Lehrstuhl für Energiesysteme Fakultät für Maschinenwesen Technische Universität München

Influence of Additive Sintering on Fine Particle Formation during **Biomass Pulverised-Fuel Combustion**

NINI LI ININIERCITU

Richard Nowak Delgado

Session: Alternative Fuels

Algarve, 13th European Conference on Industrial Furnaces and Boilers, May 22th 2022

Outline

- 1. Motivation Why Burning Biomass?
- 2. Introduction
- 3. Additives Coal Fly Ash and Kaolin
- 4. Kaolin Sintering Experiments in Furnace Test rig
- 5. Pulverised-Fuel Combustion of Biomass with Additives at BoCTeR
- 6. Summary
- 7. Future Work

1. Motivation – Why Burning Biomass?

- "CO₂-neutral" fuel for heat and power supply.
- Negtive Emissions possible using BECCS.
- Possibility to replace hard coal in chp plants (retrofitting). ٠
- Which fuels? Wood, forestal residues, bark, straw and other agricultural residues. •
- Advanatage of pulverized-fuel combustion are higher steam parameters and higher flexibility regarding load changes compared to fluidized-bed and grate firing.

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

2. Introduction Fine Particles \Rightarrow Deposits (slagging/fouling) \Rightarrow Corrosion

- High alkali concentrations cause high fine particle concentrations.
- Large shares of alkalies and chlorine are causing ash-related challenges.
- Decreased efficiency due to deposits and higher corrosion rates.

Adapted from: van Loo, Kaltschmitt and Frandsen

Adapted from Balan et al.

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

3. Additives – Coal Fly Ash and Kaolin

- Aluminium Silicate-based additives used for capturing gaseous Alkali species. •
- Reduced number of fine particles and change in chemistry of fine particles. •
- Capturing reactions of Alkalis: •
- $AI_2O_3 \cdot 2 \operatorname{SiO}_2(s) + 2KCI + 2H_2O(g) \rightarrow K_2O \cdot AI_2O3 \cdot 2 \operatorname{SiO}_2(s) + 2 \operatorname{HCI}(g).$
- The use of Coal fly ash as additive is already state of the art at industrial scale • (Ørsted, Studstrup and Avedøre)
- Two Phase changes of Kaolinite: 450°C to Metakaolinite and from 1100°C • change to Mullite.
- Sintering effects reduces the active surface area of the additives for capturing ٠ alkali species.

entrained-flow conditions

Adapted from Kerscher et. al

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

Measured BET Surface Area of Kaolin under

Additives – Coal Fly Ash and Kaolin

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

ТШ

Fly Ash	Kaolin
1.19	1.15
1.29	1.64
25.56	39.14
51.12	40.18
0.75	0.02
1.12	2.80
1.31	0.18
4.17	1.82
0.01	0.01
0.01	0.06

4. Kaolin Sintering Experiments in Furnace Test rig

- Sintering of kaolin powder measured by BET analysis with nitrogen (3 g) •
- Experiments with temperatures 980 1400 °C •

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

Sample

5. Pulverised-Fuel Combustion of Biomass with Additives at BoCTeR (Biomass Combustion Test Rig)

- Height of 4 m •
- Inner diameter of 70 cm •
- $\lambda = 1.15 1.25$
- Air-cooled Inner Walls
- 120 kW thermal Input •
- Top-Down Swirl burner
- 8 Port levels with Access from four sites •
- 50 cm axial distance between Port levels •

Bag Filter

3D-Catia Model of the BoCTeR

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

Temperature Distribution in Combustion Chamber measured by

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

CFD Simulation of Temperature Distribution of pulverized-fuel combustion of bark, adapted from Niemelä 9

ТЛП

Gas flame without and with Kaolin Injection at Port Level 8

Kaolin Injection via Tube

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

Surface Area Development of Kaolin in Natural Gas Flame

- Collection funnel with cyclone and ejector installed at ٠ port level 1
- Collection of Kaolin samples during Injection through • Burner and Port Levels 6, 7 and 8
- Clearly Sintering effects visible 30 25 BET surface are in m²/g 0 5 0 **—**1000°C **—**— 1200°C 5 0 0 0.5 1.5 2 1 Residence time in s

•

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

11

Beech Wood Properties

Analysis	Unit	Beech Wood
Moisture	[wt% ar]	6.01
Ash Content	[wt% ar]	1.01
Volatiles	[wt% ar]	78.61
LHV	[MJ/kg]	17.15
C	[wt% ar]	49.44
Н	[wt% ar]	5.39
Ν	[wt% ar]	0.11
0	[wt% ar]	45.00
S	[wt% ar]	0.07
CI	[wt% ar]	0.01
Al ₂ O ₃	[wt% in ash]	2.16
CaO	[wt% in ash]	36.39
K ₂ O	[wt% in ash]	17.94
Na ₂ O	[wt% in ash]	0.97
SO ₃	[wt% in ash]	3.32
P ₂ O ₅	[wt% in ash]	2.66
SiO ₂	[wt% in ash]	15.40

d ₁₀	12.4 µm
d ₅₀	43.6 µm
d ₉₀	153.9 µm

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

12

Transition of Natural Gas Flame to Beech wood Flame (120 kW)

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

Fine Particle Measurements with ELPI

ELPI (Electrical Low Pressure Impactor)

- Extraction of Flue gas with a sampling probe ٠
- Removal of large fly ash particles > 10 µm with heated cyclone ٠
- Dilution with Fine Particle Sampler System ٠
- Classification and Detection of Particles in the Impactor Cascade of ELPI ٠
- 12 Stages from 0.007 6 µm aerodynamic diameter ٠
- Online Measurement possible ٠

Wall

Heated

cyclone

Vacuum

pump

Flue gas

Flue gas sampling probe

350 mm

Impactor working principle adapted from Hinds et al.

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

Fine Particle Sampling System at BoCTeR

Fine Particle Measurements with ELPI – Variation of Kaolin Injection Port

- Reference Case without Kaolin
- 1 wt.% Kaolin based on Fuel (dry/dry)
- Reduction of PM1 with minimum at port level 6
- Entrainment of kaolin particles detected by ELPI

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

6. Summary

- Kaolin as additive looses active surface area due to sintering in the boiler.
- Temperature and residence time are the important parameters for sintering. •
- Experiments showed that the kaolin injection position important for the alkali capture efficiency. •
- Potential for saving kaolin as additive when using the optimum temperature window for injection. •

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

7. Future Work

- Evaluation of Experiments with Injection of Kaolin via the Swirl burner under same conditions.
- Validation of results in larger combustion units necessary.

Thank you for the attention!

Supported by the

"Dobeneck-Technology Foundation"

Additional Slides

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

Swirl Burner Design

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

Injection System

- Gravimetric Dobble screwfeeder for dosage of kaolin powder
- Injection tube which is tangentially bent into swirl direction of burner ٠

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

Source: Coperion K-Tron 21

Venturi Zerstäuber

13th INFUB 2022 | 22.04.2022 | Chair for Energy Systems | Richard Nowak Delgado

