initially had
20 s to respond. If the ball was rotated across one of the two thresholds, playback of the
auditory stimulus was aborted, and water was dispensed if the correct side’s threshold
was crossed. Afterwards the grey screen was turned off and an inter-trial-interval of
5000 ms followed. If no response within the allowed time frame was made the trial was
ended without punishment. Initially, this task was presented in directional blocks of
about 20 to 30 trials. With increasing task proficiency block sizes were reduced until
trial types were presented randomly. Similarly, initial hold-time and rotation thresholds
were gradually increased to 500 ms and 8 mm, and reward size was gradually decreased
to 4 μL.

Second stage: context cues After animals had reached more than 90 % session
performance on subsequent days in the randomised version of the previous task stage
the context cues were introduced. Auditory context cues were 100 ms long and either
pure or frequency-filtered white noise at around 61 dB sound pressure level (Fig. 7.2).
White noise was not informative of the upcoming movement instruction, white-noise
highpass-filtered at 14 kHz predicted the go-right instruction and white-noise lowpass-
filtered at 8 kHz predicted the go-left instruction. Thus, the cues are referred to as defer ,
prepare-right and prepare-left contexts. Within the trial, context cues were presented
after the initial calm period of 500 ms and before the movement instructions. Similar to
the initial calm period, animals were required to hold the ball still between the offset
of the context cue and the onset of the movement instruction. This time interval was
initially at 50 ms and gradually increased to 500 ms if the animal’s performance allowed
it.

Full task Thus, the complete task was as follows (Fig. 3.2). First, a grey screen
(see above) was shown on the monitor in front of the animal, in order to signal trial
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availability. Then, the response ball’s virtual position was reset to baseline and the
animal was required to hold the ball still within ±2.5 mm rotation for 500 ms (initial
calm period). If the small thresholds were crossed, i.e. the ball was not kept still
enough, the virtual ball position and timer were reset, until the required calm time was
registered. If the ball was kept still, one of three context cues was played for 100 ms
from the speakers left and right to the monitor. The ball’s virtual position was reset
to baseline and another period (context delay epoch) ensued that required the animal
to hold the ball still for 500 ms. Once again, if the ball was not kept still, the delay
was extended similar to the initial calm period. If the ball had been kept still, one of
two movement instruction was played for up to 1000 ms. Animals could immediately
respond by rotating the ball to the left or right. Responses were allowed for up to
5000 ms after movement instruction onset. If one of the two thresholds of ±8 mm was
crossed, a potentially still playing sound was stopped. If the response side was correct,
water reward was dispensed from the water spout for 500 ms. If the the response side
was incorrect the trial was aborted. The grey screen was turned off at the beginning of
the inter-trial interval of 5000 ms.

7.5 Neurophysiology

7.5.1 Manual procedures

Animals were aged around 10 months to 12 months at the time of recording. Prior
to recording animals were head-fixed in the setup as usual. A custom-made reference
cable was connected to the implanted skull screw pin and the reference electrode of the
adapter that held the silicon probe. Silicone elastomere that covered the craniotomies
was removed and craniotomies and brain surface were rinsed using 0.9 % saline. One
silicon probe (A1x32-Poly2-10mm-50s-177-A32, NeuroNexus Technologies, USA) per site
was moved to the brain surface using a micromanipulator (Luigs-Neumann, Germany).
Using the brain surface as the baseline, the neural probe was slowly lowered to the
desired depth. The well surrounding the craniotomy was filled with 2 % agarose in 0.9 %
saline to increase stability and avoid drying of the brain’s surface. After insertion, the
probe was allowed to settle for 10 min to 30 min. Recording of neural signals was started
shortly before starting the behavioural session. Behavioural session was controlled as it
was during training. After the behavioural session the neural probe was retracted, the
craniotomy rinsed with 0.9 % saline and covered with silicone elastomere.

7.5.2 Recording

Recordings were made using the OmniPlex™ Neural Recording Data Acquisition Sys-
tem by Plexon, USA. A silicon probe (A1x32-Poly2-10mm-50s-177-A32, NeuroNexus
Technologies, USA) was mounted onto a a probe adaptor (Connect HST/32V, Plexon,
USA), onto which an analog headstage (HST/32o25-GEN3-36P-G1, Plexon, USA) was
mounted. The headstage was connected to a digitising amplifier (DigiAmp™, Plexon,
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Figure 7.2: Spectrograms for auditory stimuli used in the experiment. (a) White noise
lowpass-filtered at 8 kHz was used as a context cue to signal an upcoming go-left trial. (b) White
noise was used as a non-informative context cue. (c) White noise highpass-filtered at 14 kHz was
used as a context cue to signal an upcoming go-right trial. (d) A sinusoidal upsweep (11 kHz to
14 kHz) was used as the movement instruction for go-left . (e) A sinusoidal downsweep (15 kHz
to 12 kHz) was used as the movement instruction for go-right .
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USA), which was connected to an OmniPlex™ chassis. The chassis was connected to a
personal computer (Dell, USA), running Windows 7 (Microsoft, USA).

Data acquisition was controlled using the OmniPlex™ software. Signal was sampled
at a rate of 40 kHz. Wideband signal was split into field potentials (lowpass filtered at
500 Hz and downsampled to 1000 Hz) and continuous spike signal (highpass filtered at
300 Hz) and stored to disk in Plexon’s proprietary .pl2 format.

7.5.3 Spike sorting

Spikes were assigned to clusters, i.e. putative single neuronal units and multi neu-
ronal units, using a semi-automated approach. First, the highpass filtered continuous
spike signal stored in .pl2 format was converted into a flat binary file with length
nchannels · ntimepoints. Data in that file was automatically clustered based on spatiotem-
poral spike waveforms via Kilosort 1 (Pachitariu et al., 2016) using the parameters shown
in Table 7.1.

This over-splits spikes into 512 clusters and requires manual merging. Manual curation
of the pre-clustered data was done in Phy (https://github.com/cortex-lab/phy). This
included merging, splitting, labelling and cutting. For a given cluster Phy shows the
most similar clusters in descending order. Clusters were merged if their spatio-temporal
waveforms or autocorrelation histograms were very similar. Sometimes clusters drifted
in terms of amplitude, but also spatially towards neighbouring channels, resulting in
separated clusters. This was clearly visible as sudden partitions in plots of first principal
components against time. These clusters were merged. Splitting was very rarely neces-
sary. It was only done when upon visual inspection of principal components scatter plots
there were clearly distinct clusters within the same time window. Labelling was based
on waveform and the autocorrelation histograms. If there was a distinct, often large-
amplitude, waveform and / or a physiologically plausible refractory period, a cluster was
assigned the ”good” (i.e. ”single unit”) label. If there were clear violations of refractory
period but a physiologically plausible waveform, this indicates a recording from multiple
units, and the cluster was labelled ”MUA”. Note that, contrary to threshold-based MUA
detection, we can have multiple MUA clusters per channel, based on distinct waveforms.
Finally, clearly non-physiological waveforms were labelled as ”noise”. For subsequent
analysis we cut off periods of sparse firing at the beginning and end of a unit’s lifetime
to ensure stationary firing rates. This was necessary because units drifted in and out of
our measurements because of the acute recording paradigm.

7.6 Data analysis

Data was analysed using custom scripts in python and MATLAB, with the support of
various libraries (Table 7.2).
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parameter value

Nfilt 512
Nrank 3
th 4 10 10
crit 0.65
criterion noise channels 0.2
fs 40000
fshigh 300
initialize no
lam 5 20 20
loc range 3 1
long range 30 6
mask max channels 5
maxfr 20000
merget 0.1
momentum 0.05 0.0025
nfiltmax 10000
nneigh 16
nneighpc 12
nskipcov 1
nannealpasses 4
nfullpasses 6
nt0 61
nt0min 20
ntbuff 64
scaleproc 200
shuffleclusters 1
spkth -6
splitt 0.1
whitening full

Table 7.1: Parameters used for Kilosort spike clustering
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Name Version Reference

python 3.9.4 Van Rossum and Drake (2009)
numpy 1.20.3 C. R. Harris et al. (2020)
scipy 1.8.0 Gommers et al. (2022)
scikit-learn 1.0.1 Grisel et al. (2021)
lmfit 1.0.2 Newville et al. (2021)
numba 0.52.0 Lam et al. (2020)
pandas 1.2.4 Reback et al. (2021)
xarray 0.19.0 Hoyer et al. (2021)
matplotlib 3.4.2 Caswell et al. (2021)
ptitprince 3.4.2 https://github.com/pog87/PtitPrince
MATLAB R2020a Mathworks, Inc.
MVGC 1.3 Barnett and Seth (2015)

Table 7.2: Software used for data analysis

7.6.1 Valid trials and sessions

To avoid spurious effects of motivation only the bulk of a behavioural session was used
for further analyses, thus cutting off the warm-up and cool-down periods, using the
following algorithm. Contiguous groups of trials were designated ”bad runs” if the
running average correct performance across 15 trials was below 50 %. The first non-
”bad” run after 20 trials into the session (warm-up) was designated the beginning of the
valid trials. The start of the first ”bad run” after the beginning of the valid trials was
used as the cutoff for the end of the session. The end of a session was signalled by the
animal via missing or repetitive incorrect responses. Finally, all missing trials (i.e. no
response) were invalidated.

A valid session was defined as having at least 100 valid trials overall, 70 % overall
behavioural performance, 50 % performance per trial condition, and 5 correct trials per
trial condition.

Furthermore, for the analysis of spiking data only those sessions were included for
which the location of the neural probe was histologically verified to be in the target
area. Thus, spiking data of one animal was excluded.

7.6.2 Psychometrics

Session performance was defined as the fraction of correct trials with respect to overall
valid trials. Response time was defined as the time interval from the onset of the move-
ment instruction to threshold crossing. Differences between prepare and defer trials were
calculated per session.
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Setup number Animals Noise variance σ2

0 A30, A32 5 · 10−4

1 D13, D15, T12 1 · 10−3

Table 7.3: Setup numbers for animals and empirically determined noise variance.

7.6.3 Preprocessing response ball traces

The electrical elements that were used to count rotations from the rotary encoder had
an upper limit and thus needed to be reset / cleared for new trials, using an external
reset pulse signal sent by Monkeylogic. Furthermore, some epochs in our behavioural task
required the animals to hold the ball within a certain range close to 0 V. Therefore, reset
pulses were triggered within the task if the animals exceeded this range. During the reset
pulse, which lasted 1 frame (about 33 ms at 30 Hz refresh rate), the net voltage signal
was brought back to a baseline, close to, but not exactly at 0 V. In this time windows
the actual ball rotations (or lack thereof) were masked and could not be observed.

To fill in these gaps and filter other noise I reconstructed ball rotation velocity traces
using Gaussian Process (GP) regression with a 2-component kernel, using scikit-learn’s
gaussian_process.GaussianProcessRegressor. In the first component, gap interpo-
lation was achieved by using an Radial Basis Function (RBF) kernel with the length
scale parameter ℓ fixed for all sessions. The RBF length scale ℓ determines the smooth-
ing of a function, as well as the maximum steps away from data points that the function
can be extrapolated to. In general, it’s not possible to extrapolate more than ℓ units
away from the data (Duvenaud, 2014). The RBF can be thought of as a weighting
function of neighbouring data points, putting more weight to closer data points and less
to more distant ones. Thus, to retain maximum fidelity (i.e. small movements) of the
original signal ℓ should be chosen as small as possible, while still ensuring that the RBF
kernel covers data points on both sides of a gap to be filled. With a minimum of 2
data points on each side of the gap and a maximum reset pulse length of 33 ms, ℓ was
chosen as 37 ms. Time points of reset pulses were determined algorithmically on the
raw signal. The second component of the GP regression involves a white noise kernel
that is employed to filter noise in the voltage dimension. This kind of noise arose from
repeated digital-to-analog and analog-to-digital conversions, as well as outlier peaks pre-
sumably produced by insufficiently filtered signals acquisition pacemaker signals. White
noise kernels are parameterised by their variance σ2. σ2 was determined per behavioural
setup. Pooled values of manually chosen segments of ball rotation traces that showed no
movement were used to fit normal distributions per session. The standard deviations σ
derived from these distributions were pooled per setup and the peak of a kernel density
estimate on these pooled σs was used to determine σ2 per setup. Table 7.3 shows the
mapping of setup and animals.
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7.6.4 Trial subsetting dependent on movement

Trial subsetting was done for movement activity and movement tendency during the
first 600 ms of the context epoch. Movement activity was defined as the absolute path
length, and, similarly, movement side tendency was defined as the cumulative (signed)
path length normalised by the absolute path length. To allow for fair comparisons, equal
trial subsets were defined separately within conditions. Each subset contained the upper
or lower two quintiles of the respective metric within the condition (i.e. 0 % to 40 % and
60 % to 100 %).

7.6.5 Submovement decomposition

Minimum-jerk submovements were fitted onto single trials’ response ball velocity traces
using a custom iterative algorithm, which can be found at https://gitlab.lrz.de/jacob
lab/submo. On a high level the algorithm consists of the steps proposal, fitting and
evaluation.

proposal During proposal the residual of data and current best model is used to find
a new candidate submovement. In the first iteration the residual is just the raw
velocity because the model is initialised to all zeroes. First, the local velocity
maxima and their neighbouring local minima were found using scipy-1.5.3’s
signal.argrelextrema (Virtanen et al., 2020). Difference between left and right
local minima were used as the initial guess for submovement duration. The pro-
posed duration d and velocity peak vpeak were used to calculate the corresponding
path length a

a = vpeak/1.875 · d (7.1)

The proposed submovement with the longest path length was used for the fitting
stage if it wouldn’t be entirely nested within another submovement and it wasn’t
tried to fit in a previous iteration.

fitting Non-linear least-squares fitting was done via lmfit using custom functions (just-
in-time compiled using numba) for minimum jerk velocity

v(t) =
a

d
· (−60 · nt(t)3 + 30 · nt(t)4 + 30 · nt(t)2) (7.2)

and its corresponding Jacobian

J(t) = [
∂f

∂t0
(t),

∂f

∂d
(t),

∂f

∂a
(t)] (7.3)

with the partial derivatives

∂f

∂t0
(t) =

−a

d2
· (120 · nt(t)3 − 180 · nt(t)2 + 60 · nt(t)) (7.4)

∂f

∂d
(t) =

a

d2
· (−150 · nt(t)4 + 240 · nt(t)3 − 90 · nt(t)2) (7.5)
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∂f

∂a
(t) =

1

d
· (−60 · nt(t)3 + 30 · nt(t)4 + 30 · nt(t)2) (7.6)

with v as velocity, a as amplitude (or path length), d as duration, t0 as movement
onset time, nt(t) as the normalised time t−t0

d .

evaluation The model was evaluated after every fitting step. If Bayesian Information
Criterion (BIC) was improved in comparison to the previous iteration the fit was
accepted. Otherwise the proposed submovement was put on a deny-list and the
fitting procedure was repeated for the next longest proposed movement. If no more
movements could be fitted the iteration was exited.

7.6.6 Response/movement initiation and execution time

Response/movement initiation time was defined as the time of onset of the first fitted
submovement after the onset of the movement instruction or context cue, respectively.
Response execution time was defined as the time interval from response initiation to
threshold crossing.

7.6.7 Submovement aggregated metrics

Aggregated submovement metrics were calculated from fitted submovements in the con-
text epoch (first 0 ms to 600 ms) and in the instruction epoch (from movement instruction
onset to threshold crossing). Submovement count was the number of fitted submove-
ments in the time of interest. Movement balance SI was the normalised signed count
per trial as in

SI =
nleft − nright

nleft + nright
. (7.7)

Submovement strength was vpeak, and submovement duration was d, as defined in Equa-
tion (7.1).

7.6.8 Inclusion criteria neuronal units

Only spiking activity which was deemed to originate from single units (Section 7.5.3)
were considered for analysis. Single units were further limited to have at least an average
firing rate of 1 Hz and be present for at least 5 correct trials per trial condition. Unit
lifetime was determined as the interval of trials in which a unit showed not more than 5
consecutive trials of firing rate below 1 Hz.

7.6.9 Standardised firing rate

Binary spike trains were first downsampled to 1000 Hz and then smoothed to continuous
firing rate time series by convolving with a Gaussian window of σ = 25 ms and length of
n = 9 · σ. Individual single units’ time series fr(t) were standardised to baseline as

frz(t) =
fr(t) − frbl

f̂ rbl
(7.8)
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with frbl as the mean baseline firing rate, f̂ rbl as the standard deviation of the baseline
firing rate and the baseline defined as −200 ms to 0 ms to the presentation of the trial
availability grey screen.

7.6.10 Zeta-test derived metrics

Neuronal responsiveness to stimuli was computed from the raw spike timestamps using
the parameter-free ZETA-test (Montijn et al., 2021). The test computes the magni-
tude of responsiveness (ζ) and a ζ-derived instantaneous firing rate. A single unit was
deemed responsive to a stimulus if its ζ value (responsiveness magnitude) exceeded
1.96. Latency was defined as the point in time of maximum ζ-derived instantaneous
firing rate. Region-wide recruitment profiles were based on these latencies. Preference
was defined as the stimulus to which a neuron’s activity was maximally modulated
(argmax([ζdefer, ζprepare-left, ζprepare-right]) or argmax([ζgo-left, ζgo-right])).

7.6.11 Population coding: support vector machine (SVM)

In order to assess encoding of the task variables in the neuronal populations L2-regularised
linear support vector machines were used (scikit-learn’s svm.LinearSVC) with hinge-
loss, stopping tolerance tol = 1 · 10−5, regularisation C = 100, and maximum number
of iterations niter = 10 000. In the case of decoding context, i.e. a 3-class classification,
1-vs-1 classifiers were used.

Binary spike trains were smoothed by convolution with a Gaussian window (σ = 25 ms)
and downsampled to 40 Hz.

Activity from simultaneously recorded neurons was not robustly available for the
dataset due to the recording scheme (daily acute recordings with neuronal drift). Thus,
region-specific pseudopopulations containing all valid neurons across all sessions were
created for classifier training and testing (E. Meyers & Kreiman, n.d.). Train and test
trials were created by randomly sampling 50 trials (with replacement) from individual
neurons’ trials and concatenating across neurons. This procedure was done for 100 shuf-
fles of random train/test splits (train fraction 0.75), to increase the probability that all
trials were used for the analysis. One caveat here is that trials from units with a small
number of trials are duplicated, so that the variances of those units’ features is low.
These so-called pseudotrials abolish trial-wise neuronal covariation that might contain
information. Therefore, the results shown represent a lower bound on the achievable
information. Information was quantified as the mean accuracy of class predictions of
trained classifiers on held-out test trials. Means and standard deviation across pseudo-
trial shuffles.

Cross-temporal decoding was tested by training a classifier on data of one time bin
and testing at other time bins, similar to as reviewed in E. M. Meyers (2018).

Two approaches were used to assess context-dependent differences of the population
code for movement instruction. Each fitted linear support vector classifier defines a
multi-dimensional hyperplane that optimally separates data points of two classes. Thus,
intuitively the hyperplane can be viewed as the ”fingerprint” of population activity at
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specific times. The angle ϕ between two hyperplanes ω⃗a and ω⃗b was calculated via

ϕ = arccos ω⃗a • ω⃗b (7.9)

with • representing the dot-product operation. All angles of a hyperplane fitted for one
pseudo-trial shuffle at one time point with hyperplanes from the other context’s trials
were computed.

Cross-context decoding was done similar to cross-temporal decoding. Classifiers were
trained on a training subset of trials in one context. Testing was done with held out
trials of the same and the other context.

7.6.12 Functional connectivity: Granger Causality

Binary spike trains were convolved with half-Gaussian windows (σ = 50 ms). For each
session, concurrent trials for pairs of single units were calculated. Multivariate Granger
Causality in state space was then computed for pairs of preprocessed time-series, using
containerised MATLAB and MVGC library connected to python. Optimal model order was
selected using the Akaike Information Criterion (AIC). Significance was assessed using
the F -test integrated in the library, evaluated at α = 0.05.

7.6.13 Comparative statistics

The following statistical tests were used for comparison of groups.

Repeated-measures two-way ANOVA Comparison of the four trial conditions pre-
pare-go-left , defer -go-left , prepare-go-right , defer -go-right . Main factors: move-
ment instruction (go-left vs. go-right), abstract context (prepare vs. defer); Inter-
action: (movement instruction) ×(abstract context).

Wilcoxon signed-rank test

two-sample Comparison of context-differences across movement instructions: diff(go-
left-prepare, go-left-defer) vs. diff(go-right-prepare, go-right-defer).

one-sample Comparison of context-differences against 0: diff(go-left-prepare, go-
left-defer) vs. 0; diff(go-right-prepare, go-right-defer) vs 0.

Levene’s test for equal variances Comparison of distribution variances in context-
differences across movement instructions: diff(go-left-prepare, go-left-defer) vs.
diff(go-right-prepare, go-right-defer).

Hartigan’s dip test for unimodality Within conditions, check distribution for uni-
modality.

χ2 tests

two-way/contingency Comparison of equal fractions across regions, or within
regions across sub-groups.
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one-way Comparison of equal fractions within regions.

permutation tests

neuronal latencies across regions Random shuffling of region assignments for
single unit’s peak latencies.

significant neuronal coding Decoder scores from pseudotrial runs were shuffled
in time and mean across pseudotrials was compared against observed means.

differences in neuronal coding Clusters of siginifcant differences were found
as follows. Input data were scores within pseudo-trials. Candidate clusters
were contiguous runs of observed differences between conditions (e.g. prepare
vs. defer ; correct vs. wrong). Cluster statistic was the absolute sum within
clusters. Assignment of condition and decoder score was then shuffled and
cluster statistic was calculated for each shuffle. A cluster was deemed signifi-
cant if across those shuffles the observed cluster statistic was greater than in
99 % of shuffles.

Epps-Singleton two-sample test for equal distributions Used to compared recruit-
ment dynamics across conditions.

Kendall’s τ test for equal sequences Use to compared recruitment times of context-
stable units across contexts.

7.6.14 Raincloud plots

Raincloud plots are a combination of scatter plots, box plots and violin plots (Allen
et al., 2021) and thus represent single data points as well as their distributions. In
this thesis colours represent trial conditions, every dot is the average of a metric in one
session, half-violins are kernel density estimate (KDE) smoothed distributions, box-plots
show quartiles (white dots are medians), whiskers include 1.5 times inter-quartile range
(IQR).
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Jacob, S. N., Hähnke, D., & Nieder, A. (2018). Structuring of Abstract Working Memory
Content by Fronto-parietal Synchrony in Primate Cortex. Neuron, 99 (3), 588–
597.e5. https://doi.org/10.1016/j.neuron.2018.07.025

Jacob, S. N., & Nieder, A. (2014). Complementary roles for primate frontal and parietal
cortex in guarding working memory from distractor stimuli. Neuron, 83 (1), 226–
237. https://doi.org/10.1016/j.neuron.2014.05.009

Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with
memory load in a working memory task. The European Journal of Neuroscience,
15 (8), 1395–1399. https://doi.org/10.1046/j.1460-9568.2002.01975.x

Johnson, E. L., Dewar, C. D., Solbakk, A.-K., Endestad, T., Meling, T. R., & Knight,
R. T. (2017). Bidirectional Frontoparietal Oscillatory Systems Support Working
Memory. Current Biology, 27 (12), 1829–1835.e4. https://doi.org/10.1016/j.cub.
2017.05.046

Jones, C. M., Gray, R., Spence, C., & Tan, H. Z. (2008). Directing visual attention
with spatially informative and spatially noninformative tactile cues. Experimental
Brain Research, 186 (4), 659–669. https://doi.org/10.1007/s00221-008-1277-0

Kaczmarczyk, L., & Jackson, W. S. (2015). Astonishing advances in mouse genetic tools
for biomedical research. Swiss Medical Weekly, 145, w14186. https://doi.org/10.
4414/smw.2015.14186

Kajikawa, Y., & Schroeder, C. E. (2011). How local is the local field potential? Neuron,
72 (5), 847–858. https://doi.org/10.1016/j.neuron.2011.09.029

Kandel, E. R., Koester, J. D., Mack, S. H., & Siegelbaum, S. A. (Eds.). (2021). Principles
of neural science (6th ed.). McGraw Hill.

Karnath, H. O., & Wallesch, C. W. (1992). Inflexibility of mental planning: A character-
istic disorder with prefrontal lobe lesions? Neuropsychologia, 30 (11), 1011–1016.
https://doi.org/10.1016/0028-3932(92)90052-N

Kawagoe, T., Tamura, R., Uwano, T., Asahi, T., Nishijo, H., Eifuku, S., & Ono, T.
(2007). Neural correlates of stimulus-reward association in the rat mediodor-
sal thalamus. Neuroreport, 18 (7), 683–688. https ://doi .org/10 .1097/WNR.
0b013e3280bef9a6

Kazama, H. (2015). Systems neuroscience in Drosophila: Conceptual and technical ad-
vantages. Neuroscience, 296, 3–14. https://doi.org/10.1016/j.neuroscience.2014.
06.035

170

https://doi.org/10.1007/s10162-007-0098-3
https://doi.org/10.1007/s10162-007-0098-3
https://doi.org/10.1016/0006-8993(82)90613-8
https://doi.org/10.1016/0006-8993(82)90613-8
https://doi.org/10.1016/j.neuron.2018.07.025
https://doi.org/10.1016/j.neuron.2014.05.009
https://doi.org/10.1046/j.1460-9568.2002.01975.x
https://doi.org/10.1016/j.cub.2017.05.046
https://doi.org/10.1016/j.cub.2017.05.046
https://doi.org/10.1007/s00221-008-1277-0
https://doi.org/10.4414/smw.2015.14186
https://doi.org/10.4414/smw.2015.14186
https://doi.org/10.1016/j.neuron.2011.09.029
https://doi.org/10.1016/0028-3932(92)90052-N
https://doi.org/10.1097/WNR.0b013e3280bef9a6
https://doi.org/10.1097/WNR.0b013e3280bef9a6
https://doi.org/10.1016/j.neuroscience.2014.06.035
https://doi.org/10.1016/j.neuroscience.2014.06.035


References

Kéri, S., Decety, J., Roland, P. E., & Gulyás, B. (2004). Feature uncertainty activates
anterior cingulate cortex. Human Brain Mapping, 21 (1), 26–33. https://doi.org/
10.1002/hbm.10150

Kim, C. K., Adhikari, A., & Deisseroth, K. (2017). Integration of optogenetics with
complementary methodologies in systems neuroscience. Nature Reviews Neuro-
science, 18 (4), 222–235. https://doi.org/10.1038/nrn.2017.15
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Figure S1: Control analyses of cross-regional LFP synchrony measures with local
referencing of signals for trials with a distractor numerosity. (a) Phase-locking value
(PLV) (compare to Fig. 2.4a). (b) Phase-slope index (PSI) (compare to Fig. 2.5a). Modified
from Jacob et al. (2018).
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Figure S2: Spike-field locking strength (PLV) for fronto-parietal pairs with significant sample
or distractor coding, power stratified control. (a) (related to Fig. 2.8a) Cross-epoch comparisons
of locking strength at the 5 Hz (theta) and 20 Hz (beta) frequencies (Wilcoxon rank-sum test,
**p < 0.01).
(b) (related to Fig. 2.8b) Comparisons of locking strength at the 5 Hz (theta) and 20 Hz (beta)
frequencies across sample and distractor-coding pairs (Wilcoxon rank-sum test, **p < 0.01).
Modified from Jacob et al. (2018).
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No subtraction of evoked potentials
PFC spikes, VIP LFPs
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Figure S3: Prefrontal numerosity information dependent on parietal oscillation phase
(no subtraction of evoked potentials). (a) Normalised sample information (ω2) in spike
counts from sample-selective prefrontal neurons at specific phases of VIP LFP during the second
memory delay. (b) same analysis like (a) for distractor information contained in spike counts of
distractor-selective neurons. (c) Percentage of phase-dependent sample or distractor information
in PFC spikes as a function of parietal LFP frequency. Shading: bootstrap SEM. Horizontal
bars: significant phase-dependency (p < 0.01, permutation test). Inset: mean ratio of phase-
dependency in the delta and beta bands (whiskers: bootstrap SEM, p < 0.05 permutation test).
(d) Top, polar plots: Normalised prefrontal sample and distractor information as a function of
VIP theta phase. Circle markers and associated error bars indicate mean normalised information
and bootstrap SEM at the individual phase bin. Solid closed traces are cosine fits. Short solid
lines along the polar dimension and orthogonal partial circles indicate optimal readout phases
and bootstrap SEM. Bottom: Location of optimal phases with bootstrap SEM on the LFP
oscillation in the time domain (cosine). Modified from Jacob et al. (2018).
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Figure S4: Channel depths of instruction-responsive subsets of single units. (a) Chan-
nel depths of go-left-responsive units in PL. Green (left prep without left defr): go-left-responsive
exclusively after prepare context. Orange (left prep intersect left defr): go-left-responsive in
both prepare and defer contexts (context-stable). Purple (left defr without lefr prep): go-left-
responsive exclusively after defer context. (b) same as (a) but for go-right-responsive single
units. (c, d) same as (a, b) but for single units recorded in MD. All differences statistically
non-significant: 1-way ANOVAs with pairwise Tukey’s HSD post-hoc tests.
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PL: context index ZETA-scores instruction (p-d)/(p+d)

Figure S5: Influence of prior context on magnitude of instruction-responsiveness
(PL). (a) Raw magnitude of go-left-responsiveness in single units that were exclusively
instruction-responsive after prepare or defer context. No statistically significant difference was
found (Mann-Whitney-U: p = 0.584). (b) same as (a) for go-right-responsive units. No sta-
tistically significant difference was found (Mann-Whitney-U: p = 0.266). (c) Context-index
(prepare−defer
prepare+defer ) of instruction-responsiveness magnitudes for context-stable units. No statistically

significant modulations by context were found (0.001±0.102, p = 0.941, (go-left); −0.002±0.110,
p = 0.903, (go-right); one-sample Wilcoxon test against 0 mean).
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Figure S6: Influence of prior context on magnitude of instruction-responsiveness
(MD). (a) Raw magnitude of go-left-responsiveness in single units that were exclusively
instruction-responsive after prepare or defer context. No statistically significant difference was
found (Mann-Whitney-U: p = 0.565). (b) same as (a) for go-right-responsive units. No sta-
tistically significant difference was found (Mann-Whitney-U: p = 0.433). (c) Context-index
(prepare−defer
prepare+defer ) of instruction-responsiveness magnitudes for context-stable units. Statistically

significant modulation by context was not found for go-left but for go-right (0.010 ± 0.107,
p = 0.457, (go-left); 0.045 ± 0.107, p = 0.002, (go-right); one-sample Wilcoxon test against 0
mean).
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Figure S7: Significant GC links during context epoch (control for Fig. 3.50, number of
trials equalised across conditions). (a) Fraction of significant functional links between source
cells in PL and target cells in PL. (b–d) same as (a) but for MD to MD, PL to MD and MD to
PL, respectively. Vertical error bars show 95 % bootstrap CI. Before calculating the GC metric,
trials were drawn randomly so that all conditions had the number of trials that the condition
with the lowest number of trials had (i.e. stratification). This was done for n = 10 times and
the number of significant links was averaged across these iterations.
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Figure S8: Significant GC links during instruction epoch (control for Fig. 3.51, number
of trials equalised across conditions). (a) Fraction of significant functional links between source
cells in PL and target cells in PL. (b–d) Same as (a) but for MD to MD, PL to MD and MD to
PL, respectively. Vertical error bars show 95 % bootstrap CI. Before calculating the GC metric,
trials were drawn randomly so that all conditions had the number of trials that the condition
with the lowest number of trials had (i.e. stratification). This was done for n = 10 times and
the number of significant links was averaged across these iterations.
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I may not have gone where I intended
to go,
but I think I have ended up where I
needed to be.

Dirk Gently
The Long Dark Tea-Time of the Soul

Douglas Adams, 1988


	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Glossary
	I Introduction
	1 Introduction
	1.1 Perception-Action Cycle and Goal-directed Behaviour
	1.2 Executive Functions
	1.3 Prefrontal Cortex: Neuronal Substrate of Executive Functions
	1.4 Related Brain Structures Investigated in this Thesis
	1.4.1 Ventral intraparietal cortex
	1.4.2 Mediodorsal thalamic nucleus

	1.5 Model Organisms in Systems Neuroscience
	1.5.1 Monkey
	1.5.2 Mouse

	1.6 Aims of the Thesis
	1.6.1 Structuring of Abstract Working Memory Content by Fronto-Parietal Synchrony in Primate Cortex
	1.6.2 Neuronal Signatures of Contextual Decision-Making in Mouse Prefrontal Cortex and Mediodorsal Thalamus



	II Results
	2 Structuring of Abstract Working Memory Content by Fronto-Parietal Synchrony in Primate Cortex
	2.1 Behavioural Task
	2.1.1 Open questions from previous analyses

	2.2 Intra-regional Strength of LFP Oscillations: Power
	2.2.1 Spectro-temporal modulation by task events
	2.2.2 Numerosity-dependent oscillation intensity

	2.3 Cross-regional Communication: Functional Connectivity
	2.3.1 Task-related fronto-parietal synchrony in distinct frequency bands
	2.3.2 Distinct frequency bands for direction-specific synchrony
	2.3.3 Task- and memory-content dependent fronto-parietal synchrony
	2.3.4 Phase- and frequency dependent information
	2.3.5 Behavioural relevance


	3 Neuronal Signatures of Contextual Decision-Making in Mouse Prefrontal Cortex and Mediodorsal Thalamus
	3.1 Behaviour
	3.1.1 Response ball task to test executive function in mice
	3.1.2 Mice learned abstract goal-directed behaviour and used context advantageously
	3.1.3 Covert movements during context epoch correlated with task performance and response times
	3.1.4 Submovement decomposition
	3.1.4.1 Response ball rotation traces can be decomposed into individual submovements
	3.1.4.2 Prior context decreased delay to response initiation but did not affect duration of execution
	3.1.4.3 Informative contexts delayed initiation of covert submovements in the context epoch
	3.1.4.4 Default surplus of left submovements and context-modulation of only right submovements
	3.1.4.5 Submovement balance consistent with instructed side but distinct modulation of left and right submovements
	3.1.4.6 Submovement side-specific effects of context on strength and duration
	3.1.4.7 Instruction epoch submovement parameters modulated by instruction but not prior context

	3.1.5 Summary behaviour

	3.2 Neurophysiology
	3.2.1 Firing rates in single neuronal units and regional populations
	3.2.1.1 Single unit activity in pl and md varied with context cue and instruction and showed heterogeneous response profiles
	3.2.1.2 Firing rate averages and peak latencies across single units show distinct response profiles for context and instruction in PL and MD

	3.2.2 Neuronal responsiveness and preference
	3.2.2.1 Partially overlapping subpopulations with epoch-specific and -invariant responsiveness
	3.2.2.2 Most single units were exclusively responsive to one context; responsiveness was inhomogeneously distributed
	3.2.2.3 More single units responsive to go-left instruction; less specialisation than for contexts
	3.2.2.4 Context-dependent shift of instruction-responsive single-unit subpopulations
	3.2.2.5 Prior context smoothly modulated and did not bias magnitude of instruction-responsiveness
	3.2.2.6 Preference
	3.2.2.7 Higher preference for go-left instruction than expected from responsiveness
	3.2.2.8 Cross-epoch preferences: Most neurons likely to prefer go-left; prepare-right-preferring most "loyal"

	3.2.3 Neuronal recruitment
	3.2.3.1 Distinct recruitment profiles in defer and prepare contexts
	3.2.3.2 Instruction-epoch recruitment distinct in PL but similar in MD
	3.2.3.3 Prior contexts led to similar recruitment profiles but distinct recruitment sequences of context-stable cells

	3.2.4 Population coding
	3.2.4.1 PL and MD populations strongly encoded context cues
	3.2.4.2 Population code for context was partially generalisable within the context epoch but distinct from code in the instruction epoch
	3.2.4.3 Movement instruction was very robustly encoded and persisted after trial outcome
	3.2.4.4 Code stability for movement instruction varied strongly in PL but not MD
	3.2.4.5 Prior context only weakly influenced strength of instruction coding but shifted its onset
	3.2.4.6 Population code for movement instruction conserved across contexts
	3.2.4.7 Neuronal coding was degraded in wrong trials
	3.2.4.8 Higher and more generalisable context information in trials with covert rightwards movements

	3.2.5 Functional connectivity
	3.2.5.1 Fractions of significant functional connections were consistently ordered by context
	3.2.5.2 Functional links during instruction epoch varied with prior context within PL but were context-invariant within MD




	III Discussion
	4 Structuring of Abstract Working Memory Content by Fronto-Parietal Synchrony in Primate Cortex
	4.1 Working memory dependent balance of beta and gamma power
	4.2 Dominant parieto-frontal (feedforward) communication in the beta band
	4.3 Delay epoch prefrontal-to-parietal (feedback) communication via low frequency oscillations
	4.4 Delta/theta phase separates multiplexed parallel information
	4.5 Direction-specific communication via separate frequency bands
	4.6 Outlook

	5 Neuronal Signatures of Contextual Decision-Making in Mouse Prefrontal Cortex and Mediodorsal Thalamus
	5.1 Response abstractness via the lack of feedback coupling
	5.2 Multiple levels of behaviour affected by context cues
	5.3 Distinct motor implementations and go-left as a default behaviour
	5.4 Processing of context and instruction in PL and MD
	5.5 Behavioural importance of instruction reflected by neuronal representation
	5.6 Neuronal signatures of uncertainty and action preparation
	5.7 Neuronal representation of default behaviour
	5.8 The effect of contexts on instruction signalling
	5.9 Cross-regional timing differences suggestive of ordered interplay
	5.10 Limitations and recommendations for future studies
	5.11 Concluding summary


	IV Methods
	6 Monkey Project
	6.1 Experimental model and subject details
	6.2 Method details
	6.2.1 Surgical procedures
	6.2.2 Task and stimuli
	6.2.3 Electrophysiology

	6.3 Quantification and statistical analysis
	6.3.1 Preprocessing
	6.3.2 Spectral transformation
	6.3.3 Power
	6.3.4 Phase
	6.3.5 Cross-spectrum
	6.3.6 Phase Locking Value
	6.3.7 Phase Locking Selectivity Index
	6.3.8 Phase Slope Index
	6.3.9 Wiener-Granger Causality
	6.3.10 Naïve Bayes decoding
	6.3.11 Phase Dependent Coding
	6.3.12 Complex mediation


	7 Mouse Project
	7.1 Animal procedures
	7.2 Surgery
	7.2.1 Pre-surgery procedures
	7.2.2 Head plate implantation
	7.2.3 Pre-recording craniotomy
	7.2.4 Post-surgery procedures

	7.3 Behavioural setup
	7.3.1 High-level overview
	7.3.2 Response device
	7.3.3 Orchestration of behavioural task

	7.4 Behavioural training
	7.4.1 Habituation
	7.4.2 Pre-training
	7.4.3 Auditory decision making task

	7.5 Neurophysiology
	7.5.1 Manual procedures
	7.5.2 Recording
	7.5.3 Spike sorting

	7.6 Data analysis
	7.6.1 Valid trials and sessions
	7.6.2 Psychometrics
	7.6.3 Preprocessing response ball traces
	7.6.4 Trial subsetting dependent on movement
	7.6.5 Submovement decomposition
	7.6.6 Response/movement initiation and execution time
	7.6.7 Submovement aggregated metrics
	7.6.8 Inclusion criteria neuronal units
	7.6.9 Standardised firing rate
	7.6.10 Zeta-test derived metrics
	7.6.11 Population coding: support vector machine (SVM)
	7.6.12 Functional connectivity: Granger Causality
	7.6.13 Comparative statistics
	7.6.14 Raincloud plots



	References
	Appendix
	Acknowledgements

