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Abstract

In light of the increasing level of precision of experimental measurements, providing theo-
retical predictions at the highest accuracy possible is crucial for a correct understanding of
current and future LHC data. In this thesis we analyse one of the main building blocks to
obtain realistic and precise simulations of events at colliders, namely the matching between
fixed-order calculations and parton showers.

Fixed-order calculations in perturbation theory and parton showers are the two main tools
needed to describe an event at a collider. The former is suitable to describe accurately the hard
scattering process, the latter provides a realistic picture in the soft and collinear approximation
of the production of a high-multiplicity final state. They are thus two complementary
approaches that need to be combined in order to achieve the most realistic predictions. The
current state of the art for such matching procedure is given by NNLO+PS accuracy, which
means retaining the NNLO QCD accuracy of the fixed-order computation without spoiling
the structure of the parton shower.

The MINNLOPS method is a powerful tool for reaching NNLO+PS accuracy, as it requires
neither a computationally intense reweighting nor the introduction of unphysical parameters
for partitioning the phase space. In this thesis we present cutting-edge results obtained by
applying this method to relevant LHC processes.

We first present a phenomenological analysis for Higgsstrahlung with subsequent decay
of the Higgs boson to a pair of bottom quarks, which is crucial for the determination of the
bottom Yukawa coupling. We show that the inclusion of NNLO QCD effects is fundamental
for a correct description of this process. Moreover, we present non-trivial effects associated to
the identification of b-jets through different jet-clustering algorithms.

We then extend the computation of pp → ZH → ℓ+ℓ−bb̄ production to the SM Effective
Field Theory (SMEFT), including dimension-six operators in the calculation that modify the
SM Higgs field and couplings up to NNLO QCD accuracy, targeting NNLO+PS accuracy in
the SMEFT. We present kinematic observables that are strongly affected by the considered
operators and can thus be used to enhance our sensitivity to new physics effects.

We conclude by presenting a novel strategy to match NNLO QCD and NLO EW computa-
tions with parton showers using an a-posteriori reweighting. We discuss phenomenological
results for W±Z production, which can be used as a probe of the gauge symmetry structure
of the EW sector. We identify different combination schemes between QCD and EW computa-
tions matched with QCD and/or QED showers and we analyse their capabilities to describe
certain kinematic regions of relevant distributions.
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Zusammenfassung

Angesichts der zunehmenden Präzision experimenteller Messungen ist es notwendig, theoreti-
sche Vorhersagen mit größtmöglicher Genauigkeit zu erreichen, um ein akkurates Verständnis
der aktuellen und zukünftigen LHC-Daten zu gewährleisten. In dieser Arbeit beleuchten
wir einen der wesentlichen Bausteine um eine realistische und präzise Simulation von
Streuereignissen an Teilchenbeschleunigern zu erreichen, nämlich die Kombination von
Präzisionsrechnungen zu fester Ordnung in der Störungstheorie und Teilchenschauern.

Die Berechnung höherer Ordnungen in der Störungstheorie sowie Teilchenschauer sind die
beiden Hauptbestandteile, die benötigt werden, um Ereignisse an Teilchenbeschleunigern zu
beschreiben. Ersteres dient der genauen Beschreibung des harten Streuprozesses, während
letzteres eine realistische Beschreibung für die Produktion von Endzuständen mit hoher
Teilchenzahl im Bereich der niederenergetischen und kollinearen Näherung liefert. Es handelt
sich somit um zwei komplementäre Ansätze, die zusammengeführt werden müssen, um
ihr volles Potenzial auszuschöpfen. Der aktuelle Stand der Wissenschaft für solch eine
Kombination entspricht der Genauigkeit von NNLO+PS, d.h. der Beibehaltung der NNLO-
Genauigkeit in Störungstheorie ohne Beeinträchtigung der Struktur des Teilchenschauers.

Die MINNLOPS-Methode ist ein wichtiges Werkzeug, um die NNLO+PS-Genauigkeit zu
erreichen, da sie weder eine rechenintensive Neugewichtung der simulierten Streuereignisse
noch die Einführung unphysikalischer Parameter zur Unterteilung des Phasenraums erfordert.
In dieser Arbeit präsentieren wir bahnbrechende Ergebnisse, die mit Hilfe dieser Methode
für wichtige LHC-Prozesse erzielt wurden.

Zunächst präsentieren wir eine phänomenologische Analyse für die Higgsstrahlung mit
anschließendem Zerfall des Higgsteilchens in ein Bottom-Quark-Paar, was entscheidend für
die Bestimmung der Yukawa-Kopplung von Bottom-Quarks ist. Wir zeigen, dass die Einbe-
ziehung von NNLO-Effekten für eine korrekte Beschreibung dieses Prozesses unerlässlich ist.
Darüber hinaus präsentieren wir nicht-triviale Effekte, die mit der Identifizierung von b-Jets
durch verschiedene Clusterbildungsalgorithmen von Jets verbunden sind.

Darauf folgend erweitern wir die Berechnung des Streuprozesses pp→ ZH → ℓ+ℓ−bb̄ auf
die Standardmodell-Effektive-Feldtheorie (SMEFT), indem wir die Beiträge von Operatoren bis
Dimension sechs in die Rechnung aufnehmen, die das Higgsfeld des Standardmodells und die
Kopplungen bis zur Ordnung NNLO in der Quantenchromodynamik (QCD) modifizieren,
mit dem Ziel eine NNLO+PS Rechnung in der SMEFT zur erreichen. Wir präsentieren
kinematische Observablen, die stark von den betrachteten Operatoren beeinflusst werden
und daher unsere Sensitivität erhöhen können um Effekte durch neue Physik zu finden.

Abschließend präsentieren wir eine neuartige Strategie um NNLO-QCD- und NLO-EW-
Berechnungen mit Teilchenschauern durch eine nachträgliche Neugewichtung der jeweiligen
Streuereignisse zu kombinieren. Wir diskutieren phänomenologische Ergebnisse für die
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W±Z-Produktion, welche als Test der Eichstruktur des EW-Sektors dienen können. Wir
identifizieren verschiedene Kombinationsschemata der QCD- und EW-Korrekturen, welche
konsistent mit QCD- und/oder QED-Schauern kombiniert sind, und analysieren ihre Fähig-
keit bestimmte kinematische Bereiche relevanter Verteilungen zu beschreiben.
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1. Introduction

The Standard Model (SM) is the unifying theory of three of the four known fundamental
forces, namely the electromagnetic, weak and strong interactions. It has proven to be
incredibly successful in the description of the subatomic world and, with the discovery of the
long-awaited Higgs boson on the 4th of July 2012, the completion of the model was finally
achieved. Our best understanding of how elementary particles interact among each other is
encapsulated in the SM and its striking success is proven by the excellent ability to describe
experimental data at colliders. Nowadays, the world’s largest and most powerful collider
is the Large Hadron Collider (LHC), in which protons collide at a centre-of-mass energy
of 13 TeV and the produced particles are detected by four main experiments (ATLAS, CMS,
ALICE and LHCb). The LHC was constructed as a discovery machine in 2008, with the main
goal of detecting the last missing particle of the SM puzzle, the Higgs boson. After only a
few years, the particle was observed and this milestone discovery signed the opening of a
new stage: the precision era.

In the coming years, the LHC will be converted to a precision machine, which is a revolu-
tionary step for a hadron collider. Traditionally only lepton colliders were used as precision
machines, mainly because of the clean environment that allows for precise measurements.
Anyway, the remarkable success of the LHC drove the physics community towards the
possibility of exploiting the potential of this machine even further. In the next few years, this
plan will lead to the so-called High Luminosity phase of the LHC (HL-LHC), which consists
in an upgrade of detectors and an increase in the luminosity. Concretely, this translates into
measurements with an unprecedented level of precision. It is thus clear that this challenging
project can lead to groundbreaking results only if a significant effort is made from the theory
community as well. A deep synergy between the theory and the experimental communities
in this regard is crucial, as the upcoming data can be correctly interpreted only through
theoretical predictions that match the experimental accuracy at least.

With the discovery of the Higgs boson, the SM has revealed to be more predictive than ever
in the description of processes at colliders. Despite this, it is well known that it cannot be
the final fundamental theory of nature, because it cannot describe some phenomena that are
experimentally observed (e.g. neutrino oscillations, Dark Matter, Dark Energy, asymmetry in
matter-antimatter) and it cannot be unified (at least, with our current understanding) with the
theory of General Relativity. In this context, precision physics represents a promising path
towards the discovery of physics Beyond the SM (BSM) that should appear as a discrepancy
between theoretical SM predictions and experimental data. As a consequence, precise
theoretical calculations are crucial to interpret accurate experimental data and to identify
possible small deviations in the data/theory comparison.

At the LHC, strong interaction physics, described by Quantum Chromodynamics (QCD),
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1. Introduction

is the dominant contribution. Increasing the accuracy of theoretical calculations concretely
means including higher-order contributions in perturbative QCD. This is a valid approach
in the high-energy limit because the coupling of the perturbative series (namely, the strong
coupling αs) is small. This fundamental property of QCD is referred to as asymptotic freedom.
The current state of the art for so-called fixed-order calculations is the inclusion of next-to-
next-to leading order (NNLO) corrections, which are of order O(α2

s ). Moreover, the increasing
precision of experimental data also requires the inclusion of electroweak (EW) corrections:
even though the EW coupling is much smaller than the strong one (α≪ αs), EW corrections
can have a dominant effect in some kinematic regions, especially in the deep tails of some
distributions. In order to give the best description possible on the whole spectrum, the new
frontier for precision predictions consists in reaching NNLO QCD and NLO EW accuracy.

Despite the enormous progress made in fixed-order computations in the past years, this
approach is not sufficient for a realistic description of processes at colliders. Fixed-order
computations can be performed only for few final state particles, which is in contrast to the
high-multiplicity final states that are observed at detectors. Moreover, this approach fails
in some kinematic regions or in presence of multiple scales due to the appearance of large
logarithmic contributions. These large corrections spoil the convergence of the perturbative
series. We can deal with these large contributions through resummation, which consists
in reordering the perturbative series so that, when considering an appropriate range for
these logarithms, the resummed series is convergent. Resummation can be performed either
through analytic methods or through a parton shower: albeit the accuracy of parton showers
is low, they are among the most employed tools in the high-energy physics community, thanks
to their flexibility in resumming all classes of logarithmic contributions and the possibility of
simulating realistic events at hadron colliders.

This thesis analyses in detail the matching between fixed-order calculations and parton
showers, which is one of the key building blocks for the construction of realistic predictions
for collider physics. Realistic predictions for events at colliders are usually obtained using
dedicated Monte Carlo (MC) event generators that are able to model an event from the high
energy limit down to the detector level. Improving the accuracy of this modelling is not an
easy task, as it should account for different effects associated with different energy scales.
More precisely, we can imagine an event at a collider as a sequence of phenomena that occur
at different energies and regimes. This hierarchy of scales allows us to study each of these
phenomena separately according to the factorization principle [1] for which physical effects at
high energy are not affected by low-energy physics, as they are widely separated in time.

At the LHC, protons collide at high energies in the hard scattering. This scattering is called
hard because it is related to a scale Q much higher than the QCD cutoff ΛQCD where the
perturbative regime breaks. This process is studied using a fixed-order computation so that
we can improve the description of the hard scattering including higher-order contributions
in the perturbative expansion. We should keep in mind that a complication is given by the
composite nature of protons: our perturbative approach holds only for partons (quarks and
gluons) in the initial state, as we cannot describe hadrons from first perturbative principles.
In order to deal with this problem, we can rely again on the factorization assumption and
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encode the non-perturbative structure of protons into parton distribution functions (PDFs) that
are extrapolated from data. As already discussed, sticking to a fixed-order computation is
not sufficient: the hard scattering deals with a 2→ n process, with n much smaller than the
number of final state particles observed at detectors. Moreover, a fixed-order calculation fails
in some kinematic regions due to large logarithmic contributions. These issues are solved by
the parton shower. The parton shower is the link between the high scale Q and the detector
level ΛQCD. It generates subsequent emissions from the external legs of the hard scattering
in the soft and collinear approximation, which captures the dominant contributions, thus
producing a cascade of splittings that leads to a high-multiplicity final state. These subsequent
splittings determine a degradation of the energy: the parton shower ends when the energy
reaches the ΛQCD cutoff. At this stage, the perturbative regime breaks down and we need
to rely on phenomenological models tuned to data for describing hadron formation. After
hadronization, event generators can also describe the decay of primary hadrons to stable
hadrons that reach the detectors.

It is now clear that increasing the accuracy in a realistic description of an event at a collider
is extremely complicated, as it requires improving the description of different phenomena
that are studied through different approaches and techniques. This thesis presents some
recent developments in the matching between fixed-order computations and parton showers,
as they are two complementary approaches that can be merged keeping the best features of
both. The main idea of the matching procedure is to keep the high accuracy of the fixed-order
computation while retaining the realistic description given by the parton shower. The current
state of the art is represented by NNLO+PS accuracy, which means retaining NNLO accuracy
for the hard scattering without spoiling the logarithmic structure of the parton shower. To
reach this accuracy, a standard strategy is not yet available in the literature but, among the
different methods at hand nowadays, the MINNLOPS approach plays a crucial role because of
its simplicity: it does not require a computationally demanding reweighting, as all the terms
needed are already present at the level of generation of events, and it does not introduce any
unphysical scale for separating the phase space according to the jet multiplicities.

In this thesis, we review some recent cutting-edge results obtained using the MINNLOPS

method. More precisely, this manuscript is structured as follows: in Part I we review the
theoretical framework, starting from a detailed presentation of fixed-order calculations and
parton shower simulations in chapter 2. We then largely discuss the problem of the matching
in chapter 3: we first present the POWHEG method for obtaining NLO+PS results in section
3.1, its improvements in the MINLO and subsequent MINLO′ methods in section 3.2, and
then we analyse in detail the MINNLOPS approach in section 3.3.

Part II is dedicated to phenomenological studies of key processes at the LHC. In chapter 4
we present NNLO+PS results for the production of a vector boson in association with a Higgs
boson (VH, with V = W±, Z) with subsequent decay of the Higgs boson into a pair of bottom
quarks (H → bb̄) as well as the decay of the vector boson V to all possible leptonic final states.
This process is fundamental for precision measurements in the Higgs sector, as it provides
direct access to the bottom Yukawa coupling and it actually yields the highest sensitivity to
its determination. In this context, we also discuss the differences among different clustering
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algorithms for the identification of b-jets, showing that the choice of the clustering algorithm
has a non-negligible impact on differential distributions.

In chapter 5 we extend our study of ZH production with H → bb̄ decay to the Standard
Model Effective Field Theory (SMEFT). We encode in our computation a set of dimension-six
operators that have a direct impact in QCD, reaching NNLO+PS accuracy in the SMEFT. We
formally consider also N3LO contributions that are associated to weakly constrained Wilson
coefficients. The main outcome is the identification of a set of observables that are particularly
suitable for increasing the sensitivity to the analysed SMEFT operators.

Chapter 6 shows results for W±Z production at NNLO QCD and NLO EW accuracy
matched to parton showers. The combination of QCD and EW results is a delicate issue,
especially in the presence of a parton shower: we present different possible combinations
that differ for terms beyond accuracy, analysing their differences for various observables and
identifying the optimal scheme. The presented method is pioneering for a possible extension
of the MINNLOPS framework towards the inclusion of EW effects, which is very challenging as
it requires a deep understanding of the mixed QCD/EW structure of higher-order corrections
within the MINNLOPS formalism.

We conclude in chapter 7 where we summarize our results and we discuss possible outlooks.

This thesis is largely based on the following publications by the author:

[2] S. Zanoli, M. Chiesa, E. Re, M. Wiesemann and G. Zanderighi, Next-to-next-to-leading
order event generation for VH production with H →bb decay, JHEP 07 (2022) 008, [2112.04168]

[3] U. Haisch, D. J. Scott, M. Wiesemann, G. Zanderighi and S. Zanoli, NNLO event
generation for pp→ Zh→ ℓ+ℓ−bb production in the SM effective field theory, JHEP 07 (2022) 054,
[2204.00663]

[4] J. M. Lindert, D. Lombardi, M. Wiesemann, G. Zanderighi and S. Zanoli, WZ pro-
duction at NNLO QCD and NLO EW matched to parton showers with MiNNLOPS, JHEP 11 (2022)
036, [2208.12660]

where the results described in chapters 4, 5 and 6 were originally presented.
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2. Theoretical Framework

Precise collider phenomenology relies on a profound understanding of QCD over a vast range
of scales, spanning from the proton mass to the centre-of-mass energy of the hard scattering.
The theoretical description of a collider event is extremely complicated as an event is made
up of different stages that appear at different energies: to appropriately describe each stage,
various theoretical and technical tools are needed.

In this chapter, we review the two most common tools that are used for obtaining predic-
tions at colliders in the perturbative regime: fixed-order calculations and parton showers.
Our main goal is to highlight the main features of both approaches, showing that they are
complementary tools that can be fully exploited when matched together: through their
matching, we can obtain predictions that are both precise and realistic. In fact, fixed-order cal-
culations deal with the hard collision and the accuracy of the calculation can be systematically
improved including higher-order contributions in the perturbative expansion of the cross
section. Fixed-order calculations thus allow for precise predictions. By contrast, parton shower
simulations describe the production of a high-multiplicity final state through a cascade of
splittings generated in a probabilistic way, and they thus connect the high-energy limit with
the detector level. Parton showers allow for realistic predictions.

To understand how the two descriptions can be matched together, we now present a
detailed overview of the two methods, introducing concepts and notations that will be useful
in the next chapters. Fixed-order calculations are discussed in section 2.1 while parton
showers are presented in section 2.2.

2.1. Fixed-order calculations

2.1.1. Preliminaries

We consider the following hadronic collision

h1 h2 → X , (2.1)

where h1 and h2 are the two incoming hadrons and X represents a generic final state. The
incoming momenta are labelled K⊕ for h1 and K⊖ for h2, where the subscripts ⊕ and ⊖ refer
to the direction of motion with respect to the collision axis.

Hadrons are not fundamental particles, as they present a composite structure of partons.
The hard collision we are interested in involves fundamental partons that carry only a fraction
of the total incoming momentum. We consider these partons aligned to the incoming hadrons
and we define the longitudinal momentum fraction x⊕ for the parton extrapolated from h1
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and x⊖ for the parton extrapolated from h2. The parton momenta k⊕ and k⊖ thus read

k⊕ = x⊕K⊕ , k⊖ = x⊖K⊖ , (2.2)

with {x⊕, x⊖} ∈ [0, 1]. The final state X can be considered as a generic n-body system so that
energy-momentum conservation is satisfied as follows:

x⊕K⊕ + x⊖K⊖ = k⊕ + k⊖ = k1 + ... + kn . (2.3)

The cross section for this process σ(h1 h2 → X) can be obtained relying on the factorization
theorem [1] through which the high-energy (short-distance) physics is factorized from the
low-energy (long-distance) one:

σ(h1h2 → X) = ∑
i,j

∫
dx⊕dx⊖ fi/h1(x⊕, µ2

F) f j/h2(x⊖, µ2
F)σ̂ij,X(ŝ, µ2

R, µ2
F) +O

(Λ2
QCD

Q2

)
. (2.4)

This equation is valid up to some non-perturbative corrections encoded in the last term,
where ΛQCD ∼ 0.2 GeV is the scale where QCD perturbation theory breaks down and Q is a
typical scale of the process. More details on this are given in section 2.1.2.

The term fi/h1(x⊕, µ2
F) ( f j/h2(x⊖, µ2

F)) is a parton distribution function (PDF), which repre-
sents the probability of extrapolating a parton of flavour i (j) from h1 (h2) with longitudinal
momentum fraction x⊕ (x⊖). PDFs are universal and they encapsulate the long-distance
structure of the proton. They are obtained fitting experimental data and they are evaluated at
a scale µF - namely the factorization scale - that is an unphysical scale we must introduce in
our calculation for reasons that will be made clear in the next sections.

The term σ̂ij,X represents the partonic cross section, which is a process-dependent quantity
that encodes the high-energy dynamics. It depends on the partonic energy, defined as
ŝ = (k⊕ + k⊖)2, the renormalization scale µR (another unphysical scale the meaning of which
will be made clear later) and the factorization scale µF. The partonic cross section is calculated
as the product of an appropriate flux factor, the n-body phase space and the ij→ X matrix
element, as follows:

σ̂ij,X(ŝ, µ2
R, µ2

F) =
1
2ŝ

∫ n

∏
l=1

d3⃗kl

(2π)32El
(2π)4δ4

(
k⊕ + k⊖ −

n

∑
l=1

kl

)
|Mij,X|2 . (2.5)

We note that we always assume spin and colour sums and averages already encoded in the
matrix element.

The partonic cross section is a perturbative object: its accuracy can be increased including
higher-order contributions in the expansion of the matrix element, which admits a perturbative
series in the coupling. In fact, considering only QCD effects the matrix element can be
expanded in terms of the coupling constant gs =

√
4π αs as

Mij,X = M(0)
ij,X +

(
gs√
4π

)
M(1)

ij,X +

(
gs√
4π

)2

M(2)
ij,X +O

((
gs√
4π

)3 )
, (2.6)
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where the superscripts in brackets represent the perturbative order. Including contributions
with increasing power of gs means accounting for terms that are increasingly suppressed,
making the calculation more precise. The terms M(i)

ij,X are calculated in perturbation theory
considering all the Feynman diagrams contributing to the process ij → X up to a certain
power of the coupling, according to the Feynman rules of the theory. The perturbative
expansion of the matrix element directly translates into an expansion of the partonic cross
section. In fact, when squaring equation (2.6), we obtain

|Mij,X|2 = |M(0)
ij,X|2 + 2αs Re[M(0)∗

ij,X ·M
(1)
ij,X] + α2

s |M(1)
ij,X|2 +O(α2

s ) , (2.7)

so that the partonic cross section admits the following expansion in αs:

σ̂ij,X = σ̂
(0)
ij,X + αs σ̂

(1)
ij,X + α2

s σ̂
(2)
ij,X +O(α3

s ) . (2.8)

Considering only the first order proportional to α0
s , we are performing a leading order (LO)

calculation. Adding one power of the coupling αs leads to a next-to-leading (NLO) calculation.
With two powers of the coupling α2

s we have a next-to-next-to-leading order (NNLO) calculation,
and so on. We stress again that here we consider only QCD corrections because αs is much
larger than the electroweak coupling α. However, given the unprecedented level of accuracy
required nowadays for precision phenomenology, the inclusion of subleading EW effects in
precise theoretical predictions is becoming urgent. Including EW effects consists not only in
including contributions proportional to the EW coupling but also mixed QCD/EW corrections
O(αs α). These calculations are highly non-trivial and they represent the current frontier for
precision physics. We will discuss in detail this problem in chapter 6.

To make the discussion easier, we now introduce the notation used in [5] and we will stick
to it for the rest of this work. The total cross section for h1 h2 → X (= k1 + ... + kn) at LO is

σLO =
∫

dΦnLB(Φn) , (2.9)

where dΦn includes the differential parton energy fractions (dx⊕, dx⊖) and the differential
n-body phase space (dΦn)

dΦn = dx⊕dx⊖dΦn = dx⊕dx⊖
n

∏
l=1

d3⃗kl

(2π)32El
(2π)4δ4

(
k⊕ + k⊖ −

n

∑
l=1

kl

)
, (2.10)

and the product LB(Φn) implicitly assumes a sum over the incoming flavours:

LB(Φn) = ∑
ij
Lij Bij(Φn) . (2.11)

The luminosity factor L is defined as the product of the PDFs

L = Lij(x⊕, x⊖) = fi/h1(x⊕, µ2
F) f j/h2(x⊖, µ2

F) , (2.12)

12



2. Theoretical Framework

and B(Φn), commonly referred to as Born contribution, is the LO squared matrix element
weighted with the appropriate flux factor:

B(Φn) = Bij(Φn) =
|M(0)

ij,X(Φn)|2
4k⊕k⊖

. (2.13)

When performing a NLO computation, we need to encode both real and virtual corrections:
real contributions are associated to the production of an extra particle in the final state while
virtual corrections arise from the interference of one-loop diagrams with the Born level. The
NLO cross section can be written as follows

σNLO =
∫

dΦnL
[
B(Φn) + V(Φn)

]
+
∫

dΦn+1LR(Φn+1) , (2.14)

where V(Φn) and R(Φn+1) are the virtual and the real contributions, respectively. The
(n + 1)-body phase space is straightforwardly given by:

dΦn+1 = dx⊕dx⊖dΦn+1 = dx⊕dx⊖
n+1

∏
l=1

d3⃗kl

(2π)32El
(2π)4δ4

(
k⊕ + k⊖ −

n+1

∑
l=1

kl

)
. (2.15)

The calculation of σNLO in (2.14) is non-trivial as both virtual and real corrections are affected
by singularities. In general, while performing calculations at NLO (and higher) accuracy,
cross sections are affected by ultraviolet (UV) and infrared (IR) divergences. UV divergences
arise when integrating over loop momenta while IR singularities are associated with soft
and/or collinear emissions. These singularities thus have a different origin and are handled
through different theoretical and technical tools. In order to fully understand the structure of
a fixed-order computation, we will review in detail how to remove UV and IR divergences in
the next sections, 2.1.2 and 2.1.3 respectively.

2.1.2. Ultraviolet divergences

When calculating loop integrals in virtual contributions, the momentum ℓ flowing in the loop
is not constrained by momentum conservation and should be integrated up to infinity. In
general, loop integrals have the following form∫ ∞

0

d4ℓ

(2π)4
1

(ℓ2 −m2)k , (2.16)

where the power k in the denominator depends on the specific propagators we are considering.
The integral can present singularities in the limit ℓ → ∞ (if 2k − 4 ≤ 0), and thus these
singularities are refferred to as ultraviolet (UV) divergences.

In Quantum Field Theory, UV divergences are handled through a well-established proce-
dure. Firstly, divergent integrals are subject to regularization, which consists in isolating the
divergences in the calculation. More precisely, we introduce extra parameters in the computa-
tion so that the result depends on these parameters and is divergent in the corresponding
physical limit. The most common options are [6]:
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• Cut-off regularization: the range of the loop integral is constrained by a cut-off scale Λ.
The physical limit is restored if Λ→ ∞.∫ ∞

0

d4ℓ

(2π)4
1

(ℓ2 −m2)k →
∫ Λ

0

d4ℓ

(2π)4
1

(ℓ2 −m2)k . (2.17)

Notice that this method is not Lorentz invariant, as the parameter Λ depends on the
frame of reference.

• Pauli-Villars regularization: auxiliary fields of mass M are added to the Lagrangian, or
directly as mass terms in the propagators, in order to render the integral convergent.
The physical limit is restored when M→ ∞, as the propagators of these extra particles
vanish.∫ ∞

0

d4ℓ

(2π)4
1

(ℓ2 −m2)k →
∫ ∞

0

d4ℓ

(2π)4

[
1

(ℓ2 −m2)k −
1

(ℓ2 −M2)k

]
. (2.18)

• Dimensional regularization: the dimensionality of the phase space is conventionally
reduced from d = 4 to d = 4− 2ϵ, with ϵ > 0. The physical limit corresponds to ϵ→ 0
and singularities appear as poles in ϵ.∫ ∞

0

d4ℓ

(2π)4
1

(ℓ2 −m2)k →
∫ ∞

0

d4−2ϵℓ

(2π)4−2ϵ

1
(ℓ2 −m2)k . (2.19)

In this procedure, the dimensionality of all the objects of the theory changes accordingly.

Once loop integrals are regularized, the result depends explicitly on the regularization
parameters (Λ, M or ϵ in the methods presented above) and divergences can be restored in
the corresponding physical limit.

The second step needed for handling UV divergences is called renormalization. Renor-
malization is a procedure that eliminates UV divergences expressing unphysical (or bare)
quantities in terms of physical parameters. The idea behind the renormalization procedure is
the following: we start from a bare Lagrangian that contains bare parameters. These bare
parameters are not physical, in the sense that they are not measurable in laboratories. At this
stage, loop integrals are divergent in the UV limit. After regularization, the isolated diver-
gences can be reabsorbed into a redefinition of the parameters of the theory that now become
physical parameters. Concretely, renormalization consists in adding a set of counterterms in
the Lagrangian that compensate for the UV divergences order by order in perturbation theory.
These counterterms are associated with renormalization constants Z that relate physical and
bare quantities together. Counterterms can be constructed using different renormalization
schemes, which are related to different possibilities in the choice of finite parts. One of the
most commonly used is the modified minimal subtraction scheme (MS) in which poles are
subtracted together with the term log (4π)− γE, where γE is the Eulero-Mascheroni constant.
This choice is particularly convenient because the finite expression that is removed always
arises in the UV limit of Feynman integrals.
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Once the Lagrangian is expressed only in terms of physical objects, divergences are not
present anymore, as they are hidden in the definition of the new renormalized parameters. In
this procedure, physical parameters gain a dependence on a scale, called renormalization scale
(µR): it represents an unphysical scale needed to perform the calculation, but physics does
not change when varying it.

The SM is a renormalizable theory, which means that the number of counterterms needed
in the renormalization procedure is finite and that this strategy can be applied to all orders
in perturbation theory. Thus, the SM is free from UV divergences. Considering the specific
case of QCD, the renormalization of the coupling constant is particularly important as it is
related to the fundamental property of asymptotic freedom. The bare coupling constant αbare

s is
related to the renormalized one αren

s through the renormalization constant Zαs as follows (see
standard textbooks [6, 7])

αbare
s = µ2ϵ

R Z2
αs

αren
s , (2.20)

where ϵ is the regularization parameter in dimensional regularization. The renormalization
constant Zαs is determined order by order in perturbation theory with the following expansion

Zαs = 1 + δZ(1)
αs . (2.21)

Bare quantities do not have any dependence on the renormalization scale: if we take the
derivative of (2.20) with respect to µR, we obtain an equation that governs the running of the
renormalized strong coupling when varying the renormalization scale:

dαbare
s

dµ2
R

= 0 → ∂αs(µR)

∂µ2
R

= −αs(µR)
1

µ2
RZ2

αs

∂µ2ϵ
R Z2

αs

∂µ2
R

. (2.22)

Note that we dropped the superscript in the renormalized couplings. Unless explicitly stated,
from now on all the parameters are considered renormalized. In the limit ϵ → 0, equation
(2.22) can be rewritten as

µ2
R

∂αs(µR)

∂µ2
R
≡ β(αs) = −αs(µR)

∞

∑
k=1

βk−1(αs)α
k
s(µR) , (2.23)

which is the renormalization group equation (RGE) for the running coupling. It describes
how the renormalized strong coupling varies according to the renormalization scale. This
dependence is governed by the QCD β-function that shows a perturbative expansion starting
from O(α2

s ):
β(αs) = −β0 α2

s − β1 α3
s − β2 α4

s +O(α5
s ) . (2.24)

The βk coefficients are calculated in perturbation theory and, considering the convention used
in [8], they read

β0 =
11CA − 2n f

12π
, (2.25)

β1 =
17C2

A − 5CAn f − 3CFn f

24π2 , (2.26)

β2 =
2857C3

A + (54C2
F − 615CACF − 1415C2

A)n f + (66CF + 79CA)n2
f

3456π3 , (2.27)
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where CA and CF are the colour factors, with values 3 and 4/3 respectively, and n f is the
number of active flavours. Notice that β2 explicitly depends on the scheme used. The
expression presented above is in the MS scheme.

Including in the β-function only the first coefficient β0, we can solve (2.23) analytically:

αs(Q2) =
αs(µ2)

1 + β0 ln (Q2/µ2)αs(µ2)
. (2.28)

The previous equation relates the value of the strong coupling at different scales: once αs is
known at a scale µ, we can obtain its value at any other scale Q. Even though we can use
perturbation theory to evolve the strong coupling at any scale, its absolute value is not known
and it has to be obtained from experiments. Nowadays, the most common choice is using as
input the value of αs at the mass of the Z boson, αs(m2

Z) ∼ 0.118.
Given equation (2.28) and the negative sign of the β-function, it is clear that the strong

coupling becomes smaller when the energy increases:

αs(Q2)→ 0 when Q→ ∞ . (2.29)

This property is the asymptotic freedom of QCD: at high energies, quarks and gluons
interact weakly and they can be considered as free particles. This property is crucial as it
allows us to use perturbation theory for obtaining predictions in QCD. By contrast, at low
energies perturbation theory breaks down because the coupling constant gets larger and
larger. We can obtain an estimate of where perturbation theory is no longer allowed and
non-perturbative effects become dominant studying where the coupling diverges. Imposing
that the denominator in (2.28) is zero, we find

αs(Q2) =
1

β0 ln (Q2/Λ2
QCD)

, (2.30)

where ΛQCD is the energy scale at which the coupling becomes singular. ΛQCD is around 220
MeV [9] and, below this scale, perturbation theory fails.

At this point the presence of the renormalization scale in equation (2.4) is clear: the
partonic cross section σ̂ij depends explicitly on renormalized parameters and thus on the
renormalization scale µR. We remind the reader that this scale is unphysical: if we were able
to compute the hadronic cross section to all orders in perturbation theory, the dependence on
µR would disappear. Since this is not feasible, the cross section is concretely obtained up to
a certain accuracy truncating its perturbative expansion at a certain order in the coupling,
generating a residual dependence on the renormalization scale.

In order to avoid potentially large logarithmic contributions log (Q2/µ2) that can spoil the
convergence of the perturbative series, the renormalization scale is usually set to a typical
scale Q of the process under study. When dealing with complex processes, multiple scales
can be present and the choice of µR is not trivial. In these cases, there is no correct choice a
priori. We will discuss this problem in section 3.2.

16
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2.1.3. Infrared divergences

When calculating higher-order QCD corrections, UV divergences are not the only kind
of singularities appearing. In fact, also divergences associated with soft and/or collinear
emissions emerge and they are thus called infrared (IR) singularities. Before analysing in detail
how these singular behaviours appear in perturbation theory, we start our discussion from
the Kinoshita-Lee-Nauenberg (KLN) theorem [10, 11], which guarantees their cancellation in
inclusive calculations.

The KLN theorem states that soft and collinear singularities cancel in the sum over de-
generate states. Examples of degenerate states are real emissions in which a quark emits a
soft gluon or a quark emits a collinear gluon and a virtual correction to a quark line. These
states cannot be distinguished from each other, as soft or collinear or virtual gluons cannot
be detected. More precisely, the KLN theorem guarantees that real and virtual corrections
show the same singularities (with opposite sign) in the soft and/or collinear limit, so that
the computation of sufficiently inclusive observables is free from singularities. We stress that
this theorem applies to all orders in perturbation theory. The SM is free of IR divergences,
provided configurations involving all possible final and initial states are considered.

In order to analyse how IR divergences arise in NLO QCD computation, we can consider
the production of a qq̄ system from e+e− annihilation

e+(k1) e−(k2)→ q(p1) q̄(p2) , (2.31)

which represents a nice framework for introducing the topic of IR singularities because the
initial state is not affected by QCD effects. In fact, initial state QCD radiation deserves a
specific treatment that will be discussed later in this section.

e+

e− q̄

q

k⃗2

k⃗1

p⃗2

p⃗1

(a)

e+

e− q̄

q

g

k⃗2

k⃗1

p⃗2

p⃗1

k⃗

(b)

e+

e− q̄

q

g

k⃗2

k⃗1

p⃗2

p⃗1

k⃗

(c)

e+

e− q̄

q

k⃗2

k⃗1

p⃗2

p⃗1

g

(d)

Figure 2.1.: Feynman diagrams contributing up to NLO accuracy in the process e+e− → qq̄.
Panel (a) shows the LO diagram, panels (b) and (c) are the real corrections and
(d) is the virtual contribution.
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Sample Feynman diagrams of this process are shown in figure 2.1. The calculation of the
cross section at LO and NLO is trivial, so we report here only the main results. The interested
reader is referred to [12] or standard textbooks like [7].

At LO accuracy, the matrix element reads

Mqq̄ =
e2Qq

q2 [ū(p1)γµv(p2)][v̄(k2)γ
µu(k1)] , (2.32)

where e is the electric charge, Qq is the fractional electric charge of the quarks and q2 =

(k1 + k2)2 = (p1 + p2)2. The 2-body phase space and flux factors are

dΦ2 =
1

32π2 sin θdθdϕ , flux =
1

2q2 , (2.33)

so that the LO cross section can be easily obtained as:

σqq̄ =
∫

dΦ2
|Mqq̄|2

flux
=

4
3

α2 πNcQ2
q

q2 . (2.34)

α = e2/(4π) is the fine-structure constant and Nc = 3 is the number of colours.
The calculation of the NLO cross section consists in including both real and virtual

corrections. We can already expect the appearance of singularities in the real matrix element.
In fact, if we consider the emission of a gluon from a quark:

p + k
k

p with
p = Ep(1, 0, 0, 1) ,

k = Ek(1, 0, sin θ, cos θ) ,
(2.35)

the internal propagator is proportional to

1
(p + k)2 =

1
2EpEk(1− cos θ)

, (2.36)

which shows a singularity when the gluon becomes soft (Ek → 0) or collinear (θ → 0). We note
that if we consider a massive quark, the collinear singularity disappears, as the propagator
scales like:

1
(p + k)2 −m2 =

1
2EpEk(1− β cos θ)

with β =
√

1−m2/E2 . (2.37)

For this reason, collinear singularities are often called mass singularities.
The real matrix element reads

Mqq̄g =

[
ū(p1)(−igstA/ϵ)

i(/p1 + /k)
(p1 + k)2 (−ieγµ)v(p2)

]
(e2Qq)2

q2

[
v̄(k2)γµu(k1)

]
+

[
ū(p1)(−ieγµ)

−i(/p2 + /k)
(p2 + k)2 (−igstA/ϵ)v(p2)

]
(e2Qq)2

q2

[
v̄(k2)γµu(k1)

]
, (2.38)

where the two lines correspond to diagrams 2.1(b) and 2.1(c), respectively. k and ϵ are the
momentum and the polarization vector of the emitted gluon and tA is the SU(3) generator.
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Soft limit

If we consider the soft limit (k→ 0), the real matrix element becomes

Mqq̄g = −iegstA
[

ū(p1)γ
µ

(
/ϵ/p1
2p1k

− /ϵ/p2
2p2k

)
v(p2)

]
(e2Qq)2

q2

[
v̄(k2)γµu(k1)

]
(2.39)

and, squaring it, we observe the following factorization

R = |Mqq̄g|2
so f t−−→ |Mqq̄|2 · CF g2

s
2p1 p2

(p1k)(p2k)
= B · CF g2

s
2p1 p2

(p1k)(p2k)
, (2.40)

where CF = 4/3 is the QCD color factor. In the soft limit, the real contribution factorizes and
can be written as the product of the Born contribution B with an appropriate Eikonal factor.
A similar factorization holds also for the phase space. We can write the 3-body phase space
in terms of the 2-body one times a phase space for the radiation, as follows:

dΦqq̄g
so f t−−→ dΦqq̄ · dΦrad = dΦqq̄ ·

d3⃗k
(2π)32Ek

. (2.41)

This allows us to write the cross section in the soft limit in a factorized form:

σqq̄g
so f t−−→

∫
dΦqq̄ B ·

∫ d3⃗k
(2π)32Ek

CF g2
s

2p1 p2

(p1k)(p2k)
= σqq̄ · S . (2.42)

The universal S function describes the emission of a soft gluon.

Collinear limit

The collinear limit of the real cross section is better understood if we use the Sudakov
parametrization

pµ
1 = zpµ + kµ

⊥ −
k2
⊥
z

nµ

2p · n , (2.43)

kµ = (1− z)pµ − kµ
⊥ −

k2
⊥

1− z
nµ

2p · n , (2.44)

where pµ is a light-like vector defining the collinear direction and nµ is a light-like auxiliary
vector. kµ

⊥ is a vector with only two non-zero components given by the transverse momentum
of the gluon. Both pµ and nµ are orthogonal to kµ

⊥, i.e. k⊥ · p = k⊥ · n = 0. The splitting
energy z is constructed as z = E1/(E1 + Ek), which defines how the energy is shared between
the quark and the gluon in the splitting. With this parametrization, the propagator in (2.38)
becomes

1
2p1 · k

= − z(1− z)
k2
⊥

(2.45)

and the collinear limit corresponds to k⊥ → 0.
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The real squared matrix element can be rewritten as

R = |Mqq̄g|2 coll−→ |Mq̄q|2 · CF g2
s

1
p1 · k

1 + z2

1− z
= B · CF g2

s
1

p1 · k
1 + z2

1− z
, (2.46)

where the Born contribution B is obtained clustering together the two particles involved in
the splitting, reconstructing the emitter quark with momentum equal to the sum of the quark
(p1) and gluon (k) momenta. The phase space factorizes as well in the collinear limit as

dΦqq̄g
coll−→ dΦqq̄ · dΦrad = dΦqq̄

1
(4π)2

(
− 1

z

)
dz

(1− z)
dk2
⊥ , (2.47)

so that the cross section can be factorized as follows:

σqq̄g
coll−→

∫
dΦqq̄ B ·

αs

2π

∫ dk2
⊥

k2
⊥

dz CF
1 + z2

1− z
= σqq̄ · C. (2.48)

The universal C function describes the emission of a collinear gluon.

The KLN theorem [10, 11] guarantees that soft and collinear divergences cancel when sum-
ming real and virtual contributions and we thus expect virtual corrections to have the same
singular behaviour (with opposite sign) as the real term in the IR regions. In fact, virtual
corrections are divergent when the momentum flowing in the loop ℓ becomes soft, ℓ→ 0, or
collinear to an external momentum k, ℓ · k = 0.

To see explicitly the singular behaviour of the virtual contribution for the case of e+e− → qq̄,
we regularize the loop integral through dimensional regularization: the dimensionality of the
phase space is customary increased from d = 4 to d = 4 + 2ϵ, with ϵ > 0, and the physical
limit is given by ϵ→ 0. Also in this case, the calculation of real and virtual contributions in
dimensional regularization is straightforward and not very informative, so we highlight here
only the main results. The full calculation is presented in [12].

In dimensional regularization, real and virtual cross sections read

σqq̄g = σqq̄ ·
αs(µR)

2π
CF

Γ2(1− ϵ)

Γ(1− 3ϵ)

(
4πµ2

R
q2

){
2
ϵ2 +

3
ϵ
+

19
2

+O(ϵ)
}

, (2.49)

σvirt
qq̄ = σqq̄ ·

αs(µR)

2π
CF

Γ2(1− ϵ)

Γ(1− 3ϵ)

(
4πµ2

R
q2

){
− 2

ϵ2 −
3
ϵ
− 8 +O(ϵ)

}
, (2.50)

where we explicitly see the appearance of poles in ϵ. Single poles represent configurations
in which the gluon is either soft or collinear, while double poles are associated to soft and
collinear topologies. The coefficients of the poles in the real and virtual cross sections are
equal in value but with opposite sign so that the final cross section is finite.

The explicit cancellation of soft and collinear divergences that was presented for the simple
case of e+e− → qq̄ is a general property of QCD and it is satisfied to all orders in perturbation
theory. In fact, the soft and collinear limits of the amplitudes are universal. If we consider a
general 2→ n process, they read [13]:
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• Soft limit:

|Mn+1(p1, ...pi, ...pn+1)|2
pi→0−−→

n

∑
ℓ,r
Sℓr(pi)|Mn(p1, ..., pn)|2 , (2.51)

where the universal Eikonal factor Sℓr(pi) is proportional to:

Sℓr(pi) ∼
2pℓ · pr

(pℓ · pi)(pr · pi)
. (2.52)

In the soft limit, the real correction is equal to the Born contribution, in which the soft
parton is removed, multiplied by a universal term that encodes the emission of the soft
particle.

• Collinear limit:

|Mn+1(p1, ...pi, pj...pn+1)|2
pi∥pj−−→ C(z)|Mn(p1, ..., pi + pj, ..., pn)|2 , (2.53)

where the universal collinear function C(z) is proportional to

C(z) ∼ P̂k→ij(z) . (2.54)

The parton k is the mother particle that splits into the i and j daughters. z represents the
energy fraction that the parton i carries away from parton k in the k→ ij splitting. The
universal P̂k→ij function is the unregularized Altarelli-Parisi splitting kernel, which depends
only on the flavour of the partons undergoing the k→ ij splitting. These kernels have a
perturbative expansion in the strong coupling and at LO they read:

P̂(0)
qg (z) =

1
2
[
z2 + (1− z)2] ,

P̂(0)
qq (z) = CF

[
1 + z2

1− z

]
,

P̂(0)
gq (z) = CF

[
1 + (1− z)2

z

]
,

P̂(0)
gg (z) = 2 CA

[
z

1− z
+

1− z
z

+ z(1− z)
]

. (2.55)

The real correction with the parton i becoming collinear to the parton j is equal to the
Born contribution in which the two collinear partons are clustered together into parton k
(pk = pi + pj) multiplied by a universal splitting factor that depends only on the nature
of the k→ ij splitting.

These poles in the IR regions cancel when summing together real and virtual contributions
thanks to the KLN theorem. This cancellation has a specific physical meaning: the cross
section is a physical quantity, so it must be finite. If the real contribution is divergent,
the virtual one must present the same singularity with opposite sign for conservation of
probability, referred to as unitarity.
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We can now generalise equation (2.14) to obtain the expectation value of a general observ-
able O at NLO accuracy

⟨O⟩ =
∫

dΦnLOn(Φn)

[
B(Φn) + V(Φn)

]
+
∫

dΦn+1LOn+1(Φn+1)R(Φn+1) , (2.56)

where On and On+1 are the expressions of the observable O in terms of the n and n + 1
configurations, respectively. We remind the reader that the KLN theorem ensures that IR
divergences cancel when considering all possible initial and final configurations: if we want
to be more exclusive, this cancellation does not fully apply. In general, equation (2.56) is free
from IR singularities if O is infrared (and collinear) safe, which means that it is not sensitive to
long-physics effects. An IR (and collinear)-safe observable satisfies

On+1(p1, ..., pj, ...pn+1)
pj→0−−−→ On(p1, ..., pj−1, pj+1...pn) ,

On+1(p1, ..., pj, pℓ, ...pn+1)
pj∥pℓ−−→ On(p1, ..., pj + pℓ, ...pn) , (2.57)

which means that O is insensitive to extra soft and/or collinear emissions. This property is
crucial because it allows us to use fixed-order calculations in perturbative QCD for obtaining
predictive results.

When calculating explicitly the IR behaviour of the cross section at NLO accuracy, we
considered the specific case of e+e− annihilation, for which QCD radiation does not affect the
initial state. When dealing with QCD emissions in the initial state, the KLN theorem does
not fully apply. More precisely, collinear singularities do not cancel because the emission
of a gluon in the collinear limit modifies the momentum of the parton undergoing the hard
scattering. An illustrative example is figure (2.2).

The non-complete cancellation of collinear singularities for initial-state emissions is handled
through factorization. Factorization is a procedure similar to renormalization but applied to
singularities that arise in the collinear limit for initial-state radiation. Bare divergent PDFs
entering the calculation f bare(x) can be reabsorbed into finite physical PDFs f (x, µ2

F) that now
gain an explicit dependence on a new unphysical scale called factorization scale (µF). This scale
appears in the theory in an analogous way to the renormalization one. Since the collinear
behaviour of the cross section is universal, the factorization procedure can be handled in a
process-independent way.

We recall that PDFs are non-perturbative objects and their values at a certain scale µF and
for a specific momentum fraction x cannot be calculated in perturbation theory but must be
fitted to data. However, the evolution of the PDFs with µF is perturbative and it is described
by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation [14, 15, 16].
The DGLAP equation is a (2n f + 1)-dimensional equation in flavour space of the form

∂

∂ln µ2

(
fqi/h(x, µ2)

fg/h(x, µ2)

)
=

αs(µ2)

2π ∑
qj,q̄j

∫ 1

x

dz
z

[
Pqiqj

( x
z , αs(µ2)

)
Pqi g
( x

z , αs(µ2)

Pgqj

( x
z , αs(µ2)

)
Pgg
( x

z , αs(µ2)

](
fqj/h(z, µ2)

fg/h(z, µ2)

)
,

(2.58)
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Figure 2.2.: Examples of Feynman diagrams for proton-proton collisions where a real (left)
and virtual (right) gluon is emitted from the initial state. The cancellation between
the two contributions holds only in the soft limit (z → 1), as the momentum of
the parton undergoing the hard scattering is unaltered. When we consider the
collinear limit, the parton momentum changes (p⃗→ zp⃗) in the real contribution,
while it remains the same in the virtual one (p⃗). This mismatch leads to a non-
complete cancellation of collinear singularities.

where the subscript i can take any possible flavour for both quarks and antiquarks. The
DGLAP equation describes the evolution of the PDFs with the factorization scale: given a
boundary condition at a scale µ0, equation (2.58) predicts the values of the PDFs at any other
scale µ. The Pij kernels are the regularized Altarelli-Parisi splitting functions, which are universal
perturbative functions that admit an expansion in the strong coupling:

Pij(z, αs(µ
2)) = P(0)

ij (z) +
αs

2π
P(1)

ij (z) +
(

αs

2π

)2

P(2)
ij (z) +O(α3

s ) . (2.59)

They represent the probability that a parton j emits a parton i with energy fraction z. The LO
expressions can be taken e.g. from [17]:

P(0)
qiqj(z) = δijCF

(
1 + z2

[1− z]+
+

3
2

δ(1− z)
)

,

P(0)
gqi (z) = CF

(
1 + (1− z)2

z

)
,

P(0)
qi g (z) =

1
2
(
z2 + (1− z)2) ,

P(0)
gg (z) = 2CA

(
z

[1− z]+
+ (1− z)

(
z +

1
z
))

+
11CA − 2n f

6
δ(1− z) , (2.60)

where we used the plus distribution defined as:∫ 1

0
dz

f (z)
[1− z]+

=
∫ 1

0
dz

f (z)− f (1)
1− z

. (2.61)

This approach for handling collinear initial-state divergences is equivalent to the introduc-
tion of collinear counterterms at the level of the cross section. More precisely, reviewing the
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discussion presented in section 2.1 of [5], equation (2.14) now becomes:

σNLO =
∫

dΦnL
[
B(Φn + Vb(Φn))

]
+
∫

dΦn+1LR(Φn+1)

+
∫

dΦn,⊕ LG⊕,b(Φn,⊕) +
∫

dΦn,⊖ LG⊖,b(Φn,⊖) , (2.62)

where the subscript b stands for bare, which means that IR divergences are still present. In
the virtual correction, UV divergences have already been removed through renormalization.
The two counterterms G⊕,b and G⊖,b are divergent in the collinear limit, therefore they are
treated in dimensional regularization using d = 4 + 2ϵ for defining the dimensionality of
the phase space. They thus present poles in ϵ. The corresponding phase spaces Φn,⊕ and
Φn,⊖ are given by configurations where one final-state parton is collinear to an incoming one.
Defining with z the fraction of momentum of the incoming particle after radiation, the two
phase spaces can be written as:

Φn,⊕ = {x⊕, x⊖, z, k1, ..., kn}, zx⊕K⊕ + x⊖K⊖ =
n

∑
i

ki ,

Φn,⊖ = {x⊕, x⊖, z, k1, ..., kn}, x⊕K⊕ + zx⊖K⊖ =
n

∑
i

ki . (2.63)

They are formally n-body configurations: we can introduce an underlying n-body phase
space Φ̄n as:

Φn,⊕ : Φ̄n = {x̄⊕, x̄⊖, k1, ..., kn} with x̄⊕ = zx⊕, x̄⊖ = x⊖ ,

Φn,⊖ : Φ̄n = {x̄⊕, x̄⊖, k1, ..., kn} with x̄⊕ = x⊕, x̄⊖ = zx⊖ . (2.64)

Using this formalism, the expectation value of a generic IR-safe observable O can be obtained
at NLO starting from (2.62) as:

⟨O⟩ =
∫

dΦnLOn(Φn)

[
B(Φn) + Vb(Φn))

]
+
∫

dΦn+1LOn+1(Φn+1)R(Φn+1) +
∫

dΦn,⊕ LOn(Φ̄n) G⊕,b(Φn,⊕)

+
∫

dΦn,⊖LOn(Φ̄n) G⊕,b(Φn,⊖) . (2.65)

Thanks to the IR-safety of O, in the last two terms the argument of the observable is set equal
to Φ̄n. If we require that the Born contribution B is finite, all but this term on the right-hand
side of equation (2.65) are separately divergent, while the final result is finite. Equation (2.65)
is thus not usable in a computer program, as it requires the separate calculation of divergent
integrals. In order to overcome this problem, it is necessary to render separately finite all the
contributions entering (2.65). In this context, one of the most successful procedures is given
by a subtraction method.

Before discussing how a subtraction method is constructed, we make a final comment
on the presence of the factorization scale in equation (2.4). On the same footing as the
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renormalization scale, the physical cross section does not depend on the factorization scale
but, once the perturbative series is truncated at a certain perturbative order, a residual
dependence on µF survives. In order to give an estimate of missing higher-order corrections,
it is possible to set both the renormalization and the factorization scales to a typical energy
scale Q of the process

µR,0 = µF,0 ∼ Q , (2.66)

and vary them by an arbitrary factor around the central value:

µR = KR · µR,0 and µF = KF · µF,0 . (2.67)

Customary, the (KR, KF) combinations that are used are the following

(KR, KF) = {(1, 1), (1, 1/2), (1/2, 1), (1, 2), (2, 1), (1/2, 1/2), (2, 2)} , (2.68)

in which we consider a factor of two above and below the central values, eliminating the cases
in which the two scales are shifted in opposite directions (namely, (1/2, 2) and (2, 1/2)). The
result obtained using the central scales (µR,0 , µF,0) represents the final prediction and the
corresponding error bar is given by the envelope of the different results obtained with the
combinations in equation (2.68). More precisely, among the seven predictions given by (2.68),
the error bar is obtained by taking the maximum and the minimum values. This procedure is
referred to as 7-point scale variation and the physical meaning is the following: the final result
should not manifest a strong dependence on µR and µF, thus we expect that varying them
arbitrarily does not change significantly the final prediction and higher-order corrections
should be covered by the estimated the error bars. We stress that using large variation factors
could lead to instabilities in the convergence of the series because of the appearance of large
logarithmic contributions, and thus the value of 2 is commonly accepted.

2.1.4. Subtraction method

The expectation value of an IR-safe observable O at NLO accuracy can be obtained using
equation (2.65). In general, the different ingredients in the formula are too complicated to be
calculated analytically, therefore a numerical evaluation is needed. A numerical calculation
is however not possible at the moment because IR divergences are still present in different
contributions (virtual, real and counterterms) that are integrated over different phase spaces.
In order to overcome this problem, we need to make explicitly finite all the terms appearing
in our master formula (2.65). In this section, we review how to do that using a subtraction
method. Notice that there are different subtraction schemes available in the literature and
a detailed analysis of them is beyond the scope of this thesis. We thus review the general
formalism of a local subtraction scheme, as it is the one implemented within the POWHEG
framework [18], which will be used throughout this thesis. This section is inspired by section
2.2 of [5].

A local subtraction scheme consists in removing IR divergences point by point in the phase
space summing and subtracting the same term to the virtual and real corrections so that the
two contributions are separately finite. This implies that the chosen term must match the
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IR singularities of the real and virtual corrections and must be analytically integrable over
the radiation phase space. More precisely, the real contribution R is associated to singular
regions α in the IR limit which can refer to a:

• soft region (S), where the momentum of one of the final state partons goes to zero;

• final-state collinear region (FSC), where two massless final-state partons have parallel
momenta;

• initial-state collinear region (ISC), where the momentum of one massless final-state
parton is parallel to the momentum of one incoming parton.

A local subtraction method consists in identifying a real counterterm C(α) that shows the
same divergent behaviour of the real contribution R in the corresponding singular α-region.
To do so, we first identify a mapping M(α) that maps a point of the Φn+1 phase space into a
singular configuration α, associated to the Φ̃α

n+1 phase space:

Φ̃
(α)
n+1 = M(α)(Φn+1), Φ̃

(α)
n+1 = {x̃(α)⊕ , x̃(α)⊖ , k̃(α)1 , ..., k̃(α)n+1} . (2.69)

Each mapping M(α) depends on the singular region α and the only requirement is that it must
be smooth when approaching the singular region, where it becomes the identity. Divergences
in the real contribution are thus cancelled as follows

R(Φn+1)On+1(Φn+1)−∑
α

C(α)(Φn+1)On+1(M(α)
(
Φn+1)

)
, (2.70)

with O a generic IR-safe observable.
Any singular configuration Φ̃

(α)
n+1 can be associated to a n-body one Φ̄

(α)
n :

• α ∈ S : Φ̄
(α)
n is equal to Φ̃

(α)
n+1 removing the parton with momentum becoming soft;

• α ∈ FSC: Φ̄
(α)
n is equal to Φ̃

(α)
n+1 where the two collinear partons i and j are recombined

together into a new parton k so that pk = pi + pj;

• α ∈ ISC: Φ̄
(α)
n is equal to Φ̃

(α)
n+1 where the collinear parton is removed and the momentum

of the initial-state emitter is replaced with its momentum after radiation.

In all the three above cases, the final state partons are relabelled {1, ..., n + 1} → {1, ..., n} and
momentum conservation applies as:

x̄⊕K⊕ + x̄⊖K⊖ =
n

∑
j=1

k̄ j . (2.71)

For S and FSC regions, the incoming momenta remain unaltered:

x̄⊕ = x̃⊕ , x̄⊖ = x̃⊖ . (2.72)
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For ISC regions, one of the two incoming momenta x̄ is smaller than the corresponding x̃:

⊕ case: x̄⊕ < x̃⊕, x̄⊖ = x̃⊖ ,

⊖ case: x̄⊕ = x̃⊕, x̄⊖ < x̃⊖ . (2.73)

We can now perform explicitly the subtraction rewriting the integral of the real contribution
R in equation (2.65) as∫

dΦn+1LOn+1(Φn+1) R(Φn+1) = ∑
α

∫
dΦn+1 L̃(α)On(Φ̄

(α)
n ) C(α)(Φn+1)

+
∫

dΦn+1

{
LOn+1(Φn+1) R(Φn+1)−∑

α

L̃(α)On(Φ̄
(α)
n ) C(α)(Φn+1)

}
, (2.74)

where we introduced L̃ = L(x̃⊕, x̃⊖) and we used the IR-safety of O. The second line of
equation (2.74) is finite and can be integrated in 4 dimensions over the Φn+1 phase space.

The first term on the r.h.s. of equation (2.74) is still divergent and, to handle it, we express
the (n + 1)-body phase space for each α as

Φn+1
(α)←→
{

Φ̄
(α)
n , Φ(α)

rad

}
, dΦn+1 = dΦ̄

(α)
n dΦ(α)

rad , (2.75)

which means that we describe the (n + 1)-body phase space through the n-body phase space,
constructed as described above, and a set of extra radiation variables that define the emission.
At this point, we make the following considerations:

• When considering FSC and S regions, the luminosity in the (n + 1)-body configuration
is equal to the luminosity in the n-body configuration L̃ = L(x̃⊕, x̃⊖) = L̄(x̄⊕, x̄⊖).
Introducing the notation

C̄(α)(Φ̄(α)
n ) =

∫
dΦ(α)

rad C(α)(Φn+1) , (2.76)

the divergent term in (2.74) becomes:∫
dΦn+1L̄(α)On(Φ̄

(α)
n ) C(α)(Φn+1) =

∫
dΦ̄

(α)
n L̃(α)On(Φ̄

(α)
n ) C̄(α)(Φ̄(α)

n ) . (2.77)

• In the case of ISC regions, the luminosity L̃ does not coincide with L̄. We thus define

⊕ case: C̄(α)(Φ̄(α)
n , z) =

∫
dΦ(α)

rad C(α)(Φn+1) z δ(z− x̄⊕/x̃⊕) ,

⊖ case: C̄(α)(Φ̄(α)
n , z) =

∫
dΦ(α)

rad C(α)(Φn+1) z δ(z− x̄⊖/x̃⊖) , (2.78)

where z is the momentum fraction of the incoming parton after radiation. The divergent
term in (2.74) can now be rewritten as:∫

dΦn+1L̄(α)On(Φ̄
(α)
n ) C(α)(Φn+1) =

∫
dΦ̄

(α)
n

dz
z
L̃(α)On(Φ̄

(α)
n ) C̄(α)(Φ̄(α)

n ) . (2.79)
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Note that the following relations hold:

⊕ case: dΦn,⊕ = dΦ̄n
dz
z

,

⊖ case: dΦn,⊖ = dΦ̄n
dz
z

. (2.80)

The full NLO master formula (2.65) now becomes:

⟨O⟩ =
∫

dΦn LOn(Φn)

[
B(Φn) + Vb(Φn))

]
+
∫

dΦn+1

{
LOn+1(Φn+1)R(Φn+1)−∑

α

[
L̃(α)On(Φ̄

(α)
n )C(α)(Φn+1)

]}
+ ∑

α∈{S,FSC}

∫
dΦ̄

(α)
n L̃(α)On(Φ̄

(α)
n ) C̄(α)(Φ̄(α

n )

+ ∑
α∈{ISC⊕/⊖}

∫
dΦ̄

(α)
n,⊕/⊖ L̃(α)On(Φ̄

(α)
n ) C̄(α)(Φ̄(α)

n,⊕/⊖)

+
∫

dΦn,⊕ L̃ On(Φ̄n) G⊕,b(Φn,⊕) +
∫

dΦn,⊖ L̃ On(Φ̄n) G⊖,b(Φn,⊖) . (2.81)

In the last line we have substituted L with L̃: this is correct since x⊕/⊖ = x̃⊕/⊖ in the phase
space of the counterterms, as the mapping (2.69) is the identity in the singular region. For
ISC regions, it is always possible to write

G⊕,b(Φn,⊕) + ∑
α∈{ISC⊕}

C̄(α)(Φn,⊕) = G⊕(Φn,⊕) + δ(1− z) Gdiv
⊕ (Φ̄n) , (2.82)

G⊖,b(Φn,⊖) + ∑
α∈{ISC⊖}

C̄(α)(Φn,⊖) = G⊖(Φn,⊖) + δ(1− z) Gdiv
⊖ (Φ̄n) , (2.83)

in which we explicitly separate finite contributions (G⊕(Φn,⊕) and G⊖(Φn,⊖)) from terms that
still contain poles in ϵ (Gdiv

⊕ (Φ̄n) and Gdiv
⊖ (Φ̄n)). These poles have a soft origin. Moreover, the

expression

V(Φn) = Vb(Φn) + ∑
α∈{FSR,S}

[
C̄(α)(Φ̄n) + Gdiv

⊕ (Φ̄n) + Gdiv
⊖ (Φ̄n)

]Φ̄n=Φn

(2.84)

is finite. The notation
[...]Φ̄n=Φn

means that all the terms in brackets are evaluated for phase space variables Φ̄n equal to Φn.
For ease of notation, we redefine all the NLO ingredients reabsorbing the luminosity factors

as
B ≡ LB, R ≡ LR, V ≡ LV , C(α) ≡ L̃(α) C(α), G⊕ = L̃G⊕, G⊖ = L̃G⊖ ,
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so that equation (2.81) takes its final form:

⟨O⟩ =
∫

dΦnOn(Φn)

[
B(Φn) + V(Φn))

]
+
∫

dΦn+1

{
On+1(Φn+1)R(Φn+1)−∑

α

[
On(Φ̄

α
n)C(α)(Φn+1)

]}
+
∫

dΦn,⊕On(Φ̄n)G⊕(Φn,⊕) +
∫

dΦn,⊖On(Φ̄n)G⊖(Φn,⊖) . (2.85)

All the terms appearing in the previous equation are finite in 4 dimensions and can thus be
integrated numerically.

Different methods are available in the literature for performing the subtraction of IR
singularities at NLO accuracy [19, 20, 21, 22] and they differ for the specific choice of the
counterterms C(α). Anyway, they share the same structure discussed above. In the POWHEG
framework the subtraction is performed through the FKS method [21, 22] in which the real
contribution is split into different singular regions where at most one parton becomes soft
and/or collinear. Each region is then treated separately. We highlight that nowadays the local
subtraction of IR poles at NLO accuracy is fully understood and completely automatized,
while an extension to NNLO accuracy is still highly non-trivial. At this accuracy, many
methods have been proposed in the last years [23, 24, 25, 26, 27, 28], but automation is still
not possible.

2.2. Parton Showers

In the previous sections we discussed in detail how to use fixed-order calculations in pertur-
bative QCD for obtaining predictions at colliders. Despite the enormous progress done in
the last years, this approach is not always optimal and presents some intrinsic limitations.
Firstly, this approach relies entirely on our ability in calculating Feynman diagrams: the more
complex the process, the more involved the calculation. Moreover, the complete cancellation
of divergences is fulfilled only when studying inclusive (IR-safe) observables. In a realistic
description of a collider event, we may want to be more exclusive on the final state, e.g.
restricting the phase space of the process or applying kinematic cuts in order to perform a
comparison with data. Anytime we want to be more exclusive on the final state, the fixed-
order approach is going to fail because of the appearance of large logarithmic contributions
that spoil the perturbative convergence of the series. More precisely, considering exclusive
observables introduces new scales Qi in the process that directly affect the definition of
the observables under study. The integral of the real contribution thus depends directly
on these new scales, while the virtual contribution remains unaffected, leading to a partial
cancellation of divergences in the IR limit. What comes out is a logarithmic residue of the
form L = log Qi/Q, where Q is the hard scale of the process. Considering that IR singularities
are of soft and/or collinear origins, we have at most two powers of this potentially large
logarithms for a single power of the strong coupling (αsL2). To all orders, we thus expect
terms of the form (αsL2)n to show up. Anytime the scales are in the regime αs ∼ L−2, the
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perturbative series breaks down. In order to restore the predictivity of the calculation, we
need to account for these enhanced contributions to all orders through resummation.

Resummation consists in reorganising the perturbative series in terms of large logarithmic
contributions: the dominant contributions (e.g. (αsL2)n) are called leading logarithmic terms
(LL), contributions with one less power of the logarithm (e.g. (αsL)n) are next-to-leading
logarithmic terms (NLL), and so on. When considering an appropriate range for L, the
resummed hierarchy is convergent, which means that LL contributions are larger than NLL,
which are larger than NNLL, etc. This resummation can be performed either analytically,
like in [29, 30, 31], or numerically through a parton shower simulation implemented within a
General-purpose Monte Carlo (GPMC) event generator, like PYTHIA [32], HERWIG [33] and
SHERPA [34].

GPMC event generators are among the most employed tools in the high-energy physics
community as they provide a fully exclusive picture of high-energy collisions in a flexible
way. They describe the evolution of a collider event from hard scales to the detector level,
accounting for all the different stages that constitute an event, both in the perturbative and
non-perturbative regimes. GPMC event generators thus deal with both short-distance physics,
where perturbation theory is allowed, and long-distance effects, where phenomenological
models tuned to data are needed.

In a GPMC event generator, the first step is the generation of the hard scattering, considered
at LO accuracy only, and then subsequent splittings in the collinear approximation are
produced. The hard scattering (in a simple case it can be a 2→ 2 process) is thus embedded
into a more complicated 2 → n process, in which the additional partons are produced
by both initial and final state radiations in the collinear approximation. These additional
splittings determine a degradation of the energy and the process stops when the non-
perturbative regime is approached at the QCD cutoff ΛQCD. Once the evolution of the shower
ends, the numerous final-state partons are converted into hadrons according to appropriate
phenomenological models. The generated cascade of particles from the high-energy limit
down to the non-perturbative scale is the parton shower. Through the parton shower, all
classes of (potentially) large logarithmic contributions are cancelled, but the accuracy of this
resummation procedure is low, only LL.

A parton shower algorithm is based on the general property of collinear factorization of
QCD: in the collinear limit, QCD squared matrix elements factorize in a universal way as
shown in equation (2.53). The universal probability of emitting a collinear parton can thus be
used as a building block for constructing an iterative algorithm that generates the emission
of n extra collinear partons on top of the hard scattering. We now discuss the basic features
of parton shower simulations as presented in [35], where the interested reader can find a
complete pedagogical review of the topic.

Parton shower simulations deal separately with final-state radiation (called time-like shower)
and initial-state radiation (called space-like shower) and we can start our discussion analysing
the simpler case of final-state radiation. The probability of a parton i to undergo a collinear
splitting i→ jk is given by (see equation (2.48) and the subsequent discussion)

dPi(z, t) =
αs(t)
2π

dt
t

dzP̂ji(z) , (2.86)
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where z is the energy fraction of parton j, t is an appropriate scale of the process referred to
as hardness and P̂ji(z) is the unregularized Altarelli-Parisi splitting kernel defined in equation
(2.55). The choice of the hardness t is not unique: it is natural to associate to t the virtuality of
an intermediate off-shell parton m2, but other options are possible. In fact, if t = f (z)m2, for
a nice choice of the function f (z) we obtain dt/t dz = dm2/m2 dz. Nowadays, three different
options are widely used: in early versions of SHERPA and PYTHIA, t is the virtuality of
an intermediate parton; in current versions of SHERPA and PYTHIA it is the transverse
momentum of the emission and in HERWIG it is the emitting angle.

Divergences are eliminated considering that a physical measurement cannot distinguish
between a pair of collinear partons and a single parton with the same total momentum.
We can thus introduce a resolution criterion that allows one to generate only distributions
of resolvable partons. For example, a possible choice is given by transverse momentum:
two partons are resolvable if the relative transverse momentum is above a certain threshold.
Concretely, the cutoff on the transverse momentum defines a kinematic range for z and we
can thus simply integrate over the kinematically allowed phase space:

dPi(t) =
αs(t)
2π

dt
t

∫ zmax

zmin

dzP̂ji(z) . (2.87)

In this way, we eliminate both soft and collinear divergences and we obtain a total probability
that is finite. This procedure breaks unitarity, as we are not including in the computation un-
resolved emissions and virtual corrections. This problem can be simply overcome considering
that the non-emission probability can be calculated as one minus the emission probability,
thanks to unitarity. Taking into account one emission in the infinitesimal hardness range
dt, this is 1− dPi(t). If we introduce an ordering in the hardness t, we can now obtain the
probability of not emitting a parton in between two scales tmin and tmax: this probability is
called Sudakov form factor.

With multiple emissions, the Sudakov form factor exponentiates as

∆i(tmin, tmax) = exp
(
−
∫ tmax

tmin

dPi(t)
)

, (2.88)

which means that, if we start the evolution from a scale tmax, the differential probability that
the parton i branches at a scale equal to ti is given by dPi(ti)∆i(ti, tmax). Once i has branched,
the two daughters can branch in their turn, using as starting scale tmax = ti. Iterating this
procedure, we can construct the entire parton shower. This description, which is typical of
final-state radiation, is called forward evolution, as the hardness t evolves according to physical
time.

The probabilistic description associated to Sudakov form factors renders the implementation
of the above procedure particularly suitable for MC calculations. In fact, we can generate a
random number ρ in [0,1] and solve ∆i(tmax, ti) = ρ for ti: if ti is greater than the PS cutoff, a
resolvable emission is generated, otherwise no splitting is produced and the evolution of the
shower ends. If a splitting is generated, the procedure is iterated setting as new maximum
scale tmax = ti.
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As for the case of initial-state radiation, the construction of a PS could in principle follow
the procedure used for final-state radiation, with the difference that emissions are now
associated to possible splittings of the incoming partons before entering the hard collision.
We could thus generate 1→ 2 splittings multiple times and two of the final generated partons
enter the hard process, while the others contribute only as extra radiation. This procedure
is anyway extremely inefficient, as it is rare to generate the kinematics suitable to produce
a hard scattering. For this reason, PS coming from initial state particles is associated to a
backward evolution, in the sense that we start from the hard scattering and we reconstruct the
possible emissions moving backwards in time.

The main difference with the forward evolution shower is the definition of the Sudakov
form factor. The DGLAP equation defined in (2.58) represents the probability of a parton i to
undergo a splitting i→ j k when the energy is varied. From the point of view of backward
evolution, starting from the DGLAP equation we can construct the relative probability of the
parton i to become unresolved as follows

dPi(t) =
d fi(x, t)
fi(x, t)

=
αs(t)
2π

|dt|
t

∫ zmax

zmin

dz
z

f j(z, t)
fi(x, t)

P̂ji

(
x
z

)
, (2.89)

so that the cumulative effect of different backward emissions are described by a Sudakov
form factor of the form

∆i(tmin, tmax) = exp
(
−
∫ tmax

tmin

dPi(t)
)

, (2.90)

where dPi(t) is now defined in (2.89).
Up to now, we discussed the construction of a PS starting from the collinear limit of QCD

amplitudes, but it is clear that also soft enhancement should be taken into account. It is
possible to show that a PS in which the hardness t is defined as the emitting angle or the
transverse momentum already exhibits the correct behaviour in the soft regions [36, 37].

With the ingredients discussed above, we can now obtain the expectation value of an
observable O in a PS framework for a generic 2→ n process as follows: first, we consider all
Born diagrams and at each vertex we include an appropriate splitting factor:

αs(t)
2π

dt
t

dzP̂ji(z) . (2.91)

For each internal parton line i, we include the probability of not emitting any parton in
between two scales, t1 and t2, which corresponds to the Sudakov form factor ∆i(t1, t2). In
case we are considering a final line, t2 is set to the PS cutoff t0.

If we consider only the first emission of the shower, we can obtain the total cross section as

σPS =
∫

dΦnB(Φn)

{
∆(t, t0) +

∫ t

t0

dt′

t′
dz

αs(t′)
2π

P̂(z)∆(t, t′)
}

, (2.92)

and, correspondingly, the expectation value of an observable O is given by:

⟨O⟩PS =
∫

dΦnB(Φn)

{
On(Φn)∆(t, t0) +

∫ t

t0

dt′

t′
dz

αs(t′)
2π

P̂(z)∆(t, t′)On+1(Φn, Φrad)

}
.

(2.93)
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Note that the flavour indices have been removed for the ease of notation. We stress that all
flavour configurations are considered in the splitting kernels and the Sudakov form factors.
The cross section is thus made up of two terms: the first one is the Born level, in which no
emission has been generated by the shower; the second one is given by the Born level times
the emission of the first radiation in a PS approximation. Thanks to the unitarity of the parton
shower, the total normalization is not changed, which means that the shower does not affect
the inclusive cross section, but it has an impact on the shape of distributions. For generating
multiple splittings and constructing the entire shower, we can simply manipulate the terms
in the curly brackets iterating the procedure in a similar way.

Parton shower simulations generate only an approximation of real emissions, and un-
resolved and virtual corrections are encoded in the computation employing unitarity re-
quirements. By construction, it does not include higher-order corrections with full matrix
elements, which are needed for precision phenomenology. A PS simulation is thus suitable
to obtain a realistic description of an event at colliders, but the accuracy of the prediction is
low (in general, only LL). In the next chapter we will investigate the problem of matching
the two approaches described in this chapter, namely fixed-order calculations and parton
showers, in order to construct a single framework that keeps the best features of both. The
underlying idea is retaining the high accuracy of the fixed-order computation to describe the
hard scattering, maintaining a realistic and flexible picture of the entire event as given by the
parton shower.
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3. Matching fixed-order calculations with
parton showers

In the past few decades, matching fixed-order calculations with parton showers became a
crucial ingredient for precise simulations of hard processes at colliders. In the last chapter,
we reviewed the main features of these two tools, showing that they are complementary
approaches that can be fully exploited when matched together. The matching procedure
consists in describing the hard scattering through the correct matrix elements, so that we can
retain the highest accuracy possible in the cross section, without spoiling the LL structure
of the parton shower. This procedure is not trivial because real matrix elements generate
emissions not only in the hard regions but also in the soft and collinear regimes, where they
are already accounted for by the PS in an approximate form. This double-counting problem
already arises at NLO accuracy and it clearly becomes more complicated when higher-order
corrections are included.

The current state of the art for precise theoretical predictions at colliders is given by
NNLO+PS accuracy, which means that we keep the NNLO description of the hard scattering
without ruining the parton shower simulation. The aim of this thesis is to present how to
target NNLO+PS calculations using the MINNLOPS method [8].

In order to understand how to reach this level of precision, we first review how this
problem was solved in the simpler NLO case, where the matching is now fully understood
and automatized. In particular, two main solutions were proposed: MC@NLO [38] and
POWHEG [18]. Even if MC@NLO is nowadays widely applicable and used, in this chapter we
will present the main features of the POWHEG approach only, as it is the general framework
in which the MINNLOPS method is implemented.

Once the matching problem was solved at NLO accuracy, targeting NNLO+PS calculations
was however not straightforward. POWHEG was improved in the so-called MINLO′ method1

[39, 40], which provides a method to retain NLO accuracy in different jet multiplicities, as
shown in table 3.1. More precisely, we can consider the production of a generic colour
singlet F and study the accuracy we obtain when getting more and more exclusive over QCD
radiation. Using the POWHEG method, we obtain NLO accuracy in distributions that are
inclusive in F, LO accuracy in the first emission FJ and only LL accuracy starting from the
second emission. When adopting the MINLO′ approach, we maintain NLO accuracy in both
F and FJ at the same time. The last step for obtaining a NNLO+PS description of the process
consists in pushing the accuracy in distributions inclusive in F towards NNLO accuracy,
which is done by the MINNLOPS method [8].

1The POWHEG framework was firstly improved in the MINLO approach, in which no claim on the accuracy on
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F FJ FJJ F(≥3J)

POWHEG NLO LO LL LL

MINLO′ NLO NLO LO LL

MINNLOPS NNLO NLO LO LL

Table 3.1.: Formal accuracy reached through POWHEG, MINLO′ and MINNLOPS for the
production of a colour singlet F in association with extra QCD emissions J.

This chapter is structured as follows: we first present a review of the POWHEG method in
section 3.1 and of the MINLO and MINLO′ procedures in section 3.2. In these sections, we
highlight the main features of the different methods and we thus refer the interested reader
to the appropriate references for more details. We then present a detailed overview of the
MINNLOPS approach in section 3.3.

3.1. The POWHEG method

The POWHEG method aims to match fixed-order calculations with parton showers at NLO
accuracy. The main issue is avoiding double counting, as the real emission generated by
POWHEG with the correct matrix element is already accounted for in an approximate way by
the shower.

The name POWHEG stands for POsitive Weight Hardest Event Generator, which is inspired
by the procedure used for solving the double counting issue: POWHEG generates the first
emission, which is the hardest, with the correct matrix element and then the parton shower
can generate only softer extra radiation. The method concretely requires the application of a
pT-veto: the transverse momentum of all the emissions produced by the shower (pT

PS) must
be smaller than the transverse momentum of the emission generated by POWHEG, commonly
called scalup, at parton level (from now on, Les Houches Event (LHE) level):

pT
PS < scalup . (3.1)

This procedure is straightforward with pT-ordered showers, while angular-ordered showers
need the inclusion of truncated showers for restoring soft coherence [18].

We now sketch how to explicitly construct the POWHEG master formula for the calculation
of observables at NLO+PS accuracy following the discussion presented in [18, 5, 41]. We
consider the production of a generic color singlet F and we define its Born phase space as ΦF.
With J we indicate the extra emission associated to real radiation. Given an IR-safe observable
O, we can calculate its expectation value at NLO as follows

⟨O⟩ =
∫

dΦFO(ΦF) [B(ΦF) + Vb(ΦF)] +
∫

dΦFJO(ΦFJ) R(ΦFJ) , (3.2)

the 0-jet bin was made.
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where the subscript b in the virtual term means that it is still IR divergent (but UV finite).
IR divergences are regularized through a subtraction scheme2, so that we define an appro-
priate set of counterterms that separately eliminates IR divergences in the real and virtual
contributions:

⟨O⟩ =
∫

dΦFO(ΦF)

[
B(ΦF) + Vb(ΦF) +

∫
dΦrad C(ΦF, Φrad)

]
+
∫

dΦF dΦrad [O(ΦF, Φrad) R(ΦFJ)−O(ΦF, Φrad)C(ΦF, Φrad)] . (3.3)

Note that we do not include collinear counterterms (terms G⊕/⊖ in (2.81)) associated to
initial-state emissions for ease of notation, but they are understood throughout the discussion.
Moreover, we introduced a mapping between the F and the FJ phase spaces

ΦFJ = ΦF Φrad , (3.4)

so that the FJ phase space can be written in terms of the F phase space and a radiation phase
space. Reabsorbing IR divergences into a redefinition of the virtual contribution

V(ΦF) = Vb(ΦF) +
∫

dΦrad C(ΦF, Φrad) , (3.5)

we obtain the following NLO master formula

⟨O⟩ =
∫

dΦFO(ΦF) [B(ΦF) + V(ΦF)]

+
∫

dΦF dΦrad [O(ΦF, Φrad) R(ΦFJ)−O(ΦF, Φrad)C(ΦF, Φrad)] , (3.6)

in which all the terms are finite. We recall that in the soft and/or collinear regions, the
following equation is valid

O(ΦF, Φrad) = O(ΦF) , (3.7)

thanks to the IR-safety of O.
The key ingredient of the POWHEG method, namely B̄, is obtained as

B̄(ΦF) = B(ΦF) + V(ΦF) +
∫

dΦrad [R(ΦFJ)− C(ΦF, Φrad)] , (3.8)

so we can thus rewrite equation (3.6) in the following form

⟨O⟩ =
∫

dΦFO(ΦF)

[
B(ΦF) + V(ΦF) +

∫
dΦrad

(
R(ΦFJ)− C(ΦF, Φrad)

)]
+
∫

dΦF dΦrad R(ΦFJ) [O(ΦF, Φrad)−O(ΦF)]

=
∫

dΦFO(ΦF)B̄(ΦF) +
∫

dΦF dΦrad R(ΦFJ)[O(ΦF, Φrad)−O(ΦF)] . (3.9)

2In the POWHEG framework, the FKS method [21, 22] is employed.
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3. Matching fixed-order calculations with parton showers

This equation is written in a particularly convinient way for making a connection with the
same expression in a PS algorithm. In fact, in a PS approach the expectation value of an
IR-safe observable O is

⟨O⟩PS =
∫

dΦFB(ΦF)

{
∆(Q, Q0)O(ΦF) +

∫ Q

Q0

dΦradK(Φrad)∆(Q, t)O(ΦF, Φrad)

}
, (3.10)

where we considered only the first emission (see equation (2.93)). ∆ is the usual Sudakov form
factor and the factor K contains the splitting kernels. The scales Q and Q0 define respectively
the hard and the cutoff scales. We can expand this equation in terms of the strong coupling
αs up to NLO accuracy:

⟨O⟩PS =
∫

dΦF B(ΦF)

{
O(ΦF) +

∫ Q

Q0

dΦradK(Φrad)
[
O(ΦF, Φrad)−O(ΦF)

]}
=
∫

dΦFO(ΦF)B(ΦF) +
∫

dΦF dΦradB(ΦF)K(Φrad)
[
O(ΦF, Φrad)−O(ΦF)

]
. (3.11)

Comparing equations (3.9) and (3.11), we see a similar structure: for moving from a PS
approach at O(αs) to the correct NLO calculation, it is sufficient to perform the following
replacements:

NLOPS ↔ NLO : B(ΦF)↔ B̄(ΦF) , B(ΦF)K(Φrad)↔ R(ΦFJ) . (3.12)

We can thus construct the final POWHEG master formula as follows

⟨O⟩ =
∫

dΦFB̄(ΦF)

{
∆pwg(Q, Q0)O(ΦF) +

∫ Q

Q0

dΦrad
R(ΦFJ)

B(ΦF)
∆pwg(Q, t)O(ΦF, Φrad)

}
,

(3.13)
where the POWHEG Sudakov form factor is defined as:

∆pwg(Q, Q0) = exp
[
−
∫ Q

Q0

dΦrad
R(ΦFJ)

B(ΦF)

]
≡ ∆pwg(ΦF, Q0) . (3.14)

The last equivalence defines a new notation we will adopt in the next sections. To use the
same notation as [5], we rename Q0 as pT

min. Correspondingly, the POWHEG differential
cross section is obtained as

dσ = dΦFB̄(ΦF)

{
∆pwg(ΦF, pT

min) +
∫

dΦrad∆pwg(ΦF, kT)
R(ΦFJ)

B(ΦF)

}
, (3.15)

where pT
min is set to an IR cutoff (the default value is 0.89 GeV) and kT is the transverse

momentum of the radiation. The final cross section is thus the product of two terms: the first
one is given by B̄, which contains the fixed-order calculation at NLO accuracy; the second one
is the term in brackets, which comes directly from the probabilistic description of the shower
evolution, in which the spitting kernels are substituted with the correct matrix elements. The
terms in brackets generate the first emission of the shower without using the soft and collinear
approximation. If we generate events according to the differential cross section (3.15), we
can apply the parton shower simply requiring that the transverse momentum of the shower
emissions is smaller than the hardness of the radiation generate at LHE level.

We stress that:
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3. Matching fixed-order calculations with parton showers

F FJ FJJ F(≥3J)

F @ POWHEG NLO LO LL LL

FJ @ POWHEG - NLO LO LL

FJ @ MINLO′ NLO NLO LO LL

Table 3.2.: Formal accuracy reached through the F, FJ and FJJ generators in the POWHEG
framework according to the jet multiplicity. See text for more details.

• at large transverse momentum kT, σ is the NLO cross section, up to NNLO corrections;

• we reproduce IR-safe observables at NLO, so that also the small kT region is NLO
accurate;

• the structure of the shower is untouched, as only the first emission (that is the hardest)
is modified with the correct matrix element.

A more rigorous proof of the NLO accuracy of (3.15) is presented in [18].

3.2. The MINLO′ method

In the previous section we discussed the main features of the POWHEG method, reviewing
how to perform a matching between fixed-order calculations and parton showers at NLO
accuracy in this framework. It is thus reasonable to ask ourselves whether it is possible to
merge different POWHEG event generators with different jet multiplicities. More precisely,
the POWHEG method can be used for studying the production of a colour singlet F at
NLO+PS accuracy. In this F generator, the accuracy is NLO in distributions inclusive in F,
LO in distributions with one jet and only LL (the accuracy of the shower) from the second
jet onwards. It is also possible to construct a FJ generator, in which one jet J is already
present at Born level. In this case, the NLO accuracy is retained in distributions inclusive in
FJ, LO in FJJ and LL in FJJJ. This logic can be iterated to any number of jets at Born level.
All these simulations present an overlap in the phase space and the accuracy they reach
is complementary. It is thus natural to investigate the possibility of constructing a single
framework in which the highest accuracy is retained in different jet bins. In this section
we present the MINLO′ method [40], which is an algorithm that merges the F and the FJ
generators keeping the highest accuracy of both: the NLO accuracy is reached at the same
time in distributions that are inclusive in F and FJ. See table 3.2 for a schematic representation.

The MINLO′ method was proposed for merging different generators without the introduc-
tion of any unphysical scale. In fact, this merging problem was already addressed through
different solutions [42, 43, 44, 45, 46, 47, 48, 49] in which typically an arbitrary scale is needed.
This unphysical scale is used for partitioning the phase space according to the jet multiplicity:
the result of each generator (F, FJ, FJJ, ...) contributes only to the jet bin for which it is
NLO accurate. The different jet bins are then grouped together to obtain an inclusive result.
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3. Matching fixed-order calculations with parton showers

The presence of an unphysical parameter is clearly problematic: if this scale is too low, the
obtained sample is dominated by high-multiplicity generators, while if it is too high, hard jets
are described at low accuracy. For this reason, the dependence on this scale is deeply studied,
as the final result cannot depend on unphysical parameters.

The MINLO′ approach has been developed starting from the MINLO method [39], which
stands for Multi-scale Improved NLO. The MINLO method was introduced as the NLO exten-
sion of the CKKW approach [50] in order to define an a priori criterion in the selection of
central scales in NLO computations. We briefly summarize the main idea behind the method
following the discussion presented in section 3 of [39].

We consider a generic production process at hadron colliders and we proceed as follows:

• We cluster the coloured partons in the event through the kT algorithm, exactly like in
the CKKW approach. The clustering should be consistent with the flavour of partons
and, at each recombination, we assign the correct flavour to the newly defined particles.
In this way, we can reconstruct the most likely branching history of the process. Once
the skeleton of the event is known, we assign at each vertex i (i ∈ {1, 2, ..., n}) a nodal
scale qi. These scales are set according to the CKKW procedure, which means that they
are taken equal to the relative transverse momentum at which the clustering has been
performed. When the clustering procedure is no longer possible, we remain with a
set of particles that define the so-called primary system. We associate a scale Q to the
primary system equal to the invariant mass of the system itself. We recall that in the
CKKW method a resolution scale Q0 is introduced, defining the scale below which the
cross section is inclusive. In the MINLO approch, we set this scale to Q0 = q1.

• n powers of the coupling αs appearing in the Born, real and virtual corrections are set
to µi = KR qi, where i runs over the n vertices. The remaining m powers of the strong
coupling associated to the primary system are evaluated at KR Q. KR is the usual scale
variation factor.

• In the virtual correction there is the explicit appearance of the renormalization scale µR

that is set as:

µR = (µm
Q ×

n

∏
i=1

µi)
1/(m+n) . (3.16)

Moreover, the factorization scale µF is set to µF = KF q1, where KF is the usual scale
variation factor.

• We associate to each internal line connecting two vertices i and j (with i closer to the
primary vertex, meaning qi > qj) the following term

∆(Q0, qi)

∆(Q0, qj)
, (3.17)

where ∆ is the Sudakov form factor:

∆(Q0, Q) = exp
{
−
∫ Q

Q0

dq
q

[
A(αs(q)) log

Q2

q2 + B(αs(q))
}

. (3.18)
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3. Matching fixed-order calculations with parton showers

Since Q0 = q1, external lines directly connected to the first node q1 are reweighted by
∆(Q0, q1) = 1. The coefficients A and B admit an expansion in the strong coupling and
can be calculated analytically through transverse momentum resummation [51, 52, 53]:

A(αs) =

(
αs

2π

)
A(1) +

(
αs

2π

)2

A(2) +O
(

αs

2π

)3

, (3.19)

B(αs) =

(
αs

2π

)
B(1) +O

(
αs

2π

)2

. (3.20)

In the MINLO approach, only A(1), A(2) and B(1) are encoded in the computation: this
is a key point of the discussion, as it represents one of the main differences between the
MINLO and the MINLO′ methods. The explicit expressions of the coefficients differ for
quark and gluon lines. Note that we dropped a flavour index in (3.18) for keeping the
notation easy. Defining Cq = CF = 4/3, Cg = CA = 3, the A(i) coefficients read

A(1)
q,g = 2 Cq,g ,

A(2)
q,g = 2 Cq,g

[
CA

(
67
18
− π2

6

)
− 10

9
TRn f

]
, (3.21)

where TR = 1/2 and n f is the number of flavours. As for the B(1) coefficient, its
expression is:

B(1)
q,g = −2γ

(1)
q,g =

{ −3 CF for q-lines ,
−4 πβ0 for g-lines .

(3.22)

• The inclusion of Sudakov form factors in the calculation introduces NLO corrections
that spoil the accuracy of the computation. We thus need to subtract the first-order
expansion O(αs) in the Born contribution. Schematically, we need to perform the
following replacement

B→ B×
(

1− ∆(1)
)

, (3.23)

where B is the Born term and ∆(1) is the first order expansion in αs of the Sudakov form
factor in (3.18).

• The last step consists in setting the remaining powers of the coupling in the real and
virtual corrections to:

αs =
1

n + m

( n

∑
i=1

αs(µi) + m αs(µQ)

)
. (3.24)

The idea behind this choice is the following: large QCD effects are associated with the
nodal scales of the process and are thus related to the product of the coupling αs at each
scale and the Born term. The sum of these contributions thus corresponds to the sum of
the values of the couplings at the scales involved in the process.
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3. Matching fixed-order calculations with parton showers

To summarize, the MINLO method provides a prescription in the choice of the scales and
the inclusion of Sudakov form factors for the NLO computation of processes involving jet
production. A careful investigation of the accuracy of the method led the same authors
to improve this methodology in the MINLO′ formalism presented in [40]. Considering the
production of a colour singlet F and defining an extra emission as J, the MINLO′ method
allows one to retain the NLO accuracy in both F and FJ at the same time. The modifications
with respect to the MINLO procedure are minimal but they allow us to merge generators
with different jet multiplicities within the POWHEG framework keeping the highest accuracy
of the two descriptions, as described at the beginning of this section.

We consider the production of a colour singlet F in association with one jet J, so that the
usual POWHEG formula reads

dσ

dΦFJ
= B̄(ΦFJ)

{
∆pwg(ΦFJ, Λpwg) +

∫
dΦrad∆pwg(ΦFJ, kT)

R(ΦFJJ)

B(ΦFJ)

}
, (3.25)

where the Born term B̄(ΦFJ) is related to FJ production, while the terms in the curly brackets
generate the extra radiation according to the POWHEG approach. Λpwg is the IR cutoff and
kT is the transverse momentum of the radiation. The MINLO′ formalism modifies the B̄(ΦFJ)

term in this way:

• As done in the MINLO method, we encode appropriate Sudakov form factors in the
computation but the resummation coefficients that are now included are A(1), A(2), B(1)

and B(2).

• The couplings entering the virtual and real contributions as well as in the first-order
expansion of the Sudakov form factor are set to the transverse momentum of the colour
singlet F. The same scale choice is performed for the factorization scale.

The POWHEG B̄(ΦFJ) function thus reads

B̄MINLO′(ΦFJ) = e−S̃(pT)

[
B(ΦFJ)

(
1 +

αs(pT)

2π
[S̃(pT)]

(1)
)
+ V(ΦFJ) +

∫
dΦradR(ΦFJ, Φrad)

]
,

(3.26)
where we made contact with the MINNLOPS formalism introducing the following notation
for the Sudakov form factor:

S̃(pT) = 2
∫ Q

pT

dq
q

[
A
(
αs(q)

)
ln

Q2

q2 + B
(
αs(q)

)]
. (3.27)

The coefficients A(1), A(2) and B(1) are reported in equations (3.21) and (3.22), while the
explicit expressions of the coefficients B(2) are [54, 53, 55]

B(2)
q =

(
− 17

12
− 11π2

12
+ 6ζ3

)
CACF +

(
− 3

4
+ π2 − 12ζ3

)
C2

F +

(
1
6
+

π2

6

)
CFn f ,

B(2)
g =

(
11ζ2

6
− 6ζ3 −

16
3

)
C2

A +

(
4
3
− ζ2

3

)
CAn f + n f CF , (3.28)
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3. Matching fixed-order calculations with parton showers

where ζ2 = 1.645... is the Riemann zeta function evaluated in z = 2. The term [S̃(pT)]
(1)

in equation (3.26) is the first-order expansion of the Sudakov form factor defined in (3.27)
and, as in the MINLO procedure, it is needed not to spoil the NLO accuracy of the FJ
computation. The inclusion of the B(2) coefficient together with setting the scales to the
transverse momentum pT of F is crucial: it regularises the divergence in the Born level up
to NLO accuracy in F because the singular part of the FJ cross section is encoded in the B(2)

coefficients. A complete proof of the NLO accuracy of the method can be found in the original
publication [40].

Using the MINLO′ method it is possible to construct a NNLO+PS accurate event generator
applying an a-posteriori reweighting [40]. More precisely, the weights of events generated
using MINLO′ can be rescaled using the following multi-differential reweighting factor:

w(ΦF) =

(
dσ

dΦF

)
NNLO(

dσ
dΦF

)
MINLO′

. (3.29)

By construction, distributions that are inclusive in F are NNLO accurate. Moreover, the NLO
accuracy in FJ provided by the MINLO′ method is not spoilt because we can expand the
previous equation as

w(ΦF) =
c0 + c1 αs + c2 α2

s
c0 + c1 αs + d2 α2

s
≈ 1 +

c2 − d2

c0
α2

s +O(α3
s ) , (3.30)

which shows that the numerator and denominator start differing from order α2
s so that the

one-jet region is not spoilt by the reweighting procedure.
This method was applied to a few LHC processes (Higgs-boson production [56], Drell-Yan

[57], WH production [58], ZH production [59], WW production [60] and H → bb̄ decay [61]).
However, a reweighting procedure becomes too challenging for complex processes: the more
complicated the Born phase space, the more computationally demanding the procedure. For
many processes of interest at the LHC this method is not feasible. In the next section we will
present the MINNLOPS method in which the same NNLO+PS accuracy is reached without
requiring a CPU-exhausting reweighting.

3.3. The MINNLOPS method

Reaching NNLO+PS accuracy is the current frontier for precise predictions at colliders and
the MINNLOPS framework [8] is a powerful tool for reaching this accuracy. Nowadays other
methods are available, like the GENEVA framework [62, 47] and the UNNLOPS approach
(applied only to simple processes like Drell-Yan [63] and Higgs production [64]), but in
this context MINNLOPS plays a special role thanks to its simplicity and flexibility. In the
MINNLOPS method, NNLO corrections are calculated on-the-fly during the event generation,
which allows one to avoid a computationally intense reweighting. Moreover, no unphysical
scales or boundaries are used for partitioning the phase space according to the jet multiplicity.
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3. Matching fixed-order calculations with parton showers

Last but not least, the matching with a pT-ordered shower is straightforward as MINNLOPS

is embedded into the POWHEG method.
The MINNLOPS method was originally formulated for the production of a colour singlet in

simple 2→ 1 processes [8], with an optimization of the method in [65]. It was later extended
to a generic colour-singlet production [66] and finally to heavy-quark pair production [67].
Thanks to its simplicity, in the past few years the method was successfully applied to different
processes: Higgs and Z production [8], Zγ production [66] (with the inclusion of anomalous
couplings in [68]), W+W− [69] and ZZ [70], Higgsstrahlung with the decay of the Higgs
boson into a pair of bottom quarks [2] (with an extension to SMEFT in [3]), W±Z including
NLO EW effects [4], tt̄ [67, 71] and bb̄ [72] productions.

Schematically, we can summarize the MINNLOPS procedure in three main steps:

• Firstly, we generate a colour singlet F in association with a light parton J at NLO
accuracy through the POWHEG method.

• The physical behaviour at low pT is restored including an appropriate Sudakov form
factor, so that the cross-section is finite even when the jet J becomes unresolved. More-
over, also higher-order corrections are included in order to obtain NNLO accuracy for
distributions that are inclusive in F;

• Lastly, we generate exclusively the second radiated parton through the POWHEG
method. Subsequent emissions are generated by the PS through the standard interface
to POWHEG, meaning that these emissions are softer than the radiation generated at
parton level in order to avoid double counting.

We now review in detail the construction of the MINNLOPS master formula following the
discussion presented in the original publications [8, 65]. We consider the usual POWHEG
formula for FJ production

dσ

dΦFJ
= B̄(ΦFJ)

{
∆pwg(ΦFJ, Λpwg) +

∫
dΦrad∆pwg(ΦFJ, kT)

R(ΦFJJ)

B(ΦFJ)

}
, (3.31)

where B̄(ΦFJ) already encodes the first emission J and the terms in the curly brackets generate
the second radiation. Note that the Born contribution is divergent because of the presence of
the light parton J, which gives rise to soft and collinear divergences that are not cancelled (no
virtual contribution to F production is present).

The MINNLOPS method consists in modifying the term B̄(ΦFJ) only, keeping the structure
of the POWHEG calculation unaltered. Moreover, we need to encode in the computation
NNLO accurate contributions. To do so, we consider the production of a colour singlet F with
transverse momentum pT and invariant mass Q. Using an all-order analytic formula [8], we
can express the cross section differential in ΦF and pT as follows:

dσ

dΦFdpT
=

d
dpT

{
e−S̃(pT)L(ΦF, pT)

}
+ R f (ΦF, pT) . (3.32)

This expression is derived from the analytic resummation of transverse momentum. The
differential cross section is thus expressed as the sum of two contributions: the first one is
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the total derivative in pT of an appropriate exponentiated Sudakov form factor S̃(pT) times a
luminosity factor L(ΦF, pT). This term is singular when pT → 0. The second contribution
R f (ΦF, pT) is a finite term.

The Sudakov form factor is defined as

S̃(pT) = 2
∫ Q

pT

dq
q

[
A
(
αs(q)

)
ln

Q2

q2 + B̃
(
αs(q)

)]
, (3.33)

where the resummation coefficients A(αs) and B(αs) are considered up to the following
perturbative order:

A(αs) =

(
αs

2π

)
A(1) +

(
αs

2π

)2

A(2) +

(
αs

2π

)3

A(3) , (3.34)

B̃(αs) =

(
αs

2π

)
B(1) +

(
αs

2π

)2

B̃(2) . (3.35)

The explicit expressions of the A(i) and B(i) coefficients can be found in [51, 52, 53]. More
precisely, A(1) and A(2) are defined in equation (3.21) while A(3) is

A(3)
q,g = 2 Cq,g

{
C2

A

[
245
24
− 67

9
π2

6
+

11
6

ζ3 +
11
5

(
π2

6

)2]
+ CFn f

[
− 55

24
+ 2ζ3

]
+ CAn f

[
− 209

108
+

10
9

π2

6
− 7

3
ζ3

]
+ n2

f

[
− 1

27

]}
, (3.36)

where ζ3 = 1.202... is the Riemann zeta function ζ(z) evaluated in z = 3. As for the B(i)

coefficients, B(1) is defined in (3.22) while B̃(2) is defined as follows:

B̃(2)
q,g = B(2)

q,g + 2ζ3(A(1))2 + 2πβ0H(1) . (3.37)

The term H(1) represents the one-loop hard function and B(2) is defined in equation (3.28).
Notice that B̃(2)

q,g depends explicitly on the specific hard process through the hard virtual
correction H(1).

The luminosity factor L(ΦF, pT) is defined as

L(ΦF, pT) = ∑
c,c′

dBc,c′(ΦF)

dΦF
∑
i,j

{(
C̃[a]

ci ⊗ f [a]i

)
H̃(pT)

(
C̃[b]

c′ j ⊗ f [b]j

)
+
(
G[a]

ci ⊗ f [a]i

)
H̃(pT)

(
G[b]

c′ j ⊗ f [b]j

)}
, (3.38)

where [a] and [b] represent the initial legs and c, c′, i, j are flavour indices. B is the Born
contribution for F production, C̃ and G are collinear coefficients up to O(α2

s ) (see section 4 in
[8] for their complete expressions), and H̃ encodes hard virtual corrections up to two loops as
follows:

H̃ = 1 +
αs

2π
H(1) +

( αs

2π

)2
H̃(2)

H̃(2) = H(2) + 2ζ3A(1)B(1) . (3.39)
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In order to make contact with the MINLO′ formalism, we can rewrite expression (3.32) as

dσ

dΦFdpT
= e−S̃(pT)

{
D(pT) +

R f (pT)

e−S̃(pT)

}
, (3.40)

where we have introduced the key ingredient of the MINNLOPS procedure:

D(pT) ≡ −
dS̃(pT)

dpT
L(pT) +

dL(pT)

dpT
. (3.41)

The finite contribution R f (pT) can be rewritten as the difference of the full NLO calculation
and the singular contribution expandend up to the second order in the coupling

R f (pT) =
dσ

(NLO)
FJ

dΦFdpT
− αs(pT)

2π

[
dσsing

dΦFdpT

](1)
−
(

αs(pT)

2π

)2[ dσsing

dΦFdpT

](2)
, (3.42)

where the notation [X](i) stands for the i-th term in the perturbative expansion of X. The
NLO cross section for FJ production is:

dσ
(NLO)
FJ

dΦFdpT
=

αs(pT)

2π

[
dσFJ

dΦFdpT

](1)
−
(

αs(pT)

2π

)2[ dσFJ

dΦFdpT

](2)
. (3.43)

In order to preserve the perturbative accuracy of equation (3.40), we expand the curly brackets
in powers of the coupling using the following power counting formula∫ Q

Λ
dpT

1
pT

αm
s (pT) ln

Q
pT

e−S̃(pT) ≈ O
(

α
m− n+1

2
s (Q)

)
, (3.44)

which means that we retain NNLO accuracy if we keep contributions up to O(α3
s ).

Combining equations (3.40), (3.42), (3.43) and using the power counting formula (3.44), we
obtain the final NNLO differential cross section:

dσ

dΦFdpT
= e−S̃(pT)

{
αs(pT)

2π

[
dσFJ

dΦFdpT

](1)(
1+

αs(pT)

2π
[S̃(pT)]

(1)
)
+

(
αs(pT)

2π

)2[ dσFJ

dΦFdpT

](2)
+

(
αs(pT)

2π

)3(
D(pT)−

αs(pT)

2π
[D(pT)]

(1) −
(

αs(pT)

2π

)2

[D(pT)]
(2)
)

Fcorr(ΦFJ) + regular
}

.

(3.45)

We thus recover exactly the MINLO′ formula (3.26), with the inclusion of extra terms through
which NNLO accuracy is reached. We can thus redefine the POWHEG B̄ function encoding
all the ingredients obtained in the previous equation, thus obtaining a NNLO+PS accurate
event generator.

The regular contributions can be neglected as they are formally N3LO accurate: they arise
from the O(α3

s ) expansion of the finite term R f in equation (3.32), which is free from 1/pT
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singularities and vanishes when pT goes to zero. Moreover, note that it is possible to use the
following truncation

D(pT)−
αs(pT)

2π
[D(pT)]

(1) −
(

αs(pT)

2π

)2

[D(pT)]
(2) =

(
αs(pT)

2π

)3

[D(pT)]
(3) +O(α4

s (pT)) ,

(3.46)
as it was done in the first formulation of the MINNLOPS method [8]. In [65] it was shown that
the impact of this truncation might be numerically not negligible in specific processes and in
kinematic configurations with small pT. In fact, the truncation presented in (3.46) introduces
a different treatment of subleading terms when compared to fixed-order NNLO calculations.
For this reason, in the default formulation of the method the truncation is not performed
anymore and all the terms of O(α4

s ) and higher are kept. In this way, the total derivative in
(3.32) can be exactly reconstructed.

The term Fcorr that multiplies the D(pT) terms in equation (3.45) is needed for spreading
the NNLO corrections in the FJ phase space. More precisely, all the MINLO′ terms are
directly related to the phase space of F with one jet (ΦFJ) or with two jets (ΦFJJ). By contrast,
the NNLO D(pT) contributions are obtained from a resummed calculation in the pT → 0
limit and they thus depend on the phase space of the colour singlet only (ΦF) in which the
information of the extra radiation has been integrated out. The D(pT) terms explicitly depend
on the pT of the colour singlet but this dependence is not associated with a well-defined phase
space point of the full kinematics (either ΦFJ or ΦFJJ). In fact, the presence of a non-zero pT

requires a recoil of the colour singlet against at least one parton, but we do not have any
information on such a parton.

Concretely, solving this issue means defining a method for associating each value of D(pT)

with a specific phase space point of ΦFJ. We thus introduce a mapping that projects ΦFJ to
ΦF smoothly in the limit pT → 0. This procedure goes under the name of spreading because
the D(pT) contributions are spread over the ΦFJ phase space in a way that allows one to
reproduce (3.45) after integration.

There are different possibilities for defining the spreading, either uniformly or through a
suitable distribution. We consider the following spreading factor

Fcorr
ℓ (ΦFJ) =

Iℓ(ΦFJ)

∑ℓ′
∫

dΦ′FJ Iℓ′ δ(pT − pT
′)δ(ΦF −Φ′F)

, (3.47)

where ΦF (Φ′F) is obtained projecting ΦFJ (Φ′FJ) into the F phase space (e.g. according to the
FKS mapping [21, 22] that preserves the rapidity of the colour singlet F. Explicit expressions
for the ΦFJ → ΦF mapping can be found in appendix A of [8].). Iℓ is an arbitrary function of
ΦFJ and ℓ defines the flavour structure of the FJ process. With pT we indicate the transverse
momentum of the colour singlet in the ΦFJ phase space. Taken an arbitrary function G(ΦF, pT),
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Fcorr
ℓ should satisfy:

∑
ℓ

∫
dΦ′FJ G(Φ′F, pT

′) Fcorr
ℓ (Φ′FJ) =

∫
dΦF dpT G(ΦF, pT)

×∑
ℓ

∫
dΦ′FJ δ(ΦF −Φ′F) δ(pT − pT

′) Fcorr
ℓ (Φ′FJ) =

∫
dΦF dpT G(ΦF, pT) . (3.48)

The function Iℓ can be taken equal to one, thus spreading the NNLO corrections in a flat way
over the phase space:

Iℓ(ΦFJ) = 1 . (3.49)

For this trivial choice, the integral in equation (3.47) can be analytically solved. However, this
spreading gives rise to spurious effects when the jet is produced at large rapidities. One can
thus adopt a more physical distribution, in which the spreading depends on the physical
matrix element

Iℓ(ΦFJ) = |MFJ
ℓ (ΦFJ)|2 ( f [a] f [b])ℓ , (3.50)

where |MFJ
ℓ (ΦFJ)|2 is the squared Born matrix element for FJ production and ( f [a] f [b])ℓ is

the product of the parton densities for a specific flavour configuration ℓ. In this way, the
D(pT) terms are spread according to the rapidity distribution of the radiation. Even though
this choice has a correct physical interpretation, the calculation can become computationally
intense for complex processes. An approximated version of equation (3.50) is thus preferable:
we can consider the squared Born matrix element in the collinear limit

|MFJ
ℓ (ΦFJ)|2 ≃ |MF

ℓ (ΦF)|2Pℓ(Φrad) , (3.51)

where Pℓ(Φrad) is the collinear splitting function. Noting that the squared matrix element
|MF

ℓ (ΦF)|2 for F production cancels exactly in equation (3.47), the spreading function Iℓ(ΦFJ)

is simply set to:
Iℓ(ΦFJ) = Pℓ(Φrad)( f [a] f [b])ℓ . (3.52)

The computation of (3.47) is thus much faster and complex processes can be handled as well.
We now analyse the procedure used for switching off the Sudakov form factor and the

D(pT) terms at high pT, which is needed for not introducing spurious contributions when pT

becomes large. In fact, in this region the MINNLOPS formula differs from the NLO FJ cross
section for terms beyond accuracy only (starting at O(α3

s )). The choice of the exact procedure
has some arbitrariness, provided the logarithmic structure of the computation at small pT is
preserved. We can introduce modified logarithms of the form

ln
Q
pT
→ L ≡ 1

p
ln
(

1 +
(

Q
pT

)p)
, (3.53)

where p is a free positive parameter that regulates how fast the logarithms go to zero. The
larger p, the faster the logarithms tend to 0 at large pT values. Note that the formal accuracy
of the MINNLOPS method is not spoilt because in the limit pT → 0 the calculation remains
unaffected. This modification of the logarithms introduces terms beyond accuracy in equation
(3.45), and it must be performed at the level of (3.32) in order to retain the total cross section.
To do so, we need the following adjustments:
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• The renormalization and factorization scales in D(pT) are set to

µR = KR Q e−L, µF = KR Q e−L , (3.54)

where KR and KF are scale variation factors varied between 1/2 and 2.

• The lower bound of the integral in the Sudakov form factor (3.33) is set to:

pT → Q e−L . (3.55)

• The D(pT) terms are supplemented with an appropriate Jacobian factor that directly
depends on the modified logarithms:

D(pT)→ JQ D(pT), JQ ≡
(Q/pT)

p

1 + (Q/pT)p . (3.56)

We note that equation (3.45) reproduces the correct NNLO result only if it can be evaluated
down to small values of pT. More precisely, the integration in pT in (3.32) should be carried out
using a low integration bound, where the integrand tends to zero because of the suppression
of the Sudakov form factor. Approaching small values of pT can be problematic because of
the internal cutoff ΛPDF of PDFs: each set of PDFs has an intrinsic IR cutoff ΛPDF related to
the low scale for which a fit on data is no longer possible (because data are not available in
the very low energy region). Below this IR cutoff, the PDF is set to zero. In order to approach
small pT values, this truncation of the PDFs at ΛPDF should be avoided and a consistent
DGLAP evolution for lower scales should be applied.

The strategy adopted in the MINNLOPS method is described in [8] and it proceeds as
follows: PDF grids are read from the LHAPDF [73] package and then used for constructing
corresponding HOPPET [74] grids. The advantage of the HOPPET package is the fast
evaluation of convolutions with coefficient functions. At scales µF > ΛPDF HOPPET grids
are equal to the LHAPDF ones, while for values µF < ΛPDF we perform a DGLAP evolution
freezing the number of active flavours to the one provided by LHAPDF at µF = ΛPDF. Using
this prescription one can perform a running of the PDFs to small pT ∼ µF values.

The non-perturbative regime at low pT can be smoothly approached with the introduction
of a damping factor g(pT)

µR = KR
(
Q e−L + Q0 g(pT)

)
, µF = KF

(
Q e−L + Q0 g(pT)

)
, (3.57)

where Q0 is a non-perturbative parameter that regularises the Landau singularity. The choice
of g(pT) is to a large extent arbitrary: once the analytic form of the damping factor is chosen,
the same scale settings are adopted in the Sudakov form factor in equation (3.33). Moreover,
an appropriate Jacobian factor JQ0 that depends on g(pT) should multiply the D(pT) terms.

We remind the reader that there is some freedom in the choice of the scales in the NLO
FJ cross section: while scale settings are constrained by pT resummation in the pT → 0
limit, for finite values of the transverse momentum the MINNLOPS method allows for some
arbitrariness. The default scale choice is

µR = KR pT , µF = KF pT , (3.58)
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or, when the damping is introduced:

µR = KR (pT + g(pT) Q0) , µF = KF(pT + g(pT) Q0) . (3.59)

In this way, the choice of the scales is consistent with the scale used in the D(pT) terms and
in the Sudakov form factor when pT becomes small, reproducing a correct matching in this
limit. However, the scales of the NLO computation can also be set as in equations (3.54) and
(3.57), such that when pT becomes large, scales are of the order of the invariant mass Q of the
colour singlet.

To summarize: the MINNLOPS method provides a powerful framework for matching
NNLO calculations and parton showers. All the terms needed to reach this accuracy are
already present at the level of the event generation, thus providing an efficient tool that
does not require any a-posteriori reweighting. The matching with the parton shower is
straightforward because it follows the POWHEG approach. In Part II of this thesis, we will
present some cutting-edge phenomenological results obtained using this method. We first
analyse Higgsstrahlung with subsequent decay of the Higgs boson to a pair of bottom quarks
in chapter 4. We then present an extension of ZH production with H → bb̄ decay in the SM
Effective Field Theory in chapter 5. We conclude in chapter 6 with a detailed analysis of the
combination of QCD and EW corrections matched to QCD and/or QED parton showers for
W±Z production.
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4. Higgsstrahlung with H → bb̄ decay at
NNLO+PS accuracy in the SM

4.1. Motivation

The Higgs boson is a unique particle in the Standard Model because it is related to funda-
mental properties of nature and how the world appears to us. In fact, the Higgs field has
a vacuum expectation value different from zero that is directly linked to the masses of the
elementary particles of the SM. However, the SM mechanism for the generation of masses is
not the only one possible: improving our description of key processes that involve the Higgs
boson can be the path towards the discovery of new physics.

In the last decade, extraordinary theoretical and experimental achievements were reached
in the investigation of the Higgs sector, but this exploration is still at an early stage. Given
that a better understanding of the Higgs sector can possibly lead to an extension of the SM,
the Higgs boson is and, even more so, will be at the core of the rich LHC physics programme.
In this context, precise theoretical calculations are crucial in order to detect a small deviation
in the data/theory comparison.

A detailed review of the Higgs boson properties and state-of-the-art measurements and
predictions can be found in the latest PDG [75]. At the LHC, the Higgs boson is produced
through the four main channels represented in figure 4.1.

The dominant production mode is gluon-gluon fusion (panel (a)), which is characterised
by a heavy-quark loop. Since the Yukawa coupling of a particle is proportional to its mass,
the leading contribution is given by a loop with top quarks. Even if this process is loop-
induced and thus suppressed by powers of the strong coupling, this channel is strongly
enhanced by the large gluon PDF and the large top Yukawa coupling. Indeed, gluon-gluon
fusion constitutes 90% of the total inclusive cross section for Higgs production at the LHC.
The drawback of this channel is the large QCD background which renders experimental
measurements extremely challenging. For this reason, other Higgs production channels which
allow for a cleaner experimental signature are indispensable for precise tests of the Higgs
sector. The second-largest production mode is vector-boson fusion (panel (b)), in which the
Higgs boson couples to two vector bosons emitted by the incoming partons. The typical
feature of this process is the presence of two back-to-back hard jets given by the scattered
partons in the forward and backward regions. The inclusive cross section for this channel is
around 7% of the total production rate of the Higgs boson. The next most relevant production
channel is the associated production of the Higgs boson with a vector boson V, also referred
to as Higgsstrahlung (panel (c)). This production mode has a small cross section (∼2% of
the total inclusive cross section for Higgs production) but it provides a clean experimental
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Figure 4.1.: Main production channels of the Higgs boson at the LHC. Panel (a) is gluon-gluon
fusion; panel (b) is vector-boson fusion; panel (c) is Higgsstrahlung; panel (d) is
associated production with a pair of top quarks.

signature. In order to increase the production rate, it is possible to consider the decay of the
Higgs boson into a pair of bottom quarks, which constitutes the largest branching fraction
(roughly 60%). Despite the large H → bb̄ decay rate, it had been thought for a long time
that this channel could not be observed at the LHC because of the large background until it
was proposed to consider a boosted regime in which the Higgs boson has a large transverse
momentum and to apply substructure techniques for the reconstruction of the bottom quarks
[76]. The last production mode for the Higgs boson is the associated production with a couple
of top quarks (panel (d)). The production rate associated to this mode is low (∼1% of the total
Higgs production rate) and this channel is hard to detect because of the large background.

This chapter is dedicated to precise predictions for the production of a Higgs boson
through Higgstrahlung, with subsequent decay of the Higgs boson into a pair of bottom
quarks. Sample Feynman diagrams can be found in figure 4.2. This process is of fundamental
importance for precision physics in the Higgs sector as it provides direct access to the bottom
Yukawa coupling and it actually yields the highest sensitivity to its determination.

Both Higgsstrahlung and H → bb̄ decay were extensively studied in the past. As far as VH
production is concerned, a first matching of NLO QCD calculations with parton showers was
presented in [77] within the POWHEG framework. In this work, the MINLO′ method [40]
was used. A combination at NLO accuracy of both QCD and EW computations matched to
parton showers is presented in [78]. The loop induced gg→ HZ process has been matched
to PS at LO in [79, 80]. At NNLO+PS accuracy, the GENEVA method [62] was applied
to VH production in [81] while the MINLO′+ reweighting procedure described in section
3.2 was applied in [59, 58]. As for the H → bb̄ decay, NNLO QCD results in the massless
approximation are available in [82, 83, 84] and a matching with parton showers at NNLO+PS
accuracy is available in [61, 85, 86].

In this chapter, we present results for W±H and ZH production processes followed by
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Figure 4.2.: Feynman diagrams for VH production with subsequent H → bb̄ decay. Panels
(a) and (b) are qq̄-induced (Drell-Yan like) channels at LO, while panel (c) is a
gg-induced channel that enters the calculation at NNLO.

H → bb̄ decay at NNLO+PS accuracy in both production and decay. These results were
originally presented by the author and collaborators in [2]. The chapter is organised as
follows: we first describe our calculation in section 4.2 and we validate our implementation
in section 4.3. Our phenomenological results are presented in section 4.4, in which we show
predictions for W+H and ZH. The corresponding results for W−H are presented in Appendix
A. We also present a comparison with data in the same section. We conclude with a detailed
analysis of the impact of the jet-clustering algorithm used for the reconstruction of b-jets in
section 4.5.

4.2. Outline of the calculation

We consider the Higgsstrahlung process for both neutral and charged vector bosons

pp→ ZH → ℓ+ℓ−H, pp→ ZH → νℓν̄ℓH and pp→W±H → ℓ±νℓH , (4.1)

with the subsequent decay of the Higgs boson H into a pair of bottom quarks:

H → bb̄ . (4.2)

With ℓ we indicate a massless lepton (ℓ ∈ {e, µ, τ}), while νℓ (ν̄ℓ) is the corresponding (anti-)
neutrino.

In figures 4.2 (a) and 4.2 (b) we show sample Feynman diagrams of the process at hand
in the qq̄-induced channel at LO. Figure 4.2 (c) represents the gg-induced channel, which is
mediated by a heavy-quark loop. This channel enters the calculation at NNLO accuracy and,
due to charge conservation, it exists only for ZH production. This contribution has been
neglected in our phenomenological results in section 4.4.3, but it is included when presenting
total cross sections in section 4.4.2 and in the comparison with data in section 4.4.4.

Our predictions are NNLO+PS accurate in both the production and the decay of the Higgs
boson. In order to reach this accuracy, we adopt the following strategy: we first generate
separately events associated to the production and the decay stages of the Higgs boson at
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NNLO accuracy. For the production stage pp → VH, we employ the MINNLOPS method,
while for the decay H → bb̄ we use the MINLO′+ reweighting approach, which will be referred
to as NNLOPS method from now on. We stress that the MINNLOPS method could have been
used also for the generation of decay events, but the application of the NNLOPS approach
is straightforward for the H → bb̄ decay (more details are given later in section 4.2.2). The
production and decay events are then combined using a narrow-width approximation for the
Higgs boson. Using this procedure, production and decay stages are considered completely
factorized and we thus neglect interference terms between final-state bottom quarks and
initial-state partons. This approximation is motivated by the fact that interference terms are
exactly zero at O(αs), as the Higgs boson is a colour singlet, and they are strongly suppressed
by the small width of the Higgs (ΓH ≃ 4.1 MeV) at O(α2

s ). Once the events for the complete
process are obtained, we consistently shower them using PYTHIA8 [87].

4.2.1. Generation of production events

Our generators for the production stage pp→ VH of the Higgs boson are implemented in
both the POWHEG-BOX-V2 [41] and the POWHEG-BOX-RES [88] frameworks. The vector
boson V = W±, Z can decay in any lepton channel. Our POWHEG-BOX-V2 implementation
relies on the VH+jet generators developed in [77], while our code in POWHEG-BOX-RES
is based on the VH+jet generators presented in [78]. The two implementations are fully
compatible within numerical uncertainties.

We remind the reader that we do not include in the computation gg-induced processes
(panel (c) in figure 4.2) except in section 4.4.2 for the calculation of total cross sections and in
section 4.4.4 for the comparison with data. In these cases, we generate LO+PS accurate results
for gg-induced processes in the POWHEG-BOX-V2 framework and we combine them to the
qq̄-initiated channels in an additive way at the level of differential distributions. Moreover,
there are other corrections to both WH and ZH productions mediated by a heavy-quark
loop in which the Higgs boson is radiated by the heavy quark. A detailed review of these
contributions can be found in [89], where they were calculated for the first time. Using the
notation of [89], in our implementation we neglect virtual contributions VI and VII and include
real contributions RI and RII (see the introduction section of [89]). Note that RII contributes
to ZH production only. Both VI,II and RI,II contribute to the total cross section to about 0.6%.

In our implementation, the matrix elements are taken from different providers: the Born
(i.e. VH+jet) and real (i.e. VH+2 jets) matrix elements are obtained from the interface [90]
between POWHEG and MadGraph v4 [91]. The virtual amplitude for VH+jet is calculated
analytically [92]. The one-loop and two-loop amplitudes for VH production are obtained
by encoding the correct rescaling in the quark vertex function. For the calculation of the
D terms in the MINNLOPS formula (3.45), we use HOPPET [74] for a fast evaluation of the
convolutions with PDFs. Furthermore, we compute polylogarithms in the collinear coefficient
functions using hplog [93].

To avoid spurious higher-order logarithmic terms in the MINNLOPS formula (3.45), we
adopt a modified logarithm (3.53) that smoothly turns off NNLO corrections in the region
pT > mVH/2, where pT and mVH are the transverse momentum and the invariant mass of
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the VH colour singlet. The hard scale in the logarithms is consistently changed to mVH/2
[71]. At high pT, we set the scales of the calculation through the largeptscales 1 option so
that equation (3.58) is used. At small pT, the default MINNLOPS prescription in the choice of
the scales is employed. Furthermore, we set Q0 = 0 GeV in (3.57) and we freeze the strong
coupling and the PDFs at 0.8 GeV. We also switch on the POWHEG option doublefsr 1 [94], so
that q→ qg and g→ qq̄ splittings are treated symmetrically for the definition of the starting
scale of the shower. We use PYTHIA8 [87] as parton shower and we adopt default settings, in
particular for the recoil scheme.

4.2.2. Generation of decay events

As for the generation of decay events, we follow the procedure described in section 2.2 of [61]
and we use the same implementation within the POWHEG-BOX-V2 framework. NNLO+PS
accuracy is reached through the NNLOPS method, which requires an a-posteriori reweighting.
Even though the MINNLOPS method could have been applied, the reweighting procedure is
straightforward in this case as the reweighting factor is given by a number only, which is the
NNLO decay width of the Higgs boson decaying into b-quarks:

W(Φbb̄) =
ΓNNLO

H→bb̄

ΓMiNLO′
H→bb̄

. (4.3)

We smoothly switch off the reweighting factor in hard events that are already NLO accurate
using a modified version of (4.3), as explained in [61]. We consider the three-jet resolution
parameter y3 in the Cambridge algorithm [95, 96], which defines the separation between
two-jet and three-jet events, and we construct the following reweighting factor:

W(Φbb̄) = h(y3)
ΓNNLO

H→bb̄ − ΓMiNLO′,B
H→bb̄

ΓMiNLO′,A
H→bb̄

+ (1− h(y3)) , (4.4)

where

ΓMiNLO′,A
H→bb̄ =

∫
dΦbb̄g

(ΓMiNLO′
H→bb̄
dΦbb̄g

h(y3)

)
,

ΓMiNLO′,B
H→bb̄ =

∫
dΦbb̄g

(ΓMiNLO′
H→bb̄
dΦbb̄g

(1− h(y3))

)
. (4.5)

The h(y3) function is defined as

h(y3) =
1

1 +
( y3

y3,re f

)y3,pow
, (4.6)

where the suggested values for the two parameters are y3,re f = e−4 and y3,pow = 2, as
explained in [61]. By construction, h(y3) tends to one when soft radiation is produced, while
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h(y3)≪ 1 when a hard jet is produced. Using this procedure, theW(Φbb̄) factor is applied
only to processes without hard radiation.

All the amplitudes needed for the computation of the decay events have been taken from
[84].

4.2.3. Combination of production and decay events

Once both production and decay events are produced, we combine them using the procedure
described in [61]. The first step consists in substituting the Higgs boson generated in a
production event with its decay products taken from a decay event. This requires a reshuffling
of the momenta of the decay products, to restore energy-momentum conservation. Small
off-shell effects suppressed by the Higgs width ΓH are neglected (these terms are of order
O(ΓH/mH), where mH is the Higgs boson mass). Furthermore, the decay events are generated
in the Higgs rest frame while the production events are in the laboratory frame, thus an
appropriate boost is needed.

We then modify the weights of the combined events wfull using this narrow-width approxi-
mation formula

wfull =
wprod · wdec

ΓH
= wprod · Br(H → bb̄) · wdec

ΓH→bb̄
, (4.7)

where the weights for the production and the decay events are indicated as wprod and wdec,
respectively. Br(H → bb̄) represents the branching fraction of the Higgs boson to bottom
quarks (in our code, it is taken as an input), while ΓH→bb̄ is the H → bb̄ decay width directly
computed from the decay events. By construction, if we integrate inclusively the last factor in
equation (4.7), we obtain one: the total cross section for the full event is the product of the
cross section for the production and the branching ratio of the Higgs boson decaying into a
pair of bottom quarks, regardless of the accuracy of the last factor.

The specific value of the bottom Yukawa coupling used in the calculation is irrelevant, as it
cancels exactly in the ratio in the last factor in equation (4.7).

The matching of the full event with the parton shower is non-trivial as the starting scales
for the production and the decay stages of the process are different. We follow the procedure
described in [61] also in this case. In the combined event file, we store the starting scale of
the production stage (scalup), while the corresponding value for the decay (scalupdec) is
recomputed on-the-fly starting from the decay kinematics. We adopt the usual definition
of hardness for final-state radiation used in POWHEG [97]. scalup is read by the shower
from the Les Houches Event file and it is automatically used as the starting scale for all the
splittings coming from the production stage. As for the decay, we let the shower radiate in
the entire kinematically allowed phase space. We then apply an a-posteriori veto to check
that the hardness of the splittings generated by the shower are consistent with the emission
produced by POWHEG from the Higgs decay at Les Houches Event level. The hardness of a
splitting is defined as

t = 2 (prad · pem)
Erad

Eem
, (4.8)

where Erad (Eem) and prad (pem) are the energy and 4-momentum of the radiated (emitting)
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σ [fb]

MINNLOPS 96.72(4)+1.9%
−0.6%

NNLOPS 96.69(3)+1.3%
−1.3%

Table 4.1.: Inclusive cross sections for pp → e+νeH production using the MINNLOPS and
NNLOPS methods.

particle. An event is accepted only if the hardness of all the splittings generated by the shower
in the Higgs decay is smaller than scalupdec. If this condition is not met, we reject the event
and we try to shower it again till the requirement is fulfilled. After 1000 failed attempts, we
reject the event.

4.3. Validation of the calculation

In this section we validate our MINNLOPS implementation against NNLOPS results. NNLOPS
results for W±H production are taken from [58], while ZH production with subsequent decay
of the Higgs boson into bottom quarks is presented in [61]. In the former case, the Higgs
boson is kept stable, so that the full calculation for W±H production with H → bb̄ decay at
NNLO+PS accuracy is obtained with the MINNLOPS method in [2] for the first time.

4.3.1. W±H production

We consider W±H production with a stable Higgs boson, and we compare our MINNLOPS

predictions [2] with NNLOPS results [58]. Since only W+H is presented in [58], we present a
comparison for the positively charged vector boson only.

We study proton-proton collisions at 13 TeV centre-of-mass energy for the production
of e+νeH. In order to present a reliable comparison, the input parameters are taken from
[58]: mW = 80.399 GeV, ΓW = 2.085 GeV, mH = 125.0 GeV. The electroweak parameters
read: α = 1/132.3489 and sin2 θW = 0.2226. The Higgs boson is considered on-shell and
contributions where the Higgs boson is radiated from a heavy-quark loop (VI,II and RI,II) are
neglected, as done in [58]. The PDF set is MMHT2014nnlo68cl, for which the corresponding
running coupling is αs(m2

Z) = 0.118 .
The renormalization and factorization scales are set according to the MINNLOPS procedure

and error bars are obtained through 7-point scale variation, where µR and µF are varied by a
factor of two above and below the central scale with the constraint 1/2 ≤ µR/µF ≤ 2. We
present results for an inclusive setup, without any fiducial cut.

Table 4.1 shows the inclusive cross sections obtained with the MINNLOPS and the NNLOPS
methods. Results are in perfect agreement at the sub-permille level, within numerical errors.
The MINNLOPS results have slightly asymmetric error bars when compared to the NNLOPS
ones. This is not unexpected because of the different scale settings and treatment of higher-
order terms in the two calculations.
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Figure 4.3.: Differential distributions for e+νeH production obtained with the MINNLOPS and
the NNLOPS methods at LHE level.
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σ [fb]

POWHEG-BOX-RES 26.51(1)

POWHEG-BOX-V2 26.63(9)

MCFM 26.567(1)

Table 4.2.: Inclusive cross sections for pp → e+e−H production obtained through two inde-
pendent MINNLOPS implementations within POWHEG-BOX-RES and POWHEG-
BOX-V2, and MCFM. Digits in brackets refer to statistical error only.

Figure 4.3 shows a comparison of the MINNLOPS and the NNLOPS predictions for different
differential distributions at LHE level. More precisely, we show the rapidity (yH) and
transverse momentum (pT,H) of the Higgs boson, the rapidity (yW+) and the transverse
momentum (pT,W+) of the W+ boson, the rapidity of the positron (ηe+) and the transverse
momentum of the W+H system (pT,W+H).

All rapidity distributions, which are NNLO accurate observables, are in excellent agreement.
Discrepancies between the two computations are at ∼ 1% level, with small statical fluctuations
in the tails. The asymmetry in the error bars of the MINNLOPS results compared to the
NNLOPS ones is visible. A similar conclusion holds also for the transverse momenta of the
H and W+ bosons, where the agreement in the central value is within 1− 2%. As for the
pT of the W+H system, the difference between MINNLOPS and NNLOPS is slightly larger,
up to 3− 4%: this distribution is effectively only NLO accurate at pT,W+H ≫ 0 and there are
matching ambiguities in the intermediate region, which is reflected in the enlarged error
bars in this region. Apart from this small difference, we see a good agreement as the two
calculations are fully compatible within uncertainties.

We now comment on the size of the error bars of the two calculations in the pT,W+H
distribution, as we observe a difference in the range 30 GeV ≲ pT,W+H ≲ 90 GeV. This
discrepancy is related to the different way in which NNLO corrections are spread in the
entire spectrum. In fact, in the MINNLOPS approach we use modified logarithms while the
NNLOPS calculation requires a pT-dependent multi-differential reweighting. We stress that
the shape of the MINNLOPS error bars is closer to the one of a resummed calculation matched
to a fixed-order computation, as pointed out in [8].

The comparison of MINNLOPS and NNLOPS results for e+νeH production shows a very
good agreement between the two calculations. This validates our MINNLOPS implementation.

4.3.2. ZH production with H → bb̄ decay

The validation of our calculation for ZH production with subsequent decay of the Higgs
boson into a couple of b-quarks is carried out in two steps. Firstly, we validate the production
stage only, considering pp→ ZH with a stable Higgs boson.

We consider our default MINNLOPS implementation in the POWHEG-BOX-RES framework,
a completely independent MINNLOPS implementation in POWHEG-BOX-V2 and a fixed-
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order result obtained with MCFM [98]. The comparison is performed in an inclusive setup at
LHE level. Our integrated cross sections are presented in table 4.2, where we see a remarkable
agreement among the three independent calculations.

We then include the decay of the Higgs boson into our computation and we compare
the full pp → ZH → e+e−bb̄ MINNLOPS result to [61]. Also in this case, the validation is
performed at LHE level. All the input parameters and cuts are taken from [61]. The PDF set
is PDF4LHC15_nnlo_mc, which corresponds to αs(m2

Z) =0.118. Our SM parameters are:

GF = 1.166387× 10−5 GeV−2 ,

mW = 80.398 GeV ,

ΓW = 2.141 GeV ,

mZ = 91.1876 GeV ,

ΓZ = 2.4952 GeV ,

mH = 125.0 GeV ,

ΓH = 4.14 MeV .

The EW coupling and the weak mixing angle are defined as:

α =
√

2GFm2
W(1−m2

W/m2
Z)/π , cos2 θW = m2

W/m2
Z . (4.9)

We include contributions RI,II in which the Higgs boson is radiated from a heavy-quark loop
(see section 4.2.1). We consider both top and bottom loops and the corresponding pole masses
are mb = 4.92 GeV and mt = 173.2 GeV. As far as the H → bb̄ implementation is concerned, we
evaluate the bottom Yukawa coupling in the MS scheme at a scale equal to the Higgs mass
mH, corresponding to yb(mH) = 1.280 ×10−2. We recall that the specific value of yb does not
affect the calculation because it cancels exactly in the combination of production and decay
events as shown in equation (4.7). The branching ratio for H → bb̄ decay is Br(H → bb̄) =
0.5824. In the production stage, the choice of the renormalization and factorization scales
follows the MINNLOPS prescription. In the decay, the renormalization scale is set to the
Higgs boson mass mH. Scale uncertainties are obtained through 7-point scale variation with
the constraint 1/2 ≤ µR/µF ≤ 2. We correlate the scale variation factors in production and
decay.

fiducial cuts for pp→ ZH → e+e−bb̄

pT,e > 7 GeV, pT,e1 > 27 GeV, |ηe| < 2.5

81 GeV < me+e− < 101 GeV

≥2 b-jets (flavour-kT [99], R=0.4)

pT,b-jet > 27 GeV, |ηb-jet| < 2.5

Table 4.3.: Fiducial phase space for e+e−bb̄ production as defined in [61].

In this comparison, we apply the fiducial cuts presented in table 4.3. In the jet-clustering
procedure, if the clustering algorithm identifies more than two b-jets, we consider the pair
whose invariant mass is closer to the Higgs-boson mass.

Differential cross sections are shown in table 4.4. The agreement between MINNLOPS

and NNLOPS is good (with a 1.4% difference) and fully covered by scale uncertainties. The
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σ [fb]

MINNLOPS 6.261(7)+0.9%
−1.8%

NNLOPS 6.348(6)+1.2%
−1.4%

Table 4.4.: Fiducial cross sections for pp→ ZH → e+e−bb̄ production using the MINNLOPS

and NNLOPS methods.
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Figure 4.4.: Differential ditributions for e+e−bb̄ production obtained with the MINNLOPS and
the NNLOPS methods at LHE level in the fiducial setup reported in table 4.3.
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discrepancy between the two results is slightly larger than when comparing inclusive cross
sections, because of the more exclusive setup.

Differential observables are presented in figures 4.4. In particular, we show the invariant
mass of the ZH system (mZH), the invariant mass (mbb) and transverse momentum (pT,bb) of
the two reconstructed b-jets and the difference in rapidity between the two b-jets (|∆yb,b|). We
observe a good agreement between the two calculations, with differences that are smaller
than 1-2% overall, with slightly larger statistical fluctuations in the tails. We have studied
many other differential observables and for all of them the level of agreement between the
two calculations is good. This comparison thus validates our MINNLOPS calculation.

4.4. Phenomenological results

In this section we present our differential predictions for pp → e±νebb̄ and pp → e+e−bb̄
showing both MINLO′ and MINNLOPS results. We present cross sections in both inclusive
and fiducial setups in 4.4.2 and we discuss differential distributions in 4.4.3. Our MINNLOPS

prediction is compared to ATLAS data [100] in 4.4.4. We also analyse the impact of different
jet-clustering algorithms in section 4.5.2.

4.4.1. Input and parameters

Our results are obtained using the NNPDF31_nnlo_as_0118 [101] PDF set, which corresponds
to αs(m2

Z)=0.118. Our SM parameters are taken from the PDG [9], namely:

GF = 1.166379× 10−5 GeV−2 ,

mW = 80.379 GeV ,

ΓW = 2.085 GeV ,

mZ = 91.1876 GeV ,

ΓZ = 2.4952 GeV ,

mH = 125.09 GeV ,

ΓH = 4.1 MeV .

The EW coupling and the weak mixing angle are defined as:

α =
√

2GFm2
W(1−m2

W/m2
Z)/π , cos2 θW = m2

W/m2
Z . (4.10)

The H → bb̄ branching ratio is Br(H → bb̄) = 0.5824. In pp → ZH → e+e−bb̄ we include
the RI,II contributions, in which the Higgs boson is radiated from a heavy quark loop: the
pole mass of the bottom quark is set to mb = 4.78 GeV and the pole mass of the top quark to
mt = 172.5 GeV. The bottom Yukawa coupling is yb(mH) = 1.280 ×10−2: as already pointed
out, our final result does not depend on this value because it cancels out exactly when
interfacing production and decay events (see equation 4.7).

The parton shower is generated by PYTHIA8 [87] with the Monash tune [102]. In our
interface to PYTHIA8, all the settings are kept to the standard ones, in particular for the recoil
scheme. Effects from hadronization, underlying event and QED shower are not taken into
account. We include hadronization effects in section 4.4.4 only, so that the comparison with
data is more reliable.
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fiducial-YR [103]

pp→W±H → e±νebb̄ pp→ ZH → e+e−bb̄

pT,e > 15 GeV, pT,miss > 15 GeV, |ηe| < 2.5 pT,e > 15 GeV, |ηe| < 2.5

75 GeV < me+e− < 105 GeV

≥2 b-jets (anti-kT [104], R=0.4) ≥2 b-jets (anti-kT [104], R=0.4)

pT,b-jet > 25 GeV, |ηb-jet| < 2.5 pT,b-jet > 25 GeV, |ηb-jet| < 2.5

fiducial-ATLAS [100]

pp→W±H → ℓ±νℓbb̄ pp→ ZH → ℓ+ℓ−bb̄/νℓν̄ℓbb̄

|yH | < 2.5 |yH | < 2.5

categories: categories:

pT,W ∈ [250,400] GeV, pT,Z ∈ [250,400] GeV,

pT,W ∈ [400, ∞] GeV pT,Z ∈ [400, ∞] GeV

Table 4.5.: Fiducial phase space in the fiducial-YR and the fiducial-ATLAS setups.

In the next sections, we present our results in three different setups: an inclusive setup
(inclusive), a fiducial setup inspired by the CERN Yellow Report [103] (fiducial-YR) and a
fiducial setup taken from [100] (fiducial-ATLAS). These setups are summarized in table 4.5.

4.4.2. Inclusive and fiducial cross sections

In this section we present integrated cross sections in both inclusive and fiducial-YR setups.
Table 4.6 shows our MiNLO′ and MINNLOPS predictions for both WH and ZH productions
with H → bb̄ decay. In the ZH case, we report separately the results with and without
gg-induced contributions.

The MINNLOPS corrections are positive and roughly 5-6% with respect to MiNLO′ calcula-
tion in both setups, if we do not consider the loop-induced gg-contribution for ZH production.
As expected, we observe a significant reduction of the error bars when moving from the
MiNLO′ to the MINNLOPS calculation (errors are reduced by more than a factor of two).
Considering only the inclusive setup, MiNLO′ and MINNLOPS predictions are compatible
within scale variations. By contrast, in the fiducial-YR setup, the MINNLOPS corrections are
generally not covered by scale variations: we verified that the MINNLOPS results is covered
by the MINLO′ error bars if we uncorrelate the scales in the combination of production and
decay events.

Considering the gg→ ZH contribution, its effect is quite large because it represents about
8% in the inclusive and 11% in the fiducial phase space of the MINNLOPS cross sections. As it
is only LO accurate, the error bars coming from loop-induced gg-diagrams are the dominant
uncertainties.
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pp → W+H → e+νebb̄

σ [fb] inclusive fiducial-YR

MiNLO′ 54.04+6.6%
−3.6% 20.13+2.3%

−3.1%

MiNNLOPS 57.44+1.7%
−0.8% 21.27+1.3%

−1.3%

pp → W−H → e−ν̄ebb̄

σ [fb] inclusive fiducial-YR

MiNLO′ 33.82+6.6%
−3.6% 13.07+2.4%

−3.3%

MiNNLOPS 35.87+1.5%
−0.7% 13.77+1.5%

−1.6%

pp → ZH → e+e−bb̄

σ [fb] inclusive fiducial-YR

MiNLO′ 14.88+6.7%
−3.7% 5.21+2.2%

−3.0%

MiNNLOPS (no gg→ ZH) 15.79+1.8%
−0.9% 5.48+1.2%

−1.2%

MiNNLOPS (with gg→ ZH) 16.99+3.6%
−2.3% 6.07+3.4%

−2.9%

Table 4.6.: Integrated cross sections for W±H and ZH production with H → bb̄ decay in the
inclusive and the fiducial-YR setups.

4.4.3. Differential distributions

In this section we show our phenomenological results considering differential distributions
in the fiducial-YR phase space defined in table 4.5. We present our MINNLOPS results for
different observables for W+H and ZH production1. In particular, we show: the invariant
mass (mbb) and transverse momentum (pT,bb) of the bottom-quark pair, the absolute difference
in rapidity between the two bottom quarks (|∆yb,b|), the transverse momentum of the hardest
bottom quark (pT,bhard) and of the positron/electron (pT,e+/pT,e−), and the invariant mass of
the colour-singlet system (mWH/mZH). In this context, with bottom-quark pair we denote the
two jets with at least one bottom quark whose invariant mass is closest to the Higgs-boson
mass.

In our plots, the MINNLOPS result is the blue and solid curve while the MINLO′ result is
the black and dotted line. We also show the MINNLOPS prediction in which the Higgs decay
is generated by PYTHIA8 (red and dashed curve). This prediction is formally NNLO accurate
in the production and only LO accurate in the decay. In the two ratio panels we show the
ratio to the MINNLOPS central value. In the upper panel, we correlate the scale variation
factors when interfacing production and decay events (KR,prod = KR,dec), so that error bars
are obtained through the customary 7-point scale variation. In the lower ratio panel, we do
not correlate the scales (KR,prod ̸= KR,dec) and we thus consider all the possible combinations,

1The corresponding results for W−H production are shown in Appendix A.
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dσ/dmbb [fb/GeV] pp→W+H→e+νebb@LHC 13 TeV

MiNNLOPS (prod × dec)
MiNLOPS (prod × dec)
MiNNLOPS (prod) × PY8 (dec)

10-5

10-4

10-3

10-2

10-1

100

dσ/dσMiNNLOPS (prod × dec)
Correlated scale variations

KR,prod = KR,dec

fiducial-YR

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

dσ/dσMiNNLOPS (prod × dec)
Uncorrelated scale variations

KR,prod ≠ KR,dec

mbb [GeV]

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

 20  40  60  80  100  120  140  160  180  200

dσ/dmbb [fb/GeV] pp→ZH→e+e- bb@LHC 13 TeV

MiNNLOPS (prod × dec)
MiNLOPS (prod × dec)
MiNNLOPS (prod) × PY8 (dec)

10-5

10-4

10-3

10-2

10-1

100

dσ/dσMiNNLOPS (prod × dec)
Correlated scale variations

KR,prod = KR,dec

fiducial-YR

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

dσ/dσMiNNLOPS (prod × dec)
Uncorrelated scale variations

KR,prod ≠ KR,dec

mbb [GeV]

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

 20  40  60  80  100  120  140  160  180  200

Figure 4.5.: Invariant mass mbb̄ of the bb̄ system for e+νebb̄ production (left) and for e+e−bb̄
production (right) in the fiducial-YR setup.

excluding the extreme cases (0.5, 2) and (2, 0.5). This prescription is a more conservative
17-point scale variation. When the shower generates the decay of the Higgs boson (red,
dashed curve), the scale variation is handled by PYTHIA8 as well using its so-called automated
parton-shower variation facility [105]. Since the behaviour observed in W±H and ZH is quite
similar, we discuss these results simultaneously.

Figure 4.5 shows the invariant mass mbb̄ of the bb̄ system for W+H (left) and ZH (right)
productions. The MINNLOPS and MINLO′ predictions are similar in shape, with a 5%
difference in the normalization induced by the MINNLOPS corrections. The two results are
compatible within scale uncertainties both when correlating and uncorrelating the scale
variation factors. Looking at the two ratio panels, we note that using a 7-point or a 17-point
scale variation is irrelevant, as error bars are very similar in the two cases. There is an
important reduction of scale uncertainties in the MINNLOPS results compared to the MINLO′

predictions below the Higgs-mass threshold, while error bars are similar above the threshold.
We observe that using PYTHIA8 for simulating the decay of the Higgs boson is a rather good
approximation for this observable.

The absolute rapidity difference of the two bottom quarks is shown in figure 4.6. Again,
the left panel is W+H production while the right panel is the ZH case. Firstly, we observe
that the MINNLOPS and the MINLO′ results are not compatible when we correlate the scales.
In fact, we observe a non-reliable error band (roughly ±1%) in the MINNLOPS result for
small values of |∆yb,b|. Using the more conservative option of not correlating the scales, we
obtain more realistic scale uncertainties and we restore the perturbative idea of having the
MINNLOPS result covered by the MINLO′ error bar. For this observable, the LO decay of the
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Figure 4.6.: Absolute difference in rapidity |∆yb,b| of the bb̄ system for e+νebb̄ production (left)
and for e+e−bb̄ production (right) in the fiducial-YR setup.

Higgs boson simulated by PYTHIA8 does not compare well with the MINNLOPS prediction,
especially in the forward |∆yb,b| region.

Similar features can be observed in the other differential observables (pT,bb, pT,bhard , pT,e+/pT,e−

and mWH/mZH) shown in figures 4.7 and 4.8. In all cases we observe a mostly flat ∼ 5%
correction induced by MINNLOPS on top of the MINLO′ calculation. The MINNLOPS pre-
dictions have much smaller error bars. In most observables, correlating the scales between
production and decay leads to an accidental cancellation that generates unreliable error
bars (see e.g. the MINLO′ pT,bb and pT,bhard distributions around 200 GeV). A more realistic
picture is restored when uncorrelating the scales. The inclusion of the Higgs decay using
PYTHIA8 produces distributions with shapes similar to the MINNLOPS predictions but the
normalization is shifted upwards of roughly 5%. This distribution with LO decay is not
covered by the MINNLOPS error bars in many phase space regions.

4.4.4. Comparison to data

In this section we perform a comparison between our MINNLOPS predictions and ATLAS
data [100] in the in the fiducial-ATLAS setup. This comparison is presented in figure 4.9,
with the corresponding cross sections shown in table 4.7. For this study we consider all the
possible leptonic final states, i.e. ℓ±νℓbb̄, ℓ+ℓ−bb̄ and νℓν̄ℓbb̄ with ℓ ∈ {e, µ, τ}, and we include
hadronization effects through PYTHIA8. However, we note that hadronization effects are
small.

We find a good agreement between the MINNLOPS results and ATLAS data but we note
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that experimental measurements have very large uncertainties caused by low statistics, which
is due to the large lower cuts on the transverse momentum of the vector boson. We notice
that in the original publications of the observation of this process [106, 107], the cut applied
was much lower (150 GeV) but no unfolding to the fiducial cross section was performed.
Repeating this comparison with data at higher statistics will be desirable in the future.
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Figure 4.7.: Transverse momentum of the bb̄ system pT,bb and of the leading b-jet pT,bhard for
e+νebb̄ (left) and e+e−bb̄ production (right) in the fiducial-YR setup.
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Figure 4.8.: Transverse momentum of the electron/positron pT,e+/pT,e− and invariant mass of
the colour singlet mWH/mZH for e+νebb̄ (left) and for e+e−bb̄ production (right)
in the fiducial-YR setup.
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pp → W±H → ℓ±νℓbb̄

σ [fb] pW
T ∈ [250,400] GeV pW

T ∈ [400, ∞] GeV

MINNLOPS 6.52+2.4%
−1.8% 1.46+2.5%

−1.9%

ATLAS [100] 3.3+3.6(Stat.)+3.2(Syst.)
−3.4(Stat.)−3.0(Syst.) 2.1+1.0(Stat.)+0.6(Syst.)

−0.9(Stat.)−0.5(Syst.)

pp → ZH → (ℓ+ℓ−, νℓν̄ℓ)bb̄

σ [fb] pZ
T ∈ [250,400] GeV pZ

T ∈ [400, ∞] GeV

MINNLOPS 3.98+7.6%
−5.4% 0.79+6.5%

−4.2%

ATLAS [100] 1.4+2.4(Stat.)+1.9(Syst.)
−2.3(Stat.)−1.7(Syst.) 0.2+0.6(Stat.)+0.3(Syst.)

−0.5(Stat.)−0.3(Syst.)

Table 4.7.: Fiducial cross sections in the fiducial-ATLAS setup compared to ATLAS data.

σ[fb] pp→VH, V→leptons, H→bb@LHC 13 TeV
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Figure 4.9.: Comparison of MINNLOPS predictions to ATLAS data [100] in the
fiducial-ATLAS setup.
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4.5. Jet flavour

4.5.1. Infrared-safe definition of jet flavour

Identifying the flavour of jets is fundamental for precision phenomenology. If we can correctly
assign a flavour to a reconstructed jet, we can significantly improve our ability in selecting
specific scattering processes and reject backgrounds. Even though defining a gluon jet or a
quark jet is intuitively clear, providing an infrared-safe definition of the flavour of jets is not
trivial. When going beyond LO in QCD, it is necessary to define a procedure that is able to
cluster partons into jets and associate each jet with a well-defined flavour. Well-defined flavour
means a flavour that is insensitive to extra soft and collinear emissions, thus infrared and
collinear safe.

In a simple and naive picture, we can define the flavour of jets as follows: firstly, we
reconstruct jets using a customary jet-clustering algorithm and we then assign to each jet a net
flavour content given by the difference between the total number of quarks and anti-quarks
for every possible flavour. If the net content of flavour of a jet is zero, this jet is a gluon jet. If
the net content of flavour is (minus) one unit of a possible flavour, the jet is a (anti-) quark jet
of that flavour. This procedure is clear and intuitive, but it necessarily leads to an ill-defined
definition of flavour of jets. As explained in [99], we can analyse this issue considering the
simple process e+e− → qq̄. At the first order in the strong coupling, one of the two final-state
partons emits a gluon. Applying a usual clustering algorithm (e.g. the kT-clustering algorithm
[108]), the gluon can be clustered with the quark, with the anti-quark or it can be considered
as a separate jet. Using the naive picture described before for assigning the flavour of jets, one
is always able to reconstruct the correct 2→2 Born flavour structure, or to define the process
as irreducibly 2→3. At the second order in the strong coupling, this procedure breaks: a
large-angle soft gluon can split into a pair of quarks widely separated in angle. These two
quarks can be wrongly clustered into two different jets (and not recombined together in a
gluon-jet first). This wrong recombination contaminates the flavour of the reconstructed jets.
This possible configuration is depicted in figure 4.10 taken from [99]. Given that this problem
can appear for arbitrarily soft gluons that split into qq̄-pairs, the above definition of jet flavour
is IR unsafe from O(α2

s ) onwards.

Figure 4.10.: Possible O(α2
s ) configuration in which a pair of widely separated soft quarks (k3

and k4) coming from a large-angle soft gluon spoils the flavour of jets (k1 and
k2). The picture is taken from [99].
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Most LHC measurements rely on the anti-kT algorithm [104] for the reconstruction of jets
and the flavour of jets is assigned with a naive procedure (a b-jet is a jet with at least one
b-hadron), thus a reasonable and robust data/theory comparison cannot be performed. In
[99], the authors proposed a new clustering algorithm that is IR safe in the assignment of the
flavour. This algorithm is called flavour-kT algorithm and in this section we present its main
features.

The starting point of our discussion is the IR and collinear structure of QCD. The usual kT

algorithm tries to reconstruct the QCD splitting history using a distance measure that starts
the recombination procedure from particles with the highest probability to have branched.
The clustering thus starts from the recombination of particles that are soft or collinear, as
this reflects the IR and collinear enhancement of QCD amplitudes. The kT-algorithm does
not distinguish between the kind of splitting at hand: a soft quark has the same closeness as
a soft gluon, but this does not reflect the QCD behaviour. In fact, the emission of a gluon
presents divergences in both soft and collinear regions while the emission of a quark has
only the collinear divergence. If we consider g→ qq̄, the product of phase space and matrix
element can be written as (see section 2.1.3):

dk j |Mg→qi q̄j |2 ≃
αsTR

2π

dEj

Ei

dθ2
ij

θ2
ij

, (4.11)

with Ej ≪ Ei and θij ≪ 1. We note that the soft divergence is not present. The same
conclusion holds also for q → qg splittings. The kT-algorithm thus introduces a spurious
closeness as there is no divergence for Ej → 0. This problem can be solved using a distance
measure that depends on the flavour of the particles involved in the clustering procedure.

In the flavour-kT algorithm, the distance measure d(F)
ij between two particles i and j is the

following:

d(F)
ij =

(∆η2
ij + ∆ϕ2

ij)

R2 ×
{

max(p2
T,i, p2

T,j) , softer of i, j is flavoured,
min(p2

T,i, p2
T,j) , softer of i, j is flavourless.

(4.12)

The term (∆η2
ij + ∆ϕ2

ij) is the usual angular distance between i and j and R is the radius of
the cone in the clustering sequence. By softer we mean the particle with lower transverse
momentum.

To define the distance with the beam, we need to separate explicitly the beam moving
towards positive rapidities B (right-moving) and the beam moving toward negative rapidities
B̄ (left-moving), as we want to define a flavour also for the beam. The distances with B and B̄
are thus defined as:

d(F)
iB =

{
max(p2

T,i, p2
T,B) , i is flavoured,

min(p2
T,i, p2

T,B) , i is flavourless.

d(F)
iB̄ =

{
max(p2

T,i, p2
T,B̄) , i is flavoured,

min(p2
T,i, p2

T,B̄) , i is flavourless.
(4.13)
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The terms pT,B (pT,B̄) represents the hard transverse scale associated with the right-moving
(left-moving) beam, defined as follows:

pT,B(η) = ∑
i

pT,i
(
Θ(ηi − η) + Θ(η − ηi)eηi−η

)
, (4.14)

pT,B̄(η) = ∑
i

pT,i
(
Θ(η − ηi) + Θ(ηi − η)eη−ηi

)
. (4.15)

The idea behind equations (4.14) and (4.15) is the following: starting from a DGLAP approach
in which dominant contributions are strongly ordered in angle, the beam hardness should be
constructed as a function of the rapidity. Moreover, it should be harder than all the emissions
that already occurred and dependent on the light-cone momentum still left in the beam.

Given the definitions of the distance between two particles d(F)
ij and the distance with the

beams d(F)
i,B/B̄, the clustering procedure is equal to any sequential clustering algorithm: we

calculate the distances d(F)
ij for every pair of particles and the distances d(F)

i,B/B̄ of every particle

with the beams. If the small calculated distance is a d(F)
ij , the two particles i and j are clustered

together into a particle whose flavour is given by the sum of the two individual flavours.
When the smallest distance is d(F)

iB or d(F)
iB̄ , the particle is considered a final jet and removed

from the clustering sequence.
We can thus apply explicitly this procedure to the problematic configuration depicted in

figure 4.10: using the flavour-kT algorithm, the two widely separated soft quarks are clustered
together first, giving rise to a gluon jet. This gluon jet can then be clustered to the other
particles involved in the process without spoiling the flavour of jets.

For a complete proof of the IR safety of this algorithm, the interested reader is referred to
the original publication [99].

4.5.2. Impact of the jet-clustering algorithm

In this section we discuss the impact of using different clustering algorithms for the iden-
tification of b-jets in the phenomenological analysis presented in section 4.4. In particular,
we show a comparison among the anti-kT algorithm [104] (blue and solid curve), the kT

algorithm [109] (red and short-dashed curve) and the flavour-kT algorithm [99] (green and
long-dashed curve). We remind the reader that the main difference between the anti-kT/kT

algorithms and the flavour-kT one in the reconstruction of b-jets is the fact that in the first
case a b-jet arises anytime there is at least a bottom (or anti-bottom) quark in a jet, while
in the flavour-kT case there must be an uneven number of b or b̄ quarks. In this way, when
a bb̄-pair is recombined together, we obtain a b-jet in the anti-kT/kT case, while we obtain
a gluon-jet with the flavour-kT algorithm. This different behaviour in the reconstruction of
b-jets determines large discrepancies in some regions of the phase space.

We consider W+H production in the fiducial-YR setup defined in table 4.5. The radii of
the clustering algorithms are always set to R = 0.4. We show plots for the invariant mass
(mbb) and the transverse momentum (pT,bb) of the bb̄ system, the transverse momentum of the
hardest b-jet (pT,bhard) and the transverse momentum of the positron (pT,e+).
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Figure 4.11.: Invariant mass mbb and transverse momentum pT,bb of the bb̄ system for e+νebb̄
production in the fiducial-YR setup using the anti-kT, kT and flavour-kT algo-
rithms with R = 0.4.

Before describing the main differences induced by using a flavour-specific clustering
algorithm, we observe that the difference between the anti-kT and kT algorithms is small, as
expected. For this reason, we will comment only on the difference between the flavour-kT and
kT algorithms, as they share the same underlying distance in the ordering of the clustering.

The left panel of figure 4.11 shows the invariant mass mbb of the bb̄ system. We observe
a large discrepancy in the low mass region which is related to configurations in which the
two b-quarks are separated by a small ∆Rbb distance. In these configurations, the output
of the kT and flavour-kT clusterings is different, because both algorithms tend to cluster
the two bottom quarks together but in the first case we obtain a b-jet while in the second
one we obtain a gluon-jet. When applying the fiducial cuts of the fiducial-YR setup, we
require at least two b-jets, thus it is more likely to accept the event in the kT case. Moreover,
a soft b-quark can be sufficient, as it can be clustered with a hard gluon, giving rise to a
sufficiently hard b-jet that passes the fiducial cuts. This recombination is instead strongly
suppressed when applying the flavour-kT clustering. Furthermore, the two algorithms behave
differently even when ∆Rbb > R: the kT algorithm tends to cluster two different b-jets, while
the flavour-kT algorithm can cluster the two b-quarks together because of the definition of
the beam distance. In particular, the algorithm compares the relative distance d(F)

ij with the

distance of each bottom quark to the beams d(F)
bB and d(F)

bB̄ . By construction, the distance with

the beams is greater than the transverse momenta of the bottom (anti-bottom) quarks, so d(F)
ij

can be smaller than d(F)
bB and d(F)

bB̄ ), even for ∆Rbb > R.
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Figure 4.12.: Transverse momentum of the leading b-jet pT,bhard and of the positron pT,e+ for
e+νebb̄ production in the fiducial-YR setup using the anti-kT, kT and flavour-kT

algorithms with R = 0.4.

The same motivations explain the large discrepancies in the pT,bb distribution (right panel
in figure 4.11) and the pT,bhard distribution (left panel in figure 4.12). In fact, there are large
differences in the high-pT regions, where the Higgs boson is highly boosted and thus tends to
decay into a collimated pair of b-quarks or an energetic leading b-quark.

The right panel of figure 4.12 shows that the clustering algorithm for the reconstruction of
b-jets can also have an impact on observables that are not directly associated with bottom
quarks. In fact, we show that we observe a large discrepancy in the pT,e+ distribution for large
values of the transverse momentum. These differences are again associated to configurations
with a highly boosted Higgs, as the positron recoils on the Higgs system and becomes boosted
as well.

We conclude by stating that our plots clearly show that the impact of the clustering
algorithm that is used for the identification of b-jets is absolutely not negligible as it introduces
large discrepancies when compared to usual jet-clustering algorithms. We thus suggest
reconstructing heavy-quark jets through the flavour-kT algorithm only when it is used also
on the experimental side, which is usually not the case because of its complexity (see [110]
for a detailed analysis on the applicability of this algorithm). A possible (but not always
feasible) solution is given by performing a massive calculation in which the kinematics of the
b-quarks is described retaining a full dependence on the mass at the amplitude level. This
approach is commonly referred to as four-flavour scheme (4FS). The main drawback is that
massive calculations are not always available at high accuracy. A matching between precise
massless computations and parton showers thus becomes fundamental, as we can perform
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a reshuffling of momenta at the parton shower level in order to restore the correct masses.
However, this reshuffling is not completely unambiguous and it introduces uncertainties on
the kinematics of the bottom quarks.
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5. ZH production with H → bb̄ decay at
NNLO+PS accuracy in the SMEFT

5.1. Motivation

The current formulation of the Standard Model cannot be the final fundamental theory of
nature. Even though it appears to be incredibly precise and predictive in the description
of scattering processes at colliders, many experimental and theoretical issues cannot be
explained through the SM. For example, in the SM neutrinos are massless particles, which is
in contradiction with flavour oscillations observed experimentally [111, 112]. The SM cannot
explain the presence of Dark Matter and Dark Energy that are detected through cosmological
observations [113]. Furthermore, the abundance of matter over antimatter in the Universe
suggests the presence of additional sources of charge-conjugation and parity (CP) violation
other than the SM mechanism [114]. Moreover, according to our current knowledge, the SM
cannot be unified with the theory of General Relativity.

Despite its incompleteness, the striking success of the SM at the LHC led to the possibility
of formulating a final fundamental theory of the subatomic world through an effective-field-
theory (EFT) in which the SM is the low-energy manifestation of a complete UV theory
beyond the SM (BSM). In this framework, the SM physics at the electroweak scale is decoupled
from the complete UV theory, which means that the two dynamics are factorized because
they occur at largely different scales. The physical motivation is that two phenomena widely
separated in energy do not affect each other, up to some corrections proportional to the ratio
of the two involved scales [115].

An EFT framework reveals to be extremely useful when the complete UV theory is not
known. In fact, it is possible to use a bottom-up approach to parametrize our lack of knowledge
of the complete theory, without constructing a specific BSM model. In this way, we simply
parametrize deviations from the SM predictions that can be matched to the complete theory
afterwards. A widely used BSM theory constructed using this logic is given by the Standard
Model Effective Field Theory (SMEFT) [116, 117, 118].

In the SMEFT, we correct the low-energy dynamics as predicted by the SM with a set of
local operators that respect the same SU(3)C × SU(2)L ×U(1)Y gauge symmetry structure.
The SMEFT Lagrangian thus reads

LSMEFT = LSM +
∞

∑
n=5

∑
i

C(n)
i

Λn−4O
(n)
i , (5.1)

where O(n)
i are local operators with mass dimension n, C(n)

i are the corresponding unknown
Wilson coefficients and Λ represents the new physics scale. The Wilson coefficients are
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unspecified and constrained by experiments: a Wilson coefficient different from zero is an
indication of new physics. Once bounds on the Wilson coefficients are provided, we can
obtain bounds on the parameters of the BSM theory.

BSM searches constitute an important part of the current and future LHC physics pro-
gramme. As already presented in chapter 4, the Higgs boson is crucial in this context because
a better understanding of the Higgs sector would lead to an improvement of our knowledge
of the theory and a possible extension towards a BSM model. In the SM, the largest branching
fraction of the Higgs boson is the H → bb̄ decay (∼ 60%) and the highest sensitivity to this
decay is given by the production of the Higgs boson through Higgsstrahlung (see section 4.1).
This process has been observed by both the ATLAS and CMS collaborations [106, 107]: the
H → bb̄ signal strength in the Higgstrahlung channel ( µVH

bb̄ ) is constrained to be as predicted
by the SM within 25% at one standard deviation. When Run III data will be available and,
even more so, during the high-luminosity phase, this signal strength will become much more
constraining: the ultimate projected accuracy for µWH

bb̄ and µZH
bb̄ is 15% and 5%, respectively.

The pp → ZH → ℓ+ℓ−bb̄ process is thus particularly interesting for BSM searches in the
Higgs sector.

In this chapter, we present an extension of the calculation performed in chapter 4 for
pp → ZH → ℓ+ℓ−bb̄ in the SMEFT. Both pp → ZH and H → f f̄ (with f generic fermion)
have been studied in the SMEFT at NLO QCD and NLO EW in different works (see e.g.
[119, 120, 121, 122, 123, 124]). In the framework of anomalous couplings, the full process
pp → ZH → ℓ+ℓ−bb̄ has been studied at NNLO QCD in [125]. In this chapter, we show
how to obtain NNLO+PS predictions in the SMEFT for pp → ZH → ℓ+ℓ−bb̄ including a
set of dimension-six operators that have a direct impact in QCD, without considering EW
effects. The results described in this chapter were originally presented by the author and
collaborators in [3].

This chapter is organised as follows: we first describe the calculation in section 5.2 and we
present in detail our practical implementation in section 5.3. In 5.4 we present a phenomeno-
logical analysis for LHC collisions, discussing which kinematic observables are particularly
suitable to enhance our sensitivity to BSM effects related to the operators considered in the
calculation.

5.2. Outline of the calculation

We consider ZH production
pp→ ZH → ℓ+ℓ−H , (5.2)

with the subsequent decay of the Higgs boson H to a pair of bottom quarks:

H → bb̄ . (5.3)
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With ℓ we indicate a massless lepton (ℓ ∈ {e, µ, τ}). We consider the following SMEFT
operators that modify the SM Higgs field and couplings up to NNLO QCD accuracy:

QH□ = (H†H)□ (H†H) , QHD = (H†DµH)∗ (H†DµH) ,

QbH = yb (H†H) q̄L bR H , QbG =
g3

s
(4π)2 yb q̄LσµνTa bR H Ga, µν ,

QHG =
g2

s
(4π)2 (H†H) Ga

µν Ga, µν , Q3G =
g3

s
(4π)2 f abc Ga, ν

µ Gb, σ
ν Gc, µ

σ . (5.4)

They enter the full SMEFT Lagrangian as:

LSMEFT ⊃∑
i

Ci

Λ2 Qi . (5.5)

These operators Qi have dimension six and their product with the corresponding Wilson
coefficients Ci is suppressed by two powers of the new physics scale Λ. Notice that we do
not include any EW operators (e.g. operators that modify the coupling of the Higgs boson
with two Z bosons) and Q3G does not directly affect the Higgs boson but it is needed to reach
NNLO QCD accuracy.

With H we denote the SM Higgs doublet, qL is the left-handed third-generation quark
doublet and bR is the right-handed bottom-quark singlet. The QCD coupling constant is
gs =

√
4παs. Ga

µν represents the QCD field strength tensor, where a is a colour index and
µ, ν are Lorentz indices. Given the SU(3) generators Ta, the covariant derivative reads:
Dµ = ∂µ − i gs Ga

µ Ta. With f abc we denote the QCD antisymmetric structure constant. We
also use □ = ∂µ ∂µ and σµν = i/2 (γµγν − γνγµ), with γµ the usual Dirac matrices. The
bottom-quark Yukawa coupling is yb =

√
2 mb/v, where mb is the mass of the bottom quark

in the MS scheme and v is the Higgs vacuum expectation value (VEV). In the case of QbH
and QbG operators, we assume the sum over the hermitian conjugate.

The normalisation adopted in equation (5.4) reveals to be extremely useful. In particular,
we explicitly include a factor yb in both QbH and QbG, as this factor appears in many UV
complete theories that match our operators [126, 127]. Moreover, we include some powers of
the strong coupling gs and a factor 1/(4π)2 in QbG, QHG and Q3G, in order to have the Wilson
coefficients CbG, CHG and C3G of order O(1) in all weakly-coupled UV-complete extensions
of the SM. We stress that this normalisation is not the only one possible (see e.g. [122]) but it
turns out to be particularly advantageous for a clear power counting in the SMEFT.

Our predictions are obtained following the strategy presented in chapter 4. More precisely,
we separately generate production events (pp → ZH) and decay events (H → bb̄) in the
SMEFT. The event generation for the production stage consists in the computation of SMEFT
corrections that are factorized from the SM calculation; the generation of decay events requires
the computation of both factorizable and non-factorizable corrections. We then combine
production and decay events using a narrow-width approximation formula, as explained in
4.2.3. Once the complete events are obtained, we shower them using PYTHIA8 [87] applying
a dedicated veto procedure. In our computation, bottom quarks are considered massless,
but we keep a non-zero bottom Yukawa coupling. We impose the minimal-flavour violation
hypothesis [128] and set the Cabibbo-Kobayashi-Maskawa matrix element Vtb to one.
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5.2.1. SMEFT factorizable contributions to H → bb̄ decay

The SMEFT operators QH□, QHD and QbH are associated to factorizable contributions: the
corresponding matrix elements can be obtained from the massless H → bb̄ computation in
the SM at NNLO accuracy [83, 84, 129] with a rescaling of the bottom Yukawa coupling yb

y2
b → y2

b
(
1 + 2 cfac

)
, (5.6)

where

cfac = ckin − cbH , ckin =
v2

Λ2

[
CH□ +

CHD

4

]
, cbH =

v2

Λ2 Re (CbH) . (5.7)

The effect of QH□, QHD and QbH factorizes to all orders in the strong coupling because these
operators do not contain gluons. In equation (5.7), the term ckin is associated to the canonical
normalisation of the Higgs kinetic term when QH□ and QHD are included in the calculation.
The Higgs VEV v is defined as

v2 = 1/
(√

2GF
)

, (5.8)

and it is thus related to the Fermi constant GF which is obtained from muon decay. The
relation between the VEV and GF is modified at LO by EW corrections in the SMEFT. These
corrections are very small [118, 121] and thus negligible in our study.

Given the simplicity of the replacement in (5.6), we can obtain the analytic H → bb̄ decay
rate associated to the inclusion of the operators QH□, QHD and QbH in a straightforward way,
starting from the corresponding results in the SM. At LO accuracy, the SM decay width reads

Γ(H → bb̄)LO
SM =

3 y2
b mH

16π
, (5.9)

and the corresponding NNLO result is [130, 131, 132]:

Γ(H → bb̄)NNLO
SM =

(
1 + ∆

)
Γ(H → bb̄)LO

SM , ∆ =
αs

π
5.67 +

(αs

π

)2
29.15 . (5.10)

Both the b-quark Yukawa coupling and the strong coupling constant αs are evaluated at a scale
equal to the Higgs-boson mass mH . Moreover, in the evaluation of the numerical coefficients
in the expansion of ∆ in equation (5.10) we consider five active flavours. The SMEFT NNLO
result is easily obtained by performing the rescaling in equation (5.6):

Γ(H → bb̄)NNLO,fac
SMEFT = (1 + 2 cfac) Γ(H → bb̄)NNLO

SM . (5.11)

We note that the inclusive H → bb̄ decay rate in the SM is known up to O(α4
s ) in the limit

of massless b-quarks [133, 134, 135], so it is possible to extend equation (5.11) to this order
in a straightforward way. Since our goal is to reach NNLO+PS accuracy, equation (5.11) is
sufficient for our purpose.

The practical implementation of our computation relies on the MC code used in [61, 2]
for reaching NNLO+PS accuracy for the H → bb̄ decay in the SM. The SM matrix elements
needed for the computation are taken from [84]. The generation of decay events associated to
factorizable corrections is done simply by taking the SM results as obtained in chapter 4 using
the NNLOPS method and applying the correct rescaling factor (equation (5.6)) a posteriori,
as we will describe in section 5.3.
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5.2.2. SMEFT non-factorizable contributions to H → bb̄ decay

The insertion of the QbG, QHG and Q3G operators gives rise to non-factorizable corrections to
the fully differential H → bb̄ decay rate.

The operator QbG is associated to Feynman diagrams of the type shown in figure 5.1. In
particular, we show tree-level and one-loop contributions to the H → bb̄g decay in the upper
left and right panels, respectively. Tree-level diagrams in the H → bb̄qq̄ and H → bb̄gg
channels are shown in the central panels. Moreover, the lower diagrams represent two-loop
contributions to the H → bb̄ decay. The corresponding matrix elements are obtained interfer-
ing the SMEFT diagrams with the relevant SM amplitudes and their explicit expressions can
be found in Appendix A of the original publication [3].

The dominant contribution is given by the interference of the tree-level H → bb̄g correction
in SMEFT (upper left diagram in figure 5.1) with the real H → bb̄g SM amplitude. This
H → bb̄g correction is IR finite. In fact, the corresponding one-loop correction is exactly
zero because it involves only scaleless integrals. Using the normalisation defined in equation
(5.4), this contribution appears in our calculation at NNLO (more precisely, it is of order
O(y2

b α2
s CbG)). After integrating over the three-body phase space, we find the following

inclusive H → bb̄ decay width

Γ(H → bb̄)NNLO,non
SMEFT = ∆non cbG Γ(H → bb̄)LO

SM , ∆non =
(αs

π

)2 m2
H

3v2 , (5.12)

where we have defined cbG as:

cbG =
v2

Λ2 Re (CbG) . (5.13)

We emphasise that our result agrees with the one presented in [122] after taking the limit for
massless bottom quarks.

Using current experimental bounds, the real part of the Wilson coefficient CbG appearing
in (5.13) is weakly constrained [136, 137, 138]. In fact, values of cbG = O(100) are allowed
by current data and thus the NNLO correction in equation (5.12) is numerically sizeable, of
the order of a usual NLO computation. For this reason, we included in our computations
also N3LO corrections (O(y2

b α3
s CbG)). At this order, the contributing Feynman diagrams are

virtual corrections (upper right panel in 5.1) and real corrections leading to both H → bb̄qq̄
and H → bb̄gg (central panels in 5.1). Moreover, at this order the two-loop contributions
represented by the lower diagrams have to be accounted for as well.

The operator QHG can be discarded from our computation as it does not contribute to
the fully differential decay rate H → bb̄ in the massless limit for the bottom quarks. This is
related to the fact that an insertion for this operator does not produce amplitudes with mixed
chiralities for the final-state bottom quarks in case of massless quarks. More details can be
found in appendix B of [3].

As for the operator Q3G, we have both tree-level corrections to H → bb̄gg and one-loop
corrections to H → bb̄g. These contributions are of order O(y2

b α3
s C3G) (i.e. N3LO), so

beyond the accuracy of our calculation. Moreover, given the actual bounds on the Wilson
coefficient C3G [139], they have a very minor numerical impact (see appendix B of [3] for
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Figure 5.1.: Sample Feynman diagrams contributing to the H → bb̄ decay up to N3LO
accuracy with the insertion of the operator QbG.

more details). For these reasons, contributions associated to this operator have been neglected
in our computation.

5.2.3. SMEFT contributions to pp → ZH

Among the operators defined in equation (5.4), the largest correction to pp→ ZH is given by
QH□ and QHD. These operators induce a contribution at LO that can be obtained with the
following shift:

g2
HZZ → g2

HZZ
(
1 + 2 ckin

)
. (5.14)

With gHZZ we denote the coupling of the Higgs boson with two Z bosons in the SM (gHZZ =

2 m2
Z/v). We recall that we consider only operators that have an impact up to NNLO QCD

accuracy, so that effective EW operators that modify the gHZZ coupling in a non-trivial way
are not accounted for in our computation.

Using the shift in equation (5.14), the inclusive cross section for ZH production in the
SMEFT reads

σ(pp→ ZH)NNLO
SMEFT = (1 + 2 ckin) σ(pp→ ZH)NNLO

SM . (5.15)

The contributions coming from the insertion of QbH and QbG are exactly zero in the case of
massless bottom quarks. The operator QHG contributes at NNLO with corrections that are
lower than the permille level (see appendix B of [3]), so that they do not have a concrete
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impact on our results and we thus neglected them. Finally, the operator Q3G contributes at
N3LO accuracy, so we discarded it in the calculation.

5.3. NNLO+PS implementation in the SMEFT

In this section we discuss the practical implementation of a NNLO+PS MC code for obtaining
predictions of pp→ ZH → ℓ+ℓ−bb̄ in the SMEFT. The strategy we adopt is similar to what
we used for the generation of the SM results for the same process described in chapter 4.
First, we separately generate results for the production and the decay stages of the Higgs
boson. In this case, for the decay we generate two sets of events: the first one contains the
factorizable corrections while the second one is related to non-factorizable contributions. We
then combine production and decay events employing a narrow-width approximation for the
Higgs boson. Once the events for the complete process are produced, we shower them using
PYTHIA8. The application of the shower requires an appropriate veto procedure.

5.3.1. Generation of events

The first step for obtaining results for pp→ ZH → ℓ+ℓ−bb̄ production in the SMEFT is the
generation of both production and decay events.

• Generation of production events: SMEFT corrections to pp→ ZH production factorize
according to equation (5.14). We thus generate SM results through the MINNLOPS im-
plementation presented in [2] within the POWHEG-BOX-RES framework [88], following
what is done in chapter 4. The correct SMEFT rescaling factor will be included in a later
step (more details in the combination section 5.3.2).

• Generation of decay events: the H → bb̄ decay is affected by both factorizable and
non-factorizable contributions. The generation of events associated to factorizable
corrections is straightforward: we use the SM implementation presented in [2] within
the POWHEG-BOX-V2 framework [41], as described in chapter 4. This calculation
makes use of the MINLO′ + reweighting procedure. The reweighting factor we adopt
is described in equation (4.4). The correct SMEFT rescaling factor (equation (5.6)) is
included a posteriori when interfacing production and decay events.

The generation of events associated to non-factorizable corrections is more involved. We
recall that the leading contribution is related to the insertion of the QbG operator, which
contributes at order O(α2

s ). This contribution is finite when the gluon is unresolved
and we can thus perform our computation in the POWHEG framework without the
need of the MINLO′ method, at variance with the factorizable corrections. From now
on, we will denote this correction as R. We include corrections up to O(α3

s ) through
a usual POWHEG computation: we provide both real and one-loop virtual matrix
elements (which we denote RV and RR) as depicted in figure 5.1 (upper right and
central panels). IR singularities are handled through the FKS subtraction method, as
default in POWHEG. The last missing contribution is given by the two-loop corrections
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depicted in the lower panels of 5.1, which we call VV. This contribution is not associated
to a correction to the H → bb̄g process, but rather to H → bb̄. Given that it is IR finite,
we can integrate over the 2-body phase space, obtaining

Γ(H → bb̄)non,VV
SMEFT =

αs

π

49
12

∆non cbG Γ(H → bb̄)LO
SM . (5.16)

and add this result to the SMEFT factorizable contributions to H → bb̄ in a later step
(more details in the combination section). Note that the non-factorizable corrections
have a linear dependence on cbG. For producing our results, we set cbG = 11 for the
generation of events and we modify this value only in a later step.

5.3.2. Combination of production and decay events

The combination of production and decay events is done following the strategy presented
in section 4.2.3. Note that events for the production stage are combined with decay events
associated to both factorizable and non-factorizable corrections, thus obtaining two sets of
complete events: the first set contains in the decay the factorizable corrections, while the
second set contains the non-factorizable corrections.

We employ a narrow-width approximation formula for the Higgs boson, so that the weight
for the complete event wSMEFT

full can be obtained in a straightforward way starting from equation
(4.7):

wSMEFT
full =

wSMEFT
prod wSMEFT

dec

ΓSMEFT
H

, (5.17)

where wSMEFT
prod is the weight associated to pp → ZH events and wSMEFT

dec is the weight for
H → bb̄ events. The latter can be either associated to the factorizable or non-factorizable
contributions.

In our concrete implementation, we use ΓSM
H instead of ΓSMEFT

H in the previous equation

wSMEFT
full =

wSMEFT
prod wSMEFT

dec

ΓSM
H

, (5.18)

and we then apply the correct rescaling factor ΓSM
H /ΓSMEFT

H at a later stage. This allows us to
modify the Wilson coefficients involved in the calculation a posteriori, without recalculating
any of the individual cross sections.

The weights associated to the production events and to the factorizable decay events are
the SM weights because the correct SMEFT rescaling factors are accounted for in the next step
of the combination procedure. This means that we concretely use wSM

prod and wSM
dec in (5.17).

As for the decay events with non-factorizable corrections, we remind the reader that cbG has
been set to 1 in the event generation: this allows us to modify this Wilson coefficient in a
flexible way at the level of differential distributions in a later stage.

Once the two sets of complete events are obtained, we shower them using PYTHIA8 and
applying the veto procedure described in section 4.2.3.

1In our code, cbG is expressed in units of v2.
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5.3.3. NNLO+PS SMEFT differential cross section

The differential distributions obtained after showering the events can be combined as follows:

dσNNLO+PS =
(
1 + 2ckin

)2
{[

1− 2cbH +
Γ(H → bb̄)non,VV

SMEFT

Γ(H → bb̄)NNLO
SM

]
dσSM

NNLO+PS

+ dσnon,R+RV+RR
NNLO+PS

}
ΓSM

H

ΓSMEFT
H

. (5.19)

dσSM
NNLO+PS represents the differential cross section obtained interfacing the SM production

events with the SM decay events while dσnon,R+RV+RR
NNLO+PS is the differential cross section obtained

interfacing the SM production events with the decay events associated to the non-factorizable
R, RV, RR corrections.

The term
(
1 + 2ckin

)2 is the SMEFT rescaling that accounts for the correct normalisation of
the Higgs kinetic term. It comes from the production (5.15) and factorizable contributions in
the decay (5.11) stages.

We stress that both Γ(H → bb̄)non,VV
SMEFT and dσnon,R+RV+RR

NNLO+PS depend linearly on cbG. Note that
we now include the correct width factor ΓSM

H /ΓSMEFT
H . The total SMEFT decay width ΓSMEFT

H is
given by

ΓSMEFT
H =

(
1 + 2ckin

)[
ΓSM

H −
(
2 ∆ cbH − KbG ∆non cbG

)
Γ(H → bb̄)LO

SM

+ 6 KHG cHG Γ(H → gg)LO
SM

]
, (5.20)

where KbG = 1.622 represents the QCD correction to the partial decay width of H → bb̄ up to
N3LO related to QbG . The specific value used follows from the semi-analytic formula (5.27).
The term in ΓSMEFT

H proportional to

cHG =
v2

Λ2 CHG (5.21)

represents the SMEFT correction to the partial decay width H → gg associated to the insertion
of QHG. We show sample diagrams of this contribution in figure 5.2. This correction starts at
NNLO since

Γ(H → gg)LO
SM =

α2
s m3

H
72π3 v2 , (5.22)

which is obtained in the approximation of infinite top-quark mass. Higher-order effects
proportional to CHG are encoded in an approximate way in the factor KHG = 1.844 in
equation 5.20 that include QCD corrections up to N4LO [135]. Notice that equation (5.20)
contains only corrections associated to the operators considered in (5.4).
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H

g

g
QHG

H

g

gt

t

t

Figure 5.2.: Sample of interfering diagrams associated to SMEFT corrections proportional to
cHG. They contribute to the partial decay width H → gg needed in (5.20). The left
diagram is the LO SMEFT result with the insertion of the QHG operator, while
the right diagram is the one-loop SM contribution mediated by a top-quark loop.
In the latter case, there are also contributions mediated by light quarks but they
have a negligible numerical impact.

5.4. Phenomenological results

5.4.1. Input and parameters

We now present phenomenological results for pp→ ZH → ℓ+ℓ−bb̄ for 13 TeV LHC collisions.
We reach NNLO+PS accuracy in the SMEFT, considering the subset of dimension-six operators
defined in (5.4). Our SM input parameters are taken from the PDG [140]:

GF = 1.166379× 10−5 GeV−2 ,

mW = 80.379 GeV ,

mZ = 91.1876 GeV ,

ΓZ = 2.4952 GeV ,

mH = 125.09 GeV ,

ΓH = 4.1 MeV .

The EW coupling and the weak mixing angle are defined as:

α =
√

2GFm2
W sin2 θW/π , sin2 θW = 1−m2

W/m2
Z .

The Higgs VEV is obtained using v = 2−1/4 G−1/2
F . As for the b-quark mass, we use the

MS mass mb(mb) = 4.18 GeV as input which leads to mb(mH) = 2.79 GeV and yb(mH) =√
2mb(mH)/v = 1.60 · 10−2. We adopt the NNPDF31_nnlo_as_0118 parton distribution func-

tions [101] with αs(m2
Z) = 0.1180, which corresponds to αs(m2

H) = 0.1127. We shower our
events using PYTHIA8 [87] with the Monash tune [102]. Hadronization, underlying event
effects and QED showers are not included.

In the following, we will show results considering two possible scenarios:

1) ckin = 0, cHG = 0, c3G = 0, cbH ̸= 0 and cbG = 0 , (5.23)

2) ckin = 0, cHG = 0, c3G = 0, cbH = 0 and cbG ̸= 0 . (5.24)

We thus consider only the separate effect of cbH and cbG. The current experimental constraints
on these two operators at 95% CL are the following:

cbH ∈ [−0.13, 0.20] , (5.25)

cbG ∈ [−438, 438] . (5.26)
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The bound on cbH is derived from a recent SMEFT fit [139], while the constraint on cbG comes
from the analysis [138] of the transverse momentum spectrum of Z production in association
with b-jets as measured by ATLAS [141].

5.4.2. Inclusive H → bb̄ decay

In this section we present the inclusive decay width for H → bb̄ at N3LO in the SMEFT in the
limit of massless bottom quarks. We obtain

Γ(H → bb̄)N3LO
SMEFT =

{
(1 + 2 cfac)

[
1 +

αs

π
5.67 +

(αs

π

)2
29.15 +

(αs

π

)3
41.76

]

+
(αs

π

)2 m2
H

3 v2

[
1 +

αs

π
17.32

]
cbG

}
Γ(H → bb̄)LO

SM , (5.27)

where we set the renormalization scale to µR = mH. Notice that the O(α3
s ) correction

proportional to cbG is calculated by the author and collaborators in [3] for the first time. This
contribution enhances significantly the non-factorizable corrections (∼ 60%), which explains
why encoding this correction in our NNLO+PS generator is crucial.

The H → bb̄ decay width shown in equation (5.27) allows us to study the impact of the
operators defined in (5.4). We can consider the two scenarios in (5.23) and (5.24) and vary
the coefficients cbH and cbG within their current experimental bounds (equations (5.25) and
(5.26)). Looking at the shift induced by these operators, we can extrapolate a hierarchy in the
SMEFT effects. More precisely:

Γ(H → bb̄)N3LO
SMEFT

Γ(H → bb̄)N3LO
SM

− 1 ∈
{
[−39, 26]% in scenario 1 (5.23) , using (5.25) ,
[−6.3, 6.3]% in scenario 2 (5.24) , using (5.26) .

(5.28)

We observe that the impact of the QbG operator is smaller by a factorO(5) than the factorizable
corrections associated to the insertion of QbH.

5.4.3. Differential distributions

In this section we present our differential distributions employing the fiducial cuts reported in
table 5.1. We stress that the cut on the transverse momentum of the Z boson pT,ℓ+ℓ− is used
in order to substantially reduce some backgrounds (tt̄, single-top and diboson production
[76]). Another source of background is given by Z + jets production. We will comment on
how our results vary if we modify the cut on the transverse momentum of the Z boson
considering the categories pT,ℓ+ℓ− ∈ [75, 150]GeV and pT,ℓ+ℓ− > 250 GeV.

In the following plots we show our SMEFT results (red curve) considering either cbH = 0.15
or cbG = 400. The chosen numerical values are within the current experimental bounds
(equations (5.25) and (5.26)). All the other Wilson coefficients are set to zero. We compare
this computation with SM results as obtained in chapter 4. The error bars are given by the
customary 7-point scale variation, correlating the scales in production and decay.
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fiducial cuts

pT,ℓ > 15 GeV, |ηℓ| < 2.5

75 GeV < mℓ+ℓ− < 105 GeV, pT,ℓ+ℓ− ∈ [150, 250]GeV

≥2 b-jets (anti-kT [104], R=0.4)

pT,j > 25 GeV, |ηj| < 2.5

Table 5.1.: Fiducial phase space used in section 5.4.3.

We start our discussion from the invariant mass of the bb̄ system. The two b-jets are
reconstructed as the pair of b-jets whose invariant mass is closest to the mass of the Higgs
boson. Including only factorizable corrections (left panel) clearly induces an overall rescaling
of the SM distribution, which reaches 30% effect for the specific value of the Wilson coefficient
we have chosen. A more interesting result is given by the inclusion of non-factorizable
corrections (right panel) as it determines a distortion of the shape of the mbb̄ distribution. In
fact, the SMEFT calculation receives important corrections below the Higgs threshold (up
to 40% for mbb̄ ≃ 50 GeV). This enhancement is related to the structure of the leading QbG
correction, which is associated to the contribution to H → bb̄g depicted in the top left panel in
figure 5.1. The interference of this contribution with the corresponding SM diagram produces
an amplitude in which the gluon emission probability is isotropic in the phase space (the
explicit result is reported in Appendix A of the original publication [3]). By contrast, in the
SM the real emission of a gluon is strongly enhanced in the soft or collinear regions. As a
result, configurations in which the energy-momentum of the Higgs boson is equally shared
among the two bottom quarks and the gluon are more frequent in the SMEFT calculation,
while in the SM we expect a mbb̄ distribution strongly peaked at the Higgs boson mass, as it
is more likely that the two b-jets carry most of the energy-momentum of the Higgs. Moreover,
we note that if we change the sign of the Wilson coefficients, the sign of the relative impact of
the SMEFT corrections changes accordingly.

The shape of the SMEFT effects in the mbb̄ distribution depends on the jet radius R used
in the clustering algorithm for the identification of the b-jets. This feature can be observed
comparing the right panel of figure 5.3 with both panels in figure 5.4. In these plots we
show the mbb̄ distribution varying the radius in the clustering procedure. We show results
for R = 0.4, R = 0.7 and R = 1. In general, the mbb̄ distribution is peaked at lower values
when the radius increases. This same behaviour has been observed for different pT,ℓ+ℓ−

categories. In fact, we analysed both pT,ℓ+ℓ− ∈ [75, 150]GeV and pT,ℓ+ℓ− > 250 GeV and the
same conclusions hold.

Another distribution that is particularly affected by SMEFT effects in presence of cbG is
the invariant mass mbb̄j of two b-jets and an extra jet. We reconstruct the bb̄j system taking
two b-jets and an extra jet whose invariant mass is closest to the Higgs boson mass. In figure
5.5 we show the mbb̄j distribution considering a radius of R = 0.4 (left panel) and R = 0.7
(right panel). SMEFT effects are strongly pronounced in the low bb̄j-region because events
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Figure 5.3.: Invariant mass of the two reconstructed b-jets in the fiducial setup reported
in table 5.1 for cbH = 0.15 (left panel) and cbG = 400 (right panel). The SMEFT
prediction is represented by the red curve. The SM result with its scale uncertainty
band is shown in black and gray. The radius used in the clustering algorithm
(anti-kT) is R = 0.4.

with an extra jet are more likely in the SMEFT due to the insertion of the QbG operator.
Furthermore, we already observed that the largest corrections in the mbb̄ distributions arise at
≃ 40 GeV (see right panel in figure 5.3 and both panels in 5.4). Since we apply a fiducial cut
pT,j > 25 GeV, we expect to observe an excess of events at ≃ 60 GeV in the mbb̄j distribution.
Indeed, this effect is present in the left panel of 5.5. When comparing the two panels in 5.5
in which we increase the radius used in the clustering algorithm, we see that the SMEFT
effects move toward larger values of mbb̄j: this is understood considering that a larger R
value means clustering more radiation in the same jet, which concretely produces a larger
three-jet invariant mass on average. Notice that in the recent ATLAS analysis [142], the mbb̄j
distribution is already used for the construction of a multivariate discriminant for constraining
CbG. We believe that the shape and R-dependent effects presented in this section can increase
our sensitivity to this operator, which is still weakly constrained.

We studied many observables other than mbb̄ and mbb̄j for analyzing how the QbG operator
affects the process under study. We identified different distributions in which the impact of
this operator is non-trivial, like the transverse momentum of the Z boson (pT,ℓ+ℓ−) and the
transverse momentum of the two bottom quarks (pT,bb). However, these effects cannot exceed
the percent level, and thus these observables taken by themselves have limited constraining
power. We thus suggest incorporating these observables in a multivariate discriminant that
can enhance our overall sensitivity to cbG.
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Figure 5.4.: Invariant mass of the two reconstructed b-jets in the fiducial setup reported in
table 5.1 for cbG = 400. The SMEFT prediction is represented by the red curve.
The SM result with its scale uncertainty band is shown in black and gray. The
radii used in the clustering algorithm (anti-kT) are R = 0.7 (left panel) and R = 1
(right panel).
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Figure 5.5.: Invariant mass of the bb̄j system in the fiducial setup reported in table 5.1 for
cbG = 400. The SMEFT prediction is represented by the red curve. The SM result
with its scale uncertainty band is shown in black and gray. The radii used in the
clustering algorithm (anti-kT) are R = 0.4 (left panel) and R = 0.7 (right panel).
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6. WZ production at NNLO QCD and NLO
EW accuracy matched to parton showers

6.1. Motivation

In view of the increasing level of precision of current and future LHC experimental mea-
surements, proposing theoretical calculations at the highest accuracy possible in both QCD
and EW perturbation theory is crucial. In this context, the production of a pair of massive
vector bosons pp→ VV plays an important role, as experimental measurements for this kind
of process are precision tests of the SM. In fact, VV production provides direct access to
the trilinear gauge couplings, which may be modified by new physics effects, and it thus
probes the gauge symmetry structure of the EW sector and its interplay with the scalar
one. The aim of this chapter is to present a NNLO QCD and NLO EW accurate calculation
matched to parton showers for pp → W±Z → ℓ

′±νℓ′ ℓ
+ℓ−. We consider the specific case of

W±Z production because it has a large cross section and a clean experimental signature if we
consider the fully leptonic decay (the signature is given by three charged leptons and missing
energy). However, we highlight that the strategy we present in this chapter is fully general
and it can be applied to any process of interest, provided the correct matrix elements are
available.

A combination of QCD and EW corrections is non-trivial, especially when matched to parton
showers. Thus, we first present how to combine NNLO QCD and NLO EW contributions at
fixed order reviewing the discussion presented in [143]. To this end, we define the following
notation

dσNNLO QCD = dσLO (1 + δQCD) , dσNLO EW = dσLO (1 + δEW) , (6.1)

where the higher-order corrections with respect to the LO contribution are encoded into
δQCD and δEW for QCD and EW calculations, respectively. The combination of QCD and EW
corrections can be performed through two main schemes:

• Additive scheme

Higher-order QCD and EW corrections can be combined in a purely additive way via

dσNNLO QCD+EW = dσNNLO QCD + dσNLO EW − dσLO = dσLO (1 + δQCD + δEW) , (6.2)

in which we simply sum the NNLO QCD and the NLO EW computations, removing
the LO contribution to avoid double counting. Considering the specific case of W±Z
production, using this combination procedure we generate terms of order O(α4) (LO),
O(α4αs) (NLO QCD), O(α4α2

s ) (NNLO QCD) and O(α5) (NLO EW).
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6. WZ production at NNLO QCD and NLO EW accuracy matched to parton showers

• Multiplicative scheme

Higher-order QCD and EW corrections can be combined in a factorized scheme

dσNNLO QCD×EW = dσNNLO QCD ×
dσNLO EW

dσLO
= dσLO (1 + δQCD) (1 + δEW) , (6.3)

where we supplement the NNLO QCD computation with an EW K-factor given by the
ratio of the NLO and the LO computations. Using this combination scheme we generate
mixed QCD-EW contributions. Considering the specific case of W±Z production, we
obtain extra terms of order O(α5αs) and O(α5α2

s ) when compared to the additive
combination.

The multiplicative scheme should be seen as superior to the additive combination (6.2)
because of the factorization of QCD and EW effects at high energies. More precisely, EW
effects are dominated by EW Sudakov logarithms at high energies, while the dominant QCD
effects are related to scales much lower than the hard scale so that QCD and EW effects
factorize. However, VV production presents topologies for which this assumption is violated
and neither a multiplicative nor an additive scheme is suitable for performing the QCD-EW
combination. These topologies are associated with so-called giant K-factors.

Giant K-factors arise from configurations in which the gap between the hardness of the
two vector bosons is large: pT,V1 ≫ pT,V2 . They are thus pure NLO effects because they
are associated with regions of the phase space that are forbidden at LO. In fact, when a
hard vector boson V1 is present at LO, the second vector boson V2 is hard as well due to
energy-momentum conservation, pT,V1 = pT,V2 . However, at NLO most of the recoiling energy
can be absorbed by the extra jet pT,V1 ≃ pT,J , while the second vector boson remains soft
pT,V2 = O(mW). Anytime a process is characterized by a topology with a hard vector boson,
a hard jet and a soft second vector boson, we can integrate over the soft vector boson phase
space [144]:

dσV(V)J ∝ dσV J
LO

α

2π
log2

(
Q2

m2
W

)
. (6.4)

The previous equation shows that we can factorize the cross section for a hard V J process
with a soft second vector boson into a hard V J cross section at LO (dσV J

LO) multiplied by a
radiative correction that represents the emission probability of the soft vector boson. Given
that σV J

LO/σVV
LO ∝ αs/α, the radiative correction to the hard VV process is

dσV(V)J

dσVV
LO

∝ αs log2
(

Q2

m2
W

)
, (6.5)

which becomes large already at the TeV scale (e.g. it is a factor of 3 when Q = 1 TeV).
We stress one more time that giant K-factors are pure NLO effects which are different from

enhanced QCD logarithms associated with soft and collinear emissions. While the former
effects are related to the opening of a new channel at NLO accuracy (the hard pp→ V(V)J
channel), the latter appear to all orders in perturbation theory. Starting from NNLO accuracy,
calculations are free from giant K-factors.
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Figure 6.1.: Sample Feynman diagram associated with giant K-factors at NLO QCD. The blob
represents the hard scattering at scale Q≫ mW while the red vector boson is the
subleading one which generates EW soft and collinear logarithms.

The appearance of giant K-factors can spoil the convergence of the perturbative series and it
creates issues in combining QCD and EW higher-order contributions. In fact, a multiplicative
scheme is not suitable in this case: NLO EW effects are dominated by Sudakov logarithms to
the hard VV process, while giant QCD K-factors are driven by soft EW boson radiation in the
V J process. There is no factorization of QCD and EW effects so that a multiplicative scheme
is not motivated. When giant K-factors are present, the average between the multiplicative
and the additive schemes can give us a pragmatic prediction of our result, and the difference
between the two provides an estimate of error bars associated with missing higher-order
effects. Notice that configurations associated with giant K-factors can be avoided by means
of appropriate (dynamic) jet-veto that can suppress configurations associated with hard V J
topologies.

W±Z production was extensively studied in the past years. Calculations at NLO accuracy
in QCD were presented in [145, 146, 147, 148, 149] and results for polarized W±Z production
are available in the double-pole approximation [150]. NLO QCD results for W±Z+jet were
obtained in [151]. At NNLO accuracy, inclusive cross sections were presented in [152] and
an extension to fully differential predictions can be found in [153]. NNLO computations are
nowadays publicly available in Matrix [154] and MCFM [155]. As far as EW corrections are
concerned, NLO results were presented for on-shell production in [156, 157] and including
off-shell decays in [158]. A combination of NNLO QCD and NLO EW computations was
performed through Matrix+OpenLoops as presented in [143]. Results matched to parton
showers were presented at NLO accuracy in [159, 160].

In this chapter, we extend the problem of the combination of QCD and EW higher-order
contributions to the matching with parton showers, considering the specific case of W±Z
production. The main issue in reaching this accuracy is defining a consistent way of combining
QCD and EW calculations with QCD and/or QED parton showers without spoiling the formal
accuracy of the fixed-order computation and without including any double counting.

This chapter is organised as follows: in section 6.2 we describe our calculation and the
possible matching schemes between NNLO QCD and NLO EW computations matched with
parton showers; in section 6.4 we present a phenomenological analysis for 13 TeV collisions
at the LHC commenting in detail on the differences among the different matching schemes
and presenting our best prediction. In the same section, we show a comparison with recent
ATLAS data [161] as well. The results presented in this chapter were originally presented by
the author and collaborators in [4].
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6.2. Outline of the calculation
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Figure 6.2.: Feynman diagrams for W+Z production at LO. Panel (a) is the t-channel con-
tribution, panel (b) is the s-channel contribution and panels (c,d) are DY-type
channels.

We consider the process

pp→ ℓ
′±νℓ′ ℓ

+ℓ− + X , (6.6)

where ℓ and ℓ
′

represent any combination of massless leptons (ℓ, ℓ′ ∈ {e, µ, τ}). We study
both different flavour (ℓ ̸= ℓ′) and same flavour (ℓ = ℓ′) channels. Sample Feynman diagrams
for this process are presented in figure 6.2, in which we show LO contributions (O(α4)).

As far as NNLO QCD corrections are concerned, we include contributions up to O(α4α2
s )

and we note that no gluon-gluon contributions are possible due to charge conservation.
NNLO corrections are expected to be large because of the radiation zero effect at LO [162]
for which leading helicity amplitudes vanish in some kinematic regions. As a consequence,
the LO calculation is not reliable and higher-order contributions are particularly large (e.g.
NNLO corrections are of the order of 10–15% [152]).

The NLO EW contribution is of order O(α5). Virtual corrections are qq̄ one-loop contribu-
tions involving W, Z and Higgs bosons, photons and fermions in the loop, including heavy
quarks. Real corrections are of pure QED type (photon emissions). Photon-induced contribu-
tions γγ are not present at this order, while photon-quark γq contributions are in principle
allowed. The latter contributions have been neglected because of the suppressed photon flux
in the proton, which is accompanied by an extra power of the electroweak coupling O(α)

times a collinear logarithm L.1

1We note that γq contributions are potentially large when the initial-state photon γ couples directly to a W-
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We reach NNLO QCD and NLO EW accuracy matched to parton showers using an a-
posteriori combination. Our strategy proceeds in three main steps: first, we separately
generate events at NNLO QCD and NLO EW accuracy within the POWHEG-BOX-RES frame-
work [88]. Secondly, we shower the events through PYTHIA8 [87] applying a dedicated veto
procedure. Lastly, we combine QCD and EW results at the level of differential distributions
using appropriate combination schemes.

6.2.1. Generation of events

We separately generate NNLO QCD and NLO EW accurate results within the POWHEG-
BOX-RES framework.

As for the QCD computation, we adopt the MINNLOPS procedure. Since no W±Z gen-
erator was available in the POWHEG-BOX-RES, we first implemented the corresponding
W±ZJ code and then we upgraded it to NNLO accuracy in W±Z production through the
MINNLOPS method. The matrix elements for tree-level and one-loop corrections are obtained
from OpenLoops [163, 164, 165] while the two-loop amplitude is provided by VVamp [166]
through the interface to Matrix [154]. Given the CPU-demanding computation, the two-loop
correction is included only at the level of the generation of events (stage 4) in POWHEG,
setting appropriately the run_mode option in the input card as described in [70]. For the
calculation of the D terms in the MINNLOPS formula (3.45), we use HOPPET [74] for a fast
evaluation of the convolutions with PDFs. Furthermore, we compute polylogarithms in the
collinear coefficient functions using hplog [93]. To avoid spurious higher-order logarithmic
terms in the MINNLOPS formula (3.45), we adopt a modified logarithm (3.53) that smoothly
turns off NNLO corrections in the region pT > mW±Z, where pT and W±Z are the transverse
momentum and the invariant mass of the W±Z colour singlet [71]. At high pT, we set the
scales of the calculation through the largeptscales 1 option so that equation (3.58) is used.
At small pT, the default MINNLOPS prescription in the choice of the scales is employed.
Furthermore, we set Q0 = 0 GeV in (3.57) and we freeze the strong coupling and the PDFs at
0.8 GeV. We also switch on the POWHEG option doublefsr 1 [94], so that q→ qg and g→ qq̄
splittings are treated symmetrically for the definition of the starting scale of the shower.

For the computation of the NLO EW calculation, we developed a code analogous to the
one constructed in [159]. More precisely, we implemented a W±Z generator within the
POWHEG-BOX-RES framework. This code can produce NLO QCD, NLO EW and NLO QCD
+ NLO EW results matched to QCD and QED parton showers for all pp→ VV processes. All
the needed matrix elements are taken from OpenLoops [163, 164, 165]. Also in this case, we
set doublefsr 1.

6.2.2. Matching with parton showers

The parton shower is generated by PYTHIA8 [87]. We keep all the standard settings to their
default value, in particular for the recoil scheme. The matching of NNLO QCD and NLO EW

boson propagator in the t-channel [158]. These contributions can be implemented separately and added to
higher-order qq̄ QCD corrections in a purely additive way.
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accurate results with QCD and QED parton showers requires a dedicated veto procedure. Our
strategy2 consists in letting both the QCD and QED showers radiate in the entire kinematically
allowed phase space and then checking that the shower history is consistent with the emission
generated by POWHEG at LHE level. More precisely, we activate the following options in
PYTHIA8

pythia.readString("SpaceShower:pTmaxMatch = 2") ,

pythia.readString("TimeShower:pTmaxMatch = 2") ,

which set the starting scales of both space- and time-like showers to the partonic energy of
the event. Once the event is showered, we apply an a-posteriori veto as follows:

• When generating NNLO QCD events, we restrict the QCD radiation produced by the
shower, as default in POWHEG. QED radiation from the shower remains unconstrained
so that the entire phase space allowed by the kinematics is covered. The veto procedure
thus consists in scanning all the QCD emissions produced by PYTHIA8 and storing the
hardest transverse momentum pmax

T . We now compare pmax
T with the hardness (scalup)

of the QCD emission generated by POWHEG at LHE level. The value of scalup is read
from the event file. We accept the event only if pmax

T < scalup. If this requirement is not
met, we try to reshower the event again. After 1000 failed attempts, the event is rejected.

• As for the generation of NLO EW predictions, we apply the same logic: QED emissions
must be restricted to avoid double counting, while QCD radiation should cover the entire
allowed phase space. QED radiation can be produced by the shower both as initial-state
radiation (ISR) and as final-state radiation (FSR). In the latter case, it can come from the
decay of both the W (FSR-W) and the Z (FSR-Z) bosons. We thus define three different
starting scales, according to the region in which the QED emission is produced. For
doing so, we activate the multiple-radiation scheme option (allrad 1 in the input card)
of POWHEG. In this way, we keep track of all the possible QED emissions generated
by POWHEG in the three singular regions of the process. The transverse momenta of
these (up to) three emissions define the starting scales scalupi in the different regions
(i ∈ {ISR, FSR-W, FSR-Z}). More precisely, in the case of FSR we calculate the transverse
momentum of the photon with respect to the lepton emitter in the centre-of-mass frame
of the mother resonance. If no photon is produced by POWHEG in a certain region,
we set scalup to a default IR cutoff (10−3 GeV). We then scan all the QED emissions
generated by PYTHIA8, we store the hardest transverse momenta pmax

T,i for each region
and then we check whether the requirement pmax

T,i <scalupi is fulfilled for each region.
If yes, we accept the event, otherwise we try to shower the event again. After 1000
unsuccessful attempts, the event is rejected.

6.2.3. Combination of QCD and EW results

Once the NNLO QCD and NLO EW results have been separately showered according to the
procedure defined in 6.2.2, we can combine them at the level of differential distributions.

2This veto procedure is inspired by what is done in Appendix D in [78].

99



6. WZ production at NNLO QCD and NLO EW accuracy matched to parton showers

In order to make the notation easier, we will refer to these results as NNLOQCD+PS and
NLOEW+PS, respectively. Moreover, we introduce

(N)NLO(Y)PS
X with

{
X ∈ {QCD, EW} ,

Y ∈ {QCD, QED, QCD and QED} ,
(6.7)

which refers to the (N)NLO calculation in X perturbation theory matched to Y parton showers.
We also introduce a generic term for the higher-order correction to the LO computation
defined as

δN(N)LOX
(Y)PS = N(N)LO(Y)PS

X − LO(Y)PS
X , (6.8)

and a multiplicative K-factor:

K-N(N)LO(Y)PS
X = N(N)LO(Y)PS

X /LO(Y)PS
X . (6.9)

At fixed order, QCD and EW calculations can be combined through the additive and
multiplicative schemes presented in equations (6.2) and (6.3). When considering the matching
with parton showers, this combination should not spoil the formal accuracy of the fixed-order
computation and should not introduce any source of double counting. We thus identify the
following possible combinations of NNLOQCD+PS and NLOEW+PS results:

Additive schemes:

1. NNLO(QCD,QED)PS
QCD + δNLO(QCD,QED)PS

EW = NNLO(QCD,QED)PS
QCD+EW , (6.10)

2. NNLO(QCD,QED)PS
QCD + δNLO(QED)PS

EW , (6.11)

3. NLO(QCD,QED)PS
EW + δNNLO(QCD)PS

QCD . (6.12)

Multiplicative schemes:

4. NNLO(QCD,QED)PS
QCD ×K-NLO(QCD,QED)PS

EW = NNLO(QCD,QED)PS
QCD×EW , (6.13)

5. NNLO(QCD,QED)PS
QCD ×K-NLO(QED)PS

EW , (6.14)

6. NLO(QCD,QED)PS
EW ×K-NNLO(QCD)PS

QCD , (6.15)

7. NNLO(QCD)PS
QCD ×K-NLO(f.o.)

EW . (6.16)

We introduced the short-hand notations NNLO(QCD,QED)PS
QCD+EW and NNLO(QCD,QED)PS

QCDxEW for what will
be referred to as default additive and multiplicative schemes (first and fourth combinations).
We also introduced the fixed-order NLO EW K-factor

K-NLO(f.o.)
EW = NLO(f.o.)

EW /LO(f.o) , (6.17)

where we do not perform any matching with the parton shower (it is obtained via
Matrix+OpenLoops).

All the presented scheme have the same formal accuracy and they differ only for higher-
order terms (note that the last combination does not include the QED shower). We will
analyse these combination schemes in detail and we will discuss their ability to describe
relevant kinematic regions of distributions.
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6.3. Validation of the calculation

In this section we validate both the NNLOQCD+PS and the NLOEW+PS implementations
through a comparison with fixed-order calculations. We present results for pp→ µ+νµe+e−

at 13 TeV centre-of-mass energy, but the same conclusions hold for any decay channel. The
validation is performed at LHE level. The fixed-order results for both NNLO QCD and NLO
EW computations are obtained through Matrix+OpenLoops.

6.3.1. Input and parameters

We use the NNPDF31_nnlo_as_0118_luxqed [167, 168, 169] PDF set, which corresponds to
αs(m2

Z) = 0.118. Our input parameters are taken from the PDG [9]:

GF = 1.16639× 10−5 GeV−2 ,

mW = 80.385 GeV ,

ΓW = 2.0854 GeV ,

mZ = 91.1876 GeV ,

ΓZ = 2.4952 GeV ,

mH = 125 GeV ,

ΓH = 4.07 MeV ,

mt = 173.2 GeV (on-shell) ,

Γt = 1.347878 GeV .

We adopt the complex-mass scheme [170, 171] and EW parameters are determined through
the Gµ scheme [165]:

αGµ
=

√
2

π
GF|(m2

W − iΓWmW) sin2 θW | , cos2 θW =
m2

W − iΓWmW

m2
Z − iΓZmZ

.

NNLOQCD+PS results are obtained using the MINNLOPS method, so the central scales are
set using the standard MINNLOPS procedure. As for the NLOEW+PS calculation, we use the
following central scales

µR = µF =
1
2

(√
m2

e+e− + p2
T,e+e− +

√
m2

µνµ
+ p2

T,µνµ

)
, (6.18)

where me+e− and pT,e+e− (mµνµ and pT,µνµ ) are the invariant mass and the transverse momentum
of the reconstructed Z boson (W boson). We estimate error bars using the customary 7-point
scale variation, keeping 0.5 ≤ µR/µF ≤ 2.0. In the fixed-order computations, we use the same
central renormalization and factorization scales as defined in (6.18).

Leptons are obtained using a dressing procedure: for every bare lepton ℓb we construct a
cone of radius R = 0.1 around it. All the photons inside this cone (∆Rℓbγ =

√
∆ϕ2

ℓbγ
+ ∆η2

ℓbγ
<

0.1) are clustered together with the bare lepton, defining the physical lepton ℓ with momentum
pℓ = pℓb + pγ. The clustering procedure starts from the smallest ∆Rℓbγ distance among all the
possible lepton-photon couples. Once a photon is recombined with a lepton, it is removed
from the final-state particles of the process.

We consider an inclusive setup (inclusive setup) in which we apply only a cut on the Z
boson mass:

66 GeV < me+e− < 116 GeV . (6.19)

This mass window is needed to avoid the photon singularity.
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6.3.2. NNLO QCD

Figure 6.3 shows the comparison between NNLOQCD+PS results at LHE level (blue curve)
and fixed-order results at NNLO QCD (red curve). The former are obtained through the
MINNLOPS procedure as explained in the previous sections while the latter are obtained
using Matrix+OpenLoops. We consider the inclusive setup.

We show the following differential observables: the difference in the azimuthal angle
between the two leading charged leptons (∆ϕℓℓ), the rapidity of the leading charged lepton
(yℓ1), the invariant mass of the three charged leptons (m3ℓ), the invariant mass (mµνµ ) and
the transverse momentum (pT,µνµ ) of the reconstructed W boson, and the missing transverse
momentum (pT,miss). For all of them, we see an excellent agreement between the MINNLOPS

and the fixed-order results. In the two calculations, error bars have a similar size. In this
comparison, we do not expect a one-to-one agreement, as the two computations differ for the
treatment of higher-order corrections and in the scale settings.

This comparison validates the MINNLOPS implementation.

6.3.3. NLO EW

Figure 6.4 shows the comparison between NLOEW+PS predictions at LHE level (blue curve)
and fixed-order results at NLO EW (red curve). The former are obtained through POWHEG
as explained in the previous sections while the latter are obtained using Matrix+OpenLoops.
We consider the inclusive setup.

In this comparison, we expect a one-to-one agreement in the two predictions apart from
small numerical fluctuations in the tails of distributions. In fact, the two computations are
identical except for the POWHEG Sudakov in the NLOEW+PS results that correctly generates
a photon emission for the matching with a parton shower.

We show the same distributions already presented in the validation of the NNLO QCD
generator. For all of them, we see an excellent agreement, both in the central value and in the
size of error bars.

This comparison validates the NLO EW POWHEG implementation.

6.4. Phenomenological results

In this section we present phenomenological results for W±Z production at NNLO QCD and
NLO EW matched to parton showers, as originally presented in [4]. For simplicity, we again
restrict ourselves to the specific case:

pp→ µ+νµe+e− . (6.20)

6.4.1. Settings

Our input and settings are identical to the ones used in the validation, so we refer the reader
to section 6.3.1.
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Figure 6.3.: W+Z predictions at NNLO QCD accuracy obtained using the MINNLOPS

method (blue) and obtained at fixed-order using Matrix+OpenLoops (red) in the
inclusive setup. 103
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Figure 6.4.: W+Z predictions at NLO EW accuracy obtained using POWHEG (blue) and
obtained at fixed-order using Matrix+OpenLoops (red) in the inclusive setup.
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When combining QCD and EW results, we always correlate the scales in the two computa-
tions. We thus note that, when using a multiplicative scheme, the EW K-factor is almost scale
independent, up to corrections of order O(α) when varying the factorization scale.

The parton shower is generated by PYTHIA8 [87] with the Monash 2013 tune [102]. We
set the option TimeShower:QEDshowerByOther to off, preventing resonances to emit photons,
in order not to spoil the NLO resonance structure as generated by POWHEG. Moreover,
also TimeShower:QEDshowerByGamma is set to off, preventing photons to split in leptons and
quarks. Hadronization effects and multi-particle interactions (MPI) are considered only in
section 6.4.3, where we perform a comparison with recent ATLAS data.

Results are presented using two different definitions of the fiducial phase space, as defined
in table 6.1. The first setup is the inclusive one (inclusive setup) already presented in
equation (6.19), while the second setup is taken from the ATLAS analyses of [172] and [161].

inclusive setup

66 GeV< me+e− < 116 GeV

fiducial setup

|me+e− −mZ| < 10 GeV

pT,e± > 15 GeV, pT,µ > 20 GeV,

|ηℓ| < 2.5, mT,W > 30 GeV,

∆Re+e− > 0.2, ∆Re±µ > 0.3

Table 6.1.: Definition of inclusive setup and fiducial setup [172] [161] used in the phe-
nomenological analysis for pp → µ+νµe+e− production. Note that leptons are
always considered dressed.

In the comparison to data in section 6.4.3, we employ the corresponding Rivet routine [173]
available in the HEPdata webpage https://www.hepdata.net/record/ins1720438. Note that
in table 6.1, we define the transverse mass of the W boson as:

mT,W =

√(
ET,µ + ET,νµ

)2
− p2

T,µνµ
with E2

T,x = m2
x + p2

T,x . (6.21)

In the Rivet analysis, the same definition is adopted but in the massless approximation for
dressed leptons (mx = 0 in equation (6.21)).

6.4.2. Differential distributions

In this section we analyse in detail the different combination schemes of QCD and EW
calculations matched to parton showers presented in section 6.2.3. For simplicity, we consider
again only the following decay channel: pp→ µ+νµe+e−.

Our plots are organised as follows:

• Main panel

We show the NNLO(QCD,QED)PS
QCD result (blue and dashed line), in which the NNLOQCD

computation is supplemented with both QCD and QED showers. In this prediction, EW

105



6. WZ production at NNLO QCD and NLO EW accuracy matched to parton showers

effects are pure QED effects coming from the parton shower. Moreover, we present our
default multiplicative and additive combinations, namely NNLO(QCD,QED)PS

QCD+EW (magenta

and long-dashed curve) and NNLO(QCD,QED)PS
QCDxEW (green and solid curve).

• First ratio panel

We present the ratio to the NNLO(QCD,QED)PS
QCD prediction, in order to study the impact

of EW effects. Apart from the NNLO(QCD,QED)PS
QCD+EW and NNLO(QCD,QED)PS

QCDxEW combinations,

we present also the pure NNLOQCD+PS calculation, namely NNLO(QCD)PS
QCD (red and

dash-dotted curve). In this way we can observe the impact of both EW effects coming
from the fixed-order computation and QED effects originating from the parton shower.

• Second ratio panel

We show the ratio to the default additive combination NNLO(QCD,QED)PS
QCD+EW . In this panel

we include the default multiplicative scheme NNLO(QCD,QED)PS
QCDxEW and the multiplicative

combination in which the EW K-factor is obtained through a fixed-order computation
NNLO(QCD)PS

QCD ×K-NLO(f.o.)
EW (brown and dash-dotted curve).
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Figure 6.5.: Rapidity yee (left) and invariant mass mee (right) of the reconstructed Z boson for
W+Z production in the inclusive setup.
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We start our discussion with the rapidity yee of the reconstructed Z boson, shown in the left
panel of figure 6.5. EW effects are negative and small (few percent). They are completely cov-
ered by scale uncertainties, which have edges of around + 3–5% and
− 2–3% in all predictions. EW corrections are flat in the phase space for this observable:
this is not unexpected since yee is inclusive over QED radiation. For studying the effects
of pure QED emissions generated by the shower, we can compare the NNLO(QCD)PS

QCD with

the NNLO(QCD,QED)PS
QCD results: these effects are at the level of − 1–2%. A comparison with

the default combinations with EW calculations shows that effects of pure EW origin are
of order − 2–3%. The default additive and multiplicative combinations (NNLO(QCD,QED)PS

QCD+EW

and NNLO(QCD,QED)PS
QCDxEW ) agree at the percent level. Moreover, the multiplicative case with

the fixed-order K-factor is almost identical to the default multiplicative combination, which
means that yee is weakly affected by secondary photon emissions.

The right panel of figure 6.5 shows the invariant mass mee of the reconstructed Z boson. In
this plot we add one more combination, NLO(QCD,QED)PS

EW + δNNLO(QCD)PS
QCD (beige and dash-

double-dotted curve). This combination is the additive scheme in which QED effects generated
by the parton shower are not encoded on top of the NNLO QCD computation. For this
observable, we expect important distortions when including QED effects, as already pointed
out for Drell-Yan production in [174, 175, 176]. In fact, considering the pure QCD computation
NNLO(QCD)PS

QCD is not suitable to describe the Z resonance, as this calculation does not take into
account large QED collinear effects that shift events from above to below the Breit-Wigner peak.
These effects are of order 40% at around mee = 70 GeV. A similar result can be observed in
the new NLO(QCD,QED)PS

EW + δNNLO(QCD)PS
QCD combination: the distortion of the curve is related

to missing large QCD–QED effects (even though beyond accuracy) given by the interplay of
the QED shower with the NNLO QCD calculation. Moreover, we note an excellent agreement
between NNLO(QCD,QED)PS

QCD and the default additive and multiplicative combinations. The

multiplicative NNLO(QCD,QED)PS
QCDxEW and NNLO(QCD)PS

QCD × K-NLO(f.o.)
EW combinations are in good

agreement (1–2% level), which validates the matching of the EW computation with the QED
shower in a resonance-aware way, as done in the POWHEG-BOX-RES framework.

We now turn to high-energy tails of relevant distributions, showing results in both
inclusive setup and fiducial setup as defined in table 6.1. Notice that we adopt a
logarithmic scale and binning on the x-axis. In the following plots, we add one more
combination in the second ratio inset, namely NNLO(QCD,QED)PS

QCD ×K-NLO(QED)PS
EW (orange and

dash-double-dotted curve), in which the QCD shower is not applied to the EW K-factor.
Figure 6.6 shows the missing transverse momentum pT,miss in the inclusive setup (left

panel) and fiducial setup (right panel). The two setups show similar results. Pure
QED effects are small (at the percent level), as observed comparing the NNLO(QCD)PS

QCD and

NNLO(QCD,QED)PS
QCD curves. By contrast, EW contributions are strongly enhanced in the deep

tails due to the appearance of EW Sudakov logarithms. As clearly shown in the second
ratio panel, there is a large discrepancy between the default additive and multiplicative
schemes, and this effect is originated by large NLO QCD corrections that give rise to gi-
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Figure 6.6.: Missing transverse momentum pT,miss for W+Z production in the inclusive
setup (left) and fiducial setup (right).

ant K-factors. Moreover, the default multiplicative combination does not agree with the
NNLO(QCD,QED)PS

QCD ×K-NLO(QED)PS
EW and the NNLO(QCD)PS

QCD ×K-NLO(f.o.)
EW predictions: this dis-

crepancy arises from giant K-factors that are related to QCD emissions generated by the
shower. We explicitly verified that, applying a suitable dynamic veto that suppresses hard-
V+jet topologies, the three multiplicative combinations are in perfect agreement.

In figures 6.7 and 6.8 we show the transverse momenta of the charged leading lepton
pT,ℓ1 and the charged subleading lepton pT,ℓ2 . We note a similar behaviour to the pT,miss

distribution. More precisely, EW effects are negative and strongly enhanced in the high-
energy tails. The observed discrepancy among the different multiplicative combinations is
related to giant K-factors, as explained for the pT,miss observable. Note that this discrepancy
is absent for the subleading lepton, as this observable is less affected by giant K-factors.
QED effects have a non-trivial impact at low transverse momentum, as observed comparing
NNLO(QCD)PS

QCD with NNLO(QCD,QED)PS
QCD in the first ratio panel and comparing NNLO(QCD,QED)PS

QCDxEW

and NNLO(QCD)PS
QCD ×K-NLO(f.o.)

EW in the second ratio panel.
Figure 6.9 shows the invariant mass of the three charged leptons m3ℓ. Also for this

observable, EW corrections are negative and visible in the deep tails of the distribution.
When comparing the inclusive setup (left panel) to the fiducial setup (right panel), we
observe a significant enhancement of the EW effects. For example, at around m3ℓ ∼ 2 TeV, EW
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Figure 6.7.: Transverse momentum of the charged leading lepton pT,ℓ1 for W+Z production in
the inclusive setup (left) and fiducial setup (right).

corrections are about −10% in the inclusive setup while they reach about −20–30% in the
fiducial setup. This effect is due to the definition of the fiducial phase space. In fact, for
large m3ℓ values leptons are produced at very large rapidities in the inclusive setup and,
in these topologies, not all the Mandelstam invariants sij are large. These invariants appear
in the EW (double) Sudakov logarithms (ln2 (|sij|/m2

W)), which thus result suppressed. By
contrast, when applying fiducial cuts in the fiducial setup, lepton rapidities are constrained
and the very forward regions are excluded from the definition of the phase space, thus leading
to the usual enhancement of EW effects in the deep tails.

In all the plots presented in this section, we did not show results associated with the
NNLO(QCD,QED)PS

QCD + δNLO(QED)PS
EW and the NLO(QCD,QED)PS

EW ×K-NNLO(QCD)PS
QCD predictions, even

though they were listed as possible combination schemes in section 6.2.3. The reason is that we
did not find any significant discrepancy with the NNLO(QCD,QED)PS

QCD+EW and the NNLO(QCD,QED)PS
QCDxEW

calculations, so we refrained from showing results with these combinations. We stress that
they should be considered equally appropriate and valid.
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Figure 6.8.: Transverse momentum of the charged subleading lepton pT,ℓ2 for W+Z production
in the inclusive setup (left) and fiducial setup (right).

6.4.3. Comparison to data

For the comparison to data, we consider the NNLO(QCD,QED)PS
QCDxEW prediction as our default result.

ATLAS data are taken from [161] and we adopt the corresponding Rivet analysis available in
https://www.hepdata.net/record/ins1720438. The fiducial cuts are given by the fiducial
setup described in table 6.1. In this section, the results are the average of all the possible
decay channels of W±Z production (e+e−e±νe, µ+µ−µ±νµ, e+e−µ±νµ, e+e−µ±νµ).

Figure 6.10 shows a comparison of our default result with MPI effects (blue and solid
curve), without MPI effects (red and dashed curve) and ATLAS data. In our results, we
include effects from hadronization. Note that we show the absolute cross section per bin in
all the plots. The last bin of unbound distributions (indicated with ∞) should be seen as an
overflow bin. We consider the transverse momenta of the Z and W bosons, pT,Z and pT,W
respectively, and of the neutrino pT,ν. We also show the transverse mass of the colour singlet
mT,WZ defined as

mT,WZ =

√√√√( 4

∑
i=1

pT,i

)2

− p2
T,WZ , (6.22)

where i runs over the three charged leptons and the neutrino. Moreover, we show the
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Figure 6.9.: Invariant mass of the three charged leptons for W+Z production in the inclusive
setup (left) and fiducial setup (right).

difference in the azimuthal angle between the two vector bosons ∆ϕWZ and the absolute
rapidity difference between the Z boson and the charged lepton coming from the W |yZ − yℓW |.

Our default MINNLOPS prediction is in excellent agreement with data, both in the bulk of
the cross section where QCD is dominant, and in the tails of distributions where EW effects
become large. Note that all the shown distributions are genuinely NNLO QCD and NLO
EW accurate, except for ∆ϕWZ. In fact, the latter is equal to π at LO and the entire spectrum
is filled starting from NLO calculations, as a recoil of the WZ system on extra radiation is
required. This observable is formally only NLO QCD accurate, which is reflected in the
slightly larger error bar at low ∆ϕWZ. MPI effects lower the MINNLOPS prediction by 5%,
making the agreement with data slightly worse. We notice that theoretical predictions are
extremely precise, as scale variation leads to a few percent error bars. By contrast, data
have much larger uncertainties. Nevertheless, these measurements will improve significantly
when Run III data is considered in the future, thus performing again this comparison will be
particularly relevant.
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Figure 6.10.: Comparison of the NNLO(QCD,QED)PS
QCDxEW result with MPI effects (blue and solid

curve), without MPI effects (red and dashed curve) and ATLAS data [161].
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High-precision collider phenomenology is the common thread of this thesis. Since the
Standard Model cannot be the final fundamental theory describing the subatomic world and
no clear hints of new physics has been observed so far, precision physics has become an
indispensable element for any possible progress in LHC physics. New physics effects can
appear as small deviations when comparing data to theoretical calculations, which directly
translates into the necessity of obtaining both data and theoretical predictions at ultimate
precision.

In recent years the LHC has entered the so-called precision era: experimental measure-
ments are reaching an unprecedented level of precision in many hadron-collider observables
especially with the upcoming improvement to the High Luminosity phase. In order to inter-
pret correctly these data, theoretical calculations should match the same level of precision.
Moreover, a direct data/theory comparison can be performed only through realistic and
flexible theoretical simulations. In this thesis we analysed in detail one of the main building
blocks for obtaining precise and realistic theoretical predictions, namely the matching between
fixed-order calculations and parton showers.

Fixed-order calculations and parton shower simulations are at the core of the description of
a collider event in the perturbative regime. These two tools are complementary approaches
that can be fully exploited to obtain a realistic and accurate event simulation when consistently
combined. In particular, a fixed-order computation is suitable for a precise description of the
hard scattering process, but it does not provide a full simulation of the collider event. By
contrast, a parton shower simulation describes the realistic evolution of a collider event from
the high-energy limit down to the detector level in the soft and collinear approximation but
only at low accuracy. Matching the two descriptions, while keeping the best features of both,
thus becomes crucial for high-precision physics.

Nowadays, this combination can be performed at NNLO+PS accuracy, which means
keeping the NNLO accuracy of the fixed-order prediction without spoiling the structure of
the parton shower. Among the methods available in the literature, the MINNLOPS framework
plays an important role because it is a flexible and numerically efficient tool that requires
neither a CPU-demanding a-posteriori reweighting nor the introduction of an unphysical
merging scale for partitioning the phase space according to the jet multiplicity. The main goal
of this thesis is to present some cutting-edge results obtained using the MINNLOPS method
for key processes at the LHC.

Part I presents a review of the theoretical ingredients that are needed to construct a
NNLO+PS accurate event generator. We start with a detailed overview of both fixed-order
calculations and parton shower simulations in chapter 2, highlighting their strengths and
weaknesses and showing why they are complementary tools that can be combined consistently.
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The problem of the matching at NNLO+PS accuracy is presented in chapter 3: reaching
NNLO+PS accuracy is highly non-trivial and it first requires a deep understanding of the
matching procedure in a simpler case, namely NLO+PS. We thus present the basics of
the POWHEG method for the generation of NLO+PS accurate events in section 3.1. The
improvement of this framework into the MINLO and the MINLO′ methods is described in
section 3.2 where a merging of different jet multiplicities is performed without the introduction
of unphysical slicing parameters. The MINNLOPS method is finally presented in section 3.3.

The core of this thesis is Part II, where we present phenomenological results for relevant
processes at the LHC.

Chapter 4 is dedicated to precision Higgs physics and jet flavours. We discuss the im-
plementation of a MINNLOPS-based event generator within the POWHEG-BOX-RES and
POWHEG-BOX-V2 frameworks for the associated production of a Higgs and a vector boson
(pp→ VH, with V = W±, Z) with subsequent decay of the Higgs boson to a pair of bottom
quarks (H → bb̄). The vector boson V can decay to any possible leptonic final state. This
process is crucial for precision measurements in the Higgs sector as it yields the highest
sensitivity to the determination of the bottom Yukawa coupling. The matching with the
parton shower (PYTHIA8) is non-trivial because the starting scales of the emissions generated
by the shower are different in the production and decay stages of the Higgs boson. In our
phenomenological results for 13TeV LHC collisions, we compare our MINNLOPS results,
MINLO′ results and predictions obtained using PYTHIA8 for generating the decay of the
Higgs boson (formally, this is a LO decay). The outcome of our study is that the inclusion
of NNLO corrections is fundamental for improving our description of the process at hand,
as it induces a ∼5% increase in the normalization on top of the MINLO′ predictions and
it determines an important reduction of theoretical uncertainties. Moreover, employing
PYTHIA8 for generating the decay of the Higgs boson is not suitable for correctly describing
certain observables (e.g. the absolute difference in rapidity of the two reconstructed b-quarks
is highly distorted in the very forward region). We presented also a detailed analysis of
the impact of the jet-clustering algorithm that is used for the identification of b-jets. We
performed a comparison among the flavour-kT clustering algorithm, which is needed for an
infrared safe definition of jet flavour, and usual clustering algorithms that are insensitive to
the flavour of particles, namely the kT and anti-kT algorithms. Using the flavour-kT algorithm
leads to significant distortions of relevant distributions in certain kinematic regions of the
phase space, which led us to the conclusion that this algorithm should be used only when it is
applied also on the experimental side. This is usually not the case, as it is still too challenging
for a practical application. More progress is surely needed for defining a flavour of jets that is
both theoretically consistent and applicable to experimental measurements.

Chapter 5 presents an extension of the implementation of ZH production with H → bb̄
decay to the SMEFT. We include in our computation a subset of dimension-six operators that
are relevant up to NNLO accuracy in QCD for the process at hand. We thus follow the strategy
presented for the same calculation in the SM (in chapter 4) for implementing a Monte Carlo
event generator at NNLO+PS accuracy in the SMEFT. While for the production stage of the
Higgs boson the SMEFT effects we are considering are completely factorized, in the H → bb̄
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decay both factorizable and non-factorizable corrections appear. In the non-factorizable
contributions we encode corrections that are formally N3LO accurate, due to the weak
constraints on the corresponding Wilson coefficients. We study two main scenarios where
we separately switch on factorizable and non-factorizable effects. This is done considering
all coefficients equal to zero but one, the value of which is set according to its current
experimental bounds. Factorizable corrections determine only a shift in the normalisation
with respect to the SM, while non-factorizable contributions are more interesting because they
alter the shape of relevant distributions. In particular, we identified two kinematic observables
that are suitable for increasing our sensitivity to the considered SMEFT effects. The first one
is the invariant mass of the bb̄ system, which is reconstructed as the pair of b-jets whose
invariant mass is closest to the Higgs mass; the second distribution is the invariant mass of
the bb̄j system, which is reconstructed as the set of two b-jets and one additional jet whose
three-jet invariant mass is closest to the Higgs-boson mass. These two distributions receive
large SMEFT effects in the low-mass region. Moreover, these effects are dependent on the
exact jet definition because they change when varying the jet radius used in the clustering
procedure. This work is the starting point of a more challenging project in which NNLO+PS
accuracy in the SMEFT is reached for an enlarged set of operators, including e.g. non-trivial
insertions of pure EW operators.

In chapter 6 we present a strategy for targeting NNLO QCD and NLO EW accuracy matched
to parton showers, namely NNLOQCD+PS and NLOEW+PS accuracy. The combination of QCD
and EW corrections matched to PS is done a posteriori, at the level of differential distributions.
We present phenomenological results for W±Z production, but we stress that this strategy
is fully general. W±Z production represents a precision test for the SM because it provides
direct access to triple gauge couplings, thus probing the gauge structure of the EW sector.
We implemented a MINNLOPS-based event generator for reaching NNLOQCD+PS accuracy
within the POWHEG-BOX-RES framework. Moreover, we implemented a POWHEG code for
producing NLOEW+PS accurate events, again within POWHEG-BOX-RES. The matching with
the parton shower is not trivial because QCD and QED emissions should respect different
constraints according to the emissions already present at Les Houches Event level. We propose
seven different combination schemes that differ only by higher-order corrections. NNLO
QCD computations matched with both QCD and QED showers provide a good description of
the bulk of the cross section, while EW effects become increasingly dominant in the tails of
kinematic distributions. This project is a first step towards the possibility of implementing a
single MC event generator that reaches the targeted accuracy in one calculation. Concretely,
we would like to extend the MINNLOPS method by including NLO EW effects. This extension
is extremely challenging as it requires a deep understanding of the IR structure of mixed
QCD-EW contributions in the MINNLOPS formalism.

The results presented in this thesis are the state of the art for precision phenomenology.
Reaching NNLO+PS accuracy is nowadays mandatory for a correct understanding of LHC
data and the MINNLOPS method has revealed to be a powerful and flexible tool for targeting
this accuracy. In view of the imminent High Luminosity upgrade, we believe that our results
and developed tools will be very valuable for the high-energy community, especially for
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current and future experimental analyses. In light of this, our MC event generators will be
made publicly available on the POWHEG-BOX webpage.
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A. Differential distributions for W−H
production with H → bb̄ decay at
NNLO+PS in the SM

In this section we present differential distributions for pp → W−H → e−ν̄ebb̄ analogous to
the results presented in section 4.4.3. We refrain from commenting these results further as the
same conclusions that were discussed for W+H production still hold.
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Figure A.1.: Differential distributions for e−ν̄ebb̄ production with fiducial-YR cuts (table 4.5).
See text for more details.
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Figure A.2.: Differential distributions for e−ν̄ebb̄ production with fiducial-YR cuts (table 4.5).
See text for more details.
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[61] W. Bizoń, E. Re and G. Zanderighi, NNLOPS description of the H → bb decay with
MiNLO, JHEP 06 (2020) 006, [1912.09982].

[62] S. Alioli, C. W. Bauer, C. Berggren, F. J. Tackmann, J. R. Walsh and S. Zuberi, Matching
Fully Differential NNLO Calculations and Parton Showers, JHEP 06 (2014) 089, [1311.0286].

[63] S. Höche, Y. Li and S. Prestel, Drell-Yan lepton pair production at NNLO QCD with parton
showers, Phys. Rev. D 91 (2015) 074015, [1405.3607].

[64] S. Höche, Y. Li and S. Prestel, Higgs-boson production through gluon fusion at NNLO QCD
with parton showers, Phys. Rev. D90 (2014) 054011, [1407.3773].

[65] P. F. Monni, E. Re and M. Wiesemann, MiNNLOPS: optimizing 2→ 1 hadronic processes,
Eur. Phys. J. C 80 (2020) 1075, [2006.04133].

[66] D. Lombardi, M. Wiesemann and G. Zanderighi, Advancing MiNNLOPS to diboson
processes: Zγ production at NNLO+PS, JHEP 06 (2021) , [2010.10478].

[67] J. Mazzitelli, P. F. Monni, P. Nason, E. Re, M. Wiesemann and G. Zanderighi,
Next-to-Next-to-Leading Order Event Generation for Top-Quark Pair Production, Phys. Rev.
Lett. 127 (2021) 062001, [2012.14267].

[68] D. Lombardi, M. Wiesemann and G. Zanderighi, Anomalous couplings in Zγ events at
NNLO+PS and improving νν¯γ backgrounds in dark-matter searches, Phys. Lett. B 824
(2022) 136846, [2108.11315].

[69] D. Lombardi, M. Wiesemann and G. Zanderighi, W+W− production at NNLO+PS with
MINNLOPS, JHEP 11 (2021) 230, [2103.12077].

[70] L. Buonocore, G. Koole, D. Lombardi, L. Rottoli, M. Wiesemann and G. Zanderighi, ZZ
production at nNNLO+PS with MiNNLOPS, JHEP 01 (2022) 072, [2108.05337].

[71] J. Mazzitelli, P. F. Monni, P. Nason, E. Re, M. Wiesemann and G. Zanderighi, Top-pair
production at the LHC with MINNLOPS, JHEP 04 (2022) 079, [2112.12135].

[72] J. Mazzitelli, A. Ratti, M. Wiesemann and G. Zanderighi, B-hadron production at the LHC
from bottom-quark pair production at NNLO+PS, 2302.01645.

132

http://dx.doi.org/10.1007/JHEP09(2014)134
http://dx.doi.org/10.1007/JHEP09(2014)134
https://arxiv.org/abs/1407.2940
http://dx.doi.org/10.1007/JHEP06(2016)154
https://arxiv.org/abs/1603.01620
http://dx.doi.org/10.1007/JHEP11(2018)157
https://arxiv.org/abs/1804.08141
http://dx.doi.org/10.1007/JHEP12(2018)121
https://arxiv.org/abs/1805.09857
http://dx.doi.org/10.1007/JHEP06(2020)006
https://arxiv.org/abs/1912.09982
http://dx.doi.org/10.1007/JHEP06(2014)089
https://arxiv.org/abs/1311.0286
http://dx.doi.org/10.1103/PhysRevD.91.074015
https://arxiv.org/abs/1405.3607
http://dx.doi.org/10.1103/PhysRevD.90.054011
https://arxiv.org/abs/1407.3773
http://dx.doi.org/10.1140/epjc/s10052-020-08658-5
https://arxiv.org/abs/2006.04133
http://dx.doi.org/10.1007/JHEP06(2021)095
https://arxiv.org/abs/2010.10478
http://dx.doi.org/10.1103/PhysRevLett.127.062001
http://dx.doi.org/10.1103/PhysRevLett.127.062001
https://arxiv.org/abs/2012.14267
http://dx.doi.org/10.1016/j.physletb.2021.136846
http://dx.doi.org/10.1016/j.physletb.2021.136846
https://arxiv.org/abs/2108.11315
http://dx.doi.org/10.1007/JHEP11(2021)230
https://arxiv.org/abs/2103.12077
http://dx.doi.org/10.1007/JHEP01(2022)072
https://arxiv.org/abs/2108.05337
http://dx.doi.org/10.1007/JHEP04(2022)079
https://arxiv.org/abs/2112.12135
https://arxiv.org/abs/2302.01645


Bibliography

[73] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr
and G. Watt, LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C75
(2015) 132, [1412.7420].

[74] G. P. Salam and J. Rojo, A Higher Order Perturbative Parton Evolution Toolkit (HOPPET),
Comput. Phys. Commun. 180 (2009) 120–156, [0804.3755].

[75] Particle Data Group collaboration, R. L. Workman et al., Review of Particle Physics,
PTEP 2022 (2022) 083C01.

[76] J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new
Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001, [0802.2470].

[77] G. Luisoni, P. Nason, C. Oleari and F. Tramontano, HW±/HZ + 0 and 1 jet at NLO with
the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP 10 (2013)
083, [1306.2542].

[78] F. Granata, J. M. Lindert, C. Oleari and S. Pozzorini, NLO QCD+EW predictions for HV
and HV +jet production including parton-shower effects, JHEP 09 (2017) 012, [1706.03522].

[79] B. Hespel, F. Maltoni and E. Vryonidou, Higgs and Z boson associated production via gluon
fusion in the SM and the 2HDM, JHEP 06 (2015) 065, [1503.01656].

[80] D. Goncalves, F. Krauss, S. Kuttimalai and P. Maierhöfer, Higgs-Strahlung: Merging the
NLO Drell-Yan and Loop-Induced 0+1 jet Multiplicities, Phys. Rev. D 92 (2015) 073006,
[1509.01597].

[81] S. Alioli, A. Broggio, S. Kallweit, M. A. Lim and L. Rottoli, Higgsstrahlung at
NNLL’+NNLO matched to parton showers in GENEVA, Phys. Rev. D 100 (2019) 096016,
[1909.02026].

[82] G. Ferrera, G. Somogyi and F. Tramontano, Associated production of a Higgs boson
decaying into bottom quarks at the LHC in full NNLO QCD, Phys. Lett. B 780 (2018)
346–351, [1705.10304].

[83] C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs
boson to bottom-quarks at NNLO in QCD, JHEP 03 (2012) 035, [1110.2368].

[84] V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano and Z. Trocsanyi, Higgs boson decay
into b-quarks at NNLO accuracy, JHEP 04 (2015) 036, [1501.07226].

[85] S. Alioli, A. Broggio, A. Gavardi, S. Kallweit, M. A. Lim, R. Nagar, D. Napoletano and
L. Rottoli, Resummed predictions for hadronic Higgs boson decays, JHEP 04 (2021) 254,
[2009.13533].

[86] Y. Hu, C. Sun, X.-M. Shen and J. Gao, Hadronic decays of Higgs boson at NNLO matched
with parton shower, JHEP 08 (2021) 122, [2101.08916].

133

http://dx.doi.org/10.1140/epjc/s10052-015-3318-8
http://dx.doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
http://dx.doi.org/10.1016/j.cpc.2008.08.010
https://arxiv.org/abs/0804.3755
http://dx.doi.org/10.1093/ptep/ptac097
http://dx.doi.org/10.1103/PhysRevLett.100.242001
https://arxiv.org/abs/0802.2470
http://dx.doi.org/10.1007/JHEP10(2013)083
http://dx.doi.org/10.1007/JHEP10(2013)083
https://arxiv.org/abs/1306.2542
http://dx.doi.org/10.1007/JHEP09(2017)012
https://arxiv.org/abs/1706.03522
http://dx.doi.org/10.1007/JHEP06(2015)065
https://arxiv.org/abs/1503.01656
http://dx.doi.org/10.1103/PhysRevD.92.073006
https://arxiv.org/abs/1509.01597
http://dx.doi.org/10.1103/PhysRevD.100.096016
https://arxiv.org/abs/1909.02026
http://dx.doi.org/10.1016/j.physletb.2018.03.021
http://dx.doi.org/10.1016/j.physletb.2018.03.021
https://arxiv.org/abs/1705.10304
http://dx.doi.org/10.1007/JHEP03(2012)035
https://arxiv.org/abs/1110.2368
http://dx.doi.org/10.1007/JHEP04(2015)036
https://arxiv.org/abs/1501.07226
http://dx.doi.org/10.1007/JHEP04(2021)254
https://arxiv.org/abs/2009.13533
http://dx.doi.org/10.1007/JHEP08(2021)122
https://arxiv.org/abs/2101.08916


Bibliography

[87] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel,
C. O. Rasmussen and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys.
Commun. 191 (2015) 159–177, [1410.3012].

[88] T. Ježo and P. Nason, On the Treatment of Resonances in Next-to-Leading Order Calculations
Matched to a Parton Shower, JHEP 12 (2015) 065, [1509.09071].

[89] O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-Quark Mediated Effects in
Hadronic Higgs-Strahlung, Eur. Phys. J. C 72 (2012) 1868, [1111.0761].

[90] J. M. Campbell, R. Ellis, R. Frederix, P. Nason, C. Oleari and C. Williams, NLO Higgs
Boson Production Plus One and Two Jets Using the POWHEG BOX, MadGraph4 and MCFM,
JHEP 07 (2012) 092, [1202.5475].

[91] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L.
Rainwater and T. Stelzer, MadGraph/MadEvent v4: The New Web Generation, JHEP 09
(2007) 028, [0706.2334].

[92] F. Granata, Electroweak and strong next-to-leading-order corrections to HV and HVj
production at hadron colliders. PhD thesis, Milan Bicocca U., 2017.

[93] T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput.
Phys. Commun. 141 (2001) 296–312, [hep-ph/0107173].

[94] P. Nason and C. Oleari, Generation cuts and Born suppression in POWHEG, 1303.3922.

[95] Y. L. Dokshitzer, G. D. Leder, S. Moretti and B. R. Webber, Better jet clustering algorithms,
JHEP 08 (1997) 001, [hep-ph/9707323].

[96] S. Bentvelsen and I. Meyer, The Cambridge jet algorithm: Features and applications, Eur.
Phys. J. C 4 (1998) 623–629, [hep-ph/9803322].

[97] J. M. Campbell, R. K. Ellis, P. Nason and E. Re, Top-Pair Production and Decay at NLO
Matched with Parton Showers, JHEP 04 (2015) 114, [1412.1828].

[98] R. Boughezal, J. M. Campbell, R. K. Ellis, C. Focke, W. Giele, X. Liu, F. Petriello and
C. Williams, Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7,
[1605.08011].

[99] A. Banfi, G. P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C
47 (2006) 113–124, [hep-ph/0601139].

[100] ATLAS collaboration, G. Aad et al., Measurement of the associated production of a Higgs
boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions
at
√

s = 13 TeV with the ATLAS detector, Phys. Lett. B 816 (2021) 136204, [2008.02508].

[101] NNPDF collaboration, R. D. Ball et al., Parton distributions from high-precision collider
data, Eur. Phys. J. C 77 (2017) 663, [1706.00428].

134

http://dx.doi.org/10.1016/j.cpc.2015.01.024
http://dx.doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
http://dx.doi.org/10.1007/JHEP12(2015)065
https://arxiv.org/abs/1509.09071
http://dx.doi.org/10.1140/epjc/s10052-012-1868-6
https://arxiv.org/abs/1111.0761
http://dx.doi.org/10.1007/JHEP07(2012)092
https://arxiv.org/abs/1202.5475
http://dx.doi.org/10.1088/1126-6708/2007/09/028
http://dx.doi.org/10.1088/1126-6708/2007/09/028
https://arxiv.org/abs/0706.2334
http://dx.doi.org/10.1016/S0010-4655(01)00411-8
http://dx.doi.org/10.1016/S0010-4655(01)00411-8
https://arxiv.org/abs/hep-ph/0107173
https://arxiv.org/abs/1303.3922
http://dx.doi.org/10.1088/1126-6708/1997/08/001
https://arxiv.org/abs/hep-ph/9707323
http://dx.doi.org/10.1007/s100520050232
http://dx.doi.org/10.1007/s100520050232
https://arxiv.org/abs/hep-ph/9803322
http://dx.doi.org/10.1007/JHEP04(2015)114
https://arxiv.org/abs/1412.1828
http://dx.doi.org/10.1140/epjc/s10052-016-4558-y
https://arxiv.org/abs/1605.08011
http://dx.doi.org/10.1140/epjc/s2006-02552-4
http://dx.doi.org/10.1140/epjc/s2006-02552-4
https://arxiv.org/abs/hep-ph/0601139
http://dx.doi.org/10.1016/j.physletb.2021.136204
https://arxiv.org/abs/2008.02508
http://dx.doi.org/10.1140/epjc/s10052-017-5199-5
https://arxiv.org/abs/1706.00428


Bibliography

[102] P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys.
J. C 74 (2014) 3024, [1404.5630].

[103] LHC Higgs Cross Section Working Group collaboration, D. de Florian et al.,
Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,
1610.07922.

[104] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)
063, [0802.1189].

[105] S. Mrenna and P. Skands, Automated Parton-Shower Variations in Pythia 8, Phys. Rev. D 94
(2016) 074005, [1605.08352].

[106] ATLAS collaboration, M. Aaboud et al., Observation of H → bb̄ decays and VH production
with the ATLAS detector, Phys. Lett. B 786 (2018) 59–86, [1808.08238].

[107] CMS collaboration, A. M. Sirunyan et al., Observation of Higgs boson decay to bottom
quarks, Phys. Rev. Lett. 121 (2018) 121801, [1808.08242].

[108] S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock and B. R. Webber, New clustering
algorithm for multi - jet cross-sections in e+ e- annihilation, Phys. Lett. B 269 (1991) 432–438.

[109] S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Longitudinally invariant Kt

clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187–224.

[110] A. Banfi, G. P. Salam and G. Zanderighi, Accurate QCD predictions for heavy-quark jets at
the Tevatron and LHC, JHEP 07 (2007) 026, [0704.2999].

[111] Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric
neutrinos, Phys. Rev. Lett. 81 (1998) 1562–1567, [hep-ex/9807003].

[112] SNO collaboration, Q. R. Ahmad et al., Direct evidence for neutrino flavor transformation
from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89
(2002) 011301, [nucl-ex/0204008].

[113] Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters,
Astron. Astrophys. 641 (2020) A6, [1807.06209].

[114] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak
Interaction, Prog. Theor. Phys. 49 (1973) 652–657.

[115] T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D 11
(1975) 2856.

[116] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor
Conservation, Nucl. Phys. B 268 (1986) 621–653.

[117] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the
Standard Model Lagrangian, JHEP 10 (2010) 085, [1008.4884].

135

http://dx.doi.org/10.1140/epjc/s10052-014-3024-y
http://dx.doi.org/10.1140/epjc/s10052-014-3024-y
https://arxiv.org/abs/1404.5630
https://arxiv.org/abs/1610.07922
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
http://dx.doi.org/10.1103/PhysRevD.94.074005
http://dx.doi.org/10.1103/PhysRevD.94.074005
https://arxiv.org/abs/1605.08352
http://dx.doi.org/10.1016/j.physletb.2018.09.013
https://arxiv.org/abs/1808.08238
http://dx.doi.org/10.1103/PhysRevLett.121.121801
https://arxiv.org/abs/1808.08242
http://dx.doi.org/10.1016/0370-2693(91)90196-W
http://dx.doi.org/10.1016/0550-3213(93)90166-M
http://dx.doi.org/10.1088/1126-6708/2007/07/026
https://arxiv.org/abs/0704.2999
http://dx.doi.org/10.1103/PhysRevLett.81.1562
https://arxiv.org/abs/hep-ex/9807003
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://dx.doi.org/10.1103/PhysRevLett.89.011301
https://arxiv.org/abs/nucl-ex/0204008
http://dx.doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevD.11.2856
http://dx.doi.org/10.1103/PhysRevD.11.2856
http://dx.doi.org/10.1016/0550-3213(86)90262-2
http://dx.doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884


Bibliography

[118] I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, Phys. Rept. 793
(2019) 1–98, [1706.08945].

[119] K. Mimasu, V. Sanz and C. Williams, Higher Order QCD predictions for Associated Higgs
production with anomalous couplings to gauge bosons, JHEP 08 (2016) 039, [1512.02572].

[120] C. Degrande, B. Fuks, K. Mawatari, K. Mimasu and V. Sanz, Electroweak Higgs boson
production in the standard model effective field theory beyond leading order in QCD, Eur. Phys.
J. C 77 (2017) 262, [1609.04833].

[121] R. Gauld, B. D. Pecjak and D. J. Scott, One-loop corrections to h→ bb̄ and h→ ττ̄ decays
in the Standard Model Dimension-6 EFT: four-fermion operators and the large-mt limit, JHEP
05 (2016) 080, [1512.02508].

[122] R. Gauld, B. D. Pecjak and D. J. Scott, QCD radiative corrections for h→ bb̄ in the
Standard Model Dimension-6 EFT, Phys. Rev. D 94 (2016) 074045, [1607.06354].

[123] J. M. Cullen, B. D. Pecjak and D. J. Scott, NLO corrections to h→ bb̄ decay in SMEFT,
JHEP 08 (2019) 173, [1904.06358].

[124] J. M. Cullen and B. D. Pecjak, Higgs decay to fermion pairs at NLO in SMEFT, JHEP 11
(2020) 079, [2007.15238].
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