

(Bio)Process Engineering - a Key to Sustainable Development Decontamination of polluted soils: a gas fermentation model for SynFuel production and techno-economic estimation

Marcel Dossow, Philipp Leuter, Hartmut Spliethoff, Sebastian Fendt

Technical University of Munich School of Engineering and Design Chair of Energy Systems

Aachen, 14th September 2022

Agenda

Project GOLD

Project ReGasFerm

Modelling Clean SynFuel Production

Techno-Economic Estimation

Summary and Outlook

Contaminated soils and phytoremediation Motivation and GOLD project Idea

Degraded organic pollutants

Project GOLD

G

crOps on contaminated LanDs and clean SynFuel production Field trials at seven sites:

- Metaleurop Nord (France)
- Bologna (Italy)
- Silesia (Poland)
- Lavreotiki and Kozani(Greece)
- New Delhi (India)
- Hunan (China)

Soil contamination at EU field sites

- Greece, Mining and metallurgical site
- Greece, Lignite miningsite

Bridging the gap between phytoremediation solutions on Growing energy

- Italy, Long time discharging and deposition of wastes
 France, metallurgical activities (lead and zinc smelter)
- Poland, metalliferous waste dump

Project GOLD Conversion processes for clean SynFuel production

Reaction engineering analysis of acetogens in lab-scale bioreactors

(stirred-tank reactor) to produce biofuels like ethanol and butanol

- Identification of critical impurities and concentrations
- Investigation of conversion of synthesis gas with selected MOs
- Establishment of a (continuous) **lab-scale gas fermentation process** at welldefined reaction conditions for **efficient production of biofuels from syngas** Providing process-engineering data for **further scale-up**

Syngas fermentation lab @TUM-CBE

Project ReGasFerm Utilization of biogenic residues to produce SynFuel

Motivation:

ReGas Ferm

Continuous production of mixed alcohols from purified synthesis gases produced via entrained flow gasification of biogenic residues with oxygen

Research focus:

- Gasification behavior of biogenic residues
- Formation and degradation of trace substances
- Syngas purification system for the fermentation process
- Trace analysis of impurities in purified synthesis gases

Project:

- Funded by BMBF (PtJ)
- Project partners: TU-CBE, Florafuel AG

Conversion process for clean liquid biofuel production Process modelling approach

· Experimental data used to validate the steps among the process chain

Process modelling approach

Syngas fermentation thermodynamic reactor model

Process modelling results Carbon flow diagram and carbon efficiency **Carbon efficiency** in product Pretreatment 16% 100% R captured 84% Raw biomass input: 3.3t_{drv}/h EF Product yield: 0.16t/ tBiomass.drv Gasification 0 Modular Gas Syngas Acetic Acid (454kg/h): 13% Fermentation Ethanol (53kg/h): 2% Biomass Cleaning 16% Butyric Acid (12kg/h): 0.5% $\Box CO_2$ 70% 70% 1-Butanol (6kg/h): 0.5% 30% 30% Syngas 34% **Products** 50%

Techno-economic estimation Total Capital Investment (TCI)

Scaling-based CAPEX study estimate

$$I_i = I_{Basis,i} \cdot \left(\frac{CEPCI_{2019}}{CEPCI_{Basis}}\right) \cdot W_{\$} \cdot \left(\frac{C_i}{C_{Basis,i}}\right)^d$$

balance of the capital costs are estimated by applying multiplying factors based on similar systems (<u>Peters</u>). Including Fixed Capital Investment (FCI) and Working Capital Investment (WC)

Techno-economic estimation Total Capital Investment (TCI)

Scaling-based CAPEX study estimate

$$I_{i} = I_{Basis,i} \cdot \left(\frac{CEPCI_{2019}}{CEPCI_{Basis}}\right) \cdot W_{\$} \cdot \left(\frac{C_{i}}{C_{Basis,i}}\right)^{c}$$

balance of the capital costs are estimated by applying multiplying factors based on similar systems (<u>Peters</u>). Including Fixed Capital Investment (FCI) and Working Capital Investment (WC)

Total Capital Investment (TCI) : 42.3Mio€ (±30%)

Techno-economic estimation Total Production Cost (TPC)

Some base case assumptions:

	Rate or quantity	Cost per rate or quantity	
Raw materials		3.29€/t	
Operating Labor	20Persona	6760€/month	
Operating Supervision	15% of opera	15% of operating Labor	
Electricity	280kW	0.31€/kWh	
Wastewater	3.15m³/hr	1.56€/Nm³	
Water, quenching	1.58m³/hr	1.77€/Nm³	
Water, fermentation	1.18m³/hr	1.77€/Nm³	
Water, cooling	21.8m³/hr	1.77€/Nm³	
Maintenance and repairs	5% of fixed	5% of fixed capital invest	
Operating supplies	15% of main	15% of maintenance and repairs	
Laboratory charges	15% of opera	15% of operating labor	
Royalties	3% of total	3% of total product cost	
Adsorbent Packings	70kg/h	5€/kg	
Nutrient Solution	1.8m³/hr	0.276€/I	
Depreciation period: 7.5 years			

(annuity and linear depreciation)

DECHEMA 2022 | TUM Chair of Energy Systems | Dossow

Techno-economic estimation **Total Production Cost (TPC)**

Some base case assumptions:

	Rate or quantity	Cost per rate or quantity	
Raw materials		3.29€/t	
Operating Labor	20Personen	6760€/month	
Operating Supervision	15% of operating Labor		
Electricity	280kW	0.31€/kWh	
Waste water	3.15m³/hr	1.56€/Nm³	
Water, quenching	1.58m³/hr	1.77€/Nm³	
Water, fermentation	1.18m³/hr	1.77€/Nm³	
Water, cooling	21.8m³/hr	1.77€/Nm³	
Maintenance and repairs	5% of fixed	capital invest	
Operating supplies	15% of main	tenace and repairs	
Laboratory charges	15% of operating labor		
Royalties	3% of total product cost		
Adsorbent Packings	70kg/h	5€/kg	
Nutrient Solution	1.8m ³ /hr	0.276€/I	
Depreciation period: 7.5 years			

(annuity and linear depreciation)

- Plant overhead costs
- Administrative expenses
- Distribution and marketing
- Costs

Techno-economic estimation Total Production Cost (TPC)

Techno-economic estimation Sensitivity analysis Ethanol TPC

Base case assumptions:

3.29€/t
3%
1.77€/Nm³
0.31€/kWh

Interest rate, Biomass, Water and electricity cost only have a minor influence on TPC

Conclusion

Conversion process for clean liquid biofuel production

«·»

Process modeling shows huge potential of novel gasification + syngas fermentation process

Product yield: 0.16t/ t_{Biomass,dry}

High selectivity towards acetic acid & EtOH

- Total Capital Investment for 15MW_{th} BtL plant: ~40Mio€
 - Gasifier makes up half of the capital invest
- About half of the final product cost from variable costs
 - Biggest contributors to variable costs: Labor, Nutrient solution make-up and adsorbent packings
 - Changes in Interest rate, Biomass, water and electricity cost only have a minor influence on TPC
- Production costs of acetic acid (8.5 €/kg), Ethanol (11.8 €/kg), Butyric Acid (10.5 €/kg) and 1-Butanol (10.3 €/kg) show feasibility compared to market prices under base case assumptions

Outlook – Future Work

Currently: Advanced syngas fermentation modelling for up-scaling

- Include pollutant from GOLD project
- Gasfermentation kinetics: Formal kinetic approach for C. Carboxidivorans in CSTR
- Scale-up using bubble column reactor
- Cascade reactor network to further increase carbon
 efficiency

Phase equilibrium:

Henry's Law for equilibrium at the phase interface

Gasfermentation kinetics:

Formal kinetic approach C. carboxidicorans

Thank you for your attention Any questions?

Marcel Dossow Marcel.dossow@tum.de Philipp Leuter Hartmut Spliethoff, Sebastian Fendt Technical University of Munich Department of Mechanical Engineering Chair of Energy Systems Aachen, 14th September 2022

GOLD develops solutions to grow lignocellulosic crops on conatminated sites

