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Abstract

Graphical models provide a tractable framework to encode stochastic dependencies
between a set of random variables. In particular, they are able to capture noisy func-
tional relations between the variables. In this framework, directed cycles in a graph
imply the existence of feedback loops in the studied system, while bidirected edges
are often used to represent dependencies induced by latent confounders. The focus
of this thesis are graphical models specified via linear structural equations and the
challenges that result from allowing the graph to contain directed cycles or bidirected
edges.

We start the discussion by considering models given by bow-free mixed graphs that
allow for feedback loops as well as certain types of latent confounding. We prove
that the models in this class are of expected dimension, and we provide a sufficient
condition for distributional equivalence between different graphs. For structure learn-
ing with observational data, we propose a greedy search scheme with model scores
defined using maximum likelihood estimates (MLE).

Next, we consider the problem of computing MLEs in settings where one has both
observational and interventional data. Following earlier work that only considered
observational data, we develop a block-coordinate descent scheme that is applicable
to models that may feature feedback loops. We lay out specific conditions on a
graph or interventions, under which the resulting algorithm involves update steps
with simple explicit solutions.

An important issue in graphical modeling is to clarify whether the graphical structure
underlying a model is identifiable on the basis of the available data. The existing the-
ory on this topic provides equivalence results as well as analyses of different conditions
that ensure unique identifiability. We contribute to this literature by studying the
class of graphical models with homoscedastic error variances in a generalization that
allows for feedback loops. We give a definition of generic identifiability (distinguisha-
bility) based on a geometric perspective, and we develop general graphical criteria
that, under mild conditions, are able to certify when the models given by two graphs
are distinguishable. We also report on an extensive computational study that shows
that nearly all simple directed graphs with at most 6 nodes are generically identifiable
under the assumption of homoscedastic error variances.

Finally, we propose a class of models that weakens full homoscedasticity of error
variances to a setting of partial homoscedasticity. In this setting, error variances are
restricted to be equal only within the blocks of a partition of the considered random
variables. For the class of directed acyclic graphs, we obtain a full characterization
of model equivalence under such partial homoscedasticity.
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Zusammenfassung

Graphische Modelle sind nützliche Werkzeuge, um stochastische Abhängigkeiten zwis-
chen einer Menge von Zufallsvariablen abzubilden. Insbesondere können sie ver-
rauschte funktionale Beziehungen zwischen den Variablen erfassen. In diesem Rah-
men deuten gerichtete Zyklen in einem Graphen auf das Vorhandensein von Rück-
kopplungsschleifen im untersuchten System hin, während bigerichtete Kanten oft
dazu verwendet werden, Abhängigkeiten zu repräsentieren, die durch verborgene
Störfaktoren verursacht werden. In dieser Arbeit betrachten wir lineare Strukturglei-
chungsmodelle, die mit Graphen assoziiert sind. Die betrachteten Graphen enhalten
Zyklen oder bigerichtete Kanten.

Wir beginnen die Diskussion, indem wir Modelle betrachten, die durch bogenfreie
gemischte Graphen gegeben sind und Rückkopplungsschleifen sowie bestimmte Arten
verborgener Störfaktoren zulassen. Wir beweisen, dass die Modelle dieser Klasse von
erwarteter Dimension sind und wir entwickeln eine hinreichende Bedingung für die
verteilungstheoretische Äquivalenz verschiedener Graphen. Für das Strukturlernen
mit beobachteten Daten untersuchen wir ein Greedy-Suchverfahren das Informations-
kriterien optimiert, welche über Maximum-Likelihood-Schätzung berechnet werden.

Als Nächstes betrachten wir das Problem der Berechnung von Maximum-Likelihood-
Schätzern in Situationen, in denen sowohl Daten aus einer Beobachtungsstudie als
auch Daten aus Interventionsexperimenten vorhanden sind. Aufbauend auf früheren
Arbeiten, die nur Beobachtungsstudien betrachten, entwickeln wir ein Blockkoor-
dinaten-Abstiegsverfahren, das auf Modelle anwendbar ist, die Rückkopplungsschlei-
fen enthalten können. Wir legen spezifische Bedingungen für einen Graphen oder
Interventionen fest, unter denen die Einzelschritte des resultierenden Algorithmus
einfache explizite Lösungen erlauben.

Eine wichtige Fragestellung in der graphischen Modellierung besteht darin, zu klären,
ob die graphische Struktur, die einem Modell zugrunde liegt, anhand der verfügbaren
Daten identifizierbar ist. Die bestehende Theorie zu diesem Thema liefert Äquivalenz-
ergebnisse sowie Analysen verschiedener Bedingungen, die eine eindeutige Identi-
fizierbarkeit sicherstellen. Wir tragen zu dieser Literatur bei, indem wir die Klasse
der graphischen Modelle mit homoskedastischen Fehlervarianzen in einer Verallge-
meinerung untersuchen, die Rückkopplungsschleifen ermöglicht. Wir geben eine Def-
inition der generischen Identifizierbarkeit (Unterscheidbarkeit) basierend auf einer
geometrischen Perspektive und entwickeln allgemeine graphische Kriterien, die unter
milden Bedingungen zertifizieren können, wann die Modelle, die durch zwei Graphen
gegeben sind, unterscheidbar sind. Wir präsentieren eine umfangreiche Rechenstudie,
die zeigt, dass nahezu alle einfachen gerichteten Graphen mit höchstens 6 Knoten
unter der Annahme homoskedastischer Fehlervarianzen generisch identifizierbar sind.
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Zusammenfassung

Schließlich schlagen wir eine Klasse von Modellen vor, welche die vollständige Homo-
skedastizität der Fehlervarianzen auf ein Setup der partiellen Homoskedastizität ab-
schwächt. In diesem Setup ist die Gleichheit der Fehlervarianzen nur innerhalb der
Blöcke einer Partition der betrachteten Zufallsvariablen angenommen. Für die Klasse
der gerichteten azyklischen Graphen erhalten wir eine vollständige Charakterisierung
der Modelläquivalenz unter dieser partiellen Homoskedastizität.
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Chapter 1

Introduction

A graphical model is a powerful framework for describing the statistical dependen-
cies between random variables. It can be used to model multivariate distributions
in various application areas. Directed acyclic graphical (DAG) models encode func-
tional relations between variables through a directed graph. The edge directions have
natural connection to causality, allowing them to represent causal models.

For the problem of linear Gaussian structural equation models (SEMs) with the as-
sociated DAGs, Markov equivalence provides an elegant characterization of equiva-
lent classes through conditional independence information [Spirtes et al., 2000, Pearl,
2009]. This characterization yields model identifiability results and also aids struc-
ture learning tasks. However, in certain applications like gene expression network,
there may exist feedback loops in the graph structure [Sachs et al., 2005]. This limi-
tation motivates the study of graphical models with feedback loops. The problem is
notoriously challenging, especially when latent variables are present [Evans, 2020]. In
this type of models, meaningful and concise identifiability results necessitate special
assumptions. An important condition is the presence of homoscedastic errors, i.e. all
random errors have equal variances [Peters and Bühlmann, 2014, Chen et al., 2019].

In this thesis, we present some advances in structure learning and parameter estima-
tion of linear SEMs, when the graphical models may contain cycles. Additionally, we
discuss the structural identifiability properties under the assumption of (partially)
homoscedastic errors.

A bow-free mixed graph is simple, meaning that there is at most one (bi)directed
between every pair of node [Améndola et al., 2020]. This type of model restricts
the presence of common unobserved parent variable (coufounders) for two observed
variables only in the absence of direct causal effects. We demonstrate that the simple
cyclic models have expected dimension, and analogous sufficient conditions for distri-
bution equivalence still hold when compared bow-free acyclic models that have been
studied in Nowzohour et al. [2017].

Residual Iterative Conditional Fitting (RICF) is an algorithm used to compute the
maximum likelihood estimation (MLE) of parameters in bow-free acyclic models
with observational data [Drton and Richardson, 2004]. Blockwise coordinate descent
(BCD) is an extension of RICF that also works for general mixed cyclic graphs [Dr-
ton et al., 2019b]. Building upon these algorithm, we develop a BCD-type algorithm
that can compute the MLE of parameters in general directed cyclic models with both
observational and interventional data.

1



Chapter 1 Introduction

Structural identifiability provides the theoretic foundation for well-defined graphical
models. The assumption of equal error variances, or homoscedastic errors, is re-
strictive but also really strong in distinguishing DAG models. The class of DAGs is
identifiable, indicating every DAG has a unique model and the size of every equiva-
lence class is 1 [Peters and Bühlmann, 2014, Chen et al., 2019]. We employ algebraic
matroids [Hollering and Sullivant, 2021] to investigate the structural identifiability
of directed cyclic graphs with homoscedastic errors. Distinguishing criteria are de-
veloped, and symbolic computation checks are performed. Furthermore, we extend
the homoscedastic errors assumption to ”groupwise homoscedastic errors” in DAG
models, where variables (nodes) are partitioned into several blocks, with each block
corresponding to a common error variance value. In this case, we derive an analogue
of classic Markov equivalence class theory and completed partially directed acyclic
graph (CPDAG) construction procedure.

2



Chapter 2

Preliminaries

2.1 Backgrounds

The main model we focus on in this thesis is the linear stuctural equation model,
which takes the following form. Let ε = (εi : i ∈ V ) be a vector of random errors and
X = (Xi : i ∈ V ) be a random vector satisfying the structural equation system:

X = ΛTX + ε, (2.1)

in which Λ = (λij) ∈ RV×V with the unknown coefficient λij for (i ̸= j) being the
direct effect of Xj on Xi. The error vector ε is assumed to have postive definite
covariance matrix Ω = (ωij) ∈ RV×V . When I − Λ is invertible, the equation system
has a unique solution X = (I −Λ)−T ε; here I is the identity matrix. The covariance
matrix of this solution X is

Var[X] = Σ = (I − Λ)−TΩ(I − Λ)−1. (2.2)

The linear structural equation model can be naturally represented by a graph. For
independent errors ε (i.e., Ω is diagonal), the linear SEM is associated to a directed
graph G = (V,D), where V is the set of nodes and D ⊆ V ×V is the edge set. Every
node in V represents a random variable. Elements in D are ordered pairs (i, j), i ̸= j,
also denoted by i → j, encoding the causal relationships between random variables.
If some errors are allowed to be dependent, the correlated node pairs are connected
by bidirected edges. The resulting graph is a mixed graph G′ = (V,D,B) that
can be interpreted as representing direct effects as well as latent confounding (some
latent variables have effects on the variables corresponding to the node pair joined
by a bidirected edge). As above the directed edge set D contains ordered pairs, and
elements in B are unordered pairs {i, j} representing bidirected edges.

Example 2.1. The linear SEM encoded by the graph in (a) is

X1 = λ21X2 + ε1,

X2 = ε2,

X3 = λ13X1 + λ23X2 + ε3,

X4 = λ34X3 + ε4.

3



Chapter 2 Preliminaries

1

2

3 4

(a)

1 3 4

(b)

Figure 2.1: A directed graph and the corresponding mixed graph with unobserved X2.

But when X2 is unobserved, we can define ε̃1 = λ21X2 + ε1 and ε̃3 = λ23X2 + ε3.
The new equation system becomes

X1 = ε̃1,

X3 = λ13X1 + ε̃3,

X4 = λ34X3 + ε4.

Notice that the new errors are not independent anymore: Cov[ε̃1, ε̃3] = λ21λ23Var[ε2].

In a mixed graph G = (V,D,B), if i → j ∈ D, we say that i is a parent of j and
j is a child of i. Introducing notation for the sets of parents or children, we denote
this also by i ∈ pa(j) and j ∈ ch(i). Similarly, the notation an(i) denotes the set of
ancestors of i, and de(i) denotes the set of descendants of i. For simplicity, we
adopt the convention that i /∈ an(i) and i ∈ de(i). If i↔ j ∈ B then i(j) is a neighbor
of j(i): i ∈ ne(j) and j ∈ ne(i). Writing ne(i) for the set of all neighbors of a node
i, it holds for directed graphs without bidirected edges that ne(i) = pa(i) ∪ ch(i).
When dealing with multiple graphs, we use subscripts to indicate the corresponding
set in each graph. For example, pa1(i) represents the parent set of node i in G1. In
all those above cases if there exist an edge between nodes i and j, we say that i and
j are adjacent.

A collider triple in the mixed graph G = (V,D,B) is a triple of nodes (i, j, k) in
which i, j and j, k are adjacent with j being a head on both edges. In other words,
the two edges form a path of the form i → j ← k, i ↔ j ← k, i → j ↔ k or
i ↔ j ↔ k. The middle node j is a collider. When the nodes i, k are not adjacent,
we say that the collider is unshielded, otherwise it is shielded. The skeleton of G
is the undirected graph obtained by replacing all edges with undirected edges.

In a directed graph G = (V,D), a path is an alternating sequence of nodes from V
and edges from D, such that each edge in the sequence is an edge between the nodes
that precede and succeed it. A path can contain a node more than once. Given a
fixed set S ⊆ V , two nodes i, j /∈ S are d-connected by S if G contains a path from
i to j that has all colliders in S and all non-colliders outside S. If it is not the case,
we say that i and j are d-separated by S, which is also written as i ⊥d j | S. A
trek is a path without collider triples, i.e., it can only take one of two forms:

iLl ← · · · ← iL0 ↔ iR0 → · · · → iRr ,

which is possible only in mixed graphs with bidirected edges, or

iLl ← · · · ← iL1 ← i0 → iR1 → · · · → iRr ,
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2.1 Backgrounds

where L and R superscripts correspond to left-hand side and right-hand side of the
trek. In the second case i0 is the top node and in both sides.

A directed graph is called strongly connected if for each node pair (i, j), there exist
a directed path from i to j and a directed path from j to i. A strongly connected
component of a directed graph G is a subgraph that is strongly connected, and no
additional edges or nodes can be added to the subgraph without breaking the strong
connectedness. The strongly connected component containing i in a directed graph
G is denoted by C(i, G). If there is no ambiguity with respect to the graph, it is also
denoted by C(i).

For Gaussian errors, the random vector X follows a multivariate Gaussian distri-
bution, which is uniquely determined by the covariance matrix, once it has been
centered. Every distribution in the model then corresponds to a covariance matrix,
Var[X]. We define the model as the set of covariance matrices can be generated from
covariance map (2.2), and hence require the matrix I −Λ to be invertible so that the
linear SEM is well-defined. We list some notations and definitions below, which work
for the general mixed graph setup.

Let RD be the set of real V × V matrices Λ = (λij) with support in D, i.e.,

RD := {Λ ∈ V × V : Λij = 0 if i→ j /∈ D}.

We also define RD
reg to be the subset of matrices Λ ∈ RD for which I −Λ is invertible.

Let PD be the cone of positive definite symmetric V ×V -matrices, and define PD(B)
to be the subcone with support over B, that is,

PD(B) =
{
Ω = (ωij) ∈ PD : ωij = 0 if i ̸= j and i↔ j /∈ B

}
.

Definition 2.2. The linear Gaussian model given by the mixed graph G = (V,D,B)
is the family of all multivariate normal distributions on RV with covariance matrix
in

MG =
{
(I − Λ)−TΩ(I − Λ)−1 : Λ ∈ RD

reg, Ω ∈ PD(B)
}
.

The covariance parametrization of the model is the map

ϕG : RD × PD(B) 7→ PD , (2.3)

(Λ,Ω) 7→ (I − Λ)−TΩ(I − Λ)−1.

A classical result known as the trek rule provides a combinatorial description of the
coordinates of ϕG (see, e.g., Theorem 4.1 in the review of Drton [2018]).

Theorem 2.3 (Trek rule). Let G = (V,E) be a DAG, and let Λ ∈ RE and ω ∈
(0,∞)V . For i, j ∈ V , let T (i, j) be the set of all treks between i and j. For a trek τ
with top node i0, we define the trek monomial

τ(Λ,ω) = ωi0

∏
k→l∈τ

λkl.

Then the covariance between Xi and Xj equals the sum of all trek monomials for treks
between i and j, i.e.,

ϕG(Λ,ω)ij =
∑

τ∈T (i,j)

τ(Λ,ω), i, j ∈ V.
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Chapter 2 Preliminaries
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Figure 2.2: Two simple mixed graphs.

The trek rule gives an explicit description of the entries in the covariance matrix of the
distribution. Another perspective is implicit: a conditional independence corresponds
to an algebraic constraint on the covariance matrix, as stated in the following theorem
(see [Drton, 2018, Section 10], [Richardson and Spirtes, 2002, Section 8]).

Theorem 2.4. Let G = (V,E) be a DAG. Let i, j be two distinct nodes, and let
S ⊆ V \ {i, j}.

(i) If X is a multivariate normal random vector with covariance matrix Σ, then
the conditional independence Xi⊥⊥Xj | XS holds if and only if det(ΣiS,jS) = 0.

(ii) The conditional independence constraint det(ΣiS,jS) = 0 holds for all covariance
matrices Σ ∈MG if and only if the d-separation i ⊥d j | S holds in G.

(iii) A matrix Σ ∈ PD is in MG if and only if det(ΣiS,jS) = 0 for all triples (i, j, S)
with i ⊥d j | S in G.

Analogous to the famous Markov equivalence theory for DAGs, different mixed graphs
can induce the same model. We use the general terminology “distributional equiv-
alence”, which means the covariance parametrization of two graphs give exact the
same region. This makes the model well-defined without structural identifiability is-
sue. Markov equivalence only requires the same conditional independence relations,
which is usually weaker but the same as distribution equivalence for DAGs.

Definition 2.5. Two mixed graphs G1 and G2 are distributionally equivalent if
MG1 =MG2.

2.2 Brief literature review

The research on structural equation models dates back to Wright’s path diagrams
[Wright, 1921, 1934], and Haavelmo’s simultaneous equations [Haavelmo, 1943]. Much
more recently, structural equation models are summarized into a general causal mod-
eling framework and related to formalization of causal effects of experimental inter-
ventions [Spirtes et al., 2000, Pearl, 2009].

A large amount of works focus on DAG models [Koller and Friedman, 2009, Lau-
ritzen, 1996, Maathuis et al., 2019], while the topic of feedback loops is much less
popular. The study of cyclic graphs started from conditional independence relations
and d-separations [Spirtes, 1995, Richardson, 1996b,a], which is a natural extension
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2.3 Organization of the Thesis

of Markov equivalence theory in DAGs. Recent progresses of this approach lie in the
assumption of strong dependence in cycles and the new concept of σ-seperation. But
the new separation rule is not applicable in Gaussian models; see, e.g., Bongers et al.
[2021], Forré and Mooij [2018], Mooij and Claassen [2020]. Algebraic methods can be
applied to graphical model analysis, for both DAGs and cyclic graphs. An overview
of algebraic methods and issues in linear Gaussian SEMs is presented in Drton [2018].
More results can be found in Sullivant [2018].

Structure learning from (observational) data is a fundamental problem in the area of
graphical models [Drton and Maathuis, 2017]. Most of structure learning algorithms
fall into the two catagory: score-based methods and constraint-based methods. A
score-based method assigns a score for each graph and search the graph with highest
score, which usually need a parameterized form of SEM; see, e.g., van de Geer and
Bühlmann [2013], Chickering [2002, 2003], Solus et al. [2021]. A constraint-based
method exploits conditional independence relations for learning the structure and
the needed independence tests can be either parametric or nonparametric; see, e.g.,
Rantanen et al. [2020], Hyttinen et al. [2014, 2012], Richardson [1996b], Forré and
Mooij [2018]. Constraint-based methods (independent tests) are more flexible, while
causal models with feedback loops or latent variables can generally not be character-
ized by conditional independence constraints alone [Drton et al., 2020, van Ommen
and Mooij, 2017]. There are also some hybrid methods, which combine score-based
and constraint-based methods by searching over a restricted space obtained from
conditional independence relations. Score-based method for structure learning of
bow-free acyclic graphs is proposed in Nowzohour et al. [2017]. Inevitably, there are
issues about identifiability, model equivalence and model dimension for cyclic graph-
ical models. The general equivalence properties and even determining the model
dimension constitute problems that are not fully understood.

2.3 Organization of the Thesis

The reminder of this thesis is structured as follows. Chapter 3 shows that simple
cyclic mixed models are of expected dimension. IT also generalizes the sufficient
conditions for distributional equivalence that were given for bow-free acyclic mixed
models in Nowzohour et al. [2017]. Chapter 4 discusses a block-coordinate descent
scheme for computing the MLE in linear structural equation models when there are
no hidden variables but one has access to a combination of multiple observational
and interventional environments. The chapter exhibit formulas for block updates in
tractable special cases. Chapter 5 is about structural identifibility of simple cyclic
models under homoscedastic error assumption. Graphical criteria for distinguishing
models are provided, and a computational study develops additional conjectures.
Finally, Chapter 6 describes the DAG model equivalence results under groupwise
homoscedastic errors.
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Chapter 3

Structure Learning for Simple Mixed
Cyclic Graphs

In structural equation modeling, mixed graphs are commonly used to represent de-
pendencies induced by hidden confounders [Evans, 2019]. Here, a mixed graph is a
graph that may feature two types of edges: directed edges and bidirected edges. The
bidirected edges are included to indicate that errors in the structural equations may
be correlated (due to hidden confounding), as we detailed in Chapter 2.

This chapter is based on a publication in the Proceedings of the Conference on Un-
certainty in Artificial Intelligence (UAI) [Améndola et al., 2020]. This publication
focuses on mixed graphs that are simple, i.e., they contain at most one edge between
any node pair. This property has also been termed ‘bow-free’ in related literature.

The chapter presents a dimension theorem and a sufficient condition for distributional
equivalence of simple mixed graphs. Furthermore, a structure learning method based
on a greedy search with an extended Bayesian information criterion is proposed. The
dimension theorem and the greedy search method were my primary contributions to
the mentioned UAI paper.

3.1 Models defined by simple mixed graphs

Taking up the definitions from Chapter 2, the model is given by the covariance pa-
rameterization (Definition 2.2). The dimension of the model, i.e., the set of its covari-
ance matrices, equals the maximal rank of the Jacobian of the parametrization map
[Geiger et al., 2001]. This maximal rank can be at most the number of free parame-
ters |V |+ |D|+ |B|. Tight equality with this parameter count is not always achieved
for general mixed graphs, but as we show now simple mixed graphs are special in this
respect. This is the case even when the mixed graph contains directed cycles.

Let JG be the Jacobian of the covariance parametrization ϕG. The map g : (Λ,Σ) 7→
(I − Λ)TΣ(I − Λ) on RD

reg × PD computes Ω from (Λ,Σ). A positive definite matrix

Σ ∈ MG if and only if ∃(Λ,Ω) ∈ RD
reg × PD(B) s.t. Σ = ϕG(Λ,Ω), which is again

equivalent to g(Λ,Σ) = Ω. We can rewrite the latter conditions equivalently as

gij(Λ,Σ) =
[
(I − Λ)TΣ(I − Λ)

]
ij
= 0,

∀{i, j} ∈ N := {{i, j} : i, j ∈ V, i ̸= j, {i, j} /∈ B}.
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3.1 Models defined by simple mixed graphs

Consider now the N×D Jacobian matrix J(Λ,Σ) whose entries are the partial deriva-
tives

J(Λ,Σ){i,j},(k,l) =
∂gij(Λ,Σ)

∂λkl
(3.1)

with {i, j} ∈ N and k → l ∈ D. For i ̸= j, gij is multilinear in Λ and

∂gij(Λ,Σ)

∂λkl
=


−[(I − Λ)TΣ]jk if l = i,

−[(I − Λ)TΣ]ik if l = j,

0 if l /∈ {i, j}.
(3.2)

The following lemma relates the rank of JG and the rank of J.

Lemma 3.1. For Λ ∈ RD
reg, Ω ∈ PD(B), let Σ = ϕG(Λ,Ω). Then the rank of the

Jacobian JG(Λ,Ω) is equal to

rank (J (Λ,Σ)) + |B|+ |V |.

Proof. On RD
reg × PD(B), define the map

h : (Λ,Ω) 7→ (Λ, ϕG(Λ,Ω)).

Composing with g we have

(g ◦ h)(Λ,Ω) = Ω. (3.3)

Differentiating this equation with respect to the free entries (i.e., nonzero) in Λ and
Ω gives

∂

∂Λ
g(Λ,Σ)

∣∣∣
Σ=ϕG(Λ,Ω)

+
∂

∂Σ
g(Λ,Σ)

∣∣∣
Σ=ϕG(Λ,Ω)

∂

∂Λ
ϕG(Λ,Ω) = O, (3.4)

∂

∂Σ
g(Λ,Σ)

∣∣∣
Σ=ϕG(Λ,Ω)

∂

∂Ω
ϕG(Λ,Ω) =

(
O

I|B|+|V |

)
, (3.5)

where the rows are indexed by unordered pairs {i, j}. In the partitioning of the rows,
the pairs in N are listed first.

The entry-wise equation (3.2) can be written as

∂

∂Λ
g(Λ,Σ) =

(
J(Λ,Σ)
O

)
with the same ordering of rows.

From (3.4) and (3.5) we can obtain that

∂

∂Σ
g(Λ,Σ)|Σ=ϕG(Λ,Ω) · JG(Λ,Ω) =

(
−J(Λ,Σ)|Σ=ϕ(Λ,Ω) O

O I|B|+|V |

)
, (3.6)

with rows and columns partitioned as (N,B ∪ V ) and (D,B ∪ V ), respectively. We
restrict g by fixing Λ ∈ RD

reg gives the bijection Σ 7→ (I−Λ)TΣ(I−Λ), consequently the

matrix ∂g
∂Σ is invertible. And hence the rank of JG equals the rank of the partitioned

matrix on the right-hand side, which is rank (J (Λ,Σ)) + |B|+ |V |.
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Chapter 3 Structure Learning for Simple Mixed Cyclic Graphs

The maximal rank of JG can be achieved at (Λ,Ω) = (O, I). Indeed, we have the
following lemma which links the Jacobian rank and the graph property.

Lemma 3.2. The Jacobian JG(O, I) has full column rank |V |+ |B|+ |D| if and only
if the mixed graph G is simple.

Proof. It suffices to show that the matrix J(O, I) defined in (3.2) has full column
rank |D| if and only if G is simple.

First we suppose that G is simple, in this case k → l ∈ D implies k ↔ l ∈ N . When
(Λ,Ω) = (O, I) we have Σ = ϕG(O, I) = I and (I − Λ)TΣ = I. From (3.2) we know
that the only nonzero entry in column indexed by (k, l) is

J(O, I){k,l},(k,l) = −1.

Rearranging the row indices such that all {k, l} pairs of k → l ∈ D first, the matrix
form becomes

J(O, I) =

(
−ID
O

)
,

which obviously has rank |D|.

If G is not simple, we can assume that k and l are connected by two edges. Without
loss of generality, we further assume that k → l ∈ D. If k ↔ l ∈ B, then {k, l} /∈ N
and the column of J(O, I) indexed by (k, l) is zero (the only nonzero entry {k, l}, (k, l)
is missing), and rank(J(O, I)) < |D|. Otherwise k ↔ l /∈ B and l → k ∈ D, the
two columns of J(O, I) indexed by (k, l) and (l, k) are identical and we also have
rank(J(O, I)) < |D|.

We arrive at the main result of this section, which clarifies that models given by
simple mixed graphs are of expected dimension.

Theorem 3.3. If the graph G is simple, then

dim(MG) = |V |+ |D|+ |B|.

Proof. Directly from Lemma 3.2.

3.2 Sufficient Conditions for Distributional Equivalence

In this section, we show that the sufficient condition for distributional equivalence
from Nowzohour et al. [2017] admits an extension to our setting of possibly cyclic
graphs. To this end, we define MG to be the closure of MG (in Euclidean topology).
Two mixed graphs G1 and G2 are then distributionally equivalent up to closure if
MG1 =MG2 .

Theorem 3.4. Let G1 and G2 be two simple mixed graphs with same skeleton and
collider triples. Then G1 and G2 are distributionally equivalent up to closure.
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Note that the likelihood functions of two models that are equal up to closure have
the same supremum.

While our proof of Theorem 3.4 (developed in §3.2.1-3.2.2) concludes equality up to
closure, we do not know any examples where the models are not exactly equal. The
condition in Theorem 3.4 is also far from being necessary, e.g., it does not include
the well-known characterization of Markov equivalence for directed acyclic graphs
(DAGs) as a special case. However, the theorem is useful to assert equivalence in our
simulations (Section 3.4.1). We are also not aware of better (tractable) conditions in
the literature. Indeed, distributional equivalence for cyclic mixed graphs is a subtle
problem as the following example shows.

Example 3.5. Let G1 and G2 be the two simple mixed graphs displayed in Fig-
ure 2.2(a) and (b), respectively. By Theorem 3.3, both MG1 and MG2 are full-
dimensional (i.e., 6-dimensional) subsets of the cone of positive definite 3×3 matrices.
Graph G2 is acyclic, and MG2 is easily seen to be equal to PD. However, as observed
in Drton et al. [2019a], the set MG1 is a strict subset of MG2 = PD.

3.2.1 Useful Lemmas

Let G1 = (V,D1, B1) and G2 = (V,D2, B2) be two mixed graphs. Let (Λ1,Ω1) ∈
RD1
reg × PD(B1) be parameters for G1. The essence of the proof of Theorem 3.4

is a strategy to find parameters (Λ2,Ω2) ∈ RD2
reg × PD(B2) such that ϕG2(Λ2,Ω2) =

ϕG1(Λ1,Ω1). The key steps of the construction are a reduction to correlation matrices
and an edge-relabeling considered in the acyclic case by Nowzohour et al. [2017].
However, the cyclic case brings about new subtleties in this approach.

Let R : PD → PD be the standardization map that takes covariance matrices to
correlation matrices via R(Σ)ij = Σij√

ΣiiΣjj
.

Lemma 3.6. Let G = (V,D,B) be simple and Σ ∈ PD. Then

Σ ∈MG if and only if R(Σ) ∈MG.

Proof. We show one direction as the converse can be verified similarly. If Σ ∈ MG

then
Σ = ϕG(Λ,Ω) = (I − Λ)−TΩ(I − Λ)−1.

for some matrices Λ ∈ RD
reg ,Ω ∈ PD(B). Setting ∆ diagonal with entries ∆ii = Σ

− 1
2

ii

it holds that

R(Σ) = ∆Σ∆

= (∆−1 −∆−1Λ)−TΩ(∆−1 −∆−1Λ)−1

= ϕG(Λ̃, Ω̃)

with Λ̃ = ∆−1Λ∆ ∈ RD
reg , Ω̃ = ∆Ω∆ ∈ PD(B).

Throughout the rest of this section, let G1 = (V,D1, B1) and G2 = (V,D2, B2) be
two mixed graphs. If the graphs have the same skeleton, then there is a natural way
to copy the edge labels from one graph to the other. To describe the procedure, we
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Chapter 3 Structure Learning for Simple Mixed Cyclic Graphs

decompose an error covariance matrix, Ω, into its diagonal and off-diagonal parts,
denoted Ωd and Ωod, respectively. So, Ω = Ωd +Ωod.

Definition 3.7. Let G1 and G2 be simple mixed graphs with the same skeleton. Given
a choice (Λ1,Ω1) ∈ RD1

reg × PD(B1), the induced edge labeling on G2 is the pair of

matrices (Λ2,Ω
od
2 ) obtained as

(Λ2)ij =


(Λ1)ij if i→ j ∈ G1, i→ j ∈ G2,

(Λ1)ji if i← j ∈ G1, i→ j ∈ G2,

(Ω1)ij if i↔ j ∈ G1, i→ j ∈ G2,

0 if i→ j /∈ G2,

(Ωod
2 )ij =


(Λ1)ij if i→ j ∈ G1, i↔ j ∈ G2,

(Λ1)ji if i← j ∈ G1, i↔ j ∈ G2,

(Ω1)ij if i↔ j ∈ G1, i↔ j ∈ G2,

0 if i↔ j /∈ G2 or i = j.

For the construction from Definition 3.7, it holds that Λ2 ∈ RD2
reg. Moreover, Ωod

2 can
be turned into a matrix in PD(B2) by addition of a diagonal matrix.

Lemma 3.8. Let G1 and G2 be simple mixed graphs with same skeleton and collider
triples, and let (Λi,Ωi) ∈ RDi × PD(Bi) for i = 1, 2. If (Λ2,Ω

od
2 ) equals the edge

labeling induced by (Λ1,Ω1) then

det(I − Λ1) = det(I − Λ2).

In particular, if Λ1 ∈ RD1
reg then Λ2 ∈ RD2

reg.

Proof. The determinants depend on the values of cycle products [Drton et al., 2019b,
Lemma 1]. Let SV be the group of permutations of the nodes in V . For σ ∈ SV , let
V (σ) be the set of nodes contained in a nontrivial cycle of σ. Then

det(I − Λ) =
∑

σ∈SV (G)

(−1)sgn(σ)
∏

i∈V (σ)

Λσ(i),i (3.7)

where SV (G) is the subset of permutations such that i = σ(i) or i→ σ(i) ∈ D for all
i ∈ V . We remark that even though the lemma in Drton et al. [2019b] is stated for
Λ ∈ RD

reg, the proof relies on Laplace expansion of the determinant which holds even
if I − Λ is not invertible.

Now, since collider triples are preserved, an edge that is part of a directed cycle of G1

cannot be bidirected in G2. Furthermore, if G1 contains a cycle which has a directed
edge that is reversed in G2, then the cycle must be chordless in G1 (that is, every node
in the cycle can have only one child in the cycle) and must be fully reversed in G2.
Since the labels agree, the cycle products in (3.7) remain unchanged and therefore
det(I − Λ1) = det(I − Λ2).
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3.2.2 Constructing Covariance Matrices

The key to completing the proof of Theorem 3.4 is to show that a correlation matrix
obtained from a generic choice of parameters (Λ1,Ω1) ∈ RD1

reg × PD(B1) also belongs
to MG2 . Let ◦ denote the Hadamard (entrywise) product of matrices, and define
H : RD

reg → RV×V by

H(Λ) := (I − Λ)−1 ◦ (I − Λ)−1.

We denote the spectral radius of a matrix Λ by ρ(Λ).

Lemma 3.9. Let G1, G2 be simple mixed graphs with same skeleton and collider
triples. Let (Λ1,Ω1) ∈ RD1

reg × PD(B1) such that Σ = ϕG1(Λ1,Ω1) ∈ MG1 is a corre-

lation matrix and consider the induced edge labeling (Λ2,Ω
od
2 ). If

(i) ρ(Λj) < 1 for j = 1, 2, and

(ii) det(H(Λ2)) ̸= 0,

then there exists a unique diagonal matrix Ωd
2 such that with Ω2 = Ωd

2 + Ωod
2 it holds

that (Λ2,Ω2) ∈ RD2
reg × PD(B2) and Σ = ϕG2(Λ2,Ω2) ∈MG2.

Proof. By Lemma 3.8, we have indeed that Λ2 ∈ RD2
reg. We need to construct Ωd

2 such
that

ϕG2(Λ2,Ω2) = (I − Λ2)
−TΩd

2(I − Λ2)
−1 + (I − Λ2)

−TΩod
2 (I − Λ2)

−1 = Σ.

Since Σii = 1, this requires for all i ∈ V that

((I − Λ2)
−TΩd

2(I − Λ2)
−1)ii = 1− ((I − Λ2)

−TΩod
2 (I − Λ2)

−1)ii.

Solving for the diagonal of Ωd
2 is equivalent (see [Horn and Johnson, 1991, Lemma

5.1.3] ) to the linear system Ax = b where

A = H(Λ2) = (I − Λ2)
−1 ◦ (I − Λ2)

−1

and the coordinates of the vector b are

bi = 1− ((I − Λ2)
−TΩod

2 (I − Λ2)
−1)ii.

By hypothesis, det(H(Λ2)) ̸= 0 and the system has a unique solution. It thus remains
to show that ϕG2(Λ2,Ω2) also matches Σ in all off-diagonal entries.

In general, if ϕ(Λ,Ω) is a correlation matrix over a mixed graph G and ρ(Λ) < 1, by
[Nowzohour et al., 2017, Theorem 4], the entries for i ̸= j are given by

ϕG(Λ,Ω)ij =
∑
τ∈Sij

∏
s→t∈τ

Λts

∏
s↔t∈τ

Ωst, (3.8)

where Sij
G is the set of simple treks from i to j. By assumption, ρ(Λ1), ρ(Λ2) < 1,

and we may apply the representation in (3.8) to G1 and G2. In general, Sij
G1
̸= Sij

G2
.

However, the fact that the graphs have the same skeleton and share collider triples
implies that when replacing (Λ,Ω) by (Λj ,Ωj), j = 1, 2, in (3.8), the induced edge
labeling guarantees that the right hand sides of the expression are equal. Hence,

ϕG1(Λ1,Ω1) = Σ = ϕG2(Λ2,Ω2)

as was the claim.
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(Λ1,Ω1)
R̃ //

ϕG1

''

(Λ̃1, Ω̃1,∆)
H // (Λ̃2, Ω̃2,∆)

R̃−1

��
(Λ2,Ω2)

ϕG2

��
Σ1 = Σ2

Figure 3.1: Commutative diagram illustrating two ways of obtaining a matrix Σ ∈ MG1 ∩
MG2 . One is the parametrization ϕG1 , while the other is a composition of maps
(including the map H defined via Lemma 3.9), that we denote Ψ.

With these preparations in place, we may complete the proof of the main result of
this section.

Proof of Theorem 3.4. First, observe that the covariance parametrization

ϕG1 : RD1 × PD(B1)→MG1 ⊆ PD

is a rational map. Next, consider the algebraic map

Ψ : U ⊂ RD1 × PD(B1)→MG2 ⊆ PD

defined as follows. First, apply the standardization map on the parameter (Λ1,Ω1)
to obtain (Λ̃1, Ω̃1,∆), as in the proof of Lemma 3.6. We denote this map by R̃. As
(Λ̃1, Ω̃1) define a correlation matrix we may obtain (Λ̃2, Ω̃2) from the procedure in
Lemma 3.9, for representation of the same correlation matrix. Finally, destandardize
(Λ̃2, Ω̃2) with the matrix ∆ from the standardization map, and apply ϕG2 .

Note that the map Ψ is well-defined for input that satisfies the two conditions in
Lemma 3.9. This domain includes an open subset U ⊂ RD1 × PD(B1). This subset
is nonempty because (0, I) ∈ U . The final application of ϕG2 to (Λ2,Ω2) gives a
matrix in MG2 , which by construction and Lemma 3.9 coincides with ϕG1(Λ1,Ω1).
The diagram in Figure 3.1 illustrates the situation.

The map Ψ is a composition of a rational map with algebraic maps that involve
radicals (i.e., square roots in the standardization R). Since Ψ coincides with the
rational map ϕG1 on the open set U , they must be equal outside of an algebraic
hypersurface (i.e., the zero set of a multivariate polynomial). This exceptional set has
Lebesgue measure zero (see, e.g., the lemma in Okamoto [1973]). Covariance matrices
in MG1 that are given by parameters (Λ1,Ω1) outside the exceptional set are also in
MG2 . We may conclude that MG1 ⊆ MG2 because the elements of the exceptional
set are limits of sequences off the exceptional set. By symmetry, MG1 = MG2 as
claimed.

3.3 Greedy Search

Since we know the exact dimension of models given by simple mixed graphs, we
can apply model selection criteria that balance model complexity (dimension) and

14



3.4 Numerical Experiments

model fit. We assign a score to each graph and want to find the graph with maximal
score. Given the exponentially-growing large number of possible graphs, we follow
prior work and consider a greedy search scheme, which starts from some random, or
possibly also the empty graph and selects the DAG with highest score in the local
neighborhood at each step. The procedure stops when local maximum score or a
fixed maximum number of iterations is reached. To alleviate issues of local optima,
we perform the greedy search multiple times starting from different initial graphs.
The neighborhood of a graph G is defined to be all simple mixed graphs that can
be obtained from G by one edge addition or one edge deletion, or one edge reversal
[Nowzohour et al., 2017].

We denote the data matrix byX ∈ Rp×n, in which each row represents one observation
and is centered. Let S = XXT /n be the sample covariance matrix. The Gaussian
log-likelihood function is

ℓ(Σ;S) = −n
2

[
log det(2πΣ) + tr(Σ−1S)

]
. (3.9)

The score of a graph G takes the form

s(G) =
1

n

(
max
Σ∈MG

ℓ(Σ;S)− penalty(p, k, n)

)
, (3.10)

where p = |V | and k = |D|+ |B| is the number of edges. To compute the maximum
log-likelihood in (3.10) we apply the block coordinate-descent algorithm from Drton
et al. [2019b]. We will discuss an extension of the algorithm in next chapter. As
for the penalty function, the standard Bayesian information criterion (BIC) takes
penalty(p, k, n) = 1

2(p+ k) log n, where p+ k is the model dimension. The extended
Bayesian information criterion (eBIC) [Chen and Chen, 2008, Foygel and Drton, 2010]
is induced from a prior distribution over graphs under which the number of edges is
uniformly distributed. In our setup the penalty becomes

penalty(p, k, n) = 1
2(p+ k) log(n) + log(p2k3k), (3.11)

where the last term reflects that there are
(p(p+1)/2

k

)
3k ∼ p2k3k simple mixed graphs

with k edges. This penalty tends to select sparser graph than than standard BIC
penalty.

We remark that it would be desirable to additionally account for distributional equiv-
alence and consider priors over equivalence classes of graphs. However, at this point,
we do not have enough theoretical insights into distributional equivalence to make
such an approach practical.

3.4 Numerical Experiments

Extending the work of Nowzohour et al. [2017] and Drton et al. [2019b], we implement
the proposed greedy search scheme in R [R Core Team, 2020]. For illustration we
apply the algorithm to simulated data and the well-known Sachs protein expression
data [Sachs et al., 2005].
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Chapter 3 Structure Learning for Simple Mixed Cyclic Graphs

3.4.1 Simulation Studies

We consider graphs with p ∈ {5, 6} nodes. For each setup, 100 simple mixed graphs
are drawn uniformly at random by MCMC algorithm [Nowzohour et al., 2017]. The
parameters Λij ’s and Ωij ’s are sampled uniformly from [−0.9,−0.5] ∪ [0.5, 0.9]. The
diagonal entries of Ω are set as the sum of the absolute values of the entries in the
row in Ω plus an independent χ2

1 random draw, such that Ω is diagonal dominant
and hence postive definite. For each graph, we generate three Gaussian data sets of
size n ∈ {102, 103, 104}. For each realization of the greedy search, we restart with
300 random graphs and also compare the result of starting from the true graph.
We consider both standard BIC and extended BIC score. The maximum number of
iterations of greedy search is 104.

BIC n Start Dim Skel Skel & Coll SHD*

BIC

102
R 0.39 0.13 0.07 3.79
TG 0.8 0.8 0.25 1.15

103
R 0.63 0.43 0.26 2.44
TG 0.88 0.88 0.53 0.63

104
R 0.76 0.59 0.45 2.29
TG 0.92 0.92 0.74 0.34

eBIC

102
R 0.24 0.14 0.1 3.55
TG 0.92 0.92 0.36 1.03

103
R 0.48 0.34 0.21 2.78
TG 0.9 0.9 0.52 0.65

104
R 0.71 0.61 0.38 2.02
TG 0.93 0.93 0.71 0.42

Table 3.1: Proportion of estimated graphs that share the dimension (Dim), skeleton (Skel)
and both skeleton and set of collider triples (Skel & Coll) with the true graph, and
minimal structural hamming distance (SHD*) averaged over simulations. Esti-
mates use BIC with standard (1) and increased penalty (2), and search initialized
at random (R) or at the true graph (TG).

Table 3.1 shows the frequencies of obtaining a model of correct dimension, correct
graph skeleton, and both correct collider triples and skeleton when p = 5. The fre-
quency of having the same dimension gives an upper bound of the frequency of getting
equivalent model, while the frequency of having the same skeleton and collider triples
gives a lower bound. According to the tables, the standard BIC slightly outperforms
the extended BIC when p ∈ {5, 6}. Indeed, for small p’s like these the graphs are not
really sparse.

We also record the structural hamming distance (SHD), which counts the number
of edge addition, edge deletion and edge reversal needed to transfrom one graph to
another. Here the SHD* is the minimum SHD over pairs (G1, G2) such that G1 has
the same skeleton and collider triples as G1 and G2 has the same skeleton and collider
triples as G2. We actually apply the sufficeint condition in Theorem 3.4 and obtain
an upper bound of the minimum SHD between two equivalence classes.

Further, in Table 3.2 we present the difference between the dimensions of the true
graph and of the estimated graph, with standard BIC score.
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3.4 Numerical Experiments

n Start Dim(EST) - Dim(TG)

-3 -2 -1 0 1 2

102
R 5 14 35 39 7 0
TG 0 0 0 80 20 0

103
R 1 3 25 63 8 0
TG 0 0 0 88 12 0

104
R 0 2 14 76 8 0
TG 0 0 0 97 7 1

Table 3.2: Absolute frequency distribution of the difference between the dimension of the
true graph (TG) and the dimension of the estimated graph (EST) in 100 simula-
tions for p=5 and BIC with standard penalty.

3.4.2 Protein Expression Data

We apply our procedure to well-known protein expression data, namely, a collection
of 14 data sets on expression of p = 11 proteins in human T-cells [Sachs et al., 2005].
Each data set is obtained under different experimental conditions (interventions),
and the sample sizes range from 727 to 907. Figure 2 in Sachs et al. [2005] shows
the conventionally accepted signaling molecule interactions. There are feedback loops
and hidden variables.

To apply our linear Gaussian model to the data with unknown (very likely non-
Gaussian) distribution, we consider a simple extension that accounts for marginal non-
Gaussianity: The nonparanormal / Gaussian copula models of Liu et al. [2012], Harris
and Drton [2013]. The main point is to replace the random vector X = (X1, . . . , Xp)
by the transformed version f(X) = (f1(X1), . . . , fp(Xp)), where each fi is a mono-
tone univariate function and f(X) is multivariate Gaussian. The linear structural
equations then model the relations among standardized versions of fi(Xi)’s. The
bias-corrected Kendall’s tau correlation matrix sin(π2 τ̂ij) is a consistent approxima-
tion of the correlation matrix of f(X), where τ̂ij is Kendall’s τ for the pair (Xi, Xj)
[Harris and Drton, 2013]. The standardization projects the original covariance ma-

trix space of p(p+1)
2 dimension to the p(p−1)

2 -dimensional correlation matrix space. As

long as the graph has no more than p(p−3)
2 edges, the projection keeps the expected

dimension.

We perform the greedy search on each dataset with 100 restarts from random graphs
and choose the extended BIC score. Table 3.3 gives the counts of total number of
edges, directed edges and bidirected edges among the 14 estimated graphs. Four of
the 14 graphs have a directed cycle: the graphs for datasets 3, 6, 7 each contain a
3-cycle and that of dataset 4 contains a 4-cycle.

Type of edges Min Median Max

All 10 13 13
Directed 2 8 11
Bidirected 2 4.5 8

Table 3.3: Summary statistics on the number of edges in the estimated graphs for the 14
protein expression datasets.
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Figure 3.2: Estimated graphs corresponding to the case of minimum number of edges (10
edges, dataset 1) and maximum number of edges (13 edges, dataset 6).
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Figure 3.3: Edges appearing in at least 9 (a) and 13 (b) skeletons from the estimated graphs.

We display two of the selected graphs in Figure 3.2, one with minimum (dataset 1) and
one with maximum (dataset 6) number of edges, the latter also displaying a 3-cycle.
Although further work is needed to fully determine possible equivalences, there is no
obvious reason (e.g., by Theorem 3.4) for a distributionally equivalent graph without
a cycle to exist. We conjecture that this is indeed not the case. Considering all 14
graph estimates together it is reassuring to observe that some structure is shared.
Figure 3.3 shows the (undirected) edges that appear in all/at least 11 of the skeletons
of the estimated graphs.

Our selected graphs show good agreement with regulatory relationships described in
Sachs et al. [2005], e.g., the interplay PLCG-PIP2-PIP3 appears in at least 12 of
the inferred graphs; the connections PKC-P38-PJNK, P44/42 (named ERK in Sachs
et al. [2005]) and PKA-PAKTS473 (named AKT in Sachs et al. [2005]) are in all 14
graphs. Our results suggest the possibility of feedback loops in the regulatory network
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Figure 3.4: Curves of scores versus the time (seconds) in 300 random restarts greedy search
for dataset 1 and dataset 6.

(e.g., PKC-P38-PJNK). Moreover, three expected relationships that are well-reported
from the field-related literature emerge in our work but were undetected in Sachs et al.
[2005].

Finally, in order to illustrate the behavior of the greedy search itself we focus again
on datasets 1 and 6. Figure 3.4 shows the respective search paths in terms of the
score achieved at each iteration. While local optima are possible, we observe that
most search paths end with a score near the overall maximum.

3.5 Discussion

We considered structure learning for linear causal models with Gaussian errors that
may exhibit feedback loops and correlation induced by latent variables. In order to
gain tractability in this difficult problem, we restricted our attention to simple mixed
graphs. Such graphs have the favorable property of always inducing a model whose
dimension is as one expects from counting parameters. This property allows one
to form meaningful model selection scores that we deployed in greedy algorithms.
While a search over simple mixed graphs remains challenging, computationally and
statistically, our experiments suggest that useful information can be learned from
greedy search methods. This generalizes similar conclusions for acyclic simple graphs
[Nowzohour et al., 2017].

We also showed that an existing sufficient condition for distributional equivalence
admits a natural generalization from acyclic to cyclic simple mixed graphs. However,
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Chapter 3 Structure Learning for Simple Mixed Cyclic Graphs

the condition is very restrictive. It would be important to find more broadly applicable
conditions for distributional equivalence.
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Chapter 4

BCD Algorithm for Interventional Data in
Directed Graphical Models

In Chapter 3, we use a block-coordinate descent (BCD) algorithm of Drton et al.
[2019b] to compute the maximum likelihood estimates (MLE) of the parameters of a
linear structural equation model given by a mixed graph. The algorithm works for a
single dataset of observational data, but cannot handle the combination of different
experimental (interventional) setups. It is of great interest to extend the algorithm
to deal with both observational and interventional data. When considering such an
extension here, we will restrict ourselves to directed cyclic graphs without bidirected
edges.

Our starting point is a directed graph G defining a linear structural equation model.
We are then interested in data collected under different interventions. The type of
interventions we consider are “hard” interventions that fix the values of the inter-
vened variables in a randomized fashion so that they follow a controlled probabil-
ity distribution Pearl [2009], Spirtes et al. [2000]. Throughout this chapter, we use
I ⊆ [V ] to denote the intervention target in one interventional environment—in other
words, the set I indexes the intervened variables. Given an intervention target I, the
manipulated graph GI is obtained by deleting from G all edges pointing to nodes
in I, which represent the structure of the SEM after intervention. The collection
I ⊂ 2V is the family of intervention targets Ik’s across all the different environments
for which data is available. To distinguish from the entry indices in data matrices,
we use (k)-superscripts to specify data from different interventional environments:

Y (k) ∈ RV×n(k)
is the data matrix with intervention target Ik, in which each column

is one sample and n(k) is the sample size.

The following example provides an illustration of the intervention and the manipu-
lated graph under the intervention.

Example 4.1. For the graph G in Figure 4.1(a), the linear SEM in the observational
environment is

X1 = ε1,

X2 = λ12X1 + λ42X4 + ε2,

X3 = λ23X2 + ε3,

X4 = λ14X1 + λ34X3 + ε4,

where (ε1, ε2, ε3, ε4) ∼ N4(0,diag(ω11, ω22, ω33, ω44)).

21



Chapter 4 BCD Algorithm for Interventional Data in Directed Graphical Models
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Figure 4.1: Original graph, and manipulated graph with intervention target I = {2}.

When we intervene on variable X2, i.e., the intervention target is I = {2}, the
manipulated linear SEM becomes

X1 = ε1,

X2 = ε′2,

X3 = λ23X2 + ε3,

X4 = λ14X1 + λ34X3 + ε4,

with (ε1, ε3, ε4) ∼ N3(0,diag(ω11, ω33, ω44)) and ε′2 from (known or unknonw) inter-
vention distribution. The manipulated graph is displayed in Figure 4.1(b).

4.1 Optimization Problems for Gaussian Errors

Suppose that we are given a data matrix X ∈ Rp×n that holds in its columns n
vector-valued observations from a single environment corresponding to the original
unmanipulated graph G with parameters (Λ,Ω). With Gaussian errors, the log-
likelihood function takes the form

ℓG,X(Ω,Λ) =− log det(Ω) + log det(I − Λ)2 − tr
{
(I − Λ)Ω−1(I − Λ)TS

}
,

where S = XXT /n is the sample covariance matrix; recall (3.9).

To find the critical point(s), we can take derivatives and obtain the likelihood equa-
tions, see Proposition 1 in Drton et al. [2019b]. However, generally, the resulting
likelihood equations have a high algebraic degree and a direct solution may be dif-
ficult. Following the approach taken in Drton and Richardson [2004], Drton et al.
[2019b], we instead use a block-coordinate descent method and decompose the original
problem into partial subproblems of lower degrees that are solved iteratively.

We focus on estimating Λ and Ω with observational and interventional data. (The
observational case corresponds to intervention target ∅.) Suppose that there are K
datasets with different interventions I = {I1, . . . , IK} and sample sizes {n(1), . . . , n(k)}.
A simple approach to estimation would be to run the original BCD algorithm on each
dataset and aggregate the K MLEs by computing the weighted average as the final
estimate. The average is only taken over those environments, in which the considered
node is not intervened upon, i.e., the considered edges are present and the error vari-
ance associated to the node is unchanged. A natural choice for the weighting scheme
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4.1 Optimization Problems for Gaussian Errors

is to assign weights proportional to the sample sizes. If the linear SEM is recursive,
i.e., the associated graph is a directed acyclic graph (DAG), then the log-likelihood
has the same formula in each environment, making this the optimal weighting scheme.

While averaging is easily done by applying existing software for optimization sepa-
rately in each environment, a statistically better approach is to combine all available
data into one stacked data matrix and estimate all parameters based on a likelihood
function for the combined data. When considering DAGs, this amounts to running
one regression for each node with all the data stacked together, as studied in Hauser
and Bühlmann [2015]. Nevertheless, the task becomes challenging for graphs with
feedback loops, as various interventions may yield diverse strongly connected compo-
nent structures, and the log-likelihood function may exhibit varying forms. In this
chapter, we study this challenge in computing the MLE from the stacked data in a
BCD-type scheme with respect to each node.

For a general directed graph representing a linear SEM, different interventional en-
vironments correspond to different parameter matrices. Each manipulated graph
is a subgraph of the original graph, and the coefficient matrix Λ(k) is obtained by
masking some off-diagonal entries in Λ with zeroes. Recall Example 4.1, where the
coefficients λ12 and λ42 become zero under the intervention {2}. We assume that

the data X(k) ∈ Rp×n(k)
from each interventional environment is centered (with mean

zero in each row). The log-likelihood of a single interventional dataset k is then the
following function of (Ω(k),Λ(k)):

ℓG,X(Λ(k),Ω(k)) =− log det(Ω(k))− log det(I − Λ(k))2

− tr
{
(I − Λ(k))(Ω(k))−1(I − Λ(k))TS(k)

}
,

where S(k) = X(k)(X(k))T /n(k) is the sample covariance matrix of the k’th environ-
ment.

The block update involves iteratively estimating the parental edge weights and error
variance for each node. For a fixed node i, the parental edge weights Λpa(i),i (or

ΛT
i,pa(i)) and error variance ωii appear among the arguments of likelihood function

for every data set without intervention on node i. This is analogous to the situation
in Hauser and Bühlmann [2015]. We define I−i := {I ∈ I, i /∈ I} as the set of
intervention targets relevant for estimating (Λpa(i),i, ωii).

Notice that for each intervention target Ik ∈ I−i, the i’th column of Λ(k) remains the
same as that in Λ. The log-likelihood function for environment k can be written as

ℓG,X(k)(Λ(k),Ω(k)) =− logω
(k)
ii −

1

n(k)ω
(k)
ii

∥X(k)
i,· − ΛT

i,pa(i)X
(k)
pa(i),·∥

2 − log det(Ω
(k)
−i,−i)

− 1

n(k)
tr((Ω

(k)
−i,−i)

−1ϵ
(k)
−i (ϵ

(k)
−i )

T ) + log det(I − Λ(k))2, (4.1)

where the notation −i is used when forming a subvector with coordinate i dropped,
and also when dropping the ith row or column from a matrix. For the sake of

simplicity, we write Xi for X
(k)
i,· and X

(k)
pa(i) for X

(k)
pa(i),·. The total log-likelihood for
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all data sets combined is now

ℓG,X(1),...,X(K)(Ω,Λ) =
∑

k:Ik∈I−i

n(k) · ℓG,X(k)(Λ(k),Ω(k)). (4.2)

The likelihood equations are obtained by taking derivatives with respect to all pa-

rameters. (The error variance ω
(k)
ii is a nuisance parameter when i ∈ Ik, and it

does not affect the equations involving the parameters of interest, which are the ele-
ments of Λ and Ω associated to the original graph G.) Even in purely observational
cases, the likelihood equation system can have a high degree; the degree could also
increase largely due to multiple interventional environments; see Section 4.2 and Dr-
ton et al. [2019b]. To alleviate this issue, we optimize the joint log-likelihood using
block-coordinate descent method. The parameters are partitioned into blocks based
on nodes and optimization is performed iteratively over each block. In the i-th block
update problem, the submatrices Ω−i,−i and ΛT

−i are fixed. This type of sub-systems
with a smaller number of equations usually has lower degrees.

To simplify the log-likelihood we do some algebra. By Lemma 2 in Drton et al.
[2019b], det(I − Λ(k)) is a linear function of Λpa(i),i for each k:

det(I − Λ(k)) = c
(k)
i,0 + (Λ(k))Ti,pa(i)c

(k)
i,pa(i). (4.3)

Fixing Ω−i,−i and B−i, the maximization of total log-likelihood is reduced to the
maximizition of

ℓG,X1,...,XK (ωii,Λpa(i),i) =
∑

k:Ik∈I−i

(
−n(k) logω(k)

ii −
1

ω
(k)
ii

∥X(k)
i − ΛT

i,pa(i)X
(k)
pa(i)∥

2

+ n(k) log[(c
(k)
i,0 + ΛT

i,pa(i)c
(k)
i,pa(i))

2]

)
. (4.4)

If X
(k)
i − ΛT

i,pa(i)X
(k)
pa(i) ̸= 0 for each k such that i /∈ Ik, then we can optimize ωii for

each value of Λpa(i),i:

(ω
(k)
ii )∗ =

1∑
k:Ik∈I−i

n(k)

∑
k:Ik∈I−i

n(k)∥Y (k)
i − ΛT

i,pa(i)Y
(k)
pa(i)∥

2

maximizes the total log-likelihood with respect to ω
(k)
ii . It leads to the following profile

log-likelihood function for the parameter vector Λpa(i),i:

ℓ(Λpa(i),i) = −
∑

k:Ik∈I−i

n(k) log

∑
k:i/∈Ik ∥X

(k)
i − ΛT

i,pa(i)X
(k)
pa(i)∥

2

(c
(k)
i,0 + ΛT

i,pa(i)c
(k)
i,pa(i))

2
. (4.5)

The gradient of total log-likelihood with respect to Λpa(i),i is a sum of fractions with
different denominators. If one tries to reduce these terms to a common denomi-
nator, the expression becomes exceedingly complicated. The (partial) derivative(s)
are high order polynomial equation(s) with multiple variables. In general there is
no closed-form solution for the critical point(s) of the profile log-likelihood function
(4.4). However, in special cases with at most 2 different denominators, we can find
the optimizer in closed form and perform the block-coordinate update; see Section
4.3.
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Figure 4.2: Graph of a linear SEM, with ML degree 23 for observational data.

4.2 Maximum likelihood degrees, a concrete example

We provide an example to illustrate the complexity in the critical equations of the
MLE and the block-coordinate descent problems. We consider the directed graph in
Figure 4.2. The linear SEM associated to this graph has generic parameters

Λ =



0 λ12 0 0 0 0
0 0 λ23 0 0 0
0 0 0 λ34 0 0
0 0 0 0 λ45 0
0 λ52 λ53 0 0 0
0 0 0 λ64 0 0

 , Ω =



ω11 0 0 0 0 0
0 ω22 0 0 0 0
0 0 ω33 0 0 0
0 0 0 ω44 0 0
0 0 0 0 ω55 0
0 0 0 0 0 ω66

 .

Suppose that the collection of interventions is I = {∅, {2}, {4}}, with sample sizes
n(1), n(2), n(3) and sample covariance matrix S(1), S(2), S(3) respectively. The corre-
sponding true parameters are denoted by Λ(k) and Ω(k) for k ∈ {1, 2, 3}.

The likelihood equations of the purely observational environment (i.e., intervention
on ∅) has degree 23. When it comes to the likelihood equation with respect to
the 3 different environments of different sample sizes, the ML degree is 73, largely
increased. The mentioned ML degrees were obtained by computing Gröbner bases
in the Mathematica software. See Sullivant [2018] and Drton et al. [2009] for
background on the computation of ML degrees of Gaussian models.

Then we check the degrees of block update problems, again with the help of Gröbner
bases.

Nodes 1 and 6: For these two nodes, the block update problems are trivially of de-
gree 1; we merely compute the empirical variances ω̂11 and ω̂66.

Node 2: Intervention I3 = {4} breaks both cycles 2 → 3 → 4 → 5 → 2 and 3 →
4 → 5. Therefore, our Theorem 4.2 from Section 4.3 asserts that the update
problem for node 2 has degree 2.

Node 4: Node 4 has only one parent 5 in the same strongly connected component
{2, 3, 4, 5}. However, our Theorem 4.2 does not apply, due to two different
nontrivial log det terms with different interventions.

Node 3: The block update with respect to node 3 is the most complicated. The
strongly connected components containing node 3 in the three intervened graphs
are all different, with node sets {2, 3, 4, 5}, {3, 4, 5}, {3}.
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In more detail, the profile log-likelihood function with respect to node 4 is

g4(λ34, λ64) = −n(1) log
(

∥X4 − λ34X3 − λ64X6∥2

(1− λ23λ34λ45λ52 − λ34λ45λ53)2

)
− n(2) log

(
∥X4 − λ34X3 − λ64X6∥2

(1− λ34λ45λ53)2

)
=− (n(1) + n(2)) log(∥X4 − λ34X3 − λ64X6∥2)
+ n(1) log((1− λ23λ34λ45λ52 − λ34λ45λ53)2) + n(2) log((1− λ34λ45λ53)2).

It has derivatives

∂g4(λ34, λ64)

∂λ34
= n(1)

2(λ23λ52 + λ53)λ45λ34
(λ23λ52 + λ53)λ45λ34 − 1

+ n(2)
2λ53λ45λ34
λ53λ45λ34 − 1

− (n(1) + n(2))
2(X3X

T
6 λ64 +X3X

T
3 λ34 −X3X

T
4 )

∥X4 − λ34X3 − λ64X6∥2
,

∂g4(λ34, λ64)

∂λ64
= (n(1) + n(2))

2(X6X
T
6 λ64 +X3X

T
6 λ34 −X6X

T
4 )

∥X4 − λ34X3 − λ64X6∥2
.

The critical points of g4(λ34, λ64) are given by the solutions of

∂g4(λ34, λ64)

∂λ34
= 0,

∂g4(λ34, λ64)

∂λ64
= 0.

The equation system has generic degree 4.

For node 3, we have the profile log-likelihood function

g3(λ23, λ53)

= −n(1) log
(

∥X3 − λ23X2 − λ53X5∥2

(1− λ23λ34λ45λ52 − λ34λ45λ53)2

)
− n(2) log

(
∥X3 − λ23X2 − λ53X5∥2

(1− λ34λ45λ53)2

)
− n(3) log

(
∥X3 − λ23X2 − λ53X5∥2

)
= −(n(1) + n(2) + n(3)) log(∥X3 − λ23X2 − λ53X5∥2)
+ n(1) log((1− λ23λ34λ45λ52 − λ34λ45λ53)2) + n(2) log((1− λ34λ45λ53)2),

with derivatives

∂g3(λ23, λ53)

∂λ23
= n(1)

2λ52λ45λ34λ23
(λ23λ52 + λ53)λ45λ34 − 1

− (n(1) + n(2) + n(3))
2(X2X

T
2 λ23 +X2X

T
5 λ53 −X2X

T
3 )

∥X3 − λ23X2 − λ53X5∥2
,

∂g3(λ23, λ53)

∂λ53
= n(1)

2λ45λ34λ53
(λ23λ52 + λ53)λ45λ34 − 1

+ n(2)
2λ45λ34λ53
λ45λ34λ53 − 1

− (n(1) + n(2) + n(3))
2(X2X

T
5 λ23 +X5X

T
5 λ53 −X5X

T
3 )

∥X3 − λ23X2 − λ53X5∥2
.

A Gröbner basis computation shows that the equation system has degree 7.
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4.3 Block-coordinate Descent

4.3.1 Arbitrary directed graphs, special interventions

If we do not restrict the type of graph that defines the model, a closed-form block
update can only be possible under special conditions on the interventions (recall the
example in Section 4.2).

Let G = (V,D) be the directed graph in observational environment and I ⊆ 2V be
the collection of intervention targets. We bind all the data matrices X(k), Ik ∈ I−i

by columns and obtain the stacked data matrix X, which holds the relevant data
for estimating (Λpa(i),i, ωii), as described in Section 4.1. A sufficient condition for a
closed-form block update on node i is:

∃ G′ ⊆ G, s.t. ∀ I ∈ I−i, C(i, GI) = G′ or V [C(i, GI)] = {i}, (4.6)

where the operator V [·] returns the set of the nodes in a (sub)graph. In other words,
the condition requires that there can be at most two different structures of the strongly
connected component containing node i, and one of which is the singleton set {i}.
Under this condition, we can derive the closed-form block update formula for (4.4).

Given a fixed node i, if V [C(i, GI)] = {i} holds for each intervention target I ∈ I−i,
the profile log-likelihood function after optimizing over ωii is

gi(Λpa(i),i) = −n1 log

(
∥Xi − ΛT

i,pa(i)Xpa(i)∥2

(ci,0 + ΛT
i,pa(i)ci,pa(i))

2

)
+ C,

where ci,0 + ΛT
i,pa(i)ci,pa(i) is the formula of det(I − Λ) with variable Λpa(i),i, and

ci,pa(i) ̸= 0. It is reduced to a quadratic ratio optimization problem, which is the
same as that in the purely observational case.

If the set V [C(i, GI)]’s take values in {i} and some G′ across all the intervention
targets I’s, the profile log-likelihood function after optimizing over ωii is

gi(Λpa(i),i) =− n1 log

(
∥Xi − ΛT

i,pa(i)Xpa(i)∥2

(ci,0 + ΛT
i,pa(i)ci,pa(i))

2

)
− n2 log

(
∥Xi − ΛT

i,pa(i)Xpa(i)∥2
)
+ C. (4.7)

To maximize the profile log-likelihood function, we may consider the following mini-
mization problem:

min
α∈R| pa(i)|

n1 log
∥XT

i −XT
pa(i)α∥

2

(ci,0 + cTi,pa(i)α)
2
+ n2 log

(
∥XT

i −XT
pa(i)α∥

2
)
. (4.8)

With the reparameterization tricks from Drton et al. [2019b], the minimization prob-
lem (4.8) can be reduced to solving a quadratic equation.

Theorem 4.2. Given a node i, let n1, n2 > 0 be the total numbers of data correspond-
ing to strongly connected components G′ and {i}, respectively, and let r = n1/n2. Sup-
pose that the stacked partial data matrix Xpa(i)∪{i} has full rank |pa(i)|+1 ≤ n1+n2.
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Let α̂ = (Xpa(i)X
T
pa(i))

−1Xpa(i)X
T
i be the minimizer of ∥XT

i −XT
pa(i)α∥

2. We define

n := n1+n2,m := |pa(i)|, c0 := ci,0 and c1 := ci,pa(i) ̸= 0, y20 := ∥XT
i −XT

pa(i)α̂∥
2 and

l2 := cT1 (Xpa(i)X
T
pa(i))

−1c1. Then the solution of the optimization problem in (4.8)
satisfies

α∗ = α̂+ δ · (Xpa(i)X
T
pa(i))

−1c1, (4.9)

where δ is a solution to the quadratic equation

l2δ2 + (cT1 α̂+ c0)(k + 1)δ − ry20 = 0. (4.10)

Proof. We adopt the orthogonal transformation method in Drton et al. [2019b] and
also derive further auxiliary properties for our problem. First, we start with finding
an orthogonal m×m matrix Q1 such that Q1c1 = (0, . . . , 0, ∥c1∥)T . Then we compute
a QR decomposition XT

pa(i)Q
T
1 = QT

2R with Q2 ∈ Rn×m orthogonal and R ∈ Rn×m

upper triangular. Noting that Xpa(i) and XT
pa(i)Q

T
1 have full ranks, we can postulate

that all diagonal entries of R are positive, and then the matrix R is unique for
any given Q1. After reparameterizing to α′ = Q1α, the common L2-norm term is
transformed to

y20 = ∥XT
i −XT

pa(i)α∥
2 = ∥Q2X

T
i −Rα′∥2

=
m∑
j=1

[(Q2X
T
i )j − (Rα′)j ]

2 +
N∑

j=m+1

(Q2X
T
i )

2
j ,

and the denominator is transformed to (c0 + ∥c1∥α′
m)2.

Since R =

(
R1

0

)
with R1 ∈ Rm×m, we reparameterize again with α′′ = R1α

′ and the

original minimization problem is equivalent to minimizing

n1 log

∑m
j=1[(Q2X

T
i )j − α′′

j ]
2 +

∑n
j=m+1(Q2X

T
i )

2
j

(c0 + ∥c1∥R−1
mmα′′

m)2

+ n2 log

 m∑
j=1

[(Q2X
T
i )j − α′′

j ]
2 +

n∑
j=m+1

(Q2X
T
i )

2
j

 . (4.11)

Any solution of (4.11) must satisfies that α′′
j = (Q2X

T
i )j for j ∈ [m − 1], and the

optimal value of α′′
m is given by minimizing

n1 log
[(Q2X

T
i )m − α′′

m]2 +
∑n

j=m+1(Q2X
T
i )

2
j

(c0 + ∥c1∥R−1
mmα′′

m)2

+ n2 log

[(Q2X
T
i )m − α′′

m]2 +

N∑
j=m+1

(Q2X
T
i )

2
j

 , (4.12)

i.e., maximizing

gi(x) :=n1 log

(
x+

c0Rmm

∥c1∥

)2

− (n1 + n2) log

x2 − 2(Q2X
T
i )mx+

n∑
j=m

(Q2X
T
i )

2
j

+ C.
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The univariate function gi has derivative

g′i(x) =
2n1

x+ c0Rmm/∥c1∥
− 2(n1 + n2)

x− (Q2X
T
i )m

x2 − 2(Q2XT
i )mx+

∑N
j=m(Q2XT

i )
2
j

.

We can apply Lemma 4.5 to give the two possible optimal values of x, with

a = 1, b = −(Q2X
T
i )m, c =

N∑
j=m

(Q2X
T
i )

2
j , d = c0, λ = ∥c1∥/Rmm ̸= 0.

By the full rank assumption for Xpa(i)∪i, we know that

c− b2 =
N∑

j=m+1

(Q2X
T
i )

2
j = ∥XT

i −XT
pa(i)α̂∥

2 > 0.

The b2 − ac < 0 condition for case (ii) of Lemma 4.5 is fulfilled.

Finally, we need to simplify the formula using original parameters. Since r = n1/n2,
the two solutions has the form

α′′
m =

bλ(r − 1)− ac0(r + 1)±
√

(bλ(r − 1)− ac0(r + 1))2 + 4aλ(cλr − bc0(r + 1))

2aλ

= − b
a
+

(bλ− ac0)(r + 1)±
√

(bλ− ac0)2(r + 1)2 + 4(ac− b2)λ2r
2aλ

.

The optimal solution in original coordinates is α = QT
1R

−1
1 α′′. Since R−1

1 (Q2X
T
i ) is

the linear regression coefficient vector of XT
pa(i)Q

T
1 on XT

i , we have

QT
1R

−1
1 (Q2X

T
i )[m] = (Xpa(i)X

T
pa(i))

−1Xpa(i)X
T
i := α̂.

Let em,m = (0, . . . , 0, 1) be the m-th canonical basis vector of Rm and em,N =
(0, . . . , 0, 1, 0, . . . , 0) be the m-th canonical basis vector of RN (m-th entry is 1).
Noticing that R−1

mm(Q2X
T
i )m is the m-th entry of R−1

1 (Q2X
T
i )[m], and the last col-

umn of R−T
1 is R−1

mmem,m, we can derive that

λ · b = −∥c1∥R−1
mm(Q2X

T
i )m = −⟨Q1c1, R

−1
1 (Q2X

T
i )[m]⟩

= −⟨c1, QT
1R

−1(Q2X
T
i )[m]⟩ = −cT1 α̂,

and

QT
1R

−1
1 ∥c1∥R

−1
mmem,m = QT

1R
−1
1 R−T

1 Q1c1 = (QT
1R

TRQ1)
−1c1

= (QT
1R

TQ2Q
T
2RQ1)

−1c1 = (Xpa(i)X
T
pa(i))

−1c1.

The matrices Q1, Q2, R may change, while the value of Rmm (or equivalently, λ) is
uniquely determined by Xpa(i) and c1. To see this, we have

XT
pa(i)(Xpa(i)X

T
pa(i))

−1c1 = XT
pa(i)Q

T
1R

−1
1 ∥c1∥R

−1
mmem,m

= QT
2

(
R1

0

)
R−1

1 ∥c1∥R
−1
mmem,m

= QT
2

(
Im
0

)
∥c1∥R−1

mmem,m = QT
2 ∥c1∥R−1

mmem,N .
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Since Q2 is orthogonal, the Euclidean norms of both sides must be equal. That is,

l =
√
cT1 (Xpa(i)X

T
pa(i))

−1c1 = ∥XT
pa(i)(Xpa(i)X

T
pa(i))

−1c1∥ = ∥c1∥R−1
mm = λ.

Then we can compute

c = b2 +
N∑

j=m+1

(Q2X
T
i )

2
j = b2 + ∥XT

i −XT
pa(i)α̂∥

2 = b2 + y20,

and

α′′
m = −b+

(−cT1 α̂− c0)(r + 1)±
√

(cT1 α̂+ c0)2(r + 1)2 + 4rl2y20

2l

:= (Q2X
T
i )[m] +

(−cT1 α̂− c0)(r + 1)±
√

∆r,α̂(l)

2l
.

Therefore, the two possible optimal vectors are

α = QT
1R

−1
1 (Q2X

T
i )[m] +

−(cT1 α̂+ c0)(r + 1)±
√

∆r,α̂(l)

2l2
∥c1∥R−1

mm ·QT
1R

−1
1 em,m

= α̂+
−(cT1 α̂+ c0)(r + 1)±

√
∆r,α̂(l)

2l2
(Xpa(i)X

T
pa(i))

−1c1.

Each possible solution is the simple linear regression coefficient vector α̂ adding a mul-
tiple of (Xpa(i)X

T
pa(i))

−1c1. The coefficient of the second term is exactly the solution
to the quadratic equation

l2t2 + (cT1 α̂+ c0)(r + 1)t− ry20 = 0,

with

α̂ = XT
pa(i)(Xpa(i)X

T
pa(i))

−1XT
i ,

y20 = ∥XT
i −XT

pa(i)α̂∥
2,

l2 = ∥XT
pa(i)(Xpa(i)X

T
pa(i))

−1c1∥2.

In practice, we can first compute the two possible Λ∗
pa(i),i’s by Theorem 4.2. The

update of ωii is given by

ω∗
ii =

1

n1 + n2
∥Xi − ΛT

i,pa(i)Xpa(i)∥2 (4.13)

for the two possible Λ∗
pa(i),i’s. We compare the two profile log-likelihood values

n1 log((ci,0 + (Λ∗)Ti,pa(i)ci,pa(i))
2)− (n1 + n2) ∗ log(ω∗

ii) + C, (4.14)

and the choice of Λ∗
pa(i),i corresponds to the larger log-likelihood value of the two

candidates.

Remark 4.3. The ratio r = n1/n2 affects the possible weights on the direction of
(Xpa(i)X

T
pa(i))

−1c1. If n2 = 0 or equivalently r = ∞, the problem degenerates to the

purely observational case. The equation (4.10) becomes linear: (cT1 α̂+ c0)t− y20 = 0,
which gives the result in Drton et al. [2019b].

We outline the computations to be done in the overall block-coordinate descent in
Algorithm 1.
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Algorithm 1 Block-coordinate descent, for directed graph and special type of inter-
ventions.

Require: ω0, Λ0; X(1), . . . ,X(K); I1, . . . , Ik and n(1), . . . , n(K)

1: repeat
2: for i ∈ V do
3: if the condition (4.6) do not hold then
4: The block update cannot be solved in closed-form, stop
5: end if
6: Find S2 = {k : Ik ∈ I−i, C(i, GIk

) = {i}} and S1 = {k : Ik ∈ I−i}\S2
7: Set Y = [Y (k1), . . . Y (kl)] with k1, . . . , kl ∈ S1 ∪ S2
8: Compute n1 =

∑
k∈S1

n(k) and n2 =
∑

k∈S2
n(k)

9: if n1 = 0 then
10: Compute Λ̂pa(i),i by solving least square problem

11: argminα ∥XT
i −XT

pa(i)α∥
2

12: else if n2 = 0 then
13: Compute Λ̂pa(i),i as the block-coordinate update for observational data
14: else
15: Compute the two possible Λ̂pa(i),i’s using (4.9) and (4.10)
16: Compute corresponding ω̂ii’s and log-likelihood’s using (4.13)-(4.14)
17: Choose the larger log-likelihood value and corresponding (Λ̂pa(i),i, ω̂ii)
18: end if
19: Update ω and Λ·,i using ω̂ii and Λ̂pa(i),i

20: end for
21: until Convergence criterion is met
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4.3.2 Special directed graphs under arbitrary interventions

In Section 4.3.1 we show that the block-coordinate problem has a closed-form solution
when the interventions satisfy certain condition (4.6). Indeed, if we only consider the
directed graphs in which every strongly connected component contains at most one
cycle, i.e., any two cycles in the graph are disjoint, then (4.6) always holds for
arbitrary interventions. For this type of graphs, a strongly connected component is
either a cycle or a singleton set. The determinant of I − Λ can be decomposed into
the product of the sub-determinant of the strongly connected components (cycles in
this setup) Cm’s: det(I − Λ) =

∏
m=1 det(I − ΛCm).

For the parameters corresponding to one node i, there are two different cases. If the
node is not in any cycle, then (Λpa(i),i, ωii) can be estimated by linear regression on
parental nodes, because Λpa(i),i does not appear in det(I − Λ)2. Otherwise the node
is in a cycle C(i, G). Each intervention target satisfies either I ∩ V [C(i, G)] = ∅ or
I ∩ V [C(i, G)] ̸= ∅. The former keeps the cycle C(i, G) in the manipulated graph GI

after intervention, and it contributes to a non-constant log det(I−ΛC(i,G)) term in the
log-likelihood. It is worth noting that the potential breaking of other cycles C does
not affect the updating of Λpa(i),i, since those other entries in Λ only appear in the
log det term as a constant with respect to Λpa(i),i. The latter leads to a singleton-set
component, and the log determinant term is 1. We distinguish the data from the two
intervention types by superscript (1) or (2). Again, we assume that the sample sizes
are n1 and n2, respectively.

For the feasibility of the closed-form block coordinate update on a specific node i with
any interventions, the local condition of the strongly connected component C(i, G)
being a cycle is sufficient. Under this condition, there is only one parent of i in the
cycle: pa(i) ∩ V [C(i, G)] = {j}. The block update with respect to i is equivalent to
optimizing the univariate profile log-likelihood function of λji, and the optimal values
of other entries in Λpa(i),i are unique determined by the optimal value of λji.

We should clarify that the weaker condition |pa(i) ∩ V [C(i, G)]| = 1 is not suffi-
cient for degree 2 updating with arbitrary interventions, since a complicated strongly
connected component can be modified in different ways with interventions while still
keeping the parental edge j → i. The global single cycle condition is a combination
of all those local conditions on a single node. Actually, we can relax the local condi-
tion of each node to the weaker version (intersection having size 1), while still obtain
the same global condition of strongly connected components in the graph. This is
shown in the following proposition.

Proposition 4.4. In a directed graph G, if every node i has at most one parent in its
strongly connected component C(i): | pa(i) ∩ V [C(i)]| = 1,∀i ∈ V , then each strongly
connected component of G is either a singleton set or a directed cycle.

Proof. We only need to prove the result for strongly connected components with
more than one node. Pick an arbitrary node i1 in the strongly connected component
C(i, G), the node i1 has at least one parent in V [C(i, G)] by the strongly connected
property. Combining with the at most one parent condition, the node i1 has exactly
one parent in V [C(i, G)], denoted by i2. We can repeat this procedure to find the
next node in C(i, G), until ir+1 = is is the first duplicate node.
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We assert that s = 1. Indeed, ir+1 = is means that there is a cycle is → ir → ir−1 →
· · · → is+1 → is. The strongly connected property implies that there exists a directed
path from is−1 to ir, and all nodes in the path are in V [C(i, G)]. Suppose the first
node that the path intersects the cycle is it, then it has a parent it+1 in the cycle,
and another parent in the directed path. The node it has two parents in the strongly
connected component C(i, G), which contradicts the parent condition.

Next we show that the strongly connected component C(i, G) is exactly the cycle
i1 → · · · → ir → i1 by contradiction. First, there cannot exist other edges among
i1, . . . , ir except the cycle, otherwise some nodes will have two parents in V [C(i, G)].
Second, the component C(i, G) cannot contain extra nodes. If so, there exists a
node j ∈ V [C(i, G)]\{i1, . . . , ir} that is a parent of some node iq. Then we have
{iq+1, j} ⊆ pa(iq) ∩ V [C(i, G)], which again contradicts the parent condition.

4.3.3 Properties

At each update, the block coordinate descent algorithm finds a local maximum of log-
likelihood function with respect to the error variance of one node and its parental edge
weights. The value of the log-likelihood function is non-decreasing throughout the
iterations. To ensure the algorithm is well-defined, each block update should have an
optimal solution with positive ωii. This condition is equivalent to ∥Xi−ΛT

i,pa(i)Xpa(i)∥
being positive at the update for every i, which in turn means Xi is not in the span
of row space of Xpa(i), i.e., the matrix Xpa(i)∪{i} has linearly independent rows. This
is exactly the condition (A1)i in Drton et al. [2019b] for directed graphs.

To provide the uniqueness analysis of our block coordinate descent algorithm (The-
orem 4.6), we still need a preliminary lemma on the property of a special rational
function. The lemma is also used in the proof of Theorem 4.2.

Lemma 4.5. For constants a, b, c, d, λ ∈ R with λ ̸= 0, a, c ≥ 0, b2 − ac ≤ 0, and
sample sizes n1, n2 ∈ Z+, the function

f(x) = n1
1

x+ d
λ

− (n1 + n2)
ax+ b

ax2 + 2bx+ c
, x ∈ R\{−d/λ}, ax2 + 2bx+ c ̸= 0

has the properties:

(i) If a = 0, f(x) has no roots. f(x) < 0 for x ∈ (−∞,−d/λ) and f(x) > 0 for
x ∈ (−d/λ,∞).

(ii) If a > 0 and b2 − ac < 0, f(x) has 2 different roots given by

an2x
2 −

(
b(n1 − n2)−

ad

λ
(n1 + n2)

)
x−

(
cn1 −

bd

λ
(n1 + n2)

)
= 0,

i.e.,

x1 =
bλ(n1 − n2)− ad(n1 + n2)−

√
(bλ(n1 − n2)− ad(n1 + n2))

2 + 4aλn2 (cλn1 − bd(n1 + n2))

2aλn2
,

x2 =
bλ(n1 − n2)− ad(n1 + n2) +

√
(bλ(n1 − n2)− ad(n1 + n2))

2 + 4aλn2 (cλn1 − bd(n1 + n2))

2aλn2
,

where x1 < −d/λ < x2. The function satisfies that f(x) < 0 for x ∈ (x1,−d/λ)∪
(x2,∞) and f(x) > 0 for x ∈ (−∞, x1) ∪ (−d/λ, x2).
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(iii) If a > 0 and b2 − ac = 0 and λ ̸= ad/b, f(x) has a unique root

x∗ =
bλn1 − ad(n1 + n2)

aλn2
.

If −d/λ < −b/a, then f(x) < 0 in (x∗,−d/λ) ∪ (−b/a,∞) and f(x) > 0 in
(−∞, x∗) ∪ (−d/λ,−b/a). If −d/λ > −b/a, then f(x) < 0 in (−b/a,−d/λ) ∪
(x∗,∞) and f(x) > 0 in (−∞,−b/a) ∪ (−d/λ, x∗).

(iv) If a > 0, b2 − ac = 0 and λ = ad/b, f(x) has no roots, then f(x) < 0 for
x ∈ (−d/λ,∞) and f(x) > 0 for x ∈ (−∞,−d/λ).

Proof. If a = 0, then b is also zero and the second term of f(x) cancels. f(x)
degenerates to a reciprocal function

f(x) =
n1

x+ d
λ

.

It is readily apparent that f(x) < 0 for x ∈ (−∞,−d/λ) and f(x) > 0 for x ∈
(−d/λ,∞).

In the following parts we always assume that a > 0. We can rewrite f(x) by reduction
to the common denominator.

f(x) =
−an2x2 +

(
b(n1 − n2)− ad

λ (n1 + n2)
)
x+ cn1 − bd

λ (n1 + n2)

(x+ d
λ)(ax

2 + 2bx+ c)
. (4.15)

We denote the numerator by h(x). It is a quadratic function of x, with coefficient of
x2 smaller than 0.

If b2 − ac < 0 then ax2 + 2bx + c > 0 for all x ∈ R. We note that h(−d/λ) =
n1(a(−d/λ)2 + 2b(−d/λ) + c) > 0 and h(x) is a downward opening parabola, which
has two different roots x1 < −d/λ < x2. We know that h(x) < 0 for x ∈ (−∞, x1) ∪
(x2,∞) and h(x) > 0 for x ∈ (x1,−d/λ) ∪ (−d/λ, x2). Combining the fact that the
sign of the denominator changes from negative to positive at −d/λ, we obtain the
positive/negative intervals of f(x).

If b2 − ac = 0, we have

ax2 + 2bx+ c = a(x+
b

a
)2,

and

f(x) =
n1

x+ d
λ

− (n1 + n2)
ax+ b

a(x+ b
a)

2
=

n1

x+ d
λ

− n1 + n2

x+ b
a

.

The function f(x) has a unique root

x∗ =
bλn1 − ad(n1 + n2)

aλn2
,

and x∗ < −d/λ < −b/a or x∗ > −d/λ > −b/a. If −d/λ < −b/a, then f(x) < 0 in
(x∗,−d/λ) ∪ (−b/a,∞) and f(x) > 0 in (−∞, x∗) ∪ (−d/λ,−b/a). If −d/λ > −b/a,
then f(x) < 0 in (−b/a,−d/λ) ∪ (x∗,∞) and f(x) > 0 in (−∞,−b/a) ∪ (−d/λ, x∗).
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4.3 Block-coordinate Descent
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Figure 4.3: Examples of functions from the 4 cases in Lemma 4.5. Two roots in case (ii)
and one root in case(iii). In case (i) and (iv) the function has no roots.

Finally, if b2 − ac = 0 and d/λ = b/a, we have that

f(x) = − n2

x+ d
λ

.

It has no roots and the positive/negative intervals are obvious.

The condition for a unique solution is as follows.

Theorem 4.6. Let G = (V,D) be an arbitrary directed graph and I = {I1, . . . , Ik}
contain the intervention targets. Let X = Rp×n be the stacked data matrix of full rank
|V | = p ≤ n. For every node i ∈ V , let the graphical condition (4.6) in Section 4.3.1
hold, and let the data without intervention on i be of size ni,0 ≥ p. We further denote
that the total sample sizes for the two types of interventions by ni,1, ni,2, both positive,
with ni,1 + ni,2 = ni,0. Then the problem (4.8) has a unique solution (Λpa(i),i, ωii) if
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1ω1 2 ω2

λ21

λ12

Figure 4.4: A 2-cycle with parameters.

and only if the matrix Xpa(i)∪{i} ∈ R| pa(i)|×ni,0 has linearly independent rows. In this

case, the solution has the property ∥Xi − ΛT
i,pa(i)Xpa(i)∥ > 0.

Proof. We use the notations in Theorem 4.2:

a = 1, b = (Q2X
T
i )m, c =

n∑
j=m

(Q2X
T
i )

2
j , d = ci,0, λ = ∥ci,pa(i)∥/Rmm.

When ni,1, ni,2 ̸= 0, linearly independent rows ofX
ni,0

pa(i)∪i implies that ax2+2bx+c > 0

for all x ∈ R and b2 − ac < 0.

If λ = 0, i.e., ci,pa(i) = 0, the optimization problem with respect to node i is actually
a linear regression. It has a unique solution Λ∗

pa(i),i = α̂ since Xpa(i)∪{i} has full

rank. Otherwise, Lemma 4.5 states that gi has two critical points x1 < −d/λ < x2.
Both of them are local maximum points, and they are in the two branches of gi(x)
respectively. In practice, the two possible optimal vectors are computed by (4.9) and
(4.10). The updated value of Λpa(i),i = α∗ is determined by comparing the two local
maxima of the log-likelihood function.

Remark 4.7 (2-cycle). A 2-cycle is a very special structure as it is locally overpa-
rameterized. If the 2-cycle, as a strongly connected component, is positioned first in
the topological ordering of all components, then after marginalizing all other variables,
the cycle contains 4 parameters but with only 3 free entries in the marginal covariance
matrix. When each intervention target contains either both variable or neither, the
update problem is the same as when considering only observational data. We thus
require the intervention on exact one variable for parameter identifiability.

Example 3 in Drton et al. [2019b] demonstrates that the update problem is not well-
defined for certain values of λ12 (β21 in Drton et al. [2019b], with a different param-
terization). While the problematic value may not commonly occur, we have discovered
a more significant issue: the update problem has infinite number of solutions and the
solutions are determined by the initial value of edge weights within 2 iterations, which
essentially arises from the non-identifiability of parameters.

Let X1,X2 ∈ R1×n be the data, the block update problem for node 2 is described in
Drton et al. [2019b]. It takes the form

min
λ12∈R

∥X2 − λ12X1∥2

(1− λ21λ12)2
,

and the solution is (when 1− λ21λ̂12 ̸= 0)

λ∗12 = λ̂12 −
(X2X

T
2 −X2X

T
1 (X1X

T
1 )

−1X1X
T
2 )(X1X

T
1 )

−1λ21

1− λ21λ̂12
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4.4 Simulation Studies

where λ̂12 = (X1X
T
1 )

−1X1X
T
2 . Defining a = X2X

T
2 , b = X1X

T
2 , c = X1X

T
1 , we can

simplify the formula above as

λ∗12 =
b− aλ21
c− bλ21

.

It can also be written as

λ21 =
b− cλ∗12
a− bλ∗12

,

and this form is exactly the update formula of λ21. Consequently, if we choose the
update ordering 2 ≺ 1, the new value λ∗12 is determined by the initial value λ21 and the
new value λ∗21 is the same as λ21. The algorithm will stop after 2 iterations because
the values of edge weights and error variances remain unchanged after the first round
of update.

Furthermore, the estimated marginal covariance matrix Σ̂ is the same for arbitrary
initialization under a fixed update ordering, and its value is exactly the sample marginal
covariance matrix.

4.4 Simulation Studies

We compare the performance of the simple aggregation method and our BCD-type
algorithms using observational and interventional synthetic data. The measure used
for comparison is the root mean square error (RMSE) of the estimate. We adopt the
scheme and hyperparameters selection in Drton et al. [2019b] for generating graphs,
with some modifications for our setups.

We use 24 different configurations of parameters (p, n, k, d), where p is the number of
nodes, n is the sample size of observational data, k denotes the length of the unique
cycle, and d controls the sparsity. For each graph, we randomly select the number
of interventional environments, such that |I| ∈ {1, 2, 3}. Each random intervention
target is of size 2 or 3. We then compute the intervened model and simulate data of
sample size max{n(k), p+1}, n(k) ∼ U [⌊(n+1)/2⌋, n] for each intervention target. As a
result, the data for each graph consists of both observational and interventional data,
with the total size ranging from approximately 3n/2 to 4n. We have made
slight changes to the setup of graph size, sample size, and graph sparsity compared
to Drton et al. [2019b]. Specifically, we set p ∈ {10, 20}, n ∈ {5p/2, 10p} and k ∈
{0, p/10 + 1, p/5 + 2}, d ∈ {0.1, 0.2}.

In the simulations, we focus on special directed graphs that contain at most one
unique cycle. We start with an empty graph and add a k-cycle, denoted as 1→ 2→
· · · → k → 1, which forms the first strongly connected component. Next, we consider
the remaining (i, j) pairs with i < j, which amounts to p(p− 1)/2− k(k− 1)/2 pairs.

For each pair, we introduce a nonzero edge weight based on independent uniform
random variables Uij ∼ U(0, 1). Specifically, if Uij < d, we add the edge i → j.
The sparsity parameter d ∈ (0, 1) controls the average number of edges in the graph.
To ensure randomness, after adding the edges according to the specified topologi-
cal ordering, we randomly permute the node labels. This construction procedure
guarantees that the graph has a unique cycle of length k.
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For the parameter values, we draw all the free entries of the matrix Λ independently
from a uniform distribution on the interval [−2,−0.5] ∪ [0.5, 2]. Similarily, the diag-
onal entries of the matrix Ω are randomly drawn from uniform distribution on the
interval [0.3, 1]. When it comes to intervention, if a target set I is selected, we mask
the corresponding rows in Λ by setting them to zero, i.e., Λ·,I = 0. To ensure pa-
rameter identifiability, the unique cycle is broken by at least one intervention target.
Additionally, the interventional errors εI are sampled from |I| independent standard
normal distributions.

RMSE Converged Running time
p n k d Agg MLE Agg MLE Agg MLE

10 25 0 0.1 0.1495 0.1448 1000 1000 9.122 4.997
10 25 0 0.2 0.1569 0.1480 1000 1000 12.05 6.275
10 25 2 0.1 342.6 37.92 997 1000 30.21 18.51
10 25 2 0.2 552.5 16.44 997 1000 35.92 19.96
10 25 4 0.1 18.74 0.1741 998 1000 81.55 27.74
10 25 4 0.2 826.2 0.1704 995 1000 79.07 28.41
10 100 0 0.1 0.07241 0.07166 1000 1000 9.316 5.326
10 100 0 0.2 0.07301 0.07191 1000 1000 11.86 6.413
10 100 2 0.1 58.82 18.45 1000 1000 27.31 18.24
10 100 2 0.2 29.00 9.924 1000 1000 34.93 20.23
10 100 4 0.1 0.1379 0.09264 997 1000 101.00 30.20
10 100 4 0.2 0.1194 0.08530 996 1000 93.66 30.85
20 50 0 0.1 0.0967 0.09362 1000 1000 27.23 13.91
20 50 0 0.2 0.1035 0.09595 1000 1000 35.84 19.10
20 50 3 0.1 0.1779 0.1146 997 1000 104.47 38.94
20 50 3 0.2 116.1 0.1163 993 1000 113.67 46.84
20 50 6 0.1 0.1219 0.1004 997 1000 121.35 49.08
20 50 6 0.2 0.1160 0.09876 996 1000 128.43 56.51
20 200 0 0.1 0.04677 0.04624 1000 1000 25.24 16.10
20 200 0 0.2 0.04868 0.04705 1000 1000 36.97 22.24
20 200 3 0.1 9.465 0.06828 999 1000 111.80 44.73
20 200 3 0.2 0.07109 0.05826 984 1000 118.50 53.46
20 200 6 0.1 0.07196 0.05243 995 1000 127.72 52.74
20 200 6 0.2 0.06239 0.05136 990 1000 134.71 59.81

Table 4.1: Statistics for randomly generated directed graphs with at most one unique cycle.
Each row summarizes 1000 simulations. “RMSE” represents the average root
mean square error of the estimate for a single parameter among the total 1000
simulations. “Converged” means whether all runnings of algorithms in one single
simulation converge or not. Running time is the average CPU time (in millisec-
onds).

For each configuration (p, n, k, d), we randomly generate 1000 graphs with their cor-
responding parameters and data. Then we apply the aggregation method and our
BCD-type algorithm. We set the maximum number of iterations for each run to be
5000. In each run of the algorithms, we employ various initialization schemes, in-
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cluding random initialization, default (O, I) initialization, and adaptive initialization
based on the data.

In the simulations, each running of our MLE algorithm converges, whereas some
runs of the BCD algorithm for a single observational or interventional environment
diverge. Table 4.1 summarizes the simulation results for directed graphs with one
unique cycle. The columns “Agg” and “MLE” correspond to the aggregation method
and Algorithm 1. The “RMSE” column represents the average root mean square
error of the estimate for a single parameter among the 1000 simulations. Our algo-
rithm consistently outperforms the aggregation method in all simulation settings. The
“Converged” column records the number of simulations that our algorithm converges
for all environments.

The average CPU running times in milliseconds are also recorded (on a 1.6GHz pro-
cessor). For the aggregation method, the time is the sum of the time taken by the
BCD algorithm performed on each observational or interventional dataset, as well as
the aggregation steps. In terms of efficiency, Algorithm 1 is faster than the aggre-
gation method, as expected. Although the running time of our algorithm is longer
than the running time of BCD algorithm for one single environment, the combination
of multiple environments and the post-processing step make the aggregation method
slower.

4.5 Discussion

4.5.1 Mixed graphs

If the graph is directed, intervention on Xi does not influence any other random er-
rors. However, when a node/variable incident to bidirected edges is intervened, the
maximum likelihood estimation problem becomes very complicated. An example is
shown in Figure 4.5. In the original graph, the BCD algorithm in Drton et al. [2019b]
will give ω̂1 as the MLE of ω1 because the extra variance from hidden variables is
dealt with by the coefficient ω12. However, in the manipulated graph, the estima-
tor ω̂′

1 estimates a value larger than ω1. There is an implicit inequality constraint:
ω̂1 ≤ ω̂′

1. These types of inequalities appear at every node that has bidirected edges
adjacent to a intervened node. Currently, there is no good method to incorporate
these constraints in the maximum likelihood estimation procedure when combining
observational and interventional data. Therefore, in this chapter we only consider
directed graphs.

4.5.2 Stability

We do not explicitly discuss parameter identifiability in this chapter, with the ex-
ception of the last Remark 4.7 and the description of our simulation settings. In
our simulations, we ensure that every cycle is broken by at least one intervention,
which guarantees identifiability. Now, we will provide some further analysis on the
parameter identifiability of directed cyclic graphs with only observational data.
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1 2

Hk

H1

...

(a)

1 2

Hk

H1

...

(b)

Figure 4.5: Original graph with bidirected edge, and manipulated graph with intervention
target I = {2}.

Consider the series expansion

(I − Λ)−1 = I + Λ+ Λ2 + · · · ,

in which Λm
ij is the sum of all directed path from i to j with length m in G. The

covariance between i and j equals the sum of all treks from i and j. One entry, Σij ,
in the covariance matrix is the sum of products of three entries (I − Λ)−T

ik , Ωkl and
(I −Λ)−1

lj . Each product term corresponds to the concatenation of two directed path

and a common source node. If G is acyclic, the series expansion of (I−Λ)−1 has only
finitely many nonzero terms since Λp = 0. But when G contains a cycle, the series
has infinitely many nonzero terms.We can restrict ourselves to ”stable” models, where
the spectral radius satisfies ρ(Λ) < 1. Under this condition, the series converges, and
the model is well-posed.

We start with a directed cycle G = (V,D) with length p ≥ 3, like that in Proposition
16.2.4 of Sullivant [2018], i.e., the p-cycle 1 → 2 → 3 → · · · → p − 1 → p → 1. We
use the same notations K = Σ−1, ∆ = Ω−1, ∆ii = δii. Then the parameterization is

K = (I − Λ)T∆(I − Λ)

=


δ11 + δ22λ

2
12 −δ22λ12 0 . . .

−δ22λ12 δ22 + δ33λ
2
23 −δ33λ23 . . .

0 −δ33λ23 δ33 + δ44λ
2
34 · · ·

...
...

...
. . .

 ,

and the entrywise equations are

Kii = δii + δi,i+1λ
2
i,i+1, (4.16)

Ki,i+1 = −δi+1,i+1λi,i+1. (4.17)

Section 7 in Drton et al. [2011] and Proposition 16.2.4 of Sullivant [2018] consider
the same parameterization and state that the equation system has generically two
solutions. However, we have the following theorem focusing on the property of the
solutions. We claim that at most one of the two solutions is stable.

Theorem 4.8. If the graph G is a p-cycle, the equation ϕG(Λ,Ω) = K has generically
two solutions, but at most one of the solutions gives a stable model with ρ(Λ) < 1.
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Proof. Let (Λ1,Ω1) and (Λ2,Ω2) denote the solutions. To examine the claim, we will
derive an invariant of the two possible Λ’s via (4.16) and (4.17). By Lemma 4.9, we
obtain that

det(Λ1) · det(Λ2) =

p∏
i=1

λ
(1)
i,i+1 ·

p∏
i=1

λ
(2)
i,i+1 =

p∏
i=1

λ
(1)
i,i+1λ

(2)
i,i+1

=

p∏
i=1

det(K−(i+1),−(i+1))

det(K−i,−i)
= 1. (4.18)

Since the spectral radius of Λ is its maximal eigenvalue:

ρ(Λ) =

∣∣∣∣∣
p∏

i=1

λi,i+1

∣∣∣∣∣
1
p

= |det(Λ)| ,

we derive that at most one solution can satisfy the stablility condition ρ(Λ) < 1 via
the determinant product invariant (4.18).

Lemma 4.9. The two values of λi,i+1 in the two solutions satisfy the quadratic equa-
tion:

Ki,i+1 det(K−i,−i)x
2 +

(
det(K) + 2Ki,i+1 det(K−i,−(i+1))

)
x

+Ki,i+1 det(K−(i+1),−(i+1)) = 0, (4.19)

where Ki,j is the (i, j) entry of K, and K−i,−j is the submatrix of K after deleting
the i’th row and j’th column.

Proof. First, if there exist some i such that Ki,i+1 = 0, then (4.17) implies that
λi,i+1 = 0 for all possible solutions. That means the solutions are actually the same
as the solutions for an acyclic graph in which there is not edge between i and i + 1.
However, we know that ΦG for an acyclic graph is injective, i.e., the equation system
has a unique solution.

Then we assume that Ki,i+1 ̸= 0 for all i, which implies that λi,i+1 ̸= 0 for all i. We
will prove the result for i = 1 by induction on m, and then the result holds for general
i.

Computing δii from (4.17) and plugging into (4.16) for each i produces the equation
system

Kii +
Ki−1,i

λi−1,i
+Ki,i+1λi,i+1 = 0. (4.20)

If p = 3, we can manually eliminate λ23 and λ31, and obtain the quadratic equation
for λ12:

K12(K22K33 −K2
23)λ

2
12 + (K11K22K33 +K2

12K33 −K2
13K22 −K2

23K11)λ12

+K12(K11K33 −K2
13) = 0.
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Now suppose that (4.19) holds for a general p ≥ 3, we consider the (p+1)-cycle with
(p+ 1)× (p+ 1) concentration matrix K.

K =


K11 K12 0 . . . 0 Kp+1,1

K12 K22 K23 . . . 0 0
0 K23 K33 · · · 0 0
...

...
...

...
. . .

...
Kp+1,1 0 . . . . . . Kp,p+1 Kp+1,p+1


(p+1)×(p+1)

We eliminate the last variable λm+1,1 and reduce the m+ 1 equations to a equation
system with m equations, which has the same structure as the equation system for
the m-cycle.

The equation (4.20) with i = p+ 1 gives that

λp,p+1 = −
Kp,p+1

Kp+1,p+1 +Kp+1,1λp+1,1
. (4.21)

Note that the denominator is nonzero by (4.17). Plugging (4.21) in (4.20) with i = p,
we obtain that

(Kp+1,p+1 −
K2

p,p+1

Kp+1,p+1
) +

Kp−1,p

λp−1,p
+
Kp,p+1Kp+1,1

Kp+1,p+1
· Kp,p+1λp+1,1

Kp+1,p+1 +Kp+1,1λp+1,1
= 0.

(4.22)
We introduce a new variable

λ′ := − Kp,p+1λp+1,1

Kp+1,p+1 +Kp+1,1λp+1,1
,

then the edge weight of (p+ 1)→ 1 can be written as

λp+1,1 = −
Kp+1,p+1λ

′

Kp,p+1 +Kp+1,1λ′
.

We can substitute λp+1,1 with this expression in (4.20) when i = 1. After some
calculation and simplification the first equation becomes

(K11 −
K2

p+1,1

Kp+1,p+1
)− Kp,p+1Kp+1,1

Kp+1,p+1λ′
+K12λ12 = 0. (4.23)

Following the procedures above, we successfully eliminate the variable λp+1,1. The
new equation system has variables {λ12, . . . , λp−1,p, λ

′} and p equations:

(K11 −
K2

p+1,1

Kp+1,p+1
)− Kp,p+1Kp+1,1

Kp+1,p+1λ′ +K12λ12 = 0,

K22 +
K12
λ12

+K23λ23 = 0,
...

Kp−1,p−1 +
Kp−2,p−1

λp−2,p−1
+Kp−1,pλp−1,p = 0,

(Kpp −
K2

p,p+1

Kp+1,p+1
) +

Kp−1,p

λp−1,p
− Kp,p+1Kp+1,1

Kp+1,p+1
· λ′ = 0.
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Hence, we can apply the inductive hypothesis for p-cycle with concentration matrix

K ′ =



K11 −
K2

p+1,1

Kp+1,p+1
K12 0 . . . 0 −Kp,p+1Kp+1,1

Kp+1,p+1

K12 K22 K23 . . . 0 0
0 K23 K33 · · · 0 0
...

...
...

...
. . .

...

−Kp,p+1Kp+1,1

Kp+1,p+1
0 0 . . . Kp−1,p Kpp −

K2
p,p+1

Kp+1,p+1


p×p

,

with respect to variables {λ12, λ23, . . . , λp−1,p, λ
′}.

By our induction hypothesis, λ12 satisfies the quadratic equation

K ′
12 det(K

′
−1,−1)x

2+
(
det(K ′) + 2K ′

12 det(K
′
−1,−2)

)
x+K ′

12 det(K
′
−2,−2) = 0. (4.24)

To reveal the connection between K and K ′, we apply row and column transforma-
tions on K as follows:

Rp−
Kp,p+1

Kp+1,p+1
Rp+1

−−−−−−−−−−−−→
Cp−

Kp,p+1
Kp+1,p+1

Cp+1



K11 K12 0 . . . −Kp,p+1Kp+1,1

Kp+1,p+1
Kp+1,1

K12 K22 K23 . . . 0 0
0 K23 K33 · · · 0 0
...

...
...

. . .
...

...

−Kp,p+1Kp+1,1

Kp+1,p+1
0 . . . Kp−1,p Kpp −

K2
p,p+1

Kp+1,p+1
0

Kp+1,1 0 . . . 0 0 Kp+1,p+1



R1−
Kp,p+1

Kp+1,p+1
Rp+1

−−−−−−−−−−−−→
C1−

Kp,p+1
Kp+1,p+1

Cp+1



K11 −
K2

p+1,1

Kp+1,p+1
K12 0 . . . −Kp,p+1Kp+1,1

Kp+1,p+1
0

K12 K22 K23 . . . 0 0
0 K23 K33 · · · 0 0
...

...
...

. . .
...

...

−Kp,p+1Kp+1,1

Kp+1,p+1
0 . . . Kp−1,p Kpp −

K2
p,p+1

Kp+1,p+1
0

0 0 . . . 0 0 Kp+1,p+1


=

(
K ′ 0
0 Kp+1,p+1

)
.

Hence, we have

det(K−i,−i) = Kp+1,p+1 det(K
′
−i,−i), i = 1, 2.

det(K−1,−2) = Kp+1,p+1 det(K
′
−1,−2),

and

det(K) + 2K12 det(K−1,−2)

Kp+1,p+1
=K ′

11 det(K
′
−1,−1)−K12 det(K

′
−1,−2)

+ (−1)p+1K ′
1p det(K

′
−1,−p) + 2K12 det(K−1,−2)

=K ′
11 det(K

′
−1,−1)−K12 det(K

′
−1,−2)

+ (−1)p+1K ′
1p det(K

′
−1,−p) + 2K12 det(K

′
−1,−2)

=det(K ′) + 2K ′
12 det(K

′
−1,−2).
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We immediately obtain that

det(K ′) + 2K ′
12 det(K

′
−1,−2)

K ′
12 det(K

′
−1,−1)

=
det(K) + 2K12 det(K−1,−2)

K12 det(K−1,−1)
,

and
K ′

12 det(K
′
−2,−2)

K ′
12 det(K

′
−1,−1)

=
K12 det(K−2,−2)

K12 det(K−1,−1)
.

The equation (4.24) is actually the same as

K12 det(K−1,−1)x
2 + (det(K) + 2K12 det(K−1,−2))x+K12 det(K−2,−2) = 0, (4.25)

which is the desired equation for λ12 in the (p+ 1)-cycle.
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Chapter 5

Identifiability of Linear SEMs using
Algebraic Matroids

Starting from this chapter we discuss the structural identifiability problems of linear
SEMs with error variance assumptions.

Recursive linear structural equation models and the associated directed acyclic graphs
(DAGs) play an important role in causal discovery. Without any extra assumption,
the classic identifiability result states that DAGs can be identified only up to Markov
equivalence classes, when only observation data is available. Recent work proved that,
the DAG can be uniquely identified if the errors in the model are homoscedastic,
i.e., all have the same error variance [Peters and Bühlmann, 2014, Chen et al., 2019].
This result has become a well-known fact and models with equal variances play an
important role as ‘test beds’ for causal discovery. The unique identifiability can be
shown to arise from variance accumulation along the topological ordering.

When the space of graphs is expanded to include directed graphs that may contain
cycles, the entire mechanism undergoes a change, rendering previous arguments for
DAGs impossible. To address this challenge, we define the linear Gaussian pre-
cision model and propose certification rules for different models using algebraic
matroids. It is important to note that the notations and definitions in this chapter
differ slightly from those in the setup chapter. Furthermore, we need to clarify several
new terminologies that are exclusively introduced for this chapter.

5.1 Matroid Approach: Preliminaries

Definition 5.1. The linear Gaussian precision model given by directed graph
G = (V,D) is the family of all multivariate normal distributions on RV with a preci-
sion matrix (inverse covariance matrix) in the set

MG =
{
K : K = ψG(Λ, s), Λ ∈ RD

reg and s ∈ R+
}
.

The precision matrix parameterization of the model is the map

ψG : RD × R+ 7→ PD,

(Λ, s) 7→ s(I − Λ)(I − Λ)T ,

where PD is the cone of positive definite symmetric p× p matrices (recall |V | = p).
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λ12 λ23

λ34

λ42

Figure 5.1: A directed cyclic graph, with edge weights and equal error variances.

Example 5.2. Consider the following 4-node directed graph in Figure 5.1 and the
linear structural equation model, which is non-recursive.

X1 = ε1

X2 = λ12X1 + λ42X4 + ε2

X3 = λ23X2 + ε3

X4 = λ34X3 + ε4

All errors εi follows the same normal distribution N (0, ω) so the associated parame-
ters of the model are (Λ, s) which have the form

Λ =


0 λ12 0 0
0 0 λ23 0
0 0 0 λ34
0 λ42 0 0

 , s =
1

ω
.

Then the model MG associated to the graph G above consists of precision matrices K
of the form

K = s(I − Λ)(I − Λ)T =


s(1 + λ212) −sλ12 0 sλ12λ42
−sλ12 s(1 + λ223) −sλ23 −sλ42

0 −sλ23 s(1 + λ234) −sλ34
sλ12λ42 −sλ42 −sλ34 s(1 + λ242)

 .

Suppose we have a family of models {Mi}ki=1 (each corresponding to graph Gi) for
p = |V | variables, such that all models sit in the same cone PD. If Mi1 ∩Mi2 = ∅ for
each distinct pair (i1, i2), we say that the discrete parameter i, or the graph collection
{Gi}ki=1 is globally identifiable. This requirement is typically too restrictive and
cannot be fulfilled in many cases. The following weaker notion of identifiability in
Hollering and Sullivant [2021] is often used instead.

Definition 5.3. Let {Mi}ki=1 be a finite set of algebraic models which sit in the same
ambient space, the discrete parameter i is generically identifiable if for each pair
of (i1, i2),

dim(Mi1 ∩Mi2) < min (dim(Mi1),dim(Mi2)) .

When only talking about two graphs, generic identifiablity is also called model dis-
tinguishability [Sullivant, 2018, Section 16]. The geometric interpretation is that
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the intersection of any two models in the family is a Lebesgue measure zero subset
of both the models. However, this definition of generic identifiability is not appro-
priate for our settings. If there are two graphs G1 and G2 with models M1 ⊊ M2,
they should be distinguishable in practice by regularization, which favors the simpler
model with same fitting ability. We instead refer to the notion of quasi equiva-
lence in Ghassami et al. [2020], Ng et al. [2020], which requires the intersection of
two models has nonzero measure under the Lebesgue measure defined over the union
of both models. This leads to a definition of generic identifiability that is suitable for
directed graphs in our graphical modeling context.

Definition 5.4. Let {Mi}ki=1 be a finite set of algebraic models which lie in the cone
PD, the parameter i (or the model family) is generically identifiable if for each
pair of (i1, i2),

dim(Mi1 ∩Mi2) < max (dim(Mi1), dim(Mi2)) .

From the definition we immediately know that two models of different dimensions
are generically identifiable. Hence we can focus on the identifiability of models of the
same dimension. When dim(M1) = dim(M2), the min and max functions are actually
the same. Two irreducible models of the same dimension must either be equal or have
lower dimensional intersections.

The linear SEMs are polynomially parameterized models and hence algebraic models.
Each algebraic model M has a vanishing ideal I(M), defined by

I(M) = {f ∈ R[x] : f(x) = 0 for all x ∈M},

which is unique and characterizes the model.

The following well-known proposition illustrates how vanishing ideals can help to
certify generic identifiability.

Proposition 5.5. [Sullivant, 2018, Proposition 16.1.12] Let M1 and M2 be two ir-
reducible algebraic models (e.g., parameterized models) which sit inside the same am-
bient space. If there exist polynomials f1 and f2 such that

f1 ∈ I(M1) \ I(M2) and f2 ∈ I(M2) \ I(M1)

then dim(M1 ∩M2) < min(dim(M1), dim(M2)).

However, this proposition is far from an ideal tool since it requires expensive Gröbner
basis computations, which is not manageable for models with lots of parameters. In
this chapter we follow the approach of using algebraic matroids, which describes the
projection of the modelM onto all coordinate subspaces. This approach is delineated
for phylogenetic models in Hollering and Sullivant [2021], and we summarize the key
points here.

Definition 5.6. A matroidM = (E, I) is a pair where E is a finite set and I ⊆ 2E

satisfies

(1) ∅ ∈ I,

(2) If I ′ ⊆ I ∈ I, then I ′ ∈ I,

(3) If I1, I2 ∈ I and |I2| > |I1|, then there exists e ∈ I2\I1 such that I1 ∪ e ∈ I.
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Definition 5.7. Let W ⊂ kn be an irreducible variety over the field k and for S ⊆ [n]
let πS : kn → k|S| be the projection onto the coordinates in S. Let πS(W ) be the Zariski
closure of the projection of W . Then the pair ([n], IW ) defines a matroid where

IW = {S ⊆ [n] : πS(W ) = k|S|},

which is called the coordinate projection matroid of W and denoted byM(W ).

Proposition 5.8. [Hollering and Sullivant, 2021, Proposition 3.1] Let M1 and M2 be
two irreducible algebraic models sit in the same ambient space. Without loss of gen-
erality assume that dim(M1) ≥ dim(M2). If there exists a subset S of the coordinates
such that

S ∈M(M2) \ M(M1),

then dim(M1 ∩M2) < min(dim(M1), dim(M2)).

In our settings, the model M (and variety M) is parameterized and thus irreducible.
Under this condition, there exists another equivalent representation of the coordinate
projection matroid M(W ). Since we focus on the case of dim(M1) = dim(M2),
the roles of M1 and M2 are indeed symmetric. Either S ∈ M(M2) \ M(M1) or
S ∈M(M1) \ M(M2) implies generic identifiability.

Proposition 5.9. [Hollering and Sullivant, 2021, Proposition 2.8][Rosen, 2014] Sup-

pose that ϕ(θ1, . . . , θd) = (ϕ1(θ), . . . , ϕn(θ)) parameterizes W (i.e., W = ϕ(kd)). Let

J(ϕ) =

(
∂ϕj
∂θi

)
, 1 ≤ i ≤ d, 1 ≤ j ≤ n

be the transpose of the Jacobian matrix of ϕ. Then the matroid defined by the columns
of the matrix J(ϕ) using linear independence over the fraction field Frac(k[θ]) = k(θ)

gives the same matroid as the coordinate projection matroid M(ϕ(kd)). We call it
the Jacobian matroid of W .

5.2 Jacobian

Throughout this chapter we use the term “Jacobian” to refer to the transpose of the
usual Jacobian matrix. The (transposed) Jacobian matrix, denoted by J(ψG), is of

size (|D|+1)× p(p+1)
2 . Each column of J(ψG) corresponds to one entry Kij (i ≤ j) of

the precision matrix and each row corresponds to one edge weight λkl or the inverse
of common error variance s. If there is no ambiguity of index, we will write J for the
Jacobian J(ψG). When there are Jacobians of different graphs, we use superscript to
distinguish them.

Lemma 5.10. Let G = (V,D) be a directed graph. Then the entries of J = J(ψG)
are given by

(i) For i ∈ V and k → l ∈ D,

Jλkl,Kii
=

{
2sλil, k = i,

0, else.
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(ii) For i, j ∈ V, i ̸= j and k → l ∈ D,

Jλkl,Kij
=


−s, {k, l} = {i, j},
sλjl, k = i and j → l ∈ D,
sλil, k = j and i→ l ∈ D,
0, else.

(iii) The partial derivatives w.r.t. the inverse error variance s are

Js,Kii =

1 +
∑

l∈ch(i)

λ2il

 ,

Js,Kij =

−λij1{(i,j)∈D} − λji1{(j,i)∈D} +
∑

l∈ch(i)∩ch(j)

λilλjl

 .

The lemma gives the nonzero patterns of J(ψG). The columns of Kii have nonzero
entries in the row of its outgoing edges and inverse variance. In the columns of
Kij , i ̸= j (in general we do not know whether i or j is larger, but Kij and Kji

refer to the same column), the entry in the row λij (or λji) is nonzero if and only
if i → j ∈ D (or j → i ∈ D); other nonzero entries are the row pairs with those
edges pointing to a common child of i and j. To make the matrix simpler without
changing the column independence relations, we perform some row transformations
(left multiplications) and have the following lemma.

Lemma 5.11. Let G = (V,D) be a graph, and let J be the corresponding Jacobian.
Let Rλij

be the row of J corresponding to the egde λij ∈ D, and let Rs be the row
corresponding to s. Then after performing the sequence of row operations Rs →
Rs − λij

2s Rλij
and Rs → 2Rs, the new entries of row Rs are given by

Js,Ki,j =


2, if i = j,

−λij , if i→ j ∈ D,
0, otherwise.

Proof.

(i) First we assume that i = j, by Lemma 5.10 the entry Js,Kii is 1 +
∑

l∈ch(i) λ
2
il

and the entries Jλij ,Kii
are either 0 or 2sλij . After the sequence of operations,

all the square terms are cancelled and the constant 1 becomes 2.

(ii) Now we consider the case that i → j ∈ D. By Lemma 5.10, the entry Js,Kij

before this sequence of row operations is

Js,Kij = −λij +
∑

l∈ch(i)∩ch(j)

λilλjl.
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1

2

3

4

Figure 5.2: The diamond graph G used in Example 5.12.

After applying this sequence of row operations means we must add the quantity∑
(k,l)∈D

− λkl
−2s

Jλkl,Kij = − λij
−2s

(−s) +
∑

l∈ch(i)∩ch(j)

− λil
−2s

sλjl +
∑

l∈ch(i)∩ch(j)

− λjl
−2s

sλil

=
λij
2
−

∑
l∈ch(i)∩ch(j)

λilλjl

to Js,Kij
. The entry becomes

−λij

2 and the factor 2 is multiplied in the last operation.

(iii) The last case is i ̸= j and i, j are not connected. It is similar to case (ii) but without
the −λij term. And for the added quantity in the operations, the Jλij ,Kij

entry does
not exist. All terms cancels out and the result is 0.

The following example illustrates Lemma 5.10 and 5.11.

Example 5.12. Consider the graph G = (V,D) where V = {1, 2, 3, 4} and D =
{(1, 2), (2, 4), (1, 3), (3, 4)}, which is also pictured in Figure 5.2. The original Jacobian
J(ψ) is given by

K11 K22 K33 K44 K12 K23 K34 K13 K24 K14


2sλ12 0 0 0 −s 0 0 0 0 0 λ12

2sλ13 0 0 0 0 0 0 −s 0 0 λ13

0 2sλ24 0 0 0 sλ34 0 0 −s 0 λ24

0 0 2sλ34 0 0 sλ24 −s 0 0 0 λ34

1 + λ2
12 + λ2

13 1 + λ2
24 1 + λ2

34 1 −λ12 λ24λ34 −λ34 −λ13 −λ24 0 s

,

and the transformed version (Q · J(ψ)) is

K11 K22 K33 K44 K12 K23 K34 K13 K24 K14


2sλ12 0 0 0 −s 0 0 0 0 0 λ12
2sλ13 0 0 0 0 0 0 −s 0 0 λ13
0 2sλ24 0 0 0 sλ34 0 0 −s 0 λ24
0 0 2sλ34 0 0 sλ24 −s 0 0 0 λ34
2 2 2 2 −λ12 0 −λ34 −λ13 −λ24 0 s

.

The Jacobian matroid contains all sets whose corresponding columns in the Jacobian
are linearly independent. Its size can be very large even for small graphs. Every
matroid is uniquely determined by its bases, which are the maximal independent
sets with respect to inclusion (any subset of a maximal independent set is still an
independent set). Each basis has the same cardinality which is called the rank of
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the matroid, and in this case it is the rank of the Jacobian evaluated at a generic
point, or equivalently, the dimension of the model. For a simple directed graph, a
very favorable property is that the associated models have the dimension equaling to
the number of parameter counts.

Theorem 5.13. Let G = (V,D) be a simple directed graph andM(ψG) be the Jaco-
bian matroid of ψG. Then the Jacobian J has full rank, thus any basis of theM(ψG)
is of size |D|+ 1.

Proof. By Lemma 5.10, we know that each edge (i, j) in G leads to a −s term in
column Kij . We use the special paramaterization λij = 0 and s = 1 and consider
the (|D| + 1) × (|D| + 1) submatrix JS with columns corresponding to the set S =
{Kij | i → j or j → i ∈ D} ∪ {Kii} for any choice of i ∈ V . It is an identity matrix
up to row and permutations, hence it has rank |D| + 1. The submatrix has generic
full rank, and the Jacobian itself also has generic full row rank (over the fraction field
k(λ, s)).

Remark 5.14. This theorem shows that the model of a simple directed graph is of
expected dimension. However, a similar result does not hold for non-simple directed
graphs, even if the number of edges is smaller than that of the complete graph. In
general, we only know that the model of a non-simple directed graph has dimension
no larger than |D| + 1. If a simple graph G1 and a non-simple graph G2 have the
same model dimension, then we know that |D2| ≥ |D1|.

We conclude this subsection by stating some trivial necessary conditions for two
graphs to have the same matroid.

Lemma 5.15. Let G1 = (V,D1), G2 = (V,D2) be two directed graphs with the same
Jacobian matroid M. If two node i and j are adjacent or have common children in
one graph, then they must be adjacent or have common children in the other graph.

Proof. If i and j are adjacent or have common children in G1, then Kij is an inde-
pendent set in matroidM1, and also inM2. By Lemma 5.10 we know that i and j
are adjacent or have common children in G2.

Lemma 5.16. Let G1 = (V,D1), G2 = (V,D2) be two directed graphs with the same
Jacobian matroidM. If the node i is a sink node in both graphs, then pa1(i) = pa2(i).

Proof. For every node k ∈ pa1(i), by Lemma 5.15 we know that k and i are also
adjacent or have common children in G2. But i is a sink node in G2 and have no
children. Hence the only possible case is k ∈ pa2(i).

5.3 Graphical Conditions for Distinguishing SEMs with
Matroids

This section presents some nontrivial sufficient conditions for two graphs to have
different matroids. We begin with two preliminary lemmas, followed by the core out-
degree theorem which states that two non-complete graphs with different out-degree
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sequences have different matroids. Finally, we discuss some corollaries and extensions
involving the concept of parentally closed sets.

In the previous section, we prove that the Jacobian of a simple directed graph has full
rank by considering all columns corresponding to the edges. An intuitive idea is that
the edge structure provides information about independent sets, and we can search for
a maximal independent set for one of the two matroids, by selecting special columns
of edges. However, the presence of collider triples presents significant challenges.
Being a maximal independent set in one matroid is too restrictive, and it does not
provide desired information for the same induced submatrix in the other Jacobian.
Instead, we aim to find a column set that yields different rank submatrices in the
two Jacobians. This approach leads to the following two lemmas and the outdegree
theorem.

Lemma 5.17. Let G = (V,D) be a directed graph whose corresponding model has
dimension |D| + 1, and let J be the associated Jacobian. If G is not complete, then
for every node i and any subset of the columns S of size |D| + 1 such that S ∩
{Ki1,Ki2, . . . ,Ki(i−1),Kii,Ki(i+1), . . . } = ∅, it holds that rank(JS) ≤ |D|−| ch(i)|+1.

Proof. For any choice of k, l ̸= i, Lemma 5.10 implies that Jλij ,Kkl
= 0. We notice

that every column Kkl satisfies the condition by the construction of S. Hence all the
rows in JS corresponding to λij with j ∈ ch(i) are zero. The submatrix JS has at
least | ch(i)| zero rows and has rank rank(JS) ≤ |D| − | ch(i)|+ 1.

Lemma 5.18. Let G = (V,D) be a simple directed graph, and let J be the associated
Jacobian. If G is not complete, then for every node i, there exists a set of columns S of
size |D|+1 such that S ∩{Ki1,Ki2, . . . ,Ki(i−1),Kii,Ki(i+1), . . .} = ∅ and rank(JS) ≥
|D| − | ch(i)|+ 1.

Proof. We construct a set S satisfying the restriction and prove the rank property
of JS . Let SE = {Kkl | (k, l) ∈ D or (l, k) ∈ D}, and let S− ⊆ SE be the subset
consisting of columns of the form Kki. Therefore, S− corresponds to the adjacent
pairs {i, k} and |S−| = deg(i). We remove the subset S− from SE and add some
other columns to make the size to be |D|+1. There are two cases based on the value
of deg(i). For the matrix computation in the proof, we present the large intermediate
matrix in Section 5.5.

First consider the case where deg(i) < p−1. There is a node j0 not adjacent to i. Let
S+ be a subset of size (deg(i)+1) ≤ p−1 of set {K11,K22, . . . ,Ki−1,i−1,Ki+1,i+1, . . .}
that contains all Kjj such that (j, i) ∈ D or (i, j) ∈ D and Kj0j0 . The set S =
(SE\S−)∪S+ is of size |D|+1. Then the submatrix JS evaluated at s = 1, λji = ε > 0
and all other edge weights 0 is
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JS = · · · =

Kj0j0 · · · Kj1j1 · · · Kjqjq Kk1l1 · · · Kkmlm



0 · · · 0 · · · 0 −1 · · · O(ε) λk1l1
...

...
...

...
...

...
. . .

...
...

0 · · · 0 · · · 0 O(ε) · · · −1 λkmln

0 · · · 2ε · · · 0 × · · · × λj1i
...

...
...

. . .
...

...
...

...
...

0 · · · 0 · · · 2ε × · · · × λjqi
0 · · · × · · · × × · · · × λin1

...
...

...
...

...
...

...
...

...
0 · · · × · · · × × · · · × λinp

1 · · · 2 · · · 2 0 · · · 0 s

. (5.1)

After a reshuffling of the rows, the submatrix of JS corresponding to the rows labelled
by {λk1l1 , . . . , λkmlm , λj1i, . . . , λjqi, s} is a block upper triangular matrix. The diagonal
blocks correspond to the rows whose edges labels do not involve i (labelled by the
λkα,lα), the parents of i, and s. The block corresponding to the edges which do not
involve i is strictly diagonally dominant for a small enough choice of ε, and the other
two blocks are scalar multiples of the identity matrix. This submatrix of JS is of full
rank, and we have that rank(JS) ≥ (|D| − deg(i)) + |pa(i)|+ 1 = |D| − | ch(i)|+ 1.

If deg(i) = |V | − 1 and i is not a sink node, there exists some j0 ∈ ch(i). Let S+ =
{K11,K22, . . . ,K(i−1)(i−1),K(i+1)(i+1), . . . } and consider the set S = (SE \ S−) ∪ S+.
The set S is of size |D|, while the submatrix JS is of the same form as that in the
first case (equation (5.1)) and rank(JS) ≥ |D| − | ch(i)| + 1. Adding a column Kxy,
x, y ̸= i to the set S will not decrease the rank.

Lastly suppose that deg(i) = p−1 and i is a sink node inG. We take S = (SE\S−)∪S+
with S+ = {K11,K22, . . . ,K(i−1)(i−1),K(i+1)(i+1), . . . } ∪ {Kxy} such that x, y ̸= i
and x, y are not adjacent in G. Since G is not complete, such a pair of vertices is
guaranteed to exist. The submatrix JS with s = 1, λji = ε > 0 and all other edge
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weights 0 is

JS = · · · =
Kxy · · · Kxx Kyy Kj1j1 · · · Kjqjq Kk1l1 · · · Kkmlm



0 · · · 0 0 0 · · · 0 −1 · · · O(ε) λk1l1
...

...
...

...
...

...
...

...
. . .

...
...

0 · · · 0 0 0 · · · 0 O(ε) · · · −1 λkmlm

1 · · · 2ε 0 0 · · · 0 × · · · × λxi
1 · · · 0 2ε 0 · · · 0 × · · · × λyi
0 · · · 0 0 2ε · · · 0 × · · · × λj1i
...

...
...

...
...

. . .
...

...
...

...
...

0 · · · 0 0 0 · · · 2ε × · · · × λjqi
0 · · · × × × · · · × × · · · × λin1

...
...

...
...

...
...

...
...

...
...

...
0 · · · × × × · · · × × · · · × λinp

1 · · · 2 2 2 · · · 2 0 · · · 0 s

. (5.2)

The two 1’s of column Kxy in rows λxi and λyi can be eliminated by subtracting a
multiple of columns {Kxx,Kyy}. This may introduce nonzero entries in column Kxy

in the rows corresponding to the children of i, but which can also be eliminated using
the row corresponding to s. These procedures make JS the same form as in the first
case (equation (5.1)) and give the same rank inequality.

Remark 5.19. Lemma 5.18 also holds for non-simple graphs which satisfy deg(i) < p,
|D| ≤

(|V |
2

)
, and have expected dimension |D|+ 1.

The following example illustrates the proofs of Lemma 5.17 and Lemma 5.18.

Example 5.20. We again consider the graph pictured in Example 5.2 and set i = 3
which satisfies deg(3) = 2 < 3 = |V | − 1. The Jacobian J(ψ) is:

K11 K22 K33 K44 K12 K23 K34 K13 K24 K14


2sλ12 0 0 0 −s 0 0 0 0 0 λ12

0 2sλ23 0 0 0 −s 0 0 0 0 λ23

0 2sλ24 0 0 0 sλ34 0 0 −s 0 λ24

0 0 2sλ34 0 0 sλ24 −s 0 0 0 λ34

1 + λ2
12 1 + λ2

23 + λ2
24 1 + λ2

34 1 −λ12 −λ23 + λ24λ34 −λ34 0 −λ24 0 s

Lemma 5.18 guarantees that there exists a set S ∩ {K13,K23,K33,K34} = ∅ and
rank(JS) ≥ |D| − | ch(3)| + 1 = 4 − 1 + 1 = 4. From the proof of the lemma, the set
S which is constructed is S = (SE \ S−) ∪ S+ where

SE = {K12,K23,K34,K24},
S− = {K23,K34},
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and S+ can be any subset of size deg(3)+1 = 3 from {K11,K22,K44} which means it
must be the entire set. Thus S = {K11,K22,K44,K12,K24} and the submatrix JS is:

K11 K22 K44 K12 K24


2sλ12 0 0 −s 0 λ12
0 2sλ24 0 0 −s λ24
0 2sλ23 0 0 0 λ23
0 0 0 0 0 λ34

1 + λ212 1 + λ223 + λ224 1 −λ12 −λ24 s

.

Observe that if we substitute in s = 1, λji = ϵ, and let all other edge weights be zero,
then the submatrix becomes

K11 K22 K44 K12 K24


0 0 0 −1 0 λ12
0 0 0 0 −1 λ24
0 2ε 0 0 0 λ23
0 0 0 0 0 λ34
1 1 + ε 1 0 0 s

,

and we can now see that columns K11,K22,K12,K44 are linearly independent thus
rank(JS) ≥ 4. On the other hand, observe that the row corresponding to λ34 is a zero
row and so rank(JS) ≤ 4 which is guaranteed by Lemma 5.17.

Lemma 5.17 and Lemma 5.18 immediately lead to the following outdegree theorem,
which is the main theorem in this chapter.

Theorem 5.21. (Outdegree theorem) Let G1 = (V,D1), G2 = (V,D2) be two
simple directed graphs. If one of the graphs is not complete and there exists a node
i ∈ V such that | ch1(i)| ≠ | ch2(i)|, then G1 and G2 have different Jacobian matroids.

Proof. If |D1| ̸= |D2|, the two models must have different dimension and hence dif-
ferent matroids. We only need to consider the case |D1| = |D2|.

Without loss of generality we assume that | ch1(i)| > | ch2(i)|. By Lemma 5.18, there

exists a column set S = (SE\S−)∪ S+ such that rank(J
(2)
S ) ≥ |D2| − | ch2(i)|+1 but

by Lemma 5.17 we know that rank(J
(1)
S ) ≤ |D1| − | ch1(i)|+ 1. Hence, we have that

rank(J
(2)
S ) ≥ |D2| − | ch2(i)|+ 1 > |D1| − | ch1(i)|+ 1 ≤ rank(J

(1)
S ),

and thus J (1) and J (2) have different matroids.

Indeed, the conditions can be extended to non-simple graphs with expected dimension
|D| + 1 and degree of each node smaller than p. But we will omit the details since
we are primarily focused on simple graphs. When we consider the sink nodes in the
graph, i.e., nodes with empty children set, we immediately have the corollary.

Corollary 5.22. If two simple directed graphs have the same Jacobian matroid, and
at least one of them is not complete, then they must have the same sink nodes.
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1
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(a) G1

1

2

3

4

(b) G2

Figure 5.3: Two 4-cycle of different directions, the key edges for selecting column set are
highlighted in red.

A large proportion of the possible pairs of graphs (Tables 5.1 and 5.2) can be certified
to give a different Jacobian matroid by Theorem 5.21. Indeed, we can compute the
ratio of same outdegree graph pairs and all pairs for small size graphs. The values
for p = 5 or 6 are smaller than 1/100. However, in terms of absolute amount there
also remain many pairs for which the matroids are different but Theorem 5.21 cannot
be applied to recognize this difference. The following example is a trivial and typical
one.

Example 5.23. (The n-cycles of two directions) For n = 4, we cannot use the
approach as that in the proof of Theorem 5.21 to find different independence set
for 4-cycles 1 → 2 → 3 → 4 → 1 and 1 ← 2 ← 3 ← 4 ← 1. Specifically, the
selected column set S = (SE\S−) ∪ S+ is {22, 33, 44, 23, 34}. The two corresponding
submatrices indexed by S (denoted by M1 and M2) both have rank 4.

K22 K33 K44 K23 K34


0 0 0 0 0 λ12
2sλ23 0 0 −s 0 λ23
0 2sλ34 0 0 0 λ34
0 0 2sλ41 0 0 λ41

1 + λ223 1 + λ234 1 + λ241 −λ23 −λ34 s

,

K22 K33 K44 K23 K34


2sλ21 0 0 0 0 λ21
0 2sλ32 0 −s 0 λ32
0 0 2sλ43 0 −s λ43
0 0 0 0 0 λ14

1 + λ221 1 + λ232 1 + λ243 −λ32 −λ43 s

.

The submatrix M1 has a zero row of λ12 and the submatrix M2 has a zero row of λ14.
Noticing that there exists no v-structure in 4-cycles, if we substitute some column Kii

by any Kij in the selected column set, the zero row of M1 remains unchanged unless
i = 1, j = 2. We can select the column set {22, 33, 23, 34, 14}, then the old zero row
of M2 has an nonzero entry, which is not the case for M1. The two submatrices have
different ranks.
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i j

k

(a)

i j

k

(b)

Figure 5.4: The two forbidden subgraph structures for transitive triangle (shielded collider)
free graphs.

The selected 5× 5 submatrices are

K22 K33 K23 K34 K14


0 0 0 0 0 λ12
2sλ23 0 −s 0 0 λ23
0 2sλ34 0 0 0 λ34
0 0 0 0 −s λ41

1 + λ223 1 + λ234 −λ23 −λ34 −λ41 s

,

K22 K33 K23 K34 K14


2sλ21 0 0 0 0 λ21
0 2sλ32 −s 0 0 λ32
0 0 0 −s 0 λ43
0 0 0 0 −s λ14

1 + λ221 1 + λ232 −λ32 −λ43 −λ14 s

.

Our next theorem is actually another corollary of Theorem 5.21. It gives a general
approach to construct column set corresponding to submatrices of different ranks,
when the two graphs are transitive triangle-free.

Definition 5.24. Let G = (V,D) be a directed graph. A transitive triangle or
shielded collider in G is a triple of nodes i, j, k ∈ V such that the induced subgraph
of G on i, j, k is of one of the forms pictured in Figure 5.4. Alternatively, it means
that for all j ∈ V and for all i ∈ ch(j) it holds that ch(j) ∩ ch(i) = ∅. If a graph has
no transitive triangles then we say it is transitive triangle free.

Theorem 5.25. Let G1 = (V,D1), G2 = (V,D2) be different, transitive triangle-free,
non-complete, simple directed graphs with node set V . Then G1 and G2 have different
Jacobian matroids.

Proof. If G1 and G2 satisfy the condition in Theorem 5.21, the conclusion obviously
holds. Otherwise every node has the same out-degree in two graphs. Since G1 and
G2 are different, there must exist a node i such that ch1(i) ̸= ch2(i). We can assume
that i→ j ∈ D1 but i→ j /∈ D2. By Lemma 5.15 we know that either j → i ∈ D2 or
ch2(i) ∩ ch2(j) ̸= ∅.

For the case of j → i /∈ D2, it must hold that deg(j) ≤ p− 1 and ch2(i) ∩ ch2(j) ̸= ∅.
We can use the same construction as that in Lemma 5.18 (i replaced with j and j0
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with i): Let S = (SE \ S−) ∪ S+ where

SE = {Kkm | k → m) ∈ D2 or m→ k ∈ D2},
S− = {Kkj | k → j ∈ D2 or j → k ∈ D2},

and S+ is a subset of size (deg(j) + 1) ≤ p− 1 of the set

{Kii} ∪ {Kmm : m→ j ∈ D2 or j → m ∈ D2}.

By Lemma 5.17 and 5.18 we know that

rank(J
(2)
S ) ≥ |D2| − | ch2(j)|+ 1 = |D1| − | ch1(j)|+ 1 ≥ rank(J

(1)
S ).

The construction rules indicate that Kll ∈ S but Kij /∈ S. We can replace the column
Kll by Kij to obtain a new set S′, such that the rank of the corresponding submatrix

in J (2) increases by 1 and that for J (1) is kept unchanged. To see the rank increment,
we take s = 1, λil = 1, λmj = 1 where m ∈ pa(j) and all other edge weights 0:

J
(2)
S =

Kii Km1m1 , . . . ,Kmpmp Kij Kj1j1 , . . . ,Kjqjq Kk1l1 . . .Kknln


a 0 0 0 −I|D|−deg(j) λkαlα , kα, lα ̸= j
0 0 0 2I| pa(j)| 0 λjα,j , jα ∈ pa(j)

0 0T 1 0T 0T λjl

...
...

...
...

...
...

1 × × × 0T s

.

(5.3)

In Lemma 5.18 the rightmost pivot block is of the form I+εA, where the second terms
comes from common children of kα and lα. The transitive triangle-free assumption
now makes the second term zero. The zeros in the last column of blocks is also
from that assumption. The vector a at the upper left block has only one nonzero
entry ∂Kii/∂λij . It can be eliminated by subtracting a multiple of columns of the

rightmost Kkαlα block. Hence, we have rank(J
(2)
S′ ) ≥ |D2| − deg(j) + | pa(j)| + 2 =

|D2|−| ch(j)|+2. On the other hand, the | ch1(j)| zero rows in J
(1)
S correspond to the

edges λjx, x ∈ ch1(j). Since i, j are not adjacent and ch1(i) ∩ ch1(j) = ∅ (transitive
triangle-free), we know that (J

(1)
S′ )λjx,Kij

= 0 and rank(J
(1)
S′ ) ≤ |D1| − | ch1(i)| + 1 <

|D2| − | ch2(i)|+ 2 ≤ rank(J
(2)
S′ ).

If j → i ∈ D2, then the same construction of S which is used in Theorem 5.21 can
be used here, since it must be that either deg2(j) < p − 1 or deg2(j) = p − 1 but j
is not a sink node. In either case, one can take S and then replace Kii with Kij to
obtain S′. The argument then proceeds identically to the previous case so we omit
the details.

The following example illustrates the construction process of S in Theorem 5.25.

Example 5.26. Consider the graphs G1 and G2 in Figure 5.5 which are the same
except for the change in the outgoing edges from node 1. These two graphs clearly have
the same out-degree sequence which is (3, 1, 1, 0, 1, 1). This means that Theorem 5.21
cannot be applied to certify that the G1 and G2 have different Jacobian matroids. We
can instead use the construction in Theorem 5.25 to find a suitable set S which will
distinguish the matroids.
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(b) G2

Figure 5.5: Two graphs with the same out-degree sequence but which have no transitive
triangles (shielded colliders).

In this case we have the ch1(1) ̸= ch2(1) (note that | ch1(1)| = | ch2(1)|!) so i = 1.
Furthermore, the edge (1, 2) ∈ D1 but (1, 2) /∈ D2 so j = 2. This means that S =
(SE \ S−) ∪ S+ where

SE = {Kkm | (k,m) ∈ D2 or (m, k) ∈ D2} = {K14,K15,K16,K25,K26,K35,K36},
S− = {Kkj | (k, j) ∈ D2 or (j, k) ∈ D2} = {K25,K26},
S+ = {K55,K66}.

Note that in the language of Theorem 5.25, the common child of i = 1 and j = 2
is l = 5. Now according to Theorem 5.25, the set which will actually yield a rank
difference is the set S′ which is obtained by replacing Kll = K55 with Kij = K12.
This yields the set

S′ = {K11,K12,K66,K14,K15,K16,K35,K36}

which indeed has |D2|+ 1 = 8 elements as is desired. Then J
(2)
S has the form

J
(2)
S =

K11 K12 K66 K14 K15 K16 K53 K36



2sλ14 0 0 −s 0 0 0 0 λ14
2sλ15 sλ25 0 0 −s 0 0 0 λ15
2sλ16 0 0 0 0 −s 0 0 λ16
0 0 0 0 0 0 0 −s λ36
0 0 0 0 0 0 −s 0 λ53
0 0 2sλ62 0 0 0 0 0 λ62
0 sλ15 0 0 0 0 0 0 λ25
2 0 2 −λ14 −λ15 −λ16 −λ53 −λ36 s

.

It is clear that this matrix has rank 8 while J
(1)
S only has rank 7.

We can rewrite Theorems 5.21 and 5.25 as the following theorem, to give some gener-
ically identifiable subclasses.

Theorem 5.27. Let G be the collection of non-complete simple directed graphs. If the
collection satisfies one of the following conditions, then the graph parameter indexing
the graphs in G is generically identifiable under equal variance assumption:

(i) Every graph G ∈ G has a unique outdegree sequence.
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(ii) Every graph G ∈ G is transitive triangle-free.

Based on sink nodes analysis, we can obtain a partial identifiability result, which says
that a DAG and a cyclic graph cannot generate the same distribution generically
under the equal error variances assumption.

Theorem 5.28. Let G1 = (V,D1) and G2 = (V,D2) be different directed graphs for
models with equal error variances. If G1 is a DAG and G2 contains a cycle, then
{MG1 ,MG2} are generically distinguishable.

Proof. We prove the result by contradiction. Suppose that G1 and G2 can generate
the same distributions generically, then they must have the same matroid. There
exists an open ball B of |D1| + 1 dimension in MG1 ∩MG2 , in which every value of
the vectorized form vec(K) can be generated by a parameterization of G1 and of G2.
By Theorem 5.13 and Lemma 5.16, the two graphs G1 and G2 must have the same
sink nodes V (1) and edges to sink nodes.

For a precision matrix K with vec(K) ∈ B, all the edges from V \V (1) to V (1) and the
variance inverse s can be uniquely determined from K, which are the same in both
graphs. Then we consider the subgraphs induced by V \V (1) in G1 and G2, denoted

by G
(1)
1 and G

(1)
2 . We can subtract the the contributions of edges from V \V (1) to

V (1) in K. This procedure gives the common precision matrix K
(1)
1 = K

(1)
2 for the

subgraphs. Since the inverse variance parameter has been determined to be common,
the two subgraphs must have the same sink nodes again. Indeed, if node i is a sink

node in G
(1)
1 but not in G

(1)
2 , then the (i, i) entry in K

(1)
1 and K

(1)
2 cannot be equal.

We can perform sink nodes deletion iteratively. Since G1 is a DAG and G2 is cyclic,

there must exists some k, such that after k steps the obtained subgraph G
(k)
2 have no

sink nodes while G
(k)
1 have some sink nodes. Thus K

(k)
1 and K

(k)
2 are not the same.

Two different original precision matrices K1 and K2 can be recovered from K
(k)
1 and

K
(k)
2 with the edge weights and inverse variance that have been uniquely determined

to be common, which contradicts to the fact that the original precision matrix K is
arbitrary in an full-dimension open ball in MG1 ∩MG2 .

Now we are ready to discuss the extension of the outdegree theorem. In Theorem 5.21
we consider the whole neighborhood of a node, i.e., ne(i) = pa(i)∪ch(i). One sufficient
condition for different matroids is different sizes of children set | ch1(i)| ≠ | ch2(i)|,
which is still too restrictive. Indeed, we can focus on a subset of the neighborhood and
compare the numbers of children in the subset for the two graphs. This approach leads
to our last major theorem, which is a much stronger generalization of Theorem 5.21,
but also more difficult to check. Before stating the theorem we need a new definition.

Definition 5.29. Let G = (V,D) be a directed graph and i ∈ V . A subset L ⊆ ne(i)
is parentally closed set with respect to i if pa(L) ∩ ne(i) ⊆ L. We denote the
collection of all parentally closed sets with respect to i by Li.

Theorem 5.30. Let G1 = (V,D1), G2 = (V,D2) be two simple directed graphs which
are not complete. Let i ∈ V , and let Lki be the collection of parentally closed sets
with respect to i for graph Gk. If there exists a set L ∈ Lki such that | chk(i) ∩ L| >
| ch3−k(i) ∩ L|, k ∈ {1, 2}, then G1 and G2 have different matroids.

60



5.3 Graphical Conditions for Distinguishing SEMs with Matroids

i

j

l

L

Figure 5.6: This displays the subgraph relating i, j, and l in the proof of Theorem 5.30.
Since L is parentally closed and j ∈ L and l ∈ pa(j) ∩ ne(i), it must be that
l ∈ L.

Proof. The proof is similar to that of Theorem 5.21. We select a special column set
S, such that the submatrix in one Jacobian has a lower bound of rank, and that in
the other Jacobian has a smaller upper bound of rank.

Suppose that the inequality | ch1(i) ∩ L| > | ch2(i) ∩ L| holds for some L ∈ L1i . If
L = V \{i}, the case has been discussed in the proof of Proposition 5.21. Otherwise
we can assume that |L| < p− 1. Under this condition, we set

SE = {Kmn | m→ n or n→ m ∈ D2},
S− = {Kim | m ∈ L},
S+ = {Kmm | m→ i or i→ m ∈ D2,m ∈ L} ∪ {Kj0j0},

where j0 is an arbitrary node in V \({i} ∪ L).

The size of the column set S = (SE\S−)∪S+ is |D2|− |L∩ne2(i)|+ |L∩ne2(i)|+1 =

|D2|+1, hence the submatrices J
(1)
S , J

(2)
S are of size (|D2|+1)× (|D2|+1). For each

node j ∈ ch1(i)∩L, nonzero entries of J (1) in the row λij may only appear in columns
Kii,Kij or Kil, for l ∈ pa1(j). We claim that none of these columns are contained in
S.

By the construction rule, we know that Kii /∈ S, S+ and Kij ∈ S− since the parental
closure of L implies that j ∈ L. If Kil ∈ SE then l ∈ ne(i) and thus l ∈ ne(i) ∩
pa1(j) ⊆ L so l ∈ L (this is pictured in Figure 5.6), which implies that Kil ∈ S−
and so it holds that Kil /∈ S. Thus J1

S contains at least | ch1(i) ∩ L| zero rows, and
rank(J1

S) ≤ |D1|+ 1− | ch1(i) ∩ L|.

Next, we construct one specific paramaterization of K and J2
S , to show that the latter

has generic rank greater or equal than |D2|+1−| ch2(i)∩L|. For each lq ∈ pa2(i)∩L,
we set λilq = ε. Then we set s = 1 and all other edge weights zero. The submatrix J2

S

takes similar form as that in (5.1), and it has | ch2(i)∩L| instead of | ch2(i)| uncertain
rows. Hence we have

rank(J
(2)
S ) ≥ |D2| − | ch2(i) ∩ L|+ 1 > |D1| − | ch1(i) ∩ L|+ 1 ≥ rank(J

(1)
S ),

which completes the proof.

Remark 5.31. Theorems 5.21 and 5.25 are special cases of Theorem 5.30. The
former only checks the trivial parent closed set L = ne(i), while the latter considers
L1 = P(ch1(i)) and L2 = P(ch1(i)), where P is the powerset operator.
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l1 l2
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Figure 5.7: Example: necessity of checking unions of minimal parentally closed sets.

The minimal parentally closed sets w.r.t a node i can be constructed by starting from
one single child and closing the parents in ch(i) sequentially. The collection L consists
of the union of multiple minimal parentally closed sets. The union operation increase
the complexity, but it is necessary. For example, if j ∈ pa1(i) ∩ ch2(i) lies in the
intersection of two different parentally closed sets ({j, l1} and {j, l2}) in L1, the node
j contributes in both sets as a child of i in G2, with equalities | ch1(i) ∩ {j, l1}| =
| ch2(i) ∩ {j, l1}|, | ch1(i) ∩ {j, l2}| = | ch2(i) ∩ {j, l1}|. Then the union really makes a
difference: 2 = | ch1(i) ∩ {j, l1, l2}| > | ch2(i) ∩ {j, l1, l2}| = 1.

5.4 Computational Study

5.4.1 Summary

We perform computational checks for simple directed graphs with p ≤ 6 (except
complete graphs with 6 nodes). All of these graphs are certified to have different
models (and most of them have different matroids). Computing ranks of submatrices
determines the maximal independent sets and gives the Jacobian matroid of a graph.
We store the matroids in a list for comparisons.

The results for p ≤ 3 can be checked manually. For p = 4, 5, 6, there are 729,
59409, 14348907 simple directed graphs, and we must rely on software. The following
Lemma 5.32 can slightly reduce the number of graphs that need to be checked. We
also apply the outdegree theorem to avoid some redundant checks.

Lemma 5.32. If the graph parameter indexing the simple directed graphs up to k
nodes is generically identifiable, then the graph parameter indexing all simple directed
graphs with k + 1 nodes and up to k edges is also generically identifiable.

Proof. Let G1 and G2 be two arbitrary simple directed graphs with k + 1 nodes and
k edges. If both graphs are connected, then they are polytrees. The identifiability is
from the result for DAGs. Otherwise at least one graph is not connected and has a
node i of degree 0. Suppose the two graphs have the same matroid, Lemma 5.16 and
Theorem 5.21 imply that the node i is a sink node and have the same adjacencies in
both graph. That is, the node i has degree 0 in both graphs. Since the assumption
ensures the identifiability of graphs with k nodes, the two subgraphs with nodes in
V \{i} cannot generate the same distribution generically. That marginal distribution
is independent to the distribution of Xi, thus the original graphs G1 and G2 are
distinguishable.
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Theorem 5.33. Let p ≤ 6. Consider the set of graphical models given by simple non-
complete graphs with p nodes. Then the graph parameter is generically identifiable.

Proof. The details and example graphs for this proof are in Sections 5.4.2,5.4.3
,5.4.4,5.4.5 and 5.4.6.

The case of p = 2 is trivial. Then we compute and compare all matroids for the 27
graphs with 3 nodes. Any pair of graphs are distinguishable via matroid or covariance
matrix condition. Indeed, there are 5 different matroids among 8 graphs with 3 edges.
The two 3-cycles correspond to two matroids, and other 6 graphs are 2-to-1. Each
pair are transitive triangles with the edge between last two nodes in two directions.
Only the node with outdegree zero corresponds to the minimum of all diagonal entries
in K; see Chen et al. [2019].

By Lemma 5.32, if we have certified the identifiability of all graphs with p nodes,
then for graphs with p+ 1 nodes, we only need to test those that have at least p+ 1
edges. In this way, we can perform complete symbolic checks via Mathematica for
graphs with 4 or 5 nodes and conduct random checks for graphs with p = 6 nodes.

There are 496 different graphs with at least 4 edges for p = 4. The computation yields
484 different Jacobian matroids, of which 472 matroids have a 1-to-1 correspondence
to graphs and other 12 matroids have a 1-to-2 correspondence. The 12 pairs of graphs
with the same matroids happen to be the 24 complete DAGs. Each pair contains one
DAG of the 24, and another one with the edge between last two nodes reversed.
Like that in p = 3 case, the graph pairs with the same matroid can be identified via
minimum value in K.

For p = 5, the number of graphs with at least 5 edges increases to 54528. The
computational result shows similar patterns as for smaller p′s. Most of the graphs
have unique matroid, while others have a 2-to-1 correspondence. The two graphs G1

and G2 have the same Jacobian matroid if and only if the following conditions are all
satisfied:

(1) Both G1 and G2 are complete,

(2) The subgraphs induced by node {i1, i2, i3} are the same in both G1 and G2,

(3) pa1(i4) = {i1, i2, i3}, pa1(i5) = {i1, i2, i3, i4} and
pa2(i5) = {i1, i2, i3}, pa2(i4) = {i1, i2, i3, i5}.

Thus, G1 and G2 are complete and have p − 2 nodes that serve as common parents
of the last 2 nodes. They also share the same edges except the edge between the last
2 nodes. These graph pairs are distinguished by diagonal entries in K.

When considering graphs with 6 nodes, the total number of which have at least 6
edges is approximately 107. For each fixed set size, the number of column sets is also
much larger compared to graphs with 5 nodes. Consequently, performing exhaustive
symbolic computation is impossible. To simplify the computation, We apply The-
orem 5.21 and use random integers parameterization. According to Theorem 5.21,
we only need to compute and compare the matroids within every collection of graphs
sharing the same outdegree sequence. We consider all sequence of length 6 with every
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Chapter 5 Identifiability of Linear SEMs using Algebraic Matroids

value not exceeding 5 and the sum ranging from 6 to 14 (excluding complete graphs),
which is a superset of all valid outdegree sequences.

Obviously, outdegree sequences from different unordered set are different. If two
different sequences are from the same unordered set, there must still exist a node
with different outdegrees in the two graphs. Thus, we can focus on all the sequences
ordered from largest to smallest along the nodes 1, 2, 3, 4, 5, 6. We generate all possible
outdegree sequences and, for each sequence, list all possible graphs via depth first
search. For the sequences with sum smaller than 15, we only need to compare the
matroids within all graphs corresponding to the same sequence, which can greatly
reduce the computation time. In practice, we substitue random integers into the
parameters and compute the independent sets. The computation result shows that
every graph has a unique matroid.

Alternatively we also apply the parentally closed set condition in Theorem 5.30,
and it successfully distinguish all pairs of graphs among non-complete graphs with 6
nodes. The two criteria yield compatible results, and the comparison is recorded in
Table 5.3.

Based on Theorem 5.33 and the computation results presented in the following sub-
sections, we can propose a promising conjecture.

Conjecture 5.34. Consider the infinite and countable set of graphical models given
by simple directed graphs with p ∈ {1, 2, . . . } nodes. Then the graph indexing param-
eter is generically identifiable.

5.4.2 p = 2

In the case of p = 2, we have 3 different graph structures: {}, {(1,2)}, {(2,1)}.

• {}:

With edge set {}, the map ψ has only 1 parameter, that is the variance of noise
ω. K = sI and J(ψ) = (1, 0, 1). The independent sets in the matroid are
∅, {1}, {3}.

• {(1,2)}:

K = s

(
1 −λ12
0 1

)(
1 0
−λ12 1

)
= s

(
1 + λ212 −λ12
−λ12 1

)
,

J(ψ) =

(
∂K

∂(λ12, s))

)
=

(
2sλ12 0 −s
1 + λ212 1 −λ12

)
.

The independent sets of the matroid are

∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}.

We can also consider the covariance matrix of X. That is

Σ = ω

(
1 λ12
0 1 + λ212

)
,
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and it satisfies the equation

Σ11 = Σ22 − Σ2
12/Σ11.

• {(2,1)}:

K = s

(
1 0
−λ21 1

)(
1 −λ21
0 1

)
= s

(
1 −λ21
−λ21 1 + λ221

)
,

J(ψ) =

(
∂K

∂(λ21, s))

)
=

(
0 2sλ21 −s
1 1 + λ221 −λ21

)
.

The independent sets of the matroid are the same as that of {(1, 2)}. However,
we can derive similar but different covariance matrix elements relationship:

Σ22 = Σ11 − Σ2
12/Σ22,

and which could be used to identify the two different models.

The matroid structure can be used to determine if there exists an edge between node 1
and 2. The edge direction is identified by the equation of covariance matrix elements.
Specifically, the node with larger variance corresponds to the child in the two nodes.

5.4.3 p = 3

In the case of p = 3, since we do not allow 2-cycle, the graph has at most 4 parameters
(3 edge weights and 1 inverse error variance). The number of possible graph structures
(assuming connected) is 20. We will first consider the 5 distinct graph structures
with descendant relationship in topological order, then examine other structures via
permutation of nodes.

Two matroids are different if and only if there exist a pair of different independent
sets. Since every independent set is contained in some maximal independent set, two
matroid are different if and only if there exist a pair of different maximal independent
sets. We will only consider maximal independent sets with respect to the indexes of
columns in this section.

• {(1, 2), (1, 3)}:

K = s

 1 −λ12 −λ13
0 1 0
0 0 1

 1 0 0
−λ12 1 0
−λ13 0 1


= s

 1 + λ212 + λ213 −λ12 −λ13
−λ12 1 0
−λ13 0 1

 .

J(ψ) =

(
∂(K11,K22,K33,K12,K23,K13)

∂(λ12, λ13, s))

)

=

 2sλ12 0 0 −s 0 0
2sλ13 0 0 0 0 −s

1 + λ212 + λ213 1 1 −λ12 0 −λ13

 .
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The maximal independent sets are

{11, 22, 12}, {11, 22, 13}, {11, 33, 12}, {11, 33, 13},
{11, 23, 13}, {22, 12, 13}, {33, 12, 13},

or with column indices

{1, 2, 4}, {1, 2, 6}, {1, 3, 4}, {1, 3, 6}, {1, 4, 6}, {2, 4, 6}, {3, 4, 6}.

In this case, the positions of node 2 and node 3 are symmetric. There are
another 2 graph structures through nodes permutation: {(2, 1), (2, 3)} (via (12))
and {(3, 1), (3, 2)} (via (13)). The two graph structure corresponds to column
permutation (12) and (13), respectively, in the Jacobian matrix.

In the maximal independent sets of graph structure {(1, 2), (1, 3)}, column 1
appears 5 times, column 2 appears 3 times, and column 3 appears 3 times.
Hence, (12) and (13) yield distinct maximal independent sets.

• {(1, 3), (2, 3)}

K = s

 1 0 −λ13
0 1 −λ23
0 0 1

 1 0 0
0 1 0
−λ13 −λ23 1


= s

 1 + λ213 λ13λ23 −λ13
λ13λ23 1 + λ223 −λ23
−λ13 −λ23 1

 .

J(ψ) =

(
∂(K11,K22,K33,K12,K23,K13)

∂(λ23, λ13, s))

)

=

 0 2sλ23 0 sλ13 −s 0
2sλ13 0 0 sλ23 0 −s
1 + λ213 1 + λ223 1 λ13λ23 −λ23 −λ13

 .

The maximal independent sets are

{11, 22, 33}, {11, 22, 12}, {11, 22, 23}, {11, 22, 13}, {11, 33, 12}, {11, 33, 23},
{11, 12, 23}, {11, 12, 13}, {11, 23, 13}, {22, 33, 12}, {22, 33, 13}, {22, 12, 23},
{22, 12, 13}, {22, 23, 13}, {33, 12, 23}, {33, 12, 13}, {33, 23, 13}, {12, 23, 13}.

or with column indices

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 6}, {2, 4, 5},
{2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}.

In this case, the maximal independent sets contain 4 occurrences of (1, 2) pairs,
2 occurrences of (1, 3) pairs, and 2 occurrences of (2, 3) pairs.

The possible permutations on nodes are (13) and (23), resulting the graph
structures {(2, 1), (3, 1)} and {(1, 2), (3, 2)} respectively. The corresponding
premutations on the columns of jacobian matrix are also (13) and (23). These
permutations yield distinct maximal independent sets.
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• {(1, 2), (2, 3)}

K = s

 1 −λ12 0
0 1 −λ23
0 0 1

 1 0 0
−λ12 1 0
0 −λ23 1


= s

 1 + λ212 −λ12 0
−λ12 1 + λ223 −λ23
0 −λ23 1

 .

J(ψ) =

(
∂(K11,K22,K33,K12,K23,K13)

∂(λ12, λ23, s))

)

=

 2sλ12 0 0 −s 0 0
0 2sλ23 0 0 −s 0

1 + λ212 1 + λ223 1 −λ12 −λ23 0

 .

The maximal independent sets are

{11, 22, 33}, {11, 22, 12}, {11, 22, 23}, {11, 33, 23},
{11, 12, 23}, {22, 33, 12}, {22, 12, 23}, {33, 12, 23},

or with column indices

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}.

In this case, there are 5 possible permutations in both the nodes and the Jaco-
bian matrix column space: (12), (23), (13), (123), and (132).

In the maximal independent sets of the original graph structure (1, 2), (2, 3),
there are 3 occurrences of (1, 2) pairs, 2 occurrences of (2, 3) pairs, and 2 occur-
rences of (1, 3) pairs. Therefore, (12), (23), and (13) yield distinct independent
sets. Additionally, noticing that there are 3 occurrences of (2, 4) pairs and 2
occurrences of (3, 4) pairs, the permutations (123) and (321) can also produce
distinct independent sets.

• {(1, 2), (1, 3), (2, 3)} (and {(1, 2), (1, 3), (3, 2)} also has the same matroid)

K = s

 1 −λ12 −λ13
0 1 −λ23
0 0 1

 1 0 0
−λ12 1 0
−λ13 −λ23 1


= s

 1 + λ212 + λ213 −λ12 + λ13λ23 −λ13
−λ12 + λ13λ23 1 + λ223 −λ23

−λ13 −λ23 1

 .

J(ψ) =

(
∂(K11,K22,K33,K12,K23,K13)

∂(λ12, λ23, λ13, s))

)

=


2sλ12 0 0 −s 0 0
0 2sλ23 0 sλ13 −s 0

2sλ13 0 0 sλ23 0 −s
1 + λ212 + λ213 1 + λ223 1 −λ12 + λ13λ23 −λ23 −λ13

 .
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1

2 3

(a)

1

2 3

(b)

Figure 5.8: Two graphs with the same Jacobian matroid.

The maximal independent sets are

{11, 22, 33, 12}, {11, 22, 33, 13}, {11, 22, 12, 23},
{11, 22, 12, 13}, {11, 22, 23, 13}, {11, 33, 12, 23},
{11, 33, 12, 13}, {11, 33, 23, 13}, {11, 12, 23, 13},
{22, 33, 12, 13}, {22, 12, 23, 13}, {22, 12, 23, 13},

or with column indices

{1, 2, 3, 4}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5},
{1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}.

Similar to the previous case, there are 5 possible permutations on nodes: (12),
(23), (13), (123) and (132). The corresponding permutations on the columns
are (12)(56), (23)(46), (13)(45), (123)(456) and (321)(654).

After examining all the permutations, it is observed that all permutations except
(23) yield different maximal independent sets.

Although these two graphs {(1, 2), (1, 3), (2, 3)} and {(1, 2), (1, 3), (3, 2)} have
the same Jacobian matroid, they can still be distinguished by other method.
In Figure 5.8 (a) the graph structure {(1, 2), (1, 3), (2, 3)}, the smallest entry in
{K11,K22,K33} is K33. However, in Figure 5.8 (b), the smallest diagonal entry
is K22.

• {(1, 2), (2, 3), (3, 1)}

K = s

 1 −λ12 0
0 1 −λ23
−λ31 0 1

 1 0 −λ13
−λ12 1 0
0 −λ23 1


= s

 1 + λ212 −λ12 −λ31
−λ12 1 + λ223 −λ23
−λ31 −λ23 1 + λ231

 .

J(ψ) =

(
∂(K11,K22,K33,K12,K23,K13)

∂(λ12, λ23, λ31, s))

)

=


2sλ12 0 0 −s 0 0
0 2sλ23 0 0 −s 0
0 0 2sλ31 0 0 −s

1 + λ212 1 + λ223 1 + λ231 −λ12 −λ23 −λ13

 .
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The maximal independent sets are

{11, 22, 33, 12}, {11, 22, 33, 23}, {11, 22, 33, 13},
{11, 22, 12, 13}, {11, 22, 23, 13}, {11, 33, 12, 23},
{11, 33, 23, 13}, {11, 12, 23, 13}, {22, 33, 12, 23},
{22, 33, 12, 13}, {22, 12, 23, 13}, {33, 12, 23, 13},

or with column indices

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5},
{1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}.

All 5 possible permutations will preserve the cycle order or reverse it. The
reversed graph structure is {(1, 3), (3, 2), (2, 1)}, induced by (23) on nodes and
(23)(46) on precision matrix entries. In the maximal independent sets, there
are 3 occurrences of the (1, 2, 3) triple, 2 occurrences of the (1, 3, 4) triple, and 3
occurrences of the (2, 3, 4) triple. Therefore, the combinations of these sets are
different from the combinations of sets for the graph structure (1, 2), (2, 3), (1, 3).

We can compute the precision matrix and find

K = s

 1 + λ213 −λ21 −λ13
−λ21 1 + λ221 −λ32
−λ13 −λ32 1 + λ232

 .

The transposed Jacobian J for {(1, 3), (3, 2), (2, 1)} is

J(ψ) =


2sλ13 0 0 0 0 −s
0 2sλ23 0 −s 0 0
0 0 2sλ32 0 −s 0

1 + λ213 1 + λ221 1 + λ232 −λ21 −λ32 −λ13

 .

The maximal independent sets are

{11, 22, 33, 12}, {11, 22, 33, 23}, {11, 22, 33, 13},
{11, 22, 12, 23}, {11, 22, 23, 13}, {11, 33, 12, 23},
{11, 33, 12, 13}, {11, 12, 23, 13}, {22, 33, 12, 13},
{22, 33, 23, 13}, {22, 12, 23, 13}, {33, 12, 23, 13},

or with column indices

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 5, 6}, {1, 3, 4, 5},
{1, 3, 4, 6}, {1, 4, 5, 6}, {2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6},

which are different from those of the graph {(1, 2), (2, 3), (3, 1)}.

5.4.4 p = 4

As described in the proof of Theorem 5.33, the 12 pairs of graphs with the same
matroids correspond to the 24 complete DAGs.
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1 2

3 4

1 2

3 4

Figure 5.9: Two graphs with the same Jacobian matroid, p=4.

number of edges |D| = 4 |D| = 5

n.d. by outdeg seq 1443 708

n.d. by outdeg seq & closures 0 0

total number of pairs 28680 18336

Table 5.1: Number of pairs of 4-node simple directed graphs, with same number of edges,
that cannot be distinguished by Theorem 5.21 (outdegree sequence method) or
Theorem 5.30 (outdegree sequence and parentally closed sets method).

5.4.5 p = 5

For p = 5, the computation of Jacobian matroid for all graphs takes more than three
days. However, the result follows the same pattern: complete graphs with p−2 nodes
being common parents of the last 2 nodes, and the same edges except for the edge
between the last 2 nodes, exhibit the same matroid. Figure 5.10 provides an example
of two graphs with the same Jacobian matroid.

5.4.6 p = 6

It is not possible to traverse all simple directed graphs with 6 nodes due to their large
number. Therefore, we approach the problem by considering subclasses of graphs
that have the same numbers of edges. Within each subclass, we further analyze
outdegree sequences. To expedite the computation, we assign random integers as
parameter values, which accelerates the rank computations. The result demonstrate
that all non-complete simple directed graphs with 6 nodes possess different matroids.
Additionally, the parentally closed set condition functions effectively and successfully

4 5

3

2

1

4 5

3

2

1

Figure 5.10: Two graphs with the same Jacobian matroid, p=5.
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number of edges |D| = 5 |D| = 6 |D| = 7

n.d. by outdeg seq 567006 1215940 1292870

n.d. by outdeg seq & closures 0 0 0

total number of pairs 32510016 90310080 117957120

number of edges |D| = 8 |D| = 9

n.d. by outdeg seq 615060 104920

n.d. by outdeg seq & closures 0 0

total number of pairs 66349440 13104640

Table 5.2: Number of pairs of 5-node simple directed graphs, with same number of edges,
that cannot be distinguished by Theorem 5.21 (outdegree sequence method) or
Theorem 5.30 (outdegree sequence and parentally closed sets method).

distinguishes all pairs of those graphs. The comparison of two graphical criteria is
presented in Table 5.3.

number of edges |D| = 6 |D| = 7 |D| = 8

outdeg seq 282621720 1391117760 4359482730

outdeg seq & closures 0 0 0

total number of pairs 51302291040 339223959360 1356896661120

number of edges |D| = 9 |D| = 10 |D| = 11

outdeg seq 8597383980 10414049394 7430794740

outdeg seq & closures 0 0 0

total number of pairs 3283355595520 4728032365056 3907464637440

number of edges |D| = 12 |D| = 13 |D| = 14

outdeg seq 2914540765 558189990 41578860

outdeg seq & closures 0 0 0

total number of pairs 1736650639360 369937182720 30198865920

Table 5.3: Number of pairs of 6-node simple directed graphs, with same number of edges,
that cannot be distinguished by Theorem 5.21 (outdegree sequence method) or
Theorem 5.30 (outdegree sequence and parentally closed sets method).
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5.5 Long Matrices in Intermediate Steps

• The matrix in (5.1).
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• The matrix in (5.2).
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Chapter 6

Partial Homoscedasticity in Causal
Discovery with Linear Models

The common theme in the previous chapters was the consideration of graphical models
with feedback loops, which appear as directed cycles in the graphs underlying the
models. In this chapter we consider a different extension of DAG models that takes
up the theme of models with homoscedastic errors. In a fully homoscedastic model,
the errors appearing in the structural equations all have equal variance (compare
Chapter 5). Our extension considers a more nuanced approach, in which we keep
with graphs that are DAGs but allow the error variances in the model specification to
be equal only in within blocks of variables. This assumption is called groupwise
equal variance or partial homoscedasticity.

Formally, our models are now given by a pair of a DAG and an associated partition,
where the partition blocks indicate which groups of errors are assumed to have equal
variance. The finest possible partition then corresponds to the classical model that
makes no assumptions about error variance equality, whereas the coarsest partition
recovers the fully homoscedastic case.

6.1 Setup

We consider linear structural equation models with partial knowledge about equality
among the error variances. The partial knowledge is given by a partition of the node
set V , and all nodes in the same block of the partition share the same error variance.
The following two definitions give the details.

Definition 6.1. Let Π = {π1, . . . , πK} be a family of non-empty subsets of V . Then
Π is a partition of V if π1, . . . , πK are pairwise disjoint and ∪Kk=1πk = V . The sets
π1, . . . , πK are the blocks of the partition. Corresponding to Π is the equivalence
relation that has i, j ∈ V equivalent if i, j are in the same block of Π; we then write
i ∼Π j.

Definition 6.2. Let G = (V,D) be a DAG, and let Π be a partition of V . The
partially homoscedastic linear Gaussian model given by the pair (G,Π) is the
family of all multivariate normal distributions on RV with covariance matrix in the
set

MG,Π =
{
Σ : Σ = ϕG(Λ,ω), Λ ∈ RD, ω ∈ (0,∞)V with ωii = ωjj if i ∼Π j

}
.
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6.2 Equal Variance Constraints and Model Characterization

1 2

3

(a) G1

1 2

3

(b) G2

Figure 6.1: Under the constraint ω11 = ω22, G1 and G2 generate different models.

Given a partition Π, we call two DAGs G1 and G2 model equivalent if they induce
the same partially homoscedastic linear Gaussian model, i.e., if MG1,Π =MG2,Π.

The extra constraints on error variances lead to a refinement of the classic Markov
equivalence classes obtained from only conditional independence relations. Indeed,
as we will prove in Theorem 6.12 below, for every pair of nodes i, j in the same block,
the respective parents can be uniquely determined by the equal variance constraint.
We exemplify this point in a three-variable problem.

Example 6.3. Let G1 and G2 be the two DAGs in Figure 6.1. Under the finest
partition Πmin := {{1}, {2}, {3}}, they are in the same Markov equivalence class since
they encode the same conditional independence relations. Without the assumption
ω11 = ω22, their models are characterized by the common conditional independence
X1⊥⊥X2 | X3, and defined by the same semi-algebraic set {Σ | σ12σ23 − σ22σ13 =
0, Σ ∈ PD3}, i.e., MG1,Πmin =MG1 =MG2 =MG2,Πmin.

Now consider the partition Π = {{1, 2}, {3}}, i.e., the error variances satisfy ω11 =
ω22. The equal variance constraint gives one more equation for each model. We have

MG1,Π = {Σ | σ11σ33 = σ22σ33 − σ223, σ12σ23 − σ22σ13 = 0, Σ ∈ PD3},

and

MG2,Π = {Σ | σ22σ33 = σ11σ22 − σ212, σ12σ23 − σ22σ13 = 0, Σ ∈ PD3}.

The two models are characterized by different polynomials and are indeed different.
Both models have dimension 4, but their intersection is of lower dimension.

6.2 Equal Variance Constraints and Model Characterization

6.2.1 Equal Variance Constraints

As shown in Example 6.1, the key point of partially homoscedastic models is that
they feature new constraints due to the groupwise equal variance constraints, and
that these constraints alter model equivalence when compared to the traditional case
without variance assumptions. We now give a general description of these constraints,
using the formula for conditional covariances.

Theorem 6.4. Let G = (V,D) be a DAG, and let Σ = ϕG(Λ,ω) for Λ ∈ RD and
ω ∈ (0,∞)V . Then for any i ∈ V , the error variance ωii can be computed from the
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Chapter 6 Partial Homoscedasticity in Causal Discovery with Linear Models

covariance matrix Σ as

ωii = σii − Σi,A(ΣA,A)
−1ΣA,i, (6.1)

where A may be taken to be any subset with pa(i) ⊆ A ⊆ V \ de(i).

Proof. We adapt the proof of Theorem 7.1 in Drton [2018], where A = pa(i). If a
trek between i and j ends at i with an edge of the form k ← i, then the trek is a
directed path from i to j and j ∈ de(i). Now since A ⊆ V \ de(i), every trek between
i and a node in A must end with an edge k → i. By Theorem 2.3 we have

ΣA,i = ΣA,pa(i)Λpa(i),i = ΣA,AΛA,i,

where the second equality comes from the fact that pa(i) ⊆ A and Λki = 0 for
k /∈ pa(i). In addition, these zeroes in ΛA,i imply that

σii = ωii + ΛT
pa(i),iΣpa(i),pa(i)Λpa(i),i = ωii + ΛT

A,iΣA,AΛA,i.

An immediate corollary is the equation for an equal variance assumption.

Corollary 6.5. If two random errors ϵi and ϵj have equal variances, i.e., i and j are
in the same block of a considered partition Π, then all covariance matrices in MG,Π

satisfy that

σii − Σi,Ai(ΣAi,Ai)
−1ΣAi,i = σjj − Σj,Aj (ΣAj ,Aj )

−1ΣAj ,j (6.2)

for all subsets Ai and Aj such that pa(i) ⊆ Ai ⊆ V \ de(i) and pa(j) ⊆ Aj ⊆ V \ de(j).

Theorem 6.4 admits the following converse, which is fundamental for our model char-
acterization results.

Theorem 6.6. Let G = (V,D) be a DAG, and let i ∈ V be one of its nodes. Let
A ⊆ V \ {i}. Fix any vector of positive error variances ω ∈ (0,∞)V . If for all
Λ ∈ RD the matrix Σ = ϕG(Λ,ω) satisfies equation (6.1), then it must hold that
pa(i) ⊆ A ⊆ V \ de(i).

Proof. First we suppose that there exists a node k ∈ pa(i)\A. Choose Λ to have all
entries zero except for λki. For this choice, the trek rule in Theorem 2.3 implies that
Σi,A = 0 and, thus, the right hand side of (6.1) is equal to σii. But the trek rule
also yields that σii = ωii + λ2kiωkk > ωii, which contradicts the assumption that (6.1)
holds. We conclude that pa(i) ⊆ A.

On the other hand, suppose that there exists a node k ∈ A\(V \de(i)) = de(i) ∩ A.
Then G contains a (non-trivial) directed path from i to k. Without loss of generality,
we may assume that all interior nodes on the path between i and k are not in A.
Indeed, we can always pick k to be the first node in A that lies on the path. So the
path is of the form i→ m1 → · · · → mt → k with m1, . . . ,mt /∈ A. Now, take Λ with
all entries zero except λim1 , λm1m2 , . . . , λmt−1mt , λmtk. The trek rule in Theorem 2.3

76



6.2 Equal Variance Constraints and Model Characterization

asserts that σii = ωii under this parameterization (every trek between i and i has at
least one edge with zero edge weight). But then equation (6.1) becomes

ωii = σii −
(
λim1λmtk

t∏
s=2

λms−1ms

)2
[(ΣA,A)

−1]kk

= σii −
(
λim1λmtk

t∏
s=2

λms−1ms

)2 1

σkk
< σii = ωii,

which is again a contradiction. We conclude that A ⊆ V \ de(i).

Combining Theorems 6.4 and 6.6, we can characterize the equal variance constraints
by equations among functions of the covariance matrix.

Theorem 6.7. Let G = (V,D) be a DAG, and let Π be a partition of the node set
V . Suppose i ∼Π j are two distinct nodes that lie in the same block of Π, and let
Ai ⊆ V \ {i} and Aj ⊆ V \ {j}. Then the equation (6.2) holds for all matrices
Σ ∈MG,Π if and only if pa(i) ⊆ Ai ⊆ V \de(i) and pa(j) ⊆ Aj ⊆ V \ de(j).

Proof. The “if” direction is given by Corollary 6.5. For the “only if” direction, we
distinguish several cases for the set Ai. The arguments for the corresponding different
cases of Aj are analogous. In each case, we construct a set of parameters such that
the considered rational equation in (6.2) does not hold.

a) ∃ k ∈ pa(i)\Ai: We choose λki ̸= 0 and set all other edge weights equal to zero.
Then since k /∈ Ai, the trek rule implies that Σi,Ai = 0. Hence (6.2) yields that

σii = σjj − Σj,Aj (ΣAj ,Aj )
−1ΣAj ,j ≤ σjj .

By the trek rule, it further holds that σjj = ωjj and σii = ωii + λ2kiωkk. We
arrive at the following contradiction:

σii ≤ σjj = ωjj = ωii < ωii + λ2kiωkk = σii.

We conclude that pa(i) ⊆ Ai.

b) ∃ k ∈ de(i)∩Ai: There is then a directed path from i to k and as in the proof of
Theorem 6.6, we assume that k was chosen such that this path is “minimial”.
In other words, the directed path is of the form i→ m1 → · · · → mt → k with
m1, . . . ,mt /∈ Ai. We proceed by distinguishing three subcases (illustrated in
Figure 6.2):

(i) Suppose k can be chosen such that there exists a directed path from i to
k that is minimal in the above sense and does not intersect j. Then we
can set all edge weights zero except those on the path. As in the proof
of Theorem 6.6, we have σii = ωii = ωjj = σjj and find a contradiction
because under equation (6.2),

ωii = σii −
(
λim1λmtk

t∏
s=2

λms−1ms

)2 1

σkk
< σjj = ωjj .
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Figure 6.2: The three subcases when there exists a node k ∈ de(i) ∩Ai.

(ii) Next, consider the case where every minimal directed path from i to a node
k ∈ de(i) ∩ Ai contains the node j and where in addition Aj ∩ de(j) ̸= ∅.
Let k′ ∈ de(j) ∩ Aj . Then there exists a directed path from j to k′. It
follows that in this subcase j must be in de(i). Since the graph is a DAG,
the considered directed path from j to k′ may not contain i. Hence, we
encounter exactly the situation of subcase (i), but with the role of i and j
switched. Hence, also in this case we can construct a counterexample to
equation (6.2).

(iii) The remaining subcase is that every minimal directed path from i to a
node k ∈ de(i)∩Ai contains the node j, and that these paths intersect Aj

only after they have visited j. Select one such minimal directed path. If
the node preceding j on the path is not in Aj , we can reduce the problem
to case (a) by switching i and j (pa(j)\Aj ̸= ∅). Otherwise, we set all edge
weights zero except those on the considered minimal path. Let A′

j be the
intersection of Aj and the nodes on the path. In the new DAG with only
edges in the directed path, the set A′

j satisfies that pa(j) ⊆ A′
j ⊆ V \ de(j),

and thus

ωjj = σjj − Σj,A′
j
(ΣA′

j ,A
′
j
)−1ΣA′

j ,j
= σjj − Σj,Aj (ΣAj ,Aj )

−1ΣAj ,j .

However, computing the left hand side of (6.2) leads to a strict inequality.

σii − Σi,Ai(ΣAi,Ai)
−1ΣAi,i = ωii −

(
λim1λmtk

t∏
s=2

λms−1ms

)2 1

σkk
< ωii

= ωjj = σjj − Σj,Aj (ΣAj ,Aj )
−1ΣAj ,j .

Every equal variance condition corresponds to equations of conditional variances,
where the conditioning sets can be selected from a range of sets. Different condition-
ing sets seem to give different constraint equations, but once conditional independence
constraints are taken into account, all valid conditioning sets lead to equivalent con-
straints.

To deal with those equivalent constraints, we partially order sets by set inclusion and
extend the ordering lexicographically to pairs of sets: (Ai, Aj) ≤ (Bi, Bj) if Ai ⊊ Bi
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i . . . h1

...

z1

. . . h2

...

z2

. . . . . . hk

...

zk

. . . j

Figure 6.3: The active path q.

or if Ai = Bi and Aj ⊆ Bj . With the help of partial ordering, we can define the
minimal and maximal set pairs that match a equal variance constraint.

Corollary 6.8. Let G be a DAG, and let Π be a partition of V such that i ∼Π j
are in the same block of the partition. Let Aij be the family of all pairs (Ai, Aj) with
Ai ⊆ V \ {i} and Aj ⊆ V \ {j} for which equation (6.2), i.e.,

σii − Σi,Ai(ΣAi,Ai)
−1ΣAi,i = σjj − Σj,Aj (ΣAj ,Aj )

−1ΣAj ,j ,

holds for all covariance matrices Σ ∈MG,Π. Then

(i) Aij contains a unique minimal pair, namely, Ai = pa(i) and Aj = pa(j), and

(ii) Aij contains a unique maximal pair, namely, Bi = V \ de(i) and Bj = V \ de(j).

6.2.2 Characterization of the Models

To give the characterization of partially homoscedastic linear models, we still need
the classic conditional independence constraints from d-separations. We start the
discussion with a proposition relating d-separation and conditional independence,
which was proved in Geiger and Pearl [1990].

Proposition 6.9. Let G = (V,E) be a DAG, and let Π be a partition of V . Let
i, j be two distinct nodes, and let S ⊆ V \ {i, j}. Then the conditional independence
Xi⊥⊥Xj | XS holds for all multivariate normal random vectors X with covariance
matrix in MG,Π if and only if the d-separation i ⊥d j | S holds in G.

Proof. The “if” follows from Theorem 2.4 because MG,Π ⊆MG.

For the “only if”, suppose that i and j are not d-separated by S. We then have to
construct an example of Σ ∈ MG,Π in which the conditional independence does not
hold, i.e., det(ΣiS,jS) ̸= 0. To this end, we may slightly modify an example of Geiger
and Pearl [1990]. The modification uses equal error variances to ensure Σ is in MG,Π

and not merely in MG. If i and j are d-connected given S, then there exists a path q
between i and j, on which every collider is in S (recall that our convention allows a
path to visit the same node more than once). We denote the set of all these colliders
by S′ = {z1, z2, . . . , zk} ⊆ S; see Figure 6.3 for an illustration. In order to form a
covariance matrix in MG,Π, we assign the same weight ρ ∈ (0, 1) to all edges of the
path q and set all other edge weights zero. We set all error variances ωii = 1. Let
Λ and w be the resulting choice of parameters, and let Σ = ϕG(Λ,ω) the associated
covariance matrix.
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By the trek rule, the diagonal entries of Σ = (σkl) satisfy that

σii = σjj = 1 and σkk = 1 ∀ k /∈ S \ S′,

because the fact that i and j are d-connected given S implies that the only nodes that
are both in S and on the path q are the colliders in the set S′. Next, notice that there
exists a unique nonzero trek between each pair of consecutive nodes in the sequence
i ≡ z0, z1, z2, . . . , zk, zk+1 ≡ j. Let rt be the number of edges on the segment of q that
goes from zt to zt+1. By the trek rule, for all t = 0, . . . , k,

σzt,zt+1 = ρrt .

Ordering the nodes as i, z1, . . . , zk, j followed by the nodes in S \ S′, we obtain that

ΣijS,ijS =



1 ρr0 0 · · · 0 0
ρr0 σz1,z1 ρr1 · · · 0 0

0 ρr1 σz2,z2
. . . 0 0

...
...

. . .
. . .

. . .
... O

0 0 0
. . . σzk,zk ρrk

0 0 0 · · · ρrk 1

O IS\S′


. (6.3)

Now observe that det(ΣiS,jS) = ρ
∑k

t=0 rt ̸= 0.

Every SEM encoded by a fixed DAG and partition satisfies some equal variance
polynomial constraints, and at least one SEM does not fulfill the constraints that are
not implied by the DAG and partition. Indeed, these two types of constraints do not
affect each other, and we have the following characterization theorem which gives a
full algebraic characterization of partially homoscedastic linear Gaussian models.

Theorem 6.10. Let G = (V,D) be a DAG, and let Π be a partition of V . Then
a covariance matrix Σ ∈ PD is in the partially homoscedastic linear model MG,Π if
and only if Σ satisfies all conditional independence constraints given by d-separations
and all equal variance constraints from Corollary 6.5.

Proof. The “only if” follows from Proposition 6.9 and Corollary 6.5. For the “if” part,
let Σ satisfy all conditional independence and equal variance constraints associated to
G. By Theorem 2.4(iii), a covariance matrix that satisfies all conditional independence
constraints given by d-separation has to be an element of MG. Hence, there exist
Λ ∈ RD and ω ∈ (0,∞)V such that Σ = ϕG(Λ,ω) ∈MG. But then, by Theorem 6.4,
the equalities among conditional variances imply that ωii = ωjj for i ∼Π j. Therefore,
Σ ∈MG,Π.

6.3 Equivalence Classes and CPDAG

Let G1 = (V,D1) and G2 = (V,D2) be two DAGs with the same given node set. We
have the following definition of model equivalence.
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Definition 6.11. Let Π be a fixed partition of the index set V . Two DAGs G1 =
(V,E1) and G2 = (V,E2) are Π-model equivalent if MG1,Π = MG2,Π. In this case,
we write G1 ≈Π G2.

Under the finest partition Πmin = {{i} : i ∈ V }, the Markov equivalence theory says
that two DAGs with the same skeleton and unshielded colliders are distributionally
equivalent/model equivalent [Studený, 2019]. According to our model characteriza-
tion results, we can now state the equivalence theorem for partially homoscedastic
models for general fixed partitions.

Theorem 6.12. Let G1 = (V,E1) and G2 = (V,E2) be two DAGs, and let Π =
{π1, . . . , πK} be a partition of the index set V . Then G1 and G2 are Π-model equiva-
lent if and only if the following two conditions hold:

(i) G1 and G2 have the same skeleton and unshielded colliders, and

(ii) pa1(i) = pa2(i) for all nodes i that belong to a partition block πk of size |πk| ≥ 2.

Proof. For the “if” direction, suppose that conditions (i) and (ii) hold. By the stan-
dard Markov equivalence theory, condition (i) implies that G1 and G2 have the same
d-separation relations and, thus, MG1 = MG2 . Now, let Σ be an arbitrary element
of MG1,Π. Since MG1,Π ⊆ MG1 = MG2 , there is a (unique) choice of Λ(2) ∈ RE2

and ω(2) ∈ (0,∞)V such that Σ = ϕG2(Λ
(2),ω(2)). Let i ̸= j be any two nodes with

i ∼Π j, i.e., there is a partition block πk of size |πk| ≥ 2 that contains both i, j. By
Corollary 6.5, since Σ ∈MG1,Π, we have

σii − Σi,pa1(i)
(Σpa1(i),pa1(i)

)−1Σpa1(i),i

= σjj − Σj,pa1(j)
(Σpa1(j),pa1(j)

)−1Σpa1(j),j
.

By condition (ii), pa1(i) = pa2(i) and pa1(j) = pa2(j). Therefore, we have

ω
(2)
ii = σii − Σi,pa2(i)

(Σpa2(i),pa2(i)
)−1Σpa2(i),i

= σjj − Σj,pa2(j)
(Σpa2(j),pa2(j)

)−1Σpa2(j),j
= ω

(2)
jj .

We conclude that Σ ∈ MG2,Π and, thus, MG1,Π ⊆ MG2,Π. Swapping the role of G1

and G2, we conclude that MG1,Π =MG2,Π and G1 ≈Π G2.

For the “only if” direction, suppose MG1,Π = MG2,Π. Theorem 6.10 implies that G1

and G2 induce the same conditional independence constraints and the same set of
equal variance constraints (as specified in Corollary 6.5). We deduce that G1 and G2

have the same d-separation relations and, thus, condition (i) holds. Let i, j be any
two distinct nodes in the same partition block πk. Since G1 and G2 induce the same
set of equal variance constraints, the set Aij defined in Corollary 6.8 is the same for
G1 as for G2. Corollary 6.8 now implies that the unique minimal element of Aij must
be comprised of the parent sets of node i and j in both G1 and G2. But this means
that pa1(i) = pa2(i) and pa1(j) = pa2(j). Therefore, condition (ii) holds.

Remark 6.13. The two extreme cases of our setup are the classic setting in which
all variances are freely varying (|Π| = |V |, i.e., Π = Πmin = {{i} : i ∈ V }) and the
previously studied case with all variances equal (|Π| = 1, i.e., Π = Πmax = {V }).
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When Π = Πmin, condition (ii) in Theorem 6.12 never applies and the theorem is just
the classic Markov equivalence theorem. When Π = Πmax, condition (ii) applies to
all nodes, and every equivalence class only contains one DAG. We recover and extend
the known results that the DAG is always identifiable under the assumption of equal
error variances.

Remark 6.14. Another interesting special case arises in the context of two-sample
problems, in which we observe each one of p variables under two different experimental
conditions. In this setting, one important problem is to estimate the difference between
the two DAGs for the two samples. This problem is greatly simplified by assuming
equality of the two error variances that arise in the structural equations for the two
independent copies of the kth random variables, k = 1, . . . , p [Wang et al., 2018]. We
can accommodate the two-sample problem in our framework by grouping all 2p random
variables together. The combined graph is of size |V | = 2p, and the equal variance
assumption in Wang et al. [2018] corresponds to a partition Π = {π1, . . . , πp} with
|π1| = · · · = |πp| = 2. Theorem 6.12 ensures that under this partition the combined
DAG is uniquely determined by the joint distribution of the observations from the two
samples. Although the purpose is different, our result is compatible with the difference
identifiability result (Theorem 4.4 and Corollary 4.5) in Wang et al. [2018].

We have different equivalence theory compared to the classic setup (finest partition).
It is thus of interest to provide a representation of each equivalence class, as it will
also no longer be the same as in the classic setup. However, we can still represent
the equivalence class by a completed partially directed acyclic graph (CPDAG)
[Andersson et al., 1997].

Definition 6.15. Let Π be a partition of the vertex set of a DAG G = (V,D).
The completed partially directed acyclic graph (CPDAG) of the DAG G under
partition Π is the graph obtained by forming the union of all DAGs equivalent to G:

G∗
Π := ∪ (G′ | G′ ≈Π G). (6.4)

So, G∗
Π contains edge i → j if the edge is contained in some DAG G′ ≈Π G. It is

customary to draw G∗
Π as a mixed graph with an undirected edge between nodes i and

j for which both i→ j and j → i are in G∗
Π.

We emphasize that an undirected edge in a CPDAG indicates that there exist two
DAGs in the equivalence class in which the edge appears with opposite directions.
Moreover, a CPDAG contains a directed edge i → j precisely when all DAGs in the
equivalence class of G contain this edge.

For the classic heteroscedastic setup (i.e., Π = Πmin = {{i} : i ∈ V }), the CPDAG
may be constructed using an algorithm described in Meek [1995]. In addition, Meek
[1995] shows how to construct a CPDAG in a setting where there is background
knowledge about some of the edges. The background knowledge is of the form K =
⟨F,R⟩, where F contains the edges not in the DAG and R contains the edges in
the DAG. The algorithm first translates conditional independence statements into
adjacencies and unshielded collider triples. Then the first 3 of the 4 orientation rules
in Verma and Pearl [1992] (Figure 6.4) are applied to obtain the CPDAG without
background knowledge, which is exactly the CPDAG under Πmin. The last phase
incorporates background knowledge and checks whether a compatible CPDAG exists
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R1 =⇒

R2 =⇒

R3 =⇒

R4 =⇒

Figure 6.4: The four orientation rules.

or not. The following is the procedure, in which background knowledge is inserted
edge by edge, and the CPDAG at the current step is denoted by G∗:

S1 If there is an edge i→ j in F such that i→ j in G∗ then FAIL.

S1′ If there is an edge i→ j in R such that j → i in G∗ or i, j are not adjacent in
G∗ then FAIL.

S2 Randomly choose one edge i→ j from R, and let R = R\{i→ j}.

S3 Orient i → j in G∗ and close orientations under rules R1, R2, R3 and R4 in
Figure 6.4.

S4 If R ̸= ∅, then go to step S1.

When the partition is nontrivial and there are some equal variance constraints, the
parents condition in Theorem 6.12 indicates that the neighborhood structure of nodes
in the same partition is fixed in one equivalence class, which can be interpreted
as background knowledge. In our setup, a CPDAG compatible to the background
knowledge always exists, and we can use a simplified version of the general algorithm
to construct the equivalence class.

Given a DAG G and a partition Π, the equivalence class is obtained by the follow-
ing algorithm (Algorithm 2). Theorem 6.16 below certifies the correctness of the
algorithm.

Algorithm 2 Constructing the equivalence class of a DAG, given the partition.

Require: A DAG G, the partition Π
1: Create an empty graph G′

2: Copy the skeleton and all edge orientations with unshielded colliders of G to G′

3: Apply rules R1, R2 and R3 on G′ until no more edges can be oriented
4: for i ∈ V with i ∈ πk and |πk| ≥ 2 do
5: Copy the orientation of edges in G having one endpoint at i to G′

6: end for
7: Apply rules R1 and R2 on G′ until no more edges can be oriented
8: return G∗

Π = G′

Theorem 6.16. Given a DAG G and partition Π, Algorithm 2 outputs the CPDAG
G∗

Π.
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Proof. Algorithm 2 builds upon the work of Meek [Meek, 1995] who shows how to
construct the CPDAG of an equivalence class when provided a set of conditional inde-
pendence relations and arbitrary background knowledge about the edge orientations.
His general algorithm first constructs the classical CPDAG by reading off unshielded
colliders and propagating rules R1, R2, R3. Next, the general algorithm iteratively
adds each edge from background knowledge and applies all rules R1, R2, R3, R4 to
the 1-edge changes. Theorems 2-4 in Meek [1995] prove the correctness of the general
algorithm.

The application of R1-R3 before inserting background knowledge creates the classical
CPDAG for known conditional independence relations and without extra information
(it is the CPDAG under partition Πmin = {{i} : i ∈ V }). In our setup, we start with
a DAG G in the equivalence class and determine directly the skeleton and unshielded
colliders and the classical CPDAG via rules R1-R3.

The partial homoscedasticity encoded in the given partition Π now provides special
“background knowledge” that fixes the orientation of all the edges with one endpoint
at special nodes. As we show in the remainder of this proof, when we insert this
special knowledge into the classical CPDAG, the situations of R3 and R4 in Meek
[1995] cannot arise. It thus suffices to apply only R1 and R2, and we can insert all the
background knowledge simultaneously, because we know that all extra information is
compatible and the desired CPDAG always exists.

For our proof of the correctness of the simplifications in Algorithm 2 over Meek’s
general procedure, recall that the equal variance constraints give the adjacency direc-
tions of all nodes whose block has size at least 2. The set R consists of edges incident
to these nodes, and the set F consists of the reversal of the edges in R. We then
argue as follows.

(i) First, we know there is at least one DAG in the equivalence class, so the general
algorithm will not fail. That means the background knowledge check S1 and
S1′ are redundant. We can just iteratively perform S2, S3 and S4 and obtain
the same result.

(ii) Next, notice that we can add all edges in R simultaneously and close the ori-
entations sequentially. Indeed, every newly oriented edge is dependent on some
of the background knowledge. As long as all dependencies are added, the edge
will be oriented without conflicts. Either adding edges sequentially or simulta-
neously would finally cover all dependencies of each orientable edge, and results
in the same final output.

(iii) Finally, we claim that only the rules R1 and R2 become applicable in the ori-
entation propagation step S3 of our algorithm. Indeed, there is an unshielded
collider triple in R3, but the propagation with background knowledge does not
make any new collider triples, otherwise the output CPDAG cannot have same
conditional independence statements as the DAG itself. Hence, any pattern of
R3 must have been obtained in the initial phase of constructing the classical
CPDAG, and will not appear in the last propagation phase.

For R4, consider the first time that its pattern appears in the propagation
phase. The orientation i3 → i4 is not obtained in the classical CPDAG phase
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6.3 Equivalence Classes and CPDAG
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Figure 6.5: i3 → i4 from R1.
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Figure 6.6: i3 → i4 from R2.
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Figure 6.7: A DAG and the corresponding CPDAG, under a fixed partition.

as otherwise i4 → i1 would have also been oriented and the pattern of R4
appears in the classic CPDAG phase, which is a contradiction. If i3 → i4
results from background knowledge directly, then we know the orientations of
all adjacencies of either i3 or i4, which will orient i2 − i3 or i2 − i4. This
is a contradiction. Figure 6.5 depicts the case of i3 → i4 obtained from R1:
unshielded triple l → i3 − i4. The edge l → i2 must exist to keep i2 − i3 not
oriented, consequently the undirected edge i2−i4 implies the adjacency between
l and i4. The triple (l, i3, i4) is shielded, contradicting the pattern of R1. Figure
6.6 illustrates the case of i3 → i4 obtained from R2. To keep i2−i4 not oriented,
the edge l → i2 must exist. But then i2 − i3 can be oriented as i3 → i2, which
is again a contradiction.

In conclusion, we have proved that our modification to the general algorithm for equal
variance constraints background knowledge is correct.

At the end of this part, we provide an example to illustrate the construction of the
CPDAG.

Example 6.17. Consider the DAG G in Figure 6.7 with node set V = {1, 2, 3, 4, 5, 6}
and the partition Π = {{1, 2}, {3}, {4}, {5}, {6}}. In other words, the partition se-
quence is (1, 1, 2, 3, 4, 5), where the i′th element of the sequence indicates the block
that node i belongs to. To determine the equivalence class of G, we first keep the
skeleton and unshielded colliders. Then those edges containing node 1 or 2 (partition
block size ≥ 2) are oriented the same way as they are in G. Next, we propagate the
edge orientation by rules R1 and R2, and we find that the edge between 4 and 6 is
oriented as 4 → 6. Finally, the remaining edge 3 − 5 can have both direction and is
kept undirected in the final CPDAG that represents the equivalence class of G.

85
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6.4 Greedy Search and Simulation Studies

6.4.1 Greedy Search Scheme

Let X = (X1, . . . , Xp)
T ∈ Rp×n be a data matrix drawn from a multivariate normal

distribution, with n observations (columns) of the p variables. Without loss of gen-
erality, we may assume the mean vector of the normal distribution to be zero. For
a fixed DAG G = (V,D) and partition Π of V , the partially homoscedastic linear
Gaussian model given by (G,Π) has log-likelihood function

ℓG(Λ,ω) (6.5)

=
n

2

(
− log det(diag(ω)) + log det(I − Λ)2 − tr

{
(I − Λ) diag(ω)−1(I − Λ)TS

})
,

where S = XXT /n is the sample covariance matrix.

Let Π = {π1, . . . , πK} be the partition of nodes. The log-likelihood function can be
rewritten as the sum of log-likelihood values of the K blocks.

ℓG(Λ,ω) =
n

2

K∑
k=1

−|πk| logωk −
1

nωk

∑
i∈πk

∥∥∥Xi − ΛT
i,pa(i)Xpa(i)

∥∥∥2


:=
n

2

K∑
k=1

ℓG,πk
(Λ, ωk). (6.6)

The maximum likelihood estimates (Λ̂, ω̂) can be computed by linear regression inside
each block, following the decomposition in (6.6):

Λ̂pa(i),i = argmin
β∈R| pa(i)|

∥Xi − βTXpa(i)∥2,

ω̂k =

∑
i∈πk

∥∥∥Xi − Λ̂T
pa(i),iXpa(i)

∥∥∥2
n|πk|

.

To have a trade-off between model fit and model complexity, we adopt the Bayesian
information criterion (BIC) score as the selection rule. We want to maximize the BIC
score over the space of DAGs. Notice that the score also decomposes into the sum of
score of each block:

sBIC(G) =
1

n

(
ℓG(Λ̂, ω̂)− log(n)

2
|E|
)

=
1

2

K∑
k=1

−|πk| log ω̂k − |πk| −
log(n)

n

∑
i∈πk

| pa(i)|

 . (6.7)

The greedy search scheme starts at some initial random or empty DAG and selects
the DAG with highest BIC score in the local neighborhood at each step, same as
that in Section 3.3. The procedure terminates when the current DAG has higher BIC
score than all other DAGs in the local neighborhood. The neighborhood of a DAG is
the collection of all DAGs that can be obtained from G by one edge addition, removal
or reversal. To accelerate the search, we select a random subset of size up to 300 in
the whole neighborhood and find the maximal score in this subset. The greedy search
algorithm for groupwise equal variance models is abbreviated by GEV.
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6.5 Discussion

6.4.2 Simulation Studies

We compare the performance of our GEV algorithm against the greedy equivalence
search (GES) of Chickering [2003] and the PC-algorithm [Spirtes et al., 2000]. The
former tries to find the structure with the maximum l0-penalized log-likelihood and
the default penalty multiple is log(n)/2n, corresponding to the BIC score. The latter
has a significance level α for conditional independence tests that determine adjacen-
cies. To make the score-based and the constraint-based methods comparable, we
consider a grid of values for α from 10−5 to 0.8, increasing by the ratio 1.1 [Harris
and Drton, 2013]. Then we can choose the value of α according to the maximum BIC
score.

Both PC and GES algorithm return a classic Markov equivalence class, while our GEV
needs the input of a fixed partition and returns the CPDAG of the final DAG in the
search process. The parental information (edge directions) is the main difference
between these two types of output. So we use the modified structural Hamming
distance (SHD) from Peters and Bühlmann [2014] as the error measurement. The
classic SHD (see Section 3.4) counts every edge mistake by 1, while the modified
version assigns a distance of 2 on each pair of reversed edges.

The experiment includes 24 different configurations of (p, n, prob). For these we con-
sider p ∈ {5, 10, 20, 40} as the number of nodes, n ∈ {100, 500, 1000} as the sample
size and prob ∈ {3/(2p− 2), 0.3} as the probability of one edge existing at a position
(i, j), which controls the sparsity of the randomly generated DAGs. The first choice
of prob corresponds to sparse graphs, and the latter leads to dense graphs. Every
edge weight is uniformly drawn from [−1,−0.3] ∪ [0.3, 1], and the error variance of
each partition block is uniformly drawn from [0.3, 1]. After sampling the adjacency
between every node pair, we randomly permute the node labels.

The following box-plots summarize the result of 100 simulations, in which the y-axis
represents the SHD between the true CPDAG and the estimated CPDAG obtained
by the considered methods. In the case of 2 partition blocks (Figures 6.8 and 6.9),
our GEV algorithm can successfully exploit the homoscedasticity for all setup config-
urations. As expected, the SHDs are lower if extra equal error variances information
is utilized in the search. In the case of ⌈p/3⌉+ 1 blocks (Figures 6.10 and 6.11), the
GEV algorithm still performs the best for sparse graphs, while its accuracy decreases
for dense graphs, especially with large number of nodes. The PC algorithm exhibits
the lowest SHDs, which is also reasonable since the tuning of confidence level α can
actually increase the accuracy.

6.5 Discussion

The framework of partially homoscedastic linear Gaussian models is a generalization
of linear SEMs with equal error variances. It encodes equal variance assumption
through a partition of the variables. The framework unifies the classical setting in
which the error variances may be arbitrary and the equal error variance setup that has
been studied in recent literature. These two cases are captured by the two extreme
partitions, with a single block and all variables in separate blocks, respectively.
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Figure 6.8: Box-plots of SHD by groups of p and n, sparse graphs 2 blocks.
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Figure 6.9: Box-plots of SHD by groups of p and n, dense graphs, 2 blocks.
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Figure 6.10: Box-plots of SHD by groups of p and n, sparse graphs, ⌈p/3⌉+ 1 blocks.
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Figure 6.11: Box-plots of SHD by groups of p and n, dense graphs, ⌈p/3⌉+ 1 blocks.
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Chapter 6 Partial Homoscedasticity in Causal Discovery with Linear Models

Each partially homoscedastic linear model can be characterized algebraically via con-
ditional independence constraints and equal variance constraints. The former are
well known from the classical graphical model perspective on linear SEMs, and we
explicitly derived the latter in this paper. The equal variance constraints reveal
the essence of how equal variance assumptions lead to identifiability of edge orienta-
tions. This perspective differs from previous work on the equal variance assumption
which, e.g., considered ordering variances [e.g. Chen et al., 2019]. We also show how
equivalance classes in the partially homoscedastic setting are naturally represented
by a refined CPDAG, which may be constructed efficiently with the help of existing
results on CPDAGs in setting with background knowledge. For model selection, we
demonstrated that greedy search provides an effective tool to exploit knowledge about
partial homoscedasticity.
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Chapter 7

Conclusions

This thesis presents advances in the research on cyclic graphical models, exploring
the areas of structural identifiability, structure learning and parameter estimation.

Our first result pertains to simple mixed graphs that may contain cycles. We show
that this type of models is of expected dimension, allowing for the application of
model complexity penalties. We extend the distributional equivalence theory of bow-
free acyclic graphs in Nowzohour et al. [2017] and develop an analogous greedy search
algorithm to find the best-fitting equivalence class. This extension offers more flex-
ibility in modeling self-regulatory networks. However, there is still a considerable
gap between the available sufficient and necessary conditions for distributional equiv-
alence (without extra identifying assumptions), and a complete characterization of
equivalence classes remains unknown.

Next, we study the algorithm used in the first task to compute the log-likelihood of
a graph with given data. The original algorithm, a Blockwise Coordinate Descent
method described in Drton et al. [2019b], is designed only for observational data. In
order to accommodate the combination of observational and interventional data from
multiple environments, we have developed an algorithm with similar but different
update steps. At present, our new algorithm is restricted to the case of directed
cyclic graphs, and certain conditions must be satisfied by the intervention targets or
the graph itself. While the original BCD algorithm solves a linear regression problem
at each iteration, our algorithm for interventional data requires solving a quadratic
sum-of-ratios fractional program. Under the specified conditions, this optimization
problem is particularly tractable and admits a closed form solution. Extending the
algorithm to handle arbitrary interventions or general mixed graphs raises interesting
questions for future research.

The second half of the thesis focuses on the topics of structural identifiability and
model equivalence characterization. The general question is challenging, and we in-
troduce certain assumptions to facilitate the study of specific sub-problems. The
consideration of directed cyclic graphs with equal error variances stems from the
equal variance DAG model discussed in Peters and Bühlmann [2014] and numerous
follow-work such as Chen et al. [2019]. To address the challenging cyclic case, we
utilize the algebraic matroid approach from Hollering and Sullivant [2021] to estab-
lish sufficient graphical conditions for distinguishing the models of two graphs. The
results of symbolic computation certify our criteria for small size graphs, and lead
to the conjecture that the identifiability holds for the graph index parameter of all
simple directed graphs.
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Chapter 7 Conclusions

In another generalization of the equal variance DAG setup, we propose the class of
partially homoscedastic models, where variables are partitioned into blocks and all
variables within the same block share the same equal error variance value. We observe
that the equal variance constraints can be formulated as rational equations with en-
tries in the covariance matrix. This allows us to provide an algebraic characterization
of the model represented by a given DAG and partition. On the basis of the algebraic
characterization and classic results for DAG models without variance assumptions,
we are able to fully solve the model equivalence problem. For model selection we
propose and study a greedy search scheme. The partial homoscedasticity offers new
flexibility compared the strict equality of all error variances. A number of research
opportunities emerge for future work, including testing and learning the partition.
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