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Towards Long-Term Retrieval-based Visual
Localization in Indoor Environments with Changes
Julia Kabalar*1, Shun-Cheng Wu*1, Johanna Wald1,4, Keisuke Tateno1,3, Nassir Navab1,2, Federico Tombari1,3

Visual localization is a challenging task due to the presence
of illumination changes, occlusion, and perception from novel
viewpoints. Re-localizing the camera pose in long-term setups
raises difficulties caused by changes in scene appearance and
geometry introduced by human or natural deterioration. Many
existing methods use static scene assumptions and fail in dy-
namic indoor scenes. Only a few works handle scene changes
by introducing outlier awareness with pure learning methods.
Other recent approaches use semantics to robustify camera
localization in changing setups. However, to the best of our
knowledge, no method has yet used scene graphs in feature-
based approaches to introduce change awareness. In this
work, we propose a novel feature-based camera re-localization
method that leverages scene graphs within retrieval and feature
detection and matching. Semantic scene graphs are used to
estimate scene changes by matching instances and relationship
triplets. The knowledge of scene changes is then used for
our change-aware image retrieval and feature correspondence
verification. We show the potential of integrating higher-level
knowledge about the scene within a retrieval-based localization
pipeline. Our method is evaluated on the RIO10 benchmark
with comprehensive evaluations on different levels of scene
changes.

Index Terms—Localization.

I. INTRODUCTION

V ISUAL localization aims to estimate the camera pose
from a given image with respect to a reference scene [1],

[2]. This is challenging and also a fundamental requirement
for many computer vision applications, such as augmented,
mixed, and virtual reality (AR/MR/VR) [3]–[5], robotics, and
autonomous driving [6]–[8]. Despite the difficulty of this task,
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Fig. 1. Method overview: a) We use image sequences to generate a per-
frame scene graph and merge them into a global representation; b) Given a
reference and a query graph, we match two graphs with graph matching;
c) The matching results are used to find static and changed objects; d)
The knowledge of scene changes is integrated into image retrieval, by only
considering inlier objects (green), and feature matching, by detecting outlier
keypoints (red).

it is a rather mature research field where recent methods [9]–
[11] reported high pose accuracy on popular indoor bench-
marks such as 7-scenes [12] and 12-scenes [13]. Structure-
based methods [11], [14], [15] are one of the most famous
approaches. They rely on local and global features for finding
correspondences across images and then use them to estimate
accurate camera poses. An image retrieval step [16], [17] is
often used to reduce memory usage and run-time.

Although those methods show excellent performance on
the benchmarks with static scenes, recent studies [11], [18]
have shown that they fail to perform under scene changes,
while only a few methods targeted in solving and studying
this task [11], [18]. Dong et al. [10] proposes to handleDOI: 10.1109/LRA.2023.3242872 ©2023 IEEE



KABALAR et al.: LONGTERMLOC 3

dynamic indoor scenes by introducing outlier awareness and
rejecting points during the hierarchical routing process in
a decision tree, outperforming other methods in the RIO10
benchmark [18]. However, compared to other baselines, the
fraction of the correctly localized frames is greatly affected
by the changes in scene geometry. Inspired by their work,
we observe that the awareness of moved objects is the key to
localizing cameras in changed scenes. Existing structure-based
methods [11], [15] do not consider scene changes in the step
of image retrieval and correspondence finding.

To this end, we propose a novel feature-based visual local-
ization pipeline that aims at improving visual localization in
changed scenes by identifying scene changes using semantic
scene graphs. The overview of our method is shown in Fig. 1.
Our method estimates a reference and a query graph by
associating the local scene graphs from all their respective
input images. We detect scene changes on a scene graph
level by comparing the spatial relationship within relationship
triplets (subject, predicate, object), e.g. the basket is on the
left of a washing machine, between the scene graphs of a
reference and revisited scene. With the awareness of these
scene changes, we propose two major changes in a retrieval-
based visual localization pipeline [11]. First, we propose a
retrieval method that retrieves image candidates based on
the similarity of static object sets. Second, we modify the
descriptor matching step by eliminating potential outliers on
the moved objects.

We evaluate the performance of our method on the RIO10
dataset [18], which was designed to evaluate long-term visual
camera re-localization. We provide a comprehensive evalua-
tion of our method under different levels of scene changes. The
evaluation results show that compared to baseline methods,
our method has slightly better results given low-level scene
changes and increasing performance along with the scene
change level. In summary, we contribute: (1) A novel pipeline
aims to solve visual localization for dynamic indoor scenes.
(2) A scene change estimation method using scene graph
matching.

II. RELATED WORK

A. Camera Re-Localization

Camera localization can be roughly classified into four
categories: image retrieval, direct pose regression, structure-
based, and scene coordinate regression. Image retrieval meth-
ods find the pose of a query image by retrieving the pose
of a reference image within a pre-built image database. Due
to the reliance on a reference image database, these methods
only work when the query poses are identical or very similar
to the reference set [19]. Strategies have been proposed to
solve this issue, e.g. using view interpolation [20], [21], and
scene graphs [22]. Direct pose regression methods estimate the
pose of a given image without preamble. It is usually based
on learning-based approaches [23]–[25]. Despite their end-to-
end fashion in estimating camera pose, such methods usually
underperform the state-of-the-art RGB-D and structure-based
methods. Scene coordinate regression methods estimate dense
scene coordinates on each pixel of the query image [9], [26],

[27]. However, since those methods typically target regression
scene coordinates with static image sequences, the quality
of the pose estimation is susceptible to scene changes. Only
a few methods [10] try to handle changes by classifying
them as outliers. Structure-based methods rely on the feature
matches of 2D features and the 3D points in a scene. Matches
are then used to estimate camera poses within a RANSAC-
based method. The quality of feature description and matching
directly affect the quality of the estimated pose. Many methods
have been proposed to extract features with learning-based
approaches [14], [28], [29] others proposed to improve feature
matching with hierarchical methods [11], [15]. Semantics
have successfully been used to improve long-term camera
re-localization in outdoor scenes [30]–[37]. However, [31]
argues the applicability of semantics in indoor scenes. Some
methods use objects, instead of keypoints, as landmarks for
visual localization. However, they still rely on static scene
assumptions that struggle in localizing camera poses when
scene content changes.

B. Scene changes

Handing scene changes in visual localization is either done
by estimating overall similarity [30] or filtering outliers [10].
Only a few works focus on estimating the scene changes. Most
scene change detection networks are siamese-like architectures
[38], [39] that learn changes under the assumption that the test
trajectory is similar to the reference trajectory. On the other
hand, while scene graphs are a great representation to encode
the high-level content of the scene, they were only recently
proposed for scene change detection [40]. A direction to use
scene graphs to learn scene changes [41] is costly, requires
similar views, and is labeling-work intense, thus relatively
unexplored. However, the idea of using a graph representation
to link objects is used in various works such as object-based
SLAM systems [42] and semantic graphs [43], [44]. A line of
work [45]–[47] use graph representation in visual localization
with the use of graph topology and random walk descriptors.
However, they focus on handling the changes in viewpoint
and visual appearance instead of the changes in semantics or
geometry. To the best of our knowledge, no previous work
uses scene graphs for change detection in a visual localization
pipeline.

III. METHOD

In this work, we focus on improving feature-based methods
by introducing awareness of scene changes. Our method
is built on top of the state-of-the-art retrieval-based visual
localization framework, Kapture [11], which combines image
retrieval and structure-based methods for visual localization,
by integrating the scene change awareness estimated with
scene graph matching. The overview of our method is shown
in Fig. 2. We will briefly discuss the original Kapture plus the
proposed changes, and then detail the proposed method in the
following method sections.
Reconstruction pipeline: Given a reference sequence, the re-
construction pipeline reconstructs a sparse point map through
three steps: image retrieval, descriptor matching, and point
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Fig. 2. Overview of the proposed change-aware localization pipeline. On top
of the typical Structure from Motion (SfM) Mapping and Localization, we
integrate scene change awareness into image retrieval and descriptor matching
using scene graphs.

triangulation. The image retrieval step reduces the search
space in an image database to allow localization at scale,
the descriptor matching step finds feature correspondences
between images, and the point triangulation estimates 3D
sparse points, which are associated with 2D points to be used
to build a global map of the environment. In our method,
we additionally estimate a reference scene graph GRef using
input reference images (Sec. III-A). The reference scene graph
is used for scene change estimation (Sec. III-B).
Localization pipeline: Given a query sequence, the localiza-
tion pipeline estimates the 6-degree-of-freedom (DoF) camera
poses for the input images with respect to the reference
scene. An image retrieval step is applied to reduce the search
space to the top-k most similar images based on the visual
appearance, followed by a descriptor matching step that finds
2D-3D correspondence by matching local image features to
3D points using the associated 2D points from the database
images. Then, camera poses are estimated with those matches
with perspective-n-point (PnP) [48] and RANSAC [49]. In this
work, we modify image retrieval and feature matching with
the knowledge of scene changes, estimated by comparing the
query and reference scene graphs (Sec. III-B). The identified
static and moved objects are used to improve image retrieval
(Sec. III-C) and feature matching (Sec. III-D), respectively.

A. Scene Graph Estimation

In this work, we define a scene graph as G = (V, E), where
V and E are a set of object nodes and directed edges represent
the relationships between two nodes. Each node vi ∈ V is an
object instance that has the attributes of an instance label li,
an object class label coi ∈ Co, a set of 2D bounding boxes Bi,
and a set of appearance descriptors Di. Co is a node category
set, which is the 40 object classes in NYUv2 [50] in our
implementation. Each edge ei→j ∈ E | vi, vj ∈ V, i ̸= j

is defined by a predicate class label cpei→j
∈ Cp , where Cp is

a predicate category set consisting of left, right and none.
Given an image set, we estimate a global scene graph by

merging per-frame local scene graph estimation. Sec. III-A1
describes how local scene graphs are estimated, and
Sec. III-A2 explains the merging step for global scene graph
generation through node association and predicate fusion.

1) Local Scene Graph Estimation: Given an image with
an index t, its scene graph Gt = (Vt, Et) is estimated by first
detecting nodes, then classifying predicates between them.

a) Node Estimation: The nodes are estimated by com-
bining the instance and semantic masks estimated by an
instance and a semantic segmentation network. Each detected
instance mask corresponds to a node vti ∈ Vt. The instance
label lti is inherited from the instance label of this mask, the
semantic class label is assigned with the dominant semantic
label from the semantic mask that corresponds to this mask,
and the bounding box bti ∈ R4 is the maximum and minimum
pixel locations of this mask region. Moreover, the appearance
descriptor dti is computed with an image encoder given the
input of the RoI aligned with the bounding box. The bti and
dti are used to initialize Bt

i and Dt
i respectively.

b) Edge Estimation: We estimate a predicate class be-
tween all node pairs in the image. For an edge eti→j ∈ Et, the
predicate is determined with

eti→j =


left if bti,left < btj,left ∧ bti,right < btj,right

right if btj,left < bti,left ∧ btj,right < bti,right

none else
, (1)

where bti,left and bti,right are the left and right boundary of bti of
node vti .

2) Global Scene Graph Estimation: Given a set of local
scene graph estimates, the global scene graph G is estimated
by first finding the global nodes V through objects association
across frames, then the global predicates E are estimated via
predicate fusion.

a) Node Association: We use the intersection-over-union
(IoU) tracker from [51] with some modifications to associate
nodes across frames. It associates objects in consecutive
frames if objects have sufficient IoU from the previous frame.
We modify their approach by adding semantic consistency,
i.e. objects should have the same semantic class, and we use
the image retrieval step as in [11] to associate objects across
frames when consecutive frames are unavailable. The asso-
ciation results in a unique instance label for each associated
node, and the instance label will be used to associate its node
and its properties.

b) Predicate Fusion: After the node association step, we
determine the global relationship ei→j ∈ E between nodes
vi and vj by taking the dominant predicate that appears in
all local scene graphs of those two nodes. In addition, to
prevent ambiguity in predicate estimation due to the change of
viewpoint, e.g. two nodes placed in the center with a camera
observing the objects in a circular trajectory, we override
the relationship estimation to none if the percentage of the
dominant predicate estimation over all predicate estimations
are less than a threshold fmin.



KABALAR et al.: LONGTERMLOC 5

B. Scene Change Estimation

Given a reference and query image sequence, we use the
scene graphs estimated from the respective image sequences to
identify scene changes. Scene changes are identified by solving
a graph-matching problem. We propose to solve this problem
by relaxing it to the node matching problem (Sec. III-B1) and
using the matched nodes for triplet matching (Sec. III-B2).

After the matching step, for all registered nodes with valid
triplet matches, we select nodes that have semantic classes
with a low likelihood of changes (Sec. IV-A) as a set of static
nodes Vstatic, and for all registered nodes that do not have valid
triplet matches, they are marked as changed nodes Vchange.

1) Node Matching: Given two sets of nodes VQ and VRef

from GQ and GRef respectively, we find node matches for
every node vi ∈ VQ to a node vj ∈ VRef , where i ̸= j, by
using the consensus of all appearance descriptors matching.
Given a query node vi, its node label li, semantic label coi ,
and a set of appearance descriptors Di, we use every descriptor
di ∈ Di to find the most similar descriptor for all descriptors
in the set of reference nodes that have the same semantic
class. As a result, a node-set is obtained, which is used to find
the final node match by selecting the node with the highest
statistical frequency.

2) Triplet Matching: For every triplet {vi, ei→j , vj} in the
query graph GQ, a match exists if a corresponding edge ei→j ∈
ERef exists between the two nodes matching (vi, vj) ∈ VRef .
Since indoor objects are potentially repetitive and might have
similar appearances, object ambiguity is considered in the
triplet matching process. For all nodes in VRef that do not
have a valid triplet match, a node ambiguity set is built,
including the nodes with the same semantic label. Then we
construct triplets using all ambiguous nodes to include all
potential matches. We experimentally found that this improves
the final pose estimation result.

C. Change-aware Image Retrieval

In contrast to classical image retrieval, where a global image
representation is used to find matches, we propose to estimate
the similarity of two given images using the objects that have
not been exposed to scene changes. Given a set of query nodes
VQ and reference nodes VRef , we estimate a set of static
nodes Vstatic from previous step (Sec. III-B2) and use it to
obtain the node sets of all static objects V̄Q and V̄Ref , with
V̄Q = VQ ∩ Vstatic and V̄Ref = VRef ∩ Vstatic. Then estimate
the instance similarity between those two frames with Jaccard
index as

J(V̄Q, V̄Ref ) =
|V̄Q ∩ V̄Ref |
|V̄Q ∪ V̄Ref |

. (2)

For every query node, we check all the reference nodes from
all reference images until the top-k similar matches are found.
To prevent trivial matches where the Jaccard index is too low,
we use a minimum similarity threshold jmin to select valid
candidates. When the number of candidates does not reach the
given top-k, the best matches from the original image retrieval
using global image representation are used to populate the
missing image candidates.

D. Feature Matching with Correspondences Verification

Instead of matching all features, we propose to reject feature
correspondences on moving objects. Feature correspondences
are computed with the closeness of the local feature descriptors
of a set of selected keypoints. Two images IQ, IRef are
considered to have scene overlap if a sufficient number of
feature correspondences are found. The output of this stage is
a set of potentially overlapping image pairs

Z = {(IQ, IRef ,M) | IQ ∈ IQ, IRef ∈ R(IQ, IRef )},
(3)

where M ⊂ FQ × FRef are feature matches [52], IQ is
a set of query images, IRef is a set of reference images,
R(IQ, IRef ) is an image retrieval function that returns a set
of retrieved images given a query image IQ and reference
images IRef .

Those feature correspondences M may include changed
objects resulting in wrong camera pose estimation using PnP.
We apply correspondence filtering on M to filter out moving
objects. We filter out a correspondence pair (pQ, pRef ) ∈ M,
with pQ, pRef feature points in IQ, IRef , if a query point pQ

is located in the pixel occupation OQ
i of node vQi and whether

this is part of Vchange. The final feature correspondences are
then used to estimate camera pose using PnP [48] solver in a
RANSAC loop [49], [53].

IV. EVALUATION

A. Implementation Details

In Sec. III-A1, the instance masks are estimated with
Entity Segmentation Network [54] trained model on the
MS COCO [55] dataset, and the semantic masks are estimated
from FuseNet [56] trained on ScanNetv2 [57] fine-tuned with
3RScan [58] with the class mapping of [59] for 40 dominant
object classes in the NYUv2 [50] labeling scheme.

In Sec. III-B, the likelihood of objects being changed is
determined from the statistics computed using a subset of
the 3RScan dataset [58]. 3RScan contains multiple scans of
the same scenes with potential scene changes. We compute
the likelihood of an object class being changed statistically.
Precisely, human, mirror, pillow, box, towel, shower curtain,
chair, bag, and otherprop are identified as objects with a high
likelihood of changes. We filter them out when selecting a set
of static nodes.

The global and ROI image features are computed with
a pre-trained AP-GeM network [60], and the local features
are computed using the l2-normalized output layer of the
R2D2 [29] network architecture for local feature extraction.

For all experiments, we use the config2 COLMAP parameter
configurations from Table 1 in [11] with 20,000 local features
extracted on the top-20 image pairs.

B. Dataset

RIO10 [18], a subset of 3RScan [58], was published for
long-term camera re-localization in indoor scenes. Unlike
typical benchmarks for static scene localization [13], [61],
it provides multiple scans of the same scenes with changes.
In addition, compared to other benchmarks containing scene
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changes [62], [63], RIO10 also provides an evaluation scheme
to analyze the impact of scene change on the performance of
a method, which allows us to evaluate our method holistically
against different levels of changes.

C. Metrics

a) Pose Difference: We use the absolute translation error
in meters computed as euclidean distance ∆t, and the absolute
angular error ∆θ measured in degrees. We follow other
methods by reporting the metrics with a fraction of frames
localized within a given error threshold εa(ϵt, ϵθ), where the
conditions ∆t < ϵt and ∆θ < ϵθ holds true.

b) Image Retrieval: In image retrieval, we use top-20
precision (p@20) to present the fraction of relevant images
from 20 retrieved images. An image is considered relevant
if it was taken spatially close to the ground truth position
from where the query image was taken. The spatial closeness
is determined by the absolute translation and angular errors
given the poses of the query and the retrieved images.

c) Dense Correspondence Re-Projection Error (DCRE):
This metric is proposed by RIO10 benchmark [18], computed
as the dense correspondence error of the 2D flow of dense
3D points rendered from an underlying 3D model normalized
by the image diagonal. This metric reflects the alignment in
visual perception without considering perceptual aliasing. We
use Cumulative Dense Correspondence Re-Projection Error
εf (ϵf ), with ϵf a given error threshold, to measure a given
sequence. In addition, we use εf (ϵf ) = 1−εf (ϵf ) that reports
the number of outliers, N/A reports the fraction of frames
failed re-localizations, and SCORE = 1+ εf (0.05)− εf (0.5)
reports the overall performance.

d) Change Measures: As in [18], we evaluate the result
regarding semantic ζs and geometric ζg change measure,
which describe the percentage of per-pixel differences in
the 2D instance segmentation images and depth renderings,
respectively. The other measures used are the normalized
correlation coefficient ρv and the normalized sum of squared
differences ζv , which capture visual change in appearance.

D. Results

We report the evaluation result of our method against two
state-of-the-art feature-based methods, i.e. Active Search [64]
and Kapture with the R2D2 method [11], an RGBD method,
i.e. D2-Net [14], and a scene coordinate regression method, i.e.
Grove v2 [9]. Since we implement our method based on the
Kapture with the R2D2 method [11], we depict it as Baseline,
and our method as Ours. In addition, since our method relies
on instance and semantic results, we also report ours with
ground truth instance and semantic segmentation to show the
upper bound of our method, which denotes as Ours*.

a) Image Retrieval: We report the performance of Ours
to Baseline in the task of image retrieval in the RIO10
validation set using the metrics of p@20 and εa.

The result is shown in Tbl. I. There are clear differences
between the performance in our method that shows an increase
of p@20 and εa. We consider an image relevant according
to p@20 if it is within a tolerance of (ϵt, ϵθ) < (3m, 50◦).

We also report the recall based on the absolute pose error
εa with mid-precision (ϵt, ϵθ) = (5m, 10◦) and low-precision
thresholds (ϵt, ϵθ) = (25m, 40◦) over all sequences. In addition,
we report the percentage change of the frames being retrieved
of our change-aware retrieval process over the baseline method
in the last column (+/-). It can be seen that our method brings
around 5% increase in retrieved images and has the potential
up to 16%. This is important since the percentage change
positively correlates to all other metrics.

TABLE I
COMPARISON OF OUR IMAGE RETRIEVAL METHOD AGAINST Baseline

p@20 εa(5m, 10◦) εa(25m, 40◦) +/-
Baseline 0.544 0.108 0.612 0%
Ours 0.557 0.110 0.624 4.7%
Ours* 0.593 0.113 0.662 16.3%

b) Visual Localization: The following results are ob-
tained using the RIO10 evaluation framework1, which allows
quantifying the performance under different types of changes,
e.g. visual, geometric and semantic, on the RIO10 validation
sequences. We visualize the overall results of our method
compared to the baselines in Fig. 3. The results show that
our method can localize a similar fraction of frames as D2-
Net [14] in the high-precision εf (0.05) and outperform all
methods in the mid-precision εf (0.15) zone.
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Fig. 3. Cumulative plots of DCRE for all camera relocalization methods on
the RIO10 validation dataset [18].

The visual localization statistics in Table II show that our
method achieves the highest SCORE according to the visual

1github.com/WaldJohannaU/RIO10

TABLE II
COMPARISON OF VISUAL LOCALIZATION STATISTICS OF ALL METHODS

ON RIO10 VALIDATION DATASET [18]

SCORE εf (0.05) εf (0.15) εa(0.05m, 5◦) ε̄f (0.5) N/A
Active Search [64] 1.22 0.236 0.335 0.081 0.016 0.6050
Grove v2 [9] 0.99 0.388 0.505 0.202 0.395 0.0
D2-Net [14] 1.30 0.408 0.557 0.135 0.107 0.0335
Baseline [11] 1.23 0.360 0.576 0.115 0.126 0.0017
Baseline 30 [11] 1.27 0.374 0.595 0.119 0.109 0.0027
Ours w/o CV 1.32 0.396 0.601 0.115 0.080 0.0066
Ours 1.34 0.410 0.602 0.116 0.074 0.0068
Ours* 1.41 0.454 0.652 0.119 0.043 0.0034



KABALAR et al.: LONGTERMLOC 7

localization performance measure from RIO10 public bench-
mark. By comparing Ours and ours without correspondence
verification (Ours w/o CV), the improvement validates the
integration of our filtering method in local feature matches. We
also show the baseline method with top-30 retrieved images
(Baseline 30), which is claimed to achieve significantly better
results than the methods using top-20 images [1]. Due to its
extensive feature matching, we can outperform Baseline 30,
which takes around 40% higher runtimes compared to the
baseline. In terms of outliers, Active Search [64] provides
less outlier pose estimates εf (0.5). However, Active Search
generally does not localize sufficient good poses seen from
the DCRE inlier statistics, which can be verified by checking
the SCORE metric as it considers both inlier and outlier results
and thus provides a real indicator for the performance of
a method. Compared to learning methods, D2-Net [14] and
Grove v2 [9] achieve the best performance in the threshold-
based metrics ϵa, but their DCRE performance drop increas-
ingly as the fraction of frames increases (see Fig. 3) which
indicates that they tend to output inaccurate poses [18].

To better understand how different scene change factors
affect the localization result, we plot the overall fraction of
localized frames of all methods with increasing ζs, ζg , ρv , and
ζv values and for a fixed DCRE error set to εf (0.15) in Fig. 4.
In the upper left sub-figure, Ours and Ours* show increased
localization accuracy of 4% and 10%, respectively comparing
to the Baseline for large semantic differences ζs. Similarly, the
results in the right upper corner visualize that we can achieve
at least 5% better under increasing depth differences ζg . In
the second row, the evaluation regarding visual appearance
changes demonstrates that our method based on a robust local
feature extraction allows outperforming other methods.

c) Case Study: We provide results on the SCORE metric
in Tbl. III and can compare our method to the baseline method
on each scene. We investigate the results of Tbl. III based on
scene 6, which shows the lowest improvement in terms of the
SCORE metric for our method. The left sub-figure in Fig. 5
shows the visual localization performance in this scene. We
investigate the cause by checking the statistics in semantic
and geometric changes (Fig. 5 right) and found that validation
sequence 6 exhibits the lowest semantic and geometric change
statistics. Our method only improves slightly over the baseline
method under such a scenario. However, it achieves a better
performance under more extensive changes as our method
explicitly focuses on working under scene changes.

d) RIO10 Visual Localization Benchmark: We show the
performance of our method on the RIO10 test sequences in
Tbl. IV compared to other approaches evaluated on the RIO10
benchmark, which includes 54 unseen test sequences. Our
method outperforms all others in εf (0.15), while having a
slightly worse SCORE metric compared to D2-Net. We suspect
a high domain gap between the validation and test sequences
in terms of semantics and the level of scene changes since
our method outperforms D2-Net in most of the validation
sequences. However, we cannot do further evaluation since the
ground truth annotations for the test sequences are unavailable.

0.15

Active Search Grove V2 D2Net Baseline

Ours w/o CV

0.78

0.71
0.70

0.66
0.70

0.65

0.41

Ours Ours*

0.11

0.16

0.27
0.21
0.20
0.17

0.15

0.69
0.64
0.64
0.59
0.55
0.52

0.33
0.36
0.33
0.31
0.28
0.24
0.22
0.18

0.66
0.61
0.59
0.53
0.53
0.50

0.33

0.56
0.56
0.51
0.49
0.48
0.44

0.23

0.47

0.41
0.45

0.39

0.35

0.18

0.39

0.67

0.59

0.53
0.51

0.32

0.58

0.51

Fig. 4. Evaluation of fraction of frames localized according to semantic,
geometric and visual appearance change measures. In comparison, our method
is able to localize a higher fraction of frames under high semantic and
geometric change.

V. CONCLUSION

In this work, we propose a novel pipeline to solve long-
term visual localization in dynamic indoor scenes by adding
awareness of scene change. We use scene graphs to estimate
scene changes and use them for our robust change-aware
image retrieval and correspondence verification. The results
from the evaluation suggest that our method can generate
accurate localization results and obtain a significantly higher
fraction of reasonable pose estimates under high geometric
and semantic scene changes. Furthermore, the result using
ground truth instances and semantics shows the potential of
our method with more robust instance and semantic estimation
networks. To the best of our knowledge, this is the first work
that integrates scene graphs for scene change detection and
object re-identification in image retrieval. Possible directions
for future works could be building a more detailed scene
representation, such as scene graphs in 3D, and using semantic
edge predicates for scene graph matching.
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TABLE III
PER-SCENE COMPARISON OF Baseline, D2-Net AND Ours IN SCORE

METRIC IN THE RIO10 DATASET [18].

SCORE Baseline [11] D2-Net [14] Ours
Scene 01 1.37 1.47 1.48
Scene 02 1.53 1.53 1.63
Scene 03 1.26 1.42 1.33
Scene 04 0.93 1.00 1.17
Scene 05 1.40 1.49 1.49
Scene 06 1.66 1.75 1.68
Scene 07 1.54 1.57 1.60
Scene 08 1.06 1.06 1.16
Scene 09 1.11 1.12 1.20
Scene 10 1.00 1.09 1.15

Fig. 5. Case study of Scene 6, which has the lowest scene change. When a
scene has nearly no scene changes, our method outperforms slightly against
the Baseline while failing to compare against other state-of-the-art methods.
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