
Technical University of Munich
TUM School of Computation, Information and Technology

Specification-Compliant Reachability Analysis

for Motion Planning of Automated Vehicles

Edmond Irani Liu

Complete reprint of the dissertation approved by the TUM School of Computation,
Information and Technology of the Technical University of Munich for the award of the

Doktor der Ingenieurwissenschaften (Dr.-Ing.).

Chair:
Prof. Dr. Francisco Javier Esparza Estaun

Examiners:
1. Prof. Dr.-Ing. Matthias Althoff
2. Prof. Dr.-Ing. Stefan Kowalewski

The dissertation was submitted to the Technical University of Munich on 26.06.2023 and
accepted by the TUM School of Computation, Information and Technology on
15.12.2023.

Abstract

Despite considerable efforts and progress in the development of automated vehicles, sig-
nificant challenges persist that impede their mass deployment on public roads, among
which is their motion planning modules. During every planning cycle, from potentially
infinite driving trajectories, automated vehicles must decide on the ones that are dy-
namically feasible, collision-free, and compliant with specifications including mandatory
traffic rules and supplementary handcrafted rules. The stringent real-time constraints
of automated vehicles render exhaustive exploration and verification of individual tra-
jectory candidates impossible; thus, the question arises of how to efficiently and reliably
generate driving trajectories with the abovementioned properties. When extended to
cooperative driving of a group of automated vehicles, this question becomes even more
challenging since the number of trajectory combinations increases exponentially with
respect to the number of vehicles within the group.

This dissertation proposes novel approaches centered around reachability analysis to
address the problems of individual and cooperative specification-compliant motion plan-
ning. The core idea of this dissertation involves computing the collision-free reachable
sets of automated vehicles, identifying their specification-compliant subsets, and ex-
tracting motion planning constraints to expedite the generation of trajectories adhering
to specifications. Our methods (a) efficiently compute the drivable and specification-
compliant reachable sets as the planning space for trajectory planning of individual and
cooperative automated vehicles, and (b) exhaustively identify specification-compliant
driving corridors within the computed reachable sets and determine the optimal ones
among them. In addition, we integrate reachable sets with the so-called invariably
safe sets for generating trajectories of cooperative vehicles such that their safety can be
ensured for an infinite time horizon, even in safety-critical situations. As part of our con-
tributions to the scientific community, we provide CommonRoad-Reach, an open-source
toolbox for computing the reachable sets and extracting the driving corridors for au-
tomated vehicles with real-time capability. Furthermore, our Scenario Factory toolbox
automatically generates distinct and safety-critical traffic scenarios from road networks
across the globe, with which motion planners can be tested and compared. Our ap-
proaches’ applicability, effectiveness, and efficiency are exhibited with experiments using
various traffic scenarios from the publicly available CommonRoad benchmark suite.

iii

Zusammenfassung

Trotz erheblicher Anstrengungen und Fortschritte bei der Entwicklung von automa-
tisierten Fahrzeugen bestehen nach wie vor bedeutende Herausforderungen, die ihrer
massenhaften Einsatz auf öffentlichen Straßen behindern, darunter ihre Bewegungs-
planungsmodule. Während jedes Planungszyklus müssen automatisierte Fahrzeuge
aus potenziell unendlichen Fahrtrajektorien solche auswählen, die dynamisch um-
setzbar, kollisionsfrei und den Spezifikationen entsprechend sind, einschließlich der
vorgeschriebenen Verkehrsregeln und zusätzlichen maßgeschneiderten Regeln. Die
strengen Echtzeitbeschränkungen automatisierter Fahrzeuge machen eine umfassende
Exploration und Überprüfung einzelner Trajektkandidaten unmöglich; somit stellt sich
die Frage, wie Fahrtrajektorien mit den oben genannten Eigenschaften effizient und
zuverlässig generiert werden können. Wenn dies auf das kooperative Fahren einer
Gruppe von automatisierten Fahrzeugen erweitert wird, wird diese Fragestellung noch
anspruchsvoller, da die Anzahl der Trajektkombinationen exponentiell mit der Anzahl
der Fahrzeuge in der Gruppe zunimmt.

Diese Dissertation schlägt neuartige Ansätze vor, die sich um die Erreichbarkeits-
analyse von automatisierten Fahrzeugen drehen, um die Probleme der individuellen
und kooperativen spezifikationskonformen Bewegungsplanung anzugehen. Die Kernidee
dieser Dissertation besteht darin, die kollisionsfreien erreichbaren Mengen von au-
tomatisierten Fahrzeugen zu berechnen, ihre spezifikationskonformen Teilmengen zu
identifizieren und Bewegungsplanungsbeschränkungen zu extrahieren, um die Gener-
ierung von spezifikationskonformen Trajektorien zu beschleunigen. Die vorgeschlagenen
Methoden (a) berechnen effizient die befahrbaren und spezifikationskonformen er-
reichbaren Mengen als Planungsraum für die Trajektplaung von individuellen und
kooperativen automatisierten Fahrzeugen und (b) identifizieren umfassend spezifika-
tionskonforme Fahrkorridore innerhalb der berechneten erreichbaren Mengen und
bestimmen die optimalen unter ihnen. Darüber hinaus integrieren wir erreichbare
Mengen mit den sogenannten unveränderlich sicheren Mengen, um Trajektorien von
kooperativen Fahrzeugen zu generieren, bei denen deren Sicherheit auch in sicherheit-
skritischen Situationen für einen unendlichen Zeithorizont gewährleistet werden kann.
Als Beitrag zur wissenschaftlichen Gemeinschaft stellen wir CommonRoad-Reach vor,
ein Open-Source-Toolbox zur Berechnung der erreichbaren Mengen und Extraktion

v

Zusammenfassung

der Fahrkorridore für automatisierte Fahrzeuge mit Echtzeitfähigkeit. Darüber hinaus
generiert unsere Scenario Factory-Toolbox automatisch unterschiedliche und sicherheit-
skritische Verkehrsszenarien aus Straßennetzen weltweit, mit denen Bewegungsplaner
getestet und verglichen werden können. Die Anwendbarkeit, Effektivität und Effizienz
unserer Ansätze werden anhand von Experimenten mit verschiedenen Verkehrsszenarien
aus der öffentlich verfügbaren CommonRoad Benchmark-Suite gezeigt.

vi

Acknowledgment

This dissertation represents the culmination of my research conducted at the School of
Computation, Information and Technology (formerly known as the Informatik) of the
Technical University of Munich between the years 2019 and 2023. As I reflect upon
the journey that has led me to this point, I would like to appreciate the support and
contributions of many people.

First and foremost, I would like to express my utmost gratitude to my esteemed super-
visor, Prof. Matthias Althoff, for providing me with the opportunity to commence my
doctoral journey. His exceptional expertise, rigorous attitude to research, and constant
encouragement throughout the years have been integral in shaping this dissertation. I
consider myself fortunate to have had Matthias as my Ph.D. supervisor.

My heartfelt thanks extend to my colleagues from the Cyber-Physical Systems group,
particularly the members of the CommonRoad team, as well as my friends within the
academic community. Thank you all for the friendly and collaborative atmosphere within
the group, as well as the memorable times we shared at the chair and the CPS workshops.
I would like to say a special thank you to Xiao Wang, who provided me with assistance
with various aspects of life in Germany. I am also thankful to Yuanfei Lin, with whom I
engaged in many insightful discussions and who was my gym buddy during my stay at
the GLC. I am truly grateful to have been surrounded by such a supportive community.

I would also like to acknowledge the students whose theses, seminars, or practical
courses I had the chance of supervising, as well as the HiWis who provided valuable sup-
port to my work. Furthermore, I extend my appreciation to the secretaries of the chair
Ute Lomp, Amy Bücherl, and Katja Hempel for their meticulous assistance with organi-
zational matters. The generous financial support from the German Research Foundation
and Huawei Technologies, as well as the fruitful collaborations with project partners, are
gratefully acknowledged.

My deepest appreciation goes to my wife, Ke, for her unwavering support and trust
throughout the past decade. Despite the difficulties imposed by the Covid pandemic,
which kept us 9034 km apart for 1093 days, her love, understanding, and belief in me
never faltered. She has been an immense source of inspiration and strength for me, and
I am forever grateful for her presence in my life.

I would also like to extend my thanks to my family members (my two parents, three

vii

Acknowledgment

dogs, and four brothers), as their continuous encouragement and belief in my abilities
have been crucial in my successful pursuit of higher educations.

In addition, I want to take a moment to acknowledge myself for embracing the chal-
lenges and committing to this arduous endeavor. The pursuit of a Ph.D. has demanded
perseverance, resilience, and self-belief. Although far from perfect, I am proud of the
efforts I have put into this research and cherish the personal growth along the way.

Lastly, I would like to thank the majestic Alps for providing me with moments of
solace and excitement. The breathtaking beauty of the Alps (all seasons alike) and the
unforgettable snowboarding experiences have served as a much-needed escape during the
intense and difficult periods of research.

Clearly, I am not able to mention everyone who has contributed to the realization of
this dissertation. Nevertheless, I would like to thank all of those who have supported me
along the way in any shape or form. Thank you all for being a part of this significant
milestone of my life.

Shenzhen, China, January 2024 Edmond Irani Liu

Those bluebird days. Stubaital, Austria, December 2022

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgment vii

1 Introduction 1
1.1 Specification-Compliant Motion Planning 4
1.2 Cooperative Motion Planning . 7
1.3 Contributions . 9
1.4 Publications and Outline . 11

2 Methods 13
2.1 General Setup . 13
2.2 Temporal Logic . 14
2.3 Reachability Analysis . 16
2.4 Motion Planning using Reachability Analysis 19
2.5 Cooperative Motion Planning using Reachability Analysis 20

3 Conclusions 25
3.1 Summary . 25
3.2 Future Work . 26

Bibliography 29

A Reproduction of Publications 35
A.1 Computing Specification-Compliant Reachable Sets for Motion Planning

of Automated Vehicles [1] . 36
A.2 Specification-Compliant Driving Corridors for Motion Planning of Auto-

mated Vehicles [2] . 45
A.3 Specification-Compliant Motion Planning of Cooperative Vehicles Using

Reachable Sets [3] . 64

ix

Contents

A.4 Provably-Safe Cooperative Driving via Invariably Safe Sets [4] 89
A.5 CommonRoad-Reach: A Toolbox for Reachability Analysis of Automated

Vehicles [5] . 98
A.6 Scenario Factory: Creating Safety-Critical Traffic Scenarios for Auto-

mated Vehicles [6] . 107

B Supervised Theses 115
B.1 Bachelor Theses . 115
B.2 Master Theses . 115

x

Chapter 1
Introduction

The advent of automated vehicles is envisioned to be the commencement of a new era of
mobility, transforming, among others, the transportation and logistics industry in dif-
ferent ways. Owing to the immense potential of automated vehicles, they have received
much attention in recent years from the academic and industrial sectors. According to
a study by the U.S. national highway traffic safety administration in 2018 [7], the last
event in the crash causal chain was assigned to human drivers in 94% of the crashes:
The leading causes were recognition errors (41%), including driver’s distractions and
misidentifying surrounding objects, and decision errors (33%), such as over-speeding and
ignoring traffic signs; about 7% of the crashes occurred due to drivers falling asleep. By
replacing human drivers with sophisticated sensors, robust algorithms, and precise con-
trollers, automated vehicles promise to offer numerous benefits, including (see Fig. 1.1):

• Enhanced safety: By drastically reducing, or ideally, eliminating traffic accidents,
injuries, and fatalities through provably-correct systems, millions of lives could
be saved, and immeasurable suffering could be prevented every year [8]. This is
arguably the most significant benefit offered by automated vehicles.

• Increased efficiency: Automated vehicles’ ability to quickly and optimally respond
to dynamic environments significantly expands the overall road capacity and effec-
tively mitigate traffic congestion. As a result, less travel time is required to reach
destinations.

• Improved availability and accessibility: Without the need for human drivers, au-
tomated vehicles enable individuals that are dependent on others (e.g., children,
the elderly, and those with physical restrictions or disabilities) to access mobility
with less effort, possibly at any time.

Fig. 1.2 depicts EDGAR, one of the research vehicles developed at the Technical Uni-
versity of Munich equipped with the latest technologies.

These benefits become even more conspicuous when equipping automated vehicles with
wireless technologies that facilitate Vehicle-to-Everything communication (see Fig. 1.3).
As examples, information can be exchanged on the fly between automated vehicles,
other traffic participants, and roadside infrastructure, e.g., to construct a comprehensive

1

Chapter 1. Introduction

Figure 1.1: Numerous benefits of automated vehicles over human drivers.

Figure 1.2: EDGAR: a research vehicle developed at the Technical University of Munich.

representation of the surrounding environment; also, the movements of multiple traf-
fic participants can be coordinated more safely and efficiently, which is referred to as
maneuver-based cooperation [9]. Consider, for instance, a group of connected automated
vehicles. There are infinitely many traffic situations where cooperative motion planning
of these vehicles increases their collective benefits; there are as many emergency situa-
tions where collisions with, e.g., reckless drivers performing sudden and illegal cut-ins,
cannot be prevented without such cooperation.

Despite considerable efforts and progress in the field, substantial gaps and unresolved
questions persist that impede the mass deployment of automated vehicles on public
roads, in which automated and human-driven vehicles coexist. An accident1 that took
place in August 2023 greatly motivates the topic of this dissertation: A robotaxi operated
by Cruise was making a right turn at an intersection while the traffic light was green,

1https://abc7news.com/cruise-driverless-car-sffd-fire-truck-accident/13666936/

2

https://abc7news.com/cruise-driverless-car-sffd-fire-truck-accident/13666936/

(a) Cooperative perception (b) Cooperative motion planning

Figure 1.3: Scenarios that benefit from cooperative driving. © Car2Car Communication Consortium

and it was collided by a fire truck on emergency mission. After careful investigation,
the liability was assigned to the robotaxi. The reason was that, based on Californian
traffic regulations, it is illegal not to yield the right of way to an emergency vehicle
approaching with its lights and sirens. Unfortunately, the Cruise robotaxi did not handle
this regulation well in its motion planning module, which ultimately led to the undesired
collision.

Among others, the following research questions pertaining to the motion planning
modules of automated vehicles remain open:

• Given arbitrary traffic scenarios with both static and dynamic obstacles, how can
we efficiently and reliably determine the solution space of trajectories that are not
only drivable, i.e., dynamically feasible and collision-free, but also compliant with
specifications such as mandatory traffic rules?

• Within the abovementioned solution space, how can we exhaustively identify all
driving maneuvers of the automated vehicles and determine the optimal ones
among them?

• How can we generate drivable trajectories for automated vehicles that, too, comply
with the enforced specifications?

• Can the approaches developed for individual automated vehicles be extended to
groups of automated vehicles that drive cooperatively?

• Since safety is regarded as one of the most critical specifications for automated
vehicles, how can we generate trajectories for a group of connected automated
vehicles that maintain safety at all times, even in safety-critical situations?

This dissertation seeks to answer these open questions by developing methodologies
and algorithms centered around the reachability analysis of automated vehicles, whose

3

Chapter 1. Introduction

Figure 1.4: Complex scenarios with traffic rule violations (red trajectories). © iStock.com/robuart

preliminaries will be elaborated in Sec. 2.3. The following sections review existing liter-
ature on specification-compliant motion planning for individual automated vehicles and
cooperative motion planning for groups of connected automated vehicles.

1.1 Specification-Compliant Motion Planning

In this dissertation, specifications refer to mandatory traffic rules and supplementary
handcrafted rules to which automated vehicles should adhere. With the increasing pres-
ence of automated vehicles on public roads, it is imperative that they comply with the
same specifications as human drivers in a precise and dependable manner. Undoubt-
edly, such compliance is essential for their safe and effective integration into road traffic.
Furthermore, manufacturers of automated vehicle are responsible for certifying such com-
pliance before mass deployment and by this avoid potential liability claims in undesired
events such as car accidents. Fig. 1.4 depicts various traffic scenarios with traffic rule
violations. Despite the significance of this matter, the majority of prior studies on the
motion planning of automated vehicles, as reported in recent surveys [10]–[13], either en-
tirely disregard specifications or only handles a limited subset. This circumstance can be
attributed to the sheer difficulty of formalizing specifications in a machine-interpretable
way and their integration into motion planners. In the following sections, we review the
works proposed in the literature to tackle these challenges.

4

1.1. Specification-Compliant Motion Planning

1.1.1 Specifications

A general guideline for participating in road traffic was established in the Vienna Con-
vention on Road Traffic (VCoRT) back in the 1960s [14]. Many countries have adopted
VCoRT as a basis for legislating national traffic rules, such as the German road traffic reg-
ulation. Existing traffic rules are typically expressed in the form of legal text, which are
often imprecise, open to human interpretation, and not directly machine-interpretable.
A set of concretized and formalized traffic rules is therefore essential to eliminate ambigu-
ity in the interpretation and to be precisely evaluated on planned motions of automated
vehicles. Relatively straightforward rules, such as maintaining lane-specific speed limits,
can be easily incorporated as motion planning constraints (in this case, in the velocity
domain of automated vehicles); however, more complex rules specifying temporal prop-
erties necessitate intricate formulations to capture the temporal constraints over motions
of automated vehicles. Traffic rules can be formalized and expressed in several forms,
including using ontology [15], [16], propositional logic [17], and temporal logic [18]–[22].
The former two typically require implicit embedding of temporal constraints in atomic
propositions to reflect temporal relations between entities in a system. In contrast, one
can explicitly and naturally describe such relations through well-defined temporal logic
connectives (later detailed Sec. 2.2).

Commonly used temporal logics for linear-time specifications (as opposed to
branching-time specifications) include linear temporal logic (LTL) [23], metric temporal
logic (MTL) [24], signal temporal logic (STL) [25], and their numerous variants. LTL
was initially proposed as a specification language for concurrent programs and perhaps
is the most well-studied logic of these three. This prominence is partially due to its
relative simplicity and its significance in the fields of automata theory and model
checking; MTL extends LTL by introducing time intervals over temporal connectives
so that specifications involving precise timing constraints can be effectively described;
STL, on the other hand, is designed for reasoning about signals over time. The extent
of satisfaction of specifications can be quantified, often referred to as the robustness
degree [26].

Traffic rules from various sources have been formalized using different types of tem-
poral logics. For instance, subsets of VCoRT have been formalized using LTL: One
study [27] codified and concretized a set of rules on overtaking maneuvers, while other
works [22], [28] formalized rules related to overtaking maneuvers, driving priorities, and
coping with crossing pedestrians. To precisely capture timing constraints, articles [18],
[21] utilize MTL to formalize German traffic rules covering interstate, intersection, and
general driving situations. Similarly, article [19, Tab. 7] suggests that MTL is expressive
enough to cover up to 95% of existing Chinese traffic rules. In work [29], the authors
extend work [21] by reformulating traffic rules in STL and defining the robustness degree
for relevant predicates. Apart from (inter)nationally-approved legal sources, researchers
have also attempted to formalize rules that describe safe driving behaviors for automated
vehicles. For example, the work in [30] encodes so-called Responsibility-Sensitive Safety
(RSS) [31] rules in STL for monitoring purposes. In [32], the author presents a safety
contract for automated vehicles in STL in which the lateral contracts differ from the

5

Chapter 1. Introduction

rules described in RSS.

1.1.2 Specification-Compliant Motion Planning

Existing works on specification-compliant motion planning can be categorized based on
when specifications are considered. We review each category in the following sections.

1.1.2.1 Considering Specifications After Motion Planning

Runtime verification, also known as monitoring, involves the inspection of whether ex-
ecutions of a system demonstrate expected behaviors. This technique is advantageous
when the system under examination is either too complex to model or whose internal
details are not easily accessible. As examples, work [27] presents a monitor for assessing
compliance of vehicles with safe distance and overtaking rules, while work [30] describes
a monitor for RSS rules.

Although the monitoring process can be executed efficiently, monitors typically only
return a robustness degree of the specifications or a binary verdict, i.e., true or false,
on whether the specifications have been satisfied by the system. In the context of
motion planning for automated vehicles, monitors do not return alternative trajectories
if a trajectory under inspections is deemed inferior or rejected. This often leads to
replanning and verifying a large amount of trajectories before finding a specification-
compliant solution, especially for more complex specifications.

An alternative to examining individual trajectories is to verify infinitely many trajec-
tories at once: A method for model checking reachable sets of continuous and hybrid
systems against STL specifications is described in [33]. However, as with monitoring,
this method only returns a verdict, possibly together with counterexamples in case of
violation, which has limited usage for motion planning for automated vehicles.

1.1.2.2 Considering Specifications During Motion Planning

The reviewed approaches in this category can be broadly classified into three groups:
multilayered approaches, approaches based on mixed-integer linear programming
(MILP), and approaches based on rapidly exploring random trees (RRTs) [34]. We
describe their characteristics and shortcomings below.

Multilayered approaches [28], [35]–[43] typically handle the specification-compliant
motion planning problem by employing an architecture consisting of a high-level dis-
crete planning layer and a low-level trajectory planning layer. The discrete planning
layer generates plans that satisfy considered specifications based on discrete abstrac-
tions of the system of interest, whereas the low-level trajectory planning layer outputs
trajectories that adhere to the generated discrete plans. The discrete plans are gener-
ated based on, among others, automata theory [36], [38]–[41], [43], satisfiability modulo
theory [35], [37], and monitors [28]. For example, article [40] generates timed paths
that satisfy MTL specifications for indoor robot navigation using timed automata; arti-
cle [37] introduces a satisfiability modulo convex programming framework that handles
both convex constraints over continuous states and Boolean constraints over discrete

6

1.2. Cooperative Motion Planning

states for cyber-physical systems; in article [28] the authors utilize monitors to obtain
high-level driving maneuvers for automated vehicles that adhere to traffic rules expressed
in LTL. In most cases, the discrete plans do not account for the dynamic constraints
over the system of interest; therefore, the drivability of the discrete plans is typically not
ensured. This fact may lead to frequent replanning in both the discrete and trajectory
planning layers especially in complex and highly dynamic environments such as public
roads.

MILP-based approaches commonly cast temporal logic specifications as mixed-integer
linear constraints alongside system dynamic constraints. A solver is then employed to
generate the optimal specification-compliant trajectory while optimizing certain user-
defined cost functions. The unfavorable NP-hard nature of MILP problems [44, Ch. 11]
and the exponential increase in complexity and solution time (e.g., see [45]–[49]) due
to the auxiliary decision variables resulting from the enforced constraints are often lim-
iting factors for applications with high real-time requirements. Moreover, MILP-based
approaches generally require linear formulations of dynamic constraints, rendering in-
tegration of high-fidelity nonlinear vehicle models nontrivial. Both facts impede the
adoption of MILP-based approaches for specification-compliant motion planning of au-
tomated vehicles.

The basic idea of RRT-based approaches is to plan specification-compliant trajectories
in an incremental manner by spanning one or multiple trees exploring the state space
of automated vehicles. Articles [38], [50]–[54] leverage the RRT* algorithm [55], which
is an asymptotically optimal variant of the well-known RRT algorithm. The growth of
the trees is steered or pruned, e.g., using automata [38], [50], [52], [54] or robustness
degrees [51], [53] of specifications. If a trajectory adhering to the system’s dynamic
constraints and the considered specifications exists, it can be found given sufficient time
and iterations. While RRT-based methods are capable of producing fast solutions to
particular problems, their suitability for safety-critical applications is hindered by their
inherent characteristic known as probabilistic completeness [34], [55]. Furthermore, the
efficacy of RRT-based methods tends to deteriorate in situations where the solution
space is narrowed and restricted [56]. For these reasons, RRT-based methods are not
ideal for specification-compliant motion planning of automated vehicles.

1.2 Cooperative Motion Planning

As motivated at the beginning of the chapter, the benefits of automated vehicles fully
unfold when they are able to communicate with other traffic participants: human drivers
predominantly interact with each other through implicit communication and by antici-
pating the most likely behaviors of other traffic participants; conversely, when automated
vehicles employ maneuver-based cooperation through explicit communications, they re-
duce uncertainties in future movements of participating vehicles and jointly offer more
sophisticated and efficient solutions in an ongoing traffic scenario. Despite its advan-
tages, cooperative motion planning is inherently a highly combinatorial problem whose
complexity grows exponentially in relation to the number of participating vehicles (see

7

Chapter 1. Introduction

Sec. 2.5 and Fig. 2.5a). In addition, the cooperating vehicles must reach a consensus on
their maneuvers in a timely manner while accounting for individual objectives and main-
taining collision-free interactions with both non-communicating traffic participants and
other members of the cooperative group. Therefore, a primary challenge of cooperative
motion planning is the development of a computationally efficient cooperation scheme
that upholds the optimality of the cooperative plans. Several recent surveys [57]–[61]
provide comprehensive reviews of a plethora of works focusing on different aspects of
cooperative driving of automated vehicles, including their architectures, maneuver plan-
ning schemes, and common use cases. Below, we briefly outline approaches relevant to
cooperative motion planning of connected automated vehicles.

1.2.1 Multi-Objective Optimization

The cooperative motion planning of connected automated vehicles can be formulated as
multi-objective optimization problems [57], [58], [61]. In optimization-based approaches,
one or multiple optimization problems are formulated to minimize particular cost func-
tions or, alternatively, to maximize certain utility functions. The cost and utility func-
tions are designed to account for local and global objectives: Examples of local objectives
are dynamic constraints, collision-avoidance constraints, and the preferences of individ-
ual vehicles; global objectives include the fairness of cooperation and the overall traffic
efficiency of participating vehicles. These optimization problems are then solved using
either centralized or distributed optimization techniques, generating reference trajecto-
ries to be followed by every cooperating vehicles. Despite offering viable solutions to the
cooperative motion planning problems, optimization-based approaches generally suffer
from the high computational complexity arising from an increased number of participat-
ing vehicles, either demanding extraordinary computational resources or imposing strict
limitations on the size of the vehicle group.

1.2.2 Reservation-based Conflict Resolution

An alternative paradigm for solving cooperative motion planning problems is to adopt
reservation-based methods [57], [58], [61]. The underlying concept of these methods is to
treat free space on the road as a shared resource among cooperative vehicles and grant
exclusive access to certain portions of the road for a limited duration to individual vehi-
cles. By receiving these space-time allocations, cooperative vehicles can independently
plan their motions and resolve potential collisions with other participating vehicles in
the group. The minimal unit of reservation varies in the existing literature and can be
represented by, e.g., tiles and cells [62], [63], conflicting points and regions [64], [65], and
moving space-time corridors corresponding to specific driving maneuvers [66], [67].

The reservation can be performed in centralized or decentralized fashions. In central-
ized approaches, a central unit, such as a roadside infrastructure or a vehicle within the
cooperative group, coordinates the maneuvers of all participating vehicles; whereas in
decentralized approaches, participating vehicles initiate the cooperation and undertake
actions on their own. We provide one example for both approaches: Article [62] serves

8

1.3. Contributions

as an illustration of earlier works that adopt centralized intersection management. In-
tersection regions are divided into tiles, which can be requested by vehicles approaching
from different directions. Utilizing a first-come, first-served protocol, the intersection
manager allocates tiles to vehicles while ensuring that no tile is simultaneously occupied
by multiple vehicles. Articles [66], [67] exemplify fully decentralized approaches: An
efficient and explicit space-time reservation protocol was devised for cooperative maneu-
ver planning, with further real-world experiments reported in [68]. Cooperative vehicles
may use this protocol to broadcast their desired space-time requests to nearby vehicles.
Upon receiving approval from all surrounding vehicles whose motion would be directly
influenced by the requests, the requesting vehicle obtains permission to navigate within
the designated space-time envelope. While centralized approaches may readily generate
globally optimal trajectories for all vehicles, they often confront the same high computa-
tional complexity associated with optimization-based approaches detailed in Sec. 1.2.1.
In contrast, decentralized approaches impose less computational demands on each par-
ticipant and exhibit greater flexibility, albeit at the expense of settling for suboptimal
solutions.

A variety of policies can be enforced during the allocation of reservation units, ranging
from the simpler first come, first served policy to the more intricate auction-based poli-
cies. The inefficiencies of the former policy, especially in high traffic density scenarios,
can be mitigated by auction-based policies as demonstrated in [63], [69], [70]. Within
auction-based frameworks, cooperative vehicles act as bidders competing for packages
consisting of conflicting reservation units. An auction algorithm is executed to identify
the package winners while optimizing the total revenue of the packages. Auction-based
approaches offer notable advantages as they facilitate the systematic consideration of
both individual and collective objectives and preferences concerning the packages.

1.3 Contributions

This dissertation proposes novel methods based on reachability analysis to address the
(cooperative) specification-compliant motion planning problem for automated vehicles.
As an attempt to answer the open questions described in page 4, the proposed meth-
ods [1]–[6] present the following contributions:

1. Efficient incorporation of specifications expressed in propositional logic and tempo-
ral logic into reachability analysis of automated vehicles, which yields specification-
compliant planning spaces that can be used for various applications of automated
vehicles, including motion planning and predicting the legal behaviors of other
vehicles.

2. Efficient and exhaustive identification of drivable (dynamics-aware and collision-
free) and specification-compliant driving corridors within the reachable sets of au-
tomated vehicles, among which the optimal choices are further determined. Apply-
ing constraints extracted from such driving corridors to motion planners expedites
the generation of trajectories complying with enforced specifications.

9

Chapter 1. Introduction

3. Extension of the individual specification-compliant motion planning to a group
of cooperative automated vehicles. This is achieved through negotiating their
specification-compliant reachable sets. Consequently, each vehicle receives its own
negotiated and specification-compliant solution space, within which trajectories
can be individually planned.

4. Integration of the so-called invariably safe sets with cooperative motion planning
and the generation of safe trajectories for cooperative vehicles such that their safety
can be ensured for an infinite time horizon, even in safety-critical situations.

5. Provision of CommonRoad-Reach, an open-sourced toolbox written in Python and
C++ that offers efficient and user-friendly implementations for computing the
reachable sets and extracting the driving corridors of automated vehicles.

6. A pipeline for automatically generating a large amount of safety-critical traffic
scenarios based on reachability analysis, which we refer to as Scenario Factory. The
generated traffic scenarios are beneficial for various automated vehicle applications,
including the testing, verification and comparison of motion planning algorithms.
For example, our pipeline has been used to generate challenge scenarios in the
international CommonRoad motion planning competition (years 2021 and 2022).

The underlying idea across [1]–[6] is to efficiently compute and represent the collision-
free (and specification-compliant) solution space of automated vehicles for motion plan-
ning. Our reachability analysis exhibits numerous favorable properties, including:

1. Due to our reachability analysis’ set-based and over-approximative nature, it ef-
ficiently explores the collision-free (and specification-compliant) solution space of
automated vehicles that enclose all their drivable trajectories, even in scenarios
with challenging narrow passageways.

2. Since we represent obstacles for collision checks by simple geometric shapes such
as polygons and circles, our reachability analysis can be applied to complex traffic
scenarios involving static and dynamic traffic participants of arbitrary shapes.

3. Contrary to conventional motion planners, our set-based reachability analysis re-
quires less computation effort in more critical scenarios with shrinking solution
space for motion planning.

4. The specification-compliant driving corridors identified within the computed reach-
able sets can be easily integrated into arbitrary motion planners accepting position
and velocity constraints over the states of automated vehicles. In addition, such
driving corridors do not restrict the vehicle models used for motion planning. For
instance, they can be utilized by motion planners considering both coupled and
decoupled longitudinal and lateral vehicle dynamics.

5. By coupling reachability analysis with model checking techniques, conflicting or
non-satisfiable specifications can be detected prior to actually planning a low-level

10

1.4. Publications and Outline

trajectory. Moreover, it allows one to determine the last point in time at which a
specification-compliant state still exists.

1.4 Publications and Outline

This dissertation is based on six peer-reviewed, (co-)first-author publications [1]–[6] that
have been submitted to internationally acknowledged conferences, journals, or book
publishers:

[1] E. Irani Liu and M. Althoff, “Computing specification-compliant reachable sets
for motion planning of automated vehicles,” in Proc. of the IEEE Intell. Veh.
Symp., 2021, pp. 1037–1044.

[2] E. Irani Liu and M. Althoff, “Specification-compliant driving corridors for motion
planning of automated vehicles,” IEEE Trans. Intell. Veh., vol. 8, no. 9, pp. 4180–
4197, 2023.

[3] E. Irani Liu and M. Althoff, “Specification-compliant motion planning of cooper-
ative vehicles using reachable sets,” in Cooperatively Interacting Vehicles, Springer,
2023.

[4] E. Irani Liu, C. Pek, and M. Althoff, “Provably-safe cooperative driving via
invariably safe sets,” in Proc. of the IEEE Intell. Veh. Symp., 2020, pp. 516–523.

[5] E. Irani Liu*, G. Würsching*, M. Klischat, and M. Althoff, “CommonRoad-
Reach: A toolbox for reachability analysis of automated vehicles,” in Proc. of the
IEEE Int. Conf. Intell. Transp. Syst., 2022, pp. 2313–2320.

[6] M. Klischat*, E. Irani Liu*, F. Höltke, and M. Althoff, “Scenario factory: Cre-
ating safety-critical traffic scenarios for automated vehicles,” in Proc. of the IEEE
Int. Conf. Intell. Transp. Syst., 2020, pp. 1–7.

* These authors contributed equally to the article and share the first authorship.

The reprint of each publication is included in this dissertation together with a summary
of the content and the main contributions of E. I. L., the author of this dissertation,
as required by the regulations of the degree-awarding institution. The contributions of
the co-authors are not listed; nevertheless, their indispensable efforts in publishing the
articles are gratefully acknowledged.

The remainder of this dissertation is structured as follows: Chapter. 2 presents the
required preliminaries and general methodologies of our proposed methods. Chapter. 3
includes a summary of this dissertation and suggests possible directions for further im-
provements and future research. Appendix A contains the reprints of the included pub-
lications, and Appendix B lists the bachelor and master theses supervised by the author
of this dissertation.

11

Chapter 2
Methods

This chapter introduces the necessary preliminaries and methodologies, including the
general setup, temporal logics to formalize our specifications, set-based reachability anal-
ysis of automated vehicles, the concept of driving corridors, and (cooperative) motion
planning of automated vehicles using reachability analysis.

2.1 General Setup

Throughout this dissertation, the vehicle for which trajectories should be planned is
referred to as the ego vehicle. The ego vehicle receives as input the current environment
model, including a road network, a local curvilinear coordinate system F L, all relevant
obstacles, and a set F of specifications. Fig. 2.1 illustrates an exemplary traffic scenario:

• The road network consists of lanelets [71], each of which has left and right bound-
aries modeled with polylines. A lanelet might reference traffic rule elements such
as traffic signs and traffic lights. A route through the road network is planned via
a readily available route planner from the initial state to the goal region, whose
centerline is used as the reference path Γ : R→ R2 of the ego vehicle.

• A local curvilinear coordinate system F L is constructed from the reference path
Γ using the method described in [71]. Adopting such a coordinate system facili-
tates the formulation of driving maneuvers from an ego-vehicle-centric perspective.
Examples of such maneuvers include following a lane and stopping before an in-
tersection. Within F L, a tuple (s, d) describes the longitudinal coordinate s along
Γ and the lateral coordinate d orthogonal to Γ(s). It is worth noting that our
computation of reachable sets (detailed in Sec. 2.3) is not restricted to F L and can
also be performed within the global Cartesian coordinate system where necessary,
e.g., in scenarios without a structured road network such as parking lots.

• Relevant obstacles are those perceived within the field of view of the ego vehi-
cle. It is assumed that the predicted motions of obstacles, e.g., their most likely
trajectories, are given as input.

13

Chapter 2. Methods

Reference
path

Dynamic
obstacle

Goal
region

Initial
state

F L

d

s 1

3
2

4

Figure 2.1: An exemplary traffic scenario with four lanelets (with IDs 1–4 shown in numbered boxes)
and a curvilinear coordinate system constructed from the reference path. The triangles at
the beginning of the lanelets indicate the driving directions. We also show the predicted
motions of the vehicles for the future two steps with semi-transparency.

• The specifications F that we consider are expressed in temporal logic and will be
introduced in Sec. 2.2.

The reachable sets and trajectories of the ego vehicle are computed at discrete steps
k ∈ N0 corresponding to time tk = k∆t, with ∆t ∈ R+ being a predefined time increment,
and up to the planning horizon kh ∈ N. The dynamics of the ego vehicle is

xk+1 = f(xk,uk), (2.1)

where xk ∈ Xk ⊂ Rnx denotes the state of the ego vehicle in the state space Xk,
uk ∈ Uk ⊂ Rnu denotes an input in the input space Uk, all at step k. We use U
to represent an input trajectory of the ego vehicle. Variable τk denotes the valuation
(detailed in Sec. 2.2) of the ego vehicle with state xk over a setAP of atomic propositions.

2.2 Temporal Logic

The specifications that we consider are expressed in MTL with past over finite traces
(MTLpf) [24], [72]. MTLpf shares the same syntax with MTL and is interpreted over
traces of finite length (as opposed to infinite length in MTL). We adopt MTLpf speci-
fications since (a) they are sufficiently expressive to formulate traffic rules with precise
timing constraints, see, e.g., [18], [19], [21], and (b) traces in our system are of finite
length. We now introduce MTLpf and its relevant subsets to our applications.

2.2.1 Metric Temporal Logic with Past over Finite Traces

An MTLpf formula ϕM over atomic propositions AP has the following syntax [24], [72]:

ϕM ::= σ | ¬ϕM |ϕM
1 ∧ ϕM

2, |XIϕ
M |ϕM

1UIϕ
M
2 |YIϕ

M |ϕM
1SIϕ

M
2,

where σ ∈ AP is an atomic proposition reflecting a logical relation between the ego
vehicle and entities in the environment model, ¬ (Not) and ∧ (And) are Boolean con-
nectives, X (neXt) and U (Until) are future-time connectives, Y (Yesterday) and S

14

2.2. Temporal Logic

(Since) are past-time connectives, and I = [a, b], a, b ∈ N0, is a bounded interval. In
addition, we also adopt the following commonly used abbreviations [24]:

• Contradiction: ⊥ ≡ ϕM ∧ ¬ϕM,

• Tautology: > ≡ ¬⊥,

• Or: ϕM
1 ∨ ϕM

2 ≡ ¬(¬ϕM
1 ∧ ¬ϕM

2),

• Implication: ϕM
1 ⇒ ϕM

2 ≡ ¬ϕM
1 ∨ ϕM

2,

• Future: FIϕ
M ≡ >UIϕ

M,

• Globally: GIϕ
M ≡ ¬FI¬ϕM,

• Once: OIϕ
M ≡ >SIϕ

M,

• Historically: HIϕ
M ≡ ¬OI¬ϕM.

We interpret MTLpf over the point-wise semantics [73] with timed traces, which

resemble sequences of events with timestamps. Given is a trace τ := (τ0, . . . , τk, . . .)
with length |τ |, where τk : AP → {true, false} represents a valuation over AP , i.e.,
an assignment of true or false to every atomic proposition σ ∈ AP , at step k. The
notation (τ, k) |= ϕM indicates that ϕM holds in the k-th valuation of τ , i.e., τk. Due to
the reason that τk are synchronized with steps k, we simplify the semantics of MTLpf

presented in [24],[72, Sec. 2]:

• (τ, k) |= σ if and only if (iff) τk(σ) = true,

• (τ, k) |= ¬ϕM iff (τ, k) 6|= ϕM,

• (τ, k) |= ϕM
1 ∧ ϕM

2 iff (τ, k) |= ϕM
1 and (τ, k) |= ϕM

2,

• (τ, k) |= XIϕ
M iff k < |τ | − 1, 1 ∈ I, and (τ, k + 1) |= ϕM,

• (τ, k) |= YIϕ
M iff k > 0, 1 ∈ I, and (τ, k − 1) |= ϕM,

• (τ, k) |= ϕM
1UIϕ

M
2 iff ∃l, k ≤ l ≤ |τ | − 1: (τ, l) |= ϕM

2, l − k ∈ I, and ∀m, k ≤ m < l:
(τ,m) |= ϕM

1,

• (τ, k) |= ϕM
1Sϕ

M
2 iff ∃l, 0 ≤ l ≤ k: (τ, l) |= ϕM

2, k − l ∈ I, and ∀m, l < m ≤ k:
(τ,m) |= ϕM

1.

As examples, formulas X[2,4]ϕ
M and ϕM

1U[1,3]ϕ
M
2 respectively mean that “next valuation

occurs within 2 and 4 steps from now, in which ϕM holds” and “within 1 and 3 steps, a
valuation occurs in which ϕM

2 holds, and ϕM
1 holds for all valuations before that”. Fig. 2.2

depicts traces that satisfy the latter formula. The past-time connectives Y, S, O, and H
respectively mirror their future-time counterparts X, U, F, and G, backward in time.

15

Chapter 2. Methods

0 1 2 3 4k

ϕM
1 = >

ϕM
2 = >

arbitrary

Figure 2.2: Illustration of traces satisfying ϕM
1U[1,3]ϕ

M
2. A circle represents a valuation in which the

atomic proposition corresponding to the color is assigned true. A sequence of circles
represents a trace.

2.2.2 Linear Temporal Logic (with Past over Finite Traces)

Since valuations τk in our system are synchronized with steps k, we do not require
the full expressiveness of MTLpf for checking the compliance of our system against
the considered specifications. To reduce the computational complexity and to leverage
existing model checkers, we interpret MTLpf formulas as LTL with past over finite traces
(LTLpf) [74] and further convert them into LTL over infinite traces. MTLpf is reduced
to LTLpf by dropping intervals I over the temporal connectives [74] in the syntax;
further dropping past-time connectives yields standard LTL [23]. We denote the set of
specifications converted into LTL with which the ego vehicle should comply by F .

2.2.3 Propositional Logic

The subset of MTLpf formulas without temporal connectives is essentially propositional
logic [75]. Since propositional logic specifications do not reason about atomic propo-
sitions in terms of time, they are directly handled during the forward propagation of
reachable set computation (see [1] for details).

2.3 Reachability Analysis

We apply set-based reachability analysis and compute the collision-free reachable sets of
automated vehicles to explore their continuous state spaces over time. The computed
reachable sets, or their specification-compliant subsets in case certain specifications F
are to be considered, are advantageous for a series of applications, including restricting
the motion planning space of automated vehicles. We introduce a few definitions and
the computation of reachable sets.

Definition 1 (Occupancy). The operator occ(·) returns the positions occupied within
F L. For example, occ(xk) returns the occupancy of the ego vehicle with state xk.

Definition 2 (Set of forbidden states). Given the set Ok ⊂ R2 of positions occupied by
all obstacles at step k and the space outside the road, the set of forbidden states of the
ego vehicle at step k is defined as

X F
k :=

{
xk ∈ Xk

∣∣ occ(xk) ∩ Ok 6= ∅
}
. (2.2)

16

2.3. Reachability Analysis

Definition 3 (One-Step Reachable Set). Let us introduce Re
0 = X0 as the exact reachable

set of the ego vehicle at the initial step, with X0 being the set of collision-free initial states
including measurement uncertainties. The exact reachable set Re

k+1 is the set of states
reachable from Re

k within one step without intersecting the set of forbidden states X F
k+1,

denoted by reach(Re
k):

Re
k+1 :=

{
xk+1 ∈ Xk+1

∣∣∃xk ∈ Re
k, ∃uk ∈ Uk : xk+1 = f(xk,uk),xk+1 /∈ X F

k+1

}
.

︸ ︷︷ ︸
reach(Re

k)

(2.3)

Definition 4 (Projection). The operator proj♦(x) maps the state x ∈ X to its elements
♦. For example, proj(s,ṡ)(x) = (s, ṡ)T for x = (s, ṡ, s̈)T. A set can be projected using

the same operator: proj♦(X) =
{

proj♦(x)
∣∣x ∈ X

}
.

Definition 5 (Drivable Area). The drivable area De
k at step k is defined as the projection

of the reachable set Re
k onto the position domain, i.e., De

k := proj(s,d)(Re
k).

In practice, the computation of the exact reachable set Re
k is generally difficult or even

impossible for certain classes of systems [76]. In addition, computing the reachable sets
is computationally challenging given the arbitrary shapes of the obstacles on the road,
the high-dimensional continuous state space of a vehicle, its non-linear vehicle model,
and its hard real-time constraints over motion planning. For these reasons, we instead
compute tight over-approximations Rk ⊇ Re

k of the reachable sets and drivable areas
Dk ⊇ De

k.

The dynamics of the ego vehicle (2.1) is abstracted by two double integrators within
the coordinate system F L for computational efficiency. For simplicity, the geometric
center of the ego vehicle is chosen as the reference point. Our model has states xk =
(sk, ṡk, dk, ḋk)T and inputs uk = (s̈k, d̈k)T:

xk+1 =

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t

0 0 0 1

xk +

1
2∆2

t 0
∆t 0
0 1

2∆2
t

0 ∆t

uk.

︸ ︷︷ ︸
f(xk,uk)

(2.4)

This abstraction is a trade-off between the accuracy of capturing the actual behaviors
of the ego vehicle and the computational effort required for its reachability analysis.
Moreover, this abstraction ensures that the reachable sets of high-fidelity vehicle models
are always contained within those of the adopted model. Let � denote a variable with
its minimum and maximum values respectively represented by � and �. The velocities
and accelerations of the ego vehicle at (sk, dk) are bounded by

ṡ(Γ, sk) ≤ ṡk ≤ ṡ(Γ, sk), ḋ(Γ, sk) ≤ ḋk ≤ ḋ(Γ, sk), (2.5a)

s̈(Γ, sk) ≤ s̈k ≤ s̈(Γ, sk), d̈(Γ, sk) ≤ d̈k ≤ d̈(Γ, sk). (2.5b)

17

Chapter 2. Methods

s1 s2

ṡ1

ṡ2

0

(a) P(i),s
k

d1 d2

ḋ1

ḋ2

0

(b) P(i),d
k

s1 s2

d1

d2

0

(c) D(i)
k

Figure 2.3: Polytopes and drivable area of a base set R(i)
k .

We choose these bounds conservatively to consider the kinematic limitations within a
curvilinear coordinate system, see, e.g., article [77].

Following article [78], the occupancy of the ego vehicle occ(xk) in (2.2) is under-
approximated by its inscribed circle, resulting in an under-approximative set of forbid-
den states X̌ F

k . Thus, the reachable sets Rk ⊇ Re
k are over-approximative and enclose

all drivable trajectories of the ego vehicle. To reduce the required computational effort,

the reachable sets Rk are represented by the union of so-called base sets R(i)
k , i ∈ N,

i.e., Rk := ∪iR(i)
k . Every base set R(i)

k := P(i),s
k × P(i),d

k is a Cartesian product of two
convex polytopes that respectively enclose the reachable positions and velocities of the
ego vehicle in the (s, ṡ) and (d, ḋ) planes (see Fig. 2.3a–b). Compared to other set repre-
sentations listed in [79, Tab. 1], this representation is advantageous since polytopes are
closed under linear mappings and intersections. To simplify the notation, the collection1

of R(i)
k is also denoted by Rk, i.e., Rk :=

{
. . . ,R(i)

k , . . .
}

. The states xk within a base

set R(i)
k have a unified valuation over atomic propositions AP , denoted by τ

(i)
k . Similar

to Def. 5, the projections of sets Rk and R(i)
k onto the position domain are denoted by

Dk and D(i)
k , respectively, and Dk := ∪iD(i)

k (see Fig. 2.3c).

For later use, the reachability between the collision-free base sets of consecutive steps
is determined following the procedure described in [1], which is stored in a directed and

acyclic reachability graph GR. An edge (R(i)
k ,R(j)

k+1) in graph GR indicates that set R(j)
k+1

is reachable from set R(i)
k after one step.

We use the reachable sets Rk to explore the collision-free solution space of the ego
vehicle for motion planning. However, the direct usage of Rk is unsuitable for obtaining
constraints for generating specification-compliant trajectories due to the reasons that
Rk (a) may be disconnected in the position domain and (b) may contain states xk

having different valuations over atomic propositions. To overcome this problem, we con-
struct collision-free connected components within Rk and further identify specification-
compliant driving corridors, from which motion planning constraints over the states xk

can be extracted. We proceed with presenting relevant definitions.

1We refer to a set of sets as a collection.

18

2.4. Motion Planning using Reachability Analysis

Definition 6 (Connected Component). A connected component Ck ⊆ Rk is a set with
valuation τk over atomic propositions AP such that

(a) Ck forms a connected set [80] and is collision-free in the position domain,

(b) the states xk within Ck have the same valuation τk.

Definition 7 (Driving Corridor). A driving corridor is a sequence of connected compo-
nents (C0, . . . , Ck, . . . , Ckh) over steps k.

To expedite the generation of specification-compliant trajectories, we also define driving
corridors compliant with the specifications F .

Definition 8 (Specification-Compliant Driving Corridor). A specification-compliant
driving corridor is one that complies with specifications F : ∀ϕ ∈ F : (τ0, . . . , τkh) |= ϕ.

2.4 Motion Planning using Reachability Analysis

The specification-compliant motion planning problem of automated vehicles is formally
defined as follows:

Problem 1 (Specification-Compliant Motion Planning). Find an optimal control input
U∗ that solves the following non-convex optimization problem:

min
U

kh∑

k=0

J(xk,uk) (2.6a)

subject to x0 = x̃0, (2.6b)

xkh ∈ X G, (2.6c)

∀k ∈ {0, . . . , kh − 1} :xk+1 = f(xk,uk), (2.6d)

∀k ∈ {0, . . . , kh} :xk /∈ X F
k , (2.6e)

∀ϕ ∈ F : (τ0, . . . , τkh) |= ϕ, (2.6f)

where J : Rnx × Rnu → R is a cost function, x̃0 ∈ X0 is the measured initial state
of the ego vehicle, the set X G denotes the goal states of the ego vehicle, and the set F
represents the enforced specifications. Constraints (2.6e) and (2.6f) respectively encode
collision avoidance and specification compliance.

A feasible solution to Prob. 1 can be obtained using the methods reviewed in Sec. 1.1.2,
each with its potential drawbacks. To expedite the generation of solution trajectories,
it is often beneficial, or sometimes even necessary [81], [82], to guide the ego vehicle
in the form of additional constraints over its states xk. Therefore, we leverage our
specification-compliant driving corridors (see Def. 8), from which we extract additional
motion planning constraints. The optimal driving corridor adhering to specifications F
is obtained by solving the following problem:

19

Chapter 2. Methods

Problem 2 (Optimal Specification-Compliant Driving Corridor Identification). The op-
timal specification-compliant driving corridor of the ego vehicle is the solution to the
following optimization problem:

max

kh∑

k=0

uk (2.7a)

subject to C0 3 x0, (2.7b)

Ckh ∩ X
G 6= ∅, (2.7c)

∀k ∈ {0, . . . , kh − 1} : Ck+1 ∩ reach(Ck) 6= ∅, (2.7d)

∀ϕ ∈ F : (τ0, . . . , τkh) |= ϕ, (2.7e)

where uk is the utility associated with Ck (detailed in [2]). Constraints (2.7d) and (2.7e)
respectively encode the reachability of successive connected components of the driving
corridor and its compliance with the enforced specifications. Collision-freeness of the
driving corridor follows directly from Def. 6.

Given a driving corridor within the reachable sets of the ego vehicle, additional con-
straints over its states xk can be introduced to Prob. 1 such that the trajectory of the
ego vehicle is contained within the driving corridor: ∀k ∈ {0, . . . , kh} : xk ∈ Ck. Let us
describe the general procedure of our approach for obtaining a specification-compliant
trajectory using reachable sets with the help of Fig. 2.4:

1. Explore the collision-free solution space for motion planning by computing the
(over-approximative) reachable sets of the ego vehicle for consecutive steps up to
the planning horizon (Fig. 2.4a).

2. Identify (all) collision-free and specification-compliant driving corridors within the
computed reachable sets. In Fig. 2.4b–c, we illustrate two exemplary driving cor-
ridors within the reachable sets of the ego vehicle, with one being compliant and
the other non-compliant with the enforced specifications.

3. Determine the (optimal) driving corridor in which low-level trajectories should be
planned. Note that the number of possible driving corridors grows exponentially
in relation to the planning horizon and there are potentially many more driving
corridor candidates besides those depicted in Fig. 2.4b–c.

4. Plan a trajectory using arbitrary motion planners accepting constraints extracted
from the connected components of the (optimal) driving corridor (Fig. 2.4d).

2.5 Cooperative Motion Planning using Reachability Analysis

Now let us consider a group of cooperative vehicles Vn, n ∈ N = {1, 2, . . . , N}, whose
associated variables � are denoted by �n. The primary goal of cooperative motion
planning is to orchestrate the motions of the cooperative vehicles such that each vehicle

20

2.5. Cooperative Motion Planning using Reachability Analysis

follows a collision-free trajectory with respect to all other traffic participants. On top of
this, we require that each vehicle adheres to its set of specifications Fn. The cooperative
motion planning problem can be formulated by extending Prob. 1:

Problem 3 (Cooperative Specification-Compliant Motion Planning). Find an optimal
control input U∗n for each cooperative vehicle Vn and solve the following non-convex
optimization problem:

min
Û

N∑

n=1

kh∑

k=0

Jn(xk,n,uk,n) (2.8a)

subject to ∀n,m ∈ N :x0,n = x̃0,n, (2.8b)

xkh,n ∈ X G
n , (2.8c)

∀k ∈ {0, . . . , kh − 1} :xk+1,n = fn(xk,n,uk,n), (2.8d)

∀k ∈ {0, . . . , kh} :xk,n /∈ X F
k,n, (2.8e)

occ(xk,n) ∩ occ(xk,m) = ∅, n 6= m, (2.8f)

∀ϕn ∈ Fn : (τ0,n, . . . , τkh,n) |= ϕn, (2.8g)

where Û = (U1,U2, . . . ,UN)T is a vector of control inputs for each vehicle Vn over the
planning horizon. Collision avoidance with non-cooperating traffic participants and with
other cooperating vehicles within the group is respectively handled by (2.8e) and (2.8f).

The complexity of trajectory-based approaches for solving Prob. 3 is exponential with
relation to the number N of cooperative vehicles: Assuming that each vehicle generates
M trajectory candidates, there are MN possible combinations of trajectories to be eval-
uated (see Fig. 2.5a). We resort to a computationally efficient approach to overcome
this issue: The permissible solution space of each vehicle is determined using reachabil-
ity analysis, where potential conflicts in the position domain, i.e., collisions within the
group, are detected and resolved. Consequently, each vehicle unambiguously receives
its own collision-free planning space for trajectory planning. It is worth noting that
cooperative vehicles can adopt different motion planning techniques to generate their
trajectories within the negotiated planning space. The general procedure of our ap-
proach for obtaining specification-compliant trajectories for cooperative vehicles using
reachable sets is as follows:

1. Each cooperative vehicle Vn computes its specification-compliant reachable set for
one step, followed by negotiating conflicting reachable sets within the cooperative
group. This process is repeated up to the planning horizon (see Fig. 2.5c).

2. Each vehicle Vn identifies (all) collision-free and specification-compliant driving
corridors within its negotiated reachable sets.

3. Each vehicle Vn determines its (optimal) driving corridor in which trajectories
should be planned.

4. Each vehicle Vn plans a trajectory using arbitrary motion planners accepting con-
straints extracted from its (optimal) driving corridor (see Fig. 2.5d).

21

Chapter 2. Methods

Drivable
area

Ego
vehicle

Dynamic
obstacle

(a) Collision-free drivable areas of the ego vehicle over con-
secutive steps.

Compliant Driving Corridor

(b) A compliant driving corridor that overtakes the leading
vehicle from its left side.

Non-Compliant Driving Corridor

(c) A non-compliant driving corridor that overtakes the lead-
ing vehicle from its right side.

Trajectory within a Compliant Driving Corridor

(d) A trajectory planned within a driving corridor using ar-
bitrary motion planners.

Figure 2.4: General procedure for obtaining a specification-compliant trajectory using reachable sets.
In this scenario, the ego vehicle is trying to overtake its leading vehicle. We assume that
the enforced specifications forbid overtaking a vehicle from its right side; thus, the ego
vehicle plans a trajectory overtaking from the left side of its leading vehicle. Results of
future steps are shown with increased transparency.

22

2.5. Cooperative Motion Planning using Reachability Analysis

(a) Highly combinatorial nature of cooperative
motion planning.

(b) Drivable areas of vehicles disregarding
traffic rules.

(c) Drivable areas of vehicles considering traf-
fic rules.

(d) Planned trajectories of vehicles within
the drivable areas of their negotiated
specification-compliant reachable sets.

Figure 2.5: General procedure for obtaining specification-compliant trajectories of cooperative vehicles
using reachable sets. In this scenario, three cooperative vehicles drive on a three-lane
road regulated by a traffic light and with line markings. We show the drivable areas of
vehicles disregarding and considering relevant traffic rules, i.e., not crossing solid lines and
respecting traffic lights, in subfigures b and c, respectively. In subfigure d, each vehicle
receives its negotiated and specification-compliant reachable sets, within which trajectories
are individually planned.

23

Chapter 3
Conclusions

This dissertation covered novel solutions to the specification-compliant motion planning
problems for individual and cooperative automated vehicles. In the following sections,
we summarize the works of the author included in this dissertation and subsequently
discuss possible directions for further improvements and future research.

3.1 Summary

This dissertation covered several methods for individual and cooperative specification-
compliant motion planning of automated vehicles using reachability analysis. The core
idea involves computing the collision-free reachable sets of automated vehicles, identify-
ing their specification-compliant subsets, and extracting motion planning constraints.

As a first step toward specification-compliant motion planning, we extended the states
in our reachable set computation with atomic propositions (see Sec. 2.2) relevant to
German traffic rules described in [21]. We successfully identified subsets of our reachable
sets that comply with specifications expressed in time-labeled propositional logic, within
which trajectories adhering to the same specifications are planned (see [1]).

Considering that traffic rules and other high-level handcrafted rules can be effectively
and naturally expressed in temporal logic, as demonstrated in works [18], [19], [21],
[22], [27], we coupled reachability analysis with model checking and generated collision-
free driving corridors within the reachable sets complying with German traffic rules
expressed in metric temporal logic (see [2]). Applying constraints extracted from such
driving corridors to motion planners expedites the generation of trajectories complying
with enforced temporal specifications. This claim was substantiated by integrating the
driving corridors into two sampling-based motion planners and comparing the time and
effort required to generate a trajectory adhering to the specifications. We also verified
and demonstrated the favorable characteristic of our reachable set computation that it
requires less time and effort under more critical scenarios with a smaller solution space.
Furthermore, we compared our approach to related work in terms of model accuracy
and verification efficiency, exhibiting the superiority of our approach.

In addition to individual motion planning, we extended the results of [1] to a group of
cooperative vehicles (see [3]): We computed the specification-compliant reachable sets of

25

Chapter 3. Conclusions

each cooperative vehicle and resolved potential conflicts of their reachable sets within the
group. As a result, each vehicle receives its own planning space to generate specification-
compliant trajectories. The seamless transition from individual to cooperative motion
planning considering specifications is demonstrated using examples featuring a precise
overtaking situation, a highway scenario, and a roundabout scenario.

Ensuring the safety of automated vehicles at all times can be considered one of the
most critical specifications. We extended the concept of the so-called invariably safe
sets for individual motion planning [83] to cooperative motion planning (see [4]). This is
achieved by incorporating reachability analysis and devising a mechanism for distributing
the invariably safe sets to cooperative vehicles. Consequently, the safety of cooperative
vehicles can be ensured for an infinite time horizon even under safety-critical situations,
e.g., when the leading vehicles perform emergency braking maneuvers.

As a contribution to the scientific community, we released CommonRoad-Reach, an
open-source toolbox dedicated to the computation of reachable sets and the extraction
of driving corridors for automated vehicles (see [5]). Apart from its primary function
in trajectory planning for automated vehicles, CommonRoad-Reach is versatile and ad-
vantageous for a variety of other applications. These include but are not limited to,
verifying the absence of collisions between vehicles and estimating the boundaries of
future maneuvers of surrounding vehicles. We used various traffic scenarios with differ-
ent levels of complexity to showcase the functionality of our toolbox. Furthermore, we
demonstrated the real-time performance of the toolbox through benchmarking against
multiple scenarios from the CommonRoad benchmark suite.

With the primary objectives of testing, verifying, and comparing different motion
planners, we developed a pipeline that automatically generates a large number (the-
oretically as many as allowed by the computational resources) of safety-critical traffic
scenarios based on reachability analysis (see [6]). The usefulness of the pipeline has been
demonstrated through practical examples such as its employment in the international
CommonRoad motion planning competition (years 2021 and 2022).

3.2 Future Work

The preliminary outcomes obtained in this dissertation demonstrate the potential of our
proposed methods in generating specification-compliant trajectories for both individual
and cooperative automated vehicles, across arbitrary and complex traffic scenarios, with-
out compromising real-time capability. Nevertheless, there are many possible directions
worthy of further investigation, some of which are outlined below:

• The computational efficiency of our reachable set computation can be enhanced
in several ways. Two possible strategies are described here: (a) Given a set of
specifications, at each step, the states in our reachable set computation are ex-
tended with atomic propositions pertinent to the specifications. However, not all
atomic propositions at every step are essential for determining the truth of the
enforced specifications. We suggest analyzing the structure of the specifications,
potentially employing automata theory, to exclusively compute the relevant atomic

26

3.2. Future Work

propositions at each step, thereby reducing unnecessary computational efforts and
improving the efficiency of reachable set computation; (b) In our current imple-
mentation, the reachable set computation does not utilize results from the previous
planning cycles. We propose reusing these results as an initial approximation of
the reachable sets of the current planning cycle and refining the computation as
time permits. This modification ensures the availability of reachable sets at any
time of query.

• We recommend investigating novel utility functions to determine the optimal driv-
ing corridor among a set of specification-compliant candidates. We present three
potential measures: (a) Drivability: Prior to trajectory planning, it is desirable
and advantageous to assess if a feasible trajectory exists within a driving corridor
to avoid unnecessary computational efforts. (b) Robustness: Although all candi-
date driving corridors already adhere to the enforced specifications, their degrees of
compliance, i.e., robustness degree, may vary. It is preferable to select the driving
corridor that satisfies the specifications to a greater extent. (c) Criticality: While
all candidate driving corridors are collision-free (with an under-approximative set
of forbidden states), their criticality measures, such as the risk of collision, may
differ. We could evaluate these measures, for example, using the CommonRoad
CriMe [84] toolbox and prioritize safer candidates.

• One possible research direction is the formation of cooperative groups using reach-
ability analysis: Our proposed method for cooperative motion planning, along
with most existing literature on the topic, assumes that a cooperative group is
established in advance and takes it for granted. However, real-time interactive
formation and dissolution of such groups remain open questions. Vehicles should
be able to determine when it is advantageous to join or leave a cooperative group,
particularly during highly interactive situations, such as passing through larger
intersections. We suggest extending the group formation concept of [85] using
reachability analysis: Cooperative vehicles could compute their own specification-
compliant reachable sets and those of other vehicles. An overlap in the reachable
sets indicates that interaction between the vehicles may be necessary, thus pro-
moting the formation of a cooperative group.

• Our proposed method for cooperative motion planning [3] currently only supports
specifications expressed in propositional logic. To accommodate traffic rules ex-
pressed in temporal logic, it is advisable to extend our approach described in [2]
for single vehicles to cooperative vehicles. This necessitates a new mechanism for
negotiating conflicting reachable sets, as their temporal relations are vital for de-
termining the truths of specifications. We propose a possible solution consisting of
two steps: (a) Each cooperative vehicle identifies its specification-compliant driv-
ing corridors as described in [2] and generates a graph containing the base sets of
these driving corridors. (b) Perform negotiations if conflicts arise between the base
sets of generated graphs in the position domain. The utility function employed in
the negotiation should reflect the past, current, and future impacts of a vehicle

27

Chapter 3. Conclusions

losing a conflicting base set on its generated graph. This approach enables the in-
corporation of temporal requirements from the specifications into the negotiation
process.

• So far, our proposed methods have only been tested using numerical experiments
in relatively simple traffic scenarios from the CommonRoad benchmark suite. It is
beneficial to conduct more extensive experiments and tests using traffic simulators
such as SUMO and CARLA to identify and address corner cases and safety-critical
situations. Apart from utilizing simulated environments, performing real-world
test drives with research vehicles, such as EDGAR (see Fig. 1.2), is essential for
the practical verification of our theoretical findings.

By addressing these research directions in the future, the work presented in this disserta-
tion can be further advanced, contributing to the ongoing development of specification-
compliant motion planning of automated vehicles and paving the way to safer and more
efficient road traffic.

28

Bibliography

[7] S. Singh, “Critical reasons for crashes investigated in the national motor vehicle
crash causation survey,” National Center for Statistics and Analysis, U.S. National
Highway Traffic Safety Administration, Tech. Rep., 2018.

[8] World Health Organization, Global status report on road safety 2018. 2018.

[9] C. Burger, P. F. Orzechowski, Ö. Ş. Taş, and C. Stiller, “Rating cooperative driv-
ing: A scheme for behavior assessment,” in Proc. of the IEEE Int. Conf. Intell.
Transp. Syst., 2017, pp. 1–6.

[10] S. Aradi, “Survey of deep reinforcement learning for motion planning of au-
tonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2, pp. 740–759,
2020.

[11] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of motion
planning for highway autonomous driving,” IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. 5, pp. 1826–1848, 2019.

[12] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of mo-
tion planning and control techniques for self-driving urban vehicles,” IEEE Trans.
Intell. Veh., vol. 1, no. 1, pp. 33–55, 2016.

[13] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion planning
techniques for automated vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 4, pp. 1135–1145, 2015.

[14] U. N. E. C. for Europe, Convention on road traffic, 1968.

[15] G. Bagschik, T. Menzel, and M. Maurer, “Ontology based scene creation for the
development of automated vehicles,” in Proc. of the IEEE Intell. Veh. Symp., 2018,
pp. 1813–1820.

[16] M. Buechel, G. Hinz, F. Ruehl, H. Schroth, C. Gyoeri, and A. Knoll, “Ontology-
based traffic scene modeling, traffic regulations dependent situational awareness
and decision-making for automated vehicles,” in Proc. of the IEEE Intell. Veh.
Symp., 2017, pp. 1471–1476.

29

Bibliography

[17] Q. Zhang, D. K. Hong, Z. Zhang, Q. A. Chen, S. Mahlke, and Z. M. Mao, “A
systematic framework to identify violations of scenario-dependent driving rules
in autonomous vehicle software,” Proc. of the ACM Meas. Anal. Comput. Syst.,
vol. 5, no. 2, pp. 1–25, 2021.

[18] S. Maierhofer, P. Moosbrugger, and M. Althoff, “Formalization of intersection
traffic rules in temporal logic,” in Proc. of the IEEE Intell. Veh. Symp., 2022,
pp. 1135–1144.

[19] Y. Sun, C. M. Poskitt, J. Sun, Y. Chen, and Z. Yang, “LawBreaker: An ap-
proach for specifying traffic laws and fuzzing autonomous vehicles,” in Proc. of
the IEEE/ACM Int. Conf. Autom. Software Eng., 2022, pp. 1–12.

[20] H. Krasowski and M. Althoff, “Temporal logic formalization of marine traffic
rules,” in Proc. of the IEEE Intell. Veh. Symp., 2021, pp. 186–192.

[21] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “Formalization of
interstate traffic rules in temporal logic,” in Proc. of the IEEE Intell. Veh. Symp.,
2020, pp. 752–759.

[22] K. Esterle, L. Gressenbuch, and A. Knoll, “Formalizing traffic rules for machine
interpretability,” in Proc. of the IEEE Connect. Autom. Veh. Symp., 2020, pp. 1–
7.

[23] A. Pnueli, “The temporal logic of programs,” in Annu. Symp. Found. of Comput.
Sci., 1977, pp. 46–57.

[24] R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-
time Syst., vol. 2, no. 4, pp. 255–299, 1990.

[25] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,”
in Formal Tech., Model., Anal. Timed Fault-Tolerant Syst. 2004, pp. 152–166.

[26] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications for
continuous-time signals,” Theor. Comput. Sci., vol. 410, no. 42, pp. 4262–4291,
2009.

[27] A. Rizaldi, J. Keinholz, M. Huber, J. Feldle, F. Immler, M. Althoff, E. Hilgendorf,
and T. Nipkow, “Formalising and monitoring traffic rules for autonomous vehicles
in Isabelle/HOL,” in Int. Conf. Integr. Formal Methods, 2017, pp. 50–66.

[28] K. Esterle, V. Aravantinos, and A. Knoll, “From specifications to behavior: Ma-
neuver verification in a semantic state space,” in Proc. of the IEEE Intell. Veh.
Symp., 2019, pp. 2140–2147.

[29] L. Gressenbuch and M. Althoff, “Predictive monitoring of traffic rules,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2021, pp. 915–922.

[30] M. Hekmatnejad, S. Yaghoubi, A. Dokhanchi, H. B. Amor, A. Shrivastava, L.
Karam, and G. Fainekos, “Encoding and monitoring responsibility sensitive safety
rules for automated vehicles in signal temporal logic,” in Proc. of the ACM/IEEE
Int. Conf. Formal Method. Model. Syst. Des., 2019, pp. 1–11.

30

[31] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of safe and
scalable self-driving cars,” arXiv preprint arXiv:1708.06374, 2017.

[32] N. Aréchiga, “Specifying safety of autonomous vehicles in signal temporal logic,”
in Proc. of the IEEE Intell. Veh. Symp., 2019, pp. 58–63.

[33] H. Roehm, J. Oehlerking, T. Heinz, and M. Althoff, “STL model checking of
continuous and hybrid systems,” in Int. Symp. Autom. Technol. Verif. Anal., 2016,
pp. 412–427.

[34] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” Int. J.
Rob. Res., vol. 20, no. 5, pp. 378–400, 2001.

[35] R. R. Da Silva, V. Kurtz, and H. Lin, “Automatic trajectory synthesis for real-time
temporal logic,” IEEE Trans. Autom. Control, vol. 67, no. 2, pp. 780–794, 2021.

[36] C. K. Verginis, C. Vrohidis, C. P. Bechlioulis, K. J. Kyriakopoulos, and D. V.
Dimarogonas, “Reconfigurable motion planning and control in obstacle cluttered
environments under timed temporal tasks,” in Proc. of the IEEE Int. Conf. Robot.
Autom., 2019, pp. 951–957.

[37] Y. Shoukry, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia, G. J. Pappas,
and P. Tabuada, “SMC: Satisfiability modulo convex programming,” Proc. of the
IEEE, vol. 106, no. 9, pp. 1655–1679, 2018.

[38] K. Cho, J. Suh, C. J. Tomlin, and S. Oh, “Cost-aware path planning under co-safe
temporal logic specifications,” IEEE Robot. Autom. Lett., vol. 2, no. 4, pp. 2308–
2315, 2017.

[39] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit, and M. Y.
Vardi, “Iterative temporal planning in uncertain environments with partial satis-
faction guarantees,” IEEE Trans. Rob., vol. 32, no. 3, pp. 583–599, 2016.

[40] Y. Zhou, D. Maity, and J. S. Baras, “Timed automata approach for motion plan-
ning using metric interval temporal logic,” in Proc. of the Eur. Control Conf.,
2016, pp. 690–695.

[41] D. Maity and J. S. Baras, “Motion planning in dynamic environments with
bounded time temporal logic specifications,” in Mediterr. Conf. Control Autom.,
2015, pp. 940–946.

[42] R. Kohlhaas, T. Bittner, T. Schamm, and J. M. Zöllner, “Semantic state space for
high-level maneuver planning in structured traffic scenes,” in Proc. of the IEEE
Int. Conf. Intell. Transp. Syst., 2014, pp. 1060–1065.

[43] E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-guided controller synthesis
for nonlinear systems with temporal logic,” in Proc. of the IEEE Int. Conf. Intell.
Robot. Syst., 2013, pp. 4332–4339.

[44] M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G.
Reinelt, G. Rinaldi, and L. A. Wolsey, 50 years of integer programming 1958-2008:
From the early years to the state-of-the-art. Springer Science & Business Media,
2009.

31

Bibliography

[45] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion planning from signal
temporal logic specifications,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 3451–
3458, 2022.

[46] Z. Lin and J. S. Baras, “Optimization-based motion planning and runtime mon-
itoring for robotic agent with space and time tolerances,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 1874–1879, 2020.

[47] U. A. Fiaz and J. S. Baras, “Fast, composable rescue mission planning for UAVs us-
ing metric temporal logic,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 15 404–15 411,
2020.

[48] S. Saha and A. A. Julius, “An MILP approach for real-time optimal controller
synthesis with metric temporal logic specifications,” in Proc. of the Am. Control
Conf., 2016, pp. 1105–1110.

[49] E. M. Wolff and R. M. Murray, “Optimal control of nonlinear systems with tem-
poral logic specifications,” in Rob. Res. 2016, pp. 21–37.

[50] C. I. Vasile, X. Li, and C. Belta, “Reactive sampling-based path planning with
temporal logic specifications,” Int. J. Rob. Res., vol. 39, no. 8, pp. 1002–1028,
2020.

[51] J. Karlsson, F. S. Barbosa, and J. Tumova, “Sampling-based motion planning with
temporal logic missions and spatial preferences,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 15 537–15 543, 2020.

[52] F. S. Barbosa, L. Lindemann, D. V. Dimarogonas, and J. Tumova, “Integrated
motion planning and control under metric interval temporal logic specifications,”
in Eur. Control Conf., 2019, pp. 2042–2049.

[53] C.-I. Vasile, V. Raman, and S. Karaman, “Sampling-based synthesis of maximally-
satisfying controllers for temporal logic specifications,” in Proc. of the IEEE Int.
Conf. Intell. Robot. Syst., 2017, pp. 3840–3847.

[54] L. I. R. Castro, P. Chaudhari, J. Tůmová, S. Karaman, E. Frazzoli, and D. Rus,
“Incremental sampling-based algorithm for minimum-violation motion planning,”
in Proc. of the IEEE Conf. Decis. Control, IEEE, 2013, pp. 3217–3224.

[55] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning,” Int. J. Rob. Res., vol. 30, no. 7, pp. 846–894, 2011.

[56] L. Zhang and D. Manocha, “An efficient retraction-based RRT planner,” in Proc.
of the IEEE Int. Conf. Robot. Autom., IEEE, 2008, pp. 3743–3750.

[57] S. Malik, M. A. Khan, and H. El-Sayed, “Collaborative autonomous driving —
a survey of solution approaches and future challenges,” Sensors, vol. 21, no. 11,
pp. 3783–3806, 2021.

[58] B. Häfner, V. Bajpai, J. Ott, and G. A. Schmitt, “A survey on cooperative archi-
tectures and maneuvers for connected and automated vehicles,” IEEE Commun.
Surv. Tutorials, vol. 24, no. 1, pp. 380–403, 2021.

32

[59] U. Montanaro, S. Dixit, S. Fallah, M. Dianati, A. Stevens, D. Oxtoby, and A.
Mouzakitis, “Towards connected autonomous driving: Review of use-cases,” Veh.
Syst. Dyn., vol. 57, no. 6, pp. 779–814, 2019.

[60] Z. Wang, Y. Bian, S. E. Shladover, G. Wu, S. E. Li, and M. J. Barth, “A survey
on cooperative longitudinal motion control of multiple connected and automated
vehicles,” IEEE Intell. Intell. Transp. Syst. Mag., vol. 12, no. 1, pp. 4–24, 2019.

[61] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination of connected
and automated vehicles at intersections and merging at highway on-ramps,” IEEE
Trans. Intell. Transp. Syst., vol. 18, no. 5, pp. 1066–1077, 2017.

[62] K. Dresner and P. Stone, “Multiagent traffic management: A reservation-based
intersection control mechanism,” in Proc. of the Int. Joint Conf. Auton. Agents
and Multiagent Syst., 2004, pp. 530–537.

[63] S. Manzinger and M. Althoff, “Tactical decision making for cooperative vehicles
using reachable sets,” in Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2018,
pp. 444–451.

[64] F. Zhu and S. V. Ukkusuri, “A linear programming formulation for autonomous
intersection control within a dynamic traffic assignment and connected vehicle
environment,” Transp. Res. Part C: Emerg. Technol., vol. 55, pp. 363–378, 2015.

[65] M. W. Levin, H. Fritz, and S. D. Boyles, “On optimizing reservation-based inter-
section controls,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 3, pp. 505–515,
2017.

[66] D. Heß, R. Lattarulo, J. Pérez, J. Schindler, T. Hesse, and F. Köster, “Fast ma-
neuver planning for cooperative automated vehicles,” in Proc. of the IEEE Int.
Conf. Intell. Transp. Syst., 2018, pp. 1625–1632.

[67] M. Nichting, D. Heß, J. Schindler, T. Hesse, and F. Köster, “Space time reser-
vation procedure (STRP) for V2X-based maneuver coordination of cooperative
automated vehicles in diverse conflict scenarios,” in Proc. of the IEEE Intell. Veh.
Symp., 2020, pp. 502–509.

[68] D. Heß, R. Lattarulo, J. Pérez, T. Hesse, and F. Köster, “Negotiation of cooperative
maneuvers for automated vehicles: Experimental results,” in Proc. of the IEEE Int.
Conf. Intell. Transp. Syst., 2019, pp. 1545–1551.

[69] M. Vasirani and S. Ossowski, “A market-inspired approach for intersection man-
agement in urban road traffic networks,” J. Artif. Intell. Res., vol. 43, pp. 621–659,
2012.

[70] H. Rewald and O. Stursberg, “Cooperation of autonomous vehicles using a hier-
archy of auction-based and model-predictive control,” in Proc. of the IEEE Intell.
Veh. Symp., 2016, pp. 1078–1084.

[71] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map representation for
autonomous driving,” in Proc. of the IEEE Intell. Veh. Symp., 2014, pp. 420–425.

33

Bibliography

[72] G. De Giacomo, A. Murano, F. Patrizi, and G. Perelli, “Timed trace alignment
with metric temporal logic over finite traces,” in Proc. of the Int. Conf. Principles
Knowl. Represent. and Reasoning, vol. 18, 2021, pp. 227–236.

[73] D. D’Souza and P. Prabhakar, “On the expressiveness of MTL in the pointwise
and continuous semantics,” Int. J. Software Tools for Technol. Transfer, vol. 9,
no. 1, pp. 1–4, 2007.

[74] A. Cecconi, C. D. Ciccio, G. D. Giacomo, and J. Mendling, “Interestingness of
traces in declarative process mining: The Janus LTLpf approach,” in Int. Conf.
Bus. Process Manage., Springer, 2018, pp. 121–138.

[75] M. Huth and M. Ryan, Logic in computer science: Modelling and reasoning about
systems. Cambridge university press, 2004.

[76] G. Lafferriere, G. J. Pappas, and S. Yovine, “Symbolic reachability computation
for families of linear vector fields,” J. Symb. Comput., vol. 32, no. 3, pp. 231–253,
2001.

[77] J. Eilbrecht and O. Stursberg, “Challenges of trajectory planning with integrator
models on curved roads,” in Proc. of the IFAC World Congr., 2020, pp. 15 588–
15 595.

[78] S. Söntges and M. Althoff, “Computing the drivable area of autonomous road
vehicles in dynamic road scenes,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 6,
pp. 1855–1866, 2018.

[79] M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques for reachability
analysis,” Annu. Rev. Control Rob. Auton. Syst., vol. 4, no. 1, pp. 369–395, 2021.

[80] H. T. Croft, K. Falconer, and R. K. Guy, Unsolved problems in geometry: Unsolved
problems in intuitive mathematics. Springer Science & Business Media, 2012, vol. 2.

[81] L. Schäfer, S. Manzinger, and M. Althoff, “Computation of solution spaces for
optimization-based trajectory planning,” IEEE Trans. Intell. Veh., vol. 8, no. 1,
pp. 216–231, 2021.

[82] S. Manzinger, C. Pek, and M. Althoff, “Using reachable sets for trajectory planning
of automated vehicles,” IEEE Trans. Intell. Veh., vol. 6, no. 2, pp. 232–248, 2020.

[83] C. Pek and M. Althoff, “Efficient computation of invariably safe states for motion
planning of self-driving vehicles,” in Proc. of the IEEE Int. Conf. Intell. Robot.
Syst., 2018, pp. 3523–3530.

[84] Y. Lin and M. Althoff, “CommonRoad-CriMe: A toolbox for criticality measures
of autonomous vehicles,” in Proc. of the IEEE Intell. Veh. Symp., 2023, pp. 1–8.

[85] C. Frese, J. Beyerer, and P. Zimmer, “Cooperation of cars and formation of coop-
erative groups,” in Proc. of the IEEE Intell. Veh. Symp., 2007, pp. 227–232.

34

Appendix A
Reproduction of Publications

The following statement applies to articles [1], [2], [4]–[6]:

In reference to IEEE copyrighted material which is used with permis-
sion in this dissertation, the IEEE does not endorse any of Technical
University of Munich’s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or
for creating new collective works for resale or redistribution, please go
to http://www.ieee.org/publications_standards/publications/

rights/rights_link.html to learn how to obtain a License from Right-
sLink. If applicable, University Microfilms and/or ProQuest Library, or
the Archives of Canada may supply single copies of the dissertation.

35

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Appendix A. Reproduction of Publications

A.1 Computing Specification-Compliant Reachable Sets for
Motion Planning of Automated Vehicles [1]

Summary To ensure the seamless integration of automated vehicles into road traffic,
there is a pressing need for these vehicles to adhere to specifications, including traffic
rules. This article presents a method that incorporates specifications expressed in time-
labeled propositional logic into the reachability analysis of automated vehicles, within
which trajectories can be planned to meet the same specifications.

Applying reachability analysis on an automated vehicle in an over-approximative
manner yields a set of states (reachable sets) that encloses all drivable trajectories of
the vehicle over time. Depending on the enforced specifications, semantic labels are
generated for reachable sets from relevant predicates concerning the vehicle’s positions,
velocities, accelerations, and general traffic situations. The semantically-annotated
reachable sets are checked against specifications, whose compliant subsets serve as low-
level motion planning constraints to expedite the generation of trajectories complying
with the same specifications. In addition to the benefits of employing reachability
analysis for motion planning, the distinctive characteristics of our method include its
capacity to (1) expedite the adherence to traffic rules formalized in [21], (2) effectively
integrate handcrafted specifications using the predicates mentioned above, and (3) be
integrated with motion planners accepting position and velocity constraints. Using
traffic scenarios from the CommonRoad benchmark suite, we exhibit the applicability
of the proposed method for obtaining specification-compliant trajectories.

Contributions of E. I. L. E. I. L. developed the idea of the research (together with
M. A.); E. I. L. designed, conducted, and evaluated the experiments; E. I. L. wrote the
article (together with M. A.).

Conference article The accepted version of the article is reprinted. The final version of
record is available at https://doi.org/10.1109/IV48863.2021.9575739.

Copyright notice © 2021 IEEE. Reprinted, with permission, from Edmond Irani Liu
and Matthias Althoff, Computing Specification-Compliant Reachable Sets for Motion
Planning of Automated Vehicles, in Proceedings of the IEEE Intelligent Vehicles
Symposium, 2021.

Attachment The animation of the evaluations is available at https://mediatum.ub.

tum.de/1595757.

36

https://doi.org/10.1109/IV48863.2021.9575739
https://mediatum.ub.tum.de/1595757
https://mediatum.ub.tum.de/1595757

Computing Specification-Compliant Reachable Sets for
Motion Planning of Automated Vehicles

Edmond Irani Liu and Matthias Althoff

Abstract— To safely and effectively participate in road traffic,
automated vehicles should explicitly consider compliance with
traffic rules and high-level specifications. We propose a method
that can incorporate traffic and handcrafted rules expressed in
time-labeled propositional logic into our reachability analysis,
which computes the over-approximative set of states reachable
by vehicles. These reachable sets serve as low-level trajectory
planning constraints to expedite the search for specification-
compliant trajectories. Depending on the adopted specifications,
related semantic labels are generated from predicates con-
sidering positions, velocities, accelerations, and general traffic
situations. We exhibit the applicability of the proposed method
with scenarios from the CommonRoad benchmark suite.

I. INTRODUCTION

Highly automated vehicles (AVs) promise increased road
safety compared with human-driven ones. To safely and
effectively participate in road traffic, AVs should explicitly
consider compliance with traffic and handcrafted rules. Com-
pliance with the former exempts manufacturers from poten-
tial liability claims in case an accident happens, whereas the
latter contribute to finding motion plans that meet specific
requirements.

Determining a drivable trajectory that satisfies a desired
discrete specification involves reasoning with both discrete
and continuous states of AV, which poses computational chal-
lenges originating from (a) vehicle dynamics and collision
avoidance, (b) discrete specifications, and (c) interwoven
dependencies between continuous trajectories and discrete
constraints. Planning on the discrete level may output plans
that meet the specifications but do not satisfy dynamic
constraints; similarly, motion planning methods may gener-
ate collision-free and dynamically feasible trajectories that
violate the specifications.

In this study, we address these challenges by extending
our previous work [1] to compute specification-compliant
reachable sets for a considered ego vehicle. Our over-
approximative reachable sets enclose all drivable trajectories
of AV and can be used as low-level trajectory planning
constraints [2], which expedite the search for specification-
compliant trajectories. Depending on the adopted specifica-
tions expressed in time-labeled propositional logic, relevant
semantic labels are attached to the reachable sets. An exem-
plary handcrafted rule can be described as “follow vehicle
A up to time step k1, then finish overtaking it from the left
before time step k2.”

All authors are with the Department of Informatics, Technical University
of Munich, 85748 Garching, Germany.
{edmond.irani,althoff}@tum.de

The efforts to obtain a specification-compliant trajectory
can be roughly categorized into three groups. The first group
generates discrete plans to guide the trajectory planning pro-
cess. For example, Shoukry et al. [3] proposed a satisfiability
modulo convex programming framework to handle Boolean
and convex constraints; Lahijanian et al. [4] proposed a
multilayered synergistic framework, which is an extension
of [5] to cope with newly discovered obstacles. Zhou et al.
[6] used timed automata to synthesize timed paths that
satisfy considered specifications. In these methods, the high-
level planners suggest discrete plans based on an abstraction
of a system, and the low-level motion planners generate
trajectories that comply with the discrete plans. Since the
continuous constraints are not explicitly considered by the
high-level planners, the drivability of the suggested plans
is often not ensured [7], thereby requiring frequent replan-
ning on the discrete level. The second group evaluates the
specifications on the planned trajectories with monitors [8],
[9]. The monitoring can be efficiently performed; however,
in case the trajectory under examination is rejected by the
monitor, no alternative candidate trajectory is returned. The
third group, to which the present study belongs, considers
the specifications before trajectory planning, e.g., in high-
level maneuver planners [10]–[13]. Kohlhaas et al. [13]
generated maneuvers with simple traffic rules by traversing
a graph represented in a semantic state space; Esterle et al.
[10] adopted a similar idea and generated maneuvers that
complied with linear temporal logic (LTL) specifications. In
a previous work [12], we output so-called driving corridors
that satisfied sequences of position relations to other vehicles.

Contrary to these works, we not only consider specifi-
cations with position relations to other obstacles but also
include predicates considering velocities, accelerations, and
general traffic situations based on the recent formalization
of German road traffic regulations in temporal logic [14],
[15]. In [14], traffic rules related to velocities, overtaking,
safe distances, priorities, etc, were formalized using LTL.
In comparison, metric temporal logic (MTL), which is an
extension of LTL to support time intervals, was used in [15]
to formalize a selection of traffic rules related to general and
interstate driving situations. The proposed method stands out
in that it

1) integrates predicates into reachable set computation for
compliance with traffic rules formalized in [15];

2) can incorporate handcrafted specifications with the
above-mentioned predicates; and

3) can be combined with any motion planning algorithms.

A.1. Computing Specification-Compliant Reachable Sets (IV2021)

37

initial state

Fig. 1: A scenario with four lanelets (with IDs 1–4 shown with numbered
boxes) and a leading vehicle (blue). Lanelet 3 is the goal lanelet (yellow)
of an ego vehicle. The straight line (magenta) indicates a reference path
leading to the goal lanelet.

The remainder of this article is organized as follows:
Sec. II introduces basic definitions and necessary prelimi-
naries. Subsequently, we present the partitioning of the state
space and the computation of reachable sets in Sec. III. After-
ward, we demonstrate evaluations with exemplary scenarios
from the CommonRoad1 benchmark suite [16] in Sec. IV.
Finally, we conclude in Sec. V.

II. PRELIMINARIES

A. System Description

In this study, the considered scenarios are described in
the CommonRoad format. A typical CommonRoad scenario
(see Fig. 1) consists of (a) a road network represented by
lanelets [17], whose left and right bounds are modeled with
polylines, (b) static and dynamic obstacles, and (c) traffic
rule elements, such as traffic signs, traffic lights, and road
markings. We use the trajectories provided in the scenarios
and consider them as adequate prediction for obstacles over
time. Alternatively, one can adopt a set-based prediction [18]
for obstacles. Given a planning problem, which includes the
initial state of an ego vehicle and a set of goal states, a
reference path to the goal lanelet is planned. This path is used
to construct the local curvilinear coordinate system of the ego
vehicle, as described in [17]. The choice of this coordinate
system facilitates the formulation of maneuvers from the ego
vehicle’s perspective, e.g., lane-following, stopping before an
intersection, and preventing driving backward.

The system dynamics of the ego vehicle is abstracted by
a point-mass model with the center of the vehicle as the
reference point. The model is represented with two second-
order integrators in longitudinal s-direction and lateral d-
direction of the curvilinear coordinate system. Let � be a
variable, we denote by � and � its minimum and maximum
values, respectively. In addition, we attach subscripts s/d
to variables to indicate the directions in which they are
described. The system dynamics of the ego vehicle is

xk+1 =

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

xk +

1
2∆t2 0
∆t 0
0 1

2∆t2

0 ∆t

uk, (1)

where k ∈ N0 is a discrete time step corresponding to a
point in time tk = k∆t, with ∆t ∈ R+ being a predefined
time increment. x ∈ X ⊂ R4 is a state in the state space
X , and u ∈ U ⊂ R2 is an input. The state of the vehicle is
modeled as x = (ps, vs, pd, vd)

T, with p and v representing

1https://commonroad.in.tum.de/

the position and velocity, respectively. The system accepts
inputs u = (as, ad)

T, where a is the acceleration. The
velocities and accelerations in both directions are bounded
by the over-approximation of the physically feasible values:

vs ≤ vs,k ≤ vs, vd ≤ vd,k ≤ vd, (2a)
as ≤ as,k ≤ as, ad ≤ ad,k ≤ ad. (2b)

The bounds are chosen conservatively to consider the kine-
matic limitations and effects arising from transforming the
system dynamics to the curvilinear coordinate system. No-
tably, the drivability of the planned trajectories should be
examined individually, e.g., using the drivability checker
described in [19]. Finally, we denote the length of the ego
vehicle by l.

B. Reachable Sets

Given an initial state x0 and an input trajectory u[0,k],
we use χk(x0, u[0,k]) to represent the solution to (1) at
time step k. We assume a set of time-dependent obstacles
to be given, the union of whose occupancies at time step
k is represented by Ok ⊂ R2. The sets of states whose
occupancy (considering the shape of the ego vehicle) are
overlapping with Ok are removed from the reachable sets.
Let X CF

k = X \ Ok be the set of collision-free states at
time step k, the exact collision-free reachable set of the ego
vehicle at k starting from the initial set of states X0 is

R∗k(X0) :=
{
χk(x0, u[0,k])

∣∣∣x0 ∈ X0,∀τ ∈ {0, . . . , k} :

uτ ∈ U , χτ (x0, u[0,τ]) ∈ X CF
τ

}
.

Subsequently, we omit X0 for convenience. Obtaining R∗k is
computationally demanding in general; therefore, we instead
compute its over-approximation Rk, which is the union of
so-called base sets R(i)

k , i ∈ N. Each base set R(i)
k = P̂(i)

s,k×
P̂(i)
d,k is chosen to be a Cartesian product of two convex poly-

topes P̂(i)
s,k and P̂(i)

d,k which represent the reachable positions
and velocities in (ps, vs) and (pd, vd) planes, respectively
(see Fig. 2a–b) [1]. This choice is motivated by the existence
of efficient algorithms for required set operations on convex
polytopes. To simplify the notation, we also denote the
collection of R(i)

k by Rk, i.e., Rk =
{
R(1)
k , . . . ,R(i)

k

}
.

The projection of R(i)
k onto the position domain yields axis-

aligned rectangles D(i)
k (see Fig. 2c), whose union is referred

to as the drivable area Dk. Similarly, we use Dk to denote
the collection of D(i)

k .

Definition 1 (Projection):
The operator proj♦(·) maps the input to its elements ♦. For
example, proj(p,v)(x) = (p, v)T for x = (p, v, a)T. A set
X can be projected using the same notation: proj♦(X) =
{proj♦(x)|x ∈ X}.
Definition 2 (Drivable Area):
The drivable area is defined as the projection of the reach-
able set onto the position domain: Dk := proj(ps,pd)(Rk).

Appendix A. Reproduction of Publications

38

p1 p2

v1

v2

0

(a) P̂(i)
s,k

p3 p4

v3

v4

0

(b) P̂(i)
d,k

p1 p2

p3

p4

0

(c) D(i)
k

Fig. 2: Polytopes and drivable area of a base set R(i)
k .

R(1)
k , L(1)

k

R(2)
k , L(2)

k

R(3)
k , L(3)

k

R(1)
k−1, L(1)

k−1

R(2)
k−1, L(2)

k−1

R(1)
k+1, L(1)

k+1

R(2)
k+1, L(2)

k+1

k − 1 k k + 1

Rk Rk+1Rk−1

Fig. 3: Reachability graph GR holding nodes of different time steps. The
nodes with the same labels have the same color.

In this study, each base set R(i)
k additionally carries a set

L(i)
k of semantic labels, whose collection is denoted by Lk.

The generation of these labels will be explained in Sec. III-
D.3. Let us introduce the reachability graph GR, which is
a directed graph connecting base sets R(i)

k so that their
temporal and spatial relationships can be queried (see Fig. 3).
In GR, each node represents exactly one base set R(i)

k .
An edge connecting R(i)

k and R(j)
k+1 indicates that R(j)

k+1 is
reachable from R(i)

k . A base set R(i)
k may reach several base

sets R(j)
k+1 in the next time step.

III. METHODOLOGY

To obtain specification-compliant reachable sets, we
should (a) semantically label reachable sets with relevant
predicates and (b) constrain reachable sets to subsets satis-
fying the desired specifications. We partition the state space
based on position predicates to expedite the labeling process.
Similar strategies have been employed in [10], [13], [20].
We do not consider velocity predicates at this stage since it
requires the computationally demanding splitting of the state
space with (non)linear curves (see Fig. 5c–d). Instead, we
directly evaluate them on individual reachable sets (detailed
in Sec. III-D.2). The selection of considered predicates is
listed in Tab. I: Evaluating a dynamic predicate is obstacle-
dependent, whereas that of a static predicate is not.

A. Formulation of Partitions

Computing the partitions of the state space involves op-
erations such as set intersection and difference. To avoid

gross approximations while maintaining the computational
complexity at an acceptable level, they are modeled with
a set of hyperrectangles rectq . Notably, such a choice is
not mandatory, any other representation that captures the
partitions suffices. Each rectq is defined as a Cartesian
product of intervals over the position and velocity domains:

rectq :=
(
[p
q,s
, pq,s]× [vq,s, vq,s]

)
× (3)

(
[p
q,d
, pq,d]× [vq,d, vq,d]

)
,

where pq,s and vq,s denote the position and velocity of the q-
th hyperrectangle in the s-direction, respectively. The same
applies to pq,d and vq,d in the d-direction. A regular grid
of pairwise-disjoint axis-aligned cells is formed along the
reference path. Let C(q) = [p

q,s
, pq,s]× [p

q,d
, pq,d] ⊂ R2 be

the q-th cell in the grid. By computing the Cartesian product
of C(q) and velocity intervals [vq,s, vq,s] and [vq,d, vq,d], a
hyperrectangle rectq can be created. By default, the velocity
intervals [vs, vs] and [vd, vd] (see (2a)) are used.

Let P = {pred1, pred2, . . . } be the set of considered
position predicates, with its power set denoted by 2P . We
denote by part(k;Zj) the set of hyperrectangles for which
the predicates in Zj ∈ 2P evaluate to True at time step
k ∈ N0. Zj is realizable if ∃k ∈ {0, . . . , kh} : part(k;Zj) 6=
∅, with kh being a predefined planning horizon. Fig. 5b
illustrates exemplary partitions projected onto the (ps, vs)
plane. We aim to obtain the collection Z ⊆ 2P of all
realizable Zj considering relevant lanelets and obstacles:

Z =
{
Zj ∈ 2P

∣∣∣∃k ∈ {0, . . . , kh} : part(k;Zj}) 6= ∅
}
.

Z is used for splitting of reachable sets (see Sec. III-D.2).

B. Evaluation of Position Predicates

1) Static Position Predicates: These predicates do not
depend on obstacles. We formulate two examples as follows:
• InLanelet(k; rectq, Lid): True if rectq is within the

lanelet with ID id, denoted by Lid, at time step k.
• DrivesRightmost(k; rectq, area): True if rectq in-

tersects with the rightmost area of lanelets, denoted by
area. The distance between any point within this area
to the right bound of the lanelet does not exceed a
predefined distance.

We use ZL ⊆ 2P to denote the power set of considered static
position predicates. For the sake of brevity, we only keep the
lanelets and obstacles (explained later) in the arguments of
predicates in the rest of this work.

2) Dynamic Position Predicates: These predicates reflect
position relationships between the ego vehicle and obstacles.
In this study, we use vehicles as examples of obstacles. Let
V = {V1, . . . , VN} be the set of other vehicles with IDs N =
{1, . . . , N}. In addition, let occ(k;Vn) return the occupancy
of Vn at time step k, with bounds in the s-direction denoted
by p

n,s,k
and pn,s,k, respectively. Along the s-direction, the

mutually exclusive predicates Pn,s =
{
{InFrontOf(Vn)},

{Behind(Vn)}, {Beside(Vn)}
}

can be evaluated on rectq
with respect to Vn at time step k as follows:

A.1. Computing Specification-Compliant Reachable Sets (IV2021)

39

TABLE I: The selection of considered predicates inspired by [15].

Category Type Predicate Source/Inspiration

Position Static InLanelet,DrivesRightmost,OnMainCarriageWay,OnAccessRamp, . . . R I2, R I4
Dynamic Behind,Beside, InFrontOf,LeftOf,AlignedWith,RightOf, . . . R G1, R I2

Velocity Static BelowFOVVLimit,BelowTypeVLimit,AboveMinimumVLimit, . . . R G3, R I1
Dynamic SafeFollowingVelocity(To), SafeLeadingVelocity(To),DrivesFaster, . . . R G1, R I2

Acceleration Static AdmissibleBraking, . . . R G2

General Static ChangeLanelet,PreservesTrafficFlow, StandingStill, . . . R G4, R I1
Dynamic InCongestion, SlowLeadingVehicle, . . . R G1, R G4, R I1

V1

{Behind(V1),AlignedWith(V1), InLanelet(L1)}
{Behind(V1),LeftOf(V1), InLanelet(L2)}
{Beside(V1),LeftOf(V1), InLanelet(L2)}
{InFrontOf(V1),AlignedWith(V1), InLanelet(L1)}
{InFrontOf(V1),LeftOf(V1), InLanelet(L2)}

k = 0

k = 30

Fig. 4: Projection of the partitions of Zj ∈ Z onto the position domain.
Lanelet IDs are shown with numbered boxes.

• InFrontOf(Vn): True if p
q,s
− l/2 > pn,s,k.

• Behind(Vn): True if pq,s + l/2 < p
n,s,k

.
• Beside(Vn): True if ¬InFrontOf(Vn) ∧ ¬Behind(Vn)
∧proj(ps,pd)(rectq) ∩ occ(k;Vn) = ∅.

Analogously, along the d-direction, the mutually exclusive
set of predicates Pn,d =

{
{LeftOf(Vn)}, {RightOf(Vn)},

{AlignedWith(Vn)}
}

can be evaluated on rectq .

C. Realizable Sets of Position Predicates

The operator product(·) over ñ collections A1, . . . ,Añ is
defined as

product(A1, . . . ,Añ) =
{
A′1 ∪ · · · ∪ A′ñ

∣∣
A′i ∈ Ai, i ∈ {1, . . . , ñ}

}
.

As an example, in the presence of a vehicle V1,
product(P1,s,P1,d) =

{
{InFrontOf(V1),LeftOf(V1)}, . . . ,

{Beside(V1),AlignedWith(V1)}
}

(see Sec. III-B.2). We de-
note by ZV

n the collection of realizable sets of position
predicates created with respect to Vn that can be projected
onto the curvilinear coordinate system of the ego vehicle.
The formulation of ZV

n and Z (see Sec. III-A) are presented
in Alg. 1: we iteratively examine all possible combinations of
predicates and keep the ones that have a nonempty partition
for at least one time step within the planning horizon kh.
Fig. 4 illustrates the projection of the partitions of Zj ∈ Z
created for an exemplary scenario onto the position domain
at two time steps. Owing to our formulation of the predicates,
the mentioned projection is collision-free with respect to the
obstacles and are pairwise-disjoint at any specific time step.

Algorithm 1 Realizable Sets of Position Predicates
Inputs: Set N of IDs of vehicles, planning horizon kh,

Collection ZL

Output: Collection Z
1: for n in N do . Formulation of ZV

n

2: ZV
n ← {}

3: Pn,s,Pn,d ← OBTAINPREDICATES(n) . see Sec. III-B.2
4: for Zi in product(Pn,s,Pn,d) do
5: if HASNONEMPTYPARTITION(Zi) then
6: ZV

n .ADD(Zi)
7: end if
8: end for
9: end for

10:
11: Z ← ZL . Formulation of Z
12: for n in N do
13: Z ′ ← {}
14: for Zi in product(Z,ZV

n) do
15: if HASNONEMPTYPARTITION(Zi) then
16: Z ′ .ADD(Zi)
17: end if
18: end for
19: Z ← Z ′
20: end for
21: return Z
22:
23: function HASNONEMPTYPARTITION(Zi)
24: for k = 0 to kh do
25: if part(k;Zi) 6= ∅ then
26: return True
27: end if
28: end for
29: return False
30: end function

D. Computation of Reachable Sets

In addition to our previous works [1], [12], we seman-
tically label the reachable sets and constrain them to states
satisfying the desired specifications (Alg. 2 lines 4–6). As the
reachable sets are computed iteratively over time, it suffices
to give a detailed explanation for one step of the computation.

1) Propagation of Base Sets (Alg. 2, line 3): Each base
set R(i)

k−1 ∈ Rk−1 of the previous time step is propagated ac-
cording to the system model (1), resulting in the propagated
sets RP,(i)

k ∈ RP
k (see Fig. 5a). The propagation is performed

similarly to the method described in [1], except that one can
additionally impose acceleration constraints. As an example,
rule R G2 [15] describes situations in which braking abruptly
is allowed, i.e., braking harder than a predefined value adef >

Appendix A. Reproduction of Publications

40

Algorithm 2 Computation of Reachable Sets

Inputs: Specification φ, base sets R(i)
0 ∈ R0 with their

semantic labels L(i)
0 ∈ L0, planning horizon kh,

realizable sets of position predicates Z .
Output: Reachability graph GR.

1: GR.ADD(R0,L0)
2: for k = 1 to kh do
3: RP

k ← PROPAGATE(Rk−1) . Sec. III-D.1
4: RS

k ← SPLITTING(RP
k , Z) . Sec. III-D.2

5: RL
k,Lk ← LABELING(RS

k , φ) . Sec. III-D.3
6: RC

k ← CHECKCOMPLIANCE(RL
k , Lk , φ) . Sec. III-D.4

7: Rk ← CREATENEWBASESETS(RC
k) . Sec. III-D.5

8: GR.ADD(Rk , Lk)
9: end for

10: return GR

ps

v
s

R(i)
k−1

RP,(i)
k

0

(a)

ps

v
s

RS,(2)
k

RS,(1)
k

part(k;Z1) part(k;Z2)

0

(b)

ps

v1

v2

Abovev1,Belowv2

v
s

Belowv2

Abovev1
RL,(i)

k

0

(c)

ps

vk

v
s

Belowvk

RL,(i)
k

0

(d)

Fig. 5: Propagation, splitting, and labeling of base sets. For clarity, we only
show the operations in the s-direction. Labels of polytopes are shown in
gray boxes. (a) Propagation. (b) Splitting regarding partitions. (c) Splitting
regarding static velocity predicates: three polytopes split with predicates
Abovev1 and Belowv2. (d) Splitting regarding dynamic velocity predicates:
two polytopes split with a predicate Belowvk . Notably, the two newly
split polytopes are slightly over-approximated and convexified due to the
nonlinearity introduced by the predicate.

as. If this rule is considered, we only propagate the base
sets with the acceleration interval [as, as] under the specified
situations, otherwise [adef, as]. Sets L(i)

k of propagated sets
RP,(i)
k are initialized with empty sets.

2) Splitting (Alg. 2, line 4): The propagated sets RP,(i)
k

are split into new sets RS,(i)
k ∈ RS

k regarding position and
velocity predicates. We first introduce the velocity predicates.

a) Static Velocity Predicates: These predicates typi-
cally relate to the constant extremum requirements on ve-
locities. Rule R G3 [15] requires that maximum velocity
limits originating from various sources to be respected. These
include limits introduced due to the limited field of view of
the ego vehicle and vehicle type-specific limits.

b) Dynamic Velocity Predicates: These predicates de-
pend on other dynamic obstacles present in the scenario.
Examples are predicates indicating whether the ego vehicle
is driving at a safe velocity regarding a leading or a following
vehicle Vn [15, cf. Sec. IV.C].

The splitting of RP,(i)
k is performed as follows:

1) RP,(i)
k are split such that the newly split sets intersect

only with a single partition of Z (see Fig. 5b).
2) The split sets are further split, over-approximated and

convexified (if needed) regarding velocity predicates
(see Fig. 5c–d).

3) Semantic Labeling (Alg. 2, line 5): Next, we evaluate
the general traffic situation predicates introduced by the
specification (see details in Sec. III-D.4) on RS,(i)

k , and
update their semantic labels L(i)

k . These predicates may
reveal whether the ego vehicle has conducted a lanelet-
change maneuver (see Sec. IV-A) and if it is stuck in a traffic
congestion, etc. The labels L(i)

k are updated as follows:

1) Sets RS,(i)
k propagated with acceleration-specific rules

include corresponding predicates in their sets of se-
mantic labels L(i)

k .
2) Sets RS,(i)

k include the position predicates associated
with the partition with which it intersects, velocity
predicates, and general traffic situation predicates that
evaluate to True in their sets of semantic labels L(i)

k .

The sets with updated L(i)
k are denoted by RL,(i)

k ∈ RL
k.

4) Checking Specification Compliance (Alg. 2, line 6):
In this step, we iterate through RL,(i)

k and examine the
compliance of their labels L(i)

k with the given specification.
Let σ be an atomic proposition, a time-labeled propositional
formula φ is defined in Backus-Naur form as:

φ ::= σ | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | GI(φ),

where the operator GI dictates a time interval I for which φ
should hold. If I is unspecified, we assume it to be the entire
planning horizon [0, kh]. Let L(i)

k be the set of labels to be
examined, its compliance with σ is defined as: L(i)

k |= σ iff
σ ∈ L(i)

k . As an example, the following specification enforces
the ego vehicle to follow V1 between time steps 0 and 10,
and never to be on its right for the entire planning horizon:

G[0,10](Behind(V1) ∧ AlignedWith(V1))∧
G(¬RightOf(V1)).

We discard RL,(i)
k whose set of semantic labels L(i)

k do
not comply with φ, and refer to the remaining sets as
RC,(i)
k ∈ RC

k. Recall that the reachable sets enclose all
drivable trajectories of the vehicle, thus an empty set RC

k

implies that φ is unsatisfiable and cannot be complied with
by any possible trajectory of the ego vehicle. In such a
case, one can either recompute the reachable sets with a
different specification, or trigger previously computed fail-
safe trajectories [21]. Integrating MTL specifications into our
reachable sets using model checkers will be a future study.

A.1. Computing Specification-Compliant Reachable Sets (IV2021)

41

5) Creation of New Base Sets (Alg. 2, line 7): Finally,
the new base sets R(i)

k ∈ Rk are created from the nonempty
sets RC,(i)

k . The substeps include obtaining the drivable
areas DC,(i)

k of RC,(i)
k , merging and repartitioning DC,(i)

k ,
and ultimately producing the sets R(i)

k . These are performed
similarly to the description in [1, Alg. 1] with one difference:
to preserve the set of position predicates at the merging step,
only DC,(i)

k projected from sets RC,(i)
k with the same partition

are merged. The reachability graph GR is updated in the end
by inserting sets R(i)

k along with their labels L(i)
k as new

nodes.

IV. EVALUATION

In this section, we exhibit the applicability of our
method using varied specifications on three scenarios. Se-
lected parameters and computation results are listed in
Tab. II. The animation of the evaluation can be found at
https://mediatum.ub.tum.de/1595757. Before presenting the
evaluation results, we introduce relevant labels and explain
how selected traffic rule elements can be incorporated.

A. Relevant Labels

• AdmissibleBraking: This indicates that the rule R G2
is considered (see Sec. III-D.1).

• SafeFollowingVelocity, SafeLeadingVelocity: These
indicate that the ego vehicle has respected safe fol-
lowing/leading velocities to other dynamic obstacles,
respectively (see Sec. III-D.2).

• ChangeLanelet(L1, L2): This indicates that the ego
vehicle has performed a lanelet-change maneuver from
Li to Lj .

B. Incorporating Traffic Rule Elements

1) Prohibiting Change of Lanelet: Assuming a case where
the ego vehicle is not allowed to change from L1 to L2,
which may be imposed by different traffic rule elements, such
as road markings, no-overtaking signs, and traffic lights. We
model this with GI(¬ChangeLanelet(L1, L2)).

2) Lanelet-specific Velocity Limits: Lanelet-specific ve-
locity limits can neither be modeled as static nor dynamic
predicates (as described in Sec. III-D.2). Recalling that
the partitions of sets of position predicates are modeled
with hyperrectangles rectq , we adjust the velocity intervals
[vq,s, vq,s] of rectq in the lanelets to incorporate these
velocity limits.

C. Scenario I: Precise Overtaking

The first scenario illustrates a situation where the ego
vehicle should overtake a leading vehicle V1 in the presence
of another vehicle V2. The following specification is issued,
for example, by a high-level maneuver planner, which should
be precisely followed by the ego vehicle:

G[0,15](Behind(V1) ∧ AlignedWith(V1)) ∧
G[16,38](InLanelet(L2) ∨ InLanelet(L4)) ∧
G[39,45](InFrontOf(V1) ∧ Behind(V2) ∧ InLanelet(L3)) ∧
G(AdmissibleBraking).

TABLE II: Selected Parameters and Computation Results

Description Unit I II III

Parameter
kh step 45 45 40 40 40 40
∆t s 0.1 0.1 0.1 0.1 0.1 0.1
vs m/s 16.6 16.6 16.6 16.6 16.6 16.6
vs m/s 0 0 0 0 0 0
vs,0 m/s 12.0 12.0 14.5 14.5 14.0 14.0
vd m/s 4.0 4.0 4.0 4.0 4.0 4.0
vd m/s -4.0 -4.0 -4.0 -4.0 -4.0 -4.0
as m/s2 2.0 2.0 2.0 2.0 2.0 2.0
as m/s2 -6.0 -6.0 -6.0 -6.0 -6.0 -6.0
adef m/s2 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
Grid cell size m2 1×1 2×2 1×1 2×2 1×1 2×2

State Space Partition
|Z| - 14 14 14 14 52 52
Hyperrectangles - 1800 450 1800 450 1700 430

Computation Time
Propagation ms 360 131 434 213 288 174
Splitting ms 439 138 715 296 1360 532
Labeling ms 25 9 95 20 85 37
Compliance check ms 92 31 123 56 268 112
Creation of new base sets ms 16 8 30 17 43 22
Sum ms 932 317 1397 602 2044 877

We compute the reachable sets over time as explained in the
previous section. The resulting reachable sets are nonempty,
thereby implying that one may find a trajectory that satisfies
thet specification. Fig. 6 visualizes the drivable areas of the
ego vehicle at different time steps, as well as an exemplary
trajectory planned within the reachable sets [2]. Changing
Behind(V2) to InFrontOf(V2) for k ∈ [39, 45] in the
specification yields an empty reachable set; thus, we can
reject it before trying to plan a trajectory that satisfies the
specification.

D. Scenario II: Respecting Safe Velocities

In this scenario, the ego vehicle is driving on the left side
of two other vehicles V1 and V2, and wishes to change to
lanelets on the right (1 and 3). The unrestricted reachable
sets (see Fig. 7a) show that the ego vehicle can reach lanelet
1 at time step k = 20 and deliberately cut in between V1
and V2 for k ∈ [30, 40]. By contrast, after considering the
specification with safe velocity rules

G(SafeFollowingVelocity ∧
ChangeLanelet(·, ·)→ SafeLeadingVelocity),

being in lanelet 1 is no longer legal at time step k = 20, so
is the case with being between V1 and V2 for k ∈ [30, 40]
(see Fig. 7b). Following V1 in lanelets 1 and 3 is still a
legal maneuver at later time steps, provided the ego vehicle
has sufficiently slowed down to respect the safe following
velocity rule.

E. Scenario III: Overtaking from the Left

Next, we present a scenario in which the ego vehicle
intends to overtake its preceding vehicle V1. The unrestricted
reachable sets propagate to all lanelets in the scenario and
enclose various maneuvers, including overtaking V1 from the
right (see Fig. 8a). By imposing the constraint that the ego

Appendix A. Reproduction of Publications

42

(a)

(b)

(c)

Fig. 6: Scenario I: Precise overtaking. (a) Drivable area at different time
steps. (b) Exemplary trajectory planned within the reachable set. (c) Drivable
area over time. Each color corresponds to a clause in the specification whose
time interval is specified.

vehicle should overtake V1 at some future time steps, and
not being on its right for the entire planning horizon, we
explicitly demand that the ego vehicle can only overtake
V1 from its left. In addition, we add a constraint to forbid
entering lanelet 4 to further restrict the reachable sets:

G[35,45](InFrontOf(V1) ∧ AlignedWith(V1)) ∧
G(¬RightOf(V1) ∧ ¬ChangeLanelet(L3, L4)).

As can be seen from Fig. 8b, the reachable sets flow to lanelet
3 from the left of V1 at k = 20, return back to lanelet 2 at
k = 30, and finally end in front of V1 at k = 40, which is
exactly required by the specification.

F. Analysis of Computation Results

The computation times listed in Tab. II are obtained
through a prototype implemented using Python and C++ on
a 2.8 GHz laptop. The computation times for operations,
including splitting, labeling, and compliance checking, are
linear to the number of nodes in the reachability graph, which
is, in turn, proportional to the number of hyperrectangles:
For all three scenarios, the evaluations were performed using

(a)

(b)

Fig. 7: Scenario II: Respecting safe velocities to other vehicles. (a) Not
considering specifications. (b) Considering specifications.

two grid cell sizes. By doubling the cell sizes and thereby
reducing the number of hyperrectangles, we observed a
drastic decrease (approximately 60%) in the computation
time, which could be further improved by representing the
partitions with more sophisticated polytopes. We refer to [1,
Appendix B] for a detailed explanation of the computation
complexity of propagation and creation of base sets. The
method for accelerating the reachable set computation in
[22] did not consider dynamic velocity and acceleration
constraints; how this method can be coupled with our reach-
ability analysis should be investigated in the future.

V. CONCLUSIONS

In this study, we proposed a method to obtain
specification-compliant reachable sets for a considered ego
vehicle, which is used to guide motion planners to find
specification-compliant trajectories. Compared with exist-
ing methods, the proposed method can not only consider
traffic and handcrafted rules considering position predicates
but also velocity, acceleration, and general traffic situation
predicates. The evaluations showed that our method could
easily incorporate desired specifications as well as identify
and reject the unsatisfiable ones. In the future, we will
investigate how to fully incorporate traffic rules formulated
in MTL formulas into our reachable sets. MTL formulas
are much more expressive than propositional logic and LTL
by having temporal operators over time, such as OnceI and

A.1. Computing Specification-Compliant Reachable Sets (IV2021)

43

initial state

k = 20

k = 30

k = 40

drivable area
V1

(a)

initial state

k = 20

k = 30

k = 40

drivable area
V1

(b)

Fig. 8: Scenario III: Overtaking from the left. (a) Not considering specifi-
cations. (b) Considering specifications.

FutureI . In addition, it is also worth investigating that how
specifications should be manipulated when they cannot be
fully complied with, e.g., when a collision cannot be avoided
without making a prohibited lane change.

ACKNOWLEDGMENTS

Special thanks to Stefanie Manzinger for her support
to this work. This work was funded by the Deutsche
Forschungsgemeinschaft (German Research Foundation)
within the Priority Program SPP 1835 Cooperative Interact-
ing Automobiles under grant No. AL 1185/4-2, and within
the Huawei-TUM collaboration project Research on Key
Technologies of Safety Assurance for Autonomous Vehicles.
The authors appreciate the fruitful collaboration with the
project partners.

REFERENCES

[1] S. Söntges and M. Althoff, “Computing the drivable area of au-
tonomous road vehicles in dynamic road scenes,” IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 6, pp. 1855–1866, 2018.

[2] S. Manzinger, C. Pek, and M. Althoff, “Using reachable sets for
trajectory planning of automated vehicles,” IEEE Trans. Intell. Veh.,
2020 (to appear).

[3] Y. Shoukry, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia,
G. J. Pappas, and P. Tabuada, “SMC: satisfiability modulo convex
programming,” Proc. of the IEEE, vol. 106, no. 9, pp. 1655–1679,
2018.

[4] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain
environments with partial satisfaction guarantees,” IEEE Trans. Robot.,
vol. 32, no. 3, pp. 583–599, 2016.

[5] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi, “Motion
planning with complex goals,” IEEE Robot. Autom. Mag., vol. 18,
no. 3, pp. 55–64, 2011.

[6] Y. Zhou, D. Maity, and J. S. Baras, “Timed automata approach for
motion planning using metric interval temporal logic,” in Proc. of
Eur. Control Conf., 2016, pp. 690–695.

[7] E. Plaku and S. Karaman, “Motion planning with temporal-logic
specifications: progress and challenges,” AI Commun., vol. 29, no. 1,
pp. 151–162, 2015.

[8] M. Hekmatnejad, S. Yaghoubi, A. Dokhanchi, H. B. Amor, A. Shri-
vastava, L. Karam, and G. Fainekos, “Encoding and monitoring
responsibility sensitive safety rules for automated vehicles in signal
temporal logic,” in Proc. of the ACM/IEEE Int. Conf. Formal Method.
Model. Syst. Des., 2019, pp. 1–11.

[9] A. Rizaldi, F. Immler, and M. Althoff, “A formally verified checker
of the safe distance traffic rules for autonomous vehicles,” in NASA
Formal Method. Symp., 2016, pp. 175–190.

[10] K. Esterle, V. Aravantinos, and A. Knoll, “From specifications to
behavior: maneuver verification in a semantic state space,” in Proc. of
the IEEE Intell. Veh. Symp., 2019, pp. 2140–2147.

[11] A. Best, S. Narang, D. Barber, and D. Manocha, “Autonovi: au-
tonomous vehicle planning with dynamic maneuvers and traffic con-
straints,” in Proc. of the IEEE Int. Conf. Intell. Robot. Syst., 2017, pp.
2629–2636.

[12] S. Söntges and M. Althoff, “Computing possible driving corridors for
automated vehicles,” in Proc. of the IEEE Intell. Veh. Symp., 2017,
pp. 160–166.

[13] R. Kohlhaas, T. Bittner, T. Schamm, and J. M. Zöllner, “Semantic state
space for high-level maneuver planning in structured traffic scenes,” in
Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2014, pp. 1060–1065.

[14] K. Esterle, L. Gressenbuch, and A. Knoll, “Formalizing traffic rules
for machine interpretability,” in Proc. of the IEEE Connect. Autom.
Veh. Symp., 2020, pp. 1–7.

[15] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “For-
malization of interstate traffic rules in temporal logic,” in Proc. of the
IEEE Intell. Veh. Symp., 2020, pp. 752–759.

[16] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intell. Veh. Symp., 2017, pp. 719–726.

[17] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in Proc. of the IEEE Intell. Veh.
Symp., 2014, pp. 420–425.

[18] M. Koschi and M. Althoff, “Set-based prediction of traffic participants
considering occlusions and traffic rules,” IEEE Trans. Intell. Veh., 2020
(to appear).

[19] C. Pek, V. Rusinov, S. Manzinger, M. C. Üste, and M. Althoff,
“CommonRoad Drivability Checker: Simplifying the development and
validation of motion planning algorithms,” in Proc. of the IEEE Intell.
Veh. Symp., 2020, pp. 1013–1020.

[20] F. Altché and A. De La Fortelle, “Partitioning of the free space-time
for on-road navigation of autonomous ground vehicles,” in Proc. of
the IEEE Conf. Decis. Control, 2017, pp. 2126–2133.

[21] C. Pek and M. Althoff, “Fail-safe motion planning for online verifica-
tion of autonomous vehicles using convex optimization,” IEEE Trans.
Robot., 2020 (to appear).

[22] M. Klischat and M. Althoff, “A multi-step approach to accelerate the
computation of reachable sets for road vehicles,” in Proc. of the IEEE
Int. Conf. Intell. Transp. Syst., 2020, pp. 1–7.

Appendix A. Reproduction of Publications

44

A.2. Specification-Compliant Driving Corridors for Motion Planning (T-IV2023)

A.2 Specification-Compliant Driving Corridors for Motion
Planning of Automated Vehicles [2]

Summary For automated vehicles to effectively and safely participate in road traffic,
strict compliance with legal specifications including traffic rules is essential. This work
addresses the motion planning problem for automated vehicles considering specifications
expressed in metric temporal logic.

To this end, we couple set-based reachability analysis with automata-based model
checking to generate specification-compliant driving corridors. Reachability analysis de-
termines the set of states reachable by a vehicle over time (referred to as reachable sets).
Computing reachable sets in an over-approximative fashion allows one to identify all
collision-free driving corridors of a vehicle. A driving corridor is a timed sequence of po-
sition and velocity bounds that can be utilized by motion planners to significantly reduce
the planning space. Given a set of desired behavioral specifications, the model check-
ing technique verifies the specifications on a suitable model of a given system through
systematic inspection of all states of the model. Through coupling reachability anal-
ysis with model checking, we efficiently identify all driving corridors of a vehicle that
are both collision-free and compliant with considered specifications. The constraints
extracted from such driving corridors can be applied to motion planners to expedite the
generation of specification-compliant trajectories.

This article provides several contributions: (1) Building on the work of [1], we incor-
porate temporal logic specifications (including interstate and intersection traffic rules)
into the reachability analysis of automated vehicles. (2) We couple reachability analysis
and model checking to identify collision-free and specification-compliant driving corri-
dors. (3) We generate a product graph from which the optimal driving corridor can be
separately determined using arbitrary utility functions.

Our approach exhibits the following properties: (1) Unlike conventional motion plan-
ners, our reachable set computation requires less time in more critical scenarios with
smaller solution space. (2) We perform efficient and exhaustive verification of all driving
corridors of an automated vehicle against considered specifications, thanks to mature
model checking techniques. (3) Our approach detects conflicting or non-satisfiable spec-
ifications prior to the motion planning phase. (4) It is applicable to traffic scenarios
involving static and dynamic obstacles of arbitrary shapes. (5) The total computation
time consumes only a fraction of the planning horizon.

The experiments demonstrate that our approach can be easily integrated into motion
planners to efficiently derive trajectories that comply with temporal specifications,
particularly in scenarios with a narrow solution space. Moreover, our computation
of reachable sets only requires a fraction of the planning horizon, as demonstrated
by benchmarking against over 50 CommonRoad scenarios, indicating the real-time
capability of our approach.

45

Appendix A. Reproduction of Publications

Contributions of E. I. L. E. I. L. developed the idea of the research (together with
M. A.); E. I. L. designed, conducted, and evaluated the experiments; E. I. L. wrote the
article (together with M. A.).

Journal article The accepted version of the article is reprinted. The final version of
record is available at https://doi.org/10.1109/TIV.2023.3289580.

Copyright notice © 2023 IEEE. Reprinted, with permission, from Edmond Irani Liu
and Matthias Althoff, Specification-Compliant Driving Corridors for Motion Planning
of Automated Vehicles, IEEE Transactions on Intelligent Vehicles, 2023.

46

https://doi.org/10.1109/TIV.2023.3289580

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 1

Specification-Compliant Driving Corridors
for Motion Planning of Automated Vehicles

Edmond Irani Liu and Matthias Althoff

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author’s version which has not been fully edited and content may change
prior to final publication. Citation information: DOI 10.1109/TIV.2023.3289580

Abstract—It is crucial for automated vehicles to explicitly
comply with specifications, including traffic rules, to ensure their
safe and effective participation in road traffic. Such compliance
is also essential for vehicle manufacturers to avoid liability claims
in the event of accidents. We propose a novel approach address-
ing the problem of specification-compliant motion planning for
automated vehicles. Our approach couples set-based reachabil-
ity analysis with automata-based model checking and outputs
specification-compliant driving corridors. These driving corridors
serve as motion planning constraints and expedite the generation
of trajectories complying with specifications expressed in metric
temporal logic. In contrast to existing works, our approach
efficiently and exhaustively verifies all driving corridors of an
automated vehicle, leveraging mature model checking techniques.
We demonstrate the applicability, effectiveness, and efficiency
of our approach using various specifications on scenarios from
the CommonRoad benchmark suite. Moreover, we benchmark
the performance of our prototype against multiple scenarios,
indicating that our approach is real-time capable.

Index Terms—automated vehicles, motion planning, traffic
rules, temporal logic, reachability analysis, model checking.

I. INTRODUCTION

AUTOMATED vehicles are expected to explicitly comply
with traffic rules to safely and effectively participate in

mixed road traffic, where both automated and human-driven
vehicles coexist. In addition, automated vehicle manufacturers
bear the responsibility to certify such compliance and by this
avoid liability claims in the event of accidents. Despite the
importance of this matter, most previous studies on motion
planning of automated vehicles reported in recent surveys [1]–
[4] either entirely disregard traffic rules or only consider a
limited fraction of them. This is due to the sheer difficulty of
formalizing traffic rules in a machine-interpretable way and
their integration into motion planners. In this article, the term
specifications refers to traffic rules and other requirements
formalized in temporal logic to which vehicles must adhere.
Examples of such formalizations can be found in [5]–[9].

Generating drivable trajectories for vehicles complying with
specifications involves reasoning with both their continuous
and discrete states. The former typically contains the position,
velocity, and orientation of a vehicle; examples of the latter
are the operation mode of the vehicle and its logical relation
to other traffic participants. Computational challenges arise
in generating such trajectories due to factors such as vehicle

Both authors are with the School of Computation, Information and Tech-
nology, Technical University of Munich, 80333 Munich, Germany (e-mail:
edmond.irani@tum.de, althoff@tum.de).

dynamics, considered specifications (including collision avoid-
ance), and the interdependence of planned trajectories and
constraints originating from the specifications [10]. Per recent
surveys [1]–[4], no approach exists that plans specification-
compliant motions in continuous state space: Classical motion
planners generate collision-free and dynamically feasible tra-
jectories but cannot guarantee specification compliance; Also,
planning in a discretized state space may output discrete
plans that satisfy the specifications but disregard drivability
constraints or lead to collisions.

We propose a novel and efficient approach addressing
the problem of specification-compliant motion planning for
automated vehicles using set-based reachability analysis and
automata-based model checking. Reachability analysis is a
technique for determining the set of states reachable by a
system over time (henceforth referred to as reachable set),
starting from a set of initial states. Computing the reachable
sets of a vehicle in an over-approximative fashion enables
the exploration of its continuous state space and the identi-
fication of all its collision-free driving corridors [11]–[13]. A
driving corridor represents a timed sequence of position and
velocity bounds that can be utilized by motion planners to
significantly reduce the planning space, especially in situations
with a narrow solution space [12]–[14]. Model checking is a
formal verification technique that verifies desired behavioral
specifications on a suitable model of a given system through
systematic inspection of all states of the model. By cou-
pling reachability analysis with model checking, we efficiently
identify all driving corridors of automated vehicles that are
both collision-free and compliant with enforced specifications.
Applying constraints extracted from such driving corridors
to motion planners expedites the generation of trajectories
complying with enforced specifications.

A. Related Work

We categorize existing works on specification-compliant
motion planning based on when specifications are considered:

1) Considering Compliance After Motion Planning: Run-
time verification, also known as monitoring, refers to checking
whether an execution of a system meets the expected behav-
iors. For instance, a monitor for examining the compliance
of vehicles with safe distance rules and overtaking rules is
presented in [9]. While the monitoring is often efficient,
monitors typically only return a robustness degree (the extent
of satisfaction of specifications) or a verdict (true or false) on
whether the specifications have been satisfied. No alternative
trajectory is returned if a trajectory is deemed inferior or

2379-8858 © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works.

A.2. Specification-Compliant Driving Corridors for Motion Planning (T-IV2023)

47

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 2

rejected by a monitor. This generally leads to replanning and
verifying many trajectories for more complex specifications
before finding a specification-compliant solution.

Instead of examining individual trajectories, it is also pos-
sible to verify infinitely many trajectories at once: The work
in [15] describes a method for model checking reachable sets
of continuous and hybrid systems against signal temporal
logic [16] specifications. As with monitoring, it only returns a
verdict (possibly with counterexamples in case of violation),
which has limited usage for our motion planning application.

2) Considering Compliance During Motion Planning: Ex-
isting efforts in this category can be roughly divided into three
groups: multilayered approaches, approaches based on mixed-
integer linear programming (MILP), and approaches based on
rapidly exploring random trees (RRTs) [17]. Multilayered ap-
proaches [18]–[27] commonly handle specification-compliant
motion planning problems using a high-level discrete planning
layer and a low-level trajectory planning layer. The discrete
planning layer relies on discrete abstractions of the system of
interest and generates plans satisfying the specifications, which
guide the trajectory planning process at a later stage. The
discrete plans are generated based on, among others, automata
theory [20], [22]–[25], [27], satisfiability modulo theory [18],
[21], and monitors [19]. For instance, article [24] adopts
timed automata to generate timed paths that satisfy metric
temporal logic (MTL) [28] specifications for indoor robot
navigation; the work in [21] introduces a satisfiability modulo
convex programming framework that handles both convex
constraints over continuous states and Boolean constraints over
discrete states for cyber-physical systems; in [19], the authors
obtain high-level driving maneuvers of automated vehicles that
respect traffic rules in linear temporal logic (LTL) [29] via
monitoring. In most cases, the dynamic constraints of the
system are not considered in the discrete plans; thus, the
drivability of the plans is often not ensured. Consequently,
frequent replanning in both the discrete and trajectory planning
layers can be expected, especially in complex and highly
dynamic environments.

The basic idea of MILP-based approaches is to cast tempo-
ral logic specifications as mixed-integer linear constraints. Af-
ter introducing system dynamic constraints, a solver generates
a specification-compliant trajectory while optimizing certain
cost functions. MILP problems are NP-hard in nature [30,
Ch. 11], and the constraints mentioned above bring about
auxiliary decision variables that exponentially increase the
complexity and solution time of the optimization problem
(e.g., see [31]–[35]). This is often a limiting factor for ap-
plications with high real-time requirements such as motion
planning of automated vehicles.

RRT-based approaches typically generate specification-
compliant trajectories in an incremental manner. The works
in [22], [36]–[40] build on the RRT* algorithm [41], which
is an asymptotically optimal variant of the well-known RRT
algorithm. The growth of the tree is steered or pruned, e.g., us-
ing automata [22], [36], [38], [40] or robustness degrees [37],
[39] of the specifications. Given enough time and iterations,
a trajectory respecting the system dynamics and specifications
can be found. While RRT-based methods provide fast solutions

to specific problems, they are not well-suited for safety-critical
applications due to their inherent characteristic known as prob-
abilistic completeness [17], [41]. Moreover, the performance
of RRT-based methods typically degrades in situations with a
narrow solution space [42].

B. Contributions

Our approach provides the following contributions:
• Extension of [43] by integrating temporal logic specifi-

cations (including interstate and intersection traffic rules)
into the reachability analysis of automated vehicles.

• Coupling reachability analysis with model checking
for identifying collision-free and specification-compliant
driving corridors. Such corridors expedite the generation
of specification-compliant trajectories for motion plan-
ners that accept position and velocity constraints.

• Generation of a product graph from which the optimal
driving corridor can be determined using arbitrary utility
functions in a separate stage.

Our approach has the following properties:
• In contrast to conventional motion planners, our reach-

able set computation requires less time in more critical
scenarios: The computation can be performed the faster,
the smaller the solution space is, which is often the case
in critical scenarios.

• Efficient and exhaustive verification of all driving corri-
dors of an automated vehicle against considered specifi-
cations, owing to mature model checking techniques.

• Detection of conflicting or non-satisfiable specifications
before motion planning.

• Applicability in traffic scenarios involving static and
dynamic obstacles of arbitrary shapes.

• The total computation time requires only a fraction of the
planning horizon.

The remainder of this article is organized as follows: After
presenting the preliminaries and problem statement in Sec. II,
we describe our methodology in Sec. III. The implementation
of our reachability analysis is detailed in Sec. IV, followed by
the evaluation of predicates and the rewriting of specifications
in Sec. V and Sec. VI, respectively. In Sec. VII, we elaborate
on the identification of specification-compliant driving corri-
dors. Our approach is evaluated in Sec. VIII and we finish
with conclusions in Sec. IX.

II. PRELIMINARIES AND PROBLEM STATEMENT

After introducing the necessary preliminaries, including the
general setup, temporal logics to formalize our specifications,
set-based reachability analysis, automata-based model check-
ing, and driving corridors, we present the problem statement.

A. General Setup

The vehicle for which trajectories should be planned is
referred to as the ego vehicle. The road network consists of
lanelets [44], each modeled with polylines representing its left
and right boundaries. We assume a high-level route planner is
available that plans a route through the road network, whose

Appendix A. Reproduction of Publications

48

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 3

centerline is considered as the reference path Γ : R → R2.
A local curvilinear coordinate system F L of the ego vehicle
is constructed from the reference path as described in [44],
within which (s, d) describes the longitudinal coordinate s
along the reference path and the lateral coordinate d orthogonal
to Γ(s). The adoption of F L facilitates the formulation of
maneuvers from the perspective of the ego vehicle, such as
following a lane and stopping before a stop line. We denote
by k ∈ N0 a step corresponding to time tk = k∆t, with
∆t ∈ R+ being a predefined time increment. Motions of the
ego vehicle are planned up to the planning horizon kh ∈ N,
whose dynamics is

xk+1 = f(xk,uk), (1)

where xk ∈ Xk ⊂ Rnx represents the state of the ego vehicle
in the state space Xk, uk ∈ Uk ⊂ Rnu represents an input
in the input space Uk. A possible input trajectory over time
is denoted by U . We also denote by τk the valuation of the
ego vehicle with state xk over atomic propositions AP (see
Sec. II-B), each of which indicates a logical relation between
the ego vehicle and entities in an environment model such as
lanes and obstacles (later detailed in Sec. V).

B. Temporal Logics

Specifications considered in this work are expressed in MTL
with past over finite traces (MTLpf) [28], [45]. MTLpf shares
the same syntax with MTL and is interpreted over traces of
finite length. We settle on MTLpf since (a) it is expressive
enough to formulate traffic rules with timing constraints, e.g.,
see [5]–[7], and (b) traces in our system have finite length.

1) Metric Temporal Logic with Past over Finite Traces:
An MTLpf formula ϕM over atomic propositions AP has the
following syntax given in Backus-Naur form [28], [45]:

ϕM ::= σ | ¬ϕM |ϕM
1 ∧ ϕM

2, |XIϕ
M |ϕM

1UIϕ
M
2 |YIϕ

M |ϕM
1SIϕ

M
2,

where σ ∈ AP is an atomic proposition, ¬ (Not) and ∧ (And)
are Boolean connectives, X (neXt) and U (Until) are future-
time connectives, Y (Yesterday) and S (Since) are past-time
connectives, and I = [a, b] is a bounded interval. Without loss
of generality, we assume a, b ∈ N0. We also use the following
common abbreviations [28]:
• Contradiction: ⊥ ≡ ϕM ∧ ¬ϕM,
• Tautology: > ≡ ¬⊥,
• Or: ϕM

1 ∨ ϕM
2 ≡ ¬(¬ϕM

1 ∧ ¬ϕM
2),

• Implication: ϕM
1 ⇒ ϕM

2 ≡ ¬ϕM
1 ∨ ϕM

2,
• Future: FIϕ

M ≡ >UIϕ
M,

• Globally: GIϕ
M ≡ ¬FI¬ϕM,

• Once: OIϕ
M ≡ >SIϕ

M,
• Historically: HIϕ

M ≡ ¬OI¬ϕM.
MTLpf over the point-wise semantics [46] is interpreted

over timed traces, which can be thought of as sequences of
events with timestamps. Given is a trace τ := (τ0, . . . , τk, . . .)
with length |τ |, where τk : AP → {true, false} denotes a
valuation over AP , i.e., an assignment of true or false to
every atomic proposition σ ∈ AP , at step k. The notation
(τ, k) |= ϕM indicates that ϕM holds in the k-th valuation of

τ , i.e., τk. We simplify the semantics of MTLpf in [28], [45]
since valuations τk are synchronized with steps k:
• (τ, k) |= σ if and only if (iff) τk(σ) = true,
• (τ, k) |= ¬ϕM iff (τ, k) 6|= ϕM,
• (τ, k) |= ϕM

1 ∧ ϕM
2 iff (τ, k) |= ϕM

1 and (τ, k) |= ϕM
2,

• (τ, k) |= XIϕ
M iff k < |τ |−1, 1 ∈ I , and (τ, k+1) |= ϕM,

• (τ, k) |= YIϕ
M iff k > 0, 1 ∈ I , and (τ, k − 1) |= ϕM,

• (τ, k) |= ϕM
1UIϕ

M
2 iff ∃l, k ≤ l ≤ |τ | − 1: (τ, l) |= ϕM

2,
l − k ∈ I , and ∀m, k ≤ m < l: (τ,m) |= ϕM

1,
• (τ, k) |= ϕM

1SϕM
2 iff ∃l, 0 ≤ l ≤ k: (τ, l) |= ϕM

2, k − l ∈ I ,
and ∀m, l < m ≤ k: (τ,m) |= ϕM

1.
As examples, formulas X[2,3]ϕ

M and ϕM
1U[1,4]ϕ

M
2 can be re-

spectively read as “next valuation occurs within 2 and 3 steps
(from now), in which ϕM holds” and “within 1 and 4 steps,
a valuation occurs in which ϕM

2 holds, and ϕM
1 holds for all

valuations before that”. The past-time connectives Y, S, O,
and H mirror their future-time counterparts X, U, F, and G,
respectively, backward in time.

2) Linear Temporal Logic (with Past over Finite Traces):
Since τk are synchronized with k, we do not require the full
expressiveness of MTLpf for model checking our system. We
interpret MTLpf formulas as LTL with past over finite traces
(LTLpf) [47] and further convert them into LTL over infinite
traces for model checking. This reduces the complexity of
model checking from EXPSPACE-complete for MTLpf [48]
to PSPACE-complete for LTL [49]. Moreover, this allows us
to employ mature and efficient LTL model checkers such as
Spot [50]. MTLpf is syntactically reduced to LTLpf by drop-
ping intervals I over the temporal connectives [47]; further
dropping past-time connectives results in standard LTL [29].
We respectively denote by ϕL, ϕ, and F an LTLpf formula,
an LTL formula, and the set of formulas converted into LTL.

C. Set-based Reachability Analysis

Next, we define one-step reachable sets and drivable areas
of the ego vehicle.

Definition 1 (Occupancy). The operator occ(·) returns the
occupied positions within F L. For example, occ(xk) returns
the occupancy of the ego vehicle with state xk.

Definition 2 (Set of forbidden states). Let Ok ⊂ R2 be the set
of positions occupied by all obstacles at step k and the space
outside the road. The set of forbidden states of the ego vehicle
at step k is defined as

X F
k :=

{
xk ∈ Xk

∣∣ occ(xk) ∩ Ok 6= ∅
}
. (2)

Definition 3 (One-Step Reachable Set). Let Re
0 = X0 be

the exact reachable set of the ego vehicle at the initial step,
with X0 being the set of collision-free initial states including
measurement uncertainties. The exact reachable set Re

k+1 is
the set of states reachable from Re

k without intersecting the
set of forbidden states X F

k+1, denoted by reach(Re
k):

Re
k+1 :=

{
xk+1 ∈ Xk+1

∣∣∃xk ∈ Re
k,∃uk ∈ Uk :

xk+1 = f(xk,uk),xk+1 /∈ X F
k+1

}
.

︸ ︷︷ ︸
reach(Re

k)

(3)

A.2. Specification-Compliant Driving Corridors for Motion Planning (T-IV2023)

49

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 4

s
K,(1)
0

a,¬b,¬D

s
K,(1)
1

a, b,¬D
s
K,(2)
1

a,¬b,¬D
s
K,(3)
1

¬a, b,¬D

s
K,(1)
2

a, b,¬D
s
K,(2)
2

¬a, b,¬D
s
K,(3)
2

a,¬b,¬D

s
K,(1)
3

a, b,¬D
s
K,(2)
3

a,¬b,¬D
s
K,(3)
3

¬a, b,¬D

sK,D

D

(a)

a,¬b,¬D

a,¬b,¬D
a,¬b,¬D

D

sB0

sB1

sB2

sB3

a,¬b,¬D

a,¬b,¬D
a,¬b,¬D

sB4

sB5

sB6

¬a, b,¬D

¬a, b,¬D
¬a, b,¬D

sB7

sB8

sB9

a, b,¬D a, b,¬D

sB,D10

a, b,¬D

a,¬b,¬D
¬a, b,¬D

¬a, b,¬D a,¬b,¬D
(b)

¬a, b,¬D

sB0

a,¬D

a, b,¬D

sB1

¬a,¬D

D

sB,D3

¬a,¬D

sB2
Da,¬D

(c)

a, b,¬D a, b,¬D a, b,¬D

¬a, b,¬D¬a, b,¬D a,¬b,¬D

0, 0

a,¬b,¬D

a,¬b,¬D

a,¬b,¬D

10,32,1

1,1 4,1 7,1 10,1

3,1 6,2 9,1 10,2

D

D

(d)

Fig. 1: Minimal example of automata-based model checking. The colors correspond to components in Fig. 3. (a) A Kripke structure GK with AP = {a, b,D},
SK = {sK,(1)0 , . . . , s

K,(3)
3 , sK,D}, and SK0 = {sK,(1)0 }. For clarity, we show all atomic propositions regardless of their truth values. (b) Automaton AM converted

from graph GK in (a), with SB = SBA = {sB0, . . . , sB9, s
B,D
10 }. (c) Automaton Aϕ converted from ϕ := G(a ⇒ X(b)): whenever a holds, b should hold in

the next valuation. (d) Product automaton AP = AM ⊗ Aϕ. For brevity, we only show the subscripts of the states in AP. For example, the state 9,1 in AP

references sB9 in AM and sB1 in Aϕ. Transitions along the only accepting run in AP are colored gray. For comparison, we also show other transitions that
do not lead to an accepting state. The accepting run in AP corresponds to the run sB0 � sB3 � sB6 � sB9 � sB,D10 � sB,D10 � . . . in AM and the execution
s
K,(1)
0 � s

K,(3)
1 � s

K,(3)
2 � s

K,(3)
3 � sK,D � sK,D � . . . in GK (both colored gray). Please note that an auxiliary atomic proposition D (Dead) and an

auxiliary self-looping state sK,D (respectively sB,D) are required for extending the traces in GK (respectively AM and Aϕ) to infinite length (see Sec. VI-3).

Definition 4 (Projection). The operator proj♦(x) maps the
state x ∈ X to its components ♦. For example, proj(s,ṡ)(x) =

(s, ṡ)T for x = (s, ṡ, s̈)T. A set can be projected using the
same operator: proj♦(X) =

{
proj♦(x)

∣∣x ∈ X
}

.

Definition 5 (Drivable Area). The drivable area De
k of the ego

vehicle at step k is the projection of its reachable set Re
k onto

the position domain: De
k := proj(s,d)(Re

k).

In practice, X F
k can be of arbitrary shape and the computation

of Re
k as well as De

k is generally difficult or even impos-
sible [51]. Therefore, we compute their over-approximations
Rk and Dk, which will be detailed in Sec. IV.

D. Automata-based Model Checking

As motivated in Sec. I, we leverage model checking to
efficiently and exhaustively identify all collision-free and
specification-compliant driving corridors within the reachable
sets of the ego vehicle. Let AM be a finite state automaton

representing a system M . To verify whether all possible
executions of M satisfy a given LTL formula ϕ, denoted by
M |= ϕ, the basic idea of automata-based model checking is
to find a run in AM that satisfies the negated formula ¬ϕ. If
such a run does not exist, it can be concluded that M |= ϕ.
Instead of examining whether M |= ϕ, model checking can
alternatively be formulated to find the subset of runs in AM

that satisfy ϕ [52]. We follow the latter formulation since
we aim to identify specification-compliant driving corridors
rather than verifying whether all driving corridors satisfy the
enforced specifications. We introduce two required definitions.

Definition 6 (Nondeterministic Büchi Automaton [53]). A five-
tuple (Σ,SB, sB0, transB,SBA) defines a nondeterministic Büchi
automaton, where
• Σ := P(AP)1 is an alphabet with letters λ ∈ Σ,
• SB is a set of states with elements sB,

1The operator P(·) returns the power set of the input.

Appendix A. Reproduction of Publications

50

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 5

• sB0 ∈ SB is the initial state,
• transB : SB × Σ→ P(SB) is a transition relation,
• SBA ⊆ SB is a set of accepting states.

A nondeterministic Büchi automaton is an finite state automa-
ton accepting inputs of infinite length.

Definition 7 (Product Automaton [52]). Given nondeterminis-
tic Büchi automata Am = (Σ,SBm, sB0,m, transBm,SBAm), m ∈
{1, 2}, their synchronous product is A = A1 ⊗ A2 :=
(Σ,SP, sP0, transP,SPA), where
• SP = SB1 × SB2 is the set of states with elements (sB1, s

B
2),

• sP0 = (sB0,1, s
B
0,2), sP0 ∈ SP is the initial state,

• transP : SP × Σ → P(SP) is a transition relation such
that (s̃B1, s̃

B
2) ∈ transP((sB1, s

B
2), λ) iff s̃B1 ∈ transB1(sB1, λ)

and s̃B2 ∈ transB2(sB2, λ),
• SPA ⊆ SP is a set of accepting states such that (sB1, s

B
2) ∈

SPA iff sB1 ∈ SBA1 and sB2 ∈ SBA2 .

Automaton A is also a nondeterministic Büchi automaton and
accepts runs that are accepted by both automata A1 and A2.
Fig. 1 depicts a minimal example of automata-based model
checking, whose steps are presented as follows [52]:

1) Construct Automaton AM: Given a Kripke structure GK

(see Def. 11), it is converted into a nondeterministic Büchi au-
tomaton as described in [54]. Fig. 1a–b illustrate an exemplary
GK and the automaton AM converted from GK.

2) Construct Automaton Aϕ: An LTL formula ϕ can be
readily translated into a Büchi automaton Aϕ using, e.g., the
tool Spot [50]. The reader is referred to [49], [50], [55] for
further details. We use Aϕ := {. . . , Aϕ

m, . . . } to denote the
set of automata converted from LTL formulas F .

3) Retrieve Accepting Runs in Product Automaton AP: Let
automaton AP be the product of AM and Aϕ (see Sec. VII-A).
Based on the Büchi acceptance condition [56], a run in a
nondeterministic Büchi automaton is accepting if it visits some
accepting states in SBA infinitely often. An accepting state is
illustrated by a double circle (see Fig. 1b–d).

E. Driving Corridor

The reachable sets Rk of the ego vehicle enclose the
collision-free solution space for motion planning; however,
they may (a) be disconnected in the position domain due to the
presence of obstacles and (b) contain states xk having different
valuations τk. This renders the direct usage of the reach-
able sets unsuitable for obtaining constraints for generating
specification-compliant trajectories. To address this problem,
we identify collision-free and specification-compliant driving
corridors that are subsets of the reachable sets, which can be
utilized as constraints over the states xk in the motion planning
problem. We present the necessary definitions.

Definition 8 (Connected Component). A connected component
Ck ⊆ Rk with valuation τk over AP is a set such that
(a) Ck is a connected set [57] and collision-free in the

position domain, i.e., Ck ∩ X F
k = ∅,

(b) the states xk in Ck have the same valuation τk.

Definition 9 (Driving Corridor). A driving corridor DC is a
sequence of connected components Ck over steps 0 to kh.

Definition 10 (Specification-Compliant Driving Corridor). A
driving corridor complying with specifications F is one such
that ∀ϕ ∈ F : (τ0, . . . , τkh

) |= ϕ.

F. Problem Statement

The problem we aim to solve is formally defined as follows:

Problem 1 (Optimal Specification-Compliant Driving Corri-
dor Identification). The optimal specification-compliant driv-
ing corridor DCO of the ego vehicle is one with the maximum
utility over steps k:

max

kh∑

k=0

uk (4a)

subject to x0 ∈ C0, (4b)
∀k ∈ {0, . . . , kh − 1} : Ck+1 ∩ reach(Ck) 6= ∅, (4c)

∀ϕ ∈ F : (τ0, . . . , τkh
) |= ϕ, (4d)

where uk is the utility of Ck (see Sec. VII-C).

Constraints (4c) and (4d) respectively encode the reachability
of successive connected components of DCO and its com-
pliance with the enforced specifications. Collision-freeness
of DCO follows directly from Def. 8. We aim to obtain
DCO and extract constraints over xk for motion planning:
Given a driving corridor, the motion planning problem can
be formulated such that the trajectory of the ego vehicle is
contained within the driving corridor.

Problem 2 (Motion Planning with Driving Corridor). Given a
driving corridor, the motion planning problem is to minimize
the cost function J : Rnx × Rnu → R over steps k:

min
U

kh∑

k=0

J(xk,uk) (5a)

subject to (5b)
∀k ∈ {0, . . . , kh} :xk ∈ Ck, (5c)

∀k ∈ {0, . . . , kh − 1} :xk+1 = f(xk,uk). (5d)

III. METHODOLOGY

The input to our approach is the current environment model,
including the road network, a curvilinear coordinate system
F L, the set F of considered specifications, and all relevant
obstacles, e.g., those perceived within a certain field of view
of the ego vehicle. Without loss of generality, we assume the
obstacles to be vehicles, each denoted by Vn. Furthermore, we
assume that the predicted trajectories of all vehicles, e.g., their
most likely trajectories, are given as input. For demonstration
purposes, we consider interstate and intersection traffic rules
formalized in [6], [7] as specifications. Nevertheless, our
approach can be easily extended to handle other specifications
expressible in MTLpf , e.g., traffic rules described in [5], [8].

Let us introduce our approach for identifying collision-free
and specification-compliant driving corridors, whose solution
concept and relevant components are respectively illustrated
in Fig. 2 and Fig. 3. As a first step, we apply reachability

A.2. Specification-Compliant Driving Corridors for Motion Planning (T-IV2023)

51

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 6

Fig. 2: Solution concept for identifying collision-free and specification-
compliant driving corridors (DCs). Such driving corridors can be determined
by model checking an automaton constructed from the reachability graph
against automata translated from the enforced specifications. In this example,
we assume overtaking from the right side is forbidden; thus, driving corridors
corresponding to this maneuver are dismissed.

analysis on the ego vehicle to obtain its reachable set. Due to
the presence of obstacles, the reachable set is represented as
the union of multiple partial reachable sets, whose reachability
and time relationships are stored in a reachability graph (see
Sec. IV-A). Next, we process the reachability graph and the
considered specifications for model checking:

1) As addressed in Sec. II-E, partial reachable sets may be
disconnected or may contain states xk having different
valuations. To utilize their bounds as constraints for
motion planning, they are grouped into connected com-
ponents. These connected components form a component
graph, based on which driving corridors are identified
(see Sec. IV-B). A finite state automaton is constructed
from the component graph and represents discrete state
transitions of the ego vehicle over time (see Sec. II-D1).

2) The valuations of the partial reachable sets required
for checking the compliance with specifications F are
determined by evaluating a set of predicates (see Sec. V).
Also, as motivated in Sec. II-B2, we rewrite MTLpf
formulas as LTL formulas, whose details are presented in
Sec. VI. The LTL formulas are translated into multiple
finite state automata determining the accepting sequences
of discrete state transitions (see Sec. II-D2).

3) As the number of driving corridors within a component
graph grows exponentially with the planning horizon kh,
we rely on model checking to efficiently and exhaustively
identify driving corridors complying with the enforced
specifications F . By computing the synchronous product
of all automata, we obtain a product automaton based on
which specification-compliant sequences of discrete state
transitions and their corresponding driving corridors are
identified (see Sec. II-D3).

Since numerous candidate driving corridors may exist, we
generate a product graph from the product automaton, from

Product
AutomatonAP

Driving
CorridorsDCP

Product
GraphGP

Model

Driving Corridor Identification

⊗

Kripke
StructureGK

Component
GraphGC

Reachability
GraphGR

AutomatonAM

Specification

LTL

MTLpf

LTLpf

Automata AϕProduct

Fig. 3: Relationships of different components.

which the optimal driving corridor is identified based on user-
defined utilities (see Sec. VII). If the solution to (5) cannot
be found within a driving corridor, we select the next optimal
driving corridor. As long as time permits, trajectories can be
planned for each available driving corridor; thus, it is possible
to obtain multiple trajectory options.

The state and input of our vehicle model for reachability
analysis only capture the position, velocity, and acceleration
components of the ego vehicle (see Sec. IV); therefore, speci-
fications concerning other components such as orientation and
jerk cannot be handled using our approach. We resort to a
trajectory repairer [58] to repair the planned trajectories so that
the unconsidered specifications are also satisfied (whenever
possible). If this also does not work, we execute a fail-safe
trajectory as described in [59].

IV. REACHABILITY ANALYSIS

We describe the computation of reachability graphs based
on [43] as well as its component graphs and driving corridors.

A. Reachability Graph
As motivated in Sec. II-C, we aim to compute the over-

approximations of the exact reachable set Re
k and drivable

area De
k of the ego vehicle. For computational efficiency,

the dynamics of the ego vehicle is abstracted by two double
integrators within the coordinate system F L, with the geomet-
ric center of the ego vehicle set as the reference point. The
states and inputs in our model are xk = (sk, ṡk, dk, ḋk)T and
uk = (s̈k, d̈k)T, respectively:

xk+1 =

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t

0 0 0 1

xk +

1
2∆2

t 0
∆t 0
0 1

2∆2
t

0 ∆t

uk.

︸ ︷︷ ︸
f(xk,uk)

(6)

Appendix A. Reproduction of Publications

52

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 7

This abstraction ensures that the reachable sets of the adopted
model always subsume those of high-fidelity vehicle models;
alternative abstractions can be found in [60], [61]. Let � be a
variable with its minimum and maximum values respectively
denoted by � and �. The velocities and accelerations at
(sk, dk) are bounded by

ṡ(Γ, sk) ≤ ṡk ≤ ṡ(Γ, sk), ḋ(Γ, sk) ≤ ḋk ≤ ḋ(Γ, sk), (7a)

s̈(Γ, sk) ≤ s̈k ≤ s̈(Γ, sk), d̈(Γ, sk) ≤ d̈k ≤ d̈(Γ, sk). (7b)

These bounds are chosen conservatively to consider the kine-
matic limitations within a curvilinear coordinate system, see,
e.g., [62]. As a final check, the drivability of the planned
trajectories should be examined separately, e.g., using the
drivability checker described in [63].

Following [11], we under-approximate occ(xk) by its in-
scribed circle and Ok by axis-aligned rectangles accounting
for its arbitrary shape, yielding an under-approximative set
of forbidden states in (2). Therefore, the over-approximative
reachable sets Rk ⊇ Re

k enclose all drivable trajectories of the
ego vehicle. To reduce computational complexity, we adopt
the union of so-called base sets R(i)

k , i ∈ N, as the set
representation for Rk, i.e., Rk := ∪iR(i)

k . Every base set R(i)
k

is a Cartesian product of two convex polytopes that enclose
the reachable positions and velocities of the ego vehicle in
the (s, ṡ) and (d, ḋ) planes, respectively. To simplify the
notation, we also denote the collection2 of R(i)

k with Rk, i.e.,
Rk :=

{
. . . ,R(i)

k , . . .
}

. The unified valuation of the states xk

within R(i)
k over atomic propositions AP is denoted by τ (i)k .

A directed and acyclic reachability graph GR is computed as
described in [43] to store the relationships of R(i)

k in terms of
reachability, see Fig. 4a. An edge (R(i)

k ,R(j)
k+1) in graph GR

indicates that set R(j)
k+1 is reachable from set R(i)

k after one
step. Similar to Def. 5, the projections of Rk and R(i)

k onto
the position domain are respectively denoted by Dk and D(i)

k .

B. Component Graph and Driving Corridors

To facilitate the identification of driving corridors, we group
the base sets R(i)

k in a graph GR into connected components
C(j)k , whose collection is denoted by CCk. Based on Def. 8,
every connected component C(j)k with valuation τ (j)k over AP
is a collection of base sets R(i)

k such that (a) sets R(i)
k form a

connected set [57] and their drivable areas D(i)
k are collision-

free and (b) sets R(i)
k and C(j)k have the same valuation,

i.e., τ (j)k = τ
(i)
k . Without loss of generality, we assume that

the set of initial states X0 of the ego vehicle is enclosed in
the connected component C(1)0 . Connected components C(j)k ,
together with edges connecting them, form a component graph
GC, see Fig. 4b. An edge (C(j)k , C(l)k+1) in GC indicates that at
least one base set in C(j)k reaches a base set in C(l)k+1 within one
step. We also define the Kripke structure [64] from a graph GC,
which is required for model checking, see Sec. II-D1. Fig. 1a
shows an example of a Kripke structure GK.

2Throughout this article, a set of sets is referred to as a collection.

R(1)
k−1, τ (1)k−1

k − 1 k k + 1

R(4)
k , τ (4)k

R(2)
k , τ (2)k R(1)

k+1, τ (1)k+1

R(3)
k+1, τ (3)k+1

R(1)
k , τ (1)k

R(3)
k , τ (3)k

R(5)
k , τ (5)k

R(2)
k+1, τ (2)k+1

Rk Rk+1Rk−1

(a)

D(1)
k−1

D(1)
k+1

D(3)
k+1

C(1)k−1, τ (1)k−1

D(1)
k

D(3)
k

D(2)
k

D(4)
k D(5)

k

C(1)k , τ (1)k

C(2)k , τ (2)k

C(3)k , τ (3)k

C(1)k+1, τ (1)k+1

C(2)k+1, τ (2)k+1

D(2)
k+1

F L

d

s

Ck Ck+1Ck−1

(b)

Fig. 4: A reachability graph GR and its component graph GC. Nodes of the
same color have the same set of atomic propositions. (a) Graph GR connecting
nodes of different steps. (b) Graph GC resulted from grouping the base sets
R(i)

k in GR into connected components C(j)k .

Definition 11 (Kripke Structure of Component Graph). The
Kripke structure GK of a component graph GC is a four-tuple
(SK,SK0 , transK, labelK):
• SK = {. . . , sK,(j)k , . . . } ∪ {sK,D} is a set of states, where

a state s
K,(j)
k maps to a connected component C(j)k in

GC; sK,D is an auxiliary self-looping state required for
extending a trace in GK to infinite length.

• SK0 = {sK,(1)0 } is a set of initial states.
• transK : SK → P(SK) is a transition relation and is

defined as: sK,(l)k+1 ∈ transK(s
K,(j)
k) if the edge (C(j)k , C(l)k+1)

exists in GC; sK,D ∈ transK(s
K,(j)
kh

); sK,D ∈ transK(sK,D).
• labelK : SK → P(AP) is a labeling function that labels

each state with a set of atomic propositions, which is
defined as σ ∈ label(s

K,(j)
k) if τ (j)k (σ) = true.

Each path in a graph GC corresponds to a collision-free
driving corridor based on Def. 9. For example, let k = 1 and
kh = 2 in Fig. 4b. Sequences DC1 := (C(1)0 , C(1)1 , C(1)2) and
DC2 := (C(1)0 , C(3)1 , C(2)2) correspond to two driving corridors
of the ego vehicle. We utilize the position and velocity bounds

A.2. Specification-Compliant Driving Corridors for Motion Planning (T-IV2023)

53

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 8

TABLE I: SELECTION OF CONSIDERED PREDICATES.

Category Type Predicate Rule (see [6], [7])

Position VI in lanelet, on main carriageway, behind stop line, at traffic sign, . . . R-I5, R-IN1
VD in front of,behind, beside, left of, right of, in same lane, . . . R-G1, R-I2

Velocity VI keeps lane speed limit,perserves flow, in standstill, . . . R-G3, R-G4, R-I1, R-IN2
VD keeps safe velocity prec, drives faster, . . . R-G1, R-I2

Acceleration VI admissible braking R-G2

Priority VD has priority over, same priority as, . . . R-IN3, R-IN4, R-IN5

Traffic VI changes lanelet,passing stop line, turning left, turning right, . . . R-IN1, R-IN3
Situation VD slow leading vehicle, in congestion, cut in, . . . R-G1, R-G4, R-I1

of the connected component C(j)k within a driving corridor as
constraints over the state xk to restrict the planning space:

[xk,xk] = hull(C(j)k), (8)

where hull(·) returns the interval hull of a set.

V. PREDICATE EVALUATION

The valuations over atomic propositions required for deter-
mining the satisfaction of specifications are often generated by
evaluating a set of predicates formulated in higher-order logic.
Our predicates have the general form of predicate(xk; ·) and
accept appropriate arguments. Tab. I lists selected predicates
pertinent to rules formalized in [6], [7], which are divided into
different categories and types. The evaluation of a vehicle-
dependent (VD) predicate relies on other vehicles, whereas
that of a vehicle-independent (VI) predicate does not.

Let us define some sets and functions to assist the evaluation
of predicates. We denote by L the lanelets along the reference
path Γ and their adjacent lanelets; the set Ldir ⊂ L refers to
lanelets having the same driving direction as the ego vehicle.
The lanelets occupied by the ego vehicle with state xk are
obtained as follows:

lanelets(xk) :=
{
L ∈ L

∣∣ occ(L) ∩ occ(xk) 6= ∅
}
,

lanelets dir(xk) := lanelets(xk) ∩ Ldir.
The functions type(L) and traffic sign(L) return the type of
a lanelet L (main carriageway, access ramp, etc.) and the set
of traffic signs referenced by L, respectively. The functions
front(·) and rear(·) return the s coordinate of the front and
rear bumper of the input within F L, respectively. Variable xoth

n,k

denotes the state of vehicle Vn at step k. We only describe a
few exemplary predicates from each category for a concise
presentation. The reader is referred to [6], [7] for detailed
definitions of other predicates.

1) Position Predicates: Vehicle-independent position predi-
cates relate to lanelets and traffic rule elements in the scenario.
We provide three examples:

in lanelet(xk;L)⇔ L ∈ lanelets(xk),

on main carriageway(xk)⇔
main carriage way ∈ {type(L)|L ∈ lanelets(xk)} ,

at traffic sign(xk;TS)⇔
∃L ∈ lanelets dir(xk) : TS ∈ traffic sign(L),

where TS stands for a traffic sign. Vehicle-dependent po-
sition predicates reflect positional relations between the ego
vehicle and other vehicles. For example, the mutually exclu-
sive predicates in front of(xk;xoth

n,k), behind(xk;xoth
n,k), and

beside(xk;xoth
n,k) along the s direction can be evaluated with

respect to Vn as follows:

in front of(xk;xoth
n,k)⇔ rear(xk) > front(xoth

n,k),

behind(xk;xoth
n,k)⇔ front(xk) < rear(xoth

n,k),

beside(xk;xoth
n,k)⇔

(
left of(xk;xoth

n,k) ∨ right of(xk;xoth
n,k)

)

∧ ¬ in front of(xk;xoth
n,k) ∧ ¬ behind(xk;xoth

n,k),

where the mutually exclusive predicates left of(xk;xoth
n,k),

right of(xk;xoth
n,k), and aligned with(xk;xoth

n,k) are analo-
gously defined along the d direction.

2) Velocity Predicates: Vehicle-independent velocity pred-
icates typically describe minimum or maximum velocity re-
quirements. Rules R-G3 and R-G4 [7] specify different ve-
locity limits that vehicles should respect, including limits
introduced by the restricted field of view of a vehicle, the
type of lane(let) in which the vehicle is driving, and the type
of the vehicle. For instance, given the maximum velocity limit
of the lane occupied with state xk, denoted by ṡlane, we have:

keeps lane speed limit(xk; ṡlane)⇔ projṡ(xk) ≤ ṡlane.

Examples of vehicle-dependent velocity predicates indicate
whether the ego vehicle is driving at a safe velocity with
respect to a leading vehicle or driving faster than a vehicle.
The latter predicate can be evaluated as follows:

drives faster(xk;xoth
n,k)⇔ projṡ(xk) ≥ projṡ(xoth

n,k).

3) Acceleration Predicates: These predicates relate to the
acceleration component of the ego vehicle. As an example, rule
R-G2 [7] specifies situations in which a vehicle is allowed to
brake harder than a predefined threshold. If the input uk of
the state xk is within the range of admissible acceleration, the
predicate admissible braking(xk) evaluates to true.

4) Priority Predicates: Vehicles should respect driving
priorities specified by traffic regulations, which can be
inferred from the road structure or indicated by traf-
fic signs. The predicates has priority over(xk;xoth

n,k) and
same priority as(xk;xoth

n,k) reflect whether the ego vehicle
has priority over Vn or has the same priority as Vn, respec-
tively. They are evaluated by comparing the driving priorities

Appendix A. Reproduction of Publications

54

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 9

determined based on the current traffic scenario and road
priorities listed in [6, Tab. II].

5) Traffic Situation Predicates: The truth of these predi-
cates depends on given traffic situations. For example, vehicle-
independent predicates may indicate whether the ego vehicle
is passing a stop line:

passing stop line(xk)⇔
behind stop line(xk) ∧ X(¬behind stop line(xk)),

where behind stop line(xk) evaluates to true if the ego
vehicle is behind a stop line. Vehicle-dependent predicates may
indicate whether a slow leading vehicle exists and whether a
vehicle is stuck in traffic congestion.

VI. SPECIFICATION REWRITING

As motivated in Sec. II-B2, we rewrite and interpret an
MTLpf formula ϕM as an LTL formula ϕ on our system:

1) Eliminate Intervals over Temporal Connectives: Since
valuations τk of our traces are synchronized with steps k, we
rewrite an MTLpf connective as a combination of X and Y
connectives in LTLpf . We use the notation X[k̃] as a shorthand
for k̃ consecutive X connectives:

X[k̃]ϕ
L := XX . . .X︸ ︷︷ ︸

k̃ times X

ϕL. (9)

It follows from the semantics of XI , UI (see Sec. II-B1) that
the time interval I = [a, b] over future-time connectives can
be eliminated:

X[a,b]ϕ
L =

{
XϕL, if 1 ∈ [a, b].

⊥, otherwise.
(10)

ϕL
1U[a,b]ϕ

L
2 =

∨

a≤k̃≤b

(
G[0,k̃−1]ϕ

L
1 ∧ X[k̃]ϕ

L
2

)
, (11)

G[a,b]ϕ
L =

∧

a≤k̃≤b

X[k̃]ϕ
L, (12)

F[a,b]ϕ
L =

∨

a≤k̃≤b

X[k̃]ϕ
L. (13)

That is, X[a,b]ϕ
L is only satisfiable by τ if the unit step jump is

within [a, b] and ϕL holds in the next valuation; ϕL
1U[a,b]ϕ

L
2 is

satisfied if within a and b steps, a valuation occurs in which
ϕL
2 holds, and ϕL

1 continuously holds for valuations before
that; G[a,b]ϕ

L (F[a,b]ϕ
L) is satisfied if ϕL holds in all (any)

valuations occurring within a and b steps. Intervals over the
past-time connectives YI , OI , HI , and SI can be analogously
eliminated by rewriting using the Y connective.

Running example:

ϕL
1U[1,3]ϕ

L
2

(11)
= ϕ̃L

1 ∨ ϕ̃L
2 ∨ ϕ̃L

3,where

ϕ̃L
1 := G[0,0]ϕ

L
1 ∧ X[1]ϕ

L
2

(12)
= ϕL

1 ∧ XϕL
2,

ϕ̃L
2 := G[0,1]ϕ

L
1 ∧ X[2]ϕ

L
2

(12)
= ϕL

1 ∧ XϕL
1 ∧ X[2]ϕ

L
2,

ϕ̃L
3 := G[0,2]ϕ

L
1 ∧ X[3]ϕ

L
2

(12)
= ϕL

1 ∧ XϕL
1 ∧ X[2]ϕ

L
1 ∧ X[3]ϕ

L
2.

Fig. 5 shows traces satisfying ϕ̃L
1, ϕ̃L

2, and ϕ̃L
3.

τ |= ϕ̃L
1

0 1 2 3 4k

τ |= ϕ̃L
2

τ |= ϕ̃L
3

ϕL
1 = >

ϕL
2 = >

arbitrary

Fig. 5: Example traces satisfying ϕ̃L
1, ϕ̃L

2, and ϕ̃L
3, respectively. ϕ̃L

1 :=
G[0,0]ϕ

L
1∧X[1]ϕ

L
2, ϕ̃L

2 := G[0,1]ϕ
L
1∧X[2]ϕ

L
2, ϕ̃L

3 := G[0,2]ϕ
L
1∧X[3]ϕ

L
2. A

circle represents a valuation in which the atomic proposition corresponding
to the color is assigned true. A sequence of circles represents a trace.

2) Eliminate Past-Time Connectives: A syntactic procedure
for separating past-time and future-time connectives in LTL is
presented in [65], which has been further applied to LTLpf
in [47]. Although the procedure offers straightforward rules
for rewriting, it leads to so-called non-elementary blow-up in
formula size [66], [67]. As an alternative, one can explicitly
reformulate ϕL using only future-time connectives with an
exponential growth in the formula size [68]. For practical
reasons, we adopt a less strict rewriting procedure to avoid
the mentioned unfavorable complexities. To this end, we tem-
porarily switch from the strong semantics defined in Sec. II-B1
to the repeat semantics as described in [69] for the X and Y
connectives, which allows one to cancel out pairs of X and Y:
Intuitively, we expect that the previous step of the next step
along a trace τ is the current step, and vice versa:

XYϕL ⇒ ϕL, (14)
YXϕL ⇒ ϕL. (15)

After canceling out all pairs of X and Y, we restore the strong
semantics for interpreting the remaining YϕL, i.e., they all
evaluate to ⊥: YϕL asserts that there exists a valuation prior
to τ0 and ϕL is true therein, which does not hold since our
traces start with τ0 at step k = 0. As for the S connective, we
apply the axiom [70, A12]

ϕL
1SϕL

2 = ϕL
2 ∨ (ϕL

1 ∧ Y(ϕL
1SϕL

2)) (16)

and examine the expanded formula.

Running example:

F[0,2](ϕ
L
1SϕL

2)
(13)
= ϕ̃L

1 ∨ ϕ̃L
2 ∨ ϕ̃L

3,where
ϕ̃L
1 := ϕL

1SϕL
2

(16)
= ϕL

2 ∨ (ϕL
1 ∧ Y(ϕL

1SϕL
2)) = ϕL

2,

ϕ̃L
2 := X[1](ϕ

L
1SϕL

2)
(16)
= X(ϕL

2 ∨ (ϕL
1 ∧ Y(ϕL

1SϕL
2)))

= XϕL
2 ∨ (XϕL

1 ∧ (ϕL
1SϕL

2))

ϕ̃L
1= XϕL

2 ∨ (XϕL
1 ∧ ϕL

2),

ϕ̃L
3 := X[2](ϕ

L
1SϕL

2)
(16)
= X[2](ϕ

L
2 ∨ (ϕL

1 ∧ Y(ϕL
1SϕL

2)))

= X[2]ϕ
L
2 ∨ (X[2]ϕ

L
1 ∧ X(ϕL

1SϕL
2))

ϕ̃L
2= X[2]ϕ

L
2∨

(X[2]ϕ
L
1 ∧ (XϕL

2 ∨ (XϕL
1 ∧ ϕL

2))).

Fig. 6 shows traces satisfying ϕ̃L
1, ϕ̃L

2, and ϕ̃L
3.

A.2. Specification-Compliant Driving Corridors for Motion Planning (T-IV2023)

55

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 10

0 1 2 3 4k

ϕL
1 = >

ϕL
2 = >

arbitrary

τ |= ϕ̃L
3

τ |= ϕ̃L
3

τ |= ϕ̃L
3

τ |= ϕ̃L
2

τ |= ϕ̃L
2

τ |= ϕ̃L
1

Fig. 6: Example traces satisfying ϕ̃L
1, ϕ̃L

2, and ϕ̃L
3, respectively. ϕ̃L

1 := ϕL
2,

ϕ̃L
2 := XϕL

2∨(XϕL
1∧ϕL

2), ϕ̃L
3 := X[2]ϕ

L
2∨(X[2]ϕ

L
1∧(XϕL

2∨(XϕL
1∧ϕL

2))).

3) Conversion to LTL: An LTLpf formula without past-
time connectives is converted to an LTL formula ϕ based
on [71], [72]. This conversion introduces an auxiliary atomic
proposition D (Dead) in ϕ and an auxiliary self-looping state
sB,D in the automaton Aϕ translated from ϕ (see Fig. 1c).

VII. DRIVING CORRIDOR IDENTIFICATION

This section describes the computation of automaton AP

and the generation of its product graph, based on which we
identify (optimal) specification-compliant driving corridors.

A. Product Automaton Computation

Given an automaton AM and a set of automata Aϕ (see
Sec. II-D2), their product AP can be computed considering
factors such as flexibility and priorities in case the spec-
ifications are conflicting, i.e., cannot be satisfied by any
trace. Rulebooks [73] specify qualitative relations between
specifications as a pre-order and assigns the same priority to
specifications in a group. Following this concept, automaton
AP can be computed to expedite compliance with the groups
of specifications of higher priorities:

AP
0 = AM, AP

m̃ = AP
m̃−1 ⊗ (· · · ⊗Aϕ

m ⊗ . . .︸ ︷︷ ︸
Ãϕ

m̃

), (17)

where Ãϕ
m̃ denotes the product of the automata in a group with

priority m̃ (a smaller m̃ indicates a higher priority). Automaton
AP

m̃−1 is assigned to AP if an accepting run exists in AP
m̃−1

but not in AP
m̃. Two special instances with drawbacks exist

that should ideally be avoided:
1) Assigning the Same Priority to All Automata Aϕ

m: This
instance yields an exponential growth in the number of states
in Ãϕ

m̃ with respect to |Aϕ| (see Def. 7). Moreover, it does
not allow one to flexibly adjust enforced specifications per the
current traffic situation or their orders based on user-defined
measures such as importance or criticality. The latter property
is unfavorable when not all prescribed specifications can be
satisfied: possible reasons are conflicts in the specifications,
misbehavior of other vehicles, etc.

2) Assigning a Unique Priority to Each Automaton Aϕ
m:

This instance allows one to explicitly prioritize the specifica-
tions and expedite compliance with those of higher priorities;
however, meticulously ordering specifications becomes non-
trivial as |Aϕ| increases.

Algorithm 1 Remove Unreachable Base Sets

Inputs: Collections CCk of connected components C(j)k .
Output: Updated connected components C(j)k .

1: Rkeep
0 ← C(1)0 .BASESETS() . Initialization

2: for k = 1 to kh do
3: Rkeep

k ← ∅ . Collection of base sets to keep at k
4: for C(j)k ∈ CCk do
5: RC ← C(j)k .BASESETS() . Base sets to keep in C(j)k

6: for R(i)
k ∈ C

(j)
k .BASESETS() do

7: if R(i)
k .PARENTBASESETS()∩Rkeep

k−1 = ∅ then
8: RC ← RC \ {R(i)

k } . Remove R(i)
k

9: else
10: Rkeep

k ←Rkeep

k ∪ {R(i)
k } . Keep R(i)

k at k
11: end if
12: end for
13: C(j)k .BASESETS() ←RC . Update base sets in C(j)k
14: end for
15: end for

B. Product Graph Generation

Given an automaton AP with at least an accepting run, we
convert it into a directed, acyclic, and weighted graph GP,
which is referred to as a product graph. Graph GP retains
the general structure of AP and consists of nodes referencing
corresponding connected components C(j)k . States in AP with
outgoing edges for which the auxiliary atomic proposition D
is assigned true are dismissed in GP since they are irrelevant
to the identification of driving corridors, see Fig. 7. Every edge
(C(l)k−1, C

(j)
k) in GP is weighted by the utility of C(j)k , denoted

by u
(j)
k (detailed in Sec. VII-C). The paths in GP from C(1)0

to C(j)kh
correspond to specification-compliant driving corridors

(see Def. 9 and Def. 10) and are stored in a collection DCP.
Let CP and CC represent the collection of all connected

components in graphs GP and GC, respectively. Since CP ⊆ CC,
we update the reachability relationship between the base sets
R(i)

k in the connected components and by this remove R(i)
k

that no longer have a valid parent. For example, suppose
DC1 := (C(1)0 , C(2)1 , C(2)2) in Fig. 4b is the only path in GP, set
R(3)

2 is no longer reachable along DC1 as per Fig. 4a. Alg. 1
removes unreachable base sets from connected components:
For every step k, we maintain a collection Rkeep

k of base sets
to be kept, with Rkeep

0 initialized with the base sets in C(1)0

(Alg. 1, line 1). For steps 1 to kh, we iterate through C(j)k ∈ CCk
and examine each of its base sets R(i)

k . If none of the parent
base sets of R(i)

k is present in Rkeep
k−1, R(i)

k is removed from
C(j)k ; otherwise it is added to Rkeep

k (Alg. 1, lines 7–11).

C. Utility Computation

Identifying the optimal specification-compliant driving cor-
ridor, i.e., the solution to Prob. 1, requires computing the utility
u
(j)
k of connected components C(j)k . Since multiple base sets
R(i)

k may exist in a connected component C(j)k , we define a
function w mean(C(j)k ,♦) that returns the weighted mean of

Appendix A. Reproduction of Publications

56

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 11

C(1)0

¬a, b,¬c

C(1)1

a,¬b,¬c

C(2)1

¬a,¬b, c

C(1)2

¬a, b,¬c

C(1)3

a,¬b,¬c

C(2)3

¬a,¬b, c

C(1)4

¬a, b,¬c

(a)

C(1)0

¬a, b,¬c

C(1)1

a,¬b,¬c

C(2)1

¬a,¬b, c

C(1)2

¬a, b,¬c
C(1)3

a,¬b,¬c

C(2)3

¬a,¬b, c

C(1)4

¬a, b,¬c

C(1)2

¬a, b,¬c
C(1)4

¬a, b,¬c

D

DD

Dismissed

u
(1)
1

u
(2)
1

u
(1)
2 u

(1)
3 u

(1)
4

u
(1)
4u

(2)
3u

(1)
2

(b)

Fig. 7: Example of a component graph GC and a product graph GP. Nodes of the same color have the same set of true atomic propositions. (a) Graph GC

with kh = 4. (b) Graph GP converted from a product automaton AP, which is the output of model checking GC against specification ϕ := G(¬a)∨G(¬c):
either a never holds, or c never holds. Dismissed states in AP are shown in gray (cf. Fig. 1d).

component ♦ in C(j)k :

w mean(C(j)k ,♦) :=
∑

R(i)
k ∈C

(j)
k

w
(i)
k mean

(
proj(♦)(R(i)

k)
)
,

(18)

w
(i)
k :=

area(R(i)
k)

∑
R(l)

k ∈C
(j)
k

area(R(l)
k)

, (19)

where w
(i)
k is the weight of R(i)

k within C(j)k and area(·)
returns the area of the input in the position domain. The utility
u
(j)
k of C(j)k is defined as the weighted sum of partial utilities:

u
(j)
k := wTu

(j)
k , (20)

where w is a weighting vector and u
(j)
k is a vector of user-

defined partial utilities. We consider the following partial
utilities, which are all normalized to [0, 1]:

1) Area: We reward C(j)k of a larger area in the position
domain since this generally yields more flexible position
constraints for subsequent trajectory planning:

uarea(C(j)k) :=
area(C(j)k)

maxC(l)k ∈CP
area C(l)k

. (21)

2) Velocity: We reward C(j)k of higher weighted longitudinal
velocity to increase the traffic flow:

uvel(C(j)k) :=
w mean(C(j)k , ṡ)− ṡ0

s̈(Γ, sk) ∆t k
. (22)

3) Position: We encourage C(j)k of longer weighted traveled
distance in the longitudinal direction of the reference path:

upos(C(j)k) :=
w mean(C(j)k , s)− s0

0.5 s̈(Γ, sk) (∆t k)2 + ṡ0 ∆t k
, (23)

4) Reference Path: We penalize C(j)k of larger weighted
lateral deviation from the reference path:

uref(C(j)k) := exp
(
−wref w mean(C(j)k , d)

)
, (24)

where wref ∈ R+ is a factor dictating how fast uref(C(j)k)
approaches zero as the lateral deviation increases. Alternative
utilities such as comfort, criticality measures, and robustness
degrees of specifications can be taken into consideration,
whose computation is out of the scope of this article.

D. Optimal Driving Corridor

Given a graph GP, graph-search and sampling-based tech-
niques can be employed to extract optimal paths in GP with
respect to u

(j)
k . For instance, the longest paths from the root

node C(1)0 to nodes C(j)kh
can be efficiently obtained using

a single-source shortest path algorithm on graph −GP in
which the weights are negated [74]. These paths correspond
to collision-free and specification-compliant driving corridors
with the maximum cumulative weights and are stored in the
collection DCO. Every candidate in DCO is processed again
using Alg. 1 to remove unreachable base sets. We identify
the optimal driving corridor DCO with the highest cumulative
weight, within which trajectories are planned.

VIII. EVALUATION

This section evaluates our approach and demonstrates its
applicability, effectiveness, and efficiency. To this end, we
integrate identified driving corridors into two sampling-based
motion planners and compare the planning results under differ-
ent traffic scenarios and specifications. In addition, we evaluate
the performance of our approach under increasingly critical
scenarios and compare computation times. Furthermore, we
benchmark of computation time of our prototype against
multiple scenarios. Lastly, we compare our approach with that
described in [19].

A.2. Specification-Compliant Driving Corridors for Motion Planning (T-IV2023)

57

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 12

TABLE II: SELECTED PARAMETERS USED IN THE EXPERIMENTS

Parameter kh ∆t ṡ ṡ ḋ ḋ s̈ s̈ d̈ d̈

Value 15 0.2 0.0 20.0 −4.0 4.0 −6.0 6.0 −2.0 2.0

A. Implementation Details

For evaluation, we adopt scenarios from the CommonRoad
benchmark suite3 [75], whose typical components are a road
network consisting of lanelets, static and dynamic obstacles,
traffic rule elements such as traffic signs and traffic lights,
the initial state of the ego vehicle, and a goal region. Every
scenario has a unique benchmark ID and can be unambigu-
ously reproduced. The prototype of our approach extends [76]
and is partially implemented in Python and C++. We ran the
experiments on a laptop with an Intel Core i7-7700HQ 2.8GHz
processor. Tab. II lists selected parameters. The weights in w
for driving corridor identification are all empirically set to 1.0.
We briefly introduce the two adopted motion planners:

1) Reactive Planner: The popular motion planner described
in [77], which we refer to as the reactive planner, generates a
finite set of candidate trajectories connecting the initial state
of the ego vehicle to different goal states. These goal states
are generated based on samples of longitudinal velocity, lateral
position, and the terminal time of the lateral maneuver. The
candidate trajectories are checked for (a) feasibility (including
drivability and collisions) using the drivability checker in [63]
and (b) compliance with specifications using Spot [50].

2) RRT*: To showcase the possibility of integrating our ap-
proach with RRT-based planners that we reviewed in Sec. I-A,
we also consider the RRT* planner [41]. In our implementa-
tion, a tree is incrementally constructed from sampled nodes,
between which a trajectory is generated using Dubins car
model [78]. As with the reactive planner, we check the feasi-
bility and compliance with the specifications of the trajectories
and terminate once a solution is found.

Besides these planners, it has been shown in [12], [13] that
optimization-based planners also substantially benefit from the
integration of driving corridors.

B. Scenario I: Merging via On-Ramp

Fig. 8 depicts a baseline scenario where the ego vehicle is
driving on a two-lane main carriageway and another vehicle
is approaching via an on-ramp. While the ego vehicle is
dynamically able to proceed in its current lane or to change to
the lane on the right, rule R-I5 [7] prohibits the latter maneuver
as the ego vehicle has to respect entering vehicles:

G
((

on main carriageway(xk) ∧ behind(xk;xoth
n,k)∧

on access ramp(xoth
n,k)∧

F
(
on main carriageway(xoth

n,k)
))

⇒(
on main carriageway right lane(xk)∨

G
(
¬ on main carriageway right lane(xk)

)))
.

3http://commonroad.in.tum.de/

Reference
path

Dynamic
obstacle

Goal
region

Initial
state

Dk

1

3

2

4
5

DP
k DO

k

(a) Scenario at step k = 5

(b) Scenario at step k = 10

keep lane

change lane

(c) Scenario at step k = 15

(d) Trajectories planned at step k = 0 without DCO (RP)

(e) Trajectories planned at step k = 0 with DCO (RP+DC/RP+DC*)

Fig. 8: Drivable areas and planned trajectories for scenario I (benchmark ID:
ZAM_TIV-1_1_T-1).

In addition to the baseline scenario, we create two alternative
scenarios with increased difficulty by adding secondary speci-
fications: in variant 1, we require that the ego vehicle reaches
lanelet 2 before the end of the planning horizon; in variant 2,
lanelet 2 should be reached between steps 5 and 12, which is
a stricter requirement with a smaller solution space.

Fig. 8a–c visualize the computed drivable areas at different
steps. Because the connected components in GP reference a
subset of base sets in GR, their drivable areas at step k, denoted
by DP

k, is a subset of Dk. Furthermore, the drivable areas of
the optimal driving corridor DCO at step k, represented by
DO

k, is a subset of DP
k since DCO corresponds to a path in GP.

That is, DO
k ⊆ DP

k ⊆ Dk. The non-empty drivable area DO
k

implies that one may find a specification-compliant trajectory
within the position and velocity bounds extracted from DCO.
We generate three sets of trajectories using the reactive planner
under three settings:

• RP: the basic implementation of the reactive planner with
fixed sampling intervals [77].

• RP+DC: enhances RP by drawing time, position, and

Appendix A. Reproduction of Publications

58

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 13

velocity samples within DCO as described in [14].
• RP+DC*: in addition to [14], enforces constraint (5c) and

discards a trajectory if any of its states is outside DCO.
Fig. 8d–e illustrate the sampled trajectories under different set-
tings. While the trajectories sampled with RP covers both lanes
and even off-road region, those planned with RP+DC/RP+DC*
lie within the current lane of the ego vehicle.

Tab. III reports the computation results, among which we
focus on the feasible trajectories and their compliance rate.
In the baseline scenario, while around 40% of the trajectories
planned with RP violate rule R-IN5 by entering the lane on
the right, all trajectories considering DCO comply with the
rule. In both alternative scenarios, the compliance rate of the
trajectories sampled with RP significantly decreases, with that
drastically reduced to around 0.5% in variant 2. Although
the compliance rate of RP+DC exhibits a milder drop than
that of RP, it is less than ideal because not all states of the
planned trajectories are entirely contained in DCO. In contrast,
RP+DC* performed consistently well in the given scenarios.
Further enforcing a conflicting or non-satisfiable specification
(e.g., F[0,5]

(
in lanelet(L2)

)
, see Fig. 8a) would yield an

empty product graph GP; thus, no DCO would be output and
we can reject the specification before trying to plan a trajectory
satisfying the specification.

We also compare the time required to obtain the first
specification-compliant trajectory under different settings.
Since the trajectory sampling and the feasibility check are
shared among all three settings, we focus on generating a
compliant trajectory from the feasible candidates. The compu-
tation is repeated for 50 times and the candidate trajectories are
shuffled in each iteration. For RP+DC and RP+DC*, we also
include the computation time of reachable sets. Fig. 9 depicts
the computation results: RP required less (median) computa-
tion time than the other two settings in the baseline scenario
and variant 1. This is justified by the fact that the enforced
specifications in these two scenarios are relatively easy to be
satisfied by the ego vehicle. With increased difficulty in variant
2, the computation time of RP grows remarkably (almost
two orders of magnitude) since it struggles to find the few
compliant trajectories among a large number of candidates. In
contrast, the computation times of the settings adopting our
reachable sets are consistent across the scenarios regardless of
the considered specifications. In variant 2, the overhead of our
reachable set computation is compensated by restricting the
sampling space and, with RP+DC*, avoiding excessive com-
pliance checks for sampled trajectories. Although RP+DC and
RP+DC* performed similarly in these scenarios, adopting the
latter allows us to explicitly constrain the sampled trajectories
to the optimal driving corridor concerning user-defined utilities
presented in Sec. VII-C.

C. Scenario II: Four-way Intersection

Next, we consider a scenario in which the ego vehicle must
come to a full stop before an intersection to respect passing
priorities. Rule R-IN3 [6] dictates that the ego vehicle should
not endanger another entering vehicle at an intersection if it
is left of the other vehicle. Due to space limitations, we refer

TABLE III: Number of trajectories and compliance rate under different
settings in scenario I: ZAM_TIV-1_1_T-1.

Method #Sampled #Feasible #In Corridor #Compliant %Compliant

Baseline: R-IN5
RP 13464 3839 - 2232 58.14 %
RP+DC 11288 4031 - 4031 100.00 %
RP+DC* 11288 4031 64 64 100.00 %

Variant 1: R-IN5 + F[0,kh]

(
in lanelet(L2)

)

RP 13464 3839 - 968 25.21 %
RP+DC 11288 4031 - 3418 84.79 %
RP+DC* 11288 4031 62 62 100.00 %

Variant 2: R-IN5 + F[5,12]

(
in lanelet(L2)

)

RP 13464 3839 - 18 0.47 %
RP+DC 11288 4031 - 1021 25.33 %
RP+DC* 11288 4031 62 62 100.00 %

B
as

el
in

e
V

ar
ia

nt
1

V
ar

ia
nt

2

Computation time [ms]
101 103102

RP+DC

RP

RP+DC*

Fig. 9: Computation times in scenario I: ZAM_TIV-1_1_T-1. For better
visibility, outliers of the box plot are not shown.

the reader to [6] for the MTL formulation of this rule. We
also create an alternative scenario to increase the difficulty of
the planning problem. Specifically, we alter the initial velocity
of the ego vehicle from 7.0 m/s to 9.0 m/s, which reduces the
compliant drivable areas and state space.

Fig. 10a–b illustrate the drivable areas of the ego vehicle
in the baseline scenario. The ego vehicle can, among other
maneuvers, accelerate and pass through the intersection before
the vehicle entering from the right or respect the passing
priority and stop before the intersection. The optimal driving
corridor DCO is the only path in the product graph GP, thus
DP

k = DO
k. We demonstrate the benefits of our approach for

RRT-based planners by comparing the following settings:
• RRT*: the basic implementation of RRT*. For a fairer

comparison, we restrict the state and sample spaces to
lanelets on the route leading to the goal region.

• RRT*+DC*: based on RRT*, we enforce constraint (5c)
by restricting the state and sample spaces to DCO.

Fig. 10c–d show exemplary explored trees under different
settings. While the tree explored by RRT* spans to incoming
and outgoing lanelets of the intersection, the tree explored by
RRT*+DC* is, as expected, contained within the incoming
lanelet before the intersection.

We compare the number of tree nodes required to generate a
collision-free and specification-compliant trajectory lasting 3.0
seconds. To account for the stochastic nature of RRT*, we ran
the planners for 50 times and present the results in Fig. 11. For

A.2. Specification-Compliant Driving Corridors for Motion Planning (T-IV2023)

59

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 14

Goal
region

Initial
state

(a) Scenario at step k = 7

Reference
path

Dynamic
obstacle

accelerate

stop

(b) Scenario at step k = 15

DO
k

Dk

(c) Trajectories planned at step k = 0
without DCO (RRT*)

Compliant

Violating

(d) Trajectories planned at step k = 0
with DCO (RRT*+DC*)

Fig. 10: Drivable areas and planned trajectories for scenario II (benchmark ID: ZAM_TIV-2_1_T-1).

Number of sampled tree nodes ×103
5431 20

RRT*+DC*

RRT*

B
as

el
in

e
V

ar
ia

nt

Fig. 11: Number of sampled tree nodes before finding a compliant trajectory
in scenario II: ZAM_TIV-2_1_T-1. For better visibility, outliers of the box
plot are not shown.

both the baseline and variant scenarios, the median numbers
of sampled tree nodes of RRT*+DC* are substantially lower
than those of RRT*. This can be explained by the fact that
only a fraction of the state and sample spaces are relevant
for planning a trajectory satisfying rule R-IN3. Reducing the
specification-compliant drivable areas noticeably increases the
effort for planning a compliant trajectory by RRT*, which is
not the case for RRT*+DC*. These observations are in line
with our findings in Sec. VIII-B.

D. Scenarios with Decreasing Solution Spaces

It has been demonstrated in [12, Sec. VII-E] that the
computation times of reachable sets are proportionally reduced
with a decreasing solution space. We verify the validity of
this finding on our reachable set computation by considering
a cluttered scenario populated with vehicles and cyclists, see
Fig. 12. To decrease the solution space, we gradually raise the
initial velocity of the ego vehicle by 30 % at a time until a
collision is unavoidable. This process increases the criticality
of the scenario based on measures such as Time-to-Collision
and Time-to-React, which can be evaluated using the CriMe
toolbox [79]. We repeat the computations for 50 times and
list the results in Tab. IV. Increasing the initial velocity of
the ego vehicle leads to reduced numbers of base sets in the

reachability graph and required set operations, resulting in
lower mean computation times and smaller overall sizes of the
drivable area cumulated over steps k. We observe that with the
initial velocity raised to 310 %, which yields the most critical
scenario with inevitable collision using parameters in Tab. II,
the computation time is exceptionally low, at approximately
4 ms. The results thus confirm the favorable property of our
reachable set that less computation time is required in more
critical scenarios with smaller solution spaces.

E. Computation Time

The performance of our prototype is benchmarked by
computing the reachable sets for over 50 randomly chosen
scenarios from the CommonRoad benchmark suite. We only
focus on position predicates concerning lanelets and vehicles
as well as traffic situation predicates. The former causes
frequent splitting of reachable sets and the latter requires
relatively more effort in the annotation operation [43]. Fig. 13
illustrates the computation times of required operations in our
reachable set computation as described in [43, Sec. III-D].
Our current implementation, with 75% of the computations
executed within 250 ms, requires only a fraction of the plan-
ning horizon, specifically 3.0 s, thereby demonstrating its real-
time capability. To further improve the performance of our
prototype, adequate optimization and parallelized computation
techniques can be employed. For instance, our observations
from [76] suggest that translating the annotation operation
from Python to C++ is expected to accelerate its computation
by a factor of 20. For both scenarios I and II presented in the
previous subsections, computing the product automaton AP

and determining the optimal driving corridor DCO required
only about 100µs and 1 ms, respectively.

F. Comparison

While most of the works that we reviewed in Sec. I-A focus
on reach-avoid problems with temporal requirements for robot
navigation, to the best of our knowledge, article [19] is the only
work that aims to achieve a goal similar to ours. Specifically,
the article (a) focuses on constraint extraction for motion

Appendix A. Reproduction of Publications

60

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 15

Initial
state

Reference
path Vehicle Cyclist

Fig. 12: A cluttered scenario with vehicles and cyclists at step k = 0
(benchmark ID: ESP_Monzon-2_2_T-1).

TABLE IV: Mean computation time, number of base sets, and size of the
drivable area (in relative percentage) cumulated over steps k, when increasing
the initial velocity in scenario ESP_Monzon-2_2_T-1.

Init. Vel. %Vel. Comput. Time #Base Sets %Drivable Area

4.69 m/s 100 % 139.51 ms 165 100.00 %
6.10 m/s 130 % 126.87 ms 160 99.33 %
7.51 m/s 160 % 124.47 ms 155 97.44 %
8.92 m/s 190 % 113.07 ms 148 96.06 %

10.32 m/s 220 % 98.10 ms 134 86.30 %
11.73 m/s 250 % 84.60 ms 118 71.67 %
13.14 m/s 280 % 58.30 ms 83 52.24 %
14.55 m/s 310 % 3.88 ms 5 0.13 %

planning of automated vehicles, (b) considers compliance with
specifications in temporal logic, and (c) handles dynamic
obstacles. For this reason, we compare our approach to [19].

Let us recapitulate the approach presented in [19]: The au-
thors first partition the collision-free state space and construct
a so-called navigation graph GN, in which a node denotes a
segment of a lanelet with a unique position relation concerning
other vehicles. Connecting such nodes forms a path represent-
ing a timed envelope, i.e., position constraints, enclosing a set
of homotopic trajectories. Next, to examine the compliance
of these envelopes with traffic rules expressed in LTL, each
path in GN is individually verified using runtime verification.
Finally, the authors assign heuristic costs to specification-
compliant envelopes, from which the best solutions are output
as constraints for trajectory planning.

Our approach outweighs [19] in the following two aspects:
1) Model Accuracy: Article [19] does not incorporate a

vehicle model accounting for the dynamics of the ego vehicle
and only constructs GN at the sub-lanelet level. In contrast,
our approach adopts a double-integrator point mass model (6),
effectively capturing the ego vehicle’s position, velocity, and
acceleration components. While both approaches extract posi-
tion constraints for the ego vehicle that comply with enforced
specifications, our driving corridors additionally offer velocity
constraints. This allows us to integrate specifications pertinent
to the velocity of the ego vehicle (see Tab. I). Also, speci-
fications on the accelerations can be handled directly during
our computation of reachable sets through the modification of
input bounds (7b).

In addition, our approach provides a less over-approximative
abstraction of the ego vehicle. This can be substantiated
by comparing the sizes of the discrete system models in
the two approaches. For comparison, we consider a scenario
(benchmark ID: ZAM_TIV-3_1_T-1) featuring three parallel
lanelets, each containing two other vehicles. Due to the
limitations of [19], only the position predicates relative to other
vehicles are considered in the comparison. Using the setting

Computation time [ms]
25020015050 1000 300

Splitting

Propagation

Collision check

Annotation

Sum

Base set creation

Fig. 13: Benchmarked computation times of our reachable set computation.
For better visibility, outliers of the box plot are not shown.

described in Sec. VIII-A, our approach generates a component
graph GC comprised of nearly 180 nodes, which is significantly
less than about 520 nodes in graph GN.

2) Verification Efficiency: Since the number of possible
paths in graphs GN and GC grows exponentially in relation to
the planning horizon kh, even for the relatively simple scenario
described in Sec. VIII-F1, graph GN already contains about
250 billion paths to be monitored. This task is computationally
demanding, if not intractable, for motion planning of auto-
mated vehicles with strict real-time requirements. Moreover,
the task is incomplete unless all paths are examined. In stark
contrast, our employment of automata-based model checking
ensures that all paths in graph GC are efficiently verified. At
the same time, the computational complexity only increases
linearly with the number of nodes in graph GC [49], thereby
demonstrating a far superior efficiency compared to runtime
verification adopted by [19].

IX. CONCLUSIONS

Our novel approach offers a promising solution to the
problem of specification-compliant motion planning for au-
tomated vehicles, paving the way to safer and more efficient
road traffic. By coupling set-based reachability analysis with
automata-based model checking, we identify collision-free and
specification-compliant driving corridors of the ego vehicle.
The driving corridors can be integrated into arbitrary motion
planners accepting position and velocity constraints to expe-
dite the generation of specification-compliant trajectories. In
contrast to existing works, our approach realizes exhaustive
verification of all possible driving corridors of the ego vehicle
while accounting for its system dynamics and not sacrificing
real-time capability. Moreover, the generation of a product
graph enables detecting conflicting or non-satisfiable specifi-
cations before actually planning a trajectory. The experiments
show that our approach can be easily integrated into mo-
tion planners to efficiently obtain trajectories complying with
temporal specifications, especially when the solution space
is increasingly small. Although our computation of reachable
sets requires only a fraction of time of the planning horizon,
as demonstrated with benchmarking over 50 CommonRoad
scenarios, we will further improve the implementation so that
it can achieve even better run time.

A.2. Specification-Compliant Driving Corridors for Motion Planning (T-IV2023)

61

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 16

ACKNOWLEDGMENT

This work was funded by the German Research Foundation
(DFG) under grant No. AL 1185/20-1, the German Federal
Ministry for Education and Research (BMBF) under grant
No. 03ZU1105KA (MCube), and Huawei Technologies under
grant No. YBN2020035151. The authors also appreciate the
fruitful collaboration with the project partners.

REFERENCES

[1] S. Aradi, “Survey of deep reinforcement learning for motion planning of
autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2,
pp. 740–759, 2020.

[2] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 5, pp. 1826–1848, 2019.

[3] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, 2016.

[4] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 4, pp. 1135–1145, 2015.

[5] Y. Sun, C. M. Poskitt, J. Sun, Y. Chen, and Z. Yang, “LawBreaker: An
approach for specifying traffic laws and fuzzing autonomous vehicles,”
in Profc. of the IEEE/ACM Int. Conf. Autom. Software Eng., 2022, pp.
1–12.

[6] S. Maierhofer, P. Moosbrugger, and M. Althoff, “Formalization of
intersection traffic rules in temporal logic,” in Proc. of the IEEE Intell.
Veh. Symp., 2022, pp. 1135–1144.

[7] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “Formal-
ization of interstate traffic rules in temporal logic,” in Proc. of the IEEE
Intell. Veh. Symp., 2020, pp. 752–759.

[8] K. Esterle, L. Gressenbuch, and A. Knoll, “Formalizing traffic rules for
machine interpretability,” in Proc. of the IEEE Connect. Autom. Veh.
Symp., 2020, pp. 1–7.

[9] A. Rizaldi, J. Keinholz, M. Huber, J. Feldle, F. Immler, M. Althoff,
E. Hilgendorf, and T. Nipkow, “Formalising and monitoring traffic rules
for autonomous vehicles in Isabelle/HOL,” in Int. Conf. Integr. Formal
Methods, 2017, pp. 50–66.

[10] E. Plaku and S. Karaman, “Motion planning with temporal-logic spec-
ifications: Progress and challenges,” AI Commun., vol. 29, no. 1, pp.
151–162, 2016.

[11] S. Söntges and M. Althoff, “Computing the drivable area of autonomous
road vehicles in dynamic road scenes,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 6, pp. 1855–1866, 2018.

[12] S. Manzinger, C. Pek, and M. Althoff, “Using reachable sets for
trajectory planning of automated vehicles,” IEEE Trans. Intell. Veh.,
vol. 6, no. 2, pp. 232–248, 2020.

[13] L. Schäfer, S. Manzinger, and M. Althoff, “Computation of solution
spaces for optimization-based trajectory planning,” IEEE Trans. Intell.
Veh., vol. 8, no. 1, pp. 216–231, 2021.

[14] G. Würsching and M. Althoff, “Sampling-based optimal trajectory
generation for autonomous vehicles using reachable sets,” in Proc. of
the IEEE Int. Conf. Intell. Transp. Syst., 2021, pp. 828–835.

[15] H. Roehm, J. Oehlerking, T. Heinz, and M. Althoff, “STL model
checking of continuous and hybrid systems,” in Int. Symp. Autom.
Technol. Verif. Anal., 2016, pp. 412–427.

[16] O. Maler and D. Nickovic, “Monitoring temporal properties of continu-
ous signals,” in Formal Tech., Model., Anal. Timed Fault-Tolerant Syst.,
2004, pp. 152–166.

[17] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
Int. J. Rob. Res., vol. 20, no. 5, pp. 378–400, 2001.

[18] R. R. Da Silva, V. Kurtz, and H. Lin, “Automatic trajectory synthesis for
real-time temporal logic,” IEEE Trans. Autom. Control, vol. 67, no. 2,
pp. 780–794, 2021.

[19] K. Esterle, V. Aravantinos, and A. Knoll, “From specifications to
behavior: Maneuver verification in a semantic state space,” in Proc. of
the IEEE Intell. Veh. Symp., 2019, pp. 2140–2147.

[20] C. K. Verginis, C. Vrohidis, C. P. Bechlioulis, K. J. Kyriakopoulos, and
D. V. Dimarogonas, “Reconfigurable motion planning and control in
obstacle cluttered environments under timed temporal tasks,” in Proc.
of the IEEE Int. Conf. Robot. Autom., 2019, pp. 951–957.

[21] Y. Shoukry, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia,
G. J. Pappas, and P. Tabuada, “SMC: Satisfiability modulo convex
programming,” Proc. of the IEEE, vol. 106, no. 9, pp. 1655–1679, 2018.

[22] K. Cho, J. Suh, C. J. Tomlin, and S. Oh, “Cost-aware path planning
under co-safe temporal logic specifications,” IEEE Robot. Autom. Lett.,
vol. 2, no. 4, pp. 2308–2315, 2017.

[23] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit,
and M. Y. Vardi, “Iterative temporal planning in uncertain environments
with partial satisfaction guarantees,” IEEE Trans. Rob., vol. 32, no. 3,
pp. 583–599, 2016.

[24] Y. Zhou, D. Maity, and J. S. Baras, “Timed automata approach for
motion planning using metric interval temporal logic,” in Proc. of the
Eur. Control Conf., 2016, pp. 690–695.

[25] D. Maity and J. S. Baras, “Motion planning in dynamic environments
with bounded time temporal logic specifications,” in Mediterr. Conf.
Control Autom., 2015, pp. 940–946.

[26] R. Kohlhaas, T. Bittner, T. Schamm, and J. M. Zöllner, “Semantic state
space for high-level maneuver planning in structured traffic scenes,” in
Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2014, pp. 1060–1065.

[27] E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-guided controller
synthesis for nonlinear systems with temporal logic,” in Proc. of the
IEEE Int. Conf. Intell. Robot. Syst., 2013, pp. 4332–4339.

[28] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-time Syst., vol. 2, no. 4, pp. 255–299, 1990.

[29] A. Pnueli, “The temporal logic of programs,” in Annu. Symp. Found. of
Comput. Sci., 1977, pp. 46–57.

[30] M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R.
Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, 50 years of integer
programming 1958-2008: From the early years to the state-of-the-art.
Springer Science & Business Media, 2009.

[31] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion planning
from signal temporal logic specifications,” IEEE Robot. Autom. Lett.,
vol. 7, no. 2, pp. 3451–3458, 2022.

[32] Z. Lin and J. S. Baras, “Optimization-based motion planning and runtime
monitoring for robotic agent with space and time tolerances,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 1874–1879, 2020.

[33] U. A. Fiaz and J. S. Baras, “Fast, composable rescue mission planning
for UAVs using metric temporal logic,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 15 404–15 411, 2020.

[34] S. Saha and A. A. Julius, “An MILP approach for real-time optimal
controller synthesis with metric temporal logic specifications,” in Proc.
of the Am. Control Conf., 2016, pp. 1105–1110.

[35] E. M. Wolff and R. M. Murray, “Optimal control of nonlinear systems
with temporal logic specifications,” in Rob. Res., 2016, pp. 21–37.

[36] C. I. Vasile, X. Li, and C. Belta, “Reactive sampling-based path planning
with temporal logic specifications,” Int. J. Rob. Res., vol. 39, no. 8, pp.
1002–1028, 2020.

[37] J. Karlsson, F. S. Barbosa, and J. Tumova, “Sampling-based motion
planning with temporal logic missions and spatial preferences,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 15 537–15 543, 2020.

[38] F. S. Barbosa, L. Lindemann, D. V. Dimarogonas, and J. Tumova,
“Integrated motion planning and control under metric interval temporal
logic specifications,” in Eur. Control Conf., 2019, pp. 2042–2049.

[39] C.-I. Vasile, V. Raman, and S. Karaman, “Sampling-based synthesis of
maximally-satisfying controllers for temporal logic specifications,” in
Proc. of the IEEE Int. Conf. Intell. Robot. Syst., 2017, pp. 3840–3847.

[40] L. I. R. Castro, P. Chaudhari, J. Tůmová, S. Karaman, E. Frazzoli, and
D. Rus, “Incremental sampling-based algorithm for minimum-violation
motion planning,” in Proc. of the IEEE Conf. Decis. Control. IEEE,
2013, pp. 3217–3224.

[41] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Rob. Res., vol. 30, no. 7, pp. 846–894, 2011.

[42] L. Zhang and D. Manocha, “An efficient retraction-based RRT planner,”
in Proc. of the IEEE Int. Conf. Robot. Autom. IEEE, 2008, pp. 3743–
3750.

[43] E. Irani Liu and M. Althoff, “Computing specification-compliant reach-
able sets for motion planning of automated vehicles,” in Proc. of the
IEEE Intell. Veh. Symp., 2021, pp. 1037–1044.

[44] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map represen-
tation for autonomous driving,” in Proc. of the IEEE Intell. Veh. Symp.,
2014, pp. 420–425.

[45] G. De Giacomo, A. Murano, F. Patrizi, and G. Perelli, “Timed trace
alignment with metric temporal logic over finite traces,” in Proc. of the
Int. Conf. Principles Knowl. Represent. and Reasoning, vol. 18, no. 1,
2021, pp. 227–236.

Appendix A. Reproduction of Publications

62

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 17

[46] D. DSouza and P. Prabhakar, “On the expressiveness of MTL in the
pointwise and continuous semantics,” Int. J. Software Tools for Technol.
Transfer, vol. 9, no. 1, pp. 1–4, 2007.

[47] A. Cecconi, C. D. Ciccio, G. D. Giacomo, and J. Mendling, “Inter-
estingness of traces in declarative process mining: The Janus LTLpf
approach,” in Int. Conf. Bus. Process Manage. Springer, 2018, pp.
121–138.

[48] J. Ouaknine and J. Worrell, “Some recent results in metric temporal
logic,” in Int. Conf. Formal Model. and Anal. Timed Syst. Springer,
2008, pp. 1–13.

[49] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[50] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and
L. Xu, “Spot 2.0 – A framework for LTL and ω-automata manipulation,”
in Int. Symp. Autom. Technol. Verif. Anal., 2016, pp. 122–129.

[51] G. Lafferriere, G. J. Pappas, and S. Yovine, “Symbolic reachability
computation for families of linear vector fields,” J. Symb. Comput.,
vol. 32, no. 3, pp. 231–253, 2001.

[52] G. Holzmann, “Explicit-state model checking,” in Handbook of model
checking, 2018, pp. 153–170.

[53] O. Kupferman, “Automata theory and model checking,” in Handbook of
model checking, 2018, pp. 107–151.

[54] H. Tauriainen and K. Heljanko, “Testing LTL formula translation into
Büchi automata,” Int. J. Software Tools for Technol. Transfer, vol. 4,
no. 1, pp. 57–70, 2002.

[55] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
Int. Conf. Comput. Aided Verif. Springer, 2001, pp. 53–65.

[56] J. R. Büchi, “On a decision method in restricted second order arith-
metic,” in Proc. of the Int. Congr. Logic, Method. and Philos. Sci., 1962,
pp. 1–11.

[57] H. T. Croft, K. Falconer, and R. K. Guy, Unsolved problems in geometry:
Unsolved problems in intuitive mathematics. Springer Science &
Business Media, 2012, vol. 2.

[58] Y. Lin and M. Althoff, “Rule-compliant trajectory repairing using
satisfiability modulo theories,” in Proc. of the IEEE Intell. Veh. Symp.,
2022, pp. 449–456.

[59] C. Pek and M. Althoff, “Fail-safe motion planning for online verification
of autonomous vehicles using convex optimization,” IEEE Trans. Rob.,
vol. 37, no. 3, pp. 798–814, 2020.

[60] B. Schürmann, D. Heß, J. Eilbrecht, O. Stursberg, F. Köster, and
M. Althoff, “Ensuring drivability of planned motions using formal
methods,” in Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2017,
pp. 1–8.

[61] M. Althoff and J. M. Dolan, “Reachability computation of low-order
models for the safety verification of high-order road vehicle models,” in
Proc. of the Am. Control Conf., 2012, pp. 3559–3566.

[62] J. Eilbrecht and O. Stursberg, “Challenges of trajectory planning with
integrator models on curved roads,” in Proc. of the IFAC World Congr.,
2020, pp. 15 588–15 595.

[63] C. Pek, V. Rusinov, S. Manzinger, M. C. Üste, and M. Althoff,
“CommonRoad Drivability Checker: Simplifying the development and
validation of motion planning algorithms,” in Proc. of the IEEE Intell.
Veh. Symp., 2020, pp. 1013–1020.

[64] S. A. Kripke, “A completeness theorem in modal logic,” J. Symb. Log.,
vol. 24, no. 1, pp. 1–14, 1959.

[65] D. Gabbay, “The declarative past and imperative future,” in Temporal
Log. Specification, 1989, pp. 409–448.

[66] G. P. Maretić, M. T. Dashti, and D. Basin, “Anchored LTL separation,”
in Proc. of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
2014, pp. 1–9.

[67] I. M. Hodkinson and M. Reynolds, “Separation – past, present, and
future.” in We Will Show Them! (2), 2005, pp. 117–142.

[68] N. Markey, “Temporal logic with past is exponentially more succinct,”
Eur. Assoc. Theor. Comput. Sci., vol. 79, pp. 122–128, 2003.

[69] G. Roşu and K. Havelund, “Rewriting-based techniques for runtime
verification,” Autom. Software Eng., vol. 12, no. 2, pp. 151–197, 2005.

[70] M. Reynolds, “More past glories,” in Proc. of the IEEE Symp. Logic.
Comput. Sci., 2000, pp. 229–240.

[71] S. Dutta and M. Y. Vardi, “Assertion-based flow monitoring of SystemC
models,” in Proc. of the ACM/IEEE Int. Conf. Formal Methods and
Models Co-Des., 2014, pp. 145–154.

[72] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in Proc. of the Int. Joint Conf. Artif.
Intell. Association for Computing Machinery, 2013, pp. 854–860.

[73] A. Censi, K. Slutsky, T. Wongpiromsarn, D. Yershov, S. Pendleton,
J. Fu, and E. Frazzoli, “Liability, ethics, and culture-aware behavior
specification using rulebooks,” in Proc. of the IEEE Int. Conf. Robot.
Autom., 2019, pp. 8536–8542.

[74] E. L. Lawler, Combinatorial optimization: Networks and matroids.
Courier Corporation, 2001.

[75] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: composable
benchmarks for motion planning on roads,” in Proc. of the IEEE Intell.
Veh. Symp., 2017, pp. 719–726.

[76] E. Irani Liu, G. Würsching, M. Klischat, and M. Althoff,
“CommonRoad-Reach: A toolbox for reachability analysis of automated
vehicles,” in Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2022, pp.
2313–2320.

[77] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenet frame,” in Proc. of
the IEEE Int. Conf. Robot. Autom., 2010, pp. 987–993.

[78] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions and
tangents,” Am. J. Math., vol. 79, no. 3, pp. 497–516, 1957.

[79] Y. Lin and M. Althoff, “CommonRoad-CriMe: A toolbox for criticality
measures of autonomous vehicles,” in Proc. of the IEEE Intell. Veh.
Symp., 2023, pp. 1–8.

Edmond Irani Liu is currently a Ph.D. candidate
and joined the Cyber-Physical Systems Group at the
Technical University of Munich under Prof. Dr.-Ing.
Matthias Althoff in 2019. He received his B.Sc. de-
gree in automation in 2015 and his M.Sc. degree in
control science and engineering in 2018, both from
Shanghai Jiao Tong University, China. His research
interests include specification-compliant reachability
analysis and motion planning of automated vehicles.

Matthias Althoff received the diploma engineering
degree in mechanical engineering and the Ph.D.
degree in electrical engineering from the Technical
University of Munich, Germany, in 2005 and 2010,
respectively. He is currently an associate professor
in computer science with the Technical University of
Munich. From 2010 to 2012 he was a postdoctoral
researcher with Carnegie Mellon University, Pitts-
burgh, USA, and from 2012 to 2013 an assistant
professor at Ilmenau Technical University, Germany.
His research interests include formal verification of

continuous and hybrid systems, reachability analysis, planning algorithms,
nonlinear control, automated vehicles, and power systems.

A.2. Specification-Compliant Driving Corridors for Motion Planning (T-IV2023)

63

Appendix A. Reproduction of Publications

A.3 Specification-Compliant Motion Planning of Cooperative
Vehicles Using Reachable Sets [3]

Summary Automated vehicles should explicitly adhere to enforced specifications to en-
sure their safe and effective engagement in mixed road traffic, in which both human-
driven and automated vehicles co-exist. In addition to driving individually, infinitely
many traffic scenarios exist in which inter-vehicle cooperation maximizes the collective
benefits of the vehicles. This work addresses the problem of specification-compliant
motion planning for a group of cooperating vehicles by leveraging reachability analysis
techniques.

We provide a consolidated perspective on our previous works concerning the com-
putation of specification-compliant reachable sets for a single vehicle [1], [2] and the
negotiation of conflicting reachable sets within a group of cooperating vehicles [63]. The
specification-compliant reachable sets of a vehicle represent the set of states that it can
reach over time while complying with the considered specification. By systematically
organizing the negotiation of the specification-compliant reachable sets of cooperating
vehicles, each vehicle unambiguously receives its own negotiated reachable set, within
which specification-compliant trajectories can be planned. Using an auction-based
conflict resolution mechanism for reachable sets and forming a hierarchical structure
of bids, we are able to reduce the exponential complexity inherent to trajectory-based
collaborative motion planning of automated vehicles to only polynomial complexity. The
effectiveness of our approach is evaluated using traffic scenarios from the CommonRoad
benchmark suite.

Contributions of E. I. L. E. I. L. developed the idea of the research (together with
M. A.); E. I. L. designed, conducted, and evaluated the experiments (together with
M. A.); E. I. L. wrote the article (together with M. A.).

Book chapter The author’s version of record of the article is reprinted. In press.

Copyright notice © 2023 Springer. Material from: Edmond Irani Liu and Matthias Al-
thoff, Specification-Compliant Motion Planning of Cooperative Vehicles Using Reachable
Sets, Cooperatively Interacting Vehicles, published 2023, Springer.

64

Specification-Compliant Motion Planning of
Cooperative Vehicles Using Reachable Sets

Edmond Irani Liu and Matthias Althoff

Abstract Automated vehicles must comply explicitly with specifications, including
traffic-based and handcrafted rules, in order for them to safely and effectively par-
ticipate in mixed traffic. In addition to driving individually, there are many traffic
situations in which cooperation between vehicles maximizes their collective benefits,
including preventing collisions. To realize these benefits, we compute specification-
compliant reachable sets for vehicles, i.e., sets of states which can be reached by
vehicles over time that are constrained by a set of considered specifications. We
summarize and combine our previous works on computing specification-compliant
reachable sets and negotiating conflicting reachable sets within a group of cooper-
ating vehicles. As a result, conflicts between specification-compliant reachable sets
of vehicles are resolved, and specification-compliant trajectories can be individually
planned for each vehicle within the negotiated reachable sets using arbitrary motion
planners.

1 Introduction

When compared with human-driven vehicles, automated vehicles are expected to
deliver enhanced road safety, passenger comfort, and traffic efficiency comparedwith
human-driven vehicles. To safely and effectively participate in mixed traffic, in which
both automated and human-driven vehicles share the road, automated vehicles must
comply explicitly with specifications, including traffic regulations and handcrafted
rules. Compliance with the former is essential in order to exempt manufacturers from
liability claims in the event of an accident, while compliance with the latter allows
motion plans to be generated that satisfy additional requirements. An example of a
handcrafted rule is:Follow vehicle 1 up to step k1, then completely overtake it from the

Edmond Irani Liu, Matthias Althoff
Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany.
e-mail: {edmond.irani, althoff}@tum.de

1

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

65

2 Edmond Irani Liu and Matthias Althoff

left before step k2. Generating a drivable trajectory that satisfies a set of specifications
for an automated vehicle involves reasoning not only with continuous states (which
may reflect the physical motion of the vehicle) but also discrete states (possibly due to
discretization of the continuous state space or action space) of the vehicle. This poses
computational challenges from a variety of aspects, including vehicle dynamics, the
specifications under consideration (including collision avoidance), and dependencies
between planned trajectories and constraints originating from the specifications. On
the one hand, planning solely in the discrete state space may produce plans that meet
specifications but violate vehicle dynamic constraints or lead to collisions. On the
other hand, motion planners may generate dynamically drivable trajectories that do
not comply with the specifications.

One solution to this problem is to guide the motion planning of an automated
vehicle using its specification-compliant reachable set, which is defined as the set of
states reachable by the vehicle over time that is constrained by a set of considered
specifications. Computing the reachable sets in an over-approximative fashion will
enclose all drivable trajectories of the automated vehicle [34]. The smaller the
solution space is, the faster reachable sets can be computed, as demonstrated in [22].
In addition, the search space for the motion planner is greatly reduced particularly in
critical situations. In contrast to conventional approaches, both effects result in quick
computations even in critical situations. Low-level trajectory planning constraints
can be extracted from the computed reachable sets and passed on to motion planners
to generate specification-compliant trajectories.

In addition to driving individually, there are many traffic situations that demand
cooperation between vehicles in order to maximize their collective benefits and to
prevent collision in a potential emergency. Human drivers typically interact with each
other through implicit communication and by anticipating the most likely behaviors
of others. In comparison, automated vehicles can communicate and collaborate
explicitly to jointly offer and suggest more sophisticated and efficient solutions in an
ongoing traffic situation. One of the challenges of such cooperation lies in developing
a computationally efficient scheme that does not compromise the optimality of the
output solutions.

Reachable sets can be employed to tackle this challenge. The reachable sets of a
group of cooperating vehicles can be computed and negotiated where conflicts in the
position domain arise. This negotiation can be systematically organized such that
each vehicle unambiguously receives its own negotiated reachable set, within which
trajectories can be planned. This prevents exponential complexity of the collaborative
motion planning.

In this chapter, we summarize and combine our previous works on computing
specification-compliant reachable sets for an ego vehicle [13] as well as on nego-
tiating conflicting reachable sets between a group of cooperating vehicles [21]. As
a result, conflicts between specification-compliant reachable sets of vehicles are re-
solved, and each vehicle plans its own specification-compliant trajectories within its
negotiated reachable set, for example, using the planners described in [36, 22].

The remainder of this article is organized as follows: Sect. 2 reviews related
work on specification-compliant motion planning and cooperative motion planning.

Appendix A. Reproduction of Publications

66

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 3

Sect. 3 presents the necessary preliminaries and definitions. The computation of
specification-compliant reachable sets is summarized in Sect. 4 and the negotiation
of reachable sets in Sect. 5. Example results are presented in Sect. 6, and we conclude
in Sect. 7.

2 Related Work

In this section, review related works on specification-compliant motion planning and
cooperative motion planning of vehicles.

2.1 Specification-Compliant Motion Planning

The efforts to obtain a specification-compliant trajectory can be categorized on the
basis of whether compliance with specifications is examined after, during, or before
motion planning.

2.1.1 Considering Compliance After Motion Planning

The most straightforward approach to obtain a specification-compliant trajectory
is to examine the compliance with specifications after the trajectories have been
generated. The process of checking whether an execution of a system satisfies the
expected behaviors is often referred to as runtime verification or monitoring. For
example, article [29] presents a monitor for formally examining the compliance
of automated vehicles with traffic rules (safe distances and overtaking); a monitor
for so-called responsibility-sensitive safety rules [31] is described in [10]. While
monitoring can be performed efficiently, monitors typically only provide a verdict,
i.e., a true or false appraisal, on whether the specifications have been satisfied. If the
trajectory under examination is rejected, no alternative trajectory is returned. This
often necessitates the (re)planning of multiple trajectories in order to locate a valid
solution for more complex specifications.

2.1.2 Considering Compliance During Motion Planning

Works in this category often adopt amechanism that simultaneously handles planning
in both the continuous and discrete state spaces of a system, with the generated
discrete plans guiding the trajectory planning process. For example, a satisfiability
modulo convex programming framework for cyber-physical systems was introduced
in [32] that handles both convex constraints on a continuous model and Boolean
constraints on a discrete model; article [16] puts forth a multilayered synergistic

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

67

4 Edmond Irani Liu and Matthias Althoff

framework for motion planning of robots considering linear temporal logic (LTL);
timed automata are used in [37] to synthesize timed paths for indoor robots that
comply with specifications expressed in metric temporal logic. In these works,
discrete plans are generated in the discrete state space based on abstractions of the
considered systems, and trajectories are planned in the continuous state space by
motion planners, with the discrete plans taken into consideration. In most cases, the
dynamic constraints of the system are not reflected in the discrete plans. Thus, the
drivability of these plans is often not ensured, requiring frequent replanning of both
the discrete plans and the trajectories.

2.1.3 Considering Compliance Before Motion Planning

The final category of works considers the specifications prior to trajectory planning,
e.g., in high-level maneuver planners, fromwhich trajectory planning constraints can
be extracted. Thework in [15] generatesmaneuvers that respect simple traffic rules by
traversing a graph defined in a discretized state space of the ego vehicle; article [8]
embraces a similar concept and produces maneuvers satisfying specifications ex-
pressed in LTL; in [33], so-called driving corridors are extracted from reachable sets
of an ego vehicle that reflect different position relations to other vehicles over time.
Our approach to computing specification-compliant reachable sets [13] falls into
this category. It can handle propositional logic with predicates related to positions,
velocities, accelerations, and certain traffic regulations introduced in [18, 19].

2.2 Cooperative Motion Planning

Survey articles [9, 24, 28] reviewed recent advances in cooperative driving of au-
tomated vehicles with varied focuses on architecture, maneuver planning, and mo-
tion planning use cases. Optimization-based and reservation-based approaches are
common paradigms for cooperative motion planning [9, 28]. In optimization-based
approaches, one or more optimization problems are formulated based on the motion
planning constraints and cost functions of cooperating vehicles. The optimization
problems are solved with a (centralized) optimizer, which corresponds to trajectories
to be followed by the cooperating vehicles. The complexity of the optimization prob-
lem increases dramatically with the number of vehicles considered, which requires
either a high computation power or a limit to the number of vehicles in a group.

Our approach to cooperative motion planning falls into the reservation-based
category and employs auction algorithms for resolving conflicts in reachable sets
of vehicles. Reservation-based methods assign free space to vehicles for trajectory
planning. Earlier works with a focus on intersection management were introduced by
Dresner [4]: Tiles are created from the intersection region, which can be requested by
vehicles approaching the intersection. A centralized intersection manager proceeds
to assign tiles with multiple requests to vehicles, using a first-come-first-served

Appendix A. Reproduction of Publications

68

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 5

protocol, ensuring that no tile is occupied by more than one vehicle at any one
time. Its extensions and variations are presented in [6, 5]. As the first-come-first-
served policy for reservation assignment may be inefficient in situations with higher
traffic density, it was replaced in [27, 3, 35] by auction-based methods. In auction-
based methods, each bidder (cooperating vehicle) bids for offered packages (e.g.,
combinations of tiles representing road areas) in a way that reflects its interests
or utilities. An auction algorithm is then executed to maximize the total revenue
of the packages. Instead of tiles, some works identify possible conflicting points,
regions, or moving space-time corridors and allocate them to vehicles in the event of
a conflict [20, 17, 38, 23]. The corridors correspond to predefined behaviors, such as
following a lane or performing a lane change; vehicles receiving such corridors must
act accordingly. In [25, 11], an efficient and explicit space-time reservation protocol
was devised for cooperative maneuver planning, through which a vehicle broadcasts
requested space envelopes over time and drives within the envelopes once the request
has been accepted by surrounding vehicles of interest.

3 Preliminaries

This section introduces the necessary preliminaries, including the general setup,
coordinate systems, definitions of reachable sets, and propositional logic.

3.1 Setup and Coordinate System

In this work, the considered scenarios are described in the CommonRoad1 [1] format,
which consists of (1) a road network constructed of lanelets [2], whose left and right
bounds are represented by polylines, (2) dynamic and static obstacles, and (3) traffic
rule elements (such as roadmarkings, traffic signs, and traffic lights). Fig. 1 depicts an
exemplary traffic scenario. We denote byVc = {

Vc1 , . . . ,V
c
N

}
the set of cooperative

vehicles Vcn with IDs N = {1, . . . , N} for which trajectories are planned. Each Vcn
is associated with a planning problem with a planning horizon of up to kh ∈ N0,
which includes the initial state of Vcn and a set of goal states. A reference path Γn
is constructed for a planning problem with a given route planner, which is then
used to establish a local curvilinear coordinate system FLn of Vcn as described in [2].
Within FLn , (sn, dn) describes the longitudinal coordinate sn and the lateral coordinate
dn. Adopting this coordinate system facilitates the formulation of maneuvers from
the perspective of Vcn , examples of which include lane-following and preventing
driving backwards. We use LL to denote the set of lanelets in the road network
of a considered scenario. Without loss of generality, we assume obstacles present
in the scenarios to be non-cooperating vehicles, denoted by Vo = {

Vo1 , . . . ,V
o
M

}

1 https://commonroad.in.tum.de/

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

69

6 Edmond Irani Liu and Matthias Althoff

Reference
path

Other
vehicle

Goal
region

Initial
state

FL1

d1

s1

LL = {1, 2, 3, 4}
FL2

d2

s2

FG x

y

Fig. 1: A scenario containing planning problems with two cooperating ego vehicles
Vc1 and Vc2 , and four lanelets with IDs 1–4. The triangles at the beginning of each
lanelet indicate the driving directions

with IDsM = {1, . . . , M}. In addition, we assume that the most likely predictions
of trajectories of other vehicles Vom are given as input. The conflicts between the
reachable sets of vehicles in Vc are detected and resolved in the global Cartesian
coordinate system FG.

3.2 System Dynamics

The dynamics of an ego vehicleVcn is abstracted by a point-massmodelwith the center
of the vehicle as the reference point. Notably, the reachable sets of the point-mass
model over-approximate those of high-fidelity vehicle models; thus, this abstraction
does not exclude possible behaviors ofVcn . This model is representedwith two double
integrators in its longitudinal sn and lateral dn directions. Let �n be a variable of
Vcn , with minimum and maximum values denoted by �n and �n, respectively. The
system dynamics of Vcn is

xn,k+1 = f (xn,k, un,k) =
©«

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

ª®®®¬
xn,k +

©«

1
2∆

2
t 0
∆t 0
0 1

2∆
2
t

0 ∆t

ª®®®¬
un,k, (1)

where k ∈ N0 is a step corresponding to time tk = k∆t , with ∆t ∈ R+ being a prede-
fined time increment. The variable xn,k ∈ Xn,k ⊂ R4 represents the state ofVcn in the
state spaceXn,k , and un,k ∈ Un,k ⊂ R2 represents an input in the input spaceUn,k of
Vcn , each at step k. The states and inputs are modeled as xn,k = (sn,k, Ûsn,k, dn,k, Ûdn,k)T
and un,k = (Üsn,k, Üdn,k)T, respectively. The velocities and accelerations at a position
(sn,k, dn,k) are bounded by

Ûs(Γn) ≤ Ûsn,k ≤ Ûs(Γn), Ûd(Γn) ≤ Ûdn,k ≤ Ûd(Γn), (2a)

Üs(Γn) ≤ Üsn,k ≤ Üs(Γn), Üd(Γn) ≤ Üdn,k ≤ Üd(Γn). (2b)

Appendix A. Reproduction of Publications

70

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 7

The bounds are chosen conservatively to consider the kinematic limitations and
effects of representing the system dynamics using the point-mass model within a
curvilinear coordinate system, see, for example, article [7]. We define an operator
proj^(·) for subsequent computations, which maps the input to its elements ^. An
example is: proj(s, Ûs)(x̃n,k) = (sn,k, Ûsn,k)T for x̃n,k = (sn,k, Ûsn,k, Üsn,k)T. A set X̃n,k can
be projected using the same operator:

proj^(X̃n,k) =
{

proj^(x̃n,k)
���x̃n,k ∈ X̃n,k}.

3.3 Reachable Set

We denote the occupancy ofVcn byQn(xn,k) ⊂ R2 and the occupancies of all vehicles
inVo as well as the regions outside the road surface by On,k ⊂ R2, both within FLn .
The set of forbidden states XF

n,k
of Vcn at k is defined as

XFn,k :=
{
xn,k ∈ Xn,k

���Qn(xn,k) ∩ On,k , ∅
}
.

Let R∗
n,0 = Xn,0 be the initial reachable set of Vcn , with Xn,0 being the initial set

of states. The reachable set R∗
n,k+1 of the next step is defined as the set of states

reachable from the current reachable set R∗
n,k

while avoiding the forbidden states:

R∗n,k+1 :=
{
xn,k+1 ∈ Xn,k+1

���∃xn,k ∈ R∗n,k, ∃un,k ∈ Un,k :

xn,k+1 = f (xn,k, un,k) ∧ xn,k+1 < XFn,k+1

}
.

Efficient computation of R∗
n,k

is generally difficult; hence, we compute its over-
approximation R

n,k
≈ R∗

n,k
, which encloses all trajectories of Vcn . We adopt the

union of so-called base sets R(i)
n,k

, i ∈ N as a set representation for R
n,k

[34]. Each
base set R(i)

n,k
= P̂(i)

s,n,k
× P̂(i)

d,n,k
is chosen to be a Cartesian product of two convex

polytopes that enclose the reachable positions and velocities of Vcn in the (sn, Ûsn) and
(dn, Ûdn) planes, respectively (see Fig. 2a–b). To simplify the notation, we also denote
the collection (set of sets) of R(i)

n,k
by R

n,k
=

{
R(1)
n,k
, . . . ,R(i)

n,k
, . . .

}
. The projection

of R(i)
n,k

onto the position domain yields axis-aligned rectangles D(i)
n,k

(see Fig. 2c),
whose union is referred to as the drivable areaD

n,k
. Similarly, we useD

n,k
to denote

the collection of D(i)
n,k

.
In this study, each base set R(i)

n,k
carries a set of semantic labels L(i)

n,k
, whose

collection is denoted byL
n,k

. The generation ofL(i)
n,k

will be explained in Sect. 4.6.3.
To store the relationships of R(i)

n,k
in terms of reachability and time, we create a

directed and acyclic graphGn, which is referred to as a reachability graph, see Fig. 3.

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

71

8 Edmond Irani Liu and Matthias Althoff

s1 s2

Ûs1

Ûs2

0

(a) P̂(i)
s,n,k

d1 d2

Ûd1

Ûd2

0

(b) P̂(i)
d,n,k

s1 s2

d1

d2

0

(c) D(i)
n,k

Fig. 2: Polytopes and drivable area of a base set R(i)
n,k

(adapted from [13])

R(1)
n,k−1, L

(1)
n,k−1

R(2)
n,k−1, L

(2)
n,k−1

k − 1 k k + 1

R
n,k

R
n,k+1R

n,k−1

R(3)
n,k

, L(3)
n,k

R(2)
n,k

, L(2)
n,k

R(1)
n,k+1, L

(1)
n,k+1

R(2)
n,k+1, L

(2)
n,k+1

R(1)
n,k

, L(1)
n,k

Fig. 3: Reachability graph Gn connecting nodes of different steps. Nodes of the same
color have the same labels (adapted from [13])

Each node in Gn corresponds to one base set with its labels. An edge connecting
R(i)
n,k

and R(j)
n,k+1 indicates that R

(j)
n,k+1 is reachable from R

(i)
n,k

after one step.

3.4 Propositional Logic

We consider specifications expressed in propositional logic [12] for Vcn , denoted
by Fn, which are directly integrated during the computation of the reachable sets
(see Sect. 4.6.4). Let ϕn ∈ Fn be a propositional logic formula, we introduce an
additional syntax GI (ϕn), I = [a, b], 0 ≤ a ≤ b ≤ kh , where I is an integer interval
specifying steps for which ϕn should hold. If I is not specified, we assume it to be
the entire planning horizon [0, kh]. For example, the following specification requires
Vcn to follow Vo1 between steps 0 and 10, and never to be on the right of Vo1 :

Appendix A. Reproduction of Publications

72

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 9

Table 1: Selection of considered predicates inspired by [19] (adapted from [13])

Category Type Predicate

Position VI in_lanelet, on_main_carriageway, on_access_ramp, . . .
VD behind, beside, in_front_of, left_of, aligned_with, right_of, . . .

Velocity VI below_fov_velocity_limit, below_type_velocity_limit, . . .
VD safe_following_velocity_speed_limit, safe_leading_velocity_speed_limit, . . .

Acceleration VD admissible_braking, . . .

General VI change_lanelet, preserve_traffic_flow, standing_still, . . .
VD in_congestion, exists_slow_leading_vehicle, . . .

G[0,10]
(
behind(Vo1) ∧ aligned_with(Vo1)

) ∧G (¬ right_of(Vo1)
)
.

4 Computing Specification-Compliant Reachable Sets

To obtain specification-compliant and negotiated reachable sets forVcn , we (1) seman-
tically label reachable sets considering relevant predicates, (2) constrain reachable
sets to subsets satisfying specifications Fn, and (3) negotiate conflicting reachable
sets with other cooperating vehicles in Vc. This section summarizes our previous
work [13] covering steps 1 and 2; step 3 will be covered in the next section. A
selection of considered predicates is listed in Tab. 1: The evaluation of a vehicle-
dependent (VD) predicate is dependent on other vehicles Vo, whereas that of a
vehicle-independent (VI) predicate is not.

4.1 State Space Partitioning

To expedite the labeling of reachable sets, we partition the state space of Vcn based
on considered position predicates. Velocity predicates are not considered in the
partitioning since they require computationally demanding splitting of the state
space ofVcn with (non)linear curves (see Fig. 5c-d). For efficiency, we instead directly
evaluate them on individual reachable sets (see Sect. 4.6.2). Set operations such as
intersection and difference are required to compute the partitions of the state space.
We model the partitions for Vcn with a set of hyperrectangles Rn,q to avoid gross
approximations while keeping computational complexity at a reasonable level. This
choice is not mandatory; any other set representation that captures the partitions will
also suffice. Rn,q is defined as the Cartesian product of intervals over the position
and velocity domains within FLn :

Rn,q :=
(
[sn,q, sn,q] × [Ûsn,q, Ûsn,q]

)
×

(
[dn,q, dn,q] × [Ûdn,q,

Ûdn,q]
)
, (3)

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

73

10 Edmond Irani Liu and Matthias Althoff

where sn,q and Ûsn,q denote the position and velocity of the q-th hyperrectangle in
the sn direction, respectively. The same applies to dn,q and Ûdn,q in the dn direction.
A regular grid of axis-aligned cells is formed along Γn and the q-th cell in the grid
occupies [sn,q, sn,q] × [dn,q, dn,q] ⊂ R2. The default values of the velocity intervals

[Ûsn,q, Ûsn,q] and [Ûdn,q,
Ûdn,q] are set according to (2a).

The set of considered position predicates as well as its power set are denoted by
Ppos = {σ1, σ2, . . . } and 2Ppos , respectively. We also denote by partn(k;Zn, j) the
set of hyperrectangles of Vcn for which the predicates inZn, j ∈ Zn ⊆ 2Ppos evaluate
to true at step k. Fig. 4 and Fig. 5b illustrate example partitions projected onto the
(sn, dn) and (sn, Ûsn) planes, respectively.

4.2 Position Predicates

For a concise presentation, we present only a few example evaluations position
predicates. Vehicle-independent position predicates do not depend on other vehicles;
examples are:

• in_lanelet(Rn,q; Lid) ⇔ proj(s,d)(Rn,q) ∩ occn(Lid) , �, where Lid ∈ LL de-
notes the lanelet with ID id, and occn(Lid) returns its occupancy within FLn .

• drives_rightmost(Rn,q;XRM) ⇔ proj(s,d)(Rn,q) ∩ XRM , �, where XRM ⊂ R2

denotes the rightmost region of lanelets. Within this region, the distance between
any point to the right bound of a lanelet does not exceed a predefined distance [19].

For the sake of brevity, we omit Rn,q in the arguments of the predicates in the rest of
this work.

Vehicle-dependent position predicates describe position relationships between
an ego vehicle Vcn and non-cooperating vehicles in Vo. Following [19], we de-
fine necessary helper functions to assist the evaluation of predicates. The functions
front(k; n; m) and rear(k; n; m) return the maximum andminimum longitudinal coor-
dinates ofVom within FLn , respectively, each at step k. Along the longitudinal direction,
the mutually exclusive predicates Pposn,m,s =

{{in_front_of(Vom)}, {behind(Vom)},
{beside(Vom)}

}
can be evaluated as follows:

• in_front_of(Vom) ⇔ sn,q − ln/2 > front(k; n; m),
• behind(Vom) ⇔ sn,q + ln/2 < rear(k; n; m),
• beside(Vom) ⇔ ¬ in_front_of(Vom) ∧¬ behind(Vom) ∧ (left_of(Vom) ∨ right_of(Vom)).
We define the mutually exclusive set of predicates Ppos

n,m,d
=

{{left_of(Vom)},
{right_of(Vom)}, {aligned_with(Vom)}

}
similarly along the lateral direction.

Appendix A. Reproduction of Publications

74

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 11

V o2
{behind(V o2), aligned_with(V o2), in_lanelet(L1)}
{behind(V o2), left_of(V o2), in_lanelet(L2)}
{beside(V o2), left_of(V o2), in_lanelet(L2)}
{in_front_of(V o2), aligned_with(V o2), in_lanelet(L1)}
{in_front_of(V o2), left_of(V o2), in_lanelet(L2)}

k = 0

k = 30

Fig. 4: Projection of the partitions of realizable sets of position predicates onto the
position domain. Lanelet IDs are shown with numbered boxes. In this example we
only consider position predicates related to L1, L2, and Vo2 (adapted from [13])

4.3 Realizable Sets of Position Predicates

The partitions of the collectionZn of realizable sets of position predicates of Vcn are
used for splitting the reachable sets (see Sect. 4.6.2). Sets Zn, j ∈ Zn are said to be
realizable for Vcn if ∃k ∈ 0, . . . , kh : partn(k;Zn, j) , �, with kh being the planning
horizon. We refer the readers to [13, Sec. III.C] for the computation of Zn. Fig. 4
shows an example of the partitions of Zn, j projected onto the position domain for
a scenario containing two lanelets and one non-cooperating vehicle. It follows from
our formulation of the predicates that the aforementioned projection is collision-free
with respect to other vehicles.

4.4 Velocity Predicates

We briefly present examples of the evaluation of velocity predicates required for the
subsequent computation of reachable sets. Vehicle-independent velocity predicates
often relate to extremum requirements on velocities. For example, rule R-G3 [19]
specifies maximum velocity limits originating from different sources, which should
be respected. These include velocity limits introduced by the type of lane(let), the
type of vehicle, and the limited field of view of the ego vehicle.

The evaluation of vehicle-dependent velocity predicates depends on other vehicles
Vo. Examples are predicates indicating whether the ego vehicle Vcn is driving at a
safe velocity with respect to a leading or a following vehicle Vom [19, cf. Sec. IV.C].
See [19] for further examples.

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

75

12 Edmond Irani Liu and Matthias Althoff

Algorithm 1 One-Step Computation of Specification-Compliant Reachable Sets
Inputs: Specifications Fn , base sets Rn,k−1, realizable sets of predicates Zn .
Output: Updated reachability graph Gn .
1: RP

n,k
← Propagate(R

n,k−1) . Sect. 4.6.1
2: RS

n,k
← Split(RP

n,k
,Zn) . Sect. 4.6.2

3: L
n,k
← Label(RS

n,k
,Fn) . Sect. 4.6.3

4: CheckCompliance(RS
n,k

,L
n,k

,Fn) . Sect. 4.6.4
5: R

n,k
← CreateNewBaseSets(RS

n,k
) . Sect. 4.6.5

6: for R(i)
n,k
∈ R

n,k
do

7: Gn .AddNode(R(i)
n,k

,L(i)
n,k

)
8: end for

4.5 General Traffic Situation Predicates

General traffic situation predicates may reveal the states of a cooperating or non-
cooperating vehicle. These include whether Vcn or Vom has conducted a lane change
maneuver, whether a slow leading vehicle exists for Vcn , and whether Vcn is stuck in
traffic congestion. See [19] for further examples.

4.6 Computation of Reachable Sets

Alg. 1 details one step of the computation of specification-compliant reachable sets
for an ego vehicle. The reachable sets of subsequent steps are computed analogously.

4.6.1 Forward Propagation

Each base set R(i)
n,k−1 ∈ Rn,k−1 from the previous step is forward-propagated based

on the discrete-time system model (1), resulting in the propagated sets RP,(i)
n,k

(see
Fig. 5a). We perform the forward propagation as described in [34], except that
additional acceleration constraints originating from the specifications can be imposed
(for example, unnecessary braking rule R_G2 in [19]).

4.6.2 Splitting

The propagated sets RP,(i)
n,k

are split into new sets RS,(i)
n,k

with respect to position and
velocity predicates:

Appendix A. Reproduction of Publications

76

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 13

s

Ûs
R(i)
n,k−1

RP,(i)
n,k

0

(a) Propagation
s

Ûs

RS,(2)
n,k

RS,(1)
n,k

partn(k;Zn,1)partn(k;Zn,2)
0

(b) Splitting

s

Ûs1

Ûs2

above _ Ûs1, below _ Ûs2

Ûs

below _ Ûs2

above _ Ûs1
RS,(i)
n,k

0

(c) Splitting with respect to vehicle-
independent velocity predicates above _ Ûs1
and below _ Ûs2

s

Ûsk

Ûs
below _ Ûsk

RS,(i)
n,k

0

(d) Splitting with respect to vehicle-
dependent velocity predicate below _ Ûsk

Fig. 5: Propagation, splitting, and labeling of base sets. We only show the operations
in the s-direction. Labels of polytopes are shown in gray boxes. Notably, in (d), the
two newly split polytopes are slightly over-approximated and convexified due to the
nonlinearity introduced by the velocity predicate (adapted from [13])

1. RP,(i)
n,k

are split such that the new sets only intersect with a single partition (see
Fig. 5b).

2. The split sets are further split, over-approximated, and convexified with respect
to velocity predicates (see Fig. 5c–d).

4.6.3 Semantic Labeling

The semantic labels L(i)
n,k

of reachable sets RS,(i)
n,k

are updated as follows:

1. RS,(i)
n,k

propagated with acceleration-specific specifications include atomic propo-
sitions σ ∈ AP corresponding to acceleration predicates in their set of labels.

2. RS,(i)
n,k

include atomic propositions σ ∈ AP corresponding to the position pred-
icates associated with the partition with which it intersects, velocity predicates,
and traffic situation predicates that hold in RS,(i)

n,k
in their set of labels.

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

77

14 Edmond Irani Liu and Matthias Althoff

4.6.4 Compliance Check

In this step, we iterate through RS,(i)
n,k

and examine the compliance of the labels L(i)
n,k

with the given specifications Fn. We discard RS,(i)
n,k

if ∃ϕn ∈ Fn : L(i)
n,k
6 |= ϕn. If

all sets are discarded, Fn cannot be complied with by any trajectory of the ego
vehicle (recall that our reachable sets are over-approximative). In this case, one can
either recompute the reachable sets with respect to a different set of specifications
or execute a previously computed fail-safe trajectory [26].

4.6.5 Creation of New Base Sets

Finally, the new base sets are created by computing the drivable areasDS,(i)
n,k

of RS,(i)
n,k

,
repartitioning DS,(i)

n,k
, and producing R(i)

n,k
. We refer the reader to [34] for a detailed

explanation of these steps. The reachability graph Gn is updated by adding R(i)
n,k

along L(i)
n,k

as new nodes.

5 Negotiation of Reachable Sets

This section summarizes our previous work on the negotiation of conflicting reach-
able sets R

n,k
among a group of cooperating vehicles [21]. We use the notation

[�n]N1 = [�1, . . . ,�N] to denote a list of elements �n of vehicles Vcn . Alg. 2 details
the steps for resolving conflicts between cooperating vehicles at each step k:

1. Compute specification-compliant reachable sets for each cooperating vehicle.
2. Identify conflicting cells based on reachable sets of cooperating vehicles (see

Sect. 5.1).
3. Determine the optimal allocation of packages of cells among cooperating vehicles

(see Sect. 5.2).
4. Compute negotiated reachable sets for each cooperating vehicle (see Sect. 5.2).

Step 1 is computed as described in Sect. 4; we will now elaborate on steps 2–4.

5.1 Problem Statement

We denote by C = {C0,C1, . . . ,Cĩ, . . . } a grid with cells Cĩ of rectangular shape,
created by tessellation of the position domain within the global Cartesian coordinate
system FG. Each cell is an individual asset representing an area of the road surface
and can be combined into unions of assets, which we refer to as packages Cj̃ . We
specify the mapping celln : 2Xn,k → 2C that returns the cells Cĩ ∈ C occupied by
vehicleVcn due to its set of statesXn,k at step k and its shape. The cooperating vehicles

Appendix A. Reproduction of Publications

78

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 15

Algorithm 2 Computation of Negotiated Reachable Sets
1: function ComputeNegotiatedReachableSet([R

n,0]N1 ,C)
2: [RN

n,0]N1 ← [Rn,0]N1 . Initialization
3: for k = 1 to kh do
4: for n = 1 to N do
5: R

n,k
← ComputeReachableSet(RN

n,k−1) . Sect. 4.6
6: end for
7: CC

k
← IdentifyConflictingCells([R

n,k
]N1 ,C) . Sect. 5.1

8: W∗ ← DetermineOptimalAllocation([R
n,k
]N1 ,CC

k
) . Sect. 5.2

9: for n = 1 to N do
10: RN

n,k
← ComputeNegotiatedReachableSet(R

n,k
,W∗) . Sect. 5.2

11: end for
12: end for
13: return [∪kRNn,k]N1
14: end function

inVc act as bidders and propose bids to packages Cj̃ for which Cj̃ ∩celln(Rn,k
) , �

holds. Let us introduce 2N
>=2 to denote all subsets of the power set of N with a

cardinality greater than one, CC
k
⊆ C denotes the set of conflicting cells requested

by at least two vehicles at step k:

CCk :=
⋃
I∈2N

>=2

⋂
n∈I

celln(Rn,k). (4)

We restrict the packages to those containing at least one conflicting cell, denoted by
CP
k
⊆ 2CCk (see Fig. 6). We assume that every cooperating vehicle Vcn bids its true

value, with bk(Cj̃) being the maximum bid of the package Cj̃ proposed byVc. The
overall revenue is maximized, while no single cell is assigned to multiple bidders:

max
δk (Cj̃)

∑
Cj̃
δk(Cj̃) bk(Cj̃), (5)

where δk(Cj̃) = 1 if package Cj̃ is assigned to the bidder with the highest bid at step
k. Problem (5) is known as the winner determination problem, and its solution is
NP-hard [30]. Furthermore, accepting every package Cj̃ demands that each bidder
Vcn bids for 2 |CCk | − 1 packages at step k, which becomes more computationally
demanding as |CC

k
| grows. Using a hierarchical tree structure for the packages allows

us to attain computational tractability and ensures that the optimal allocation of
packages will be found in the time O(|CC

k
|2) [30].

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

79

16 Edmond Irani Liu and Matthias Althoff

Fig. 6 Visualization of the
road grid C, the set of con-
flicting cells CC

k
, the set of

packages CP
k
, and the indi-

vidual packages Cj̃ (adapted
from [21])

Cĩ ∈ C

V c1

V c2

CC
k
= {C0,C1,C2,C3,C4,

CP
k
= {C0, C1 }

C5,C6,C7,C8 }

C0 = {C3,C4,C6,C7 }
C1 = {C0,C1,C2,C5,C8 }

C0

C1

C0 C1 C2
C3 C4 C5
C6 C7 C8

5.2 Conflict Resolution

We employ an auction-basedmechanism to resolve conflicts with occupied road cells
between cooperating vehicles. At every step k, the conflicts are resolved as follows:

1. Determine packages Cj̃ based on CC
k
and their position within the hierarchical

tree (see Sect. 5.2.1).
2. Evaluate individual bids of packages Cj̃ and determine the maximum bid bk(Cj̃)

(see Sect. 5.2.2).
3. Determine the optimal allocationW∗ of packages to cooperating vehicles (see

Sect. 5.2.3).

5.2.1 Hierarchical Tree of Packages

All conflicting cells CC
k
at k are included in the root node of a hierarchical tree T .

At each level of the tree, the cells in a parent node are decomposed into disjoint sets
of cells, each of which is a package associated with a child node (see Fig. 7). To
decompose the cells into more granular packages, we consider the following levels:

1. Connected components: Connected regions on the road surface prevents ego
vehicles having disjointed drivable areas, which would complicate subsequent
motion planning. We aggregate connected cells into packages.

2. Road network: Vehicles have to obey the traffic rules imposed by the road network;
therefore, we encourage the creation of packages based on lanelets. A cell is
assigned to the lanelet with which it has the largest intersecting area.

3. Longitudinal position coverage: The packages of the parent nodes are decomposed
in the longitudinal direction such that the longitudinal coverage of each new
package does not exceed a predefined threshold.

4. Lateral position coverage: The packages of the parent nodes are decomposed in
the lateral direction such that the lateral coverage of each new package does not
exceed a predefined threshold.

5. Singletons: The packages comprise only a single cell.

Appendix A. Reproduction of Publications

80

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 17

C0
C1
C2
C3

C4
C5
C6
C7
C8

C9
C10

Vc1

Vc2

(a) V c1 intends to perform a lane change
maneuver; both V c1 and V c2 request cells
{C0, . . . ,C10 }

{C0, . . . , C10}

{C0, . . . , C8} {C9, C10}

{C0, . . . , C7} C8 C9 C10

{C0, . . . , C3} {C4, . . . , C7}

{C0, C1} {C2, C3} {C4, C5} {C6, C7}

C0 C1 C2 C3 C4 C5 C6 C7

3) Road network
1) Root

5) Lateral coverage
4) Longitudinal coverage
2) Connected components

6) Singletons

(b) A possible hierarchical tree constructed
using the decomposition strategy outlined in
Sect. 5.2.1

Fig. 7: Example grouping of conflicting cells (adapted from [21])

5.2.2 Bids on Packages

We adopt a common utility function for cooperating vehicles to avoid a situation
in which a vehicle could continuously outbid others due to differences in the scales
and weights used to calculate the bids on packages. We use the following sets as the
basis for computing the utility of Vcn for Cj̃ to determine bn,k(Cj̃):

1. the conflict-free reachable set: RCF
n,k

:=
{
xn,k ∈ Rn,k

�� celln({xn,k}) ∩ CCk = �
}
.

2. the conflicting reachable set depending on package Cj̃ that would be lost if Cj̃
was not assigned to Vcn : RCPn,k(Cj̃) :=

{
xn,k ∈ Rn,k

�� celln({xn,k}) ∩ Cj̃ , �
}
.

3. the assigned reachable set that Vcn possesses given that Cj̃ is assigned to Vcn :
RAS
n,k
(Cj̃) := RCF

n,k
∪ RCP

n,k
(Cj̃).

For computational reasons, the sets RCF
n,k

,RCP
n,k
(Cj̃), and RASn,k(Cj̃) are approximated

by the union of base sets (see Sect. 3.3) and are denoted by ∪iRCF,(i)n,k
, ∪iRCP,(i)n,k

,
and ∪iRAS,(i)n,k

, respectively. To take the objectives of the vehicles into account while
preventing the complete loss of the reachable set of a vehicle (so that a trajectory
can still be found), the utilities of vehicles are computed differently for regular mode
and survival mode:

bn,k(Cj̃) :=

{
UR
n,k
(Cj̃), area(RCF

n,k
) > A, (regular mode)

US
n,k
(Cj̃), otherwise, (survival mode)

where area(·) returns the size of the drivable area of the input (see Sect. 3.3) and A is
a threshold. We now proceed with explaining the regular mode and survival mode.

1) Regular Mode: The utility of RAS
n,k

(or RCF
n,k

, as the case may be) is defined as
the sum of the utilities of RAS,(i)

n,k
(or RCF,(i)

n,k
), weighted by their areas. The function

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

81

18 Edmond Irani Liu and Matthias Althoff

UR
n,k
(Cj̃) reflects the utility of Cj̃ for Vcn by computing the ratio of the utility of RAS

n,k

to that of RCF
n,k

:

URn,k(Cj̃) =
∑

i

(
upos(RAS,(i)

n,k
) + uref(RAS,(i)

n,k
)
)
× area

(RAS,(i)
n,k

)
∑

i

(
upos(RCF,(i)

n,k
) + uref(RCF,(i)

n,k
)
)
× area

(RCF,(i)
n,k

) ,

with partial utility functions upos and uref. To encourage advances in traffic flow, we
reward progression in the longitudinal direction with

upos(�n,k) = y

(
max(proj(s)(�n,k)) −max(proj(s)(RNn,k−1))

1
2 Üsn,k ∆2

t + Ûsn,k ∆t

)
,

where Üsn,k and Ûsn,k are determined according to (2a), and y is a generalized logistic
function that maps the utility to (0, 1); in addition to [21], we also consider the
deviation of Vcn from its reference path:

uref(�n,k) = e−w d′, d ′ = min({|d ′′ | ��d ′′ ∈ proj(d)(�n,k)
}),

where w ∈ R+ is a tunable weight that dictates how fast uref(�n,k) approaches 0 as
the deviation increases.

2) Survival Mode: Two countermeasures are introduced to prevent reachable sets
of Vcn from vanishing: (1) if any Vcn is in survival mode, no other vehicle in regular
mode can bid on the package Cj̃ ; (2) the utility function is switched to

USn,k(Cj̃) =
area

(RCP
n,k
(Cj̃)

)
area

(R
n,k

) ,

which reflects how close the reachable set of Vcn is to vanishing given that Cj̃ is not
assigned to Vcn .

5.2.3 Optimal Allocation of Packages

The algorithm for finding the optimal allocation W∗ of packages Cj̃ is based
on [30]. In each iteration, we retrieve the deepest node Ndeep in the hierarchi-
cal tree T (see Sect. 5.2.1), its parent node Nparent, and the set of child nodes
Nchild =

{
. . . , Nchildq̃ , . . .

}
of Nparent. Next, we compare the summed maximum

bids (revenue) of all child nodes rev(Nchild) :=
∑

q̃ bk(Nchildq̃) with the maximum
bid of the parent node bk(Nparent):
• If bk(Nparent) > rev(Nchild), Nchild is excluded fromW∗.
• If bk(Nparent) ≤ rev(Nchild), Nparent is excluded fromW∗.

Appendix A. Reproduction of Publications

82

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 19

Following this comparison,Nchild is removed from the tree. The process is repeated
until Nparent becomes the root node. After obtaining W∗, each ego vehicle Vcn
proceeds to determine its negotiated reachable sets:

RNn,k :=
{
xn,k ∈ Rn,k

�� celln({xn,k}) ∩ CUAn,k = �
}
,

where CUA
n,k
⊆ CC

k
denotes the set of unassigned cells of Vcn based onW∗.

6 Evaluation

This section provides example results for specification-compliant reachable sets for
a single ego vehicle and its extension to cooperative vehicles. The implementation
is based on the CommonRoad-Reach toolbox [14] for computing the reachable sets
of vehicles.

6.1 Scenario I: Precise Overtaking

This scenario depicts a situation in which the vehicle Vc1 should overtake a leading
vehicle Vo1 in the presence of another vehicle Vo2 . Let the following specification be
issued by a high-level maneuver planner of Vc1 :

G[0,15]
(
behind(Vo1) ∧ aligned_with(Vo1)

) ∧
G[16,38]

(
in_lanelet(L2) ∨ in_lanelet(L4)

) ∧
G[39,45]

(
in_front_of(Vo1) ∧ behind(Vo2) ∧ in_lanelet(L3)

)
.

The specification-compliant reachable sets are computed as described in Sect. 4.
The non-empty result implies that it is possible to find a trajectory that meets the
specifications. Fig. 8 visualizes the drivable areas of Vc1 along with a trajectory
planned within the reachable sets using the motion planner described in [22]. For a
more detailed evaluation of computing specification-compliant reachable sets for a
single ego vehicle, we refer the reader to [13].

6.2 Scenario II: Highway

In this scenario, we negotiate the reachable sets of four cooperating vehicles driving
on a highway. Fig. 9 shows the computation results at different steps. As can be seen,
our method can allocate road areas to cooperating vehicles even in such complex
traffic situations with many non-cooperating traffic participants. For a more detailed

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

83

20 Edmond Irani Liu and Matthias Althoff

Initial statek = 15

k = 30

k = 45

Drivable area

V o2V o1

(a)
Initial statek = 15

k = 30

k = 45

Ego vehicle

V o2V o1 Planned trajectory

(b)

Fig. 8: Overtaking scenario. (a) Drivable area at different steps. (b) A trajectory
planned within the reachable set (adapted from [13])

evaluation of negotiating reachable sets among a group of cooperating vehicles, we
refer the reader to [21].

6.3 Scenario III: Roundabout

This scenario illustrates a situation in which two vehiclesVc1 andVc2 should cooperate
to go around a roundabout.We show the computation results under different settings:
(1) no specification is considered; (2) Vc1 yields to Vc2 ; (3) Vc2 yields to Vc1 . The latter
two settings are relevant when a yield traffic sign is present at the junction and
specifies which vehicle has to yield to other vehicles entering with a higher passing
priority. The specification can be expressed as follows:

G(exists_yield_sign∧ exists_other_entering_vehicle⇒ brake_to_stop),

which can be regarded as a simplified version of the intersection rules described
in [18] but without temporal logic connectives. Fig. 10 illustrates the computation
results under these settings. In Fig. 10b, Vc2 can either accelerate and enter the

Appendix A. Reproduction of Publications

84

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 21

Initial state ofV c1

Initial state ofV c3

Initial state ofV c4

Initial state ofV c2

k = 0

(a)
Drivable area ofV c1

Drivable area ofV c4

Drivable area ofV c2
Drivable area ofV c3

k = 10

(b)
k = 20

(c)
k = 30

(d)

Fig. 9: Highway scenario. Subfigures b–d show the drivable areas of the negotiated
reachable sets of vehicles at different steps

roundabout ahead of Vc1 or decelerate to enable Vc1 to enter first. In Fig. 10c–d, the
yielding vehicles have to brake in order to stop and yield to the other entering vehicle.

7 Conclusions

In this chapter, we summarized our previous works on computing specification-
compliant reachable sets for an ego vehicle and negotiating conflicting reachable sets
between a group of cooperating vehicles. The specification-compliant and negotiated
reachable set is used to guide subsequent motion planners to find specification-

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

85

22 Edmond Irani Liu and Matthias Althoff

Initial state ofV c1 Initial state ofV c2

k = 0

(a) Initial states

Drivable area ofV c1

k = 30

Drivable area ofV c2

(b) No specification considered
k = 30

(c) VehicleV c2 yields

k = 30

(d) VehicleV c1 yields

Fig. 10: Roundabout scenario. Vc2 intends to reach the first exit, and Vc1 intends
to reach the second exit. Subfigures b–d show the drivable areas of the negotiated
reachable sets of vehicles at step k = 30

compliant trajectories. As a result, the cooperative vehicles can consider traffic rules
and handcrafted rules expressed in propositional logic that involve position, velocity,
acceleration, and general traffic situation predicates. A limitation of the method is
that it does not yet handle specifications formulated in temporal logic, which reflects
temporal requirements on vehicles, both in the computation and negotiation of the
reachable sets. This will be a subject of future research.

Acknowledgements This work was funded by the Deutsche Forschungsgemeinschaft (German
Research Foundation) within the Priority Program SPP 1835 Cooperative Interacting Automobiles
under grant No. AL 1185/4-2, Huawei-TUM collaboration project Research on Key Technologies
of Safety Assurance for Autonomous Vehicles, and the Central Innovation Program of the Ger-
man Federal Government under grant No. KK5116401KG0. The authors appreciate the fruitful
collaborations with the project partners.

Appendix A. Reproduction of Publications

86

Specification-Compliant Motion Planning of Vehicles Using Reachable Sets 23

References

1. Althoff, M., Koschi, M., Manzinger, S.: CommonRoad: composable benchmarks for motion
planning on roads. In: Proc. of the IEEE Intell. Veh. Symp., pp. 719–726 (2017)

2. Bender, P., Ziegler, J., Stiller, C.: Lanelets: Efficientmap representation for autonomous driving.
In: Proc. of the IEEE Intell. Veh. Symp., pp. 420–425 (2014)

3. Carlino, D., Boyles, S.D., Stone, P.: Auction-based autonomous intersection management. In:
Proc. of the IEEE Int. Conf. Intell. Transp. Syst., pp. 529–534 (2013)

4. Dresner, K., Stone, P.: Multiagent trafficmanagement: A reservation-based intersection control
mechanism. In: Proc. of the Int. Joint Conf. Auton. Agents and Multiagent Syst., pp. 530–537
(2004)

5. Dresner, K., Stone, P.: Turning the corner: improved intersection control for autonomous
vehicles. In: Proc. of the IEEE Intell. Veh. Symp., pp. 423–428 (2005)

6. Dresner, K., Stone, P.: Human-usable and emergency vehicle-aware control policies for au-
tonomous intersection management. In: Workshop on Agents in Traffic and Transp., pp. 17–25
(2006)

7. Eilbrecht, J., Stursberg, O.: Challenges of trajectory planning with integrator models on curved
roads. In: Proc. of the IFAC World Congr., pp. 15588–15595 (2020)

8. Esterle, K., Aravantinos, V., Knoll, A.: From specifications to behavior: maneuver verification
in a semantic state space. In: Proc. of the IEEE Intell. Veh. Symp., pp. 2140–2147 (2019)

9. Häfner, B., Bajpai, V., Ott, J., Schmitt, G.A.: A survey on cooperative architectures and
maneuvers for connected and automated vehicles. IEEE Commun. Surv. Tutorials 24(1),
380–403 (2021)

10. Hekmatnejad, M., Yaghoubi, S., Dokhanchi, A., Amor, H.B., Shrivastava, A., Karam, L.,
Fainekos, G.: Encoding and monitoring responsibility sensitive safety rules for automated
vehicles in signal temporal logic. In: Proc. of the ACM/IEEE Int. Conf. Formal Method.
Model. Syst. Des., pp. 1–11 (2019)

11. Heß, D., Lattarulo, R., Pérez, J., Schindler, J., Hesse, T., Köster, F.: Fast maneuver planning
for cooperative automated vehicles. In: Proc. of the IEEE Int. Conf. Intell. Transp. Syst., pp.
1625–1632 (2018)

12. Huth, M., Ryan, M.: Logic in computer science: Modelling and reasoning about systems.
Cambridge university press (2004)

13. Irani Liu, E., Althoff, M.: Computing specification-compliant reachable sets for motion plan-
ning of automated vehicles. In: Proc. of the IEEE Intell. Veh. Symp., pp. 1037–1044 (2021)

14. Irani Liu, E., Würsching, G., Moritz, K., Althoff, M.: CommonRoad-Reach: A toolbox for
reachability analysis of automated vehicles. In: Proc. of the IEEE Int. Conf. Intell. Transp.
Syst., pp. 1–8 (2022)

15. Kohlhaas, R., Bittner, T., Schamm, T., Zöllner, J.M.: Semantic state space for high-level
maneuver planning in structured traffic scenes. In: Proc. of the IEEE Int. Conf. Intell. Transp.
Syst., pp. 1060–1065 (2014)

16. Lahijanian, M., Maly, M.R., Fried, D., Kavraki, L.E., Kress-Gazit, H., Vardi, M.Y.: Iterative
temporal planning in uncertain environments with partial satisfaction guarantees. IEEE Trans.
Rob. 32(3), 583–599 (2016)

17. Levin, M.W., Fritz, H., Boyles, S.D.: On optimizing reservation-based intersection controls.
IEEE Trans. Intell. Transp. Syst. 18(3), 505–515 (2017)

18. Maierhofer, S., Moosbrugger, P., Althoff, M.: Formalization of intersection traffic rules in
temporal logic. In: Proc. of the IEEE Intell. Veh. Symp., pp. 1135–1144 (2022)

19. Maierhofer, S., Rettinger, A.K., Mayer, E.C., Althoff, M.: Formalization of interstate traffic
rules in temporal logic. In: Proc. of the IEEE Intell. Veh. Symp., pp. 752–759 (2020)

20. Manzinger, S., Althoff, M.: Negotiation of drivable areas of cooperative vehicles for conflict
resolution. In: Proc. of the IEEE Int. Conf. Intell. Transp. Syst., pp. 1–8 (2018)

21. Manzinger, S., Althoff, M.: Tactical decision making for cooperative vehicles using reachable
sets. In: Proc. of the IEEE Int. Conf. Intell. Transp. Syst., pp. 444–451 (2018)

A.3. Specification-Compliant Motion Planning of Cooperative Vehicles (Springer2023)

87

24 Edmond Irani Liu and Matthias Althoff

22. Manzinger, S., Pek, C., Althoff, M.: Using reachable sets for trajectory planning of automated
vehicles. IEEE Trans. Intell. Veh. 6(2), 232–248 (2020)

23. Marinescu, D., Čurn, J., Bouroche, M., Cahill, V.: On-ramp traffic merging using cooperative
intelligent vehicles: A slot-based approach. In: Proc. of the IEEE Int. Conf. Intell. Transp.
Syst., pp. 900–906 (2012)

24. Montanaro, U., Dixit, S., Fallah, S., Dianati, M., Stevens, A., Oxtoby, D., Mouzakitis, A.:
Towards connected autonomous driving: review of use-cases. Veh. Syst. Dyn. 57(6), 779–814
(2019)

25. Nichting, M., Heß, D., Schindler, J., Hesse, T., Köster, F.: Space time reservation procedure
(STRP) for V2X-based maneuver coordination of cooperative automated vehicles in diverse
conflict scenarios. In: Proc. of the IEEE Intell. Veh. Symp., pp. 502–509 (2020)

26. Pek, C., Althoff, M.: Fail-safe motion planning for online verification of autonomous vehicles
using convex optimization. IEEE Trans. Rob. 37(3), 798–814 (2020)

27. Rewald, H., Stursberg, O.: Cooperation of autonomous vehicles using a hierarchy of auction-
based and model-predictive control. In: Proc. of the IEEE Intell. Veh. Symp., pp. 1078–1084
(2016)

28. Rios-Torres, J., Malikopoulos, A.A.: A survey on the coordination of connected and automated
vehicles at intersections and merging at highway on-ramps. IEEE Trans. Intell. Transp. Syst.
18(5), 1066–1077 (2017)

29. Rizaldi, A., Keinholz, J., Huber, M., Feldle, J., Immler, F., Althoff, M., Hilgendorf, E., Nipkow,
T.: Formalising and monitoring traffic rules for autonomous vehicles in Isabelle/HOL. In: Int.
Conf. Integr. Formal Methods, pp. 50–66 (2017)

30. Rothkopf, M.H., Pekeč, A., Harstad, R.M.: Computationally manageable combinational auc-
tions. Manage. Sci. 44(8), 1131–1147 (1998)

31. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scalable self-
driving cars. arXiv preprint:1708.06374 (2017)

32. Shoukry, Y., Nuzzo, P., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pappas, G.J., Tabuada, P.:
SMC: satisfiability modulo convex programming. Proc. of IEEE 106(9), 1655–1679 (2018)

33. Söntges, S., Althoff, M.: Computing possible driving corridors for automated vehicles. In:
Proc. of the IEEE Intell. Veh. Symp., pp. 160–166 (2017)

34. Söntges, S., Althoff, M.: Computing the drivable area of autonomous road vehicles in dynamic
road scenes. IEEE Trans. Intell. Transp. Syst. 19(6), 1855–1866 (2018)

35. Vasirani, M., Ossowski, S.: A market-inspired approach for intersection management in urban
road traffic networks. J. Artif. Intell. Res. 43, 621–659 (2012)

36. Würsching, G., Althoff, M.: Sampling-based optimal trajectory generation for autonomous
vehicles using reachable sets. In: Proc. of the IEEE Int. Conf. Intell. Transp. Syst., pp. 828–
835 (2021)

37. Zhou, Y., Maity, D., Baras, J.S.: Timed automata approach for motion planning using metric
interval temporal logic. In: Proc. of the Eur. Control Conf., pp. 690–695 (2016)

38. Zhu, F., Ukkusuri, S.V.: A linear programming formulation for autonomous intersection control
within a dynamic traffic assignment and connected vehicle environment. Transp. Res. Part C:
Emerg. Technol. 55, 363–378 (2015)

Appendix A. Reproduction of Publications

88

A.4. Provably-Safe Cooperative Driving via Invariably Safe Sets (IV2020)

A.4 Provably-Safe Cooperative Driving via Invariably Safe
Sets [4]

Summary Automated vehicles are expected to offer enhanced safety compared to hu-
man drivers, especially in safe-critical situations. This work addresses the problem of
provably-safe motion planning for a group of cooperative vehicles operating in mixed
traffic scenarios where human and automated vehicles share the road. We propose a
novel motion planning approach that ensures the safety of multiple vehicles for an infi-
nite time horizon even under critical situations.

Our approach is founded on the reachability analysis of automated vehicles and the
concept of so-called invariably safe sets (ISSs): An ISS of a vehicle represents a set of
states of the vehicle that allows it to remain safe for an infinite time horizon, regardless
of the future behaviors of other traffic participants captured within a set-based pre-
diction. We compute the so-called safe maneuver corridors of a vehicle from its ISSs,
each representing a space-time envelope corresponding to either a safe braking or a safe
evasive maneuver. Through negotiating the safe maneuver corridors of the cooperating
vehicles, potential conflicts between their ISSs are efficiently and effectively resolved.
Consequently, each vehicle receives its negotiated ISS, which serves as its target set for
motion planning. The proposed method (1) can be integrated with arbitrary motion
planners that accept position and velocity constraints for the generation of low-level tra-
jectories, (2) ensures that all trajectories planned within the ISSs of the vehicles are safe
for an infinite time horizon, and (3) is computationally efficient and real-time capable.

The benefits and applicability of the approach are demonstrated with a highway
scenario, a roundabout scenario, and a safety-critical scenario, all from the Common-
Road benchmark suite. We show that our approach ensures the overall safety of the
cooperating vehicles while not overly restricting their set of possible trajectories.

Contributions of E. I. L. E. I. L. developed the idea of the research (together with C. P.
and M. A.); E. I. L. designed, conducted, and evaluated the experiments (together with
C. P.); E. I. L. wrote the article (together with C. P. and M. A.).

Conference article The accepted version of the article is reprinted. The final version of
record is available at https://doi.org/10.1109/IV47402.2020.9304581.

Copyright notice © 2020 IEEE. Reprinted, with permission, from Edmond Irani Liu,
Christian Pek, and Matthias Althoff, Provably-Safe Cooperative Driving via Invariably
Safe Sets, in Proceedings of the IEEE Intelligent Vehicles Symposium, 2020.

89

https://doi.org/10.1109/IV47402.2020.9304581

Provably-safe Cooperative Driving via Invariably Safe Sets

Edmond Irani Liu, Christian Pek, and Matthias Althoff

Abstract— We address the problem of provably-safe coopera-
tive driving for a group of vehicles that operate in mixed traffic
scenarios, where both autonomous and human-driven vehicles
are present. Our method is based on Invariably Safe Sets (ISSs),
which are sets of states that let each of the cooperative vehicles
remain safe for an infinite time horizon. The potential conflicts
between the ISSs of a group of cooperative vehicles are resolved
by examining and negotiating their Safe Maneuver Corridors.
As a result, each vehicle obtains its negotiated ISS, which
is used as target sets for motion planning. We demonstrate
the applicability and benefits of our method on various traffic
scenarios from the CommonRoad benchmark suite.

I. INTRODUCTION

Cooperative motion planning of autonomous vehicles of-
fers a great potential to maximize road safety and passenger
comfort. As cooperative planners generate trajectories for
multiple vehicles, they can more easily find feasible and bet-
ter solutions for the group, while considering the individual
goals of each vehicle. Cooperative planning is particularly
challenging in mixed traffic since all motions need to be
collision-free with respect to the unknown future motion of
other non-cooperative traffic participants.

Invariably Safe Sets (ISSs) [1] are sets of states which
ensure that autonomous vehicles can remain safe for an
infinite time horizon. If the ISS of a vehicle is used as its
target set for motion planning, one can always find motions
that do not cause collisions for an infinite time horizon. The
application of ISSs to cooperative planning is an auspicious
method to provide strict safety guarantees; however, there is
no existing method for negotiating ISSs between cooperative
vehicles.

A. Related Work

We review existing work on cooperative motion planning
and safety verification techniques.

a) Cooperative planning: Cooperative planning meth-
ods that are most relevant to our work fall into the
reservation-based category [2]. Reservation-based methods
ensure that each cooperative vehicle reserves free-space in
the environment to plan trajectories. For instance, an intersec-
tion manager is presented in [3], [4], which represents lanes
as a set of disjunct tiles. These tiles are allocated to vehicles
by a first-come-first-serve protocol, and no tile is allocated
to more than one vehicle at a time. The reservation-based
method was extended in [5] for better performance in mixed
traffic. Since first-come-first-serve allocation protocols may

All authors are with the Department of Informatics, Technical University
of Munich, 85748 Garching, Germany.
edmond.irani@tum.de, christian.pek@tum.de,

althoff@tum.de

be inefficient in traffic scenarios with multiple vehicles, the
allocation process has also been carried out using auctions
[6]–[9], in which vehicles bid for certain tiles. This bidding
process lets one to distribute tiles for maximized usage of
the road. However, modeling the environment through tiles
often emanates to a large overhead, since usually, only a
small percentage of the tiles raise conflicts. Some methods
identify possible conflicting points or regions, and allocate
these to vehicles if any conflict is detected [10]–[13].

Instead of tiles, some works allocate moving space-time
corridors with a predefined behavior, e.g., lane following or
lane changing; vehicles that receive these corridors must
adopt their behaviors accordingly [14], [15]. As a result,
vehicles plan different maneuvers depending on possible
future conflicts. In [16], [17], the authors devised an efficient
and explicit space-time reservation protocol for cooperative
maneuver planning, with which the vehicles broadcast re-
quests on demand.

Despite the mentioned promising results, they cannot en-
sure safety in arbitrary traffic situations. Yet, this requirement
is vital to enable cooperative driving with a high degree of
autonomy.

b) Formal verification: Logical reasoning is a means to
verify whether a given trajectory fulfills certain safety prop-
erties, which are often specified using higher-order logic. For
instance, the safety of lane change maneuvers of autonomous
vehicles is verified in [18], [19]. Moreover, safely following
a preceding vehicle is verified in [20]. Although logical
reasoning methods can ensure properties such as safety, the
specified logical formulas are often complicated and user-
defined. Also, they usually have to be adjusted as new traffic
situations arise.

Reachability analysis [21] can be used to verify the safety
of trajectories in arbitrary traffic situations. A reachable set is
a set of states that a traffic participant can reach over time by
starting from an initial set of states and considering all pos-
sible control inputs. Planned trajectories of the autonomous
vehicle are safe if they do not intersect with predicted unsafe
states [22]–[24]. Even though the reachability analysis lets
one to consider the set of all possible trajectories of other
traffic participants [25] for collision detection, no alternative
safe trajectory is returned if a trajectory under examination
is regarded as unsafe.

Sets of safe states can be used to ensure that trajecto-
ries planned within them remain safe beyond the planning
horizon. For instance, trajectories are not allowed to contain
inevitable collision states [26], [27], which are states in
which the vehicles will eventually collide. In contrast to
inevitable collision states, a collision-free trajectory exists

Appendix A. Reproduction of Publications

90

for states in control invariant sets [28], [29].

B. Contributions

In this work, we propose the first cooperative planning
method for autonomous vehicles that incorporates ISSs. In
particular, our method

1) provides a mechanism to distribute ISSs to a group of
cooperative vehicles;

2) can integrate arbitrary planning algorithms to generate
individual trajectories;

3) ensures that all trajectories planned within the ISSs are
safe for an infinite time horizon; and

4) is computationally efficient and works in mixed traffic
situations.

The rest of this work is organized as follows: In Sec. II,
we introduce the necessary preliminaries. Subsequently, we
present our solution for cooperative motion planning of
autonomous vehicles using ISSs in Sec. III. Following that,
we demonstrate the benefits of our method in Sec. IV with
exemplary scenarios from the CommonRoad1 benchmark
suite [30]. Finally, we draw conclusions in Sec. V.

II. PRELIMINARIES

In this section, we introduce our system, reachable sets,
and invariably safe sets.

A. System Description

We represent the set of considered road lanes as L :=
{L1, L2, . . . , LM}, where each lane Lm possesses its curvi-
linear coordinate system that takes the centerline as the
reference path. Note that we perform all computations in
this work in these coordinate systems. The adoption of such
a coordinate system expedites the formulation of maneuvers
from the ego view of the vehicles, e.g., lane-following,
stopping at an intersection, and preventing driving backward.
Let Vn be the n-th vehicle in a cooperative group, V :=
{V1, V2, . . . , VN}, where n ∈ N := {1, 2, . . . , N}. We use
�n to denote a variable of Vn, and �m a computation
performed in Lm. Also, we introduce the notations � and �
to specify the minimal and the maximal possible value of a
variable. Furthermore, the notation [�n]N1 = [�1, . . . ,�N]
compactly represents a list of variables �n of vehicles in V .
The system dynamics of Vn is

ẋn(t) = fn(xn(t), un(t)), (1)

where xn(t) ∈ Xn is a state in configuration space, un(t) ∈
Un is an input in input space, and t is the time. Given
an initial state xn(t0) at the initial time t0, and an input
trajectory un([t0, t]), the solution to (1) at time t is denoted
as χn(t;xn(t0), un([t0, t])). The state of vehicle Vn, in lane
Lm, is modeled as xn(t) = (sn, dn, vn) ∈ R3, where sn, dn,
and vn are the longitudinal position, lateral position, and the
velocity of Vn, respectively. Finally, the occupancies of a set
of static and dynamic obstacles E(t) at time t are represented
by OE(t) ⊂ R2.

1https://commonroad.in.tum.de/

B. Reachable Sets

Definition 1 (Reachable Set [31]):
The reachable set R of a system is defined as the set of all
states that can be reached at a given time t, starting from
an initial set of states X 0

n ⊆ Xn.

During the propagation of the reachable set of vehicle Vn,
we remove the set of states whose occupancy is overlapping
with OE(t). Let X CF

n (t) = Xn \ OE(t) be the maximal set
of states which are collision-free at time t, the collision-free
reachable set at time t starting from X 0

n is

Rn(X 0
n , t) :=

{
χn(t;xn(t0), un([t0, t]))

∣∣∣xn(t0) ∈ X 0
n ,

∀τ ∈ [t0, t] : un(τ) ∈ Un,
χn(τ ;xn(t0), un([t0, τ])) ∈ X CF

n (τ)
}
.

Definition 2 (Drivable Area):
Given that the operator proj(·) returns the positions (s, d)
of a given state xn(t), the drivable area Dn(t) of vehicle Vn
at time t is defined as the projection of Rn(X 0

n , t), thus:

Dn(t) := proj(Rn(X 0
n , t))

=
{

proj(xn(t))
∣∣∣xn(t) ∈ Rn(X 0

n , t)
}
.

The occupancies OE(t) of obstacles E ∈ E(t) required
for the computation of reachable sets and ISSs are predicted
with the help of SPOT [25], which is a set-based occupancy
prediction tool that captures all possible future movements
of other traffic participants.

C. Invariably Safe Sets

Just being in the collision-free states X CF
n (t) does not

ensure the safety of the vehicle. Consider the case that
a vehicle is driving with a high velocity towards a static
obstacle in a near distance. Although it is collision-free at
the current time t, it may eventually collide with the obstacle
at time t + tε, tε > 0. To formally ensure its safety, we,
therefore, require the vehicle to be in an invariably safe state
[1]. An invariably safe state is defined recursively: a state is
deemed invariably safe if a collision-free trajectory ending
at another invariably safe state exists.

Definition 3 (Invariably Safe Sets):
The invariably safe set Sn(t) of Vn at time t is a set of
invariably safe states that allows Vn to be safe for an infinite
time horizon, and is defined as:

Sn(t) :=
{
xn(t) ∈ X CF

n (t)
∣∣∣∀τ > t,∃un([t, τ]) :

χn(τ ;xn(t), un([t, τ])) ∈ X CF
n (τ)

}
.

In most cases, determining the maximal ISS of Vn is a
computationally intensive task. Nonetheless, its tight under-
approximation can be efficiently derived using safe brak-
ing distances [32] and safe evasive distances [33]. These
distances ensure the safety of the ego vehicle even if the
preceding obstacles and the obstacles in the adjacent lanes
brake or accelerate with their maximal capability.

A.4. Provably-Safe Cooperative Driving via Invariably Safe Sets (IV2020)

91

vehicle 1 conflicting corridor

vehicle 2 safe maneuver corridor

traffic participants

(a)

(b)

Fig. 1: Overview of our method. (a) Safe maneuver corridors are derived
based on individual ISS, and the conflicts between them are examined. (b)
Possible allocation plans to resolve the conflict, and exemplary trajectories
of vehicles from the set of their permissible trajectories.

Proposition 1 (Under-Approximation of Sn(t)):
The union of the set Sbn(t) of states respecting safe braking
distances [32] and the set Sen(t) of states respecting safe
evasive distances [33] at time t is a tight under-approximation
of Sn(t), i.e., Sbn(t) ∪ Sen(t) ⊂ Sn(t). �
Proof: see [1, Sec. III-C]. �

III. METHODOLOGY

We strive to allocate ISSs to a group of cooperative
vehicles when conflicts between their individual ISS are
detected. It is ensured that safe motions exist when a vehicle
is within its ISS [1]. Specifically, the ISSs can be used as
target sets for motion planning in two different ways:

1) Solely used in the last time step of the planning cycle
to lift safety of the group to an infinite time horizon;

2) Used in every time step to guide motion planners into
states for which a vehicle can continue safe motions.

Fig. 1 shows an overview of our method, which can be
divided into three major steps:

1) Computation of ISSs for all cooperative vehicles in a
group: the computation of the ISS of a vehicle is in turn
based on its reachable set and the set-based occupancy
prediction of non-cooperative traffic participants [25].

2) Derivation of safe maneuver corridors: to detect the
potential conflicts between the ISSs of the vehicles,
we derive their safe braking corridors and safe evasive
maneuver corridors (hereafter collectively abbreviated
as corridors) based on their individual ISS. Here,
conflicting corridors indicate conflicts of ISSs.

3) Negotiation of conflicting corridors: a negotiation
mechanism is established to resolve the detected con-
flicts of corridors, such that in the end, every vehicle
receives a negotiated ISS.

We demand that for each replanning cycle with a replan-
ning duration of tr, all computations are carried out up to
a future time horizon th, where tr < th. While reaching tr,
the environmental information is updated, and a new round

Algorithm 1 Generation of Negotiated ISSs
Inputs: [Rn(k − 1)]N1 , En(k − 1), L
Output: [SNn]N1

1: OE ← OCCUPANCYPREDICTION(En(k − 1))
2: [Rn]N1 ← REACHABLESET([Rn(k − 1)]N1 , OE)
3: [Sn]N1 ← ISS([Rn]N1 , L, OE)
4: [CUn]N1 ← SAFEMANEUVERCORRIDOR([Sn]N1)
5: CC ← CONFLICTINGCORRIDOR([CUn]N1)
6: P ∗ ← OPTIMALALLOCATION([Sn]N1 , CC)
7: [SNn]N1 ← NEGOTIATEDISS([Sn]N1 , P ∗)
8: return [SNn]N1

Algorithm 2 Computation of ISS

1: function ISS([Rn]N1 , L, OE)
2: for n← 1 to N do
3: Dn ← PROJECTION(Rn)
4: LR

n ← REACHABLELANES(Dn , L)
5: Sbn ← SAFEBRAKINGSET(Dn , LR

n , OE)
6: Sen ← SAFEEVASIVESET(Dn , LR

n , OE)
7: Sn ← Sbn ∪ Sen
8: end for
9: return [Sn]N1

10: end function

of negotiation within the group is carried out. Violation of
such time constraints does not result in unsafe behavior of the
vehicles, as their individual fail-safe trajectories [34] are also
computed. We perform all computations at discrete time steps
k ≥ 0, which correspond to points in time tk = k∆t, where
∆t ≥ 0 is a predefined time duration. Subsequently, we
assume that all computations are performed for the last time
step k of a planning cycle. Alg. 1 describes the procedure
of the generation of negotiated ISSs for vehicles. We give a
detailed explanation of the algorithm below.

A. Computation of Reachable Sets (Alg. 1, line 2)

The dynamics of vehicle Vn are modeled as two double
integrators with limited velocities and accelerations in the sn
and dn directions:

s̈n(t) = an,s(t), d̈n(t) = an,d(t), (2a)
vn,s ≤ vn,s(t) ≤ vn,s, vn,d ≤ vn,d(t) ≤ vn,d, (2b)

|an,s(t)| ≤ an,s, |an,d(t)| ≤ an,d. (2c)

Since model (2) captures the real vehicle behavior, we
can use this simple model to efficiently prove safety. The
reachable set of Vn, denoted by Rn, is computed as in [31].

B. Computation of ISSs (Alg. 1, line 3)

The computation of individual ISSs of cooperative vehi-
cles are based on their own reachable sets, which is explained
as follows (see Alg. 2).

1) Projection: The drivable area of vehicle Vn is Dn :=
proj(Rn) (cf. Def. 2).

2) Reachable Lanes: Dn only overlaps with a subset of
L, which we refer to as the reachable lanes of Vn, given by:

LRn :=
{
L ∈ L

∣∣Dn ∩ L 6= ∅
}
.

Appendix A. Reproduction of Publications

92

3) ISSs: The ISS Sn is computed for every vehicle Vn
considering LRn. Each of the lanes LR

n,m ∈ LRn can be split
into smaller segments Gi,jn,m which are delimited by different
pairs of consecutive obstacles Ei, Ej ∈ E located in the
lane. We shrink these segments in the driving direction by
the half-length of Vn, denoted by ln/2, to accommodate for
the occupancy of Vn (see Fig. 2). For simplicity, we omit
the superscripts i and j in the following computations, and
assume that the occupancies of the obstacles are all within
LR
n,m. We obtain the drivable area Dn,m that overlaps with

the segment Gn,m, and its minimal and maximal values along
the longitudinal and lateral directions as shown in Fig. 2:

Dn,m :=Dn ∩ Gn,m,
[sn,m, sn,m] = lon(Dn,m),

[dn,m, dn,m] = lat(Dn,m).

where the operators lon(·) and lat(·) return the longitudinal
and lateral positions [s, s] and [d, d] of the given element,
respectively.

In the following, we use q ∈ {b, e} as the super-
script for the sets related to braking and evasive maneu-
vers. Let ∆b

s(v,Ej) be the safe braking distance [32], and
∆e
s(v, d, Ej) the safe evasive distance [33], both for a preced-

ing obstacle Ej . We also require the safe braking and evasive
distances for a following obstacle Ei, which we denote by
∆b
s(v,Ei) and ∆e

s(v, d, Ei), respectively. The sets Sbn,m and
Sen,m (recall Prop. 1) of vehicle Vn in segment Gn,m are
obtained as presented in [1, Alg. 1]:

Sbn,m :=
{

(s, d, v)
∣∣∣s ∈ [sn,m, sn,m], (3)

d ∈ [dn,m, dn,m], v ∈ [vn,s, vn,s],

∀(si, di) ∈ OEi
: s ≥ si + ∆b

s(v,Ei),

∀(sj , dj) ∈ OEj : s ≤ sj −∆b
s(v,Ej)

}
,

Sen,m :=
{

(s, d, v)
∣∣∣s ∈ [sn,m, sn,m], (4)

d ∈ [dn,m, dn,m], v ∈ [vn,s, vn,s],

∀(si, di) ∈ OEi : s ≥ si + ∆e
s(v, d, Ei),

∀(sj , dj) ∈ OEj : s ≤ sj −∆e
s(v, d, Ej),

∀τ ∈ [0,∆e
t],∃d′ : (s+ vτ, d′, v) ∈ Sbn,m′(

⌈
τ

∆t

⌉
)
}
,

where m′ denotes the index of an adjacent lane of LR
n,m

into which the vehicle evades while performing the evasive
maneuver, and ∆e

t the evasive time required to fully enter
the adjacent lane Lm′ . The velocity constraints [vn,s, vn,s]
are extracted from the reachable set Rn. Refer to [1, Alg. 1]
for the derivation of these sets. The ISS of Vn on lanes LRn
is defined as:

Sn :=
⋃

m,q

Sqn,m. (5)

G1,1

Sb
1,1

Se
1,1

s

v
v1,s

1
2

s1,1 s1,1

0

OEi OEj

∆b
s(v,Ei) ∆b

s(v,Ej)

∆e
s(v, d, Ei) ∆e

s(v, d, Ej)

D1 D1,1l1/2 l1/2

d

s

d1,1 d1,1

Fig. 2: Relation of various components for ISS computation. The result is
shown for a vehicle with n = 1, in lane m = 1. Lane IDs are labeled at
the beginning of the lanes.

C. Computation of Safe Maneuver Corridors (Alg. 1, line 4)

We incorporate the set-based occupancy prediction with
respect to non-cooperative traffic participants. The potential
future collisions between the cooperative vehicles can be
detected by examining the future space and time required
by the cooperative vehicles to perform safe braking or safe
evasive maneuvers, starting from their current ISSs, which
we refer to as their Safe Maneuver Corridors.

Definition 4 (Safe Maneuver Corridors):
The safe maneuver corridors of vehicle Vn are segments of
lanes that Vn requires to perform either a safe braking or a
safe evasive maneuver, starting from a state in its ISS.

A corridor derived from an invariably safe state (s, d, v) ∈
Sqn,m in lane Lm is represented by a three-element tuple
(s, s, kh), which indicates the required position interval [s, s]
in a lane and the time horizon kh.

For the braking maneuvers, ∆b
t (v) and ∆b

s(v) are the time
required for the vehicle to fully brake, and the distance trav-
eled while braking, respectively; for the evasive maneuvers,
we analogously use ∆e

t (d) and ∆e
s(v). These are given by:

∆b
t (v) = δb + v

an,s
, ∆b

s(v) = δbv + v2

2an,s
, (6a)

∆e
t (d) = δe +

√
2de

m′ (d)

an,d
, ∆e

s(v) = ∆e
tv, (6b)

where δb and δe denote the reaction times for braking and
evading, respectively, and dem′(d) the distance to fully enter
an adjacent lane Lm′ of the lane Lm. For brevity, we omit
the road curvature; however, one can easily integrate it as in
[1, Alg. 1]. We denote the braking and the evasive corridors
of Vn for its ISS Sqn,m in lane Lm by Cbn,m and Cen,m,
respectively, given by:

Cbn,m :=
{

(s, s, kh)
∣∣∣(s, d, v) ∈ Sbn,m, (7)

s =s− ln/2, s = s+ ∆b
s(v) + ln/2, kh =

⌈
∆b

t(v)
∆t

⌉}
,

Cen,m :=
{

(s, s, kh)
∣∣∣(s, d, v) ∈ Sen,m ∪ Sen,m′ , (8)

s =s− ln/2, s = s+ ∆e
s(v) + ln/2, kh =

⌈
∆e

t(d)
∆t

⌉}
.

To simplify the identification of the conflicting corridors
in the next step, we formulate tuples Cq,Bn,m, which has the
extremums over each component of (s, s, kh) in Cqn,m as its

A.4. Provably-Safe Cooperative Driving via Invariably Safe Sets (IV2020)

93

Cb,B1,1 Ce,B1,1

Cb,B2,3 Ce,B2,2 CC(ψ1) ψ1 = {1, 2}

1
2
3

V1

V2

Ce,B2,3

Ce,B1,2

Fig. 3: Illustration of the (conflicting) safe maneuver corridors. The two
vehicles have non-conflicting ISSs in lanes 1 and 3, respectively; however,
their corridors intersect in lane 2.

elements (see Fig. 3):

Cq,Bn,m :=(s′, s′, k′h), (9)

s′ = min{s|(s, s, kh) ∈ Cqn,m},
s′ = max{s|(s, s, kh) ∈ Cqn,m},
k′h = max{kh|(s, s, kh) ∈ Cqn,m}.

The union of the maneuver corridors of Vn in its reachable
lanes LRn over the braking and the evasive maneuvers are:

CUn :=
⋃

m,q

{Cq,Bn,m}. (10)

D. Identification of Conflicting Corridors (Alg. 1, line 5)

Since conflicting corridors occur between at least two
cooperative vehicles, we denote the set of all conflicting
subsets of vehicles V by I≥2(N), which is the power set
of N with a minimum cardinality of two. Each element of
I≥2(N) is referred to as a coalition, and we denote the i-th
coalition in I≥2(N) as ψi. The conflicting corridors CC(ψi)
of vehicles within a coalition ψi (see Fig. 3), and the tuple of
all conflicting corridors CC within all coalitions are obtained
from

CC(ψi) :=
{

(s′, s′, k′h)|l, l′ ∈ ψi, l 6= l′, (11)
(s1, s1, kh,1) ∈ CUl , (s2, s2, kh,2) ∈ CUl′ ,
[s′, s′] = [s1, s1] ∩ [s2, s2], k′h = min(kh,1, kh,2)

}
,

CC :=(c1, . . . , cj), c1, . . . , cj ∈ CC(ψi), ψi ∈ I≥2(N).
(12)

E. Negotiation of Conflicting Corridors (Alg. 1, lines 6–7)

The process of finding the optimal allocation plan P ∗ for
the conflicting maneuver corridors is presented in Alg. 3. We
explain the main functions as follows:

1) Generation of All Possible Allocation Plans (Alg. 3,
line 4): We indicate the j-th element in CC, which has
a conflict within coalition ψi, as cj(ψ

(j)
i). A possible al-

location of the conflicting corridors is referred to as an
allocation plan P , which is a tuple (P (1), . . . , P (j)), with
P (j) representing the index of the winning vehicle of corridor
cj(ψ

(j)
i). The set P of all possible allocation plans P

of the conflicting corridors is composed of the Cartesian
product of their coalitions ψ(j)

i . As an example, for CC ={
c1(ψ

(1)
1), c2(ψ

(2)
3)
}

, where ψ1 = {1, 2} and ψ3 = {1, 3},
P = ψ1 × ψ3 = {(1, 1), (1, 3), (2, 1), (2, 3)} (see Fig. 4).

Algorithm 3 Finding Optimal Allocation Plan P ∗

1: function OPTIMALALLOCATION([Sn]N1 , CC)
2: P ∗ ← ∅, J∗ ←∞ . initialization of optimal plan and cost
3: if CC 6= ∅ then
4: P ← ALLPOSSIBLEPLANS(CC)
5: for P ∈ P do
6: Z(P)← ∅
7: for n ∈ N do
8: SP

n(P)← ISSWITHPLAN(Sn , P)
9: Z(P)← Z(P)

⋃
vol(SP

n(P))
10: end for
11: J(P)← COST(Z(P), [SP

n(P)]N1) . see (15)
12: if J(P) < J∗ then
13: P ∗ ← P , J∗ ← J(P)
14: end if
15: end for
16: end if
17: return P ∗

18: end function

c1(ψ
(1)
1)

1
2
3

V1

V2

c2(ψ
(2)
3) ψ1 = {1, 2}

ψ3 = {1, 3}
V3

{(1, 1), (1, 3), (2, 1), (2, 3)}P = ψ1 × ψ3 =

Fig. 4: Illustration of all possible allocation plans.

2) ISSs with respect to plan P (Alg. 3, line 8): We
construct a set of corridors that are not allocated to vehicle
Vn according to plan P by:

CLn(P) :=
{

(s, s, kh)|ψ(j)
i ∩ n 6= ∅, (13)

n 6= P (j), (s, s, kh) ∈ CC(ψ(j)
i)
}
.

Some of the states in the previously-computed ISS of Vn
should be removed as their maneuver corridors intersect with
CLn(P). The maximal subset of the ISS SPn(P) ⊆ Sn that is
still safe with respect to plan P is obtained through:

cor(SPn(P)) = cor(Sn) \ CLn(P),

with the operator cor(·) returning the set of corridors CUn (cf.
(7)–(10)) of a given input ISS.

3) Cost Function (Alg. 3, lines 6–14): We aim for a
fair allocation of the conflicting corridors. To this end, we
compute the variance of the volumes of SPn(P), which are
returned by the operator vol(·), of vehicles V for each plan.
Let Z(P) := {Z1, Z2, . . . , ZN} be the set of volumes Zn of
SPn(P), the variance of Z(P), which is returned by var(·),
is computed by:

Z̃ =

∑N
1 Zn
N

, var(Z(P)) :=

∑N
1 (Zn − Z̃)2

N
. (14)

In the best case var(Z(P)) = 0, implying that all of the
cooperative vehicles receive equally large ISS.

Appendix A. Reproduction of Publications

94

In addition, we reward allocation plans that promote higher
overall traffic efficiency, which is reflected by summing the
length of the longest maneuver corridors in the longitudinal
direction of all cooperative vehicles. The proposed cost
function for a plan P has the form of

J(P) = var(Z(P))−

w

N∑

1

max
{

len(c)|c ∈ cor(SPn(P))
}
, (15)

where w is an user-tunable parameter, and the len(·) operator
returns the length |s−s| of the given corridor. Alternatively,
one can also include other terms into the cost function.
The plan with the minimal cost is regarded as the optimal
allocation plan P ∗, and the ISSs of vehicles with respect to
P ∗ is referred to as their Negotiated ISSs SNn:= SPn(P ∗).

F. Incorporating Negotiated ISSs into Every Time Step

To incorporate the negotiated ISSs into every time step
of the current planning cycle (cf. Sec. III), for a vehicle Vn
that has a non-empty CLn(P ∗, k) at time step k, we stipulate
that it respects the negotiation result by not entering the
corridors c ∈ CLn(P ∗, k), up to its persisting time step k+kh.
This is achieved by removing the occupancies of c in the
computation of the reachable set of Vn in subsequent time
steps (cf. Def. 1). Additionally, we require that Vn respects
safe distances with regards to c, with their velocity profiles
extracted from the winning vehicles at longitudinal positions
lon(c), to ensure safety within the planning cycle. To this
end, we formulate a set of phantom obstacles EFn(k), which
has CLn(P ∗, k) and the persisting corridors c from previous
time steps as its elements:

EFn(k) := CLn(P ∗, k) ∪
{
c ∈ EFn(k − 1)

∣∣k ≤ per(c)
}
,

with the operator per(·) returning the persisting time step of
the given corridor.

G. Computational Complexity

Assuming that the set-based occupancy prediction of ob-
stacles and the reachable sets of cooperative vehicles are
readily available (see [25], [31] for their respective complex-
ity analysis), the computational complexity of the proposed
method for each time step k can be split into three parts:

1) Computation of ISSs: for a vehicle Vn, the complexity
of computing its ISS Sn is O(N), where N denotes
the number of considered obstacles in lanes LRn.

2) Derivation of Safe Maneuver Corridors: the complexity
of computing the safe maneuver corridors of Vn is
again O(N).

3) Negotiation of Conflicting Corridors: for a group of N
vehicles that collectively access M reachable lanes, in
the worst case, they could have conflicts of corridors
on all reachable lanes, thus raising a complexity of
O(NM). Nevertheless, the computational tractability
can still be ensured, since

TABLE I: PARAMETERS FOR NUMERICAL EXPERIMENTS.

Parameters Scenario Identifiers

symbol unit I II III

∆t s 0.1 0.1 0.1
th s 2.5 2.0 2.0
vn,s m/s 30.0 30.0 30.0
vn,s m/s 0.0 0.0 0.0
vn,d m/s 3.0 3.0 4.0
vn,d m/s -3.0 -3.0 -4.0
an,s m/s2 8.0 8.0 8.0
an,d m/s2 3.0 3.0 4.0
δb s 0.3 0.3 0.3
δe s 0.3 0.3 0.3

a) the upper bounds of both N and M can be con-
trolled by forming smaller cooperative groups,
e.g. using methods as in [35]; and

b) the proposed method can be applied in anytime
fashion, i.e., the negotiated ISSs with respect to
the best plan evaluated up to the time of request
is returned.

Alternatively, one can adopt auction-based methods, as
in [6], to obtain a sub-optimal allocation of conflicting
corridors with polynomial complexity with regard to
M .

IV. EVALUATION

We demonstrate the applicability of our method on three
distinct scenarios. A list of selected parameters for all the
cooperative vehicles can be found in Tab. I. We use an
optimization-based motion planner [34] to generate trajec-
tories within SNn(k).

A. Scenario I: Highway

Our first scenario illustrates a highway with two commu-
nicating vehicles V1 and V2 in the presence of two leading
other traffic participants (see Fig. 5). V1 and V2 face a conflict
of maneuver corridors at the very first time step k = 1.
Our algorithm allocates the conflicting corridor to V1. As the
reachable sets of V1 progresses to lane 2 at time step k = 10,
another conflicting corridor arises, which is then allocated
to V2. The negotiated ISSs demand that V2 keeps driving
straight while allowing V1 to choose freely from keeping its
lane or swerving into the center lane. Fig. 6 visualizes the
negotiated ISSs and the states of the planned trajectories; as
can be seen, the states are all within the negotiated ISSs,
thus safety is ensured. Alternatively, one can only use the
negotiated ISSs in the last time step, if the safety within the
planning cycle is already ensured by the motion planners.

B. Scenario II: Merging

In our second scenario, V1 and V2 approach a merging
point at a roundabout. Note that for complex road geometries,
the maneuver corridors of vehicles are projected onto the
intersecting lanes to compute the conflicts (see Fig. 7). V1

gets the conflicting corridor allocated at time step k = 6,
and hence, is entitled to keep driving along its lane in the

A.4. Provably-Safe Cooperative Driving via Invariably Safe Sets (IV2020)

95

Planned Trajectory

k = 1

k = 2

k = 10

k = 11

V1

V2 conflicting corridor

allocated corridor

OE

Fig. 5: Scenario I: Highway. The driving direction is from left to right. In
the subplots for time step k = 1, and the planned trajectory, we show the
initial positions of vehicles; in other cases the drivable area. Based on the
negotiation result, vehicle V1 is let to keep or change its lane.

(a) SNn(k) of V1 on lane 1, keep lane. (b) SNn(k) of V2 on lane 3, keep lane.

Fig. 6: The negotiated ISSs SNn(k) (with d ≈ 0 shown) of vehicles for time
steps k = 0 to 25 with a step size of 5. The red dots indicate the state of
the vehicles at each time step.

subsequent time steps. On the other hand, the ISS of V2 is
constrained to remain right in front of the merging point
before V1 passes.

C. Scenario III: Safety-Critical

Our last scenario demonstrates a safety-critical situation
(see Fig. 8): a truck driving in the rightmost lane had an
accident, causing it to block the two rightmost lanes. V1

is already too close to the truck to perform a safe braking
maneuver. The only way that V1 can remain safe is to
perform an evasive maneuver with the help of vehicle V2.
Even in such a critical situation, our method can determine
the correct coordination of V1 and V2 to ensure safety.
Similar situations can arise due to the presence of unexpected
pedestrians, construction sites on roads, etc.

V. CONCLUSIONS

In this work, by incorporating ISSs, we propose a novel
cooperative planning method that ensures the safety of a
group of cooperative vehicles for an infinite time horizon.
Our method computes ISS for each cooperative vehicle and
derives the negotiated ISSs by resolving conflicts between
their safe maneuver corridors. These conflicting corridors
are allocated to the vehicles, and they serve as constraints

k = 20 Planned Trajectory

k = 6k = 1
V1

V2

conflicting
corridor

allocated
corridor

Fig. 7: Scenario II: Merging. The driving direction is indicated by the
white arrows on the lanes. In the subplots for time step k = 1, and the
planned trajectory, we show the initial positions of vehicles; in other cases
the drivable area. Based on the negotiation result, vehicle V1 is prioritized.

k = 1

k = 12

k = 20

Planned Trajectory

V1V2 conflicting corridor

allocated corridor

OE

Fig. 8: Scenario III: Safety-Critical. The driving direction is from left to
right. In the subplots for time step k = 1, and the planned trajectory, we
show the initial positions of vehicles; in other cases the drivable area. Based
on the negotiation result, both vehicles change lane to ensure the safety.

for the propagation of subsequent reachable sets. In various
scenarios with mixed-traffic, we demonstrate that our method
ensures the overall safety of the cooperative group while
not overly restricting the set of possible trajectories for the
vehicles.

ACKNOWLEDGMENTS

This project was funded by the Deutsche Forschungsge-
meinschaft (German Research Foundation) within the Pri-
ority Programme SPP 1835 Cooperative Interacting Auto-
mobiles under grant No. AL 1185/4-2, and within the EU
Horizon 2020 Programme interACT under grant No. 723395.
The authors appreciate the fruitful collaboration with the
project partners.

REFERENCES

[1] C. Pek and M. Althoff, “Efficient computation of invariably safe states
for motion planning of self-driving vehicles,” in Proc. of the IEEE Int.
Conf. Intell. Robot. Syst., 2018, pp. 3523–3530.

Appendix A. Reproduction of Publications

96

[2] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination
of connected and automated vehicles at intersections and merging at
highway on-ramps,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5,
pp. 1066–1077, 2017.

[3] K. Dresner and P. Stone, “Human-usable and emergency vehicle-
aware control policies for autonomous intersection management,” in
Workshop Agents Traffic Transp., 2006, pp. 17–25.

[4] ——, “Turning the corner: improved intersection control for au-
tonomous vehicles,” in Proc. of the IEEE Intell. Veh. Symp., 2005,
pp. 423–428.

[5] G. Sharon and P. Stone, “A protocol for mixed autonomous and
human-ooperated vehicles at intersections,” in Proc. of the Int. Joint
Conf. Auton. Agent. Multi-Agent Syst., 2017, pp. 151–167.

[6] S. Manzinger and M. Althoff, “Tactical decision making for cooper-
ative vehicles using reachable sets,” in Proc. of the IEEE Int. Conf.
Intell. Transp. Syst., 2018, pp. 444–451.

[7] D. Carlino, S. D. Boyles, and P. Stone, “Auction-based autonomous
intersection management,” in Proc. of the IEEE Int. Conf. Intell.
Transp. Syst., 2013, pp. 529–534.

[8] M. Vasirani and S. Ossowski, “A market-inspired approach for inter-
section management in urban road traffic networks,” J. Artific. Intell.
Res., vol. 43, pp. 621–659, 2012.

[9] H. Schepperle and K. Böhm, “Auction-based traffic management:
towards effective concurrent utilization of road intersections,” in Proc.
of the IEEE Conf. E-Commerce Technol. and IEEE Conf. Enterprise
Comput, E-Commerce, E-Services, 2008, pp. 105–112.

[10] S. Manzinger and M. Althoff, “Negotiation of drivable areas of
cooperative vehicles for conflict resolution,” in Proc. of the IEEE Int.
Conf. Intell. Transp. Syst., 2018, pp. 1–8.

[11] M. W. Levin, H. Fritz, and S. D. Boyles, “On optimizing reservation-
based intersection controls,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 3, pp. 505–515, 2017.

[12] I. A. Ntousakis, I. K. Nikolos, and M. Papageorgiou, “Optimal
vehicle trajectory planning in the context of cooperative merging on
highways,” Transp. Res. Part C Emerg. Technol., vol. 71, pp. 464–488,
2016.

[13] F. Zhu and S. V. Ukkusuri, “A linear programming formulation for
autonomous intersection control within a dynamic traffic assignment
and connected vehicle environment,” Transp. Res. Part C Emerg.
Technol., vol. 55, pp. 363–378, 2015.

[14] D. Marinescu, J. Čurn, M. Bouroche, and V. Cahill, “On-ramp traffic
merging using cooperative intelligent vehicles: a slot-based approach,”
in Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2012, pp. 900–906.

[15] D. Marinescu, J. Čurn, M. Slot, M. Bouroche, and V. Cahill, “An active
approach to guaranteed arrival times based on traffic shaping,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2010, pp. 1711–1717.

[16] M. Nichting, D. Heß, J. Schindler, T. Hesse, and F. Köster, “Explicit
negotiation method for cooperative automated vehicles,” in Proc. of
the IEEE Int. Conf. Veh. Electron. Safety, 2019, pp. 1–7.

[17] D. Heß, R. Lattarulo, J. Pérez, J. Schindler, T. Hesse, and F. Köster,
“Fast maneuver planning for cooperative automated vehicles,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2018, pp. 1625–1632.

[18] W. Damm, H.-J. Peter, J. Rakow, and B. Westphal, “Can we build it:
formal synthesis of control strategies for cooperative driver assistance

systems,” Math. Struct. in Comp. Science, vol. 23, no. 04, pp. 676–725,
2013.

[19] M. Hilscher, S. Linker, and E.-R. Olderog, “Proving safety of traffic
manoeuvres on country roads,” in Theories of Programming and
Formal Methods, 2013, pp. 196–212.

[20] S. Mitsch, S. M. Loos, and A. Platzer, “Towards formal verification
of freeway traffic control,” in Proc. of the IEEE Conf. Cyber-Physical
Syst., 2012, pp. 171–180.

[21] I. M. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” in Hybrid Systems: Computation and Control,
2007, pp. 428–443.

[22] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Trans. Robot., vol. 30,
no. 4, pp. 903–918, 2014.

[23] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin,
“FaSTrack: a modular framework for fast and guaranteed safe motion
planning,” in Proc. of the IEEE Conf. Decis. Control, 2017, pp. 1517–
1522.

[24] P. Falcone, M. Ali, and J. Sjöberg, “Predictive threat assessment via
reachability analysis and set invariance theory,” IEEE Trans. Intell.
Transp. Syst., vol. 12, no. 4, pp. 1352–1361, 2011.

[25] M. Koschi and M. Althoff, “SPOT: a tool for set-based prediction of
traffic participants,” in Proc. of the IEEE Intell. Veh. Symp., 2017, pp.
1686–1693.

[26] T. Fraichard, “A short paper about motion safety,” in Proc. of the IEEE
Int. Conf. Robot. Autom., 2007, pp. 1140–1145.

[27] D. Althoff, J. J. Kuffner, D. Wollherr, and M. Buss, “Safety assess-
ment of robot trajectories for navigation in uncertain and dynamic
environments,” Auton. Robots, vol. 32, no. 3, pp. 285–302, 2012.

[28] D. Althoff, M. Althoff, and S. Scherer, “Online safety verification of
trajectories for unmanned flight with offline computed robust invariant
sets,” in Proc. of the IEEE Int. Conf. Intell. Robot. Syst., 2015, pp.
3470–3477.

[29] K. Berntorp, A. Weiss, C. Danielson, and S. Di Cairano, “Automated
driving: safe motion planning using positively invariant sets,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2017, pp. 1–6.

[30] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intell. Veh. Symp., 2017, pp. 719–726.

[31] S. Söntges and M. Althoff, “Computing the drivable area of au-
tonomous road vehicles in dynamic road scenes,” IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 6, pp. 1855–1866, 2018.

[32] A. Rizaldi, F. Immler, and M. Althoff, “A formally verified checker
of the safe distance traffic rules for autonomous vehicles,” in NASA
Formal Methods Symposium, vol. 9690, 2016, pp. 175–190.

[33] C. Pek, P. Zahn, and M. Althoff, “Verifying the safety of lane change
maneuvers of self-driving vehicles based on formalized traffic rules,”
in Proc. of the IEEE Intell. Veh. Symp., 2017, pp. 1477–1483.

[34] C. Pek and M. Althoff, “Computationally efficient fail-safe trajectory
planning for self-driving vehicles using convex optimization,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2018, pp. 1447–1454.

[35] C. Frese, J. Beyerer, and P. Zimmer, “Cooperation of cars and
formation of cooperative groups,” in Proc. of the IEEE Intell. Veh.
Symp., 2007, pp. 227–232.

A.4. Provably-Safe Cooperative Driving via Invariably Safe Sets (IV2020)

97

Appendix A. Reproduction of Publications

A.5 CommonRoad-Reach: A Toolbox for Reachability Analysis
of Automated Vehicles [5]

Summary Reachability analysis has gained considerable attention and popularity in
recent years for automated vehicle applications, including motion planning and safety
assurance. While there exist tools for reachability analysis that focus on general-purpose
algorithms for formal verification of dynamic systems, a toolbox tailored to automated
vehicle-specific applications has yet to be publicly available. This work precisely ad-
dresses this gap by providing the open-source CommonRoad-Reach toolbox.

The CommonRoad-Reach toolbox offers several methods for the computation of
reachable sets of automated vehicles and the extraction of driving corridors. In com-
parison to existing toolboxes, CommonRoad-Reach offers the following functionalities
and advantages: (1) The integration of two approaches for computing reachable
sets, specifically, employing polytopic set propagation and graph-based propagation
techniques. (2) The extraction of collision-free driving corridors, which can be utilized
as planning constraints for motion planners. (3) Offering Python and C++ implemen-
tations of the algorithms, providing both the convenience of prototyping and real-time
computation to users. (4) Integration within the CommonRoad benchmark suite,
providing a simulation framework, an extensive scenario database, and various tools
for motion planning of automated vehicles. We use multiple dynamic traffic scenarios
of varied complexity from the CommonRoad benchmark suite to exhibit our toolbox’s
key features and functionalities. Moreover, we benchmark the performance of our
implementations against 100 scenarios.The results indicate that the computation time
requires only a fraction of the planning horizon; thus, our toolbox is capable of real-time.

Contributions of E. I. L. E. I. L. developed the idea of the research (together with
G. W., M. K., and M. A.); E. I. L. designed, conducted, and evaluated the experiments
(together with G. W. and M. K.); E. I. L. wrote the article (together with G. W.,
M. K., and M. A.).

Conference article The accepted version of the article is reprinted. The final version of
record is available at https://doi.org/10.1109/ITSC55140.2022.9922232.

Copyright notice © 2022 IEEE. Reprinted, with permission, from Edmond Irani Liu,
Gerald Würsching, Moritz Klischat, and Matthias Althoff, CommonRoad-Reach: A
Toolbox for Reachability Analysis of Automated Vehicles, in Proceedings of the IEEE
International Conference on Intelligent Transportation Systems, 2022.

Attachment The animation of the evaluations is available at https://mediatum.ub.

tum.de/1662399.

98

https://doi.org/10.1109/ITSC55140.2022.9922232
https://mediatum.ub.tum.de/1662399
https://mediatum.ub.tum.de/1662399

CommonRoad-Reach: A Toolbox for Reachability Analysis of
Automated Vehicles

Edmond Irani Liu*, Gerald Würsching*, Moritz Klischat, and Matthias Althoff

Abstract— In recent years, reachability analysis has gained
considerable popularity in motion planning and safeguarding of
automated vehicles (AVs). While existing tools for reachability
analysis mainly focus on general-purpose algorithms for formal
verification of dynamical systems, a toolbox tailored to AV-
specific applications is not yet available. In this study, we
present CommonRoad-Reach, which is a toolbox that integrates
different methods for computing reachable sets and extracting
driving corridors for AVs in dynamic traffic scenarios. Our
toolbox provides a Python interface and an efficient C++ imple-
mentation for real-time applications. The toolbox is integrated
within the CommonRoad benchmark suite and is available at
commonroad.in.tum.de.

I. INTRODUCTION

Compared with human-driven vehicles, highly automated
vehicles (AVs) are expected to offer increased road safety
and passenger comfort, reduced emissions and travel time.
Major challenges, such as strict safety guarantees in critical
situations, decision making, and motion planning in small
solution space, are yet to be resolved to fully unfold these
benefits. Reachability analysis, which determines the set of
all reachable states (also referred to as reachable set) of a
system over time, is a powerful technique to address these
challenges. An example of a reachable set is shown in Fig. 1.
Despite reachability analysis having been well-researched
over the past decades with continuous improvements in
scalability and tightness [1], publicly available toolboxes are
either not real-time capable for AV-specific applications or
do not take into account time-varying forbidden states orig-
inating from traffic participants present in the scenario. This
study presents a toolbox for computing the reachable sets of
AVs for motion planning applications. The toolbox integrates
two methods presented in our previous works: polytopic set
propagation [2] and graph-based propagation [3].

A. Related Work

1) Reachability analysis for road vehicles: General-
purpose approaches for reachability analysis are primarily
used for formal verification, i.e., checking whether a system
can reach unsafe sets considering system dynamics and con-
straints, e.g., on input or disturbance bounds. These methods
are useful for AVs to verify their motion plans, see, e.g., [4],
[5]. However, motion planning or rigorous computation of
safety metrics, such as time-to-react [6], requires especially

* The first two authors have contributed equally to this work.
All authors are with the Department of Informatics, Technical University

of Munich, 85748 Garching, Germany.
{edmond.irani,gerald.wuersching,moritz.klischat,
althoff}@tum.de

reference
path

static
obstacle

dynamic
obstacle

drivable
area

goal
region

initial
state

Fig. 1: Exemplary computation result of our toolbox for a simple scenario
with a static and dynamic obstacle. Our tool computes the reachable set of
the ego vehicle over time considering the initial state and (time-varying)
forbidden states. The projection of the reachable set onto the position
domain yields a collision-free drivable area shown here for step k = 28.

efficient algorithms considering surrounding moving vehi-
cles.

Several intriguing applications of reachability analysis for
AVs have recently been proposed in the literature: Reacha-
bility analysis can be used to determine the set of states that
ultimately result in a collision irrespective of the input of
choice [7]. Set-based prediction using reachability analysis
has been proposed to capture all possible future behaviors
of surrounding traffic participants, which also considers
limitations due to the field-of-view and traffic rules [8]–
[10]. Online verification techniques that utilize safety layers
based on reachability analysis can ensure the safety of
motion planners [11]–[15]. A further line of research uses
reachable sets to extract possible driving corridors, i.e.,
spatio-temporal constraints, for motion planning [16], [17].
For this application, set-based techniques are especially well
suited in complex scenarios as they do not suffer from
discretization effects and are computationally feasible under
real-time constraints, in contrast to other methods, such
as sampling-based [18] or combinatorial [19] approaches.
Driving corridors extracted from reachable sets are integrated
with different motion planners in [16], [20]. Furthermore,
reachable sets are used to determine specification-compliant
planning space [21] and to negotiate conflicting planning
space among a group of cooperating vehicles [22].

2) Existing toolboxes for reachability analysis: Recently,
several publicly available toolboxes for reachability analysis
have been developed. Tools such as Flow* [23] and SpaceEx
[24] offer efficient C++ implementations of set representa-
tions and reachability algorithms for linear [24] and non-
linear [23] hybrid systems. Although C++-based tools have
good performance, their compilation overhead makes them
difficult to use for prototyping. Hence, reachability tools
written in just-in-time compiled or interpreted languages are
desirable; examples include the MATLAB-based tool CORA
[25], JuliaReach [26], or the Python-based tool HyLAA [27].

A.5. CommonRoad-Reach: A Toolbox for Reachability Analysis (ITSC2022)

99

B. Contributions

Existing toolboxes are either not capable of exclud-
ing time-varying forbidden states [23]–[26], [28], or are
based on inherently inefficient Hamilton–Jacobi–Bellmann
solvers [29]–[32]. Despite the aforementioned applications of
reachable sets in recent works, a toolbox implementing those
methods is not publicly available. Our open-source toolbox
is tailored to AV-specific applications and
• integrates two approaches for computing reachable sets,

i.e., using polytopic set propagation and graph-based
propagation;

• extracts collision-free driving corridors that can be used
as planning constraints for motion planners;

• provides Python and C++ implementations of the al-
gorithms, offering convenient prototyping and real-time
computation to the users; and

• is integrated within the CommonRoad1 benchmark
suite [33], which offers a simulation framework, an ex-
tensive scenario database, and various tools for motion
planning of automated vehicles.

The remainder of this study is structured as follows: Sec. II
introduces necessary preliminaries and Sec. III highlights
the implementation details of our toolbox. In Sec. IV, we
demonstrate the key features of our toolbox in numerical
experiments. Lastly, we draw conclusions in Sec. V.

II. PRELIMINARIES

A. System Description

The scenarios in our toolbox are described in the Com-
monRoad format, which represents the road network using
lanelets [34] and models environment elements such as
obstacles and traffic signs. We predict the motion of dynamic
obstacles using their most-likely trajectories; however, our
toolbox is also adaptable to any other prediction method
such as set-based prediction [8]. Both the global Cartesian
coordinate system and a local curvilinear coordinate system
that is aligned with a reference path [34] can be used to
compute the reachable set. The possible reference path is
the centerline of a lane or a path through the road network
leading from the initial state to a specified goal region.

Let us introduce some necessary notations: We denote by
k ∈ N0 a discrete step corresponding to a continuous time
tk = k∆t, with a predefined time increment ∆t ∈ R+. For
a given dynamical system, xk ∈ Xk ⊂ R4 represents a state
in the state space Xk, and uk ∈ Uk ⊂ R2 represents an input
in the input space Uk, each at step k. Let � be a variable,
we denote its minimum and maximum values by � and �,
respectively. Since our toolbox facilitates the computation in
Cartesian and curvilinear coordinate systems, we introduce
the general subscripts ζ ∈ {x, s} and η ∈ {y, d} to
indicate the direction of a variable in the corresponding
coordinate frame. Thus, (x, y) denotes the global coordinates
in the Cartesian frame, and (s, d) denotes the longitudinal
coordinate s and lateral coordinate d in a local curvilinear

1https://commonroad.in.tum.de/

frame. Computations within the Cartesian coordinate system
do not rely on a reference path and handle unstructured sce-
narios better. In contrast, computations within a curvilinear
coordinate system are better suited for structured scenarios
with lanes.

We abstract the system dynamics of a hypothetical ego
vehicle using a point-mass model. This abstraction ensures
that the reachable set of the high-fidelity model is always a
subset of that of the simplified model; alternative abstractions
can be found in [35], [36]. The state of the system is modeled
as xk = (pζ,k, vζ,k, pη,k, vη,k)T, and the system accepts
inputs uk = (aζ,k, aη,k)T, where p, v, a denote position,
velocity, and acceleration, respectively. The discrete-time
system dynamics of the ego vehicle is

xk+1 =

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t

0 0 0 1

xk +

1
2∆2

t 0
∆t 0
0 1

2∆2
t

0 ∆t

uk. (1)

The velocities and accelerations in both directions of the
coordinate system are bounded by

vζ ≤ vζ,k ≤ vζ , vη ≤ vη,k ≤ vη, (2a)

aζ ≤ aζ,k ≤ aζ , aη ≤ aη,k ≤ aη. (2b)

These bounds are chosen to consider the kinematic limita-
tions within the adopted coordinate system, see, e.g., [37].
Note that within the Cartesian coordinate system, we over-
approximate Kamm’s friction circle with a box; within curvi-
linear coordinate systems, we assume that the ego vehicle
follows the reference path and thus use more conservative
parameters for the longitudinal and lateral driving directions.

B. Reachable Set

Let x0 be the initial state and u[0,k] be an input trajectory
between steps 0 and k. We use χk(x0,u[0,k]) to represent
the solution of (1) at step k. Given the occupancy of the ego
vehicle Q(xk) ⊂ R2 and the set of time-varying occupancies
of all obstacles Ok ⊂ R2 at step k, we define the set of
forbidden states as Fk = {xk ∈ Xk|Q(xk) ∩ Ok 6= ∅}. In
this study, the reachable set of the ego vehicle at step k is
defined as the set of states reachable from the initial set of
states X0 while avoiding the set of forbidden states Fτ for
every step τ ∈ {0, . . . , k} [2]:

R∗k(X0) :=
{
χk(x0,u[0,k])

∣∣∣∃x0 ∈ X0,∀τ ∈ {0, . . . , k},

∃uτ ∈ Uτ : χτ (x0,u[0,τ]) /∈ Fτ
}
.

Subsequently, we omit X0 for brevity. Obtaining R∗k is in
general computationally expensive; therefore, we compute
its over-approximation Rk. As a set representation, we
choose the union of base sets R(i)

k , i ∈ N. Each base set
R(i)
k = P(i)

ζ,k × P
(i)
η,k is a Cartesian product of two convex

polytopes P(i)
ζ,k and P(i)

η,k, which represent the reachable
positions and velocities in the (pζ , vζ) and (pη, vη) planes,
respectively (Fig. 2a–b). This representation is beneficial
compared to other set representations in [1, Tab. 1] since

Appendix A. Reproduction of Publications

100

p1 p2

v1

v2

0

(a) P(i)
ζ,k

p3 p4

v3

v4

0

(b) P(i)
η,k

p1 p2

p3

p4

0

(c) D(i)
k

Fig. 2: Polytopes and drivable area of a base set R(i)
k .

R(1)
k

R(2)
k

R(3)
k

R(1)
k−1

R(2)
k−1

R(2)
k+1

R(1)
k+1

k − 1 k k + 1

R(3)
k+1

C(2)k−1

C(1)k−1

C(2)k C(2)k+1

C(1)k
C(1)k+1

Fig. 3: Example of a reachability graph GR. Nodes of the same color have
connected drivable areas within one step and belong to one driving corridor
(see Sec. II-C and Fig. 4).

polytopes are closed under linear maps and intersections;
because of the restriction to two-dimensional polytopes, the
unfavorable computational complexity of polytopes for high
dimensions is irrelevant to our application. To simplify the
notation, we denote the collection of R(i)

k by Rk, i.e., Rk ={
R(1)
k , . . . ,R(i)

k

}
. The projection of R(i)

k onto the position
domain yields a axis-aligned rectangle D(i)

k (Fig. 2c), whose
union is referred to as drivable area Dk. Similarly, we use
Dk to denote the collection of D(i)

k .
We also require the reachability graph GR, which stores

the spatio-temporal relationships of the base setsR(i)
k as a di-

rected, acyclic graph (Fig. 3). In GR, each node corresponds
to one base set R(i)

k and a connecting edge between two base
sets R(i)

k and R(j)
k+1 indicates that R(j)

k+1 is reachable from
R(i)
k after one step.

C. Driving Corridor

We follow the definition of driving corridors presented
in [16]. At step k, the drivable area Dk may be disconnected
due to the presence of obstacles, thus we introduce the notion
of connected sets C(n)

k ⊆ Dk, n ∈ N0 within the drivable
area. A sequence of connected sets over steps 0 to kf ,
where kf is the final step, yields a driving corridor C(·) =

(C(m)
0 , . . . , C(n)

kf
). At every step, the drivable area can contain

several connected sets, thus multiple driving corridors may
exist. Fig. 3 shows two different driving corridors identified
within a reachability graph. Therein, nodes of the same color
collectively represent one driving corridor. The two driving
corridors are visualized in Fig. 4. Each corridor corresponds

ego vehicle

dynamic obstacle

C(1)k

C(2)k

Fig. 4: Example of two driving corridors extracted from the reachability
graph in Fig. 3. The driving corridors correspond to a braking maneuver
(top) and an evasive maneuver (bottom). Each rectangle represents a
connected set C(n)k at different steps k ∈ {0, . . . , kf}.

to a possible maneuver of the ego vehicle with respect to the
crossing obstacle.

Driving corridors can be separated into longitudinal and
lateral driving corridors. This is particularly useful for motion
planners that independently plan the longitudinal and lateral
motions. A possible implementation is provided in [16]:
Given a longitudinal driving corridor and the positions pζ,k
of a planned longitudinal trajectory, a lateral driving corridor
is obtained by identifying the connected sets within the
longitudinal driving corridor, which contain the positions
pζ,k for all k ∈ {0, . . . , kf}. The search space for the lateral
planning problem is thus further constrained by the fact that
a lateral driving corridor in [16] is a subset of a longitudinal
driving corridor.

III. IMPLEMENTATION DETAILS

A. Overview

CommonRoad-Reach provides both the computation of
reachable sets and the extraction of driving corridors. Subse-
quently, we present an overview of the toolbox and highlight
its core modules (Fig. 5). The toolbox consists of the
following core modules:
• ReachableSetInterface serves as the user inter-

face for setting configurations, computing reachable sets
and drivable areas, and extracting driving corridors.

• ReachableSet (Python) is an abstract superclass that
instantiates the subclasses for computing reachable sets
using either polytopic set propagation or graph-based
propagation method.

• PyReachableSet is a Python implementation of
the reachable set computation using the polytopic set
propagation method described in [2].

• CppReachableSet interacts with ReachableSet
(C++), which is a C++ implementation of the polytopic
set propagation method.

• PyGraphReachableSetOffline precomputes
reachability graphs for the graph-based reachability
analysis according to [3].

• PyGraphReachableSetOnline loads the precom-
puted reachability graphs and performs the online com-
putations of the graph-based reachability analysis.

• DrivingCorridorExtractor implements func-
tions to extract possible driving corridors from a reach-

A.5. CommonRoad-Reach: A Toolbox for Reachability Analysis (ITSC2022)

101

ReachableSetInterface

ReachableSet DrivingCorridorExtractor

PyReachableSet PyGraphReachableSetOffline

CppReachableSet PyGraphReachableSetOnline

ReachableSet

pybind11
Python
C++

Fig. 5: UML class diagram of the core modules of our toolbox.

ability graph GR.

B. Reachable Set Computation

1) Polytopic set propagation method: This method is
implemented in Python and C++. In addition to [2], we
support the computation in a local curvilinear coordinate
system of the ego vehicle. The computation executes the
following steps, as shown in Fig. 6:

1) Propagation: Each base set R(i)
k−1 ∈ Rk−1 of the

previous step is propagated according to the system
model (1), resulting in the propagated sets RP,(i)

k and
their corresponding drivable areas DP,(i)

k projected onto
the position domain.

2) Repartition: DP,(i)
k are merged and repartitioned using

a sweep line algorithm and a segment tree. This step
helps reduce the number of rectangles and thus reduces
overall computation time.

3) Collision detection: The repartitioned rectangles DP,(q)
k

are checked for collision with obstacles using the
CommonRoad Drivability Checker [38]. The colliding
rectangles are recursively split into two new equally
sized rectangles along their longer axis. This is repeated
until there is no more collision or the diagonal of the
rectangle is smaller than a user-specified threshold.

4) Creation of new base sets: The new base sets R(j)
k are

created by determining the reachable velocities for the
collision-free drivable areas D(j)

k .
We refer the readers to [2, Alg. 1] for more computational
details.

2) Graph-based propagation method: The second pro-
vided method is the graph-based propagation method pre-
sented in [3]. In contrast to the polytopic propagation,
the reachable sets are derived by traversing a precomputed
reachability graph GR and removing edges that collide with
the forbidden states. To use a generic, offline-computed
graph for any initial state x0 and forbidden states Fk, we
precompute it assuming an initial state x0,off = 0 (four-
dimensional zero vector, see (1)), without considering Fk,
and by discretizing the reachable sets Rk using a regular
grid in the position plane. We add additional edges in GR
representing the reachability between sets R(i)

k and R(j)
k+κ

with κ ∈ {1, . . . , nMS} across up to nMS ∈ N steps to

ζ

η

D(i)
k−1

Fk−1

(a) Previous reachable set

Fk+1

DP,(i)
k

ζ

η Fk

(b) Propagation

k+1
ζ

η

DP,(q)
k

Fk

(c) Repartition

Fk+1
ζ

η Fk

D(j)
k

(d) Collision detection

Fig. 6: Selected steps in the polytopic set propagation method. We show
the reachable sets projected onto the position domain.

ζ

η

Fk−1
x0

χk−1(x0,0u) χk(x0,0u)

2© remove unreachable sets3© collision detection

1© translate
Dk−1

Dk

Fk

Fig. 7: Three main steps of the graph-based propagation method to remove
unreachable nodes from the offline-computed graph. We show the corre-
sponding reachable sets projected onto the position domain.

avoid the accumulation of discretization errors during the
online phase. The online computation subsequently executes
the following steps (Fig. 7) to account for the initial state
and forbidden states:

1) Translation: To consider a given initial state x0, the
offline-computed reachable set Rk is translated along
the trajectory of the zero-input response χk(x0,0u)
starting in x0.

2) Determining reachability: To determine the reachability
of each set R(i)

k , we check which of the corresponding
nodes in GR are connected for all κ ∈ {1, . . . , nMS} to
at least one parent nodeR(j)

k−κ. Nodes are removed from
GR if they are not reachable. This principle is shown in
Fig. 8.

3) Removal of forbidden states: Nodes whose correspond-
ing set R(i)

k intersects with Fk are removed from GR.
We perform this check by discretizing obstacles using
the same road grid as in the computation of Rk.

After the above steps, we can optionally traverse the graph
backward in time, starting at the final step kf to discard all
nodes from which the final set Rkf cannot be reached. We

apply a similar principle as in step 2 and remove nodesR(j)
k−1

from GR without any reachable children in Rk.

Appendix A. Reproduction of Publications

102

k = 1

k = 2

k = 3

nMS = 1 nMS = 2η

D(i)
k , undiscretizedD(i)

k , discretized F1

Fig. 8: One-dimensional example for reducing the discretization error of [3]:
By using edges across nMS > 1 steps to determine the reachable sets, we
prevent the aggregation of discretization errors in intermediate steps. The
undiscretized drivable area is shown for comparison.

3) Comparison of the two methods: The polytopic set
propagation method can handle time-varying bounds on ve-
locities (2a) and accelerations (2b) of the vehicle originating
from, e.g., road curvature, traffic rules, and handcrafted
rules [21]. In contrast, this is not possible in the graph-based
method due to the fixed parameters in the precomputation
of the reachability graph. This characteristic causes greater
over-approximation of the computation results in the curvi-
linear coordinate systems due to the previously mentioned
time-varying velocity and acceleration constraints. On the
other hand, the graph-based method skips geometric opera-
tions, such as splitting of reachable sets, thus the computation
is often more efficient than the polytopic set propagation.

C. Driving Corridor Extraction

Our toolbox can further extract driving corridors from a
reachability graph generated from Sec. III-B. To this end, we
begin at the final step kf and use a similar graph traversal
procedure described at the end of Sec. III-B.2 with the fol-
lowing modifications: Before checking reachability between
sets R(i)

k and R(j)
k−1, we identify the connected sets C(n)

k at
each step k. Then, we perform the graph traversal procedure
with κ = 1, i.e., we check the reachability of nodes within
the connected set C(n)

k over one step. After traversing GR
backwards in time and identifying the connected sets C(n)

k for
all k ∈ {0, . . . , kf}, the relationships between connected sets
C(n)
k and C(m)

k−1 of consecutive steps are stored in a separate
graph GC in which each path from C(m)

0 to C(n)
kf

corresponds
to a driving corridor (see Sec. II-C). Optionally, one can
constrain driving corridors to end in a user-specified terminal
set Ikf ⊆ R2 in the position domain (e.g., a set of goal
states).

As an additional option, lateral driving corridors (see
Sec. II-C) can be determined using the same procedure
by invoking the extraction with a driving corridor and a
longitudinal trajectory (pζ,0, . . . , pζ,kf) computed by, e.g.,
an optimization-based motion planner. The procedure for
extracting the corridor is similar to the description above,
with the addition that during backwards traversal of GR,
parent sets R(j)

k−1 that do not contain the position pζ,k−1

of the given longitudinal trajectory are excluded.

TABLE I: PARAMETERS USED IN NUMERICAL EXPERIMENTS FOR DIF-
FERENT COORDINATE SYSTEMS

Parameter Unit Cartesian Curvilinear

kf step 30 30
∆t s 0.1 0.1
vζ m/s 20.0 20.0
vζ m/s -20.0 0
vη m/s 20.0 4.0
vη m/s -20.0 -4.0
aζ m/s2 6.0 6.0
aζ m/s2 -6.0 -6.0
aη m/s2 6.0 2.0
aη m/s2 -6.0 -2.0

k = 10

k = 20

k = 30

static
obstacle

dynamic
obstacle

drivable
area

goal
region

initial
state

Fig. 9: Drivable areas in scenario I at different steps.

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the key features of our
toolbox by numerical experiments using three different sce-
narios from the CommonRoad benchmark suite with the
following benchmark IDs:

I Urban road: ZAM Test-1 1 T-1:2020a
II Intersection: ARG Carcarana-1 1 T-1:2020a

III Highway: USA US101-6 1 T-1:2020a

We list the main parameters used in the experiments for both
coordinate systems in Tab. I. The animations of the experi-
ments can be found at https://mediatum.ub.tum.de/1662399.

A. Scenario I: Urban road

The first scenario illustrates an urban driving situation with
a static obstacle (e.g., a parked vehicle) in front of the ego
vehicle and another vehicle following the ego vehicle. We
demonstrate the computation of reachable sets for the ego
vehicle in the Cartesian coordinate system. Fig. 9 shows the
collision-free drivable areas for selected steps, which con-
sider both static and time-varying occupancies of obstacles. It
can be seen that the drivable areas detect the narrow passage
on the left side of the static obstacle.

B. Scenario II: Intersection

Our second scenario is a four-way intersection with the
presence of two other vehicles. In Fig. 10 we visualize the
collision-free drivable areas at steps k = 15 and k = 24
within the Cartesian coordinate system and a curvilinear
coordinate system.

A.5. CommonRoad-Reach: A Toolbox for Reachability Analysis (ITSC2022)

103

k = 15 k = 24

reference
path

dynamic
obstacle

drivable
area

initial
state

(a) Curvilinear coordinate system

k = 15 k = 24

(b) Cartesian coordinate system

Fig. 10: Drivable areas in scenario II at different steps within two coordinate
systems. We remind that the parameters used in the computations within the
two coordinate systems are different (see Sec. II-A and Tab. I).

We further use this scenario to demonstrate the extraction
of driving corridors (Fig. 11). To this end, we investigate
the drivable area at the final step kf = 30 in Fig. 11a:
We see that the drivable area is disconnected due to the
turning vehicle V1 at the intersection. Thus, the drivable area
exhibits two connected sets C(1)

30 and C(2)
30 , each belonging to

a separate driving corridor. Starting from the two connected
sets in the last step, our toolbox identifies two driving
corridors Cbrake(·) and Cturn(·) for the time interval [0, 30]. The
extracted corridors are visualized in Fig. 11b and 11c, where
the corridors and the occupancy of vehicle V1 are stacked
over time. The two driving corridors correspond to different
tactical decisions: In Cbrake(·), the ego vehicle would brake in
the middle of the intersection before vehicle V1. In contrast,
corridor Cturn(·) represents a maneuver where the ego vehicle
would accelerate and continue turning right through the gap
between V1 and the road boundary.

C. Scenario III: Highway

Fig. 12 shows a highway scenario that is created from
the NGSIM dataset [39]. We carry out the computation in a
curvilinear coordinate system using a planned route as the
reference path. The results show that our toolbox robustly
handles the computation of the reachable sets of the ego
vehicle in scenarios with multiple dynamic obstacles and can
detect narrow gaps between vehicles, see, e.g., k = 30 in
Fig. 12.

TABLE II: COMPUTATION TIME WITHIN CARTESIAN FRAME

Method kf Unit Avg. Std. Dev.

Polytopic set 30 ms 378 131
Graph-based 30 ms 227 58

TABLE III: COMPUTATION TIME WITHIN CURVILINEAR FRAME

Method kf Unit Avg. Std. Dev.

Polytopic set 30 ms 53 16
Graph-based 30 ms 26 8

D. Computation Time

We computed the reachable sets for the planning problems
given in 100 randomly chosen scenarios from the Common-
Road benchmark suite to benchmark the performance of
our toolbox. All computations were executed on a laptop
with an Intel Core i7-7700HQ 2.8 GHz processor. The
computation times for the two methods provided in the
toolbox are displayed in Tab. II for the Cartesian coordinate
system and in Tab. III for curvilinear coordinate systems,
respectively. For both propagation methods, computations
in the curvilinear coordinate system are faster than in the
Cartesian coordinate system. This is because in curvilinear
coordinate systems, we used more conservative parameters
in both the longitudinal and lateral directions (see Sec. II-A
and Tab. I), which resulted in less nodes in the reachability
graph and smaller drivable areas. As expected, the average
computation times of the graph-based propagation are shorter
than those of the polytopic set propagation due to the reasons
described in Sec. III-B.3. The computations took a fraction
of the planning horizon and render the toolbox suitable for
real-time applications.

V. CONCLUSIONS

We presented CommonRoad-Reach, an open-source tool-
box for computing reachable sets and extracting driving
corridors for AVs. Unlike existing tools that offer general-
purpose reachability algorithms, our toolbox is tailored to
AV-specific applications such as motion planning in arbitrary
dynamic traffic scenarios. As a result, our toolbox integrates
two methods for the reachable set computation published in
[2], [3]. By providing Python and C++ implementations of
the algorithms, our toolbox offers both prototyping and real-
time capabilities to users. From reachable sets, our toolbox
further extracts collision-free driving corridors, which can be
used as solution space for motion planners. We used different
dynamic traffic scenarios of varied complexity to demon-
strate the functionalities of our toolbox, and we benchmarked
the real-time functionality against 100 scenarios from the
CommonRoad benchmark suite.

ACKNOWLEDGMENTS

This work was funded by the Huawei-TUM collaboration
project Research on Key Technologies of Safety Assurance
for Autonomous Vehicles, Deutsche Forschungsgemeinschaft
(German Research Foundation) within the Priority Program

Appendix A. Reproduction of Publications

104

(a) Connected sets at kf = 30. (b) Corridor Cbrake(·): Braking before V1 (c) Corridor Cturn(·): Turning right in front of V1

Fig. 11: Identification of two driving corridors corresponding to different driving maneuvers. In figures (b) and (c) we ignore the occupancy of the other
vehicle on the opposite lane for visualization purposes.

k = 15

k = 30

reference
path

dynamic
obstacle

drivable
area

initial
state

Fig. 12: Drivable areas in scenario III at different steps.

SPP 1835 Cooperative Interacting Automobiles under grant
No. AL 1185/4-2, the German Federal Ministry of Educa-
tion and Research (BMBF) within the Munich Cluster for
the Future of Mobility in Metropolitan Regions (MCube)
under grant 03ZU1105AA, and the Central Innovation Pro-
gramme of the German Federal Government under grant
ZF4086013GR9.

REFERENCES

[1] M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques for
reachability analysis,” Annu. Rev. Control Rob. Auton. Syst., vol. 4,
no. 1, pp. 369–395, 2021.

[2] S. Söntges and M. Althoff, “Computing the drivable area of au-
tonomous road vehicles in dynamic road scenes,” IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 6, pp. 1855–1866, 2018.

[3] M. Klischat and M. Althoff, “A multi-step approach to accelerate the
computation of reachable sets for road vehicles,” in Proc. of the IEEE
Int. Conf. Intell. Transp. Syst., 2020, pp. 2306–2312.

[4] N. Kochdumper, P. Gassert, and M. Althoff, “Verification of collision
avoidance for CommonRoad traffic scenarios,” in Int. Workshop Appl.
Verif. Contin. and Hybrid Syst., 2021, pp. 184–194.

[5] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Trans. Rob., vol. 30, no. 4,
pp. 903–918, 2014.

[6] S. Söntges, M. Koschi, and M. Althoff, “Worst-case analysis of the
time-to-react using reachable sets,” in Proc. of the IEEE Intell. Veh.
Symp., 2018, pp. 1891–1897.

[7] A. Lawitzky, A. Nicklas, D. Wollherr, and M. Buss, “Determining
states of inevitable collision using reachability analysis,” in Proc. of
the IEEE Int. Conf. Intell. Robot. Syst., 2014, pp. 4142–4147.

[8] M. Koschi and M. Althoff, “Set-based prediction of traffic participants
considering occlusions and traffic rules,” IEEE Trans. Intell. Veh.,
vol. 6, no. 2, pp. 249–265, 2020.

[9] M. Naumann, H. Konigshof, M. Lauer, and C. Stiller, “Safe but not
overcautious motion planning under occlusions and limited sensor
range,” in Proc. of the IEEE Intell. Veh. Symp., 2019, pp. 140–145.

[10] P. F. Orzechowski, A. Meyer, and M. Lauer, “Tackling occlusions and
limited sensor range with set-based safety verification,” in Proc. of the
IEEE Int. Conf. Intell. Transp. Syst., 2018, pp. 1729–1736.

[11] T. Stahl and F. Diermeyer, “Online verification enabling approval of
driving functions – Implementation for a planner of an autonomous
race vehicle,” IEEE Open J. Intell. Transp. Syst., vol. 2, pp. 97–110,
2021.

[12] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan, “Reachability-based
trajectory safeguard: A safe and fast reinforcement learning safety
layer for continuous control,” IEEE Robot. Autom. Lett., vol. 6, no. 2,
pp. 3663–3670, 2021.

[13] C. Pek and M. Althoff, “Fail-safe motion planning for online verifica-
tion of autonomous vehicles using convex optimization,” IEEE Trans.
Rob., vol. 37, no. 3, pp. 798–814, 2020.

[14] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in Proc. of
the IEEE Int. Conf. Intell. Transp. Syst., 2020, pp. 1–7.

[15] S. Vaskov, H. Larson, S. Kousik, M. Johnson-Roberson, and R. Va-
sudevan, “Not-at-fault driving in traffic: A reachability-based ap-
proach,” in Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2019,
pp. 2785–2790.

[16] S. Manzinger, C. Pek, and M. Althoff, “Using reachable sets for
trajectory planning of automated vehicles,” IEEE Trans. Intell. Veh.,
vol. 6, no. 2, pp. 232–248, 2021.

[17] S. Söntges and M. Althoff, “Computing possible driving corridors for
automated vehicles,” in Proc. of the IEEE Intell. Veh. Symp., 2017,
pp. 160–166.

[18] T. Gu, J. M. Dolan, and J.-W. Lee, “Automated tactical maneuver
discovery, reasoning and trajectory planning for autonomous driving,”
in Proc. of the IEEE Int. Conf. Intell. Robot. Syst., 2016, pp. 5474–
5480.

[19] P. Bender, O. S. Tas, J. Ziegler, and C. Stiller, “The combinatorial
aspect of motion planning: Maneuver variants in structured environ-
ments,” in Proc. of the IEEE Intell. Veh. Symp., 2015, pp. 1386–1392.

[20] G. Würsching and M. Althoff, “Sampling-based optimal trajectory
generation for autonomous vehicles using reachable sets,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2021, pp. 828–835.

[21] E. Irani Liu and M. Althoff, “Computing specification-compliant
reachable sets for motion planning of automated vehicles,” in Proc. of
the IEEE Intell. Veh. Symp., 2021, pp. 1037–1044.

[22] S. Manzinger and M. Althoff, “Tactical decision making for cooper-
ative vehicles using reachable sets,” in Proc. of the IEEE Int. Conf.
Intell. Transp. Syst., 2018, pp. 444–451.

[23] X. Chen, S. Sankaranarayanan, and E. Abraham, “Flow* 1.2: More
effective to play with hybrid systems,” in Int. Workshop Appl. Verif.
Contin. and Hybrid Syst., 2015, pp. 152–159.

A.5. CommonRoad-Reach: A Toolbox for Reachability Analysis (ITSC2022)

105

[24] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Proc. of the Int. Conf. Comput.
Aided Verif., 2011, pp. 379–395.

[25] M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop
Appl. Verif. Contin. and Hybrid Syst., 2015, pp. 120–151.

[26] S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and
C. Schilling, “Reach set approximation through decomposition with
low-dimensional sets and high-dimensional matrices,” in Proc. of the
Int. Conf. Hybrid Syst.: Comput. and Control, 2018, pp. 41–50.

[27] S. Bak and P. S. Duggirala, “HyLAA: A tool for computing simulation-
equivalent reachability for linear systems,” in Proc. of the Int. Conf.
Hybrid Syst.: Comput. and Control, 2017, pp. 173–178.

[28] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: A
verification tool for stateflow models,” in Int. Conf. Tools Algorithms
Const. Anal. Syst., 2015, pp. 68–82.

[29] I. Xausa, R. Baier, O. Bokanowski, and M. Gerdts, “Computation of
avoidance regions for driver assistance systems by using a Hamilton-
Jacobi approach,” Optim. Control. Appl. Methods, vol. 41, no. 2, pp.
668–689, 2020.

[30] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid
problems with time-varying dynamics, targets and constraints,” in
Proc. of the Int. Conf. Hybrid Syst.: Comput. and Control, 2015, pp.
11–20.

[31] K. Margellos and J. Lygeros, “Hamilton-Jacobi formulation for reach-
avoid problems with an application to air traffic management,” in Proc.
of the Am. Control Conf., 2010, pp. 3045–3050.

[32] O. Bokanowski, N. Forcadel, and H. Zidani, “Reachability and
minimal times for state constrained nonlinear problems without any
controllability assumption,” SIAM J. Control Optim., vol. 48, no. 7,
pp. 4292–4316, 2010.

[33] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intell. Veh. Symp., 2017, pp. 719–726.

[34] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in Proc. of the IEEE Intell. Veh.
Symp., 2014, pp. 420–425.

[35] B. Schürmann, D. Heß, J. Eilbrecht, O. Stursberg, F. Köster, and
M. Althoff, “Ensuring drivability of planned motions using formal
methods,” in Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2017,
pp. 1–8.

[36] M. Althoff and J. M. Dolan, “Reachability computation of low-order
models for the safety verification of high-order road vehicle models,”
in Proc. of the Am. Control Conf., 2012, pp. 3559–3566.

[37] J. Eilbrecht and O. Stursberg, “Challenges of trajectory planning with
integrator models on curved roads,” in Proc. of the IFAC World Congr.,
2020, pp. 15 588–15 595.

[38] C. Pek, V. Rusinov, S. Manzinger, M. C. Üste, and M. Althoff,
“CommonRoad Drivability Checker: Simplifying the development and
validation of motion planning algorithms,” in Proc. of the IEEE Intell.
Veh. Symp., 2020, pp. 1013–1020.

[39] V. Alexiadis, J. Colyar, J. Halkias, R. Hranac, and G. McHale, “The
next generation simulation program,” Inst. Transp. Eng. ITE J., vol. 74,
no. 8, p. 22, 2004.

Appendix A. Reproduction of Publications

106

A.6. Scenario Factory: Creating Safety-Critical Traffic Scenarios (ITSC2020)

A.6 Scenario Factory: Creating Safety-Critical Traffic
Scenarios for Automated Vehicles [6]

Summary Testing, verifying, and comparing the safety of automated vehicles’ motion
planning algorithms necessitates a significant amount of simulated traffic scenarios. This
work proposes a novel method to automatically generate a large number of safety-critical
traffic scenarios, which can be used for testing various applications of automated vehicles.

We start by extracting a large number of road networks across the globe from Open-
StreetMap (this functionality is referred to as Globetrotter). Among these extracted
road networks, we identify particularly interesting ones to create distinct scenarios with
diverse characteristics. Following this, we utilize the SUMO traffic simulator to populate
the road networks with traffic participants, thereby generating many primitive scenar-
ios. Lastly, we create challenging scenarios for motion planning of automated vehicles
by increasing the criticality of the primitive scenarios using reachability analysis and
nonlinear optimization techniques.

In contrast to existing works on generating test scenarios using simulation, our
approach is very efficient since we automate the extraction of road networks and
the simulation of traffic participants. By leveraging the extensive amount of road
networks across the globe, we are able to create complex yet realistic road networks
that currently no procedural map generator is capable of producing. Moreover, unlike
previous methods, our approach does not depend on data obtained through on-road
test drives or other real-world traffic sources. As a result, our approach allows for the
efficient creation of a large number of traffic scenarios at a meager cost. Furthermore,
our scenarios have the property that they are independent of the vehicle under test since
our criticality measure is defined based on the amount of so-called drivable area. This
provides versatile applicability to a wide range of automated vehicles with diverse vehi-
cle models. We offer the generated scenarios to the public via the CommonRoad website.

Contributions of E. I. L. E. I. L. supervised the bachelor thesis of F. H., which
shaped the main body of Globetrotter; E. I. L. designed, conducted, and evaluated the
experiments (together with M. K.); E. I. L. wrote the article (together with M. K.,
F. H., and M. A.).

Conference article The accepted version of the article is reprinted. The final version of
record is available at https://doi.org/10.1109/ITSC45102.2020.9294629.

Copyright notice © 2020 IEEE. Reprinted, with permission, from Moritz Klischat,
Edmond Irani Liu, Fabian Höltke, and Matthias Althoff, Scenario Factory: Creating
Safety-Critical Traffic Scenarios for Automated Vehicles, in Proceedings of the IEEE
International Conference on Intelligent Transportation Systems, 2020.

107

https://doi.org/10.1109/ITSC45102.2020.9294629

Scenario Factory: Creating Safety-Critical Traffic Scenarios
for Automated Vehicles

Moritz Klischat*, Edmond Irani Liu*, Fabian Höltke, and Matthias Althoff

Abstract— The safety validation of motion planning algo-
rithms for automated vehicles requires a large amount of
data for virtual testing. Currently, this data is often collected
through real test drives, which is expensive and inefficient,
given that only a minority of traffic scenarios pose challenges
to motion planners. We present a workflow for generating a
database of challenging and safety-critical test scenarios that
is not dependent on recorded data. First, we extract a large
variety of road networks across the globe from OpenStreetMap.
Subsequently, we generate traffic scenarios for these road
networks using the traffic simulator SUMO. In the last step,
we increase the criticality of these scenarios using nonlinear
optimization. Our generated scenarios are publicly available
on the CommonRoad website.

I. INTRODUCTION

Virtual testing is an important tool for validating the
safety of automated vehicles, as it exposes potential defects
of the algorithms under test. Having a large variety of
challenging traffic scenarios is vital for effective and efficient
testing of motion planning algorithms. While carrying out
simulations using data recorded from test drives provides us
with realistic scenarios, the required data collection is often
overly expensive and time-consuming [1]. Even though the
number of publicly-available datasets has increased over the
last few years, e.g., [2]–[5], they usually feature only a small
number of maps and require much effort to record.

Our framework generates a database of safety-critical
scenarios for scenario-based testing [6] of motion planing
algorithms for automated vehicles. It consists of

1) Extracting interesting road intersections worldwide
from OpenStreetMap (OSM) [7] by using our Globe-
trotter tool (see Sec. III).

2) Generating safety-critical test scenarios by first pop-
ulating the extracted intersections with traffic partici-
pants through the traffic simulator SUMO [8].

3) Optimizing the criticality of the obtained scenarios by
using a generalizable criticality criterion (see Sec. IV).

A. Related Work

Below, we concisely review related works on approaches
towards automatically creating virtual representations of road
networks and generating critical test scenarios for automated
vehicles.

*The first two authors have contributed equally to this work.
All authors are with the Department of Informatics, Technical University

of Munich, 85748 Garching, Germany.
{moritz.klischat, edmond.irani, fabian.hoeltke,

althoff}@tum.de

1) Creating road networks: Generative approaches con-
struct road networks, e.g., based on abstract specifications
[9]. Moreover, a suite of road networks with a defined cover-
age of road curvatures is generated in [10] using satisfiability
modulo theories. Road networks that lead to the failure of
lane-keeping assistants are generated procedurally in [11]
through mutating road networks using genetic algorithms.

Alternatively, road networks can also be created from
external sources. In [12]–[16], the authors extract road
networks from aerial and satellite images with the help of
computer vision techniques. These works are capable of ex-
tracting high-level geometric information of road networks;
however, lane-level information concerning motion planners
of automated vehicles is not reconstructed. Promising works
towards the reconstruction of road networks with lane-level
detail from aerial images can be seen in [17], [18]. Similarly,
while creating road networks for single lanes from OSM data
is straightforward [19], creating those with lane-level detail
is a more challenging problem [20].

2) Generating critical test scenarios: Creating test sce-
narios for automated vehicles using traffic simulators is
proposed, e.g., in [21], [22]. Realistic scenarios can be
obtained by calibrating their simulations through real-world
measurements. By using criticality metrics, safety-critical
scenarios are filtered [22]; however, these situations occur
only rarely, in the main.

To efficiently obtain critical scenarios, importance sam-
pling from large databases of recorded traffic data is pro-
posed [23]. Criticality metrics are combined with the occur-
rence rates to efficiently sample critical scenarios representa-
tive of real-world driving conditions [24]. Other approaches
use optimization to create critical scenarios based on these
metrics [25], [26]. Similarly, falsification methods can detect
scenarios that falsify a motion planner with respect to a given
safety specification [27], [28]. Parameter regions for critical
scenarios based on constraint satisfaction are computed in
[29]. In our previous work, we presented an optimization-
based method to increase the criticality of initially uncritical
traffic scenarios [30], [31] by decreasing the space of possible
solutions for the vehicle under test, called the drivable area.

B. Contributions

In contrast to previous work on generating test scenarios
through simulation, our approach is particularly efficient
since we combine the automatic extraction of road networks
from OSM with a traffic simulation followed by an increase
of its criticality. By exploiting the large variety of road
networks around the world, we create complex, yet realistic

Appendix A. Reproduction of Publications

108

road networks which currently no procedural map generator
is capable of producing. In contrast to existing work, our
approach does not rely on test drives nor other real-world
traffic data, thus it is able to efficiently create many traffic
scenarios at low costs. The resulting scenarios are indepen-
dent of the vehicle under test, due to our criticality metric
based on the drivable area.

II. OVERVIEW

An overview of our approach is presented in Fig. 1. In the
following subsections, we introduce each component.

Fig. 1. Our pipeline for generating safety-critical scenarios.

A. Platforms

1) CommonRoad: The CommonRoad (CR) benchmark
suite1 is an open-source framework that provides a collection
of traffic scenarios for motion planning algorithms. Scenarios
in CommonRoad consist of road networks, static obstacles,
and dynamic obstacles that represent all possible types of
traffic participants. In this work, we focus on cars, trucks,
and bicycles. Road networks in CommonRoad are described
by lanelets [32] (see Fig. 2). Lanelets are defined by their left
and right bounds, which are modeled by polylines. Further-
more, lanelets are connected through successor-predecessor
and lateral-adjacency relations and contain additional in-
formation such as the speed limit. Additionally, we define
forking points as the points on the centerlines of lanelets
where lanelets split or multiple lanelets merge.

2) OpenStreetMap: OSM is an open-source project that
provides geographic data worldwide. The main structure
of OSM data is defined by three elements: nodes, ways,
and relations. Nodes are geographic points defined by their
latitude and longitude; ways are tuples of nodes and represent
elements such as roads and boundaries of areas; relations are
groups of nodes, ways and other relations. Fig. 3a shows a
map taken from OpenStreetMap.

1https://commonroad.in.tum.de/

Fig. 2. Lanelet network representation.

3) GeoNames: GeoNames2 is a free geographic database
which covers all countries and contains over 11 million
placenames of cities from all over the world. The provided
geographical information includes global coordinates, postal
codes, population, etc.

4) SUMO: This open-source microscopic traffic-
simulation package is designed to handle large road
networks. SUMO models individual vehicles and their
interactions using models for car-following, lane-changing,
and intersection behavior.

B. Converters

Since most of the software platforms mentioned above
have individual formats and map representations, we use
different converters and interfaces to bridge these platforms.

1) OSM2CR converter: It converts OSM maps to Com-
monRoad lanelet networks. While OSM provides map data
for almost any place in the world, their level of detail is
not yet suited for automated vehicles: The motion planners
of automated vehicles and traffic simulators typically require
lane-level information. To resolve this issue, in the first step,
the topology of the lanelet network, i.e., the connections at
intersections, needs to be estimated. Next, spatial information
of individual lanes is deducted accordingly. Fig. 3b shows a
converted lanelet network via this converter.

2) CR-SUMO interface: It enables the communication
between CommonRoad and SUMO by a) converting the CR
road network to SUMO format, b) generating configuration
files for the simulation, and c) converting simulated vehicle
trajectories to the CR format. We refer the interested reader
to [33] for more details regarding this interface.

III. GLOBETROTTER

To automatically extract interesting road networks from
all over the world, we have developed the Globetrotter
tool, which takes the road network data from OSM as its
underlying input. As we want to create scenarios on distinct
road networks, we mainly focus on extracting intersections.
Below, we explain the major steps for extracting the inter-
sections from OSM.

2https://www.geonames.org/

A.6. Scenario Factory: Creating Safety-Critical Traffic Scenarios (ITSC2020)

109

(a)

(b)

Fig. 3. (a) Map of Encamp, Andorra taken from OSM. (b) Conversion
result into CommonRoad lanelet network via the OSM2CR converter.

A. Retrieving Candidate Regions

Clearly, there are intersections all over the globe, and they
mostly vary according to region. Given that only 29% of
the Earth’s surface is covered by land3, and that 10% of
these regions accommodate 95% of the human population4,
sampling the Earth’s surface with random coordinates is
not very efficient. Assuming that intersections mostly occur
near populated areas, we retrieve these populated candidate
regions from GeoNames. To speed up the processing in the
next steps, we can also divide the region into smaller subre-
gions if the area of the region exceeds a certain value. The
retrieved candidate (sub)regions are converted into lanelet
networks via the OSM2CR converter.

B. Extracting Intersections

We denote the n-th forking point and the tuple of all
forking points in a lanelet network as Pn and P , respectively.
For a given lanelet network, it is usually difficult to determine
beforehand the number of intersections to be extracted. For
this reason, instead of k-means-like algorithms [34], we
apply the hierarchical agglomerative clustering (HAC) algo-
rithm [35] to P . HAC only requires a distance threshold dth
to limit the distances between clusters: a higher dth entails
larger intersections. Alg. 1 describes how the intersections
are extracted from P .

1) Clustering forking points (Alg. 1, lines 2-4): Initially,
each forking point forms a cluster Cn with it being the only

3https://www.noaa.gov/
4https://ec.europa.eu/jrc/en

Algorithm 1 Extracting Intersections
Inputs: forking points P , distance threshold dth
Output: extracted intersections I

1: I ← ∅
2: . Clustering forking points
3: C ← INITIALIZE(P)
4: C ← HAC(C , dth)
5: . Creating intersections
6: for C ′ ∈ C do
7: I ← CUTLANELETS(C ′)
8: I ← POSTPROCESS(I)
9: I ← I ∪ {I}

10: end for
11: return I

member: Cn = {Pn}. We denote the tuple of clusters by
C := 〈C1, C2, . . . 〉, and the distance between two clusters
Ci, Cj with single-linkage setting [35] by di,j :

di,j = min{dist(a, b)|a ∈ Ci, b ∈ Cj},
where the operator dist(·) returns the Euclidean distance
between two given forking points. In each iteration, the two
clusters Ci, Cj with the minimum distance di,j < dth are
merged into a new cluster C ′ = Ci ∪ Cj . This process is
repeated until no more clusters can be merged. Fig. 4a-4b
show the dendrogram for clustering an exemplary lanelet
network and the clustered forking points.

2) Creating intersections (Alg. 1, lines 5-10): For each
remaining cluster C ′ ∈ C, we determine the minimum radius
rmin of a circle enclosing all forking points within the cluster.
We enlarge this radius by a user-defined margin rmgn to
span a region of interest. We cut out all lanelets from this
region, resulting in an intersection I , and additionally apply
the following steps:

1) Lanelets that are not within the region of interest are
removed.

2) Due to removed lanelets, we update the successor-
predecessor and lateral-adjacency relations.

Fig. 4c shows the extracted intersections I.

C. Selecting Interesting Intersections

Given the intersections I extracted from a lanelet network,
we only keep those that are particularly interesting or distinct
according to the following features:
• number of forking points;
• number of lanelets;
• number of crossing lanelets;
• number of predecessors and successors;
• area of lanelets;
• density of lanelets;
• angle between lanelets; and
• mean distance between forking points and their cen-

troid.
We associate the interestingness of intersections with

the dissimilarity between their features and those of other

Appendix A. Reproduction of Publications

110

dth

0

10

20

30

40

50

60

70

5 6 7 2 0 31 4 15 16 11 12 13 14 10 8 9
ID of forking points

D
is

ta
nc

e
[m

]

(a)

0
1
3 4

2

5

6
7 8

10
11

12
13 14

15

16

radius = rmin radius = rmin + rmgn

9

(b)

(c)

Fig. 4. (a) Dendrogram of the clustering result. Three clusters are generated
with dth set to 35 meters. (b) Forking points within one cluster have the
same color. rmgn is set to 15 meters. (c) Intersections extracted from the
input lanelet network.

intersections. By doing so, we turn the selection of interesting
intersections into a multivariate outlier (anomaly) detection
problem. To solve this problem, we use the isolation forest
(iForest) algorithm [36], since it is unsupervised, capable
of efficiently handling multiple dimensions of features, and
requires limited effort to hand-tune its parameters. In the
training phase, a total of k isolation trees (iTrees) are trained
with sets of randomly-selected intersections; in the detection
phase, an anomaly score s ∈ [0, 1] is assigned to each
intersection by the iTrees [36], where an intersection with
a score above a threshold sth is considered an outlier. Fig. 5
presents a collection of distinct intersections. It should be
recalled that we divide the candidate region into subregions
if it is overly large, thus rendering the adopted iForest
algorithm computationally tractable.

IV. GENERATION OF SAFETY-CRITICAL SCENARIOS

On the extracted maps, we simulate traffic participants
using our previously-introduced CR-SUMO interface next.
Since scenarios simulated with SUMO often yield uncritical,
easy-to-solve motion planning problems, we subsequently

increase their criticality using our approach [30], [31] for
reducing the solution space. We first parametrize the initially
obtained trajectories of other traffic participants in Sec. IV-
B and, following that, formulate a nonlinear optimization
problem with a criticality criterion specified in Sec. IV-D.

A. Motion Planning Problem

The system dynamics of the ego vehicle is defined by

ẋe(t) = f(xe(t), u(t)),

where xe(t) ∈ Rn is the state vector and u(t) ∈ U is the
input vector with the set of admissible inputs U ∈ Rm.

The trajectories of ntp other traffic participants are given
by xi(t; p), i ∈ {1, ..., ntp} with parameters p ∈ Rnp ,
initial time t0, and final time tf . Initial candidates for these
trajectories are obtained from SUMO; their parametrization
is explained in more detail in Sec. IV-B. The occupied space
Oi(t; p) ⊂ R2 of a traffic participant is obtained through the
occ(·) operator, i.e., Oi(t; p) = occ(xi(t; p)). We define the
motion planning problem for the ego vehicle as a classical
reach-avoid problem: given an initial state xe,0 = xe(t0),
an input trajectory u(t) has to be found to steer the ego
vehicle into a goal region while not leaving the road surface
Wlanes ∈ R2 and avoiding the space O(t; p) occupied by all
obstacles, i.e.,

∀t ∈ [t0, tf] : occ(xe(t)) ⊆ Wlanes\O(t; p). (1)

We obtain a motion planning problem by deleting a
selected vehicle in a scenario simulated with SUMO and
storing the initial state xe,0 of this vehicle. Vehicles with
interesting maneuvers are automatically selected by using
thresholds on the velocity and acceleration profiles or by
identifying lane changes, turns or vehicles driving nearby.

B. Scenario Parametrization

In order to optimize the criticality of scenarios, we
parametrize trajectories by the parameter vector p. We de-
scribe trajectories in lane-based coordinate systems, in which
a state is defined as x = [sξ, ṡξ, sη, ṡη]

T . The subscripts ξ
and η denote the longitudinal and lateral coordinates with
respect to the centerline, respectively (see Fig. 2).

For the ntp traffic participants, we only parametrize the
longitudinal trajectory using translations ps ∈ Rntp , initial
velocity variations pv ∈ Rntp , and acceleration variations
pa ∈ Rntp , yielding p =

[
ps, pv, pa

]T
. The parametrized

longitudinal position trajectory is given by

sξ,i(t; pi) = ŝξ,i(t) + psi + pvi t+
1

2
pai t

2. (2)

From (2), the centerlines, and the dimensions of the vehi-
cle, we obtain the occupied space Oi(t, p) of each traffic
participant.

A.6. Scenario Factory: Creating Safety-Critical Traffic Scenarios (ITSC2020)

111

Fig. 5. Selected road intersections generated by Globetrotter (sth = 0.9).

C. Drivable Area

We denote a feasible solution to the motion planning
problem defined in Sec. IV-A as χ(t;x0, u(·)), where u(·)
refers to the entire trajectory instead of a particular value
u(t) at time t. To quantify the criticality of a scenario, we use
the solution space, which corresponds to the set of reachable
states for t ∈ [t0, tf] without collisions:

R(t;x0,O(· ; p)) =
{
χ(t;x0, u(·))

∣∣∣

∀τ ∈ [t0, tf] : u(τ) ∈ U ,

occ
(
χ(τ ;x0, u(·))

)
⊆ Wlanes\O(τ ; p)

}
.

By applying the projection operator proj(x) : Rn → R2,
which projects the state space to the position domain, we
obtain the drivable area

D(t;x0,O(· ; p)) =
⋃

x∈R(t;x0,O(· ;p))
proj(x). (3)

An example for the drivable area in presence of an obstacle
is depicted in Fig. 6.

drivable area D(t;x0,O(· ; p)) obstacle Oi(t)

initial state ego xe,0

feasible trajectory χ(t;x0, u(·))

Fig. 6. Example of a drivable area for the time interval [t0, tf].

To quantify the solution space, we introduce the function
area(X) returning the area of a set. We write

A(t; p) := area
(
D(t;x0,O(· ; p))

)

to obtain the area profile of the drivable area over time. We
compute the drivable area using our approach as in [37].

D. Optimization Problem
For increasing the criticality of the motion planning prob-

lem, we optimize the parameter vector p to obtain a desired,
critical area profile Acrit(t):

argmin
p

κ(p), κ(p) =

∫ tf

0

(
A(t; p)−Acrit(t)

)2

(4)
subject to ∀t, ∀i,∀j 6= i : Oi(t; p) ∩ Oj(t; p) = ∅.

(5)

The constraint in (5) ensures that no traffic participants
collide with each other. In this work, we use the drivable
area computed without any traffic participants and the scalar
γ ∈]0, 1[which quantifies the reduction of the drivable area:
Acrit(t) = γ · area(D(t;x0, ∅)).

Since the drivable area is highly nonlinear with respect
to the trajectories of other traffic participants and possibly
subjected to local minima, we use particle swarm optimiza-
tion [38] as in our previous work [30]. Furthermore, we
implement a repair algorithm that enforces the collision
constraint (5). To that end, we formulate the collision con-
straints as linear inequality constraints and correct infeasible
solutions by computing the closest feasible solution using
linear programming. A more efficient optimization is ensured
by an a priori computation of relevant parameter intervals as
presented in [30].

V. EVALUATION

We demonstrate our approach by generating scenarios
on a large variety of road networks from various places
across the world. First, we obtain 576 road networks from
8 countries and 46 cities from Globetrotter, for each of
which we simulate multiple scenarios using our CR-SUMO
interface. After selecting interesting ego vehicles, we obtain
1402 scenarios for which we optimize the criticality. The
resulting scenarios are added to our website5.

5https://commonroad.in.tum.de/

Appendix A. Reproduction of Publications

112

In Fig. 7a we compare the area profiles A(t; p) of the
drivable area in the optimized scenarios against the initial
scenario obtained from SUMO: our approach is able to
significantly decrease the drivable area, and it thus increases
the criticality. Fig. 7b shows the distribution of the achieved
reduction of the critical area. For most of the optimized
scenarios, the drivable area ranges between 0.2 – 0.3 of its
initial size.

TABLE I
PARAMETERS FOR CRITICALITY OPTIMIZATION

Drivable area computation
max. acceleration ego vehicle |amax| 5.0 m/s2

time step size ∆t 0.1 s

time horizon tf 3.4 s

Constraints for optimization
initial velocity variation [−3, 3] m/s

acceleration variation [−5, 2] m/s2

0 1 2 3
time [s]

0

50

100

dr
iv

ab
le

ar
ea

[m
2
]

initial area
optimized area

(a)

0.00 0.25 0.50 0.75 1.00
relative size of the drivable area

0

100

200

300

fr
eq

ue
nc

y

(b)

Fig. 7. (a) Size of the drivable area A(t; p) over time, averaged over all
scenarios. (b) Histogram of the size of the drivable area in the optimized
scenarios relative to the initial scenarios.

Let us present some concrete examples for demonstrating
our algorithm. The first example is an intersection from
the town Pula, Croatia. In Fig. 8, we compare the drivable
area of the initial scenario obtained from SUMO with the
optimized scenario. Note that we restrict the allowed road
surface Wlanes to lanelets that the ego vehicle is allowed
to drive in. In the initial scenario, the ego vehicle could
either turn freely to the right or drive straight. However, after
the optimization, two turning vehicles and a bicycle restrict
possible maneuvers of the ego vehicle.

The second example is a four-way intersection from the
town Putte, Belgium. In the optimized scenario, the ego vehi-
cle must either respect an oncoming vehicle when turning left
or a bicycle when driving straight. As a result, the drivable
area is split into two parts, as shown in Fig. 9.

VI. CONCLUSIONS

We present an approach to automatically generate a large
number of test scenarios for automated vehicles. Our results
show that we are able to extract a large number of distinct
road networks from OpenStreetMaps, for which we simulate
traffic scenarios using the traffic simulator SUMO. Our
approach subsequently yields challenging scenarios by de-
creasing the solution space for motion planning algorithms.

The generated, publicly-available scenarios render the
virtual testing of motion-planning algorithms in challenging

initial position
ego vehicle

t = 0.0 s

t = 1.5 s

drivable areavelocity

t = 3.2 s

(a) Initial scenario from simulation. (b) Optimized, more critical scenario.

Fig. 8. Example 1: Comparison of the drivable areas at different times.

t = 0.0 s

initial position
ego vehicle

t = 1.7 s

drivable area

velocity

t = 3.3 s

(a) Initial scenario from simulation. (b) Optimized, more critical scenario.

Fig. 9. Example 2: Comparison of the drivable areas at different times.

situations easier. In the future, the explicit consideration of
traffic rules during the generation of our critical scenarios
will further improve our test cases.

A.6. Scenario Factory: Creating Safety-Critical Traffic Scenarios (ITSC2020)

113

ACKNOWLEDGMENTS

The authors would like to thank Chuxuan Li for her
work on the SUMO interface and Maximilian Rieger for
his work on the OSM2CR converter. We gratefully ac-
knowledge the financial support from the Central Innovation
Programme of the German Federal Government under grant
no. ZF4086007BZ8 and the German Research Foundation
(DFG) within the Priority Programme SPP 1835 Cooperative
Interacting Automobiles under grant no. AL 1185/4-2.

REFERENCES

[1] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transp. Res. Part A: Policy Pract., vol. 94, pp. 182–193, 2016.

[2] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,
J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and
M. Tomizuka, “INTERACTION dataset: An INTERnational, Adver-
sarial and Cooperative moTION dataset in interactive driving scenarios
with semantic maps,” arXiv:1910.03088, 2019.

[3] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Fer-
reira, M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah,
A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky, W. Jiang, and V. Shet,
“Lyft Level 5 AV dataset 2019,” https://level5.lyft.com/dataset/, 2019.

[4] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik,
P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han,
J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao,
A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scala-
bility in perception for autonomous driving: Waymo Open dataset,”
arXiv:1912.04838, 2019.

[5] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD
dataset: A drone dataset of naturalistic vehicle trajectories on German
highways for validation of highly automated driving systems,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2018, pp. 2118–2125.

[6] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer,
“Survey on scenario-based safety assessment of automated vehicles,”
IEEE Access, vol. 8, pp. 87 456–87 477, 2020.

[7] M. Haklay and P. Weber, “OpenStreetMap: User-generated street
maps,” IEEE Pervasive Comput., vol. 7, no. 4, pp. 12–18, 2008.

[8] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO–
simulation of urban mobility: an overview,” in Proc. of Int. Conf. Adv.
Syst. Simul., 2011, pp. 63–68.

[9] C. Campos, J. M. Leitão, J. P. Pereira, A. Ribas, and A. F. Coelho,
“Procedural generation of topologic road networks for driving simu-
lation,” in Iberian Conf. Inf. Syst. Technol., 2015, pp. 1–6.

[10] B. Kim, A. Jarandikar, J. Shum, S. Shiraishi, and M. Yamaura, “The
SMT-based automatic road network generation in vehicle simulation
environment,” in Proc. of the ACM Int. Conf. Embed. Softw., 2016,
pp. 1–10.

[11] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-
driving cars with search-based procedural content generation,” in Proc.
of the 28th ACM SIGSOFT Int. Symposium on Software Testing and
Analysis, 2019, pp. 318–328.

[12] G. Máttyus, W. Luo, and R. Urtasun, “DeepRoadMapper: Extracting
road topology from aerial images,” in Proc. of the IEEE Int. Conf.
Comput. Vision, 2017, pp. 3438–3446.

[13] M. Maboudi, J. Amini, M. Hahn, and M. Saati, “Road network
extraction from VHR satellite images using context aware object
feature integration and tensor voting,” Remote Sens., vol. 8, no. 8,
2016.

[14] P. Li, Y. Zang, C. Wang, J. Li, M. Cheng, L. Luo, and Y. Yu, “Road
network extraction via deep learning and line integral convolution,” in
Proc. of the Int. Geosci. Remote Sens. Symp., 2016, pp. 1599–1602.

[15] Y. Zang, C. Wang, Y. Yu, L. Luo, K. Yang, and J. Li, “Joint enhancing
filtering for road network extraction,” IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 3, pp. 1511–1525, 2016.

[16] Y. Y. Chiang and C. A. Knoblock, “Automatic extraction of road
intersection position, connectivity, and orientations from raster maps,”
in Proc. of the ACM Int. Symp. Adv. Geogr. Inf. Syst., 2008, pp. 183–
192.

[17] P. Fischer, S. M. Azimi, R. Roschlaub, and T. Krauß, “Towards HD
maps from aerial imagery: Robust lane marking segmentation using
country-scale imagery,” Int. J. Geo-Inf., vol. 7, no. 12, 2018.

[18] A. Zang, Z. Li, R. Xu, and D. Doria, “Lane boundary extraction from
satellite imagery,” in Proc. of the ACM SIGSPATIAL Workshop High-
Precis. Maps Intell. Appl. Auton. Veh., 2017, pp. 1–8.

[19] A. Artunedo, J. Godoy, and J. Villagra, “Smooth path planning for
urban autonomous driving using OpenStreetMaps,” in Proc. of the
IEEE Intell. Veh. Symp., 2017, pp. 837–842.

[20] D. Krajzewicz, G. Hertkorn, and J. Ringel, “Preparation of digital
maps for traffic simulation; part 1: approach and algorithms,” in Proc.
Ind. Simul. Conf., 2005, pp. 285–290.

[21] D. Nalic, A. Eichberger, G. Hanzl, M. Fellendorf, and B. Rogic,
“Development of a co-simulation framework for systematic generation
of scenarios for testing and validation of automated driving systems,”
in Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2019, pp. 1895–
1901.

[22] P. Riegl, A. Gaull, and M. Beitelschmidt, “A tool chain for generating
critical traffic situations for testing vehicle safety functions,” in IEEE
Int. Conf. on Vehicular Electronics and Safety, 2019, pp. 1–6.

[23] D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa,
and C. S. Pan, “Accelerated evaluation of automated vehicles safety
in lane-change scenarios based on importance sampling techniques,”
IEEE Trans. Intell. Transp. Syst., vol. 18, no. 3, pp. 595–607, 2017.

[24] S. Feng, Y. Feng, C. Yu, Y. Zhang, and H. X. Liu, “Testing scenario
library generation for connected and automated vehicles, part I:
Methodology,” arXiv:1905.03419, 2020.

[25] F. Hauer, A. Pretschner, and B. Holzmüller, “Fitness functions for
testing automated and autonomous driving systems,” in Proc. of the
Int. Conf. Comput. Safety, Rel., Security, 2019, pp. 69–84.

[26] H. Beglerovic, M. Stolz, and M. Horn, “Testing of autonomous
vehicles using surrogate models and stochastic optimization,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2018, pp. 1129–1134.

[27] C. E. Tuncali, T. P. Pavlic, and G. Fainekos, “Utilizing S-TaLiRo as
an automatic test generation framework for autonomous vehicles,” in
Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2016, pp. 1470–1475.

[28] M. Koschi, C. Pek, S. Maierhofer, and M. Althoff, “Computationally
efficient safety falsification of adaptive cruise control systems,” in
Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2019, pp. 2879–
2886.

[29] A. Nonnengart, M. Klusch, and M. Christian, “CriSGen : Constraint-
based generation of critical scenarios for autonomous vehicles,” in
Proc. of the Int. Workshop on Formal Methods for Autonomous
Systems, 2019.

[30] M. Klischat and M. Althoff, “Generating critical test scenarios for
automated vehicles with evolutionary algorithms,” in Proc. of the IEEE
Intell. Veh. Symp., 2019, pp. 2352–2358.

[31] M. Althoff and S. Lutz, “Automatic generation of safety-critical test
scenarios for collision avoidance of road vehicles,” in Proc. of the
IEEE Intell. Veh. Symp., 2018, pp. 1326–1333.

[32] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in Proc. of the IEEE Intell. Veh.
Symp., 2014, pp. 420–425.

[33] M. Klischat, O. Dragoi, M. Eissa, and M. Althoff, “Coupling SUMO
with a motion planning framework for automated vehicles,” in SUMO:
Simulating Connected Urban Mobility, 2019.

[34] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognit. Lett., vol. 31, no. 8, pp. 651–666, 2010.

[35] F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative
clustering method: which algorithms implement Ward’s criterion?” J.
Classif., vol. 31, no. 3, pp. 274–295, 2014.

[36] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. of
the IEEE Int. Conf. Data Mining, 2008, pp. 413–422.

[37] M. Klischat and M. Althoff, “A multi-step approach to accelerate the
computation of reachable sets for road vehicles,” in Proc. of the IEEE
Int. Conf. Intell. Transp. Syst., 2020.

[38] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. of the Int. Symp. Micro Mach. Human Sci., 1995, pp.
39–43.

Appendix A. Reproduction of Publications

114

Appendix B
Supervised Theses

B.1 Bachelor Theses

[86] F. Höltke, “Globetrotter: Automatic extraction of interesting road networks
around the world via machine learning techniques,” Bachelor Thesis, Technical
University of Munich, 2020.

[87] A. Steck, “Generation of interactive benkchmark for motion planning of
autonomous vehicles,” Bachelor Thesis, Technical University of Munich, 2020.

[88] Y. Salama, “Group formation of automated vehicles with set-based prediction,”
Bachelor Thesis, German University in Cairo, 2021.

[89] L. Hornik, “Comparing invariably safe sets with responsibility sensitive safety,”
Bachelor Thesis, Technical University of Munich, 2022.

[90] M. A. Hammami, “Specification-compliant maneuver planning via reachable sets,”
Bachelor Thesis, Technical University of Munich, 2022.

B.2 Master Theses

[91] M. Weiß, “Computation of reachable sets for multi-uav motion planning applica-
tions,” Master Thesis, Technical University of Munich, 2020.

[92] D. Trufanov, “Specification-compliant maneuver extraction from reachability anal-
ysis of automated vehicles,” Master Thesis, Technical University of Munich, 2021.

[93] Z. Wang, “Motion planning for autonomous vehicles using RRTs and reachable
sets,” Master Thesis, Technical University of Munich, 2021.

[94] J. Hohenadel, “Cooperative motion planning for automated vehicles using reach-
able sets,” Master Thesis, Technical University of Munich, 2022.

[95] X. Zhang, “Computing interaction-aware reachable sets of automated vehicles us-
ing monte carlo tree search,” Master Thesis, Technical University of Munich, 2023.

[96] Y. Ge, “Reachable set negotiation with traffic rules,” Master Thesis, Technical
University of Munich, 2023.

115

	Abstract
	Zusammenfassung
	Acknowledgment
	1 Introduction
	1.1 Specification-Compliant Motion Planning
	1.1.1 Specifications
	1.1.2 Specification-Compliant Motion Planning
	1.1.2.1 Considering Specifications After Motion Planning
	1.1.2.2 Considering Specifications During Motion Planning

	1.2 Cooperative Motion Planning
	1.2.1 Multi-Objective Optimization
	1.2.2 Reservation-based Conflict Resolution

	1.3 Contributions
	1.4 Publications and Outline

	2 Methods
	2.1 General Setup
	2.2 Temporal Logic
	2.2.1 Metric Temporal Logic with Past over Finite Traces
	2.2.2 Linear Temporal Logic (with Past over Finite Traces)
	2.2.3 Propositional Logic

	2.3 Reachability Analysis
	2.4 Motion Planning using Reachability Analysis
	2.5 Cooperative Motion Planning using Reachability Analysis

	3 Conclusions
	3.1 Summary
	3.2 Future Work

	Bibliography
	A Reproduction of Publications
	A.1 Computing Specification-Compliant Reachable Sets for Motion Planning of Automated Vehicles iraniliu2021computing
	A.2 Specification-Compliant Driving Corridors for Motion Planning of Automated Vehicles iraniliu2023specification
	A.3 Specification-Compliant Motion Planning of Cooperative Vehicles Using Reachable Sets iraniliu2023specification2
	A.4 Provably-Safe Cooperative Driving via Invariably Safe Sets iraniliu2020provably
	A.5 CommonRoad-Reach: A Toolbox for Reachability Analysis of Automated Vehicles iraniliu2022commonroad
	A.6 Scenario Factory: Creating Safety-Critical Traffic Scenarios for Automated Vehicles klischat2020scenario

	B Supervised Theses
	B.1 Bachelor Theses
	B.2 Master Theses

