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Abstract

Chest radiography is the most commonly administered imaging modality world wide
today. It enables radiologists to quickly screen for various pathologies with comparatively
small exposure to ionizing radiation. However, due to their usefulness in clinical practice,
more images are being acquired than radiologists can evaluate, resulting in unprocessed
queues.
Over the past decade, with the raise of fast parallel computing hardware and large

image data sets, recent deep learning-based image recognition models have shown im-
pressive results in tackling image-based tasks. Similarly, text-processing deep learning
models have come a long way from rudimentary text completion to multi-domain chat-
bots in the past years. Consequently, in recent years, the research community has been
investigating the use of deep learning-based models for automatic disease classification
to assist radiologists and improve patient care.
In this dissertation, crucial components of chest radiography processing pipelines were

investigated, from automatic anonymization and annotation of thoracic radiology reports
to the processing of chest radiographs for pathology classification using deep neural net-
works. To increase the size of available chest X-ray data sets, this works presents two
methods for automatic thoracic radiology report annotation, a rule-based and a deep
learning-based approach, and an interface for manual creation of a reference standard.
To simplify cross-institutional data sharing, an anonymization algorithm for German
radiology reports is presented. Furthermore, the effect of image resolution and the
application of windowing on image classification performance is investigated. Addition-
ally, the feasibility of vision transformers for chest X-ray classification is shown, and an
attention-based interpretability method is tested both quantitatively and qualitatively.
Finally, the effect of other radiographs, so-called out-of-distribution images, on chest
X-ray classification models is studied and a method for improving robustness against
such images is proposed.
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Zusammenfassung

Die Thoraxradiographie ist die am häufigsten verwendete bildgebende Modalität weltweit.
Sie ermöglicht es Radiologen schnell nach verschiedenen Pathologien zu suchen und dabei
vergleichsweise wenig ionisierende Strahlung einzusetzen. Aufgrund ihrer Nützlichkeit
in der klinischen Praxis werden jedoch mehr Röntgenbilder erstellt, als von Radiologen
ausgewertet werden können, was zu unverarbeiteten Warteschlangen führt.
In den letzten zehn Jahren haben sich aufgrund der zunehmenden Verbreitung von

leistungsstarken Grafikkarten und großer Bilddatensätze neuere, auf Deep Learning
basierende Bilderkennungsmodelle als wirksames Mittel zur Lösung bildbasierter Auf-
gaben erwiesen. Ähnlich haben sich Textverarbeitungsmodelle auf Basis von Deep Learn-
ing in den letzten Jahren stark weiterentwickelt. Infolgedessen haben Forscher in den
letzten Jahren vermehrt untersucht, wie auf Deep Learning basierende Modelle zur au-
tomatischen Klassifizierung von Krankheiten eingesetzt werden können, um Radiologen
bei der Patientenversorgung zu unterstützen.
In dieser Dissertation wurden essentielle Komponenten der automatischen Verarbei-

tung von Thoraxröntgenbildern untersucht, von der automatischen Anonymisierung und
Annotation von Thorax-Radiologiebefunden bis zur Verarbeitung von Thoraxröntgen-
bildern zur Pathologieklassifikation mit Hilfe von Deep-Neural-Networks. Um die Größe
der verfügbaren Datensätze zu erhöhen, werden in dieser Arbeit zwei Methoden für die
automatische Befundannotation vorgestellt – eine regelbasierte und eine Deep-Learning-
basierte Methode sowie eine Anwendung zur manuellen Erstellung eines Referenzstan-
dards. Um den klinikübergreifenden Datenaustausch zu vereinfachen, wird ein Anony-
misierungsalgorithmus für deutsche Radiologiebefunde vorgestellt. Darüber hinaus wird
die Auswirkung von Bildauflösung und Anwendung von Fensterung auf die Güte der Bild-
klassifikation untersucht. Außerdem wird die Machbarkeit von Vision-Transformern für
die Röntgenthoraxklassifikation gezeigt und eine auf Aufmerksamkeit basierende Inter-
pretierbarkeitsmethode sowohl quantitativ als auch qualitativ getestet. Schließlich wird
die Wirkung von anderen Röntgenaufnahmen, sogenannten Out-of-Distribution-Bildern,
auf Röntgenthoraxklassifikationsmodelle untersucht und eine Methode zur Verbesserung
der Robustheit gegenüber solchen Bildern vorgeschlagen.
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1 Introduction

1.1 On Medical Imaging

Figure 1.1: X-ray image captured
by Wilhelm Conrad Röntgen in 1895,
depicting the hand of his wife Anna
Bertha Röntgen. It is one of the earli-
est examples of X-ray imaging, demon-
strating its potential for medical diag-
nostics by revealing the bones of the
hand.

Medical imaging, starting with the discovery of
X-rays in 1895 [1], has revolutionized medical di-
agnostics by enabling the visualization of internal
structures of the human body for clinical analysis
and medical intervention [2]. X-ray imaging pro-
vides a non-invasive procedure for inspecting the
human body, enabling faster and more precise di-
agnoses to treat medical conditions. Before the ad-
vent of medical imaging, doctors had to rely mostly
on patient-reported symptoms and recently in-
vented rudimentary diagnostic tools such as stetho-
scopes [3]. When the participants of the German
medical-physical society witnessed Röntgen’s dis-
covery in January 1896, they were quickly con-
vinced of its medical benefits for medical diag-
noses [4]. Even one of the earliest X-ray images,
a radiograph of Anna Bertha Röntgen’s hand (see
Figure 1.1), provided a clear depiction of the bone
structure of the hand. This image exemplifies the
immediate medical usefulness of medical imaging.
Today, medical imaging is an essential part of mod-
ern medicine, with different imaging techniques
and acquisition methods such as X-ray imaging,
computed tomography (CT), magnetic resonance
imaging (MRI), or ultrasound, used to visualize
the human body. This dissertation focuses on the
most frequently performed imaging modality, chest
radiography [5, 6].

1.2 Introduction to Chest Radiography

X-rays are a type of electromagnetic radiation that was first discovered by Wilhelm
Conrad Röntgen in 1895, known as “Röntgenstrahlen” in German [1]. During his exper-
iments with cathode ray tubes, Röntgen observed that X-rays could penetrate materials
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1 Introduction

Figure 1.2: Frontal (PA) and lateral chest X-ray.

that visible light could not, such as wood and books. He also discovered that X-rays were
partially absorbed by materials of varying densities. The medical potential of X-rays
was immediately apparent, as they could penetrate soft tissues while being absorbed by
denser structures like teeth and bones. The use of X-rays for imaging, known as radio-
graphy, revolutionized medicine by providing a low-cost and efficient imaging modality
that has become the most frequently used modality in medical imaging [5, 6].

Chest X-rays, as depicted in Figure 1.2, are commonly used to diagnose and screen
for various symptoms and medical conditions, such as pneumonia, heart failure, and
pneumothorax, as well as to locate medical devices [7]. In this imaging modality, the
patient is positioned between an X-ray source and a detector, and an image is acquired
by directing the X-ray beam through the body. Typically, both a frontal and a lateral
image are acquired, as seen in Figure 1.2. In the frontal view, the patient stands facing
the detector (posterior-anterior, PA), but if this is not possible, they are positioned
facing the source (anterior-posterior, AP). In some cases, they may be required to lie on
their back (supine) or stomach (prone), for example, in intensive care. The simplicity of
this technique results in a cheap and fast imaging modality. It is important to note that
chest radiographs involve a low dose of ionizing radiation, which has potential harmful
effects over prolonged exposure, equivalent to 28 days of natural radiation exposure [8],
making them a low-risk procedure.

1.3 Decision Support Systems in Radiology

Clinical decision support systems (CDSS) are computer applications designed to aid
clinicians in making diagnostic and therapeutic decisions in patient care [9]. CDSS can
alert clinicians of potential medication interactions, provide access to patient health
records, and assist in interpreting medical images more accurately [10, 11]. CDSS also
have applications in order scheduling [12], computer-aided diagnosis [13, 14], or worklist
prioritization [15]. They can complement radiologists in interpreting medical images,
potentially leading to improved diagnostic accuracy and faster review times [16, 17, 14].
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1.4 Why do we need AI in radiology?

Other examples of CDSS in radiology are early detection of time critical diseases, where
a CDSS can prioritize incoming images for faster review [15, 18, 19] or assisting in the
training of radiologists [20].
The presented use cases are not just potential applications but many are already

applied in the clinical routine. Today, radiologists are using speech recognition software
for faster report generation and image diagnosis systems. In the US alone, over 300
medical devices using artificial intelligence (AI) have been approved by the Food and
Drug Administration (FDA), with growing numbers year-over-year [21, 22]1. We can
summarize the potential impact of (AI-based) CDSS as Curtis P. Langlotz phrased
it [23]: “Radiologists who use AI will replace radiologists who don’t.”

1.4 Why do we need AI in radiology?

This dissertation focuses on the use of deep neural networks for chest radiographs and
corresponding radiology reports. While the previous section advocated for CDSS to
improve diagnoses and clinical practice, the primary motivation for embracing AI-based
decision support systems in radiology is the global shortage of radiologists. In the
United States, the number of medical students becoming radiologists has decreased [24]
and those who do move to urban counties, leaving rural areas understaffed [25]. The
consequences are delays and backlogs for image diagnosis, reducing the quality of care,
and risking patient health. These problems are a global phenomenon, reported by, for
example the U.K. National Health Service [26] or the U.S. Department of Veterans Af-
fairs [27]. This shortage is even worse in resource-poor countries, such as Rwanda [28] or
Liberia [29]. Here, AI-based decision support systems can not only augment the work of
radiologists by providing more efficient diagnoses but ease the stress of workforce short-
ages. As deep learning-based models continuously prove to excel in computer vision [30],
they are becoming a versatile backbone for radiology software [31, 11].

1.5 Outline

This dissertation focuses on the data pipeline necessary for applying deep learning on
chest radiographs for aiding radiologists in their diagnoses. Chapter 2 introduces the ba-
sic concepts of deep learning and the general computer vision architectures used through-
out this thesis. Besides introducing the theoretical deep learning aspects, it explains the
implementation of deep learning models in PyTorch and PyTorch Lightning and the
development using guild.ai. Chapter 3 introduces recent deep learning advances for
chest X-ray interpretation and presents publicly available chest X-ray data sets. Chap-
ter 4 proposes methods to anonymize and extract radiological labels from German free
text reports for training deep learning models. Chapters 5 and 6 analyze the effect of
image windowing and resolution on chest X-ray classification performance, respectively.
Chapter 7 introduces a method to improve interpretability of chest X-ray classifiers that

1https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intellige

nce-and-machine-learning-aiml-enabled-medical-devices
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helps radiologists judge a model’s prediction. Chapter 8 tackles the problem of incorrect
input data and how chest X-ray classifiers can be augmented to become more robust and
less prone to outliers. Chapter 9 discusses deep learning for clinical decision support in
radiology and finally, Chapter 10 concludes this doctoral thesis.

6



2 Concepts of Deep Learning

Figure 2.1: Handwritten digits of the MNIST data set [32]. While every digit has a distinct
shape, each written digit displays a variation. For example, the number seven is written with
and without a horizontal middle-line.

2.1 Introduction

In 1966, several undergraduate students at the Massachusetts Institute of Technology
(MIT) were tasked in the summer vision project of the Artificial Intelligence Group to
“construct a significant part of a visual system” [33]. With the primary goal to segment
an image into objects, background area, and “chaos”. This problem was not solved
during that summer1. While various computer vision algorithms have been developed
in the past 50 years2, recent works show that many vision problems can be practically
solved using deep neural networks [35].

In this chapter, we lay the foundation on how to derive a prediction from an image,
for example, how to recognize the digits in Figure 2.1. This chapter begins with the
basics of neural networks, covers PyTorch and PyTorch Lightning, and finally intro-
duces the tooling required for experimentation and prototyping. A deeper review of the
mathematical foundations of deep neural networks is provided in [36] and [37]. Good
references for the broader field of machine learning are Kevin Murphy’s [38, 39] and
Bishop’s textbooks [40].

1Relevant xkcd: https://xkcd.com/1425. This web comic was published in 2014. Five years later,
such an application is completely possible.

2An introduction to computer vision algorithms is presented in [34].
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2 Concepts of Deep Learning

Deep neural networks are the first method to scale to various tasks on unstructured
data, such as images3, across applications [42]. The main difficulty of unstructured
data, for example, an image, lies in converting them into a useful representation. In
other words, encoding the input as a vector in an effective way is difficult. Given a two-
dimensional array, representing black and white pixels of images of handwritten digits
(see Figure 2.1). The question is how to identify the digit using a computer program.

Intuitively, we know that each number has a specific shape. The challenge is, that
these shapes are similar only in an abstract fashion. It is non trivial to specify the
characteristics of each digit in code. What is simple, however, is to provide examples
for each class. Shifting the problem from specifying the characteristics of a class to
“learning” a representation.

Input OutputWeights

Linear Layer

Figure 2.2: A linear layer is
one of the fundamental building
blocks of many modern neural
networks. Mathematically, it is a
matrix multiplication of the input
by a weight matrix.

The main difference between conventional program-
ming and deep learning is that a programmer specifies
how a task is performed using an algorithm, whereas in
deep learning we provide examples of a (related) task
and the model learns the details using guided feedback.
For example, if we wish to train a model to identify
handwritten numbers we could set up a training data
set with examples for each digit. The input would be
an image of the digit, see Figure 2.1, and the output the
probability of each digit. As only one digit is shown per
image, we could enforce that the sum of all predicted
digit probabilities must equal 1 and the expected pre-
diction should be a 100 % confidence for the displayed
digit. In the following sections, we will discuss how to
convert an image of a digit to a digital number using
deep learning using the MNIST data set [32] as an ex-
ample.

2.2 Deep Learning Essentials

2.2.1 Basic Building Blocks

This section provides an overview of the components used in the deep learning architec-
tures discussed in the second part of this dissertation, which includes both convolutional
neural networks and vision transformers. As most deep learning architectures use sim-
ilar components with varying configurations, this section describes many elements used
by other deep learning architectures in computer vision. As these models are primarily
implemented in PyTorch, a more extensive list of deep learning building blocks can be
found in the official PyTorch documentation4.

3However, a neural network is not necessarily the best method for every use case. For example, tabular
data have remained a challenge [41].

4https://pytorch.org/docs/stable/nn.html
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2.2.1.1 Linear Layer

One of the basic building blocks of neural networks are simple matrix multiplications,
called linear, fully-connected or dense layers. In a fully-connected layer every input
neuron is connected to an output neuron, as seen in Figure 2.2. The importance of
each connection, called weights, form the (weight) matrix. To determine the output of
a fully-connected layer we multiply the input vector by the weight matrix. Additionally,
a bias term is added to the output. The bias term allows for modeling a shift in the
output and can be used as additional parameter to improve performance.
Mathematically, a deep neural network can be defined as:

ŷ = f(x, θ).

Here, x represents the input, θ the trainable parameters, ŷ the prediction, and f the
model architecture. A model consisting of only a linear layer can be defined as:

ŷ = xW T + b,

where W and b represent the trainable weights and bias. In PyTorch, a linear layer can
be used as follows:

import torch

import torch.nn as nn

x = torch.randn(20) # random tensor

fc = nn.Linear(in_features=20, out_features=30, bias=True)

y = fc(x)

Here, the in features and out features define the input and output dimensions.
Before training the model, the parameters require an initial value (initialization).

Empirically, it has been shown that the initialization significantly affects training per-
formance [43]. In PyTorch, the weights are initialized randomly, drawn from a uniform
distribution U(

√
−1/n,

√
1/n), where n is the number of input dimensions [44]. This

choice of initialization was developed for a specific activation function, the rectified linear
unit (ReLU), see Section 2.2.1.2.

2.2.1.2 Activation Functions

To model non-linear relationships between input and output, non-linear functions, called
activation functions, are applied to the output of a layer. The most commonly used
activation functions are presented below. The combination of multiple layers with acti-
vations in between enables deep neural networks to model more complex functions and
solve problems such as the XOR problem5 [36, pp. 167]. For a comprehensive list of
current activation functions see the official PyTorch documentation6.

5For a description of the limitations of single-layer neural networks, see [45, p. 189].
6https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinear

ity
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Sigmoid Function The sigmoid function, shown in Figure 2.3, is defined as:

σ(x) =
1

1 + e−x
, x ∈ R,

and maps a real input value to a value in the range between 0 and 1. This makes
the function suitable for representing the likelihood of binary classification problems.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0
Sigmoid

Figure 2.3: The “s-shaped” sigmoid
function maps the real numbers to the
range between 0 and 1.

The sigmoid function is commonly used for bi-
nary classification problems, where the classifica-
tion problem can be expressed as “yes or no” or
“present or not present”. For example, we can
model a neural network that should predict if a
chest X-ray shows signs of a pneumothorax, a crit-
ical lung disease, using a sigmoid function as final
step, representing the likelihood of a pneumotho-
rax.
While the output of a sigmoid function can be

interpreted as probability, it is not necessary the
case that a value of 0.5 means the model will be
correct 50 % of the time. However, there are several transformations to solve this
problem. Further details regarding such calibration can be found, for example, in [46].

Softmax Function The extension of the sigmoid function to classification problems
with multiple classes is the softmax function. Given a vector x ∈ Rn, where n is the
number of classes, the softmax function

σ(x)i =
exi∑n
j=1 e

xj

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10
Rectified Linear Unit (ReLU)

Figure 2.4: The rectified linear unit
(ReLU) function is used to convert
negative numbers to zero.

maps every component of x ∈ Rn to the interval
(0, 1) and normalizes them so that

∑n
i=1 σ(x)i = 1.

Therefore, similarly to the sigmoid, the output of
the softmax can be interpreted as probability dis-
tribution over all n classes. The softmax function
magnifies the probability of a single class due to the
exponential operation in the formula. This makes
the softmax function suitable for problems where
a single class is correct, i.e., multi-class classifica-
tion. For example, predicting the digit visible in
an MNIST image.

Rectified Linear Unit A computationally more
efficient activation function without the need for
exponential calculations is the rectified linear unit (ReLU) [47, 48, 30]. It is defined as

f(x) = max{0, x},

10
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as illustrated in Figure 2.4. The ReLU activation is commonly used in between layers.
One significant advantage of ReLU, compared to the sigmoid function, is that it does
not suffer from the vanishing gradient problem [36, p. 191], where the gradient of large
or small inputs becomes close to zero, causing the learning process to slow down [48].
This is because the gradient of the ReLU is one for positive values, and thus, it does
not have a saturation effect. However, as negative values have a gradient of zero, which
stops the learning process, modifications have been proposed [49, 44].

2.2.1.3 Learning

Using linear layers and activation functions, we can finally create a simple one-layer
neural network with a hidden layer7. In PyTorch, we can define our one-layer neural
network as follows:

class OneLayerNN(nn.Module):

def __init__(self):

super().__init__()

self.fc1 = nn.Linear(28*28, 128)

self.fc2 = nn.Linear(128, 10)

def forward(self, digit):

out = self.fc1(digit)

hidden = nn.functional.relu(out)

out = self.fc2(hidden)

return out

This model expects a vector of dimension 784 as input and returns a ten dimensional
vector. Each of the 784 dimensions represents a single pixel of a 28 × 28 pixel MNIST
image, and each of the ten output dimensions represents a digit. In the following, we
cover how to train such a neural network to predict the correct digit8.

Loss Functions To train the one-layer neural network, we measure the discrepancy be-
tween the model’s actual and the expected prediction. This error term is used to update
the model parameters using back-propagation (Section 2.2.1.3) and an optimization al-
gorithm (Section 2.2.1.3). The error, or “loss”, is calculated using a loss function. The
choice depends on the training task and the model output. The most commonly used
loss functions for classification problems are presented next.

Cross-Entropy For multi-class image classification, where an image displays a single
class out of multiple possibilities, a common choice is the negative log likelihood loss,
defined as the negative sum of all predictions. To form a prediction, the model’s output
is passed through a softmax layer and then the logarithm is applied to the predicted

7Hidden, because the output of the layer is not the model’s output.
8For a visual mathematical introduction to deep learning, I recommend 3B1B’s video series https:

//www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
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probability of the expected class. For computational efficiency, softmax and negative log
likelihood are often combined as so-called cross-entropy loss.

Binary Cross-Entropy For binary or multi-label prediction problems, for example,
when an image can be assigned to multiple classes, we often use a cross-entropy variant
called binary cross-entropy. In this case, the target is a binary vector with each element
representing the probability of the class. For computational efficiency, the sigmoid and
the negative log likelihood are combined. The formula for the nth class given the output
of the model xn and the binary label yn is

ln = − [yn · log σ(xn) + (1− yn) · log(1− σ(xn))] .

Gradient Descent How does a deep neural network actually learn? Typically, the task
is to minimize the error measured by the loss function, as it represents the difference
between the prediction and the desired outcome. That means we want to adjust the
weights and biases so that the network’s predictions become more accurate. In other
words, how do we have to modify the weights to minimize the error the most? The
negative gradient points in the direction of steepest descent, which gives us the fastest
improvement in the loss function for a small change in the weights and biases9. Therefore,
we obtain the best update of our weights by subtracting the respective gradient, so-called
gradient descent [50]. Note, however, that we do not know for how much we should follow
the direction. This degree is conventionally called “learning rate” and is one of several
“hyper-parameters” that can be optimized before the training 10.

As data sets are large and do not necessarily fit into memory, a neural network is typi-
cally trained using batches of the training data. Like a random sample can be considered
an estimate of the data set, the gradient of a batch can be considered an estimate of the
complete gradient. Updating the model’s weights according to the approximate gradient
based on batches is called stochastic gradient descent (SGD)11. The algorithm can be
written in pseudo-code as follows:

for batch in batches:

images, labels = batch

predictions = model(images)

loss = loss_function(predictions, labels)

gradients = compute_gradient(model, loss)

model.weights -= learning_rate * mean(gradients)

Back-Propagation In 1986, Rumelhart, Hinton, and Williams proposed the back-
propagation algorithm to train neural networks [51]. The weights of the model are

9A beautiful visual explanation narrated by 3B1B can be found at https://www.youtube.com/watch?
v=_-02ze7tf08

10Another hyper-parameter could be, for example, the size of the hidden layer of our network.
11“True” SGD uses only a single sample to estimate the gradient. However, passing multiple samples in

parallel is computationally more efficient on the GPU, and the average of their gradients provides a
more stable gradient [36, pp. 274].
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updated according to their partial derivatives with respect to the error term calculated
by the loss function using gradient descent. This can be implemented efficiently by first
calculating the partial derivatives of the last neurons with respect to the loss and then
work backwards using the chain rule for the preceding neurons.
One of the major features of PyTorch is the automatic differentiation or “autograd”

module12. By defining the forward (function) and backward pass (partial gradient) for
a single layer, PyTorch can automatically apply the chain rule to calculate the partial
gradients for a respective layer in a model. As most elementary functions and common
layers, including their backward passes, are already defined, in practice, they can be
combined to form more complex functions without the need to define the backward pass
explicitly. However, we could define, for example, a linear layer as follows:

class Linear(torch.autograd.Function):

@staticmethod

def forward(ctx, input, weight, bias):

ctx.save_for_backward(input, weight, bias)

return torch.matmul(input, weight.t()) + bias

@staticmethod

def backward(ctx, grad_output):

input, weight, bias = ctx.saved_tensors

grad_input = torch.matmul(grad_output, weight)

grad_weight = torch.matmul(grad_output.t(), input)

grad_bias = torch.sum(grad_output, dim=0)

return grad_input, grad_weight, grad_bias

Mathematically, the forward pass of the linear layer is

ŷ = W⊤x+ b

for a single input x, defined in the forward method.
For the backward pass, we need the propagated gradient from the loss (grad output

in PyTorch) to calculate the gradient for each part of the layer:

∂L

∂x
= W

∂L

∂ŷ

∂L

∂W
= x

∂L

∂ŷ

⊤

∂L

∂b
=

∂L

∂ŷ

⊤
1,

where L is the loss and ∂L
∂ŷ the gradient with respect to the prediction. Since we can

combine layers using the chain rule, we can abstract this loss as the gradient with respect
to the output, grad output13. The gradient with respect to the input ∂L

∂x becomes the
grad output for the preceding layer.

12https://pytorch.org/docs/stable/autograd.html
13A complete step-by-step derivation can be found at https://web.archive.org/web/20230228075518

/http://cs231n.stanford.edu/handouts/linear-backprop.pdf

13

https://pytorch.org/docs/stable/autograd.html
https://web.archive.org/web/20230228075518/http://cs231n.stanford.edu/handouts/linear-backprop.pdf
https://web.archive.org/web/20230228075518/http://cs231n.stanford.edu/handouts/linear-backprop.pdf


2 Concepts of Deep Learning

ADAM Using the components presented in the previous section, we are able to finally
train our neural network. To speed-up model training, we can utilize a more sophis-
ticated optimization algorithm. Practically, there are several details to be considered
for improving the basic SGD algorithm, for example, how should we choose the learning
rate? The negative gradient itself gives only the direction of steepest descent in the close
neighborhood, not necessarily the direction to the minimum. Following the steepest de-
scent too quickly by multiplying the negative gradient with a large scalar could lead to
overshooting but a tiny learning rate could lead to unnecessary long training times.
One improvement to a fixed learning rate, is to follow a direction with larger steps

if the gradients keep pointing towards the same direction, similar to a ball gaining
momentum [52]. Additionally, adapting the learning rate for each weight independently
instead of using a global learning rate improves convergence14.
A more recent, popular algorithm for faster gradient-based optimization is ADAM

(Adaptive Moment Estimation) [53]15. It uses exponential moving averages of the gra-
dient and squared gradient as estimates of its mean and variance for faster convergence.
The default ADAM implementation in PyTorch is based on AdamW [54] combining
ADAM with L2 regularization for more stable training.
Finally, combining model and optimization algorithm we can train our neural net-

work16. First, we initialize our one-layer neural network, and ADAM with the model’s
parameters (weights) and specify the learning rate (lr=1e-3). Next, we shuffle the train-
ing data to avoid learning just the sequence of labels. Then, we pass a batch of images
to the model and calculate the cross-entropy loss of predicted and actual labels. As
PyTorch accumulates the gradients by default, we clear the stored gradients before cal-
culating the partial gradients in the backwards pass. By calling the optimizer, we update
the model’s weights. In other words, the model learns. The following code implements a
bare-bone training procedure. To improve the results, we iterate over the training data
set multiple times. One iteration over all training data is called an epoch.

one_layer_nn = OneLayerNN() # initialize model

# initialize optimizer

optim = torch.optim.Adam(params=one_layer_nn.parameters(), lr=1e-3)

shuffled_order = torch.randperm(len(train)) # shuffle training data

for i in range(len(shuffled_order) // batch_size):

batch = train[shuffled_order[i * batch_size:(i + 1) * batch_size]]

y_true = batch[::batch_size]

y_pred = one_layer_nn(batch[:batch_size:])

loss = torch.nn.functional.cross_entropy(y_pred, y_true)

optim.zero_grad() # do not accumulate gradients

loss.backward() # perform backward pass

optim.step() # update the model weights

To avoid memorizing concepts that do not generalize to all handwritten digits (over-
fitting), we split the training data into training and test data. To get an even better

14Hinton’s lecture on RMSProp (unpublished): https://www.cs.toronto.edu/~tijmen/csc321/slide
s/lecture_slides_lec6.pdf

15Other gradient-based optimization algorithms are presented in [36, Sections 8.3 - 8.6].
16Complete notebook available at https://www.kaggle.com/code/fold10/mnist-1-layer-nn
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estimate of how good the model would perform on unseen data, we further split the
training data into training and validation data. During our experiments, we monitor
the results on the validation data. The predictions on the validation data are not in-
corporated into the training procedure, thereby simulating unseen data for the model.
However, as the development choices are made on the validation results, the developer
of the model “overfits” onto the validation set. Therefore, only after completing the
development of the model it is evaluated on the test set. On the MNIST data set, the
one-layer neural network achieved a test accuracy, the fraction of correct predictions,
of 95.88 % or an error rate of 4.12 %. In other words, our one-layer neural network
correctly recognized over 95 % of all test images.

2.2.1.4 Convolutional Layer

Input OutputWeights

2D Convolutional Layer

Figure 2.5: A two-
dimensional convolutional
layer.

Every output element of a linear layer considers every input.
In our MNIST example, this resulted in an input dimension
of 764 (28×28). Considering a single 224×224 pixel, image
this would result in an input dimension of over 50 000, which
would have been a problem before the widespread availabil-
ity of graphics processing units (GPUs). Nowadays, it is
technically feasible to train large-scale networks consisting
of linear layers [55]. However, as a linear layer considers
every input, it is more difficult to calculate abstract repre-
sentations of an image, filtering out noise.

To create a more efficient layer, specialized for images,
LeCun proposed a convolutional layer (see Figure 2.5)[56].
The intuition behind the (2D) convolutional layer is that a
local two-dimensional patch is encoded by a set of weights
(called kernel). By re-using the kernel and applying it across
the image, it is trained to recognize specific image charac-
teristics, such as straight lines, textures, or objects, independent of their location17. To
encode different textures, several kernels are applied in parallel. By stacking several con-
volutional layers, more concrete concepts can be encoded, as the stacked input covers a
larger portion of the image and is effectively encoded by preceding layers [57]18.

Mathematically, the operation behind a convolutional layer is the similar cross-cor-
relation: the sum of the element-wise multiplication of an input patch and kernel results
in one output value, as shown in Figure 2.5. If the image has multiple channels, the
kernel must have the same number of channels. In other words, both the image and
kernels are tensors. As additional configuration, we can define the stride, how much the
kernel is shifted between its applications, and padding. Padding refers to options for
extending the image so that the kernel always has enough input values, with the padded

17An interactive example is shown at https://commons.wikimedia.org/wiki/File:2D_Convolution_A
nimation.gif#/media/File:2D_Convolution_Animation.gif

18A series of peer-reviewed articles investigating and visualizing learned concepts of different neural
network layers can be found on https://distill.pub/.
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pixels filled with different values, such as all zeros or mirroring the edge of the image. A
convolutional layer can be used in PyTorch as follows:

conv = nn.Conv2d(in_channels, out_channels,

kernel_size, stride=stride,

padding=padding)

We can replace the first fully-connected layer with two convolutions from our one-layer
neural network and obtain19:

class TwoLayerCNN(nn.Module):

def __init__(self):

super().__init__()

self.conv1 = nn.Conv2d(in_channels=1, out_channels=9,

kernel_size=(3, 3))

self.conv2 = nn.Conv2d(in_channels=9, out_channels=5,

kernel_size=(3, 3))

self.fc1 = nn.Linear(in_features=2880, out_features=10)

def forward(self, digit):

out = nn.functional.relu(self.conv1(digit))

out = nn.functional.relu(self.conv2(out))

out = self.fc1(out.flatten(1))

return out

By replacing the first linear layer with two convolutional layers, we are able to reduce
the number of trainable parameters from 101,770 to 29,310, thereby increasing training
speed. Additionally, using convolutional layers also improved the classification error rate
from 4.12 % to 2.07 %.

2.2.1.5 Pooling Layers

The convolutional neural network (CNN) presented in the previous section had a clas-
sification layer (the final linear layer) with a high-dimensional input of 2,880. Pooling
multiple values is a common technique in convolutional neural networks to reduce the
dimensionality and therefore computational cost. Two common pooling variants are
maximum and average pooling. Similar to a convolutional layer, a kernel is applied over
a portion of the image in a sliding-window. Stride and padding are defined analogously.
The max-pool operation returns the maximum of the input, the average pool the aver-
age. An example is displayed in Figure 2.6, where a 2× 2 filter is applied to the input.
For the 2× 2 input in the red rectangle, max-pool returns max {67, 23, 95, 89} = 95 and
average pool

∑ i
4 , i ∈ {67, 23, 95, 89} = 68.5.

19A complete example is available at https://www.kaggle.com/fold10/mnist-convnet
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Figure 2.6: Commonly used pool-
ing operations: max-pool and average
pool. All pooling operations use a slid-
ing window to down-sample the input.
Here, a 2× 2 filter is applied to the in-
put. Max-pool returns the maximum,
while average pool the mean of the el-
ements.

Max-pool is often used as part of a convolutional
block. For example, the AlexNet architecture uses
a convolutional layer, followed by a ReLU acti-
vation and a max-pool layer [30]. Average pool-
ing can be used as final layer before the classifica-
tion to allow for varying image resolutions, called
global average pooling, where the kernel size equals
the input width and height. Architectures like
ResNet [58] and DenseNet [59] use this technique.
A pooling layer can be used as follows in PyTorch.

tensor = torch.Tensor([[[67, 23],[95, 89]]])

maxpool = nn.MaxPool2d((2, 2))

maxpool(tensor) # 95

avgpool = nn.AvgPool2d((2, 2))

avgpool(tensor) # 68.5

Including 3×3 max pooling after each convolution reduces the input dimension of the
classification layer of the MNIST CNN to 320 with a total of 3710 trainable parameters,
less than 1 % of the original one-layer neural network. It also improved the error rate
further to 1.67 %20.

2.2.1.6 Batch Normalization

The training of deep neural networks is a complex process, as each input of a layer is
affected by changes in all preceding layers. Consequently, the choice of initialization of
a layer is dependent on its depth. Furthermore, as the weights get updated during the
training, the data passing through a layer may experience a shift in distribution [60].
This can negatively affect the training, as a shift in distribution can make it unstable.

To stabilize training and increase training speed, Ioffe and Szegedy proposed to nor-
malize the output of a layer before the next layer in a batch-wise fashion, called batch
normalization [60]. To counteract the distribution shift of data passing through a layer,
as the weights get updated over time, they normalize the output to have zero mean and
unit variance after each batch. As the normalization could interfere with the learning
process, they add a learnable scaling and shifting term to revert the normalization, if
necessary.
In recent convolutional neural networks, batch normalization is commonly placed be-

tween the convolutional layer and the activation function [58, 59, 61]. To use batch
normalization in PyTorch, one can use the nn.BatchNorm2d module. For example:

# batch containing a single 2x2x1 tensor

tensor = torch.Tensor([[[[67, 23], [95, 89]]]])

batchnorm = nn.BatchNorm2d(1) # one channel

output = batchnorm(tensor) # approximatively zero mean and unit variance

20A complete example is available at https://www.kaggle.com/fold10/mnist-convnet
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By applying batch normalization to our MNIST CNN we obtain the following model21.

class ImprovedTwoLayerCNN(nn.Module):

def __init__(self):

super().__init__()

self.conv1 = nn.Conv2d(in_channels = 1, out_channels=9,

kernel_size=(3, 3))

self.norm1 = nn.BatchNorm2d(9)

self.pool = nn.MaxPool2d((3, 3))

self.conv2 = nn.Conv2d(in_channels = 9, out_channels=5,

kernel_size=(3, 3))

self.norm2 = nn.BatchNorm2d(5)

self.fc1 = nn.Linear(in_features=320, out_features=10)

def forward(self, digit):

out = nn.functional.relu(self.norm1(self.conv1(digit)))

out = self.pool(nn.functional.relu(self.norm2(self.conv2(out))))

out = self.fc1(out.flatten(1))

return out

The improved two-layer CNN has 28 additional trainable parameters due to batch nor-
malization and achieved a test error rate of 1.59 % compared to 1.67 % without batch
normalization.

2.2.1.7 Skip Connections

Bach normalization combined with ReLU activations addressed the vanishing gradient
problem [60] allowing models to become deeper. The vanishing gradient problem can
occur when the gradients of the activation function are close to zero so the gradients for
the preceding layers become too small to train the network further. This is a particular
problem for saturating activation functions like tanh or sigmoid but can be addressed
with ReLU activations [30].

These advancements allowed He et al. to train very deep neural networks. While
they assumed that deeper networks perform better, they discovered that they actually
performed worse than shallower models even though the shallower networks solution
space is a subspace of the deeper one [58]. They explained their findings that the
model has difficulties passing the information to deeper layers, similarly to an identity
function. Therefore, they added identity functions to the network explicitly, so-called
skip connections.

We can reproduce these findings by adding a depth parameter to our CNN. We refactor
the convolutional block, convolution, batch normalization, and ReLU, as a ConvLayer

class. By fixing the number of output channels to 10, we can stack them easily. Only
the first convolutional layer has a single input channel, due to the binary image format.
Instead of calculating the number of input channels of the final classification layer, we

21A complete example is available at https://www.kaggle.com/fold10/mnist-convnet
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use a LazyLinear layer, that computes the necessary input dimension automatically
during initialization. With the following setup, we can train the model with one, ten,
fifty, and one hundred convolutional layers22:

class ConvLayer(nn.Module):

def __init__(self, in_channels):

super().__init__()

self.conv = nn.Conv2d(in_channels, 10, kernel_size=3,

stride=1, padding=1, bias=False)

self.norm = nn.BatchNorm2d(10)

self.relu = nn.ReLU(inplace=True)

def forward(self, digit):

return self.relu(self.norm(self.conv(digit)))

class DeepCNN(nn.Module):

def __init__(self, depth):

super().__init__()

self.features = nn.Sequential(ConvLayer(in_channels=1))

for i in range(1, depth):

self.features.add_module(f"conv_{i}", ConvLayer(in_channels=10))

self.pool = nn.AvgPool2d((4, 4))

self.classifier = nn.LazyLinear(out_features=10)

def forward(self, digit):

out = self.pool(self.features(digit))

return self.classifier(out.flatten(1))

The trained model performed best with 10 convolutional layers, as shown in Table 2.1.
Going deeper, the performance deteriorated quickly. The 100-layer CNN had an error
rate of 37.3 %, which is 14 times worse than the one-layer CNN.

Layers CNN + Skip Connections

1 layer 1.94 % 1.93 %
10 layers 0.67 % 0.87 %
50 layers 1.03 % 0.76 %
100 layers 27.3 % 0.72 %

Table 2.1: Going deeper with convolutional networks. Error rates of the MNIST CNN with
and without skip connections containing 1, 10, 50, and 100 convolutional layers. Adding skip
connections stabilized the performance.

We can include skip connections, as proposed by the ResNet model, by adding the
input and output of the layer starting from the second layer, as shown below. Introducing
skip connections does not affect the number of the trainable parameters.

class ConvResLayer(ConvLayer):

def forward(self, input):

22The complete notebook is available at https://www.kaggle.com/fold10/mnist-convnet
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output = self.norm(self.conv(input1))

return self.relu(input + output)

class DeepResCNN(nn.Module):

def __init__(self, depth):

super().__init__()

self.features = nn.Sequential(ConvLayer(in_channels=1))

for i in range(1, depth):

self.features.add_module(f"conv_{i}", ConvResLayer(10))

self.pool = nn.AvgPool2d((4, 4))

self.classifier = nn.LazyLinear(out_features=10)

def forward(self, digit):

out = self.pool(self.features(digit))

return self.classifier(out.flatten(1))

While the error rates varied slightly across runs due to non deterministic initialization,
the effect of skip connections on the 50- and 100-layer CNN remained striking. Both
1- and 10-layer versions performed similarly, as shown in Table 2.1. The 50- and 100-
layer CNNs with skip connections performed similarly to the 10-layer CNN, without skip
connections, the performance degraded quickly with the additional layers.

2.2.1.8 Transformer

In recent years, best performing deep learning models on text (language models) have
been based on the transformer architecture [62], such as the famous GPT architec-
ture [63, 64, 65, 66]. A transformer layer consists of skip connections, a linear layer, and
an attention layer. The attention layer is defined as:

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V,

where Q, K, and V are matrices of queries, keys, and values respectively, and dk is the
dimension of the key vector. Hereby are queries, keys, and values different represen-
tations of the same input23. Intuitively, the softmax creates a probability distribution
of the input, where the probability can be interpreted as “attention”: what is the im-
portance of each word (key) with respect to a word (query)? This importance is then
multiplied with the word (value)24.

Due to the success of transformer-based architectures in the natural language process-
ing domain, researchers started applying attention and transformers to images. However,
computational efficiency was a major obstacle, as applying attention to every pixel re-
sults in quadratic computational costs.

23In the literature, this is referred to as self-attention.
24An illustrated, detailed explanation of the transformer can be found at https://jalammar.github.

io/illustrated-transformer/
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Figure 2.7: A simple trans-
former architecture.

One popular architecture that addressed this problem is
the Vision Transformer [67] by applying attention not to
single pixels but larger patches. The Vision Transformer
architecture is presented in Section 2.3.2. In this section,
we replace the convolutions of our MNIST CNN with a sim-
plistic transformer, as shown in Figure 2.7.

Similar to our previous deep CNN, modern deep learning
architectures are designed to be scaled easily by increas-
ing their depth. We achieve this in our transformer model
by designing transformer blocks with the same input and
output dimension. Therefore, we can simply stack multiple
transformer blocks (L×). Our transformer block consists of
an attention layer and a linear layer. Both layers use skip
connections, to allow deeper models, and normalization, to
stabilize the training procedure [68]. To reduce computa-
tional complexity of the attention layer, we divide the input
image into sixteen 7× 7 pixel patches.

The attention layer can be implemented as follows, utiliz-
ing the einsum notation for easier matrix manipulations25.
First, the input is embedded by a linear layer as query,
key, and value (to qkv) and then processed by the atten-
tion function. Having encapsulated the attention layer as a
separate class, the transformer layer is straight-forward to
implement.

class Attention(nn.Module):

def __init__(self, dim):

super().__init__()

self.scale = dim ** -0.5

# dim * 3 for Q,K,V

self.to_qkv = nn.Linear(dim, dim * 3,

bias = False)

def forward(self, x):

b, n, _, h = *x.shape, 2

qkv = self.to_qkv(x).chunk(3, dim = -1)

q, k, v = map(lambda t: rearrange(t,

'b n (h d) -> b h n d', h = h), qkv)

dots = einsum('b h i d, b h j d -> b h i j',

q, k) * self.scale

attn = dots.softmax(dim=-1)

out = einsum('b h i j, b h j d -> b h i d',

attn, v)

out = rearrange(out, 'b h n d -> b n (h d)')

return out

25https://github.com/arogozhnikov/einops
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class Transformer(nn.Module):

def __init__(self):

super().__init__()

# input = output dimension = 32

self.attention = Attention(32)

self.norm1 = nn.LayerNorm(32)

self.fc1 = nn.Linear(32, 32)

self.norm2 = nn.LayerNorm(32)

def forward(self, x):

out = nn.functional.relu(

self.attention(self.norm1(x)) + x)

out = nn.functional.relu(

self.fc1(self.norm2(out)) + out)

return out

Similar to the previous DeepResCNN model, a deeper model improved the classifi-
cation performance before saturating: at depth 1, the model achieved an error rate of
13.47 %, at depth 10, 3.82 %, and at depth 20, 3.87 %, respectively26. These num-
bers already show that the DeepResCNN performed significantly better than the vision
transformer. However, scaling studies showed that CNNs performed worse than vision
transformers when pre-trained on hundreds of millions of images [67]. In other words,
vision transformers seem to better utilize large data sets. Both results can be explained
by the nature of vision transformers. CNNs apply a fixed kernel to a local region. Vision
transformers, on the other hand, use the complete input and learn to attend to specific
regions [69]. This lack of inductive bias helps the transformer model to learn more
precise data transformations. Since these must be learned in the first place, a vision
transformer requires more training data. Without the data, the fixed kernels of a CNN
are a good approximation.

2.2.2 Data Augmentation

Data augmentation is a technique to synthetically create more data. Besides increasing
the amount of data, data augmentation encourages the model to learn a form of invari-
ance. For example, the model should be able to accurately predict the digit in an image
despite variations in location or tilt (see Figure 2.8). There are several techniques for
data augmentation and not every technique is suitable for each application. In this sec-
tion, we will review common data augmentation techniques used for our MNIST example
and chest X-ray classification. A more general review can be found in [70] and [71].

For the MNIST data set, we can incorporate geometric transformations to improve
generalization. Two suitable techniques are rotating the image, simulating a tilted hand-
writing, and shifting it. When applying these data transformations, one must be mindful
of the effect on the label. Another common technique, flipping the image horizontally,

26The complete notebook can be found at https://www.kaggle.com/fold10/mnist-vision-transfo
rmer-vit
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Original Rotation Translation Shearing

Figure 2.8: Data augmentation applied to an image of a handwritten digit. Moderate rotation,
translation, and shearing alter the shape of the digit but not its value.

would convert a 6 to a 9 and vice-versa. For chest X-rays, a horizontal or vertical flip
should not affect the prediction of the model. Also, as chest X-rays are high resolution
images and are therefore resized, cropping the image is a common transformation.

In PyTorch, we can use the transform module of the TorchVision library27 or specific
libraries such as albumentations28 for data augmentation. For our MNIST example, we
can generate a random rotation (see Figure 2.8) as follows:

import torchvision.transforms as T

# define transformation pipeline

transforms = T.Compose([

# torch vision expects three input channels

T.Lambda(lambda x: x.expand(3, -1, -1)), # create a three channel view

T.RandomRotation(degrees=35),

T.Lambda(lambda x: x[:1,:,:]) # collapse to one channel

])

For the MNIST example, adding augmentations barely improved the performance, as the
model’s performance is already close to optimal. The 10-layer DeepResCNN achieved
an error rate of 0.79 % with data augmentation compared to 0.87 % without. However,
across runs, the performance of both versions was similar29. For more complex images,
such as chest X-rays, including data augmentations in our experiments improved the
model performance significantly.

Typically, data augmentations are only applied during training. However, another
use of data augmentations is during testing, so-called test time augmentations. Here,
predictions for multiple augmented versions of the same image are averaged to get a
more robust prediction. Consequently, test time augmentations are especially common
in deep learning competitions [30, 58].

27https://pytorch.org/vision/stable/index.html
28https://albumentations.ai/
29The complete notebook can be found at https://www.kaggle.com/code/fold10/mnist-convnet.
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2.3 Architectures

This section presents the backbone architectures used throughout this thesis. These
architectures are built from components presented in the previous section and are com-
monly used for transfer learning, i.e., the models were trained on a large data set like
ImageNet [72] and then fine-tuned on a target data set, for example, chest radiographs.

2.3.1 DenseNet

Extending the principle of skip connections further, Huang et al. proposed to connect
every layer of a “DenseBlock” inside their DenseNet CNN to all preceding layers using
skip connections [59]. This allowed them create deeper models with the same number
of parameters, improving the performance. Additionally, instead of adding the outputs
they concatenated them. Therefore, to reduce the dimension between DenseBlocks they
introduced transition and bottleneck segments.

2.3.2 Vision Transformer

As transformer-based architectures outperformed conventional recurrent networks on
natural language tasks, researchers rushed to adapt the architecture to the image do-
main. The difficulty was, however, that the standard self-attention algorithm has a
quadratic runtime as every word attends every other word. While computationally fea-
sible for text, it limited the image resolution and depth of the network considerably
when applied to pixels naively. Therefore, instead of applying the attention directly on
pixels, Dosovitskiy et al. proposed to use 16× 16 pixel patches [73]. Their vision trans-
former (ViT) architecture is mostly identical to the transformer developed in the previous
section, with the difference of using multiple attention “heads” in parallel (multi-head
attention), similarly to using multiple kernels for convolutional layers. Similar to our
MNIST experiments, the vision transformer model performed worse than state-of-the-
art CNNs on smaller data sets but when pre-trained on 20 - 300 million images the ViT
outperformed convolution based architectures.

2.4 Development of Deep Learning Models

2.4.1 Introduction

Deep learning research papers often lack detailed descriptions of the methods, recipes,
and tools used for developing deep learning-based software. To address this gap, this
section describes the methodologies we employed in our research.

In general, I like the approach of Jeremy Howard when introducing the development
of neural networks: focusing on practical approaches [74] and teaching deep learning de-
velopment30 with a top-down approach using interactive development tools like Jupyter

30fast.ai
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notebooks31. The benefit is to quickly start coding deep learning models and to lower
the barrier of entry with the downside of accepting code that has been abstracted away
in a more rigid framework.

After getting acquainted with simple deep neural networks, to break out of more rigid
frameworks, and, as current research models are mostly implemented in PyTorch32, I
recommend the official PyTorch tutorials. Again, by using Jupyter notebooks this should
be an interactive, exploratory form of learning. Quickly, one will notice the standard
PyTorch structure: dataset, data loader, train-, validation- and test loops sprinkled with
logging, checkpoints, and development plots. Understanding these concepts is crucial for
adapting and developing deep learning models.

The following sections provide a more in-depth introduction to deep learning develop-
ment, continuing with our PyTorch implementation of an MNIST classifier. To provide
more clarity, complete code examples are provided alongside. The referenced notebooks
can be run directly in a browser.

2.4.2 PyTorch

2.4.2.1 Data Set

The PyTorch data set encapsulates the access and transformation of the raw data. A
PyTorch data set implementation has to define the len and getitem methods,
defining how many elements exist and how to access a specific element of the data set.
Because data sets are used for multiple models, the PyTorch data set should be as general
as possible. In our group I introduced a separate data abstraction layer to provide a
general interface across data sets, including features like caching, reducing the PyTorch
implementation to the bare essentials. Similarly, we can create a PyTorch data set for
the MNIST example as follows33:

class Dataset(torch.utils.data.Dataset):

def __init__(self, images, labels, transform):

super().__init__()

self.images = images

self.labels = labels

self.transform = transform

def __len__(self):

return len(self.images)

def __getitem__(self, idx):

# data augmentations

return self.transform(self.images[idx]), self.labels[idx]

train_dataset = Dataset(train_images, train_labels, transform=transform)

31jupyter.org
32pytorch.org
33The complete example is available at https://www.kaggle.com/code/fold10/mnist-convnet.
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val_dataset = Dataset(val_images, val_labels, transform=transform)

test_dataset = Dataset(test_images, test_labels, transform=transform)

The benefit of this approach is that all data sets: training, validation and testing can
reuse the same class without custom code.

2.4.2.2 Transforms

The transformation of an image to PyTorch tensor is handled in a separate Transforms
class. For example, we can implement the data augmentations introduced in the previous
section as follows:

import torchvision.transforms as T

class Transforms():

def __init__(self):

self.transform = T.Compose([

T.ToTensor(),

T.Lambda(lambda x: x.expand(3, -1, -1)),

T.RandomRotation(degrees=5),

T.RandomPerspective(distortion_scale=0.6, p=1.0),

T.Lambda(lambda x: x[:1,:,:])

])

def __call__(self, input):

return self.transform(input)

2.4.2.3 Data Loader

The PyTorch data loader takes a data set and provides efficient data access, creates
batches, and other utilities. For our MNIST example, we can implement it as follows.
Note, that for the training data loader we specify that the data set should be shuffled
for every epoch. This ensures that the model does not simply memorize the sequence.

from torch.utils.data import DataLoader

train_loader = DataLoader(dataset=train_dataset, batch_size=100, shuffle=True)

val_loader = DataLoader(dataset=val_dataset, batch_size=100, shuffle=False)

test_loader = DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)

2.4.2.4 Train/Validation/Test

Given model and data loader, we can create the training and validation loop. To speed
up the training, we can train the model on a GPU by moving model and data to a
specific device. Using the data loader, the code for accessing images and labels is much
more readable compared to the OneLayerNN training routine in Section 2.2.1.3.

def train(cnn, train_loader, val_loader, cuda=False):

device = "cuda:0" if cuda else "cpu"

cnn.to(device)

26



2.4 Development of Deep Learning Models

optim = torch.optim.Adam(params=cnn.parameters(), lr=1e-3)

val_predictions = []

for epoch in range(15):

for (images, y_true) in train_loader:

y_true = y_true.flatten(1).to(device)

y_pred = cnn(images.to(device))

loss = torch.nn.functional.cross_entropy(y_pred, y_true)

optim.zero_grad()

loss.backward()

optim.step()

# No need to compute the gradients during validation

with torch.no_grad():

for (images, y_true) in val_loader:

y_true = y_true.flatten(1).to(device)

y_pred = cnn(images.to(device))

loss = torch.nn.functional.cross_entropy(y_pred, y_true)

val_predictions.extend(torch.argmax(y_pred, axis=1).cpu())

return val_predictions

We can test our model and calculate accuracy and error rate as follows:

def test(cnn, labels, data_loader, cuda=False):

device = "cuda:0" if cuda else "cpu"

predictions = []

with torch.no_grad():

for (images, y_true) in data_loader:

y_true = y_true.flatten(1).to(device)

y_pred = cnn(images.to(device))

loss = torch.nn.functional.cross_entropy(y_pred, y_true)

predictions.extend(torch.argmax(y_pred, axis=1).cpu())

total = len(labels)

print("Accuracy", sum(predictions == labels).item() / total)

print("Error Rate", sum(predictions != labels).item() / total * 100)

2.4.3 PyTorch Lightning

The previous section presented the typical implementation of a neural network in Py-
Torch with the example of the MNIST data set. From a high-level, perspective deep
learning code consists of two main parts: model and data. However, the PyTorch syntax
is comparatively verbose and repetitive. For example, the validation and test loop are
functionally identical and mostly independent of the actual model and data set. One
attempt to streamline deep learning development and improve code readability and re-
producibility is PyTorch Lightning34. Besides reducing boiler-plate code the framework
makes it simple to, for example, log metrics, train the model on multiple GPUs, or cre-
ate checkpoints of the trained model. For most models, only the model-specific training
steps must be developed. The outer training loop, for example, is already provided by
PyTorch Lightning.

34https://lightning.ai/pytorch-lightning/
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This section introduces the PyTorch Lightning framework with the example of MNIST
image classification. In my work, I mostly used PyTorch Lightning version 1.8, changes
to the current version are documented online35.

2.4.3.1 Data Module

The data module encapsulates all data related aspects of the deep learning code, mainly
the PyTorch data set and the PyTorch data loader but also extracting the compressed
data set or splitting the data into training, validation, and test data sets. Conceptually,
a data module consists of two different parts: single use functions, e.g., downloading and
splitting the data called during data preparation (prepare data), and actions that need
to be done, for example, for every GPU in a distributed training scheme, like assigning
training data (setup). The full documentation is available online36.

The data module embodies data preparation, data set initialization, and data loading,
as shown in the following code sample37.

class DataModule(pl.LightningDataModule):

def prepare_data(self):

train_val_images = self.read_image_data("train-images.idx3-ubyte")

train_val_labels = self.read_labels("train-labels.idx1-ubyte")

self.train_images = train_val_images[:int(0.9 * len(train_val_images))]

self.train_labels = train_val_labels[:len(self.train_images)]

self.val_images = train_val_images[len(self.train_images):]

self.val_labels = train_val_labels[len(self.train_images):]

self.test_images = self.read_image_data("t10k-images.idx3-ubyte")

self.test_labels = self.read_labels("t10k-labels.idx1-ubyte")

def setup(self, stage):

self.train_dataset = Dataset(self.train_images, self.train_labels,

Transforms())

self.val_dataset = Dataset(self.val_images, self.val_labels,

Transforms())

self.test_dataset = Dataset(self.test_images, self.test_labels,

Transforms())

def train_dataloader(self):

return DataLoader(self.train_dataset, batch_size=100, shuffle=True)

def val_dataloader(self):

return DataLoader(self.val_dataset, batch_size=100)

def test_dataloader(self):

35https://lightning.ai/docs/pytorch/stable/upgrade/from_1_8.html
36https://lightning.ai/docs/pytorch/stable/data/datamodule.html
37The complete notebook is available at https://www.kaggle.com/fold10/mnist-image-classificat

ion-with-pytorch-lightning/.
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return DataLoader(self.test_dataset, batch_size=100)

def read_image_data(self, path):

# reads the image data from disk

...

def read_labels(self, path):

# reads the meta data from disk

...

Most of the necessary code was already implemented in the Dataset, Transforms, and
DataLoader classes. Only the data preparation, loading the data from disk and splitting
it into training, validation, and testing, was previously defined elsewhere. Using PyTorch
Lighting, it is now defined in the prepare data method. Overall, everything related to
the data was incorporated into the DataModule.

2.4.3.2 Lightning Module

The lightning module complements the data module and encloses all model related
code38. It provides access to the deep learning model, optimizer, and defines the training
procedure. Additional development utilities, such as logging the training progress, are
also defined here. A lightning module for our two layer CNN is provided in the following:

class Model(pl.LightningModule):

def __init__(self, learning_rate):

super().__init__()

self.save_hyperparameters()

self.model = CNN()

self.loss = torch.nn.functional.cross_entropy

# Store the output for evaluation

self.val_outputs = []

self.test_outputs = []

def forward(self, images):

return self.model(images)

def _step(self, stage, batch, batch_idx):

images, y_true = batch

y_pred = self(images)

loss = self.loss(y_pred, y_true.flatten(1))

self.log(f"loss/{stage}", loss, prog_bar=True)

return {"loss": loss,

"labels": y_true,

"preds": torch.argmax(y_pred.detach(), axis=1)}

def training_step(self, batch, batch_idx):

38The full documentation is available online at https://lightning.ai/docs/pytorch/stable/commo
n/lightning_module.html.
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return self._step("train", batch, batch_idx)

def validation_step(self, batch, batch_idx):

self.val_outputs.append(self._step("val", batch, batch_idx))

return self.val_outputs[-1]

def test_step(self, batch, batch_idx):

self.test_outputs.append(self._step("test", batch, batch_idx))

return self.test_outputs[-1]

def _epoch_end(self, stage, outputs):

predictions = torch.hstack([o["preds"] for o in outputs])

labels = torch.vstack([o["labels"] for o in outputs]).argmax(axis=1)

total = len(labels)

accuracy = sum(predictions == labels).item() / total * 100

error_rate = sum(predictions != labels).item() / total * 100

self.log_dict({f"accuracy/{stage}": accuracy,

f"error_rate/{stage}": error_rate}, prog_bar=True)

def on_validation_epoch_end(self):

return self._epoch_end("val", self.val_outputs)

def on_test_epoch_end(self):

return self._epoch_end("test", self.test_outputs)

def configure_optimizers(self):

return torch.optim.Adam(self.model.parameters(),

lr=self.hparams.learning_rate)

For our simple MNIST CNN, the actions that are performed in the training, validation,
and test loop can be abstracted as a general step function. This function creates the
prediction for a given batch of images, calculates and logs the loss and returns loss, labels,
and predictions. For later evaluation at the end of an epoch, we store the validation and
test predictions. Again, as the evaluation is the same for both training stages, we define
a common function( epoch end) to calculate and log accuracy and error rate. Finally, in
the configure optimizers method, the optimizer is defined. In summary, the lightning
model incorporates everything necessary regarding the deep learning model.

2.4.3.3 Trainer

The trainer class manages the actual training procedure. Here, we can adjust, for exam-
ple, the number of epochs or the device used for training. Given data module, model,
and trainer we can finally train our model:

datamodule = DataModule()

model = Model(learning_rate=1e-3)

trainer = pl.Trainer(max_epochs=15, accelerator="gpu", devices=1)

trainer.fit(model, datamodule)

trainer.test(model, datamodule)
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PyTorch Lightning transfers model and data automatically to the specified device and
generates a progress bar to keep track of the training procedure. Overall, by using
PyTorch Lightning, we can wrap all code into specific classes and are able to train and
test our model with five lines of code.

2.4.3.4 Command Line Interface

While the trainer can be called manually, for example in a Jupyter notebook, a better
approach is to call it in a Python module and specify the hyper-parameters as command
line arguments.

if __name__ == "__main__":

parser = ArgumentParser()

parser = add_argparse_args(parser)

parser = DataModule.add_argparse_args(parser)

parser = Model.add_argparse_args(parser)

parser = pl.Trainer.add_argparse_args(parser)

datamodule = DataModule.from_argparse_args(args)

model = Model.from_argparse_args(args)

trainer = pl.Trainer.from_argparse_args(args)

trainer.fit(model, datamodule)

trainer.test(model, datamodule)

Using the ArgumentParser39, the arguments of trainer, lightning and data module can
be specified in the terminal. PyTorch Lightning already implements the add argparse-

args functionality for the different classes40. Additional arguments can be added as
follows:

class Model(pl.LightningModule):

@staticmethod

def add_argparse_args(parent_parser):

parser = parent_parser.add_argument_group("Model")

parser.add_argument("--learning_rate", type=float, default=1e-3)

return parent_parser

@classmethod

def from_argparse_args(cls, *args, **kwargs):

"""Pass the ArgParser's args to the constructor."""

return pl.utilities.argparse.from_argparse_args(cls, *args, **kwargs)

...

Now, the model can be trained by passing the arguments, e.g., the learning rate, as
command line arguments: python main.py --learning rate=0.01.

39https://docs.python.org/3/library/argparse.html
40The latest PyTorch Lightning version replaced the ArgumentParser with an internal Lightning CLI.
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2 Concepts of Deep Learning

2.4.4 Experiment Management with Guild

Guild.ai41 is an open-source machine learning management package. In the previous
sections, we developed a deep learning model using PyTorch and PyTorch Lightning.
For software development, code changes are tracked using version control software like
git42. When prototyping deep learning models, the code base might not change between
runs, as only the hyper-parameters are tuned via the terminal. Furthermore, side-effects
like binary model checkpoints or plots are not suited for code version control software.
While there are existing solutions like DVS43 to track data using version control, in my
experience, a better approach is proposed by guild.

Figure 2.9: Comparing different training runs
in the terminal using guild compare.

Guild creates snapshots of the code used
for training a model and stores data arti-
facts along-side it. Furthermore, it uses a
configuration file, guild.yml, to manage
hyper-parameters and provides a CLI to
initiate model training. Thus, guild en-
ables reproducible builds. A sample con-
figuration file for our MNIST example is
provided below44. The file defines an op-
eration, train, the necessary source code,
and the entry point (main.py). Addi-
tional files that are necessary are speci-
fied as required, for example, we link the
data. Combined with PyTorch Lightning,
we can define the arguments of the argument parser either in the configuration or directly
in the CLI.

- model: mnist_deep_learning_development_example

sourcecode:

- "*.py"

operations:

train:

main: mnist_deep_learning_development_example.main

requires:

- file: "mnist-dataset"

target-type: link

flags:

max_epochs:

default: 15

learning_rate:

Given the configuration file, we can run, for example, a grid search to find the best
learning rate using

41https://guild.ai/
42https://git-scm.com/
43https://dvc.org/
44The complete project can be found at https://github.com/AlessandroW/mnist-pytorch-lightning
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2.4 Development of Deep Learning Models

Figure 2.10: Inspecting and comparing different training runs in the browser using guild view.

guild run train learning_rate=[0.1,0.01,0.001,0.0001].

To compare the effect of different learning rates, we can, for example, compare the results
in the terminal (guild compare), in a web interface with additional TensorBoard45

support, or interactively in a Jupyter notebook.

import guild.ipy as guild

# All runs

runs = guild.runs()

# Runs filtered by status and operation

selected_runs = runs.loc[

(runs.operation == "mnist_deep_learning_development_example:train") &

(runs.status == "completed")]

scalars = selected_runs.scalars()

# Get the lowest test error rate for each completed run

scalars.loc[scalars.tag == "error_rate/test"][

["run", "min_val"]].sort_values("min_val")

run min_val

348 9c9c2b3679d54127adcc15707abcacb1 1.40

693 9370509cc22946d0aac401b91a39174d 1.67

1383 6b20cb24964e435997196064a2d29b74 3.31

1038 24c14e7356594226b9896d11fcd05e19 3.93

We get a similar output in the terminal by running guild compare, shown in Fig-
ure 2.9. Alternatively, we can inspect the different training runs in the browser by
running guild view, see Figure 2.10. The browser view allows to inspect the training
process in TensorBoard. As guild hooks into the training process, everything that was
logged by PyTorch Lighting is visualized in TensorBoard, as show in Figure 2.11.

45https://www.tensorflow.org/tensorboard
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Figure 2.11: Comparing different training runs using TensorBoard.
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3 Background: Deep Learning for Chest
X-Ray Diagnosis

3.1 Public Chest X-Ray Data Sets

The prerequisite for training neural networks capable of interpreting chest radiographs
are such data sets. This section presents commonly used publicly available chest X-ray
data sets. An overview is presented in Table 3.1.

Data Set Year # Findings # Samples Annotation Reports

JSRT 2000 1 247 L N/A
PLCO 2000-2022 N/A 85,421 L, Position N/A
Open-i 2016 177 7,470 L Available
CXR14 2017 14 112,120 L, BBoxes N/A
CheXpert 2019 14 224,316 L N/A
MIMIC-CXR 2019 14 377,110 L Available
SIIM-ACR 2020 3 5,302 L, Segmentations N/A
PadChest 2020 174 160,868 L, Position Available
VinBigData 2020 28 18,000 L, BBoxes N/A
CANDID-PTX 2021 3 19,237 L, Segmentations Available
BRAX 2022 14 40,967 L Available

Table 3.1: Commonly used publicly available chest X-ray data sets. L = labels, CXR14 = Chest
X-ray 14, BBoxes = bounding boxes.

3.1.1 Japanese Society of Radiological Technology

One of the earliest chest X-ray data sets, released in 2000, is from the Japanese Society
of Radiological Technology, or JSRT in short [75]. The data sets consists of 247 chest
radiographs out of which 154 display lung nodules: 100 malignant, 54 benign. All images
were digitized with a 2048× 2048 pixel resolution and 12-bit depth.

3.1.2 Prostate, Lung, Colorectal and Ovarian Data Set

The Prostate, Lung, Colorectal, and Ovarian (PLCO) data set1 is based on a randomized,
controlled trial whether specific screening exams reduce mortality from the respective
forms of cancer [76]. The lung data set contains 85,421 chest radiographs from 56,071

1https://cdas.cancer.gov/plco/
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3 Background: Deep Learning for Chest X-Ray Diagnosis

patients acquired during screening procedures. The images have a resolution of 2500×
2100 pixels with 16-bit gray-scale values. Some of the image annotations mention not
only visible pathologies but also their location, for example, upper left lung.

3.1.3 Open-I

The public Open-i data set from the Indiana Network for Patient care contains 7470
chest radiographs (PA and lateral view) from 3955 corresponding radiology reports and
patients [77] The labels were extracted manually from radiology reports by matching the
impressions and findings section of the reports against medical subject headings (MeSH)2

and RadLex3 codes, resulting in 177 total findings. The images have a resolution of
512× 512 pixels.

3.1.4 Chest X-ray 8, Chest X-ray 14

One of the first openly accessible, large-scale chest X-ray data set is the chest X-ray
8 data set containing 112,120 frontal view chest radiographs from 32,717 patients [78].
Initially only eight labels were provided (chest X-ray 8) but later, the labels were ex-
tended to 14 (chest X-ray 14, CXR14). The 14 labels are atelectasis, cardiomegaly,
consolidation, edema, effusion, emphysema, fibrosis, hernia, infiltration, mass, nodule,
pleural thickening, pneumonia, and pneumothorax. Additionally, the authors provided
a small sub set (983 images) with bounding box annotations for the chest X-ray 8 an-
notations. The images have a resolution of 1024× 1024 pixels. In contrast to later data
sets, the test set was not manually labeled by radiologists but automatically, like the
rest of the data set making the evaluation of the labeling performance difficult. Hence,
the labels of this data set were criticized for being noisy and that chest X-ray 14 labels
pneumonia, consolidation, and infiltration are difficult to distinguish on the radiograph
itself, without further clinical information [79].

3.1.5 CheXpert

The CheXpert (Chest eXpert) data set contains 224,316 chest radiographs from 65,240
patients including frontal and lateral views [80]. Like the Chest X-ray 14 data set,
the images were labeled according to 14 classes, although different ones. The 14 data
set labels are: atelectasis, cardiomegaly, consolidation, edema, enlarged cardiomegaly,
fracture, lung lesion, lung opacity, no finding, pleural effusion, pleural other, pneumonia,
pneumothorax, and support devices. In contrast to the Chest X-ray 14 data set, the
labeling algorithm was released alongside with the data set. The labels were extracted
using a rule-based algorithm, which is explained in more detail in Chapter 4.2. Chest
X-ray 14 and CheXpert have the following labels in common: atelectasis, cardiomegaly,
consolidation, edema, pneumonia, and pneumothorax.

2https://www.nlm.nih.gov/mesh/meshhome.html
3https://radlex.org/
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3.1.6 MIMIC-CXR

The MIMIC-CXR data set contains 377,110 images (frontal and lateral view) from
227,835 studies from 65,379 patients including frontal and lateral views [81]. In contrast
to other data sets, both images and the corresponding radiology reports were released.
The images were labeled using the CheXpert labeler, hence both data sets share the
same labels.

3.1.7 Society for Imaging Informatics in Medicine – American College of
Radiology

The chest X-ray data set from the Society for Imaging Informatics in Medicine – Amer-
ican College of Radiology (SIIM-ACR) contains 15302 images [82]. The images were
randomly selected from the Chest X-ray 14 data set based on their labels. One third
was labeled as showing signs of pneumothorax (5,302 images), another third as normal
(5,000 images), and the remainder (5,000 images) was labeled with other classes. The
authors re-labeled the images manually and segmented pneumothoraces and chest tubes.

3.1.8 Pathology Detection in Chest Radiographs

The Spanish Pathology Detection in Chest Radiographs (PadChest) data set contains
160,868 images (frontal and lateral view) from 109,931 studies from 67,625 patients with
their corresponding radiology reports, 39,039 images were labeled manually [83]. The
radiology reports were first mapped to the unified medical language system (UMLS)
before labeling [84]. The remaining images were annotated automatically using four dif-
ferent deep learning-based models trained on the manual annotations. The images were
labeled according to 174 findings and 104 anatomic locations. The labels were organized
into hierarchical trees, for example, “chronical tuberculosis” is also “tuberculosis”.

3.1.9 VinBigData

The VinBigData set from the corresponding Kaggle competition4 contains 18,000 frontal
chest radiographs [85]. The images were manually labeled according to 28 findings and
further annotated with bounding boxes.

3.1.10 CANDID-PTX

The CANDID-PTX data set contains 19,237 chest radiographs containing pneumoth-
orax, rib fracture, and chest tube segmentations with the corresponding free-text re-
ports [86].

4https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection
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3.1.11 BRAX

The BRAX data set contains 40,967 chest radiographs from 34,959 patients from a
Brazilian hospital [87]. The labels were extracted automatically using a modified version
of the CheXpert labeler.

3.2 Chest X-Ray Classification Models

Research on deep learning for chest X-ray classification is heavily dependent on publicly
available data. Presented in the previous section, all openly available chest X-ray data
sets contain images and labels. Additionally, some smaller data sets (less than 20,000
images) include bounding box annotations (Chest X-ray 14 and VinBigData) or segmen-
tations (SIIM-ACR and CANDID-PTX). As deep learning models required large data
sets, most research focused on the multi-label image classification task [88]. This section
presents some key publications in the field, a more exhaustive review of the literature
can be found in [88].

One commonly used chest X-ray classification baseline is CheXnet [13]. It was one of
the first models trained on the Chest X-ray 14 data set for lung disease classification.
The model uses a DenseNet-121 as backbone, where the last layer has been replaced
with a fully-connected layer with a 14 dimensional output, matching the chest X-ray 14
classes. The authors showed in an extended publication that the architecture performs
similar to radiologists [89].
Ke and Ellsworth et al. investigated the choice of model architecture on CheXpert

classification performance, concluding that DenseNet, ResNet, and Inception perform
better than EfficientNet, MNASNet, and MobileNet [90]. These results are in line with
the choice of model architecture in the chest X-ray classification literature [13, 91, 14,
92, 93]. The authors explained their findings with the observation that more recent
ImageNet image classification architectures (EfficientNet, MNASNet, and MobileNet)
were explicitly optimized for the target data set, potentially overfitting the architecture
to it and making them less suitable for transfer learning. They also investigated the
importance of pre-training on ImageNet on chest X-ray classification performance with
CNNs compared to training them from scratch and demonstrated that transfer learning
improved classification performance on the CheXpert data set [90].
While current state-of-the-art ImageNet image classification models are based on the

transformer architecture, they perform similar to CNNs for chest X-ray classification [94,
95], probably due to the lack of very large data sets [94]. Xiao et al. demonstrated that
pre-training on ImageNet was not necessary for ViTs, achieving better results using
self-supervised than ImageNet pre-training [95].
Lacking large chest X-ray data sets with bounding boxes annotations or segmentations

for supervised training, several studies investigated related approaches for predicting
disease locations. For example, Li et al. modeled chest X-ray classification as a multi-
instance learning problem predicting class probabilities for image patches and used them
to predicted class probability and location [96]. Similarly, Gadgil et al. leveraged saliency
maps (see Chapter 7) to predict segmentations [97].
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4 Chest Radiology Reports

4.1 Anonymization of Radiology Reports

To the best of my knowledge, no German chest radiography data set with corresponding
free text report is currently publicly available. Although digital data sets are available
in many German clinics, data curation and annotation is a time intensive procedure.
Most importantly, before releasing a data set it must comply with strict privacy regula-
tions such as the General Data Protection Regulation (GDPR) [98]. Before any sensitive
data can be processed outside the clinic, for example, for research purposes, the GDPR
requires prior anonymization. We argue that most publicly available chest X-ray data
sets lack corresponding free text radiology reports, as only the anonymization of chest
radiographs is already automated, by stripping identifiable patient metadata1. Free text
reports, on the other hand, may contain patient information such as name and date of
birth or information about clinical employees that must be identified and anonymized
first. As the manual anonymization of large data sets is unfeasible due to time restric-
tions, together with Martina Hermsdorf, we developed a deep learning-based German
radiology report anonymization model.

Our proposed radiology report anonymization pipeline consisted of several steps:
timestamps and identifiers were replaced using regular expressions, and names using
a pre-trained model trained for named entity recognition (NER)2, i.e., classifying words,
for example, as names [100]. As the model was trained on general German texts, it
misclassified medical terms like the David operation as person names. To reduce such
false positive classifications, words classified as names were compared against a medical
key word data base3.

We evaluated the algorithm by comparing it against a manually anonymized data
set of 150 reports. All dates and identifiers were correctly anonymized. Person name
anonymization resulted in an average precision of 0.931 and recall of 0.962. In absolute
terms, out of 928 names in the test set 45 were not anonymized. While the results are
already very promising, it is unclear if a single instance of failed anonymization is legally
allowable for such sensitive information. For example, the algorithm used to anonymize
the MIMIC-CXR radiology reports did not detect 8 of 9,778 words containing personal
information in a manually annotated test set of 2,238 reports. To improve recall without
sacrificing precision, future work could aim to fine-tune a NER model on chest radiology
reports.

1With the exception of burned-in information. However, due to the contrast differences between back-
ground and text, a simple machine learning model should be able to redact this information [99].

2https://huggingface.co/flair/ner-german-large
3https://flexikon.doccheck.com
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4 Chest Radiology Reports

4.2 German CheXpert Chest X-ray Radiology Report Labeler

Most of the work presented in this section has been submitted as part of an article to
the Röfo journal on June 1st, 2023, the paper is currently under review (as of June
2023) [101].

4.2.1 Introduction

Herzschrittmacher links
präpektoral mit Sondenspitzen
Lage im rechten Vorhof sowie im
rechten Ventrikel. Recessus
beidseits frei, Zwerchfellkuppen
beidseits scharf abgrenzbar.
Keine umschriebenen Infiltrate.
Projektion von Herz und oberem
Mediastinum im Liegen
verbreitert. Geringe
pulmonalvenöse Stauung. Keine
pleurale Dehiszenz im Sinne
eines Pneumothorax, soweit in
Liegendaufnahme beurteilbar.

___

Keine Pleuraergüsse. Keine
umschriebenen Infiltrate. Geringe
pulmonalvenöse Stauung.

Herzschrittmacher links
präpektoral mit Sondenspitzen
Lage im rechten Vorhof sowie im
rechten Ventrikel. Recessus
beidseits frei, Zwerchfellkuppen
beidseits scharf abgrenzbar.
Keine umschriebenen Infiltrate.
Projektion von Herz und oberem
Mediastinum im Liegen
verbreitert. Geringe
pulmonalvenöse Stauung. Keine
pleurale Dehiszenz im Sinne
eines Pneumothorax, soweit in
Liegendaufnahme beurteilbar.

___

Keine Pleuraergüsse. Keine
umschriebenen Infiltrate. Geringe
pulmonalvenöse Stauung.
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Labels

Left prepectoral pacemaker with
probe tips. Location in the right
atrium as well as in the right
ventricle. Recessus on both sides
free, diaphragmatic crests sharply
delineated on both sides. No
circumscribed infiltrates.
Projection of heart and upper
mediastinum widened in
supine position. Minor pulmonary
venous congestion. No pleural
dehiscence in the sense of a
pneumothorax, as far as can be
assessed in supine radiography.
___

No pleural effusions. No
circumscribed infiltrates. Minor
pulmonary venous congestion.

English
Translation

Figure 4.1: Automated labeling of German thoracic radiology reports. A report is passed to
the report labeler and converted to 14 labels, motivated by CheXpert. The labeler detects each
class according to class-specific phrases and converts them to positive, negative, or uncertain
labels.

Chest X-rays are a frequently used and essential tool for detecting lung pathologies, like
pneumothorax [5, 6]. The accurate interpretation of chest X-rays can be essential for the
early detection, timely diagnosis, and effective treatment of these conditions. However,
due to the large number of radiological images, radiology departments in many countries
and regions are understaffed or overworked, ultimately risking the quality of care [102,
26, 24].
Recently, deep learning models used in decision support systems have achieved perfor-

mance levels in chest X-ray diagnosis of pathologies like pneumonia that are comparable
to those of radiologists [14, 89]. The integration of such models into clinical systems
could reduce repetitive work, decrease workload, and improve the diagnostic accuracy
of radiologists.
One of the reasons for the recent surge of innovation based on deep learning models

is the availability of large data sets. For example, the release of the ImageNet data
set and the according image classification competition, led to huge improvements in the
computer vision domain [103, 30, 59, 72]. Similarly, the release of the chest X-ray 14 data
set [78] sparked the development of chest X-ray classification models like CheXnet [13].
While the number of images used by modern deep learning architectures increased over
the years, large publicly available data sets required for new architectures such as Vision
Transformers [104] are missing in radiology, limiting the use of advanced models [94] and
inhibiting advances in automated chest X-ray diagnosis.
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Radiology departments around the world create large amounts of chest X-ray image
data with corresponding reports during clinical routine. Despite the existence of huge
numbers of radiological imaging studies and their radiological reports stored in the Pic-
ture Archiving and Communication Systems (PACS) of numerous clinics, only few are
used for the development of new deep learning models, due to missing infrastructure,
data privacy considerations, and required time, among others.
Unlike commonly used image data sets, such as ImageNet, chest X-ray data sets ob-

tained from clinical routine require expert annotation due to the specialized knowledge
required to understand the images. This annotation task falls on radiologists, who
possess the necessary training and expertise to accurately interpret the X-rays. While
decision support systems for chest X-ray diagnosis aim to reduce the workload of ra-
diologists, a significant challenge arises from the need for radiologists to perform the
time-consuming task of data annotation. This creates a ”chicken-and-egg” problem,
where the development of decision support systems depends on large, annotated data
sets, yet creating these data sets requires significant time and effort from radiologists.
To reduce the amount of time needed for data annotation, natural language process-

ing systems have been created for extracting structured labels from free-text radiology
reports. Such systems can be primarily categorized as rule-based or deep learning-based
approaches, each of which has its own benefits and limitations. Rule-based systems, for
instance, are easier to implement, require no computationally intensive training, pro-
vide higher explainability, and can be easily updated with new rules and classes by
anyone. On the other hand, deep learning-based approaches primarily rely on large lan-
guage models, and thus have the potential to produce more accurate label predictions
but require more computational resources and larger (manually) annotated data sets.
Furthermore, they can only be developed and maintained by experts.
Recent public chest X-ray data sets such as chest X-ray 14, CheXpert [80] and MIMIC-

CXR [99] were created by converting existing radiological reports to class labels auto-
matically using rule-based systems. For example, the CheXpert labeler converts an
existing report to the thirteen classes: atelectasis, cardiomegaly, consolidation, edema,
enlarged cardiomediastinum, fracture, lung lesion, lung opacity, pleural effusion, pleural
other, pneumonia, pneumothorax, support devices, and an additional “no finding” class.
To minimize development time, the CheXpert labeler was used to annotate the MIMIC-
CXR data set as well. Moreover, this labeler has been adapted and ported to process
reports in other languages, such as Brazilian [87] and Vietnamese [105]. The process of
labeling consists of three stages (see Figure 4.3): In the first stage, mention extraction,
the labeler scans the input text for phrases defined in class-specific lists. For example,
the phrase list for pneumothorax contains phrases such as “pneumothorax” and “pleural
dehiscence”. Next, extracted mentions are classified as positive, negative, or uncertain
during the second stage (mention classification). Finally, an observation label is created
by aggregating all its mentions together (mention aggregation). If a report happens to
mention no observation, except support devices, the report is instead labeled as “no
finding”.
For German radiology reports, Nowak et al. investigated different approaches for

training a deep-learning based labeling model [106]. In contrast to the CheXpert labeler,
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their model predicted only the six observations: pulmonary infiltrates, pleural effusion,
pulmonary congestion, pneumothorax, regular position of the central venous catheter
(CVC) and misplaced position of the CVC. So far, neither source code nor model weights
were released.

In this work, we propose an automatic labeler for German thoracic reports based on
the CheXpert algorithm (shown in Figure 4.1). Our contributions are:

• We created a rule-based labeling algorithm for converting German thoracic radi-
ology reports to CheXpert labels.

• We propose a web-based annotation tool for radiologists to adapt the labeler to
new phrases used in a specific clinic and create a ground truth data set.

• We demonstrated that our proposed labeler performs similarly to radiological re-
port labelers in other languages. In addition, we showed that a pneumothorax
classifier trained on weakly labeled data outperforms models trained solely on
publicly available data, and competitively to manually labeled data.

4.2.2 Materials and Methods

4.2.2.1 Data Collection

We retrospectively identified thoracic radiology reports from 2020 to 2021 in our institu-
tional PACS and randomly selected 900 reports for the creation of a reference standard
and 186 reports for phrase collection and development. In the following, we refer to this
data set as data set 1 (DS 1). Initially, two radiologists, one board-certified radiologist
with more than ten years’ experience (B.S.), and one first year radiology resident (S.H.)
from Klinikum der Ludwig-Maximilians-Universität München compiled a list of common
phrases for each of the fourteen CheXpert classes. During the following data annotation
process the list of phrases was expanded, including positive, negative, and uncertain
phrases.

4.2.2.2 Data Annotation

To make the labeling of data set 1 as efficient and accurate as possible, we built a multi-
user web-based labeling interface. The design and implementation respect patient data
privacy by running the process locally in a secure environment.

The annotation tool, shown in Figure 4.2, displays the view position and report text
on the left side of the screen, with four selectable labeling options available per pathol-
ogy on the right. These options conform to the original CheXpert architecture and
include positive, negative, uncertain, and none, which is used if the specific class was
not mentioned. Radiologists can add new class-specific phrases by selecting “add new”
and mark and comment on a report for later review. Before saving the annotations, the
application highlights the phrases that were recognized by the labeler but were marked
as “none” and prompts for a phrase if a class was selected during annotation, but not
recognized by the labeler, thereby improving the phrase lists.
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Add a new phrase

Phrase "Infiltrat" relevant
for labels "Lung opacity"
and "Pneumonia"

Mark for
inspection

Labels

Report with view
position

Figure 4.2: Report annotation web interface. Top: On the left side view position and report are
displayed, on the right the 14 labels can be selected. Additionally, new phrases can be added by
clicking “ADD NEW” and a report can be marked for later inspection. Bottom: After clicking
“SAVE” the tool highlights the matching phrases with their corresponding labels and asks for a
phrase when the selected class was not found by the labeler. Clicking “SAVE” again will save
the annotation and load the next report.
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Dataset Data Set 1 (DS 1)

Split Development Test
Reports 186 900

Class P U N P U N

Atelectasis 29 17 1 203 50 2
Cardiomegaly 34 56 41 166 338 248
Consolidation 17 28 115 210 23 552
Edema 61 3 74 259 11 478
Enlarged Cardiom. 39 42 52 206 273 277
Fracture 11 1 12 61 4 75
Lung Lesion 11 1 1 37 11 12
Lung Opacity 31 27 112 275 20 484
No Finding 24 - - 121 - -
Pleural Effusion 72 7 90 411 49 390
Pleural Other 11 3 - 53 18 1
Pneumonia 4 48 114 52 142 578
Pneumothorax 27 1 147 62 11 786
Support Devices 108 - 17 523 2 101

Dataset Data Set 2 (DS 2)

Split Training Validation Test
Reports 4507 660 1267

Class P N P N P N

Pneumothorax 1122 3385 204 456 326 941

Table 4.1: Data sets with data splits and annotated classes used in this study. Data set 1 class
annotations were acquired using our proposed annotation interface from free text reports. Data
set 2 class annotations were acquired from reports and radiographs [107]. Enlarged Cardiom. =
Enlarged Cardiomediastinum, P = Positive, U = Uncertain, N = Negative.
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To evaluate the labelers performance and expand the class pattern list, one first year
radiology resident (S.H.) from Klinikum der Ludwig-Maximilians-Universität München
annotated the 1086 randomly selected radiology reports of data set 1 using our proposed
annotation interface. The resulting class distribution is listed in Table 1.

4.2.2.3 Report Labeler

Report Labeler

Mention Classification

Kein Nachweis eines Pneumothorax

       Mention Aggregation

Labels: Pneumothorax = negative, ...

  Mention Extraction

Kein Nachweis eines Pneumothorax

Report

Kein Nachweis eines Pneumothorax

(No evidence of pneumothorax)

Figure 4.3: Labeling flow from our proposed
report labeler based on the CheXpert architec-
ture. The report is first matched against a set of
class-specific phrases. Afterwards, each match is
classified as positive, negative, or uncertain. If
the report did not match any phrase it is labeled
as no finding in the final stage. English transla-
tion provided below the German report excerpt.

In German radiology reports, two distinct
types of negations were identified: expres-
sions that contain phrases like “nicht” or
“kein” (“no”, “not”) and are observation-
independent, which can be resolved by
the German NegEx algorithm [108]. The
other class comprises medical terms that
lack any negations but convey the lack of
an observation, for example, “Herz nor-
mal groß” (“regular heart size”). As
the CheXpert architecture addresses only
negated observations, we extended the ar-
chitecture by using multiple phrase files
(positive, negative, uncertain) per obser-
vation.

As the original mention classification
stage depends on an extensive rule set cre-
ated for English report texts, our labeler
utilizes a modified version of the German
NegEx algorithm to classify German men-
tions instead. In the first step, the labeling
algorithm identifies negation phrases such
as “kann ausgeschlossen werden” (“can be
excluded”), and uncertainty phrases, such
as “unwahrscheinlich” (“unlikely”), based
on a set of rules and marks them as pre-
or post-negation/uncertainty phrases.

To identify whether the classification of
a mention is affected by negation/uncertainty terms, a cut-off radius determines how
many words before and after the mention are taken into consideration, following the
German NegEx algorithm. If the relevant region around the mention does not contain
any known negation/uncertainty phrases, the mention is classified as positive. If either
a pre-negation or post-negation is found near the mention, it is classified as negative.
Finally, if there is an uncertainty phrase in the surrounding region, the mention is
classified as uncertain.

To form the final label for each observation, the results from mention classification are
aggregated as shown in Figure 4.4. The following rules are applied to derive the labels:
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At least one positive
mention?

positive

At least one uncertain
mention?

uncertain negative

True False

True False

Start

Mention Aggregation 

Figure 4.4: Derivation of class labels by aggregating all classified mentions per observation.
Since an observation can be mentioned multiple times in a report, they must be aggregated for
classification.

1. Observations with at least one positive mention are assigned a positive label.

2. Observations with no positive mentions and at least one uncertain mention, are
labeled as uncertain.

3. Observations with no positive or uncertain mention or at least one negative mention
are classified as negative.

The “no finding” label follows a different logic. Initially, a report is labeled as “no
finding”. The label is changed to negative if any of the other observations (excluding
“support devices”) are labeled as positive or uncertain.

The main benefit of automated label extraction is time savings. Our proposed algo-
rithm features low memory consumption and enables parallel labeling of multiple reports
using multi-threading. Using twelve threads the algorithm labeled 100 reports on aver-
age in 1.84 s ± 27.3 ms on a workstation equipped with an Intel i7-6800K CPU with a
clock speed of 3.40GHz.

4.2.2.4 Label Extraction (DS 1)

Label extraction performance was measured by comparing extracted and annotated la-
bels on DS 1 on three tasks: mention extraction, negation detection, and uncertainty
detection. Regarding the mention extraction task, unlabeled findings (“none”) were con-
sidered as negative, annotated (“positive”, “negative”, or “uncertain”) as positive. For
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negation detection, findings annotated as negative were considered as positive, others as
negative. For uncertainty detection, annotations were classified analogously. The phrase
lists were optimized on the development subset of DS 1. Phrases that were collected
during the test subset annotation were discarded to avoid overfitting.

4.2.2.5 Pneumothorax Classification (DS 2)

To measure the effect of automatically extracted labels on downstream model training
and classification performance we extracted pneumothorax labels from the radiology
reports of an additional internal data set [107]. In the following, we refer to this data
set as data set 2 (DS 2). This data set consists of 6434 frontal chest radiographs and
their reports, out of which 1568 have been labeled as pneumothorax. Unlike DS 1, the
labels are based on radiographs rather than solely reports, and as such, no uncertainty
or “none” label are available. We converted the extracted labels to binary labels by
considering uncertain cases as positive. For comparison, we applied the same conversion
to DS 1 labels and annotations. Additionally, “none” annotations were considered as
negative.

We used a DenseNet-121 pre-trained on ImageNet as backbone for our network. We
replaced the final fully connected layer with a single output when fine-tuned on DS
2. We replaced the final softmax activation with a sigmoid. We used ADAM with
a learning rate of 0.003 and a batch size of 32 and trained for 10 epochs. For our
experiments, we selected the best checkpoint based on the validation area under the
receiver operating characteristic curve (AUC). All images were normalized according to
the ImageNet mean and standard deviation and resized to 224x224 pixels. For data
augmentation we applied ten-crop. For our experiments, we compared a DenseNet-121
fine-tuned on the chest X-ray 14 data set (CheXnet) and fine-tuned on DS 2. When
fine-tuning on DS 2 we trained with either radiologists’ annotations (annotated) or
automatically extracted labels (extracted).

4.2.2.6 Statistical Evaluation

We evaluated the labeler’s performance using F1 score, precision, and recall regarding
mention extraction, negation detection, and uncertainty detection by comparing the
extracted to the annotated labels from DS 1. We evaluated pneumothorax classification
performance using receiver operating characteristics (ROC) and AUC. Because our study
is exploratory and involves multiple comparisons, we refrained from providing P values
and provide 95 % confidence intervals calculated using the non-parametric bootstrap
method with 10,000-fold resampling at the image level. The labeler performance with
respect to the binary pneumothorax labels of DS 2 was measured using sensitivity and
specificity. For comparison of DS 1 and DS 2, we converted DS 1 labels and annotations
to binary labels and measured sensitivity and specificity. The statistical analyses in this
study were done using NumPy version 1.24.2 and Scikit-Learn version 1.2.2.
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Data Set 1 Mention Extraction Negation Uncertainty
Findings F1 R P F1 R P F1 R P

Atelectasis 0.968 0.96 0.976 N/A N/A N/A 0.648 0.7 0.603
Cardiomegaly 0.813 0.71 0.952 0.627 0.528 0.771 0.683 0.551 0.898
Consolidation 0.933 0.919 0.947 0.884 0.802 0.984 0.4 0.609 0.298
Edema 0.993 0.996 0.991 0.965 0.941 0.989 0.48 0.545 0.429
Enlarged Cardiom. 0.867 0.807 0.937 0.678 0.569 0.84 0.725 0.607 0.902
Fracture 0.838 0.856 0.821 0.713 0.554 1.0 N/A N/A N/A
Lung Lesion 0.8 0.833 0.769 0.917 0.917 0.917 0.385 0.455 0.333
Lung Opacity 0.92 0.915 0.926 0.851 0.743 0.994 0.364 0.6 0.261
No Finding 0.238 1.0 0.135 N/A N/A N/A N/A N/A N/A
Pleural Effusion 0.99 0.985 0.995 0.948 0.938 0.958 0.5 0.429 0.6
Pleural Other 0.864 0.792 0.95 N/A N/A N/A 0.8 0.778 0.824
Pneumonia 0.902 0.829 0.988 0.862 0.771 0.976 0.705 0.612 0.833
Pneumothorax 0.995 0.999 0.991 0.981 0.978 0.985 0.353 0.273 0.5
Support Devices 0.939 0.92 0.96 0.842 0.762 0.939 N/A N/A N/A

Table 4.2: F1 Score, precision and recall for the three evaluation tasks of our report labeler:
mention extraction, negation detection, and uncertainty detection for each finding. Labels were
extracted from DS 1 and compared to manual annotations. Enlarged Cardiom. = Enlarged
Cardiomediastinum, F1 = F1 Score, R = Recall, P = Precision.

4.2.3 Results

4.2.3.1 Label Extraction (DS 1)

The mention extraction, negation detection, and uncertainty detection results are shown
in Table 4.2. Excluding the special case “no finding”, mention extraction F1 score ranged
from 0.8 to 0.995, negation detection F1 score from 0.624 to 0.981, and the uncertainty
detection F1 score from 0.353 to 0.725. The special case “no finding” covers both reports
that describe a normal chest radiograph and is the default label when the labeler does
not find anything. Since blank “none” labels are considered negative for the mention
extraction task, the precision reflects the labeler not finding any mention in the report.
Results marked as “N/A” have insufficient samples for calculation.

Commonly, chest X-ray classification models are trained on binary labels. Following
Irvin et al. [80], we treat uncertain labels as positive and obtain sensitivity and specificity
results as reported in Table 4.3.

4.2.3.2 Pneumothorax Label Extraction (DS 2)

The labeler extracted pneumothorax labels from DS 2 reports with a sensitivity of 0.997
[95 % CI: 0.994, 0.999] and specificity of 0.991 [95 % CI: 0.988, 0.994], see Table 4.3.
Differences between pneumothorax sensitivity and specificity on DS 1 and DS 2 can be
explained by the underlying annotation. Uncertain DS 1 annotations were considered
as positive, missing (“none”) annotations as negative.
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Data Set 1
Findings Sensitivity Specificity

Atelectasis 0.944 [0.915-0.970] 0.988 [0.978-0.995]
Cardiomegaly 0.680 [0.639-0.721] 0.909 [0.880-0.936]
Consolidation 0.952 [0.923-0.978] 0.892 [0.868-0.914]
Edema 0.970 [0.948-0.989] 0.946 [0.928-0.963]
Enlarged Cardiom. 0.767 [0.727-0.803] 0.793 [0.754-0.831]
Fracture 0.954 [0.897-1.000] 0.959 [0.945-0.972]
Lung Lesion 0.792 [0.667-0.900] 0.986 [0.978-0.993]
Lung Opacity 0.979 [0.962-0.993] 0.859 [0.831-0.886]
No Finding 0.736 [0.653-0.813] 0.983 [0.974-0.991]
Pleural Effusion 0.965 [0.947-0.981] 0.968 [0.951-0.984]
Pleural Other 0.789 [0.688-0.881] 0.998 [0.994-1.000]
Pneumonia 0.874 [0.825-0.920] 0.977 [0.966-0.987]
Pneumothorax 0.819 [0.727-0.904] 0.979 [0.969-0.988]
Support Devices 0.902 [0.876-0.927] 0.906 [0.876-0.935]

Data Set 2
Findings Sensitivity Specificity

Pneumothorax 0.997 [0.994, 0.999] 0.991 [0.988, 0.994]

Table 4.3: Sensitivity and specificity for the extracted labels compared to the reference annota-
tions on DS 1 and DS 2 with corresponding 95 % confidence intervals. To create binary labels,
uncertain labels/annotations were considered positive, “none” negative. Enlarged Cardiom. =
Enlarged Cardiomediastinum.

4.2.3.3 Pneumothorax Classifier

The ROC curves and corresponding AUC values for the pneumothorax classification
models trained on our internal data set with manually annotated labels or extracted
labels and trained on the chest X-ray 14 data set are shown in Figure 4.5. Training with
manually annotated labels from multiple readers performed best with an AUC of 0.934
[95 % CI: 0.918, 0.949], followed by the model trained with labels extracted automatically
with our labeler with an AUC of 0.858 [95 % CI: 0.832, 0.882]. The CheXnet model
trained on chest X-ray 14 data performed worst with an AUC of 0.728 [95 % CI: 0.694,
0.760].

4.2.4 Discussion

In this study, we proposed an automatic label extraction algorithm for German thoracic
radiology reports. Our deep learning model trained on extracted labels demonstrated
strong improvements compared to the CheXnet model (0.728 vs.0.858 AUC) and com-
petitive performance compared to training with manually annotated data (0.858 vs.
0.934 AUC), as shown in Figure 4.5. This indicates a promising alternative to manual
annotation of the training data, especially as the training data set size can be easily
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AUC: 0.934 CI:  [0.918-0.949], Annotated Labels
AUC: 0.858 CI:  [0.832-0.882], Extracted Labels (ours)
AUC: 0.728 CI:  [0.694-0.760], CheXnet

Figure 4.5: Receiver operating characteristic (ROC) curves and areas under the ROC curve
(AUC) for pneumothorax classification on chest radiograph on our internal data set (DS 2). The
model was trained on public data (CheXnet), on the DS 2 training data with either manual
annotation (Annotated Labels) or labels extracted using our report labeler (Extracted Labels).

scaled with our proposed method. We expect better performance with larger training
data sets, allowing for the use of more advanced model architectures, as larger training
data sets generally improve image classification performance [104].

Although the extracted pneumothorax labels from DS 2 had a high label sensitivity
and specificity of over 99 % (see Table 4.3), the larger classification AUC difference by
the deep learning model trained on manual and extracted labels could be explained by
the effect of noisier labels, making it harder to generalize. Creating class labels from
radiological reports will always be inferior to the additional inspection of the image and
a manual annotation. While pneumothorax label specificity is similar on both data sets,
the sensitivity is considerably lower on data set 1, with a larger confidence interval. We
interpret this difference as the effect of converting uncertain predictions to positives, as
the uncertainty detection F1 score is comparatively low (see Table 4.2). While greater
annotation quality resulted in better label extraction performance, it must be balanced
with the time required to create such annotations. The results of our work show that
our proposed labeler is a promising tool for clinical data scientists to create data sets.

Our label extraction algorithm was successful in identifying corresponding labels in
DS 1 across all classes. The results are in line with other methods proposed in the litera-
ture [78, 80, 99]. Based on our experience, collecting labeling phrases using the proposed
interface and the labeler results, we assume that the method can be easily applied to ra-
diology reports from other clinics. Hence, additional classes can be incorporated quickly.
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Furthermore, the annotation speed can be greatly improved by running the labeler first.
Multiple readers could lower the risk of overlooking classes missed by the labeler.
During the process of annotating radiological reports based on the 14 CheXpert class

labels, the radiologists commented that not all class labels were equally simple to anno-
tate. In particular, the class ”pleural other” was considered too vague for meaningful
evaluation. Although the CheXpert labels were chosen based on the glossary of terms
for thoracic imaging from the Fleischner Society [109], some of these labels lacked clear
definitions, which could lead to inconsistent annotation, particularly when multiple an-
notators are involved, especially the “uncertain” classification is arguably too vague to
be effectively used for modeling. To address these issues, future work could leverage the
proposed annotation tool to refine and expand the CheXpert classes, ensuring that the
labels are clearly defined and precise.
Images from a single clinic cannot be representative for the global population. Most

chest X-ray data sets that are currently publicly available, such as Chest X-ray 14,
CheXpert, or MIMIC-CXR stem from U.S. clinics. By establishing a set of shared class
labels and developing chest X-ray report labels for other languages, models build on
multi-institutional data sets will be more robust and general. We hope that our work
motivates further research in other languages.
One limitation of our work is that we evaluated the effect of automatically extracted

labels on chest X-ray classification performance only for the pneumothorax case, not
for others. Future work will evaluate the model on all fourteen classes. Another limi-
tation is that the proposed labeler cannot handle semantically equivalent words due to
its rule-based nature. In a follow-up work we plan to replace it with a more sophisti-
cated language model. Finally, we observed that few radiology reports described several
images. Hence, extracted labels might refer not to the chest radiograph but another
image.
In conclusion, we showed that extracting CheXpert labels automatically from Ger-

man chest X-ray radiology reports are a promising substitute for manual annotation. A
pneumothorax model trained on these extracted labels demonstrated competitive per-
formance compared to manually annotated data.
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4.3 Automated Labeling of German Chest X-Ray Radiology
Reports using Deep Learning

A pre-print of most of the methods and results presented in this chapter has been
submitted to ArXiv and is being prepared for publication (as of June 2023).

4.3.1 Introduction

Radiologists are in short supply worldwide, and deep learning models hold promise for
addressing this shortage, for example, as decision-support systems (see Section 1.4).
However, training such models often requires large data sets that are expensive and
time-consuming to manually label. To reduce the amount time for obtaining labeled
data sets, automatic label extraction from radiology reports is a compelling option.
Unfortunately, label extraction from radiology reports itself is a challenging task, for
example, due to semantically similar words and missing annotated data.

Recent developments in the natural language processing (NLP) domain have proposed
models that generate dense word vector representations [110, 111, 112, 63], which have
shown to be effective in training deep learning models for a wide range of tasks such
as translation [62] and named entity recognition [100]. Similar to the computer vision
domain, these language models can be pre-trained on a general, large corpus and then
fine-tuned on a target corpus that might be otherwise too small for training [74].

In the medical domain, language models have been successfully applied to extract
labels from unstructured radiology reports. Smit et al. [113] improved upon their rule-
based labeler for English radiology reports by using a BERT [112] language model as
backbone. Similarly, Nowak et al. [106] investigated the use of BERT for German ra-
diology reports. They compared a rule-based labeler to a deep learning model, trained
with 18,000 manually annotated reports, rule-based extracted labels, and a combination
of both.

In this work, we explore the potential of weak supervision of a deep learning-based label
prediction model, using a rule-based labeler. In contrast to Nowak et al., we focus on the
classes of the CheXpert data set [80] (see Section 3.1.5), allowing for comparison with
Smit et al. [113]. Our study builds upon previous work that used rule-based strategies to
extract labels [101], presented in the previous section. We conduct extensive experiments
on a dataset of internal radiology reports, and our results demonstrate the effectiveness
of our approach.

4.3.2 Materials and Methods

4.3.2.1 Data Collection

We retrospectively identified 66,071 thoracic radiology reports from 2017 to 2021 in our
institutional PACS. Additionally we used 1,091 thoracic radiology reports from 2020-
2021 that were manually annotated by a first-year radiology resident from Klinikum der
Ludwig-Maximilians-Universität München in a previous study [101].
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Split Train Test
Finding Positive Uncertain Negative Positive Uncertain Negative

Atelectasis 220 54 2 12 13 1
Cardiomegaly 184 368 266 16 25 25
Consolidation 205 45 627 23 6 41
Edema 297 9 521 24 5 34
Enlarged Cardiom. 223 295 305 22 19 26
Fracture 63 3 79 9 2 8
Lung Lesion 44 7 8 5 5 5
Lung Opacity 278 41 565 28 6 35
No Finding 1 0 0 1 0 0
Pleural Effusion 455 45 451 29 11 32
Pleural Other 57 16 1 7 5 0
Pneumonia 52 173 649 5 16 45
Pneumothorax 83 7 871 5 5 66
Support Devices 590 1 107 43 1 12

Table 4.4: Overview of the class distributions of the manually annotated training and test data.
Enlarged Cardiom. = enlarged cardiomediastinum.
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Figure 4.6: Architecture of our pro-
posed label extraction model.

The training and test set label distributions of
the manually annotated reports is reported in Ta-
ble 4.4. Since annotated “no finding” reports de-
scribe normal appearing chest radiographs, there
are no negative or uncertain annotations. To en-
sure sufficient representation of each class during
testing, we selected 78 of the 1,091 manually an-
notated reports. This ensured that each class was
mentioned by at least five reports. To increase the
number of training samples, we favored test sam-
ples with multiple annotations. In cases where the
entire data set contained less than five samples for
a specific class, half of the samples were designated
for testing. None of the manually annotated re-
ports used for testing were part of the 66,071 re-
ports.

4.3.2.2 Model Architecture

Following Smit et al. [113] we used a pre-trained BERT [112] model as backbone for our
label extraction model. The objective of the model is to predict the fourteen CheXpert la-
bels: atelectasis, cardiomegaly, consolidation, edema, enlarged cardiomediastinum, frac-
ture, lung lesion, lung opacity, pleural effusion, pleural other, pneumonia, pneumothorax,
support devices, and “no finding” given a German radiology report [80]. The model re-
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ceives the report as input and assigns one of the classes: blank, positive, negative, or
uncertain to each of the 13 observations, mirroring the manual annotation. The blank
represents no mention of the class in the report. For the special case “no finding”, which
corresponds to the absence of any of the findings, the labeler must predict only blank or
positive.

We modified the BERT architecture by using 14 linear heads, as illustrated in Fig-
ure 4.6 [113]. Each head is dedicated to capture one of the 14 labels. For transfer learn-
ing we use the pre-trained “bert-base-german-cased” BERT model4 trained on German
texts, such as the German Wikipedia corpus [114] with a sequence length of 512.

To predict the classes of the 14 findings, the radiology reports were first tokenized.
Of all tokenized reports, a single report in the training data, and none in the test data
consisted of more than 512 tokens. The overflowing report consisted of 579 tokens and
described multiple images in each report. We considered only the first 512 tokens of this
report. After tokenization, the reports were processed by the model. Subsequently, the
hidden state of the class (CLS) token from the final layer was used as the input for each
of the 14 linear heads, predicting the class of each finding via a softmax.

The model was fine-tuned using cross-entropy loss, AdamW [54] optimization with
default parameters (β1 = 0.9, β2 = 0.999), a learning rate of 2e-5, and a batch size
of 8. The individual cross-entropy losses for the 14 observations were aggregated before
calculating the final loss. To monitor model performance, we periodically evaluated the
model on the validation set and saved the best checkpoint across all 14 observations.

4.3.2.3 Experiments

We evaluated the deep learning-based labeler on three tasks: First, we investigated the
benefit of weak labels on label extraction performance. The labels were created using the
rule-based model proposed in a previous study [101] (see Section 4.2). For validation, we
randomly sampled 1000 reports, and for internal testing 5000 reports, without patient
overlap. We used the remaining 60,071 reports for training. The manually labeled
reports were used only for final testing.

Run Training Validation Test

25 % 203 51 78
50 % 406 101 78
75 % 608 152 78
100 % 810 203 78

Table 4.5: Training, validation, and test splits for the different training runs on manually
annotated data.

As a second experiment, we trained the model solely on manually annotated reports.
To assess the importance of the number of annotated reports, we split the training data
into four quarters and trained on increasingly larger fractions, as reported in Table 4.5.

4https://huggingface.co/bert-base-german-cased
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Finally, we fine-tuned the best weakly supervised model on the manually annotated
reports. Again, we trained the model on increasing fractions of the manually annotated
training data set, as reported in Table 4.5

For all three experimental settings we measured mean F1 scores for the three tasks of
mention extraction, negation detection, and uncertainty detection by comparing model
predictions with manually annotated test reports. Following the original CheXpert pub-
lication [80], findings labeled as “blank” were considered as negative for the mention
extraction task and the other classes (“positive”, “negative”, or “uncertain”) as positive.
Regarding negation detection, only the “negative” classification was considered positive,
and for uncertainty detection, only the “uncertain” class was considered positive.

4.3.3 Results

4.3.3.1 Weakly Supervised Training

When trained only with reports labeled by the German CheXpert labeler, the model
achieved a mean F1 score of 91 % for mention extraction, 82 % for negation detection,
and 52 % for uncertainty detection. Note that although the model was trained on au-
tomatically extracted labels, it was tested with manually annotated labels, as described
in Table 4.4.

4.3.3.2 Supervised Training

Supervised Training
Run Mention Extraction Negation Detection Uncertainty Detection

25 % 0.87 0.69 0.59
50 % 0.82 0.72 0.43
75 % 0.87 0.81 0.61
100 % 0.84 0.83 0.57

Table 4.6: Mean F1 scores when trained on increasing fractions of manually annotated reports.
Highest F1 scores are highlighted in bold.

The results obtained, when trained solely on increasing fractions of manually anno-
tated reports, are reported in Table 4.6. Mention extraction F1 scores ranged from 82
% to 84 %. Negation detection F1 scores increased from 69 % to 83 % when increasing
the amount of training data. Mean uncertainty detection F1 scores ranged from 43 %
to 61 %. Using 75% of the training data performed better than using all training data
for both mention extraction and uncertainty detection.

4.3.3.3 Weakly-Supervised Pre-Training

The effect of pre-training with automatically labeled reports first and then fine-tuning on
varying amounts of manually annotated data is reported in Table 4.7. Mention extraction
results ranged from 93 % to 94 % mean F1 score, with a slightly higher score obtained
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Weakly-Supervised Pre-Training
Run Mention Extraction Negation Detection Uncertainty Detection

25 % 0.93 0.88 0.56
50 % 0.94 0.87 0.64
75 % 0.94 0.89 0.54
100 % 0.94 0.89 0.61

Table 4.7: Mean F1 scores when pre-trained on weakly labeled reports followed by fine-tuning
on increasing fractions of manually annotated reports. Highest F1 scores are highlighted in bold.

with more training data. Similarly, negation detection F1 scores improved when using
more manually annotated training data, F1 scores ranged from 0.88 % to 89 %. Mean
uncertainty detection F1 scores ranged from 56 % to 64 %.

4.3.3.4 Comparison of Rule-Based and Deep Learning-Based Label Extraction

Mention Extraction Negation Detection Uncert. Detection
Finding RB DL RB DL RB DL

Atelectasis 0.982 0.963 1.0 N/A 0.769 0.700
Cardiomegaly 0.667 0.955 0.649 0.898 0.571 0.809
Consolidation 0.950 0.979 0.746 0.911 0.400 0.400
Edema 0.992 0.985 0.939 0.955 0.600 N/A
Enlarged Cardiom. 0.820 0.933 0.800 0.776 0.500 0.821
Fracture 0.900 0.900 0.545 0.857 N/A N/A
Lung Lesion 0.857 0.938 0.889 0.889 0.182 0.714
Lung Opacity 0.936 0.952 0.667 0.853 0.316 N/A
No Finding 0.025 N/A N/A N/A N/A N/A
Pleural Effusion 0.973 0.974 0.954 0.955 0.556 0.706
Pleural Other 0.857 0.737 N/A N/A 0.500 0.333
Pneumonia 0.922 0.964 0.892 0.966 0.600 0.688
Pneumothorax 0.987 0.994 0.964 0.950 0.571 0.333
Support Devices 0.972 0.962 0.800 0.762 N/A N/A

Mean 0.91 0.94 0.82 0.89 0.51 0.61

Table 4.8: Comparison of rule-based and deep learning-based label extraction on mention ex-
traction, negation detection, and uncertainty detection measured with the F1 score. The deep
learning-based model was first trained on the weakly labeled reports and then fine-tuned on all
manually labeled training data. Highest mean F1 scores are highlighted in bold. RB = rule-based
labeler, DL = deep learning-based labeler, Uncert. Detection = uncertainty detection, Enlarged
Cardiom. = enlarged cardiomediastinum.

To assess the benefit of employing a deep learning model for label extraction, we
compared the results of the rule-based German CheXpert labeler with the proposed
deep learning-based model. The deep learning-based model was first pre-trained on the
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weakly labeled reports and then fine-tuned on the manually labeled data (100 % run).
The results are reported in Table 4.8.
Across all thee tasks, the deep learning model performed better. For mention extrac-

tion, our proposed deep learning labeler had a mean F1 score of 94 % compared to 91
% of the rule-based labeler. For negation and uncertainty detection, the improvement
of using a deep learning-based labeler compared to a rule-based model was even greater,
with 89 % vs. 82 % mean F1 score for negation detection, and 61 % vs. 51 % mean F1
score for uncertainty detection.

4.3.4 Discussion

In this work, we proposed a deep learning-based CheXpert label prediction model. Our
model was pre-trained on reports labeled by a rule-based German CheXpert model and
fine-tuned on only a thousand manually labeled reports. On average, it significantly
outperformed the rule-based model, on all three tasks, as shown in Table 4.8. Our
results show that the improvements of deep learning-based label extraction compared to
rule-based transfer from English to German radiology reports [113].
Similar to Nowak et al., the deep learning-based model outperformed the rule-based

model on German reports. Apart from using different data sets, a direct comparison is
made difficult, as Nowak et al. considered both uncertain and negative mentions as neg-
ative labels. Furthermore, their rule-based labeler achieved only an average classification
F1 score of 75.1 %, compared to their deep learning-model with 95.5 %. Consequently,
they observed that their automatically labeled reports did not improve the deep learning
model performance. In contrast, our rule based-labeler served as strong baseline with
an average mention extraction F1 score of 91 % and negation detection F1 score of 82
% (see Table 4.8). Consequently, pre-training with weak supervision improved the per-
formance compared to only training on manually annotated data alone. For example,
mean mention extraction F1 score improved from 84 % to 94 % when using all data.
In contrast to Nowak et al., our model was trained on only approximately one thou-

sand manually labeled reports, compared to a total of 18,000 [106]. While they showed
that increasing the amount of manually annotated training data improved mean F1
scores from 70.9 % to 95.5 % when increasing training data from 500 to 14,580 samples,
annotating all 18,000 samples took 197 hours. Based on their results, we assume that
increasing the number of manually annotated samples, could further improve our model.
Our study has several limitations. First, due to the limited number of available man-

ually annotated reports, most data was used for training. A future study with more
manually annotated data could both improve model performance and reduce the vari-
ation of test scores. Another limitation is that the labels were created only by a single
radiologist, possibly introducing label biases or errors made due to annotation fatigue.
In conclusion, we demonstrated a significant improvement in German radiology report

labeling using our proposed deep learning-based labeler, achieving a new state-of-the-
art on this data set. Our results provide evidence of the benefits of employing a deep
learning-based model, even in scenarios with sparse data, and the use of the rule-based
labeler as a tool for weak supervision.
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5 WindowNet: Learnable Windows for
Chest X-ray Classification

A pre-print of most of the methods and results presented in this chapter has been
submitted to ArXiv and is being prepared for publication (as of June 2023).

5.1 Introduction

Fracture Window No Window Consolidation Window

Figure 5.1: Applying a windowing operation enhances the contrast of particular structures of
an image. The left window improved fracture, and the right window consolidation classification
performance of our model compared to no windowing (middle) on the MIMIC data set.

Chest X-rays (CXR) are commonly acquired with a high resolution and bit depth. For
example, the images of the MIMIC data set [99] (see Section 3.1.6) have approximately
a 2500 × 3056 pixel resolution with 12-bit depth gray values. To reduce file size, these
images are often compressed to a lower resolution, for example, 1024 × 1024 and lower
bit depth, for example, 8-bit [78].

Under optimal conditions the human eye can differentiate between 700 and 900 shades
of gray, or 9 to 10 bit-depth [115]. To better differentiate subtle lines, radiologists apply
a windowing operation to the image: they increase the contrast by limiting the range
of gray tones. These window ranges can be described using their center (window level)
and width (window width). Formally, the windowing operation applied to a pixel value
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px can be defined as:

window(px) = min(U ,max(L, px)),

U = WL+WW /2,

L = WL−WW /2.

Where U is the upper limit and L the lower limit of the window defined by the window
level WL and window width WW.

For computed tomography (CT) images, the gray values are calibrated according to
the Hounsfield unit (HU) scale [4, p. 155]. A HU value of -1000 corresponds to air, 0 HU
to distilled water at standard pressure and temperature, and, for example, bones range
from 400 HU to 3000 HU [4, p. 155]. On the screen, air is displayed in black, whereas
bones appear white or light gray. For example, for a chest CT image, one could apply
a window utilized to highlight the lung by showing everything below -700 HU as black
and above -600 HU as white [116, p. 379]. Consequently, larger gray tone intervals can
be used for the specified range, enhancing the contrast.

For CT images, several studies showed that windowing improves classification perfor-
mance of classification models and that it can be used as trainable parameter of the
network [117, 118, 119, 120]. While for chest radiographs no quantitative scale like
the Hounsfield Unit exists, radiologists still window these image for enhanced contrasts.
This observation leads to following research questions: does windowing affect chest X-
ray classification performance and if yes, can windowing improve it? An example of
applying a window operation to a chest radiograph ist shown in Figure 5.1. To the best
of my knowledge, so far chest X-rays are commonly processed by a deep learning model
without applying any windowing operation [13, 94]. This chapter investigates the ef-
fect of windowing on chest X-ray classification and proposes a model, WindowNet, that
learns optimal windowing settings.

5.2 Methods

The MIMIC data set (see Section 3.1.6) provides chest radiographs in the original Digital
Imaging and Communications in Medicine (DICOM) format with 12-bit depth gray
values. We replaced the last fully connected layer of a pre-trained DenseNet-121 [59]
with a fully-connected layer with a 14-dimensional output to train it on this data set and
predict all 14 classes. We trained the models with binary cross-entropy loss, AdamW
optimization [54] with a learning rate of 1e-4, and a batch size of 32. For all experiments,
we resized the images to 224× 224 pixel resolution, divided the learning rate by a factor
of ten if the validation loss did not improve in three consecutive epochs, and stopped the
training if the validation loss did not improve after five consecutive epochs. We selected
the best checkpoint based on the mean validation AUC. After windowing, we normalized
the image according to the ImageNet mean and standard deviation.
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5.2.1 Bit-Depth

As applying a windowing operation in our experiments required a higher initial bit-depth
than conventionally used for chest X-ray image classification, we first tested the effect
of bit-depth on classification performance. We compared a DenseNet-121 trained on
8-bit and 12-bit depth images and measured class-wise AUC scores. In both settings,
we passed the full image to the model, without any windowing operation.

5.2.2 Windowing

To investigate wether windowing has an effect on classification performance, we trained
a pre-trained DenseNet-121 with a single windowing operation applied to the chest ra-
diographs with 12-bit depth using windows determined by a grid-search. We trained the
model with a window level of 100, and with levels ranging from 250 to 3500 in steps
of 250. All levels were combined with window widths of 500, 1000, 1500, 2000, and
3000. For evaluation, we compared the mean AUC of each model to the baseline with
no windowing, i.e., a window level of 2048 and width of 4096.

5.2.3 WindowNet

When inspecting radiographs, radiologists dynamically adjust the window settings de-
pending on the region of interest. In other words, they use multiple window settings
for a single image. To test if multiple windows improve classification performance we
extend the DenseNet-121 architecture to incorporate a learnable windowing module. In
the following, we refer to this model as WindowNet.
Similar to Lee et al. [121], we implemented the windowing operation as 1 × 1 convo-

lution with clamping. Typically, the single channel chest radiographs are duplicated to
comply with the three channels required by models pre-trained on natural photographs.
As the pre-trained DenseNet-121 expects three input channels, we add an additional 1×1
convolution to account for it. After windowing, the image is normalized according to
the ImageNet mean and standard deviation and passed to the pre-trained DenseNet-121.
The windowing module can be implemented as follows:

class ConvWindow(nn.Module):

"""Windowing using 1x1 convolutions with clamping."""

def __init__(self, widths, level, upper=255):

super().__init__()

self.conv = nn.Conv2d(1, len(widths), kernel_size=(1, 1), stride=1)

self.conv2 = nn.Conv2d(len(widths), 3, kernel_size=(1, 1), stride=1)

# initialize windows

for i, (width, level) in enumerate(zip(widths, levels)):

self.conv.weight[i].data.fill_(255/width)

self.conv.bias[i].data.fill_(-255/width * (level - width / 2))

self.upper = upper

def forward(self, x):

out = torch.clamp(self.conv(x), min=0, max=self.upper)
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out = self.conv2(out)

return out

def get_width_and_level(self):

WW = (self.upper / self.conv.weight.detach()).flatten()

WL = -(self.conv.bias.detach()

/ self.conv.weight.detach().flatten()) + WW / 2

return WW, WL

We initialized the learnable windows with the set of top the three windows per pathol-
ogy, found during the grid-search experiment. The selection was based on the validation
results. The following 13 windows (level, width) were selected: (100, 3000), (1250, 1000),
(1500, 3000), (1750, 2000), (1750, 3000), (2000, 2000), (2250, 2000), (2250, 3000), (2500,
2000), (2500, 3000), (2750, 3000), (3250, 1000), (750, 3000), and no window (2048,
4096). For comparison, we train the model without clamping in the ConvWindow layer
and default initialization.

5.3 Results

5.3.1 Bit-Depth

Finding 12 Bit 8 Bit

Atelectasis 0.749 0.751
Cardiomegaly 0.774 0.770
Consolidation 0.742 0.740
Edema 0.833 0.831
Enlarged Cardiomediastinum 0.701 0.691
Fracture 0.710 0.664
Lung Lesion 0.682 0.680
Lung Opacity 0.690 0.680
No Finding 0.797 0.789
Pleural Effusion 0.879 0.883
Pleural Other 0.831 0.823
Pneumonia 0.698 0.659
Pneumothorax 0.828 0.802
Support Devices 0.888 0.868

Mean 0.772 0.759

Table 5.1: Effect of bit-depth on chest X-ray classification performance. A higher bit-depth
improved AUC values for most classes.

The classification AUCs, when trained with 8-bit depth and 12-bit depth, are shown
in Table 5.1. Training with 12-bit depth slightly improved classification performance
(0.772 vs. 0.759 AUC).
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5.3.2 Windowing

Finding No Window Best Window

Atelectasis 0.749 (2048, 4096) 0.757 (2750, 3000)
Cardiomegaly 0.774 (2048, 4096) 0.786 (1750, 3000)
Consolidation 0.742 (2048, 4096) 0.744 (2500, 3000)
Edema 0.833 (2048, 4096) 0.841 (1750, 3000)
Enlarged Cardiom. 0.701 (2048, 4096) 0.734 (2250, 3000)
Fracture 0.710 (2048, 4096) 0.706 (1000, 3000)
Lung Lesion 0.682 (2048, 4096) 0.720 (2500, 3000)
Lung Opacity 0.690 (2048, 4096) 0.690 (2250, 3000)
No Finding 0.797 (2048, 4096) 0.804 (2500, 3000)
Pleural Effusion 0.879 (2048, 4096) 0.888 (2500, 3000)
Pleural Other 0.831 (2048, 4096) 0.850 (2750, 3000)
Pneumonia 0.698 (2048, 4096) 0.690 (1750, 3000)
Pneumothorax 0.828 (2048, 4096) 0.832 (1750, 3000)
Support Devices 0.888 (2048, 4096) 0.889 (2750, 3000)

Mean 0.772 (2048, 4096) 0.775 (2500, 3000)

Table 5.2: Effect of windowing on chest X-ray classification AUCs. For each finding, the best
performing window and the baseline using no windowing is reported. Highest AUCs values are
highlighted in bold. Enlarged Cardiom. = enlarged cardiomegaly.

The results of training with windowed chest X-rays are reported in Table 5.2. They
demonstrate that windowing improved chest X-ray classification AUCs for most classes
(12/14). Furthermore, the class-wise AUC values suggest that the baseline without
windowing is a good baseline across all classes but not optimal. Across all grid-searched
windows, a window width of 3000 performed best.

To study different window settings across all findings, we compared the four best-
performing windows to no windowing at all. The results are show in Table 5.3. Again,
the class-wise AUC values suggest that the baseline performance, without windowing, is
similar to the best windows, but is not optimal for every class.

5.3.3 WindowNet

The WindowNet results are shown in Table 5.4, comparing no windowing to our pro-
posed WindowNet model. Overall, WindowNet outperformed the baseline model trained
without windowing with a mean AUCs of 81.2 % compared to 79 % AUC. This finding
holds for all classes, except fracture, where no windowing was slightly better (61.9 % vs.
61.5 % AUC). The windows learned after training are shown in Table 5.5.
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No Window Window 1 Window 2 Window 3 Window 4

Level 2048 2500 1750 2750 2250
Width 4096 3000 3000 3000 3000

Finding

Atelectasis 0.749 0.756 0.753 0.749 0.757
Cardiomegaly 0.774 0.783 0.786 0.774 0.777
Consolidation 0.742 0.744 0.743 0.742 0.740
Edema 0.833 0.830 0.841 0.833 0.831
Enlarged Cardiom. 0.701 0.710 0.700 0.701 0.686
Fracture 0.710 0.695 0.670 0.710 0.669
Lung Lesion 0.682 0.720 0.710 0.682 0.700
Lung Opacity 0.690 0.683 0.686 0.690 0.684
No Finding 0.797 0.804 0.800 0.797 0.798
Pleural Effusion 0.879 0.888 0.883 0.879 0.885
Pleural Other 0.831 0.841 0.820 0.831 0.850
Pneumonia 0.698 0.686 0.690 0.698 0.683
Pneumothorax 0.828 0.822 0.832 0.828 0.809
Support Devices 0.888 0.887 0.887 0.888 0.889

Mean (Validation) 0.804 0.807 0.802 0.805 0.803
Mean (Test) 0.772 0.775 0.772 0.772 0.768

Table 5.3: Best single window settings for chest X-ray classification. The class-wise AUCs
of the four best performing windows (Window 1-4) and the baseline without windowing are
reported. Additionally, mean AUCs from the validation split are provided. Highest AUC values
are highlighted in bold. Enlarged Cardiom. = enlarged cardiomegaly.

5.4 Discussion

In this study, we investigated the importance of windowing as a pre-processing step,
which is motivated by the practice of radiologists manually adjusting window settings
during chest X-ray inspection.

First, we analyzed the effect of bit-depth on image classification, as public datasets
are commonly down-scaled to 8-bit. Our results indicate that a higher bit-depth (12-bit)
improves performance (77.2 % vs. 75.9 % AUC), as seen in Table 5.1.

At native 12-bit depth, we were able to investigate the potential usefulness of win-
dowing as a pre-processing step. Testing different windowing settings in a grid-search
revealed that, except for pneumonia and fracture, training with a distinct window per-
formed better than no windowing at all (see Table 5.2). These results suggest that
windowing is a useful pre-processing step for improving chest X-ray classification per-
formance.

To further improve the performance gains obtained from windowing, we proposed
WindowNet, a model that learns optimal windowing settings. Our experiments demon-
strate our proposed model outperforms the baseline model without windowing, achiev-
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Finding No Windowing WindowNet

Atelectasis 0.812 0.829
Cardiomegaly 0.814 0.827
Consolidation 0.808 0.823
Edema 0.891 0.897
Enlarged Cardiom. 0.745 0.764
Fracture 0.619 0.615
Lung Lesion 0.701 0.744
Lung Opacity 0.726 0.745
No Finding 0.855 0.859
Pleural Effusion 0.909 0.918
Pleural Other 0.721 0.793
Pneumonia 0.731 0.750
Pneumothorax 0.830 0.886
Support Devices 0.897 0.918

Mean 0.790 0.812

Table 5.4: Comparison of baseline (“No Windowing”) and WindowNet AUCs for chest X-ray
classification. Enlarged Cardiom. = enlarged cardiomegaly.

ing a mean AUC of 81.2 % compared to 77.2 % for the baseline 12-bit model. The
improvement in performance provides evidence that our model is an effective solution
for automatically determining the best window settings for chest X-ray images.
While our study’s results are promising, limitations include the evaluation of a data

set from a single institution. Further research is needed to establish generalizability to
other data sets and institutions.
In conclusion, we believe our work offers an important contribution to the field of com-

puter vision and radiology by demonstrating that windowing can significantly improve
chest X-ray classification performance, as shown by our proposed model, WindowNet.
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Ininitialized Learned
Window (Level, Width) (Level, Width)

0 (100, 3000) (90, 2780)
1 (750, 3000) (820, 3310)
2 (1250, 1000) (1060, 850)
3 (1500, 3000) (1130, 2280)
4 (1750, 2000) (1820, 2080)
5 (1750, 3000) (2200, 3770)
6 (2000, 2000) (1980, 1980)
7 (2048, 4096) (2010, 4120)
8 (2250, 3000) (2420, 3230)
9 (2250, 2000) (2280, 2030)
10 (2500, 3000) (2700, 3240)
11 (2500, 2000) (2040, 1630)
12 (2750, 3000) (3250, 3540)
13 (3250, 1000) (3450, 1060)

Table 5.5: Initial and learned windows after training, rounded to the nearest ten.
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6 Chest X-Ray Resolution

A pre-print of most of the methods and results presented in this chapter has been
submitted to ArXiv and is being prepared for publication (as of June 2023).

6.1 Introduction

Ground Truth 64x64 128x128

256x256 512x512 1024x1024

  Effect of Image Resolution on Saliency Map

Figure 6.1: GradCAM saliency maps for different image resolutions. The annotated nodule
bounding box is overlayed in white.

Since AlexNet, images processed by deep learning models are often resized to 224×224
pixels during training [30, 59, 58, 61], mostly for computational reasons. Training at
a lower resolution requires less memory and consequently models train faster. Tan
and Le studied the importance of image resolution on image classification accuracy on
ImageNet [61]. Valuing image resolution as a parameter similar to network depth or
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width. For chest radiographs, Sabottke and Spieler tested different image resolutions
(32×32 up to 600×600 pixels) for chest X-ray classification [122]. In their experiments,
maximum classification AUCs were obtained between 256 × 256 and 448 × 448 pixels
resolution. Chest radiographs, on the other hand, have often a resolution of 2500× 3500
pixels. While the images of the chest X-ray 14 data set [78] (see Section 3.1.4) were
down-scaled to 1024 × 1024 pixels, it is the only large publicly available data set that
also contains bounding boxes for eight pathologies. In this chapter, we investigate the
effect of image resolution on chest X-ray classification performance.

6.2 Methods

Intersection

Union

IoU =

True Positive

Ground Truth

Precision =
1

1 2+

False Positive

False Positive

Figure 6.2: Evaluation of saliency
map localization with precision at spe-
cific intersection over union. A pre-
diction must overlap sufficiently, deter-
mined by the intersection over union
(IoU) threshold. Only a single over-
lapping detection is considered a true
positive. The precision is the number
of true positives divided by the number
of detections.

Subsequent models were trained on the chest X-
ray 14 data set containing 112,120 frontal view
chest radiographs from 32,717 patients [78]. The
test data set, contains a small sub set (983 im-
ages) with bounding box annotations for the eight
findings: atelectasis, effusion, mass, cardiomegaly,
infiltration, pneumonia, nodule, and pneumotho-
rax. We used the development/test split provided
by the authors and split the development split
into Before model training, images were resized to
64 × 64, 128 × 128, 256 × 256, 512 × 512, and the
full 1024× 1024 pixel resolution.

6.2.1 Chest X-ray Classification

For classification, a DenseNet-121 [59] pre-trained
on the ImageNet [72] data set was used. To predict
the 14 chest X-ray 14 classes, we replaced the last
fully-connected layer with one with 14 output di-
mensions. We trained the model with binary cross
entropy loss and used AdamW [123] for optimiza-
tion.

6.2.2 Object Detection

Given the bounding box annotations for eight of the 14 findings, we investigated the effect
of image resolution on predicted bounding boxes. We created binary segmentations from
GradCAM [124] saliency maps generated by the penultimate layer by first normalizing
them and then applying a threshold of 0.5. To create bounding boxes, we extracted the
connected components and calculated the surrounding bounding boxes.
For each predicted, and annotated bounding box we calculated the intersection over

union (IoU)

IoU(A,B) =
A ∩B

A ∪B
,
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shown in Figure 6.2, and the class-wise mean precision. The precision is defined as the
number of true positives divided by the number of detections1. Since the chest X-ray 14
data set contains only one segmentation per sample, the precision is either 0 or 1 over
the number of detections. A detection was considered positive, if the IoU was at least 0.1
(IoU≥0.1). Out of multiple sufficiently overlapping detection only one was considered
as a true positive.

6.3 Results

6.3.1 Chest X-ray Classification

Finding 64× 64 128× 128 256× 256 512× 512 1024× 1024

Atelectasis 0.760 0.800 0.810 0.807 0.821
Cardiomegaly 0.858 0.900 0.906 0.909 0.908
Consolidation 0.752 0.787 0.797 0.794 0.797
Edema 0.866 0.869 0.885 0.878 0.891
Effusion 0.845 0.873 0.877 0.874 0.879
Emphysema 0.824 0.884 0.900 0.913 0.937
Fibrosis 0.748 0.803 0.816 0.821 0.850
Hernia 0.865 0.926 0.903 0.895 0.916
Infiltration 0.678 0.707 0.714 0.699 0.714
Mass 0.765 0.827 0.830 0.813 0.829
Nodule 0.669 0.719 0.761 0.780 0.803
Pleural Thickening 0.730 0.751 0.757 0.763 0.796
Pneumonia 0.688 0.743 0.760 0.760 0.769
Pneumothorax 0.799 0.839 0.858 0.859 0.877

Mean 0.775 0.816 0.827 0.826 0.842

Table 6.1: Chest X-ray classification AUCs for different image resolutions. Highest values are
highlighted in bold.

Per-class AUC scores are provided in table 6.1. Unsurprisingly, the model trained on
only 64 × 64 pixel images scored the lowest, with a mean AUC of 77.5 %. The highest
resolution, 1024× 1024 pixels, performed best with a mean AUC of 84.2 %, followed by
256× 256 pixels with a mean AUC of 82.7 %.

6.3.2 Object Detection

When increasing image resolution, the generated GradCAM saliency maps became more
detailed due to the larger output size before the global average pooling layer. An example
is shown in Figure 6.1.

1For a more general explanation of object detection metrics, such as IoU and average precision, we refer
to [125].
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Finding 64× 64 128× 128 256× 256 512× 512 1024× 1024

Atelectasis 0.001 0.117 0.120 0.361 0.395
Effusion 0.004 0.036 0.310 0.353 0.356
Mass 0.004 0.003 0.330 0.417 0.508
Cardiomegaly 0.114 0.804 0.946 0.792 0.242
Infiltration 0.008 0.283 0.084 0.201 0.200
Pneumonia 0.095 0.370 0.189 0.394 0.402
Nodule 0.000 0.000 0.000 0.150 0.326
Pneumothorax 0.003 0.061 0.391 0.180 0.198

Table 6.2: Mean precision at intersection over union ≥ 10 % of chest pathology bounding boxes
and binary saliency maps.

Mean precision @ IoU ≥ 0.1 results are shown in Table 6.2. For most classes, the
highest resolution, 1024×1024 pixels, had the highest precision, except for cardiomegaly,
infiltration, and pneumothorax. Where 256 × 256 (cardiomegaly, pneumothorax) and
128× 128 (infiltration) performed best.

The mean precision @ IoU ≥ 0.1 results show that, although the saliency maps were
smaller they were more precise. Ignoring the number of false positives, i.e., how many
saliency map-based segmentations were generated for a single ground truth and focusing
on the maximum IoU per sample draws a similar picture, as shown in Table 6.3. While
the highest resolution, 1024× 1024, was the most precise except for cardiomegaly, infil-
tration, and pneumothorax, the highest average IoU was only highest for mass, nodule,
and pneumothorax. For example, on average cardiomegaly bounding boxes and gener-
ated bounding boxes at 256×256 resolution had, on average, an IoU of 60.1 % compared,
the highest resolution was worst with only 11.4 % IoU. We interpret these results, due
to the nature of cardiomegaly bounding boxes that are the largest for this data set and
that saliency maps for the highest resolution are small(er) than the annotatd bounding
boxes. This hypothesis is supported by the results that at lower resolutions (128 - 512)
cardiomegaly mean precision was significantly higher than for the highest resolution.
The findings are inverted for the smallest pathology, lung nodules. Here, the bounding
boxes from the highest resolution have a significantly higher mean precision and maxi-
mum IoU than all other resolutions. While these results suggest that a lower resolution
improves classification performance of larger pathologies, the test AUCs in Table 6.1
show that the effect on classification performance is only noticable for the class hernia.
For example, for pneumothorax the highest resolution achieved the highest mean AUC.
We interpret these results, due to the kind of pathology. Signs of a pneumothorax, for
example, could be only a long curve. Hence, the surrounding bounding box would cover
a much larger area than the actual pathology.

6.4 Discussion

In this chapter, we studied the importance of chest X-ray resolution on image classifica-
tion performance. The classification results (see Table 6.1) suggest that overall a higher
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Finding 64× 64 128× 128 256× 256 512× 512 1024× 1024

Atelectasis 0.030 0.049 0.071 0.196 0.177
Effusion 0.053 0.057 0.158 0.209 0.168
Mass 0.034 0.066 0.124 0.216 0.340
Cardiomegaly 0.126 0.280 0.609 0.264 0.114
Infiltration 0.100 0.164 0.092 0.133 0.055
Pneumonia 0.052 0.106 0.172 0.206 0.133
Nodule 0.003 0.008 0.023 0.073 0.228
Pneumothorax 0.050 0.080 0.126 0.109 0.168

Table 6.3: Mean max intersection over union

resolution improves image classification performance. The highest available resolution,
1024 × 1024, performed best for all findings except cardiomegaly, hernia, and mass.
For these, it performed second to best. While Sabottke and Spieler achieved maximum
AUCs between 256×256 and 448×448 pixels resolution, they tested only up to 600×600
pixels. We observed a slight decline in AUC from 256×256 to 512×512 pixel resolution
for most (9/14) classes. These findings are in line with the conclusion of Tan and Le
that their highest tested resolution 600 × 600 was not optimal. However, our results
show that an even higher image resolution, 1024 × 1024 pixels, improved chest X-ray
classification performance. Similar results were shown for image classification accuracy
on ImageNet [61].
In summary, we investigated the effect of image resolution on chest X-ray classification

and localization. Our results showed that a higher resolution of 1024× 1024 performed
best.

73





7 Saliency Maps

7.1 Introduction

Image classification models are trained to predict a class, they do not explain the reason
for their prediction. This reasoning, however, is crucial for human acceptance. Without
modifying the model architecture, one can use the intermediate representations of an
image passing through the network and the gradient with respect to a specific class to
visualize what parts of an image were important. These methods are commonly re-
ferred to as saliency maps. One popular method to create visual explanations for a
model’s decision-making process is gradient-weighted class activation mapping (Grad-
CAM). GradCAM saliency maps are created by multiplying the class-dependent gra-
dients with the activations of a specific layer. A more sophisticated approach can be
applied when using vision transformers instead of convolutional neural networks. There,
attention and gradients are combined to generate more precise saliency maps.

This chapter investigates the use of saliency maps on chest X-ray classification from a
quantitative perspective, as well as, studying the subjective usefulness of saliency maps
for radiologists to assess the quality of a model’s prediction.

Most of the methods and results of this chapter have been published in Radiology
Artificial Intelligence by Wollek and Graf et al. [94].

7.2 Attention-based Saliency Maps Improve Interpretability of
Pneumothorax Classification

Artificial Intelligence (AI) has the potential to improve medical processes [126, 127] by
increasing human performance and speed, but its black-box nature leads to big hurdles
for decision- making support [128, 129]. Radiologists can confirm or reject AI-based
identification of an important finding, such as a potentially life-threatening pneumotho-
rax, most optimally when the location is provided; evaluation becomes more difficult and
time-consuming when the area in question remains to be located [130]. Even when deep
learning models perform similarly to radiologists [89, 14], erroneous decisions made by
the models differ in nature from those made by human experts [14]. Therefore, radiolo-
gists working with such a model need appropriate methods to understand its strengths
and limitations. A saliency map addresses this problem by highlighting locations that are
relevant to the model’s decision-making process (7.1). Predictions based on insufficient
evidence, such as a chest tube as sole evidence for pneumothorax, allow the radiologist
to confidently reject the model’s prediction. Current state-of-the-art image classifiers are
based on the vision transformer (ViT) [67, 131], Compared with convolutional neural
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Figure 7.1: Diagram of interpretable lung disease classification pipeline used in this study.
After classifying a chest radiograph (CXR) using a vision transformer network, an attention-
based saliency map, transformer multi-modal explainability (TMME), is generated to aid the
radiologist in interpreting the modeĺs prediction. The proposed saliency map based on TMME
was compared with the conventional gradient-weighted class activation map (GradCAM).

networks, ViTs leverage the attention mechanism that is structurally easier to interpret,
as they capture the importance of spatial token relationships (e.g., image patches) to
model predictions. We created attention-based saliency maps using transformer multi-
modal explainability (TMME) [132]. TMME is an extension of the roll-out mechanism,
the matrix multiplication of all attention maps. The attention heads are merged by
taking the minimum or mean. Skip-connections of attention layers are accounted for
by adding an identity matrix to the merged attention matrix. Additionally, all heads
are multiplied with their derivatives conditioned on a chosen class. Negative values
are set to zero before applying roll-out. As baseline, we applied the frequently used
gradient-weighted class activation mapping (GradCAM) technique [124].

To date, there has been limited research on the use of saliency maps for medical
purposes [133, 134, 135, 136, 137, 138, 139], which all focus on comparing saliency maps
and segmentation rather than explaining the basis for a model’s decision. There is a need
to investigate the reliability of saliency maps on chest radiographs (CXRs) and their
usefulness to radiologists. To the best of our knowledge, medical studies have not yet
been conducted on attention-based explainers. The aim of this exploratory study was to
evaluate the feasibility of ViTs for CXR classification and interpretability of attention-
based saliency maps for clinical decision support using the example of pneumothorax
classification.

7.2.1 Materials and Methods

7.2.1.1 Data Sets

This retrospective study used five public CXR data sets: CheXpert [80], Chest X-Ray
14 [78], MIMIC CXR [81], VinBigData [140], and Society for Imaging Informatics in
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Figure 7.2: Data sets with data splits and classes used in this study. CXR = chest radiograph,
SIIM-ACR = Society for Imaging Informatics in Medicine-American College of Radiology

Medicine- American College of Radiology (SIIM-ACR) [82] (7.2). CheXpert consists of
224,316 CXR of 65,240 patients, Chest X-Ray 14 of 112,120 CXR of 30,805 patients,
MIMIC CXR of 377,110 CXR of 65,379 patients, VinBigData of 15,000 labeled CXR, and
SIIM-ACR of 2669 pneumothorax CXR. Institutional review board review and patient
informed consent were not required for this study. We trained on CheXpert, Chest X-
Ray 14, MIMIC CXR and VinBigData, validated on the holdout set of CheXpert, and
tested on the data sets containing image annotations: the holdout set of Chest X-Ray
14, 7500/15000 (50%) of the VinBigData set, and all SIIM-ACR data. All sets were split
without patient overlap and are publicly accessible. Further data set details are described
in the respective sections: CheXpert, Section 3.1.5, Chest X-Ray 14, Section 3.1.4,
MIMIC CXR, Section 3.1.6, VinBigData, Section 3.1.9, and SIIM-ACR, Section 3.1.7.

7.2.1.2 Model Training and Development

We fine-tuned the ViT variant ‘deit base distilled patch16 224’ [131] on the overlapping
training data set classes: pneumothorax, cardiomegaly, consolidation, pleural effusion
and atelectasis (7.2). We replaced the final softmax layer with a sigmoid. We used
stochastic gradient descent (SGD) with a learning rate of 0.001 and a batch size of 64
and trained for 500 epochs with early stopping. We randomly oversampled the images.
During training, we applied random affine translations (-15 ° – 15 °, translate 0.05,
scale 0.9 – 1.05) and random horizontal flip. All images were normalized according
to the ImageNet mean and standard deviation and resized to 224 × 224 pixels. We
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compared our network with a pre- trained DenseNet-121 [59], commonly used for CXR
classification [89, 13]. Our model was fine-tuned using the same data and augmentations,
SGD with a learning rate of 0.001 and batch size of 32, and trained for 30 epochs with
early stopping.

Saliency Map Evaluation Metrics

Positive and Negative Perturbation Test We continuously removed patches (16x16
pixels) of the input image according to their saliency map importance and then generated
a new saliency map. We removed the most important patches in the positive perturbation
test and least important patches in the negative perturbation test. Model confidence was
measured while removing image patches AUC was calculated. We followed the procedure
by Chefer et al. [141], but instead of blackening the removed patches, we replaced them
with patches of an image with zero predictive confidence of the network, guaranteeing a
convergence to zero instead of random predictions after most pixels were replaced.

Sensitivity-n The sensitivity-n test [142] applies random masks onto the input im-
age. Masks lowering the confidence should correlate with a good saliency map. We
used 200 random masks consisting of n random tokens (16x16 pixels). The Hadamard
products of saliency map × mask and the change in confidence were compared with the
Pearson product- moment correlation coefficients [143]. Scores were averaged, and the
test was repeated with different numbers of tokens n, logarithmically distributed between
1 and half the total number tokens. We computed the AUC between token number and
correlation score. We used the test images that were predicted as a pneumothorax by
the ViT.

Effective Heat Ratio We used the effective heat ratio (EHR) [142] to show that the
saliency maps highlight regions that align with prior medical knowledge. The test first
produces a binary mask of the saliency map given a threshold. The EHR is the fraction
between the threshold area inside the ground truth and the complete threshold area.
The thresholds were computed in equidistant steps. We computed the AUC over all
EHRs and thresholds.

Intra-architecture repeatability and interarchitecture reproducibility Following Arun
et al. [133], we compared the similarity between saliency maps of different models. We
compared the mean structural similarity index measure (SSIM) of 1000 saliency maps
in the SIIM-ACR dataset on pneumothorax CXRs.

7.2.1.3 User Study

To evaluate clinical usefulness, we surveyed one board-certified radiologist with more
than ten years’ experience, one fourth year and one first year radiology resident from
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Part 1 – CXR and Prediction Part 2 – Including Saliency Map 

User Interface for the Study 

Figure 7.3: User interface for the radiologists in the study. First, they were shown chest
radiographs (CXRs) with and without a present pneumothorax and the vision transformer (ViT)
prediction score. In the second step, a saliency map was additionally shown. For both parts,
radiologists had to detect if a pneumothorax was present and then determine if the saliency map
was (subjectively) useful for aiding detection.

Klinikum der Ludwig-Maximilians-Universität München (hereafter referred to as “ra-
diologists”). We compared GradCAM and TMME on images with and without pneu-
mothorax. We had to limit our investigation to pneumothorax detection due to available
segmentations and study participation time. We sampled 160 images from the SIIM-
ACR data set, 110 with and 50 without pneumothorax. We included 70 TMME, 70
GradCAM, 10 artificial saliency maps based on segmentations and 10 random saliency
maps generated by applying Gaussian-blur and multiplying repetitively with Perlin-noise
(Table 7.1). We calibrated model predictions using histogram binning [143]. In two con-
secutive parts, the radiologists assessed the presence of pneumothorax when first given
the CXR and model prediction and then when additionally given a saliency map (7.3).
Furthermore, they rated usefulness of the saliency maps on a scale from 1-5 (strongly
disagree – strongly agree).

Model Prediction True Positives False Negatives True Negatives False Positives
Saliency Map

GradCAM 30 15 10 15
TMME 30 15 10 15
Artificial 10 10 0 0

Table 7.1: Distribution of test images for the user study.

7.2.1.4 Statistical Analysis

Model performance was assessed using receiver operating characteristics (ROC), sensi-
tivity, and specificity at maximum F1-score with 95 % confidence intervals (calculated
using the non-parametric bootstrap method with 10,000-fold resampling at the image
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level). We compared model classification performance using the area under the ROC
curve (AUC). AUC comparison was performed using fast implementation [144] of the
non-parametric approach of DeLong et al. [145]. Since our analysis is exploratory and in-
volves multiple comparisons P values are provided but significance claims are not made.
Radiologist pneumothorax classification performance with and without saliency maps
was measured using sensitivity and specificity. Statistical analyses were performed using
NumPy1 version 1.21.5 and SciPy2 version 1.7.3 in this study.

7.2.2 Results

7.2.2.1 CXR Classification Performance

Chest X-Ray Pneumothorax Classification Performance  
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Figure 7.4: Receiver operating characteristic (ROC) curves and areas under the ROC curves [95
% CIs] for pneumothorax classification by vision transformer (ViT) and DenseNet models. The
ROC curves are computed on hold-out sets. The dots show the maximized F1-scores. SIIM-ACR
= Society for Imaging Informatics in Medicine-American College of Radiology

As the focus of this study lies on pneumothorax, we report the performance results
of the other classes, atelectasis, cardiomegaly, consolidation, and pleural effusion, only
briefly here. The ROC curves and corresponding AUCs with 95 % CIs are shown at the
end of this section (Figure 7.7 - Figure 7.11). For these classes, the ViT outperformed the
DenseNet on both the Chest X-Ray 14 and VinBigData data sets. Regarding pneumoth-
orax classification, the ViT achieved a higher AUC than DenseNet on Chest X-Ray 14
(AUCs, 0.95 [95 % CI: 0.94, 0.95] vs. 0.83 [95 % CI: 0.83, 0.84]; p<0.001). We found no
evidence of a difference between ViT and DenseNet performance on VinBigData (AUCs,
0.84 [95 % CI: 0.77, 0.91] vs. 0.83 [95 % CI: 0.76, 0.90]; p = 0.67). The DenseNet pneu-
mothorax classification resulted in a higher AUC than ViT on the SIIM-ACR dataset
(AUCs, 0.87 [95 % CI: 0.87, 0.88] vs. 0.85 [95 % CI: 0.85, 0.86]; p<0.001; Figure 7.4).
F1-score, sensitivity, and specificity are reported in Table 7.2.

1https://numpy.org
2https://scipy.org
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Data Set Model F1 Score Sensitivity Specificity

SIIM-ACR ViT 66 %[65 %-68 %] 83 %[82 %-85 %] 81 %[80 %-82 %]
CNN 64 % [63 %-66 %] 75 % [71 %-78 %] 84 % [82 %-86 %]

CXR14 ViT 67 %[65 %-68 %] 71 %[68 %-73 %] 95 %[95 %-96 %]
CNN 44 % [43 %-46 %] 55 % [50 %-63 %] 89 % [86 %-91 %]

VinBigData ViT 40 %[26 %-56 %] 26 %[13 %-40 %] 100 % [100 %-100 %]
CNN 19 % [11 %-33 %] 19 % [ 5 %-30 %] 100 % [98 %-100 %]

Table 7.2: Comparison of vision transformer (ViT) and DenseNet (CNN) performance for pneu-
mothorax classification on chest radiographs. Maximized F1-scores and the resulting sensitivity
and specificity. Data in brackets are 95 % CIs. Higher values between the two models are marked
in bold. SIIM-ACR = Society for Imaging Informatics in Medicine-American College of Radiol-
ogy

7.2.2.2 Saliency Map Evaluation

The following tests measure how well each saliency method highlights important regions
for the ViT’s prediction. Across all saliency map tests and data sets, TMME performed
better than GradCAM (Figure 7.5). On the positive perturbation test, where a lower
value is better, as the most important tokens are removed first, TMME and GradCAM
measured 0.04 (95 % CI: 0.036, 0.044) vs. 0.12 (95 % CI: 0.110, 0.135) on SIIM-ACR,
0.03 (95 % CI: 0.030, 0.037) vs. 0.12 (95 % CI: 0.111, 0.137) on Chest X-ray 14, and 0.02
(95 % CI: 0.013, 0.037) vs. 0.09 (95 % CI: 0.048, 0.135) on VinBigData, respectively. The
negative perturbation test results, where a higher value is better, as the most important
tokens are removed last, were 0.67 (95 % CI: 0.65, 0.69) for TMME vs. 0.37 (95 % CI:
0.34, 0.39) for GradCAM on SIIM-ACR, 0.55 (95 % CI: 0.52, 0.57) vs. 0.25 (95 % CI:
0.23, 0.27) on Chest X-ray 14, and 0.73 (95 % CI: 0.60-0.85) vs. 0.55 (95 % CI: 0.40-
0.67) on VinBigData. Sensitivity-n (higher is better) values for TMME compared with
GradCAM were 14 (95 % CI: 12.59, 15.32) vs. 6 (95 % CI: 4.44, 6.57) on SIIM-ACR,
11 (95 % CI: 9.85, 13.14) vs. 4 (95 % CI: 2.83, 5.17) on Chest X-ray 14, and 9 (95
% CI: 1.21, 17.98) vs. 7 (95 % CI: 0.55, 13.00) on VinBigData datasets, respectively.
TMME achieved an EHR (higher is better) of 0.16 (95 % CI: 0.142, 0.171) vs. 0.11 (95
% CI: 0.099, 0.122) for GradCAM on SIIM-ACR, 0.26 (95 % CI: 0.199, 0.318) vs. 0.14
(95 % CI: 0.100, 0.193) on Chest X-ray 14, and 0.33 (95 % CI: 0.237, 0.434) vs. 0.22
(95 % CI: 0.126, 0.275) on VinBigData datasets. For intra-architecture repeatability,
TMME had an average SSIM score of 0.57 (95 % CI: 0.562, 0.578) vs. a GradCAM
SSIM score of 0.12 (95 % CI: 0.105, 0.126). Comparing different models, TMME had
an inter-architecture reproducibility SSIM score of 0.47 (95 % CI: 0.465, 0.481) vs. 0.08
(95 % CI: 0.074, 0.091) for GradCAM (Figure 7.12).

During visual evaluation of the produced saliency maps, we detected that on some
images, both GradCAM and TMME saliency maps highlighted confounders, such as a
chest tube, instead of pneumothorax (Figure 7.6).
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7.2.2.3 User Study

ViT Prediction Method Not Useful Neither Useful

False Negatives Artificial 26 0 4
GradCAM 23 7 15
TMME 18 5 22

False Positives GradCAM 29 4 12
TMME 22 4 19

True Negatives GradCAM 20 1 9
TMME 12 7 11

True Positives Artificial 2 9 19
GradCAM 37 7 46
TMME 34 9 47

Table 7.3: Cumulative votes assessing saliency map usefulness for pneumothorax detection by
the three radiologists in the user study. Most useful and least not useful votes are marked in
bold.

Given the frontal CXR and the ViT’s prediction alone, the radiologists achieved a
sensitivity of 64% (211/330; 95 % CI: 59 %, 69 %) and specificity of 84% (126/150; 95
% CI: 78 %, 90 %). Sensitivity improved to 65% (216/330; 95 % CI: 60 %, 70 %) and
specificity remained at 84% (126/150; 95 % CI: 78 %, 90 %) after additionally showing
the saliency map. Excluding the model’s incorrect predictions resulted in a sensitivity of
77% (162/210; 95 % CI: 72 %, 83 %) before viewing the saliency map and 79% (165/210;
95 % CI: 73 %, 84 %) after; specificity was 93% (56/60; 95 % CI: 86 %, 98 %) before and
93% (56/60; 95 % CI: 87 %, 99 %) after viewing the saliency map. Showing GradCAM
saliency maps did not improve sensitivity or specificity.
TMME saliency maps improved sensitivity from 61% (83/135; 95 % CI: 53 %, 70

%) to 64% (86/135; 95 % CI: 55 %, 71 %) (Figure 7.13). The artificial saliency maps,
based on ground truth segmentations, were rated useful in 63 % (19/30) true positive
cases and not useful in most false negative cases (26/30, 87 %) (Table 7.3). Both
TMME and GradCAM were rated useful in 47/90, 52% and 46/90, 51% true positive
predictions, respectively. Overall, TMME was rated useful (99/210, 47%) more often
than GradCAM (82/210, 39%), especially for false model predictions (TMME: 41/90,
45% vs. GradCAM: 27/90, 30%).

7.2.3 Discussion

In this study, we trained a ViT on several CXR data sets to generate attention-based
saliency maps to evaluate the performance of attention-based saliency maps compared
with GradCAM and their usefulness in assisting radiologists in detecting pneumotho-
races. We found that ViTs achieve similar results on CXR classification compared with
convolutional neural networks (CNN; AUCs ranged from 0.84 to 0.95 for ViT, and from
0.83 to 0.87 for CNN), despite the limited amount of training data, as ViTs require more
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training data than CNNs, encouraging further research. Given more training data we
expect the ViTs to significantly outperform CNN-based architectures, as shown in other
computer vision tasks (Figure 7.14).

Furthermore, we found that attention-based TMME saliency maps outperformed Grad-
CAM across all metrics. This result was further confirmed by a difference in usefulness
for pneumothorax detection by radiologists seeing TMME saliency maps compared with
GradCAM or no saliency map, suggesting that attention-based saliency maps are more
useful in clinical decision support than GradCAM. We attribute the drastically different
results of GradCAM and TMME in some cases, where GradCAM visualization did not
allow interpretation, to the inner workings of each method: GradCAM uses a single
layer, while TMME combines the attention of multiple layers of the network, making it
more robust. Saliency maps run the risk of human tendency to over-interpret a given
visual result [146] and must be evaluated systematically. Model or data biases, such
as chest tubes implying a pneumothorax, can be discovered using saliency maps. This
phenomenon was observed in the literature before [107] and highlights the importance
of increasing the interpretability of such models. These insights can then be used to
improve both data quality and architectural choices. While the results suggest that the
radiologists were biased by incorrect model predictions, the saliency map improved the
readers’ sensitivity and could be used to prevent confirmation bias [147]. In a post-
study discussion, participants reported that the saliency maps helped them to better
assess the strengths and weaknesses of the model, such as the model’s focus on the pres-
ence of a chest tube in predicting pneumothorax probability. Despite the small number
of participants in our study, improved reader sensitivity with attention-based saliency
maps encourages further research. There were several limitations in our study. First,
due to the unavailability of segmentation masks for lung diseases besides pneumothorax,
the saliency maps could not be analyzed as precisely using the effective heat ratio. In
these cases, we used the available but less precise bounding boxes. Second, we believe
that model performance, particularly in pneumothorax classification, and the resulting
saliency maps were limited by the small amount of available data, even when pooling data
from multiple institutions (Figure 7.14). ViTs have been shown to substantially outper-
form CNN-based architectures given enough data [67]. Third, while our work indicates
that the saliency maps have a positive effect on radiologist pneumothorax classification
sensitivity, it is limited by the number of samples and participants. A more thorough
assessment of the effect of saliency maps on the diagnostic performance of radiologists
requires more study participants and a structured reading to mitigate confirmation bi-
ases. This would also allow for assessment saliency map usefulness for different levels
of radiologist expertise. Fourth, following the protocol by Dosovitiskiy et al. [67], ra-
diographs were resized to 224 × 224 pixels, making subtle pneumothoraces potentially
undetectable. In conclusion, we investigated the possible use of saliency maps based
on ViTs for CXR classification. We showed that ViTs achieved similar results com-
pared with conventional CNNs. The attention-based saliency map, TMME, performed
better than the baseline GradCAM, supporting the use of ViTs for CXR classification.
Radiologists rated attention-based saliency maps useful in more cases than GradCAM.
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We showed saliency maps improve model understanding for both AI developers and
radiologists, aiding in detection of model biases.
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Comparison of Saliency Maps Performance for Pneumothorax Prediction 

Figure 7.5: Saliency map performance comparison for pneumothorax prediction. Across all tests
and data sets transformer multi-modal explainability (TMME) performed significantly better
than gradient-weighted class activation mapping (GradCAM); Saliency metric values ± SD values
are the integrals over the respective curves and provided in each graph. A: Positive perturbation
test; a low value is better. B: Negative perturbation test; a high value is better. C: Sensitivity-
n; a high value is better. D: Effective heat ratio (EHR); a high value is better. SIIM-ACR =
Society for Imaging Informatics in Medicine-American College of Radiology
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7 Saliency Maps

CXR CXR CXR

Figure 7.6: Images with vision transformer pneumothorax prediction from SIIM-ACR with
transformer multi-modal explainability (TMME) visualization. Ground truth pneumothorax
segmentation is highlighted in red. False positives, without pneumothorax, have no inpainting.
A: Examples where TMME highlights the pneumothorax. B: Examples with chest tube high-
lighting. C: Pneumothorax prediction based on other pathologies (plural effusion, lung shadow)
or the thoracic diaphragm. CXR = chest radiograph, SIIM-ACR = Society for Imaging Infor-
matics in Medicine-American College of Radiology
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7.2 Attention-based Saliency Maps Improve Interpretability of Pneumothorax Classification

Correctly Highlighted Pneumothorax

Pneumothorax Prediction Based on Incorrect Evidence
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Figure 7.7: Saliency maps of pneumothorax predictions based on clinically correct and incorrect
evidence. A: True positive examples where transformer multi-modal explainability (TMME)
highlighted the pneumothorax. B: False positives (left) and true positives (right) where the
TMME highlights incorrect evidence for pneumothorax. We sampled 50 random true positive
and 25 false positive predictions to generate these images.
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Comparison of CXR Classification Performance 

Figure 7.8: Receiver operating characteristic curves (ROC) for all five classes: pneumothorax,
cardiomegaly, consolidation, pleural effusion, and atelectasis. The SIIM-ACR data set contains
only pneumothorax labels. ViT b 244 (red) is the ViT reported in the main text. During
prototyping we additionally tested the smaller version, ViT t 244 (blue). The area under the
ROC curve and 95 % confidence intervals are reported in the legend. SIIM-ACR = Society for
Imaging Informatics in Medicine-American College of Radiology.
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7.2 Attention-based Saliency Maps Improve Interpretability of Pneumothorax Classification
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Comparison of Saliency Maps: Negative Pertubation 
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Figure 7.9: Positive and negative perturbation test on all 5 classes: pneumothorax, car-
diomegaly, consolidation, pleural effusion, and atelectasis. ViT b 244 is the same ViT as reported
in the text, ViT t 244 is the smaller version used during prototyping. During prototyping we in-
vestigated other, less performing, attention-based saliency map methods: min-roll-out, transition
attention maps (TAM) Markov, and layer-wise relevance propagation transformer-attribution
(LRP+TA). The area under the receiver operating characteristic curves and SD are reported in
the legend. The results are averaged over 250 true positive examples.
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7 Saliency Maps
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Figure 7.10: Sensitivity-n test on all 5 classes: pneumothorax, cardiomegaly, consolidation,
pleural effusion, and atelectasis. ViT b 244 is same ViT as reported in the text, ViT t 244 is
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Figure 7.11: EHR test on all 5 classes: pneumothorax, cardiomegaly, consolidation, pleural
effusion, and atelectasis. ViT b 244 is same ViT as reported in the text. While ViT t 244 is
the smaller version used during prototyping. During prototyping we investigated other, less per-
forming, attention-based saliency map methods: min-roll-out, transition attention maps (TAM)
Markov, and layer-wise relevance propagation transformer-attribution (LRP+TA). The area un-
der the receiver operating characteristic curves and SD are reported in the legend. The results
are averaged over n segmented examples, where n is reported in the diagram.
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Figure 7.12: Intra-architecture repeatability and interarchitecture reproducibility. Intra-
architecture repeatability is the SSIM score of two saliency maps of the same ViT (ViT b 244)
from different training sessions. Min-Roll-Out 0.71 (95 % CI: 0.71, 0.72); GradCAM 0.116 (95
% CI: 0.11, 0.13); TAM Markov 0.24 (95 % CI: 0.23, 0.25); TMME 0.57 (95 % CI: 0.56, 0.58);
LPR+TA 0.37 (95 % CI: 0.36, 0.38); interarchitecture reproducibility is the SSIM score of two
saliency maps of two different architectures: the reported ViT (ViT b 244) and the smaller ViT
(ViT t 244). Min-roll-out 0.46 (95 % CI: 0.45, 0.47); GradCAM 0.082 (95 % CI: 0.074, 0.091);
TAM Markov 0.20 (95 % CI: 0.19, 0.21); TMME 0.47 (95 % CI: 0.47, 0.48); LPR+TA 0.30- (95
% CI: 0.29, 0.31). During prototyping we investigated other, less performing, attention-based
saliency map methods: min-roll-out, transition attention maps (TAM) Markov, and layer-wise
relevance propagation transformer- attribution (LRP+TA). SSIM = structured similarity index
measure
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Figure 7.13: Receiver operating characteristic curves (ROC) and model AUC for the user study.
Performance of the ViT model (grey) and the radiologists without (circles) and with (crosses)
additional saliency map for pneumothorax classification. The average reader performance is
shown by the red circle/cross. AUC = area under the ROC curve.
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Figure 7.14: Effect of increased training data on pneumothorax classification on the SIIM
ACR test data set. The classification thresholds were computed according to the best respective
F1-score on the validation data. All networks were trained for the same number of iterations.
CXR14 = Chest X-Ray 14, SIIM-ACR = Society for Imaging Informatics in Medicine-American
College of Radiology.

93





8 A knee cannot have lung disease:
out-of-distribution detection with
in-distribution voting using the medical
example of chest X-ray classification

Most of the work presented in this chapter has been submitted as part of an article to
the Medical Physics journal on May 8th, 2023. The paper is currently under review (as
of June 2023) [148].

8.1 Introduction
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Figure 8.1: Deep learning models in the real world must be able to handle OOD data. (left) A
chest X-ray classifier (CheXnet) is trained on chest X-rays and tested with expected production
data: chest X-rays. In a clinic, the model has to handle non chest X-ray images confidently, as
the data cannot be manually cleaned beforehand. (right) A model trained and tested only on
chest X-ray images will incorrectly classify OOD images (here: an X-ray of a knee) as having
lung disease.

Modern machine learning models are achieving great successes in real world medical
applications, such as diabetic retinopathy diagnosis [149], skin cancer classification [150],
or lung disease assessment [13, 89, 151]. Due to the early and profound digitization of
imaging techniques, machine learning in radiology can already show convincing successes,
such as the detection of certain critical pathologies of the lung on X-ray images with
performance non-inferior to radiologists [13]. Considering the increasing demand for
imaging, while the number of radiologists remains insufficient, the aforementioned and
similar models can help improve medical patient care, for example, by screening acquired
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8 OOD detection with ID voting

radiographs for critical findings prior to radiologist interpretation [29, 102, 28, 24, 26,
94]. Then, patients with time sensitive illnesses will receive treatment earlier, potentially
saving their lives.

What all of these chest X-ray classifiers have seen, once trained, validated and tested,
are chest X-rays of a certain type, the in-distribution (ID) images. Consequently, the
features learned depend on the assumption that the input is ID. But despite the advanced
level of digitization, individual workflows for creating and archiving radiological images
and linking them to other patient data are subject to manual intervention by staff and are
consequently prone to human error, breaking this assumption. Just one example would
be that mixed-up labeling can arise of patients for whom X-ray images of several body
parts have been taken. Consequently, images of a knee joint, for example, would be fed
to a model for detecting pulmonary pathologies. Hence, in the aforementioned scenario,
the presentation of out-of-distribution (OOD) images, erroneous and potentially patient-
harming events are possible.
A major problem of current deep learning models is that they make high confidence

predictions when facing unexpected (OOD) data, like a knee X-ray [152, 153, 154]. In
our scenario, prioritization based on false, high-confidence, OOD X-rays can lead to
longer waiting times for other patients with time critical conditions, like a pneumoth-
orax, potentially risking their life until the error is discovered and resolved. Moreover,
repeated instances of such misreporting will - if not balanced with transparency mea-
sures sufficiently, e.g., using saliency maps [94] - quickly lead physicians to distrust the
model, eventually leading them to refrain from using it [155, 156, 157].
Therefore, in recent years, several methods, have been proposed to detect OOD sam-

ples [158, 159, 160, 161, 162, 163]. Commonly, the OOD detector converts the output
of a model to an ID score. For example, one of the earliest approaches, Max. Prob-
ability [159] uses the highest class probability as ID probability. In their experiments,
the authors noticed lower confidence scores for the highest class probability for OOD
inputs compared to ID inputs. Another approach, proposed by Lee et al. [164], also
applied to chest X-rays [163], models OOD data based on the smallest Mahalanobis
distance between the input and a class conditional Gaussian distribution in the latent
space. Furthermore, Hendrycks et al. propose to use a self-supervised training scheme
to improve OOD detection performance [162].
So far, the problem caused by OOD data has been investigated mostly on toy data

sets, for example, a model trained on the CIFAR-10 data set [165], learning to classify
automobiles and trucks, is tested on the SVHN data set [166] containing house numbers,
or in-house data sets [163]. This raises the question if the test performance of proposed
OOD detectors translate to an existing model trained on chest X-rays. Figure 8.1 moti-
vates this problem: as the real world data consists of more than frontal chest X-rays, a
classifier like CheXnet [13] must handle OOD images safely. Çallı et al. investigated the
effect of an in-house collected OOD X-ray data set on the task of nodule classification,
localization and lung segmentation [163]. In contrast, we focus on the more general
multi-label chest X-ray classification problem.
In this work, we are addressing the practical consequences of OOD data by exam-

ining the impact of non chest radiographs on the chest X-ray classifier CheXnet. We
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Figure 8.2: Out-of-distribution (OOD) detection using our proposed method in-distribution
voting (IDV). The model is trained with in-distribution (ID) and OOD images. Before inference,
class-wise ID threshold are used to classify the input images as either ID (chest X-ray, top) or
OOD (knee, bottom) In this multi-label setting, a sample is classified as OOD only if all classes
unanimously vote against ID.

selected this model as it performs similarly to radiologists [13, 89] and is widely used
as a benchmark. The major contributions of our work are: we systematically explore
the OOD detection performance of the CheXnet chest X-ray classifier on three realistic
OOD data sets; we show that the benchmark performance of current OOD detection
methods mostly do not translate to this domain; and we demonstrate that our proposed
method in-distribution voting (IDV) improves OOD detection and generalizes to other
data sets.

8.2 Methods

8.2.1 Chest X-Ray Classification: CheXnet

Following [13], we fine-tuned a DenseNet-121 [167] on the CXR14 data set. The model
was pre-trained on ImageNet and the weights are available on pytorch.org. For fine-
tuning, we replaced the last layer with a fully-connected layer with 15 outputs, matching
the 14 classes of the CXR14 data set plus the “no finding” class which represents the
absence of any of the 14 pathologies. We expanded the original CheXnet architecture
from 14 to 15 outputs to differentiate between ID “no finding” CXRs and OOD samples.
Since an image may exhibit signs of multiple pathologies, we modeled the classification
task as a multi-label classification task, where each class is predicted independently.
The output scores were converted to a probability for each class by applying the sigmoid

97

pytorch.org


8 OOD detection with ID voting

function:

σ(x) =
1

1 + e−x.

We used binary cross entropy as loss function and trained the model using ADAM [53]
optimization with default parameters (β1 = 0.9, β2 = 0.999) and an initial learning
rate of 0.0003. We divided the learning rate by a factor of ten if the validation loss
did not improve over the last two epochs. We applied weight decay with a value of
0.0001. We trained the model for eight epochs and selected the best model based on the
mean area under the receiver operating characteristic curve (AUC) for classifying the ID
validation data set. The input images were resized to 256 × 256 pixels and normalized
according to the ImageNet mean and standard deviation. Then, we applied 224 × 224
ten crop, i.e., we took crops from each corner and the center of the image and repeated
the process for the horizontally flipped image: producing ten 224 × 224 pixel images per
sample. The model predictions of the ten images were averaged before calculating the
loss.

When including OOD images into the training data, the model must predict the
absence of any pathology. This is in contrast to healthy CXR images, where the “no
finding” class must be predicted. In the default CheXnet setup this would result in
predicting the same for both OOD and CXR with no finding. Like the ID images, the
OOD images are normalized according to the ImageNet mean and standard deviation
and passed to the model in the same fashion as the ID images.

8.2.2 Proposed Method: In-Distribution Voting

To improve the robustness of CheXnet’s predictions and OOD detection performance
we propose in-distribution voting (IDV). We classified a sample as ID if at least one
class-wise prediction exceeds the class-wise ID threshold, as illustrated in Figure 8.2.

Unlike other multi-label OOD detection techniques in the literature, this approach
leverages OOD data to separate actual image classification from OOD detection. We
adapted approaches proposed in the literature [161, 168] and included OOD data in the
training data set, known as outlier exposure [161] or negative data [169]. We motivate
the use of OOD data during training to break the “closed world” assumption. In other
words, we forced the model not to condition the predictions on the chest X-ray input
assumption. In our case, the model was required to predict the absence of any class for
OOD samples, resulting in a zero vector.

It is noteworthy that although “no finding” samples do not have any labeled classes, we
consider them as ID, as they are chest X-rays. For such CXRs that exhibit no indications
of the 14 classes, the model had to predict the “no finding” class. In our experiments,
we also used unrealistic OOD samples such as photos from ImageNet during training,
since they are expected to exist when employing a pre-trained model.

In a production setting, the ID thresholds would be set independently for each class
utilizing the validation set that contains both ID and OOD images instead of calculating
the AUC to report the general performance. When training with OOD images, both
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training and validation splits are expanded to include the OOD training/validation splits.

Out of Distribution Data Sets

IRMAa MURAb Bone Agec ImageNetd

Figure 8.3: In this work, we utilized four out-of-distribution datasets: the Image Retrieval
in Medical Applications (IRMA) data set [170] (a), the Musculoskeletal Radiographs (MURA)
data set [171] (b), the Bone Age data set [172] (c), and the ImageNet data set [103] (d). The
IRMA data set comprises a diverse collection of radiographic images, while the MURA data
set contains solely upper extremity radiographs, and the Bone Age data set consists of hand
radiographs. Lastly, the ImageNet data set is a collection of web-scraped photographs. All four
data sets are publicly available.

8.2.3 Other Out-of-Distribution Detection Methods

In the literature, several methods for OOD detection have been proposed to explic-
itly filter OOD samples. Hendrycks and Gimpel were among the first to tackle this
problem [158]. They utilized the maximum value of the softmax prediction as the ID
probability. In their work, they justify this choice by observing that the highest predic-
tion for OOD samples is lower than that of ID samples. Since softmax is commonly used
for single-label classification problems, they extended the approach to multi-label classi-
fication tasks by using the maximum logit of the classification layer (Max. Logit) [159].
In contrast, Wang et al. used the label-wise energy function [173] instead of the sigmoid
to transform the model output to an ID score (Max. Energy) [160].

Instead of converting the model’s output to an ID score, several approaches use the ac-
tivations of the model to generate class-conditional Gaussian distributions (Mahalanobis)
[164, 163]. This method models OOD images as unlikely points in the class distribu-
tion, i.e., having a large Mahalanobis distance to the modeled class means in the latent
space. Lee et al. [164] motivated the use of the Mahalanobis distance between the mean
representation of a class and the input in the feature space, instead of performing OOD
detection in the label space due to “label overfitting”, i.e., that the model predictions
are conditioned on the training labels. For Mahalanobis-based OOD detection, we use
the output of the penultimate layer to determine the Mahalanobis scores similar to the
work by Çallı et al [163].
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8 OOD detection with ID voting

Hendrycks et al. propose training the classification model with additional self-supervised
heads to improve OOD robustness (SS OOD) [162]. In this method, the model has to
additionally predict image rotation and translation. OOD detection is performed by
taking the highest class prediction probability as ID score.

In- Out-of-Distribution
Data Set CXR14 IRMA MURA Bone Age ImageNet Subset

Pre-processing - Remove CXR - - Sample Sample

Training 78,468 3,088 35,366 8,179 217,818 3,088
Validation 11,219 772 772 772 54,455 772
Testing 22,433 3,860 3,860 3,860 3,860 3,860

Total 112,120 7,720 39,998 12,811 276,133 7,720

Table 8.1: Data Sets used in our experiments. The smallest out-of-distribution data set (IRMA)
is split into 40/10/50 % training/validation/testing. To compare different scenarios we used the
same number of images for validation and testing of the other OOD data sets (MURA [171],
BoneAge [172], ImageNet [103]). The remaining images were used for training. Because the
ImageNet data set is an order of magnitude larger than the ID CXR14 data set [78] we took a
random sample first. To examine the different data set sizes we also fixed the size of the OOD
training data splits to have the same amount of images (Subset). CXR = chest radiograph.

8.2.3.1 Data Sets

Not every OOD sample is equally likely in a real-world scenario. In a production setting,
the CheXnet model can encounter OOD X-ray images, as the distinction between ID
and OOD X-ray images is based on manual, error-prone tagging. Photographs on the
other hand are not part of the image processing pipeline in a radiology department and
can thus be assumed not to be found in a real-world scenario.
For our OOD detection experiments, we selected three publicly available radiographic

data sets, IRMA [170], MURA [171], and BoneAge [172], containing X-ray images of
various body parts as realistic OOD test data sets to test cross-data set generaliza-
tion [169]. We specifically chose publicly available data sets to ensure reproducability of
our findings and encourage future work. Further data set details are listed in Table 8.1.

8.2.3.2 In-Distribution Chest X-ray 14

We use the train-test split provided by the authors of the Chest X-ray 14 (CXR14) data
set, having non-overlapping patients. We further randomly split the provided training
data set into training and validation sets, again with non-overlapping patients resulting
in 78,468 training, 11,219 validation, and 22,433 test images (see also Table 8.1). All
three splits have a similar prevalence of class labels. In summary, the original data set is
split into 70 % training, 10 % validation, and 20 % test data. In contrast to the original
CheXnet model, we expand the target classes and include “no finding” to differentiate
between healthy CXR and other images. We also use the images labeled as “no finding”
for training, as 46 % of the images are labeled as such. For these images, the model
must predict the absence of all 14 pathologies in the original CheXnet setup.
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8.2.3.3 Out-of-Distribution Data Sets

For our OOD detection experiments we use the following data sets:

• IRMA: the image retrieval in medical applications data set [170] consists of 14,410
diverse radiographic images; 12,677 are annotated according to the anatomical
category, 1733 are test images without annotation. The original task was to predict
the correct anatomical category.

• MURA: the musculoskeletal radiographs data set [171] consists of 40,561 radio-
graphic images, displaying different upper extremity bones. The original task was
to predict if the X-ray study is normal or abnormal.

• BoneAge: the Bone Age data set [172] consists of 12,811 hand radiographs of
children. The original task was to predict the age of the patient.

• ImageNet: the ImageNet data set [103] contains over one million web scraped
photographs. The data set is often used for pre-training computer vision models.
There are several tasks for this data set, including image classification and object
detection.

While the CheXnet model has been pre-trained on predicting the ImageNet classes,
they are OOD regarding the target task of chest X-ray classification, as the data set does
not include chest X-rays. Therefore, we use it as additional non chest X-ray OOD data
set, allowing us to investigate the performance of our proposed method “In-Distribution
Voting” (IDV). This is relevant for use cases where no or only few realistic OOD images
are available. The OOD data sets are illustrated in Figure 8.3.

Because the IRMA data set is the smallest data set, we sample every OOD data set so
that their test and validation split sizes match the IRMA splits. Furthermore, we create
a subset of every OOD data set to account for training data size.

IRMA We only use the provided training images, as we require the IRMA labels to
exclude ID chest radiographs from the data set. We remove all chest X-rays from the
data set according to their anatomical code and exclude images with an anatomical code
starting with 57, 75, 05, or 150, resulting in 7,720 images. We split the remaining images
randomly into training, validation, and testing using a 30 % / 20 % / 50 % split to ensure
enough images in the test split.

Bone Age We randomly sample the test and validation images according to the data
split sizes of the IRMA data set (772 validation images, 3,860 test images, see Table 8.1).
The remaining 8,179 images are either used all or sampled according to the IRMA
training set size (3,088 images) for the training split.
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8 OOD detection with ID voting

MURA We split the MURA data set, containing 40,561 images, similar to the Bone
Age data set: the validation and test partitions are randomly sampled, matching the
size of the IRMA validation/test splits, listed in Table 8.1. Either all remaining images
or ones sampled according to the IRMA training set size (3,088 images) are used for
training.

ImageNet Due to the size of the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) data set compared to the Chest X-ray 14 data set we use only 50 % of the
544,546 images provided in the “LOC train solution.csv” file for training and another
20 % for validation, see Table 8.1. When accounting for OOD data set sizes, we sample
the training and validation sets according to the size of the IRMA splits. For both cases
we sample the test set according to the IRMA test split size. All train/validation/test
splits were created with non-overlapping images.

8.3 Results

8.3.1 Chest X-ray Classification

We trained the CheXnet model successfully on the Chest X-ray 14 (CXR14) data set
and evaluated the impact of training with OOD data on chest disease classification
performance by measuring the performance on the ID test data set, without any OOD
samples. Furthermore, we report the CXR classification results when training with SS
OOD heads.
We report the mean AUC over all 15 classes, as well as the AUC for each individual

class. The model achieved a mean AUC of 83 % when trained and tested on the CXR14
data set without any OOD images, as shown in Table 8.2. Figure 8.4 displays the
corresponding receiver operating characteristic (ROC) curves for all 15 classes in the
CXR14 data set.
To further evaluate the performance of the model, we trained it with additional self-

supervised heads, as it modifies the training procedure, which resulted in a reduction in
the classification mean AUC to 81.1 %. We also tested the model’s performance when
trained with OOD samples from the IRMA and ImageNet data sets. In contrast to
the self-supervised training scheme, the mean AUC improved to 83.3 % when including
IRMA and ImageNet OOD data (3088 samples). Trained with only IRMA or ImageNet
data the mean AUC resulted in 82.7 % and 82.4 %, respectively. Table 8.2 shows the
AUCs obtained when training with all data set combinations, including MURA and
Bone Age, which resulted in similar AUCs of 83.2 % and 83.0 %, respectively. However,
using the full ImageNet OOD set resulted in a lower AUC of 81.1 %.
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Figure 8.4: ROC curves of all CXR14 classes for the main experiment settings. Training with
OOD data, as proposed by our method, IDV, had no clear negative effect on CXR classification.
In contrast, training with self-supervised heads (SS OOD) affected the classification negatively.
The depicted IDV runs were trained with 3088 OOD images (subset).
ROC = Receiver Operating Characteristic, OOD = out-of-distribution, IDV = in-distribution
voting, CXR = Chest X-ray.
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Figure 8.5: ROC curves for OOD detection on the test datasets of CXR14 + IRMA, MURA,
Bone Age with their respective AUC. The CXR classifier, CheXnet, cannot handle OOD data
itself, resulting in a false positive rate of 100 % on all test datasets. This means that all OOD
images were classified as having lung disease by the base model. Training the model with self-
supervised heads (SS OOD) improved the OOD detection AUC only on the IRMA dataset, not
on MURA and Bone Age. Converting the model’s output to an OOD detection score (MaxLogit,
MaxEnergy) improved the OOD AUC on all three datasets. Using the Mahalanobis distance to
the class means in the feature space as an OOD signal resulted in an AUC greater than 97 % on
all three datasets. Our proposed method, IDV, performed best with an average OOD detection
AUC of 99.9 % across all three datasets when trained with ImageNet and IRMA data. Training
with a domain-specific OOD dataset (IRMA) performed better than using only a general dataset
(ImageNet), and training with a diverse OOD dataset containing domain-specific OOD data as
well (ImageNet + IRMA) performed best. All IDV runs were trained with a subset (3088 images)
of the available OOD training data, using 1044 ImageNet and 1044 IRMA images in the case of
ImageNet + IRMA. ROC = Receiver Operating Characteristic, OOD = out-of-distribution, AUC
= area under the ROC curve, CXR = Chest X-ray, IDV = in-distribution voting, CXR14 = Chest
X-Ray 14, IRMA = image retrieval in medical applications data set, MURA = musculoskeletal
radiographs data set.

8.3.2 Out-of-Distribution Detection

The objective of OOD detection is to classify each image as either ID or OOD. For each
of the three OOD data sets (IRMA, MURA, and BoneAge), we evaluate the performance
of the OOD detection methods by measuring how many ID and OOD samples from the
test set are correctly classified as such. As a baseline, we employed the default CheXnet
model with no extra OOD detection mechanism, which represents the current CXR
classification models. We report the AUC as our evaluation metric.

Figure 8.5 shows the ROC plots for the three different OOD data sets with their
corresponding AUCs. CheXnet, without any OOD detection method, failed to filter any
OOD image in all data sets, with a false positive rate of 100 % and an AUC of 50 %.

Training CheXnet with self-supervised heads (SS OOD) increased the OOD AUC to
51.2 % on the IRMA data set but resulted in a worse OOD detection performance on
the MURA and Bone Age data sets with 47.7 % AUC and 43.9 % AUC, respectively.

The conversion of the logits to an OOD score using MaxLogit and MaxEnergy im-
proved the OOD performance considerably compared to the CheXnet model with MaxLogit
achieving AUCs of 67.5 %, 71.6 %, and 78.6 %, respectively on the IRMA, MURA, and

105



8 OOD detection with ID voting

Bone Age data sets. MaxEnergy performed similarly, with 67.2 %, 71.2 %, and 78.8 %,
respectively.

Using the Mahalanobis distance increased the OOD detection performance signifi-
cantly compared to MaxLogit and MaxEnergy with an AUC of 97.3 % on the IRMA
data set, 98.5 % on MURA, and 98.8 % on Bone Age.

Our method, IDV, trained with 1544 ImageNet and 1544 IRMA images surpassed the
Mahalanobis performance on all three data sets with an AUC of 99.8 % on the IRMA
data set, 99.9 % on the MURA data set, and 100 % on the Bone Age data set. Training
with IRMA images resulted in 99.8 %, 99.6 %, and 100 % AUC on IRMA, MURA, and
Bone Age, respectively. IDV with ImageNet in 93.8 %, 89.8 %, and 90.3 %, respectively.

8.3.3 Effect of Out-of-Distribution Training Data

To investigate the impact of out-of-distribution training data selection, we conducted a
series of experiments to measure the performance of OOD detection, using the area under
the receiver operating characteristic curves. We trained our model using all available
OOD data sets, including IRMA, MURA, Bone Age, and ImageNet. To account for
the smaller sample size of IRMA and Bone Age data sets, we combined them with
the ImageNet data set. Specifically, we chose ImageNet training data larger than the
in-distribution CXR14 training data to measure the effect of using more OOD than ID
data. To ensure a fair comparison among different OOD training data sets, we randomly
sampled a subset of 3088 images from each data set, matching the smallest data set size
(IRMA). When training using two data sets (ImageNet + IRMA, ImageNet + Bone
Age), we selected 50 % from each, resulting in 1544 images from ImageNet and 1544
radiographs from either IRMA or Bone Age. In all experiments, we used a test set
consisting of 3860 samples (see Table 8.1).

Figure 8.6 shows the ROC curves and AUC values for the different IDV runs evaluated
on the thee test data sets: IRMA, MURA, and Bone Age. Generally, our proposed
method outperformed the CheXnet baseline (AUC 50 %) when trained on any OOD
data. Also, the models performed best on the Bone Age data set, containing only hand
X-rays, and worst on the IRMA data set, containing a wide variety of radiographs.
Training with ImageNet data generalized to X-ray OOD data sets with AUCs from 97
% to 100 % when trained on the whole data set and from 90 % to 94 % when trained on
the subset. Training on the Bone Age data set performed worst on the IRMA data set
(AUC 71 %) but achieved an AUC of 100 % on the Bone Age test set; using only a subset
improved the performance and combining the data with ImageNet even further. Training
on the MURA and IRMA data set individually performed best, but was exceeded only
by the combination of ImageNet and IRMA data. Overall, our results suggest that
incorporating diverse data sets, such as ImageNet and IRMA, is a promising approach
to improve OOD generalization for X-ray classification tasks.

106



8.4 Discussion

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr
ue
 P
os
iti
ve
 R
at
e

IRMA

ImageNet+IRMA (subset)     AUC: 0.998
IRMA                       AUC: 0.998
ImageNet+Bone Age          AUC: 0.993
MURA                       AUC: 0.961
ImageNet                   AUC: 0.966
ImageNet+IRMA              AUC: 0.973
MURA (subset)              AUC: 0.914
Bone Age (subset)          AUC: 0.793
ImageNet (subset)          AUC: 0.938
ImageNet+Bone Age (subset) AUC: 0.783
Bone Age                   AUC: 0.711

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
MURA

ImageNet+IRMA (subset)     AUC: 0.999
IRMA                       AUC: 0.996
ImageNet+Bone Age          AUC: 0.999
MURA                       AUC: 1.000
ImageNet                   AUC: 0.991
ImageNet+IRMA              AUC: 0.989
MURA (subset)              AUC: 1.000
Bone Age (subset)          AUC: 0.955
ImageNet (subset)          AUC: 0.898
ImageNet+Bone Age (subset) AUC: 0.926
Bone Age                   AUC: 0.900

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Bone Age

ImageNet+IRMA (subset)     AUC: 1.000
IRMA                       AUC: 1.000
ImageNet+Bone Age          AUC: 1.000
MURA                       AUC: 1.000
ImageNet                   AUC: 1.000
ImageNet+IRMA              AUC: 0.972
MURA (subset)              AUC: 1.000
Bone Age (subset)          AUC: 1.000
ImageNet (subset)          AUC: 0.903
ImageNet+Bone Age (subset) AUC: 1.000
Bone Age                   AUC: 1.000

IDV OOD Detection ROC Curves: Exposure Data Sets

Figure 8.6: ROC curves and AUCs of all OOD detection runs using IDV on three OOD test
data sets: IRMA, MURA, and Bone Age with CXR14 in-distribution data. IDV OOD detection
with any OOD data improved OOD detection performance. Generally, all models performed
best on the Bone Age data set, which includes only hand X-rays, and the worst on IRMA,
which comprises a variety of X-rays. Consequently, using only the specific Bone Age data during
training improved OOD detection performance less than using the diverse ImageNet data set,
expect on the Bone Age test data. Training with ImageNet OOD images provided strong OOD
detection performance, with an AUC greater than 96 % on all data sets. Additionally, training
with the most diverse data set, ImageNet + IRMA, provided the overall best performance, using
only 3088 training images (subset). ROC = Receiver Operating Characteristic, OOD = out-of-
distribution, AUC = area under the ROC curve, CXR = Chest X-ray, IDV = in-distribution
voting, IRMA = image retrieval in medical applications data set, MURA = musculoskeletal
radiographs data set.

8.4 Discussion

Assessing whether the tested model performance in a benchmark translates to an in-
tended production setting, including potential OOD data is a necessary step before
deploying a machine learning model. This is particularly important in safety critical ap-
plications, e.g. when classifying chest X-rays to assist radiologists in diagnosing patients.
Our results show that the CheXnet model cannot handle OOD samples out-of-the-box.
However, combining it with our proposed method, IDV, and trained with any OOD data,
even the photographs of ImageNet, improved the OOD detection performance compared
to the baseline CheXnet model and most OOD detection methods considerably with
OOD detection AUCs up to 100 %.

In their paper, Rajpurkar et al. conclude that their CheXnet model exceeds practicing
radiologists in detecting pneumonia [13] and note as limitation that only frontal CXR
were used, giving a potential low estimate of the model’s performance. Our experiments
showed that a further limitation was not considered: out-of-distribution images. A model
that cannot handle OOD images, making confident predictions based on wrong evidence,
will lead to worse quality of care, eroding the trust of physicians into the model’s pre-
dictions when facing ID images, and impede the potential benefits of computer assisted
diagnosis. Having robust models trusted by radiologists is necessary to leverage such
classifiers to assist radiologists in clinical practice. Out-of-the-box, the CheXnet model
failed to provide this robustness against realistic OOD images.
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8 OOD detection with ID voting

In our experiments, we noted that other OOD detection methods based on a model’s
output (Maxlogit, MaxEnergy, and SS OOD) performed considerably worse than in their
original works. This suggests that the presented OOD data sets are more challenging,
highlighting the importance of considering OOD data in the medical domain. Our
experiments showed that even limited OOD data leveraged by IDV had a large effect on
the OOD detection performance without negatively affecting the intended classification
task.
We interpret the large OOD detection difference between the output based meth-

ods, MaxLogit and MaxEnergy, and Mahalanobis as evidence for the “label overfitting”
hypothesis. Our approach, including an “no finding” / OOD label into the training pro-
cedure, breaks this overfitting problem and improves the OOD detection performance
without a complex clustering component like the Mahalanobis distance. We interpret
the IDV results as indicating that the model incorporates the fact that OOD images
exist into its output.
While training with OOD data improves OOD detection performance, it is important

to consider the intended use-case: CXR classification. We can conclude that training
with OOD data, as proposed in our method IDV, does not affect chest disease classifi-
cation performance negatively. This means that diversifying the training and validation
data set with OOD samples improves the model performance in real-world scenarios, as
potential OOD images are filtered.
Regarding the choice and availability of OOD training data our results showed that

only few thousand samples are sufficient and even unrelated OOD data, such as Ima-
geNet, is immensely useful. When comparing the OOD performance trained on the very
specific Bone Age data set and the general ImageNet for cross-data set generalization
we note that training with unrelated ImageNet data generalized better. We therefore
conclude that using a generic OOD data set alone could improve a model’s OOD detec-
tion performance. Including domain specific, diverse OOD images improves the OOD
detection AUC even further (cf. ImageNet vs. ImageNet + IRMA in Figure 8.6).
In this work, we investigated the effect of OOD images on a chest X-ray classifier.

We showed that the model, reportedly performing as good as radiologists [13, 89], was
not able to filter OOD images, leading to obvious false positives to the human observer.
We assume its predictions are conditioned on chest X-rays, because the model was only
trained on chest X-rays, leading to overconfident predictions given OOD images. As
hypothesized by Lee et al. [164], this leads to an ID-overfitted output space. This
interpretation explains why established output-based OOD detection methods failed in
our experiments, when compared to detecting OOD samples in the feature space. Our
solution, ID voting and training with OOD images, regularizes the output space and
expands the model’s knowledge horizon, leading up to a 100 % ID OOD detection AUC.
One reason why OOD data are rarely considered is their dependency on the intended

application. We showed that including a small OOD training data set from the same data
set as the OOD test data resulted in a better OOD detection performance than a general
OOD data set. While this suggests that there is no ideal application independent OOD
data set, we found that training with any OOD data improved the baseline performance
considerably. Furthermore, we showed that even a few thousand OOD samples from the
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intended application boosted the specificity considerably. Therefore, when creating a
data set to train and evaluate a model in a production setting, we recommend to remove
anomalies, outliers and other OOD with caution. Instead, including this “real-world”
data not only in the training process, but also into the model validation, will lead to
more robust ML models and ultimately improve clinical acceptance
One limitation of this work is that we use the CheXnet model as a representative

for other chest X-ray classification models. While we argue that this architecture is
a strong baseline, further research is necessary to determine if our findings translate
to other architectures. Furthermore, we only tested our model on chest X-ray images,
even though our approach remains relevant to all multi-label OOD detection data sets.
Finally, this retrospective work was performed only on public data and further work is
necessary to evaluate our findings on real-world clinical data.

8.5 Conclusion

In conclusion, our study demonstrated that training solely on ID data leads to incorrect
classification of OOD images as ID, resulting in increased false positive rates. We also
showed, that our proposed method, IDV, substantially improves the model’s ID classi-
fication performance, even when trained with data that will not occur in the intended
use case or test set. Consequently, our approach makes the final model more robust and
considerably improves its predictive performance in a real-world setting.
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9 Discussion

The purpose of this dissertation was to develop and improve the chest X-ray classi-
fication pipeline for supporting radiologists in their diagnoses. The pipeline includes
data anonymization and annotation, pre-processing, classification, interpretability, and
robustness during deployment in the clinic. Throughout the dissertation, models and
methods were proposed for significant improvements of each part.
Despite the progress made, there are areas for further development. For example,

simply comparing radiologist routine and current advances in deep learning-based di-
agnoses highlights opportunities for further advancements. Currently, automated chest
X-ray diagnoses are based on only the frontal or frontal and lateral views, while radi-
ologists consider patient history and refer to previous studies for their diagnoses. For
clinicians, highlighting changes between two imaging studies could be even more im-
portant than the diagnosis of an already known pathology. Limited by available data,
current models are not addressing these multi-image settings.
Moreover, most models are only image-based, as patient meta data and radiology re-

ports were not released alongside the images. This is likely due to data privacy concerns
and time constraints. However, the data anonymization algorithm and automatic report
labeler presented in Chapter 4 could address these problems. Besides multi-modal model-
ing, releasing the underlying reports would also provide a form of forward-compatibililty
for future labeling methods.
Another challenge is the lack of a common labeling standard in large-scale chest X-ray

datasets. While an exhaustive list of labels may not necessarily address this issue, com-
mon entities in reports could be analyzed to improve labeling. Additionally, predicting
bounding boxes could increase usability considerably, but missing ground truth labels
are a bottleneck for such predictions. To address this, semi-automatic methods, similarly
to our proposed report labeler, could reduce annotation time significantly.
Another aspect was highlighted by the recent COVID-19 pandemic. For some impor-

tant chest X-ray pathologies, there will only be a handful of example images available.
Here, zero or few-shot approaches could improve classification models for cases with
limited data.
Finally, downstream applications based on chest X-ray classification such as priori-

tization of incoming images and report generation could greatly benefit from publicly
available, state-of-the-art models, similarly to pre-trained ImageNet classifiers or large
language models.
Overall, data gathering is still the most important reason that is holding the develop-

ment of advanced decision support systems back. Working closely with the radiologists
can help in the development of efficient data annotation tools and uncover gaps between
research and problems in the clinical practice.
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10 Conclusion

This dissertation investigated several crucial components of chest radiography process-
ing pipelines, from data processing to image-based pathology classification. The work
of this doctoral project was conducted in close collaboration with radiologists. The ob-
jective was to address their challenges in clinical practice and to propose and evaluate
corresponding solutions to support them.
After elucidating the benefits of applying deep learning for radiologist decision sup-

port systems (Chapter 1), deep learning concepts, tools, and resources were introduced
(Chapter 2). Then, chest X-ray data sets and models were presented (Chapter 3), fol-
lowed by processing radiology reports (Chapter 4), and assessing the effects of image
resolution (Chapter 6) and windowing (Chapter 5) on model performance. To improve
interpretability of decision support systems, the use of attention-based saliency maps for
chest X-ray classifications with vision transformers was proposed (Chapter 7). Finally,
to ensure safe use of such systems in clinical practice, an out-of-distribution detection
method was suggested (Chapter 8).
As discussed in the previous chapter, current deep learning models already have the

potential to improve patient care in everyday clinical practice. The results of this disser-
tation suggest that the necessary key components for clinical image processing software
are now available, and I am looking forward to see these components being used in
clinical applications.
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A Appendix

A.1 Journal Publications

A. Wollek, R. Graf, S. Čečatka, N. Fink, T. Willem, B. Sabel, and T. Lasser, “Attention-
Based Saliency Maps Improve Interpretability of Pneumothorax Classification”, Radiol-
ogy: Artificial Intelligence, 5.2 (2023).

A.2 Submitted Journal Publications

• A. Wollek, T. Willem, M. Ingrisch, B. Sabel, and T. Lasser, “A knee cannot
have lung disease: out-of-distribution detection with in-distribution voting using
the medical example of chest X-ray classification”. Submitted to Medical physics,
in May 2023.

• A. Wollek, S. Hyska, T. Sedlmeyr, P. Haitzer, J. Rueckel, B. Sabel, M. Ingrisch,
and T. Lasser, “German CheXpert Chest X-ray Radiology Report Labeler”. Sub-
mitted to RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgeben-
den Verfahren, in June 2023.

A.3 ArXiv Pre-Prints

The following pre-prints are being prepared for publication (as of June 2023).

• A. Wollek, S. Hyska, T. Sedlmeyr, P. Haitzer, J. Rueckel, B. Sabel, M. Ingrisch,
and T. Lasser, “Automated Labeling of German Chest X-Ray Radiology Reports
using Deep Learning ”, ArXiv (2023).

• A. Wollek, S. Hyska, B. Sabel, M. Ingrisch, and T. Lasser, “WindowNet: Learn-
able Windows for Chest X-ray Classification ”, ArXiv (2023).

• A. Wollek, S. Hyska, B. Sabel, M. Ingrisch, and T. Lasser, “Exploring the Impact
of Image Resolution on Chest X-ray Classification Performance ”, ArXiv (2023).
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[17] Alejandro Rodŕıguez-Ruiz et al. “Detection of Breast Cancer with Mammography: Effect of
an Artificial Intelligence Support System”. In: Radiology 290.2 (Feb. 2019), pp. 305–314. issn:
0033-8419. doi: 10.1148/radiol.2018181371. (Visited on 09/09/2022).

[18] Axel Wismüller and Larry Stockmaster. “A Prospective Randomized Clinical Trial for Measur-
ing Radiology Study Reporting Time on Artificial Intelligence-based Detection of Intracranial
Hemorrhage in Emergent Care Head CT”. In: Medical Imaging 2020: Biomedical Applications in
Molecular, Structural, and Functional Imaging. Vol. 11317. SPIE, Feb. 2020, pp. 144–150. doi:
10.1117/12.2552400. (Visited on 02/04/2022).

[19] Mohammad R. Arbabshirani et al. “Advanced Machine Learning in Action: Identification of
Intracranial Hemorrhage on Computed Tomography Scans of the Head with Clinical Workflow
Integration”. In: npj Digital Medicine 1.1 (Apr. 2018), pp. 1–7. issn: 2398-6352. doi: 10.1038/
s41746-017-0015-z. (Visited on 02/04/2022).

[20] Koichiro Yasaka and Osamu Abe. “Deep Learning and Artificial Intelligence in Radiology: Cur-
rent Applications and Future Directions”. In: PLOS Medicine 15.11 (Nov. 2018), e1002707. issn:
1549-1676. doi: 10.1371/journal.pmed.1002707. (Visited on 06/01/2023).

[21] Center for Devices and Radiological Health. “Artificial Intelligence and Machine Learning (AI/ML)-
Enabled Medical Devices”. In: FDA (Wed, 09/22/2021 - 12:25). (Visited on 09/15/2022).

[22] Geeta Joshi et al. FDA Approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled
Medical Devices: An Updated 2022 Landscape. Jan. 2023. doi: 10.1101/2022.12.07.22283216.
(Visited on 06/01/2023).

[23] Curtis P. Langlotz. “Will Artificial Intelligence Replace Radiologists?” In: Radiology: Artificial
Intelligence 1.3 (May 2019), e190058. doi: 10.1148/ryai.2019190058. (Visited on 06/01/2023).

[24] Andrew B. Rosenkrantz, Danny R. Hughes, and Richard Duszak Jr. “The US Radiologist Work-
force: An Analysis of Temporal and Geographic Variation by Using Large National Datasets”.
In: Radiology 279.1 (2016), pp. 175–184. doi: 10.1148/radiol.2015150921.

[25] Andrew B. Rosenkrantz et al. “A County-Level Analysis of the US Radiologist Workforce: Physi-
cian Supply and Subspecialty Characteristics”. In: Journal of the American College of Radiology
15.4 (2018), pp. 601–606.

[26] Abi Rimmer. “Radiologist Shortage Leaves Patient Care at Risk, Warns Royal College”. In:
BMJ: British Medical Journal (Online) 359 (2017). doi: 10.1136/bmj.j4683.

[27] Sarah Bastawrous and Benjamin Carney. “Improving Patient Safety: Avoiding Unread Imaging
Exams in the National VA Enterprise Electronic Health Record”. In: Journal of digital imaging
30.3 (2017), pp. 309–313. doi: 10.1007/s10278-016-9937-2.

[28] David A. Rosman et al. “Imaging in the Land of 1000 Hills: Rwanda Radiology Country Report”.
In: Journal of Global Radiology 1.1 (2015), p. 5. doi: 10.7191/jgr.2015.1004.

[29] Farah S. Ali et al. “Diagnostic Radiology in Liberia: A Country Report”. In: Journal of Global
Radiology 1.2 (2015), p. 6.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet Classification with Deep
Convolutional Neural Networks”. In: Advances in neural information processing systems 25
(2012), pp. 1097–1105.

[31] Luca Saba et al. “The Present and Future of Deep Learning in Radiology”. In: European Journal
of Radiology 114 (May 2019), pp. 14–24. issn: 0720-048X, 1872-7727. doi: 10.1016/j.ejrad.
2019.02.038. (Visited on 12/18/2020).

118

https://doi.org/10.1016/S2589-7500(21)00106-0
https://doi.org/10.1148/radiol.2018181371
https://doi.org/10.1117/12.2552400
https://doi.org/10.1038/s41746-017-0015-z
https://doi.org/10.1038/s41746-017-0015-z
https://doi.org/10.1371/journal.pmed.1002707
https://doi.org/10.1101/2022.12.07.22283216
https://doi.org/10.1148/ryai.2019190058
https://doi.org/10.1148/radiol.2015150921
https://doi.org/10.1136/bmj.j4683
https://doi.org/10.1007/s10278-016-9937-2
https://doi.org/10.7191/jgr.2015.1004
https://doi.org/10.1016/j.ejrad.2019.02.038
https://doi.org/10.1016/j.ejrad.2019.02.038


Bibliography

[32] Yann LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”. In: Neural
computation 1.4 (1989), pp. 541–551.

[33] Seymour A. Papert. “The Summer Vision Project”. In: (1966).

[34] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer Nature, 2022.

[35] Md Zahangir Alom et al. “A State-of-the-Art Survey on Deep Learning Theory and Architec-
tures”. In: Electronics 8.3 (Mar. 2019), p. 292. issn: 2079-9292.

[36] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

[37] Simon J.D. Prince. Understanding Deep Learning. MIT Press, 2023.

[38] Kevin P. Murphy. Probabilistic Machine Learning: An Introduction. MIT press, 2022.

[39] Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023.

[40] Christopher M. Bishop and Nasser M. Nasrabadi. Pattern Recognition and Machine Learning.
Vol. 4. Springer, 2006.

[41] Yury Gorishniy et al. “Revisiting Deep Learning Models for Tabular Data”. In: Advances in
Neural Information Processing Systems 34 (2021), pp. 18932–18943.

[42] Rishi Bommasani et al. On the Opportunities and Risks of Foundation Models. Comment:
Authored by the Center for Research on Foundation Models (CRFM) at the Stanford Insti-
tute for Human-Centered Artificial Intelligence (HAI). Report page with citation guidelines:
https://crfm.stanford.edu/report.html. July 2022. doi: 10.48550/arXiv.2108.07258. arXiv:
2108.07258 [cs]. (Visited on 05/15/2023).

[43] Xavier Glorot and Yoshua Bengio. “Understanding the Difficulty of Training Deep Feedforward
Neural Networks”. In: Proceedings of the Thirteenth International Conference on Artificial In-
telligence and Statistics. 2010, pp. 249–256.

[44] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on Im-
ageNet Classification”. In: 2015 IEEE International Conference on Computer Vision (ICCV).
Santiago, Chile: IEEE, Dec. 2015, pp. 1026–1034. isbn: 978-1-4673-8391-2. doi: 10.1109/ICCV.
2015.123. (Visited on 04/11/2023).

[45] Marvin Minsky and Seymour A. Papert. Perceptrons, Reissue of the 1988 Expanded Edition with
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