

Implementation of Langmuir-Hinshelwood Kinetics in CFD Modeling of Entrained Flow Gasification

Sebastian Wilhelm

Technische Universität München

TUM School of Engineering and Design

Chair of Energy Systems

Freiberg, 20.09.2022

Uhrenturm der TVM

Structure

Entrained Flow Gasification at LES

CFD-Modeling of Entrained Flow Gasification

Implementation of Langmuir-Hinshelwood Kinetics

Results: Comparison with nth-order Kinetics

Summary and Outlook

пп

Modeling Approach

- Entrained flow gasification conditions:
 - Temperature: 1200-1600 °C
 - Pressure: 1-40 bar
 - Fuel particle size: <300µm
- Reduction of the gasification process on the following main steps:

Model Overview

- <u>Software</u>: ANSYS Fluent, stationary RANS equations
- <u>Modelling approach</u>: DPM (discrete phase model): Eulerian-Lagrangian approach
 - \rightarrow Simulation of individual fuel particels as spheres
- <u>Pyrolysis:</u> SR-/TCR kinetic and Y_{vol}(T,p) from measures
- <u>Gas-phase reactions:</u> Jones-Lindstedt-Mechanism
- Char reactions (O₂/CO₂/H₂O): User-Defined-Function
 - Nth-order approach/ LH-approach with saturation and product inhibition
 - Effectiveness factor to account for pore diffusion limitations
 - Thermal annealing submodel
 - Submodel for char structure development
- Solution process by alternating calculation of the gas and solid phase

Source: Stefan DeYoung

Chair of Energy Systems | International Freiberg Conference | Sebastian Wilhelm

Char Reaction Kinetics: Regime Dependent Reaction Rate

Char Reaction Kinetics: Intrinsic Reaction Rate

Nth-order Approach

Intrinsic reaction rate:

 $r_{int,i} = \mathbf{k} \cdot \mathbf{p}_i^n = \mathbf{k}_0 e^{-\frac{E_A}{RT}} \cdot \mathbf{p}_i^n$

- > 3 kinetic parameters (orange)
- > Partial pressure of reactant gas p_i

Langmuir-Hinshelwood Kinetics

Intrinsic reaction rate:

$$r_{int,i} = \frac{k_1 \cdot p_i}{1 + k_a \cdot p_i + k_b \cdot p_j} = \frac{k_{0,1}e^{-\frac{E_{A,1}}{RT}} \cdot p_i}{1 + k_{0,a}e^{-\frac{E_{A,a}}{RT}} \cdot p_i + k_{0,b}e^{-\frac{E_{A,b}}{RT}} \cdot p_j}$$

- 6 kinetic parameters (orange)
- > Partial pressure of reactant gas p_i and product gas p_j
- Additional effects: Saturation and product gas inhibition

Observed reaction rate: $r_{obs,i} = \eta \cdot r_{int,i}(p_{s,i})$ Partial pressure at particle surface \rightarrow film diffusion limitation Effectiveness factor \rightarrow pore diffusion limitation

Char Reaction Kinetics: Pore Diffusion

- > Thiele Modulus: $\phi_i = f(p_{s,i})$ Accounts for the concentration gradient inside the particle with pore diffusion
- Numerical calculation of p_{s,i} with a mass balance at particle surface:

reaction rate $(p_{s,i}) = diffusion rate (p_{s,i})$

- ➤ Thiele Modulus: $\phi_i = f(p_{s,i}, p_{s,j})$
- ➢ Calculation of $p_{s,j}$
 - Level 1: $p_{s,j} = p_j$
 - Level 2: $p_{s,j}$ with film diffusion
 - Level 3: $p_{s,j}$ with film diffusion and concentration gradient inside the particle (e.g. with effectiveness factor for inhibition)

Intrinsic Reaction Kinetics of Torrefied Wood

Influence of operating conditions for CO₂ reaction

CFD Simulation of PiTER

Pressurized High Temperature Entrained Flow Reactor

Boundary	Conditions
----------	------------

Fuel	Torrefied wood
Massflow	1 kg/s
Particle diameter	$10 - 300 \mu m$
Wall temperature	1200 – 1600 °C
Pressure	5/ 10/ 20 bar
O/C ratio	1 (molar)
Residence time	2,4 <i>s</i>
O ₂ reaction	nth order
CO_2 , H_2O reaction	Langmuir Hinshelwood

PiTER Simulation Results I

1200 °C with with pressure variation

PiTER Simulation Results II

1400 °C with pressure variation

Overall and Char Conversion at 1400°C and 10 bar

PiTER Simulation Results III

Relative char conversion with O_2 , CO_2 , H_2O

Summary and Outlook

- Successful implementation of Langmuir-Hinshelwood Kinectics to describe char reaction rates with CO₂ and H₂O in an CFD model for entrained flow gasification
- Kinetic studies and CFD-model results on a drop tube entrained flow reactor are showing a significant deviation of reaction kinetics over a wide range of partial pressures and temperatures
- Overall good prediction of measured char conversion and overall conversion
- > Significant increase in relative char conversion of the CO_2 reaction

Next steps:

- > Implementing a more accurate calculation of the partial pressure on the particle surface of the product gas
- > CFD simulations on different reactor models from lab scale to industrial scale and different feedstocks
- > Further model validation with experimental results of a lab-scale entrained flow reactor

Feel free to get in touch!

Sebastian Wilhelm Chair of Energy Systems Technical University of Munich sebastian.g.wilhelm@tum.de

