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Abstract 

Medical imaging is an essential tool for clinical decision making in scenarios such as screening, 
diagnostics, or therapy monitoring. Suitability of an imaging modality for a given scenario depends 
on the information value it provides—based on the contrast mechanism, penetration depth, and 
resolution—and its price in terms of examination cost, invasiveness, acquisition speed, and other 
factors. Clinical scenarios outside the suitability limits of the existing imaging modalities are left 
without suitable decision support. For example, every year, thousands of patients with breast 
lesions are exposed to a biopsy because the status of their lesion cannot be established in a non-
invasive manner, despite developed screening programs and established routines utilizing X-ray 
mammography, ultrasonography, and magnetic resonance imaging. 

Optoacoustic imaging is a non-invasive technology providing optical contrast with high resolution 
at depths of several centimeters, available at moderate cost. With these unique properties, it 
provides otherwise unavailable functional and anatomic measurements and presents a natural 
complement to existing clinical modalities. Over the past three decades, optoacoustic imaging of 
small animals has matured into a valuable tool of pre-clinical research, delivering high-quality 
images and enabling novel biomedical research. On the other hand, its clinical translation has been 
hindered by insufficient image quality. Unlike small animal systems, clinical optoacoustic 
tomography operates with limited angular coverage of light delivery and signal detection, resulting 
in signal imperfections that are amplified by simple reconstruction algorithms. Furthermore, 
handheld imaging devices operate in the presence of motion which corrupts spectral information 
and prevents noise reduction through signal averaging. 

To overcome these limitations and provide optoacoustic images of high-quality needed for clinical 
applications, we develop a series of image processing and visualization improvements that form a 
novel “second-generation” multispectral optoacoustic-ultrasound tomography pipeline. The 
proposed pipeline utilizes a motion-quantification algorithm for automated selection of stable 
multispectral frames, a model-based inversion procedure with system impulse response 
characterization, a frame averaging algorithm combined with a co-registration step, and adaptive 
non-linear contrast adjustment filters. The resulting images achieve a new level of quality for a 
handheld optoacoustic scanner and visualize vascular features deep in tissue with a high resolution 
of 200 μm. 

The clinical value of the improved imaging technology stems from the ability to reliably detect 
features in vivo that are otherwise unavailable. We explore the added value in two directions: First, 
we consider the possibility of extracting quantitative morphological biomarkers using automated 
semantic image segmentation. Our experiments with self-supervised deep learning on fundus 
images as a proxy dataset validate the advantages of the methodology in terms of reducing the need 
for manually annotated data. Second, we perform two oncological clinical studies focused on breast 
cancer lesions and oral cancer metastases. With the aid of histopathology correlation, we 
characterize the features observed in presence of breast tumors. Furthermore, we study the 
possibility of detecting lymph node metastases using a tumor-specific contrast agent and propose 
an alternative marker of malignancy based on intranodal deoxyhemoglobin variability. 

Altogether, this work presents the second generation of optoacoustic tomography methods and 
defines an improved standard for future clinical applications. 
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Zusammenfassung 

Die medizinische Bildgebung spielt eine wichtige Rolle in klinischen Anwendungen, wie 
Screening, Diagnose oder Therapieüberwachung. Die Eignung einer Bildgebungsmodalität für 
einen Anwendungsfall erfolgt nach einer Kosten-Nutzen-Rechnung: dem Nutzen im Sinne des 
vermittelten Informationsgehalts in Bezug auf Kontrastmechanismus, Penetrationstiefe, und 
Auflösung einerseits, sowie den Kosten wie etwa dem finanziellen Gegenwert, der Dauer der 
Untersuchung und der Invasivität des Verfahrens andererseits. Für klinische Anwendungsfälle 
abseits der Eignungsgrenzen bestehender Bildgebungsmethoden können keine angemessenen 
Entscheidungshilfen gegeben werden. So müssen sich beispielsweise tausende Patientinnen mit 
Brustläsionen jedes Jahr einer Biopsie unterziehen, weil der Status ihrer Läsionen nicht durch ein 
nichtinvasives Verfahren festgestellt werden kann, trotz fortschrittlichen Vorsorgeprogrammen 
und etablierten Untersuchungsstandards mittels Mammographie, Sonographie, und Kernspintomo-
graphie. 

Optoakustische Bildgebung ist eine einzigartige, nichtinvasive Technologie, die optischen 
Kontrast in Tiefen von einigen Zentimetern mit hoher Auflösung bietet und dabei vergleichsweise 
geringe Kosten aufweist. Dadurch liefert die Optoakustiktomographie ansonsten nicht verfügbare 
funktionale and anatomische Messungen und komplementiert somit bestehende Bildgebungs-
modalitäten. In den letzten dreißig Jahren ist die Optoakustiktomographie kleiner Tiere zu einem 
wertvollen Instrument der präklinischen Forschung geworden und unterstützt mit hochqualitativen 
Bildern neuartige biomedizinische Erkenntnisse. Allerdings wurde die Übertragung ins klinische 
Umfeld durch eine bislang unzureichende Bildqualität beeinträchtigt. Im Gegensatz zu 
Kleintierscannern arbeiten die klinischen Systeme mit einer eingeschränkten Winkelabdeckung der 
Lichtabgabe und des Ultraschallempfangs, was zu Signalunvollkommenheiten führt, die durch 
einfache Rekonstruktionsalgorithmen verstärkt werden. Darüber hinaus verschlechtert die 
Bewegung der tragbaren Bildgebungsgeräten die Aufnahmequalität, wodurch die Spektral-
messungen verfälscht werden und eine Rauschreduzierung durch Signalmittelung verhindert wird. 

Um diese Einschränkungen zu überwinden und optoakustische Bilder in ausreichender Qualität für 
klinische Anwendungen zu bieten, haben wir mehrere Bildverarbeitungs- und Visualisierungs-
verbesserungen entwickelt, die zusammen eine multispektrale Optoakustisch-ultraschalltomo-
graphie Pipeline der „zweiten Generation“ bilden. Die Pipeline nutzt einen Bewegungsquantifi-
zierungsalgorithmus für die automatisierte Auswahl eines stabilen Einzelbildes; ein modell-
basiertes Inversionsverfahren inklusive Systemimpulsantwortkompensation; einen Rahmenmitte-
lungsalgorithmus kombiniert mit einem Koregistrierungsschritt; und einen adaptiven, nichtlinearen 
Kontrastanpassungsfilters. Die resultierenden Bilder erreichen ein neues Qualitätsniveau für einen 
tragbaren optoakustischen Scanner und visualisieren Gefäßmerkmale tief im Gewebe mit einer 
hohen Auflösung von 200 μm. 

Der klinische Mehrwert der verbesserten Bildgebungstechnologie besteht in ihrer Fähigkeit, 
Merkmale in vivo zuverlässig zu erkennen, die sonst nicht verfügbar wären. Der Mehrwert wird 
aus zwei Perspektiven untersucht: Erstens wird die Möglichkeit der Feststellung von quantitativen 
morphologischen Biomarkern mittels automatisierter semantische Bildsegmentierung geprüft. 
Unsere Experimente mit Fundus-Bildern als Proxy-Datensatz zeigen die Vorteile des 
selbstüberwachten Lernens, insbesondere die Reduzierung des Bedarfs an manuell annotierten 
Daten. Zweitens werden die Vorteile der neuen Technologie im Zuge von zwei onkologischen 
klinischen Studien zu Brustkrebs, beziehungsweise zu Mundkrebsmetastasen ausgewertet. Mit 
Hilfe der Histopathologie werden die Bildmerkmale charakterisiert, die bei Präsenz von 
Brusttumoren beobachtet werden können. Weiterhin wird die Erkennungsmöglichkeit der Lymph-
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knotenmetastasen mit Hilfe eines tumorspezifischen Kontrastmittels untersucht und ein 
alternativer Bösartigkeitsmarker auf der Basis von intranodalen Desoxyhämoglobinvarianz wird 
vorgestellt. 

Insgesamt stellt diese Dissertationsarbeit die zweite Generation der Methoden der optoakustischen 
Tomographie vor und definiert einen verbesserten Standard für zukünftige klinische Anwen-
dungen. 
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1 Introduction 

C H A P T E R  1  

————    ———— 

Introduction 

1.1 Breast cancer—screening, diagnosis, and therapy monitoring  

In Germany, on average, a woman dies to breast cancer every 28 minutes [1]. Despite a relatively 
high 5-year survival rate of 88% (cf. only 10% in pancreatic cancer), it is the leading cause of 
cancer-related death in women, accounting for nearly 18% of cancer-related deaths. Overall, cancer 
is responsible for nearly a quarter of all deaths in Germany [2]. With such epidemiologic statistics, 
it is no wonder that breast cancer patient care attracts considerable attention at all stages—from 
screening and diagnosis down to therapy monitoring. 

German healthcare offers a mammography screening to women between 50 and 69 years old every 
two years. Three percent screening examinations are suspicious and 1.1% require an additional 
core needle biopsy, yet nearly half of those biopsies are benign [3]. In the total volume of 2.8 Mio 
screening examinations per year, 14 000 benign biopsies are performed. Despite being minimally 
invasive, the core needle biopsy procedure is still painful, and the uncertainty of the outcome 
induces mental stress for the patient [4]. Furthermore, about 10% of the screening-related biopsies 
in Germany detect in situ lesions [3], many of which are harmless but are treated nonetheless due 
to the risk of developing into an invasive cancer. Inability to properly select high-risk precancerous 
neoplasms results in overtreatment and complications stemming from excessive surgeries and 
therapies [5, 6]. Novel non-invasive, point-of-care examination methods could help with more 
precise diagnosis of suspicious findings, reduction of benign biopsies, and risk stratification of in 
situ lesions. 

Six permille of screening examinations reveal an invasive breast cancer requiring a treatment. 
Depending on the tumor stage and its genetic and molecular properties, a systemic chemotherapy 
may be indicated. If the tumor nature allows it, neoadjuvant chemotherapy (NAT) is applied prior 
to the surgical removal of the tumor. The aim of NAT is reducing the tumor size to allow a breast-
conserving surgery instead of a mastectomy [7]. Although the therapy regime is tailored to each 
patient individually, monitoring its effectiveness is not easy. One possibility is evaluating the 
pathological complete response (pCR) after NAT. pCR is indicated upon the surgical excision as a 
full disappearance of cancer cells from the primary tumor site. pCR is a sign of therapy 
effectiveness and a positive prognosis factor [8]. However, the NAT is applied over several months 
before the surgery occurs and pCR can be evaluated. Having access to instant monitoring of the 
therapy efficiency would enable improved personalized therapy management and reduce side 
effects of chemotherapy [9]. 

1.1.1 Limitations of present imaging modalities 

Radiologists in breast healthcare have a range of imaging modalities available. Whereas screening 
is done nearly exclusively using X-ray mammography (XRM), diagnostic imaging is performed 
also using ultrasonography, magnetic resonance imaging (MRI), or computed X-ray tomography 
(CT). Less frequently, positron emission tomography (PET), single photon emission computed 
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tomography (SPECT), or scintimammography are also employed to provide functional parameters 
about intake of tracers. For intraoperative navigation, ultrasonography or gamma cameras are 
typically used. Table 1.1 summarizes the characteristics of these imaging modalities. 

For the two clinical scenarios outlined above—diagnostic imaging and therapy monitoring—the 
current available imaging modalities have certain limitations which are discussed next. 

Despite its wide acceptance, XRM may produce false positive findings. Due to the nature of 
mammography, the images are formed as projections of tissue volume onto a plane and overlaying 
structures may form patterns resembling malignant lesions [10]. Furthermore, fat necrosis 
following a trauma or a surgery, benign lesions, and in situ proliferations may also mimic 
malignancy [11]. In the screening regime, the false positive rates of mammography screening are 
2–15%, with lower numbers for subsequent screens (images from previous visits are available for 
a reference) and Europeran Union countries (regulatory requirement for ≤5% false positive rate) 
[3, 10]. However, women with dense and more complex breast tissue, younger age, and higher 
estrogen level are much more susceptible to false positive findings [12]. In this group of women, 
ultrasonography is a preferred diagnostic imaging modality [13]. 

Ultrasonography (also ultrasound, US) is an imaging modality used for diagnosis of clinically 
detected lesions, screening recalls, and sometimes for screening of patients with dense breasts [14]. 
US does an excellent job at distinguishing (benign) liquid-filled cysts from solid masses [15]. 
Moreover, US lesion parameters such as shape, margin, boundaries, orientation, and presence of 
spiculations allow classification of some solid masses as benign or malignant [15, 16]. Generally, 
the quality of an US examination is dependent on the operator [17]. A widespread utilization of US 
for screening is prevented by its low specificity [18]. Combined US and mammography screening 
results in up to 20–30% benign biopsy findings [14, 19]. Similar false positive rates of US 
examinations are observed also in diagnosis of symptomatic patients [20, 21]. For diagnosis of 
screening recalls, i.e. lesions that could not be classified based on mammography examination 
alone, a study conducted in Sao Paulo reported a false positive rate as high as 71% [22]. Despite 
the broad consensus on the value of US imaging in breast lesion classification, these numbers leave 
a large space for improvement.  

Together with XRM and US, MRI is frequently used for breast cancer imaging. It is recommended 
as an adjunct screening modality to XRM in high-risk patients and for additional evaluation of 
suspicious findings and diagnosed lesions [23]. The breast imaging MRI protocols rely on 
intravenously administered contrast agent (gadolinium chelate) triggering rapid local enhancement 

Table 1.1: Summary of properties of clinical imaging modalities. 

 Resolution Image type Scanner cost Probe medium 

XRM 50 μm Anatomic € 10s-100s k  X-rays (ionizing) 

US 
(Doppler) <1 mm Anatomic 

(Functional) € 1s-10s k Pressure waves 

CT 0.5 mm Anatomic € 100s k-1s mil X-rays (ionizing) 

MRI <1 mm 
Anatomic 
Functional 
Molecular 

€ 100s k-1s mil Magnetic field alterations, 
Radio waves 

PET ~1 mm Functional € 100s k-1s mil γ-radiation (ionizing) 

SPECT ~5 mm Functional € 100s k γ-radiation (ionizing) 

MSOT 200 μm Functional 
Molecular € 10s k Pulsed light, pressure waves 
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of T1-weighted images around abnormally permeable tumor-related blood vessels [24]. MRI has 
been recognized to have a lesion detection sensitivity superior to XRM and US (89%–100%) but 
only moderate specificity (65%–86%) due to similarities in patterns observed in malignant and 
benign lesions [25]. As a result, a routine use of MRI pre-treatment has been a subject of a 
controversy, often warranting a more radical surgical approach despite no improvement in the 
oncological outcome [25]. Finally, as shown in Table 1.1, MRI is associated with much higher 
equipment costs that XRM or US, limiting its widespread availability and cost-effectiveness.  

In neoadjuvant therapy response assessment, change in the tumor size is typically considered as a 
proxy measure to pCR available to imaging [8, 9]. However, XRM is not reliable at assessing the 
tumor size and although US may be a better choice, both methods tend to underestimate the true 
lesion spread [8]. Experiments with Doppler US have shown that observing vascularization and 
blood flow in the tumor region may be better predictive features for a pCR [26]. Diffuse optical 
tomography has also shown promise in predicting the therapy response, especially in patients with 
well-perfused tumors [27]. Alternatively, nuclear imaging methods (PET, scintigraphy) can be 
used to monitor radioactive tracer uptake, which may correlate with a therapeutic drug uptake. 
Furthermore, pre- and post-therapy changes of the uptake may also relate to the response [9]. 
Overall, MRI is usually the imaging modality preferred for NAT response assessment over XRM 
and US, although the accuracy varies between histopathological subgroups [9]. 

1.2 Optoacoustic tomography 

Optoacoustic1 tomography (OAT) is an emerging modality combining several unique properties to 
overcome the limitations of the existing imaging approaches. Optoacoustic imaging uses light 
absorption as the contrast mechanism and US waves for signal detection. Since the US waves are 
not affected by optical scattering, the limits of the OA imaging resolution are dictated by acoustic 
diffraction. Hence, OAT enables imaging with high resolution (hundreds of microns) at depths of 
several centimeters. Unlike XRM and CT, OAT does not involve ionizing radiation. The cost of 
OAT devices is an order of magnitude lower than in the case of MRI and CT scanners. Furthermore, 
OAT devices are far more portable than MRI and CT scanners and require only moderate 
adjustments to the premises to adhere to the laser safety standards. Commercially available OAT 
devices for clinical research come in the form of hybrid optoacoustic-ultrasound scanners. In that 
form, they expand the capabilities of a standard grayscale ultrasound, routinely used for breast 
imaging, with optoacoustic features. As such, they might be readily incorporated into existing 
breast care infrastructure. 

The main endogenous absorber visualized by OAT is hemoglobin. OAT excels at visualizing blood 
vessels and provides images of vascular patterns around and inside breast lesions without the need 
for any contrast agents. Rapid growth of new blood vessels—angiogenesis—is a process 
accompanying cancer and a potential optoacoustic biomarker of tumor malignancy [29-31]. 
Besides showing blood vessels, OAT also has the promise of quantifying the local oxygen 
saturation. Reduced oxygen saturation—hypoxia—is also linked to malignancy and poor prognosis 
[32-35]. Furthermore, changes in the oxygen saturation levels in response to a systemic treatment 
may be early signs of the therapy response [27, 33, 36]. 

Besides visualizing endogenous molecules, OAT can visualize further biological processes with 
the aid of exogenous reporters. Those reporters are typically formed as conjugates of a signaling 

 
1 Also known as photoacoustic tomography, sometimes thermoacoustic tomography. A historical account of 
the emergence of multiple terms for the same technology used in parallel by different research groups around 
the world can be found in the review by Manohar and Razansky [28]. 
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compound producing OA signal and a targeting moiety ensuring biological specificity of the probe. 
Small-molecule dyes, metallic or semiconducting nanostructures, and organic nanostructures are 
the main classes of signaling compounds. For targeting, small molecules, peptides, adhirons, 
affibodies, aptamers, and proteins can be used [37]. The probes may target cell surface receptors 
overexpressed in tumor cells. For example, targeting of the epidermal growth factor receptor was 
demonstrated using probes based on the CF-750 near-infra red (NIR) dye [38] or golden 
nanoparticles [39]. Alternatively, “smart” probes, which are activated by enzymes, can be used to 
detect tumors cells with increased enzyme levels [40] or target certain biological processes [41]. 
For example, probes activated by caspases—enzymes essential to apoptosis—were shown as 
potential markers of chemotherapy efficiency [41, 42]. As of now, however, there are no FDA-
approved probes specific to OA imaging and existing approved optical agents, such as indocyanine 
green, have relatively low extinction coefficients compared to golden nanoparticles and other 
specialized agents. Clinical usage of nanoparticle-based agents is usually limited by their 
biocompatibility, such as prolonged accumulation in the reticuloendothelial system [37]. 

1.2.1 State-of-the-art 

OAT has been first demonstrated in 1994 in works of Oraevsky [43] and Kruger [44]. Whereas 
these early prototypes used as little as 12 US transducers and produced images of poor quality, 
current systems with hundreds of transducers achieve sub-millimeter resolution, several 
centimeters of depth penetration, and obtain images at multiple wavelengths [45-48]. Over the past 
thirty years, OAT has been used in numerous clinical applications: breast cancer imaging [45-59], 
imaging of the cardiovascular system (vascular function in the extremities and carotid plaques 
assessment) [60-66], musculoskeletal system [67, 68] and adipose tissue function [69], 
gastrointestinal imaging [70], imaging of the lymphatic system [71-75], thyroid [76-83] and 
prostate [84, 85], skin lesions [86-89], and intraoperative guidance [90-94]. Recently, the first OAT 
scanner has received an FDA approval for diagnostic use in breast cancer patients [95]. A detailed 
overview of clinical applications of OAT is presented in Chapter 2, section 2.4. 

OAT systems come in a whole range of implementations, besides optoacoustic imaging devices of 
other scales, such as optoacoustic microscopes [96, 97], mesoscopy systems [98, 99], and 
endoscopes [100]. Pre-clinical OAT systems are mature and offer good imaging quality for small 
animal scanning owing to low requirements for penetration depth and feasibility of ultrasound 
detection over the full angular coverage [101-103]. Clinical devices come either as a single-purpose 
stationary scanners or as multi-purpose handheld devices [104]. Several stationary scanners exist 
that were developed for breast imaging. These scanners typically take the form of an examination 
bed with a scanning chamber for the pendant breast [45, 47, 48] or the form of a mammograph 
[105]. Stationary scanners have the advantage of potentially larger detector aperture, complex light 
delivery system, and are less sensitive to motion as the breast is immobilized in the scanner. 
Furthermore, they can provide full 3D scans of the breast and suffer low inter-operator variability. 

Handheld clinical OAT devices emerged as an extension of standard handheld ultrasound linear 
probes by attaching additional laser light delivery through optical fibers [106]. Probes with custom-
built detector arrays in curvilinear arrangement appeared later, better fitting to the specific needs 
of optoacoustic imaging and producing images with less artifacts [66, 107]. In both cases, since the 
probes contain all the hardware required for US imaging, they can operate in a hybrid mode and 
provide co-registered OA and US images simultaneously [108]. This is advantageous since the US 
provides anatomical images which are enriched by functional parameters provided by OA. On the 
other hand, the narrow-band sensitivity of the available piezoelectric transducers makes them 
suboptimal for detection of optoacoustic signals that are broadband in their nature [109, 110] and 
better broadband detectors are needed, such as optical resonators [111, 112]. Overall, the handheld 
systems offer various clinical utilizations and operate in a fashion similar to the standard clinical 
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US. As such, handheld systems are more accessible to existing radiology personnel and may fit 
better into established clinical workflows. 

1.3 Outstanding challenges for OAT 

Despite its great promise, OAT is facing several challenges which hinder achieving its full clinical 
potential. Here, we outline the challenges which are in the center of focus of this thesis. 

1.3.1 Motion 

Clinical optoacoustic tomographic imaging with handheld probes is a subject to motion stemming 
from the handheld probe operation and the physiological motion of the patient, e.g., breathing and 
vessel pulsation. Motion occurring between individual laser pulses results in misalignment of 
consecutive measurements, preventing their averaging and corrupting spectral information when 
multiple illumination wavelengths are used. Possible ways to minimize the negative effects of 
motion include stationary imaging systems, shorter acquisition schemes using less wavelengths, or 
performing motion correction as an image processing step. Furthermore, quantification of motion 
in a sequence of images would enable automatically selecting ones with the least motion. 

Chapter 3 covers the issue of motion in OAT. A novel method for quantification of motion in 
multispectral optoacoustic-ultrasound (OPUS) scans—Motion score—is presented and validated 
on scans of an agar phantom and healthy volunteers. It is demonstrated that using Motion score 
facilitates automated frame selection with optimal spectral quality needed for the later image 
analysis steps. 

1.3.2 Light fluence attenuation 

The core principle of OA imaging is detection of US pulses produced upon absorption of light by 
molecules in the tissue. The US pulses are produced only in the regions of the tissue that are 
sufficiently illuminated. Due to photon scattering and absorption in the biological tissue, the light 
intensity decreases approximately exponentially with the tissue penetration depth. The maximum 
light intensity that can be safely applied to the human skin within a period of time is regulated by 
the American National Standards Institute (ANSI) light exposure limits and cannot be increased 
over a safe threshold [113]. Thus, the maximum light penetration depth has a strict limit, which 
lies around five centimeters, depending on the imaged tissue [114]. 

Besides limiting the maximum achievable imaging depth, the attenuation of the light fluence has 
several other implications for OA imaging. 

Image quality 
As the light fluence decays, the signal is getting weaker, and noise becomes an issue in greater 
depths. Low signal-to-noise ratio (SNR) and reduced image quality are also aggravated by 
imperfections of the applied reconstruction algorithms if they fail to faithfully capture the real 
physical properties of the scanner and the imaged tissue. In such cases, the noise gets amplified in 
the form of imaging artifacts. 

Chapter 4 introduces advanced image processing tools for improvement of the image quality. 
First, advanced image reconstruction algorithms are presented, that ensure improved image quality. 
Then, a method for improvement of the image contrast based on motion correction and frame 
averaging is presented. Together, the proposed image processing pipeline forms the second-
generation multispectral optoacoustic-ultrasound tomography (2G-OPUS), leading to an 
unprecedented image quality of handheld OAT and paving the way for novel clinical applications. 
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Pixel value visualization and interpretation 
The distribution of light fluence intensities in the field-of-view follows an exponential distribution 
since the fluence decays exponentially with the depth. The product of the light fluence and the 
absorption coefficient dictates the OA signal strength, which in turn defines the pixel values in the 
reconstructed image. Assuming the absorption coefficients are distributed uniformly in the tissue, 
the distribution of the pixel values also follows an exponential distribution. Visualization of images 
with such heavily skewed pixel value distribution is difficult and prone to over- and undersaturated 
regions. 

Additionally, such images are difficult to use with machine learning algorithms since image 
patterns appear on different intensity scales. Absolute image intensities carry little information 
except about the depth, which is typically not of interest. 

Chapter 5 presents optimized methods for image visualization in OAT. 

Image analysis 
The ultimate goal of multispectral optoacoustic tomography is distinguishing various absorbers 
and recovering their concentrations in the tissue. Standard spectroscopic methods as linear 
unmixing do not provide precise results due to spectral coloring problem. Spectral coloring is 
caused by wavelength-dependent, spatially uneven light fluence attenuation: The illumination 
spectrum is different for each point in the tissue—it has a different color. In presence of spectral 
coloring, the recorded optoacoustic spectra are not a linear combination of the absorption spectra 
of the present absorbers; instead, they are convolved with the (unknown) light fluence spectra. 

The difficulty in deconvolving the two spectra is the existence of multiple configurations that 
produce the same signal—the problem is ill-posed and recovering the correct solution requires 
additional information to constrain the solution space. A powerful constraint could be formed by 
segmenting the image into regions sharing similar chromophore distribution, such as blood vessels 
and subcutaneous fat. Chapter 6 focuses on image segmentation in OA images and presents a self-
supervised learning approach to train segmentation models in absence of large, annotated datasets. 

1.3.3 Clinical feature discovery 

Clinical optoacoustic tomography is a relatively novel imaging modality and most of the clinical 
studies up to date are of explorative nature, finding out potential imaging targets. Suitable target 
features need to be established and validated on larger studies. 

Chapter 7 focuses on two clinical applications of OAT: imaging of breast cancer and imaging of 
oral cancer lymph node metastases. This chapter presents the results of clinical application of the 
methods developed in the earlier chapters. 

1.4 Structure of the thesis 

This thesis is structured into the following chapters. Chapter 2 summarizes the background 
information relevant to the rest of the thesis. Historical perspective is provided to highlight the 
importance of medical imaging using light since the nascence of specialized imaging devices, and 
to summarize the milestones leading to the current state of OA imaging. Clinical applications of 
OAT are briefly reviewed. Physical principles behind OA imaging are summarized and standard 
methods for image formation and analysis are explained. Chapters 3–7 cover the proposed 
solutions to the challenges outlined above and present the experimental results. Finally, Chapter 8 
concludes this thesis with a summary of the main findings and an outlook. 
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Background 

2.1 History of optical biomedical imaging 

Light has been used as the probing medium for biological and medical imaging from the very 
nascence of specialized devices expanding the viewing capabilities of the human eyesight. Around 
the turn of the 17th century, microscope was developed (Fig. 2.1a) [115]. Using one or more glass 
lenses, the microscope alters the angles of propagation of visible light to magnify viewed objects, 
enabling the examination of details that are too small for the human eye to see. The pioneers of 
microscopy—Robert Hooke, Antonie van Leeuwenhoek, and others—used the early microscopes 
during the 17th century to observe biological samples up to a single-cell resolution. In fact, Hooke 
was the first to describe a biological cell in his work Micrographia and coined the term itself, 
alluding to the similarity of biological tissue organization to a honeycomb2. Leeuwenhoek and 
Hooke provided the first microscopic drawings of insects, microorganisms, plants, bacteria, and 
discovered important cell types such as erythrocytes and spermatozoa [115, 117]. Microscopes 
have played an essential role in science ever since and they are still an everyday tool in nowadays 
histopathological clinical practice. 

Hand in hand with microscopy, dyes have been developed for staining microscopy specimens. 
Dyes bind to different molecules (proteins), highlighting specific cell types and organelles. van 
Leuwenhoek used saffron, von Gerlach introduced carmine, Wissowzky described hematoxylin-
eosin stain, to name a few. Chemical properties of dyes complement the physical function of the 
microscope, greatly expanding the scope of possible applications. 

Another early medical imaging device is otoscope—aural speculum. It is used to inspect the ear 
canal and the eardrum. Although its early implementations in the form of tongs appear parallel to 
the microscope, it only became a true imaging/viewing device with light delivery and 
magnification capabilities in the 19th century. The solution proposed by John Brunton in 1865 
(Fig. 2.1b) resembles modern otoscopes (up to integration of the light source) [118], but a simpler 
design popularized by Arthur Hartmann was adopted at the time, consisting of a cylindrical cone-
shaped speculum and a separate light-delivery in the form of a concave mirror with a hole to look 
through, originally devised by Hofmann in 1841 [119, 120].  Brunton’s otoscope instead featured 
an integrated hollow mirror for light delivery. The advantage of leaving the funnel unobstructed 
by a lens and a mirror is the option to guide instruments through, which is why also nowadays’ 
otoscopes typically have a removable magnification lens. 

The advance in medical viewing instrumentation in the 19th century is manifested in another 
invention from the same time. In 1851, Herman Helmholtz presented Augenspiegel—the first 
ophthalmoscope [121]. The device (Fig. 2.1c), consisting of a transparent mirror and a lens, 

 
2 A common historical misconception is that the term cell originates from similarity of biological cells with 
monk’s living quarters, which is, however, not mentioned anywhere in Hooke’s writings [116]. 
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enabled Helmholtz for the first time ever to view the human retina in vivo. He reported seeing 
branching networks of arteries and veins and the optic disc, and correctly predicted that the 
ophthalmoscope would play a major role in understanding the changes in the eye accompanying 
diseases leading to blindness. 

Nowadays, to inspect the morphology and function of the vascular network of the retina, 
fluorescein angiography is used. Fluorescein, a fluorescent dye, is first injected into the patient's 
blood stream. The retina is observed with a specialized camera delivering ultraviolet light 
illumination that excites the fluorophore, and a filter that allows only the fluorescent light through. 
This way, the clinician can observe how the blood carrying the fluorescein propagates in the retina 
and may spot anomalous regions. 

A true revolution in medical imaging came in 1895 with the discovery of x-rays by Wilhelm Conrad 
Röntgen [122]. While studying cathode rays (electron beams), Röntgen noticed fluorescence on a 
barium platinocyanide-coated sheet triggered by operation of a nearby Crookes vacuum tube.  The 
fluorescence was not caused by luminescence, since the tube was fully covered by opaque 
cardboard, nor by cathode rays that are quickly attenuated in the air outside the tube. Röntgen 
examined this phenomenon further and concluded that the fluorescence is caused by a new, 
unknown type of radiation, which he named x-rays. He quickly noticed that x-rays penetrate a 
whole variety of materials, including glass and metals, whereas other materials, such as lead, cast 
shadows on fluorescence screen or photo plates, implying the radiation in fact behaves as rays. 
Importantly, he noticed that soft tissue is transparent to x-rays whereas bones are not, allowing 
seeing the bones inside a living patient. The clinical potential of the discovery was huge and the 
first diagnostic x-ray images—radiographs—were obtained already within few months [123]. A 
setup of an early x-ray imaging device is shown in Fig. 2.1d. 

To image other structures than bones using x-rays, special contrast agents have been used. Barium 
sulfate solution can be used to view the bowel, and iodine-based agents can be injected into the 
blood stream to make the blood vessels visible on the x-rays. 

2.2 Principles of optical imaging 

Microscope, otoscope, ophthalmoscope, and radiography are all examples of the first medical 
imaging (or viewing) devices. They are all routinely used in clinics ever since their invention. A 
property they share is that their function is based on the interaction of electromagnetic radiation 
(such as visible light, Fig. 2.3) with the examined tissue and detection of the altered radiation via 
human eye or a specialized detector. Additional chemicals, such as dyes and contrast agents, greatly 

 

Figure 2.1: Historical medical imaging (viewing) instruments. a, Leeuwenhoek’s microscope. b, 
Brunton’s otoscope. c, Helmholtz’ Augenspiegel. d, X-ray device for obtaining radiographs of hand. Image 
sources listed in the section Permissions. 

a b c d
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enhance the capabilities of those techniques since they link specific biological functions to specific 
physical properties accessible to electromagnetic radiation interrogation. For example, in 
fluorescein-based fundus angiography, the functional properties of blood flow are linked to 
presence of fluorescence. In histology, hematoxylin dye binds to chromatin in cell nuclei, linking 
their presence to purple color. 

Modern optical biomedical imaging methods rely on the same principles as the early techniques. 
They typically utilize electromagnetic radiation in the visible and infrared light range. In this 
wavelength range, biological tissue exhibits low absorption which means the light can penetrate 
relatively deep into the tissue. However, the tissue is a strongly scattering (turbid) medium. Elastic 
photon scattering is an event in which a photon is absorbed and re-emitted into some other direction 
without the loss of energy. The photon propagation in a turbid medium can be characterized by the 
mean free path, denoting the average photon travel distance between two scattering events, and the 
transport mean free path, denoting the distance after which the direction of the photon becomes 
effectively random (Fig. 2.2). The transport mean free path of light in biological tissues is in the 
order of 1 mm. 

High scattering has two important implications for optical imaging methods. First, the amount of 
energy arriving at a point in tissue is decreasing exponentially with the depth because photons are 
more likely to get either absorbed or backscattered before reaching the point. Second, since most 
of the photons lose their direction already after passing through ~1 mm of the tissue, it is impossible 

 

Figure 2.3: Electromagnetic spectrum. Only small part of the electromagnetic spectrum (380–750 nm) 
takes the form of the visible light. However, other types of electromagnetic waves can be also used to probe 
biological tissues. Abbreviations: UV, ultraviolet. 

 
Figure 2.2: Light transport in scattering medium. Scatterers are depicted as black circles. Two parameters 
characterize the photon transport: Mean free path refers to the mean distance a photon travels in the medium 
before a scattering event occurs. Transport mean path refers to the mean distance a photon travels in the 
medium before its direction becomes effectively random. 
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to focus the illumination into a certain part of the tissue with high precision. Correspondingly, 
when detecting photons that have interacted with the tissue, it is impossible to tell with high 
precision where they came from. I.e., one can detect how the tissue altered the photons, but one 
cannot localize where the interactions occurred in the tissue. 

Light may interact with the tissue via the following physical mechanisms—absorption, scattering, 
polarization, and frequency shift—and each can provide unique information about the probed 
tissue. 

Light absorption, in particular, is related to molecular conformation and thus provides biochemical 
information. Biomolecules in the tissue are characterized by their unique absorption spectra and 
spectroscopic approaches can be used to distinguish them. Human tissue contains several strongly 
absorbing molecules—chromophores: hemoglobin, melanin, water, and lipids. Hemoglobin is a 
protein present in red blood cells that facilitates oxygen transport. Depending on the presence of a 
bound oxygen molecule, hemoglobin is present either in the oxyhemoglobin or deoxyhemoglobin 
form, each having a distinct absorption spectrum. Quantification of the oxy- and deoxyhemoglobin 
ratio in the blood, the oxygen saturation (sO2), is an important metabolic biomarker accessible to 
optical imaging. 

Upon absorption of a photon by one of a molecule’s electrons, the electron enters an excited state 
and can only return to the ground state by releasing the absorbed energy in a process called 
relaxation (Fig. 2.4). Relaxation can be non-radiative, when the energy is released in the form of 
heat, or radiative, such as fluorescence, when the electron emits a photon with a lower energy than 
it had absorbed earlier. The absorption interaction can be detected by any of the three mechanisms: 
measuring the residual, unabsorbed light leaving the sample, measuring the photons emitted by 
fluorescence, or measuring the deposited heat. 

Optical imaging methods relying on the detection of the photons leaving the sample (either residual 
or fluorescent) suffer from the above-described limitations of reduced depth penetration and 
limited directivity resulting in low resolution. The last type of interaction, heat deposition, is 
utilized by optoacoustic imaging. 

2.3 History of optoacoustic imaging 

Heat deposition upon the absorption of a light pulse triggers a transient volume expansion 
producing a mechanical pressure impulse—sound. This is known as the optoacoustic 
(photoacoustic) effect and was first described by Alexander G. Bell and his assistant Charles S. 
Tainter in 1880 in their work on photophone [124]. The size of the absorber determines the 
wavelength of the produced sound wave [109]. Sensing the (ultra-)sound waves produced upon the 
illumination of a tissue by a light pulse is the core mechanism of optoacoustic imaging. Unlike 

 

Figure 2.4: Jablonski diagram of photon absorption and relaxation in form of heat deposition and 
fluorescence. 
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photons, the ultrasound pressure waves are not affected by optical scattering in the tissue. The 
acoustic attenuation is two to three orders of magnitude lower than the optical attenuation and depth 
is not the main limiting factor [125]; however, acoustic coupling between the probed sample and 
the detectors is required. Finally, tomographic reconstruction of the recorded ultrasound waves 
allows recovering the absorber locations in high resolution. 

Bell’s photophone discovery in 1880 sparked immediate scientific interest and multiple works have 
emerged, investigating the exact nature of the sound production in response to periodic (chopped) 
illumination. Works by Mercardier, Preece [126], Röntgen, and Tyndall explained the process 
through expansion and contraction of thin air layer in contact with the absorbing object which acts 
as a periodic heat source. This model was rigorously described by Rosencwaig and Gersho almost 
a century later [127]. It was also soon discovered that the optoacoustic effect was not limited to 
solid materials and applied also to liquids and gases. However, the only demonstrated application 
of the effect was wireless sound transmission—which was nonetheless inferior to radio waves—
and it was not before 1938 until optoacoustics found a new application domain in gas analysis. 

Veingerov [128], Pfund [129], and Luft [130] presented gas analyzers based on the optoacoustic 
effect and revived the interest in the method. These devices detected even small quantities of 
radiation-absorbing gases such as CO and CO2. Furthermore, absorption spectra of gases could be 
measured using monochromatic illumination with a device called spectrophone [131]. The idea of 
spectrophone dates back to Bell [132], however, the device only became practical through an 
improved readout sensitivity achieved with a microphone and a galvanometer. The advantage of 
spectrophone over a standard spectroscope was the ability to probe the absorption in the invisible 
(infrared) parts of the electromagnetic spectrum. 

Important technical advances towards harnessing the potential of the photoacoustic effect include 
the detection of the produced sound through a microphone instead the human ear (and later by a 
sufficiently broadband piezoelectric transducer3, allowing much higher sound frequencies to be 
recorded); development of better computational hardware for data recording and processing; and 
the discovery of the laser in 1960, which facilitated stable illumination of specific narrow spectrum.  

Restored interest in photoacoustics in solid materials arrived shortly after the laser discovery, with 
applications to non-destructive semiconductor examination and biological tissues. Among the first 
biological applications were experiments with mammalian eyes [134-136]. Spectroscopic 
characterization of human blood and hemoglobin followed soon thereafter [137], and the method 
was also investigated for detection of drug incorporation in the skin [138]. Around that time, 
experiments with microwave-range “illumination” of biological tissues were also performed under 
the name of thermoacoustics [139]. 

The first reflection-mode medical photoacoustic implementation appeared in 1993 and was 
demonstrated on human finger and fingernail A-scan [140]. The prototype was demonstrating 
possibilities of using laser-induced ultrasound for intraarterial diagnosis and ablative plaque-
therapy. 

2.4 Clinical optoacoustic tomography 

Modern optoacoustic imaging of spatial distribution of absorbers in biological tissues was 
demonstrated in 1994 concurrently by Oraevsky [43] and Kruger [44]. With the use of tomographic 
reconstruction methods, 2D and 3D optoacoustic images of biological tissues were obtained. 

 
3 Coincidentally, the piezoelectric effect was described by Currie brothers in 1880—the same year the 
optoacoustic effect was discovered [133]. 
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Further advances in electronics, signal processing, and image reconstruction methods opened the 
door for a plethora of clinical applications of optoacoustic tomography, which we briefly review 
next. Most of the listed applications have been preceded by extensive pre-clinical research, which 
we take the liberty to omit in the following review. 

2.4.1 Breast cancer 

Breast cancer has been among the main applications of OAT due to its high prevalence and 
favorably shallow location of the tumors. Initial results with breast OAT scanners developed in the 
late 90’s and early 2000’s provided observations of increased OA signal in breast lesions [50, 141]. 
Later advances were predominantly revolving around bed-based scanners which image the breast 
in the pendant position using detectors arranged circularly, hemispherically, or in a plane. With 
sub-millimeter resolution, modern OAT scanners can resolve large blood vessels supplying the 
tumors with blood, as well as signals from the microvascular peri- and intratumoral environment 
[47, 48]. Furthermore, using multiple-wavelength illumination, OAT has the potential to 
spectroscopically resolve the contributions of individual chromophores, providing localized 
information about the oxygen saturation in the tumors. Although truly quantitative measurements 
have not been obtained yet—due to the difficulty of estimating the light fluence—various semi-
quantitative proxy measures have been proposed, such as the S-factor introduced by the group 
around the Kyoto University–Canon consortium [59]. Overall, only one clinical OAT study has 
reported consistently lower oxygen saturation levels inside malignant tumors [58]. 

Besides bed-based scanners, clinical OAT breast cancer imaging has also been performed with 
handheld devices, often implemented in tandem with US imaging. Such hybrid scanner 
implementation is advantageous since it provides an extension of plain ultrasonography which is 
routinely used in the breast healthcare workflow. As result, OPUS imaging can be easily 
incorporated into the existing radiological practice. Clinical applications of handheld OAT to breast 
cancer imaging have been relying primarily on two systems—Imagio® (Seno Medical Instruments 
Inc.; Texas, USA) and Acuity® (iThera Medical GmbH; Germany). The Imagio system has been 
utilized in two large, multi-center studies in USA and Netherlands, which aimed at evaluating its 
use for adjustment of grading of suspicious breast lesions [55, 56]. Based on these trial results, 
Imagio has received an FDA approval for use in breast cancer diagnostics [95], being the first 
optoacoustic scanner approved for a clinical application. The Acuity system has been employed in 
a small, prospective study at University Hospital Münster, revealing increased hemoglobin 
perfusion of malignant tumors relative to healthy tissue [49]. 

2.4.2 Cardiovascular system 

Hemoglobin is by far the most important contrast source in current clinical optoacoustic imaging, 
making blood vessels a natural imaging target for OAT. The capability of OAT to image blood 
vessels in extremities of human volunteers has been demonstrated in 2005 by Niederhauser et 
al. [106]. In 2012, Dima and Ntziachristos have presented multispectral images of human carotid 
artery and jugular veins [66]. Later, Masthoff et al. have used multispectral optoacoustic 
tomography (MSOT) to distinguish arteriovenous and venous vascular malformations based on 
their oxygen saturation [64]. In 2020, Karlas et al. have proposed MSOT for monitoring of muscle 
perfusion and oxygen saturation during venous and arterial occlusion as a method for detection of 
vascular disorders altering normal blood flow [65]. Furthermore, they have suggested that the lipid 
contrast provided by MSOT could be used for improved diagnostics of carotid plaques [63]. These 
studies were all conducted using handheld OAT providing 2D cross-sectional images. A different 
approach to imaging human peripheral vasculature has been proposed by the Kyoto University–
Canon consortium and their bed-based 3D scanners PAI-03 [61], PAI-04 [60], and PAI-05 [62]. 
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Their images provide access to complete subcutaneous vascular network morphology and allow 
extraction of morphological biomarkers such as vessel tortuosity. 

2.4.3 Musculoskeletal system 

The clinical applications of OAT for imaging of the musculoskeletal system focused primarily on 
imaging of joints and arthritis. In 2007, Wang et al. have demonstrated the capability of OAT to 
present the morphology of human finger joints on ex vivo samples [142]. Later demonstrations 
have shown that OAT can localize the bone, tendons, and blood vessels in human finger joints also 
in vivo using custom-built circular detector systems [143-145] as well as linear arrays [146]. First 
experiments with osteoarthritic patients were published by Xiao et al. in 2010, showing increased 
OA signals in osteoarthritic joint cavities [147]. In 2017, concurrent works by van den Berg et al. 
and Jo et al. imaged finger joints of inflammatory arthritis patients, showing increased OA signals 
in presence of synovitis [67, 148]. 

2.4.4 Thyroid 

The thyroid gland is particularly well accessible to OAT imaging owing to its shallow location on 
the anterior side of the neck. Two early studies on excised thyroid samples in 2014 explored the 
possibility of finding thyroid malignancies with OAT. Dogra et al. imaged thyroidectomy samples 
with malignant and benign nodules and found increased deoxyhemoglobin levels in malignant 
tissue compared to benign and healthy tissue regions [77]. On the other hand, Kang et al. attempted 
to extend their earlier work on detecting microcalcifications in breast tissue to thyroid but did not 
find significant contrast [76]. In 2016, Dima and Ntziachristos demonstrated handheld imaging of 
human thyroid in vivo, observing optical contrast in agreement with the anatomy of the thyroid 
region [80]. Besides resolving the thyroid and the surrounding muscles, they demonstrated the 
ability to visualize the thyroid vascularization to a higher level of detail than possible with Doppler 
US. A 2017 in vivo study on cancer patients by Yang et al. provided similar observations of thyroid 
vasculature, but has not evaluated the diagnostic capability of OAT [78]. A larger 2021 study on 
52 subjects by Kim et al. has shown that a combined OPUS system has better sensitivity and 
specificity (83% and 93%, resp.) at papillary thyroid carcinoma detection than US alone (≤50%, 
≥90%, resp.) [83]. Studies utilizing the Acuity MSOT have also shown alterations of the 
hemoglobin parameters in thyroid cancer nodules as well as in patients with Graves diseases [81, 
82]. 

2.4.5 Lymphatic system 

OAT has been utilized in two applications related to the lymphatic system: detection of the sentinel 
lymph node (LN) and detection of LN metastases. Following successful pre-clinical trials of 
detecting the sentinel LN using OAT with the aid of methylene blue optical contrast agent [149], 
Garcia-Urbe et al. have in 2015 successfully demonstrated the same procedure in breast cancer 
patients [73]. Clinical applications on LN metastasis detection focused primarily on melanomas 
since melanin—produced by the cancer cells—is a very strong optical absorber, providing 
excellent OA contrast. Jose et al. have in 2011 demonstrated the ability of OAT to detect melanoma 
metastasis in an excised human LN [71]. In 2012, the same group has presented further encouraging 
results on multiple excised LNs [72]. Yet the translation of the technique to in vivo imaging has 
not yet been entirely achieved. A 2015 MSOT study by Stoffels et al. examined to use the intrinsic 
melanin contrast for metastasis detection in sentinel lymph nodes (SLN) of melanoma 
patients [74]. In both the ex vivo and in vivo scenarios, they observed 0% false negative rate, 
suggesting that MSOT can be used to safely rule out a possibility of a SLN metastasis. However, 
a very high false positive rate, stemming from a low specificity of melanoma cell MSOT contrast, 
hinders the use of OAT as a method for reduction of negative LN biopsies. In 2017, Kang et al. 
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have presented a pre-clinical proof-of-concept of using a combination of fluorescence imaging with 
OAT for SLN detection [92]. In a 2019 study, Stoffels et al. examined the ability of a combined 
MSOT and infrared camera approach to identify indocyanine green (ICG) labeled SLNs in 
melanoma patients, and found that the proposed procedure achieves a comparable performance to 
the standard technique based on the detection of a radioactive tracer [75].  

2.4.6 Skin lesions 

OA imaging of the skin is usually performed with systems operating on the mesoscopic scale, such 
as the raster-scanning optoacoustic mesoscopy system [99] or a hybrid systems combining OA 
with optical coherence tomography [86]. These systems utilize US detectors with higher central 
frequencies than OAT to achieve much higher spatial resolution at the cost of reduced depth 
penetration. As such, they are optimized for imaging the skin and the subcutaneous vasculature, 
providing unique insights into the morphology of skin lesions in a non-invasive manner. However, 
imaging of skin lesions has been demonstrated also with the use of OAT systems. Attia et al. and 
Breathnach et al. have utilized OAT to measure the thickness of non-melanoma and melanoma 
skin lesions, respectively [87, 88]. Using 3D handheld probes, they found a good correspondence 
to the lesion thickness estimated by histology, demonstrating the possibility of using OAT for 
excision planning. Besides imaging the skin lesions themselves, Hai et al. have devised an OAT 
setup for a label-free, non-invasive detection of circulating melanoma cells in patient veins in 
vivo [89]. While their work requires further validation, it is a promising direction towards novel 
optoacoustic prognostic biomarkers for melanoma patients. 

2.4.7 Intraoperative guidance 

Surgical instruments such as needles are typically tracked during surgery using US. However, the 
visibility of the instrument fades unless it is perpendicular to the US probe, limiting the 
maneuvering space. Since metals are strong optical absorbers, the tools can be visualized using 
OAT without the limitations of conventional US [150]. Navigation of a biopsy needle during 
sentinel LN biopsy was demonstrated by Kim et al. in a mouse model in 2010 [91] and in 2015 by 
Garcia-Urbe et al. also in a human patient [73]. A further improved tool tip localization precision 
is afforded by the use of 3D probes [151]. 

Besides detection of the tool using an external illumination integrated into the OAT probe, a 
separate line of research is concerned with the detection of the tool tip directly illuminated by an 
integrated optical fiber. Proposed by Piras et al. in 2013, the technique has been improved by Lediju 
Bell et al. [152] and advocated for endonasal [153] or spinal surgeries [154]. 

2.4.8 Further clinical applications 

Besides the broader research directions summarized above, OAT has also been applied to other 
isolated clinical applications. Reber et al. were able to visualize the brown fat metabolism using 
MSOT [69]. Knieling et al. used MSOT to assess the intestinal inflammation in a patient with 
Crohn’s disease [70]. Tummers et al. have studied pancreatic tumor detection with the aid of 
fluorescent tumor-targeted dyes and observed increased OA signals in the excised tumor specimen 
compared to the healthy pancreatic tissue [93]. Finally, OAT has also been implemented in the 
form of a transrectal handheld probe for prostate imaging. Horiguchi et al. have used the transrectal 
OAT to visualize the neurovascular bundle in vivo, which is an important landmark for nerve-
preserving radical prostatectomy [94]. Later, they have also used their system to observe 
angiogenesis around prostate tumors in vivo [155]. A different transrectal probe utilizing capacitive 
micromachined ultrasonic transducer array was presented by Kothapalli et al. in 2019 [84]. This 
probe has shown improved image quality in terms of resolution and OA contrast. Besides 
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visualizing the neurovascular bundle, the authors have also obtained a specific contrast from a 
prostate tumor region and observed altered ICG dynamics in a malignant region of a prostate. 

2.5 Physical model of OAT 

2.5.1 Thermoacoustic model 

Optoacoustic tomography relies on detecting pressure waves induced upon heating the tissue with 
pulsed laser light. The spatiotemporal thermoacoustic model of variations in temperature (𝑇𝑇 ; unit 
K) and pressure (𝑝𝑝; unit Pa) from their ambient values in a non-attenuating inviscid medium can 
be derived from linearized equations of fluid dynamics in the following form [156-158]: 

 
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌0(𝒓𝒓)𝑐𝑐𝑝𝑝𝑇𝑇 (𝒓𝒓, 𝑡𝑡)− 𝛾𝛾𝛾𝛾𝑇𝑇0(𝒓𝒓)𝑝𝑝(𝒓𝒓, 𝑡𝑡)� = ∇ ⋅ �𝜅𝜅∇𝑇𝑇 (𝒓𝒓, 𝑡𝑡)�+𝐻𝐻(𝒓𝒓, 𝑡𝑡) , 

∇ ⋅ ∇𝑝𝑝(𝒓𝒓, 𝑡𝑡)
𝜌𝜌0(𝒓𝒓)

− 𝛾𝛾𝐾𝐾𝑇𝑇
𝜕𝜕2𝑝𝑝(𝒓𝒓, 𝑡𝑡)
𝜕𝜕𝑡𝑡2

= −𝛽𝛽 𝜕𝜕
2𝑇𝑇
𝜕𝜕𝑡𝑡2

 . 

(2.5.1) 

(2.5.2) 
 

Here, 𝒓𝒓 ∈ ℝ3 is the spatial variable, 𝑡𝑡 is the time variable, 𝜌𝜌 is the mass density (kg·m−3), 𝑐𝑐𝑝𝑝 is the 
specific heat capacity at constant pressure (J·K−1),  𝛾𝛾 is the heat capacity ratio (dimensionless), 𝛽𝛽 
is the thermal coefficient of volume expansions (K−1), 𝜅𝜅 is the thermal conductivity (W·K−1·m−1), 
𝐻𝐻 is the heating function (J·m−3·s−1), and 𝐾𝐾𝑇𝑇  is the isothermal compressibility (Pa−1); subscript 0 
denotes the ambient quantity. 

The coupled partial differential equations (PDEs) (2.5.1) and (2.5.2) can be simplified into a single 
PDE under the assumption of thermal confinement. This assumption is satisfied when the pulse 
duration 𝜏𝜏𝑝𝑝 is much shorter than thermal relaxation time 𝜏𝜏𝑡𝑡ℎ: 

Assumption 1: Thermal confinement. 
 𝜏𝜏𝑝𝑝 ≪ 𝜏𝜏𝑡𝑡ℎ. (2.5.3) 

The thermal relaxation time is defined as 

 
𝜏𝜏𝑡𝑡ℎ = 𝑑𝑑𝑐𝑐2

𝛼𝛼𝑡𝑡ℎ
 , (2.5.4) 

where 𝑑𝑑𝑐𝑐 is the characteristic dimension4 of the excited structures inside the region of interest (m), 
and 𝛼𝛼𝑡𝑡ℎ is the thermal diffusivity (m2·s−1). The thermal relaxation time specifies the period needed 
for the deposited heat to affect the surrounding structures by thermal diffusion. Assuming 
reasonable values for OAT in biological tissue of 𝑑𝑑𝑐𝑐 = 0.1 mm and 𝛼𝛼𝑡𝑡ℎ = 0.1 mm2/s, thermal 
confinement is satisfied when 𝜏𝜏𝑝𝑝 ≪ 1 μs. Under the thermal confinement assumption, the thermal 
conductivity in equation (2.5.1) is set to zero, 𝜅𝜅 = 0, and the two equations can be reduced to the 
following PDE:  

 1
𝑐𝑐(𝒓𝒓)2

𝜕𝜕2

𝜕𝜕𝑡𝑡2
𝑝𝑝(𝒓𝒓, 𝑡𝑡)− 𝜌𝜌0(𝒓𝒓)∇ ⋅ �

∇𝑝𝑝(𝒓𝒓, 𝑡𝑡)
𝜌𝜌0(𝒓𝒓)

� = 𝛽𝛽
𝑐𝑐𝑝𝑝
𝜕𝜕
𝜕𝜕𝜕𝜕
𝐻𝐻(𝒓𝒓, 𝑡𝑡) . (2.5.5) 

 
4 “The dimension of the structure of interest or the decay constant of the optical energy deposition, whichever 
is smaller.” [125] 



2    Background 

16 

Here, 𝑐𝑐 denotes the speed-of-sound (m·s−1), which is related to the previously introduced quantities 
as: 

 
𝑐𝑐 =�

1
𝜌𝜌𝐾𝐾𝑇𝑇

 . (2.5.6) 

Since the spatial distribution of the mass density 𝜌𝜌 (and of the speed-of-sound 𝑐𝑐) in the imaged 
tissue is typically unknown, acoustically homogenous medium is often assumed and the equation 
(2.5.5) is further simplified to: 

 
� 1
𝑐𝑐2
𝜕𝜕2

𝜕𝜕𝑡𝑡2
−∆�𝑝𝑝(𝒓𝒓, 𝑡𝑡) = 𝛽𝛽

𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕(𝒓𝒓, 𝑡𝑡)
𝜕𝜕𝜕𝜕

 . (2.5.7) 

Here, Δ denotes the Laplace operator in the spatial dimensions. This equation is often also written 
in an equivalent form containing the Grüneisen parameter Γ (dimensionless), which summarizes 
the efficiency of heat conversion to acoustic pressure: 

 
�𝜕𝜕

2

𝜕𝜕𝑡𝑡2
− 𝑐𝑐2∆�𝑝𝑝(𝒓𝒓, 𝑡𝑡) = Γ𝜕𝜕𝜕𝜕(𝒓𝒓, 𝑡𝑡)

𝜕𝜕𝜕𝜕
 , (2.5.8) 

 
Γ ≡ 𝛽𝛽𝑐𝑐

2

𝑐𝑐𝑝𝑝
 . (2.5.9) 

The left part of the equation (2.5.8) describes the pressure wave propagation whereas the right part 
represents the pressure source. The source term contains a time derivative of the heating function, 
implying that only time-variant heating produces pressure waves [125].  

2.5.2 Optoacoustic wave equation 

The time-variant heating in optoacoustic tomography is generated by illuminating the tissue with 
pulsed laser light. The heating function has the following form: 

 𝐻𝐻(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇𝐴𝐴(𝒓𝒓)Φ(𝒓𝒓, 𝑡𝑡)𝜂𝜂𝑡𝑡ℎ . (2.5.10) 

Here, 𝜇𝜇𝐴𝐴 is the optical absorption coefficient (m−1), Φ is the optical fluence rate (J·m−2·s−1), and 
𝜂𝜂𝑡𝑡ℎ is the heat conversion efficiency (dimensionless). In practice, the fluence rate can be 
decomposed into independent spatial and temporal components: 

 Φ(𝒓𝒓, 𝑡𝑡) = Φ𝑟𝑟(𝒓𝒓)Φ𝑡𝑡(𝑡𝑡) . (2.5.11) 

If the length of the illumination pulse 𝜏𝜏𝑝𝑝 is much shorter than the stress relaxation time 𝜏𝜏𝑠𝑠𝑠𝑠, the 
heating is occurring under the stress confinement. The stress relaxation time characterizes the time 
needed for the induced pressure to affect the surrounding structures and is defined as: 
 𝜏𝜏𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑐𝑐

𝑐𝑐
 . (2.5.12) 

This assumption means the entire thermal energy must be deposited before the density or volume 
of the illuminated medium can change [159]. Formally, the stress confinement assumption is 
defined as: 

Assumption 2: Stress confinement. 
 𝜏𝜏𝑝𝑝 ≪ 𝜏𝜏𝑠𝑠𝑠𝑠 . (2.5.13) 
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Assuming values of 𝑑𝑑𝑐𝑐 = 0.1 mm and 𝑐𝑐 = 1500 m/s, stress confinement is satisfied when 𝑡𝑡𝑝𝑝 ≪
67 ns. The length of laser pulses used in OAT is on the order of 10 ns and generally satisfies the 
stress confinement assumption (as well as the thermal confinement assumption). When the stress 
confinement assumption is satisfied, the temporal fluence function Φ𝑡𝑡 can be approximated by a 
Dirac delta function, Φ𝑡𝑡(𝑡𝑡) ≅ 𝛿𝛿(𝑡𝑡). 

The standard optoacoustic wave equation then takes the following form: 

 
�𝜕𝜕

2

𝜕𝜕𝑡𝑡2
− 𝑐𝑐2∆�𝑝𝑝(𝒓𝒓, 𝑡𝑡) = 𝑝𝑝0(𝒓𝒓)

d𝛿𝛿(𝑡𝑡)
d𝑡𝑡

 . (2.5.14) 

The initial pressure 𝑝𝑝0 can further be expressed as 

 𝑝𝑝0(𝒓𝒓) ≡ 𝑝𝑝(𝒓𝒓, 𝑡𝑡 = 0) = Γ𝜂𝜂𝑡𝑡ℎ𝜇𝜇𝐴𝐴(𝒓𝒓)Φ(𝒓𝒓) , (2.5.15) 

and the optoacoustic wave generation and propagation can be modeled as the following system of 
a PDE and initial conditions, known as the Cauchy problem for the wave equation: 

�𝜕𝜕
2

𝜕𝜕𝑡𝑡2
− 𝑐𝑐2∆�𝑝𝑝(𝒓𝒓, 𝑡𝑡) = 0 

𝑝𝑝(𝒓𝒓, 𝑡𝑡 = 0) = Γ𝜂𝜂𝑡𝑡ℎ𝜇𝜇𝐴𝐴(𝒓𝒓)Φ(𝒓𝒓) , 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑝𝑝(𝒓𝒓, 𝑡𝑡)�

𝑡𝑡=0
= 0 

(2.5.16a) 

(2.5.16b) 

(2.5.16c) 

2.5.3 Acoustic forward problem 

Solving the equation system (2.5.16) yields a unique solution for any 𝑝𝑝(𝒓𝒓, 𝑡𝑡). In optoacoustic 
tomography, one assumes acoustic point-detectors placed on a surface Ω enclosing the imaged 
object. The forward acoustic problem means finding 𝑝𝑝(𝒓𝒓𝑑𝑑, 𝑡𝑡) for 𝒓𝒓𝑑𝑑 ∈ Ω, which corresponds to the 
acoustic signals arriving at the detectors. The solution to this problem is available through the 
Green’s function approach. Green’s function (𝐺𝐺) represents the response of a differential system 
to a spatiotemporal delta impulse source located at (𝒓𝒓′, 𝑡𝑡′): 

 
� 1
𝑐𝑐2
𝜕𝜕2

𝜕𝜕𝑡𝑡2
− ∆�𝐺𝐺(𝒓𝒓, 𝑡𝑡,𝒓𝒓′, 𝑡𝑡′) = −𝛿𝛿(𝒓𝒓 − 𝒓𝒓′)𝛿𝛿(𝑡𝑡 − 𝑡𝑡′) . (2.5.17) 

In the free-space (an infinite space with no boundary), the Green’s function of this differential 
system has the form of a diverging spherical wave [125]: 

 𝐺𝐺(𝒓𝒓, 𝑡𝑡, 𝒓𝒓′, 𝑡𝑡′) = 1
4𝜋𝜋|𝒓𝒓 − 𝒓𝒓′|

𝛿𝛿 �𝑡𝑡 − 𝑡𝑡′ − |𝒓𝒓 − 𝒓𝒓′|
𝑐𝑐𝑠𝑠

� . (2.5.18) 

The solution of (2.5.16) then becomes a superposition of such spherical waves in space and time: 
 

𝑝𝑝(𝒓𝒓, 𝑡𝑡) = � �𝐺𝐺(𝒓𝒓, 𝑡𝑡,𝒓𝒓′, 𝑡𝑡′) Γ
𝑐𝑐2
𝜕𝜕
𝜕𝜕𝑡𝑡′
𝐻𝐻(𝒓𝒓′, 𝑡𝑡′) d𝒓𝒓′ d𝑡𝑡′

𝑡𝑡+

−∞

 . (2.5.19) 

Substituting (2.5.18) into (2.5.19) and using the sifting property of the Dirac delta yields 

 𝑝𝑝(𝒓𝒓, 𝑡𝑡) = Γ
4𝜋𝜋𝑐𝑐𝑠𝑠2

� 1
|𝒓𝒓 − 𝒓𝒓′|

𝜕𝜕
𝜕𝜕𝜕𝜕
𝐻𝐻 �𝒓𝒓′, 𝑡𝑡 − |𝒓𝒓 − 𝒓𝒓′|

𝑐𝑐𝑠𝑠
�  d𝒓𝒓′ . (2.5.20) 
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Replacing the heating function with its optoacoustic form yields the following solution: 

 𝑝𝑝(𝒓𝒓, 𝑡𝑡) = Γ𝜂𝜂𝑡𝑡ℎ
4𝜋𝜋𝑐𝑐𝑠𝑠2

�𝜇𝜇𝐴𝐴(𝒓𝒓′)Φ(𝒓𝒓′)
|𝒓𝒓 − 𝒓𝒓′|

d
d𝑡𝑡
𝛿𝛿 �𝑡𝑡 − |𝒓𝒓 − 𝒓𝒓′|

𝑐𝑐𝑠𝑠
�  d𝒓𝒓′ , (2.5.21) 

which can be equivalently written in any of the two forms: 
 

𝑝𝑝(𝒓𝒓, 𝑡𝑡) = Γ𝜂𝜂𝑡𝑡ℎ
4𝜋𝜋𝑐𝑐𝑠𝑠2

 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜇𝜇𝐴𝐴(𝒓𝒓′)Φ(𝒓𝒓′)

𝑐𝑐𝑠𝑠𝑡𝑡
 d𝒓𝒓′ 

|𝒓𝒓−𝒓𝒓′|=𝑐𝑐𝑠𝑠𝑡𝑡
, (2.5.22) 

 

𝑝𝑝(𝒓𝒓, 𝑡𝑡) = 1
4𝜋𝜋𝑐𝑐𝑠𝑠2

 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑝𝑝0(𝒓𝒓′)

𝑐𝑐𝑠𝑠𝑡𝑡
 d𝒓𝒓′

|𝒓𝒓−𝒓𝒓′|=𝑐𝑐𝑠𝑠𝑡𝑡
 . (2.5.23) 

Intuitively, the equations (2.5.21)–(2.5.23) can be understood as follows: The pressure at a point 𝒓𝒓 
at time 𝑡𝑡 is equal to the mean pressure emitted by point pulse-sources located on the sphere of 
radius 𝑐𝑐𝑠𝑠𝑡𝑡 centered at 𝒓𝒓. This represents the spherical mean operator [160]. By integrating both 
sides of the solution with respect to time, one obtains the spherical Radon transform—related to 
the standard Radon transform with the difference of applying the spatial integral to spheres rather 
than planes [159, 161]. In practice, the pressure field needs to be evaluated at multiple locations 
and computationally more efficient k-wave methods based on Fourier transforms are used [162, 
163]. 

2.5.4 Limitations of the model 

The above-described physical model of optoacoustic tomography is reasonably accurate for 
practical purposes while remaining computationally tractable thanks to several simplifying 
assumptions. However, it is important to understand the nature and implications of those 
assumptions as they may cause less or more severe errors. 

First, as introduced in equation (2.5.7), acoustically homogenous medium is assumed: 𝜌𝜌(𝒓𝒓) = 𝜌𝜌, 
implying 𝑐𝑐(𝒓𝒓) = 𝑐𝑐. A justification for this assumption is that the optical contrast in soft biological 
tissue is much higher than the density variations, allowing to neglect them [164]. However, 
variations in the acoustic impedance have practical implications for optoacoustic tomography. 
First, errors in the speed of acoustic waves propagation cause spatial distortion of the imaged 
objects. This issue is further pronounced in presence of acoustic coupling medium with a distinct 
speed of sound. Second, acoustic interfaces alter the direction of the wave propagation through 
refraction and reflection. Whereas the refraction is manifested through further spatial distortion of 
the obtained images, reflections on acoustic interfaces cause imaging artifacts—fictious structures 
appearing in the images. Whereas the image distortion due to acoustic inhomogeneities is usually 
non-detrimental, reflection artifacts are problematic as they can lead to erroneous evaluation of the 
images. 

The second simplifying assumption in the model is that of an acoustically non-attenuating medium. 
In practice, the acoustic attenuation in soft tissue is frequency dependent according to the power 
law [165]. Although at frequencies typically used in OAT, the acoustic attenuation is much weaker 
than the optical attenuation and is not the main factor limiting the penetration depth [125], at 
frequencies around 43 MHz the optical and acoustic attenuation become comparable [166]. 
Depending on the signal frequency, the acoustic attenuation may cause a reduction of resolution 
and hinder quantification attempts [166]. Modelling the acoustic attenuation requires use of the 
Stoke’s equation in place of eq. (2.5.14) [167]: 

 
�𝜕𝜕

2

𝜕𝜕𝑡𝑡2
− 𝑐𝑐2∆ − 𝜏𝜏𝑐𝑐2Δ 𝜕𝜕

𝜕𝜕𝜕𝜕
 �𝑝𝑝(𝒓𝒓, 𝑡𝑡) = 𝑝𝑝0(𝒓𝒓)

d𝛿𝛿(𝑡𝑡)
d𝑡𝑡

 , (2.5.24) 
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Here, the coefficient 𝜏𝜏  captures the relation between the medium viscosity and density. Various 
methods have been proposed for solving this variant of the wave equation and correction of the 
sound attenuation effects [166-169]. It is nevertheless important to recognize that the frequency 
response of the ultrasound detector and signal filters needs to be also considered while modeling 
the acoustic attenuation. 

2.6 Image formation 

Optoacoustic tomography forms images by reconstructing the physical properties of the tissue upon 
the laser light illumination from acoustic signals recorded by ultrasound detectors placed on a 
detection surface Ω𝐷𝐷 which is fully or partially enclosing the imaged object. The reconstruction is 
performed by inverting the forward model described in the previous section. The physical quantity 
of interest in current optoacoustic tomography is the initial pressure distribution, 𝑝𝑝0, which can be 
obtained by solving the acoustic inverse problem. However, the ultimate (and much more 
ambitious) goal of OAT is recovering the absorption distribution 𝜇𝜇𝐴𝐴 from the initial pressure and, 
if images at multiple wavelengths are available, the closely related tissue chromophore 
concentrations. This is often called quantitative or functional OAT and requires solving the optical 
inverse problem. Whereas a multitude of solutions to the acoustic inverse problem exists, the 
optical inverse problem is ill-posed and remains unsolved in the general case [170]. 

2.6.1 Acoustic inverse problem 

Many solutions to the acoustic problem exist, depending on the imaging system properties. When 
considering the inversion algorithm, the most important system property is the geometrical 
configuration of the detector elements—the detection surface. Detector elements are either placed 
on the detection surface and record in parallel, or a single detection element may be scanned along 
the surface. The most common detection surfaces are sphere, cylinder, and plane. In the case of 
handheld OAT devices, the detectors are typically placed on a line or an arc and the obtained 
images are 2D, although hemispherical handheld detectors for 3D acquisition have also been 
demonstrated. 

The algorithms can be roughly divided into four categories: closed-form time-domain and 
frequency-domain solutions, and numerical time-reversal and model-based methods [162]. Here, 
the time-domain back-projection and a model-based approach are viewed in more detail. 

Time-domain methods 
The time-domain (filtered) back-projection algorithm works in a similar manner as the inverse 
Radon transfer, projecting the recorded data to spheres instead of planes (alluding to the similarity 
of the forward problem to the Radon transform, mentioned above). Generally, the algorithm can 
be summarized in three steps: 1) filtering of the recorded data, 2) projection of the filtered data on 
spheres according to the time-of-flight, 3) (weighted) summation of the projections. Formally: 

 
𝑝𝑝0(𝒓𝒓) = � 𝑏𝑏�𝒓𝒓𝑆𝑆, |𝒓𝒓 − 𝒓𝒓𝑆𝑆|

𝑐𝑐
�dΩ(𝒓𝒓,𝒓𝒓𝑆𝑆)

Ω𝑆𝑆(𝒓𝒓)
Ω

 (2.6.1) 

Here, Ω denotes the detection surface, Ω𝑆𝑆(𝒓𝒓) is the solid angle of the whole detection surface w.r.t. 
reconstruction point 𝒓𝒓 (2π for planar geometry, 4π for spherical), and dΩ(𝒓𝒓,𝒓𝒓𝑆𝑆) denotes the solid 
angle subtended by an infinitesimal surface element located at 𝒓𝒓𝑆𝑆 when viewed from 𝒓𝒓. 
Analytically, the solid angle can be computed as 
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 dΩ(𝒓𝒓𝑆𝑆) = d𝑆𝑆(𝒓𝒓𝑆𝑆)
|𝒓𝒓 − 𝒓𝒓𝑆𝑆|2

�𝒏𝒏Ω(𝒓𝒓𝑆𝑆) ⋅ 𝒓𝒓 − 𝒓𝒓𝑆𝑆
|𝒓𝒓 − 𝒓𝒓𝑆𝑆|

� , (2.6.2) 

where, 𝒏𝒏Ω(𝒓𝒓𝑠𝑠) denotes the inward-pointing normal vector to the surface Ω at point 𝒓𝒓𝑆𝑆, and d𝑆𝑆(𝒓𝒓𝑆𝑆) 
represents the infinitesimal surface element of surface Ω at point 𝒓𝒓𝑆𝑆. 

Furthermore, 𝑏𝑏(𝒓𝒓, 𝑡𝑡) denotes the filtered back-projection function. Depending on its form, different 
time-domain algorithms can be derived. The simplest one, the delay-and-sum method, uses the raw 
signals without any filtering [171]: 

 𝑏𝑏𝐷𝐷𝐷𝐷(𝒓𝒓, 𝑡𝑡) ≡ 𝑝𝑝(𝒓𝒓, 𝑡𝑡) . (2.6.3) 

The universal back-projection algorithm uses the following form [172]: 

 𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈 (𝒓𝒓, 𝑡𝑡) ≡ 2𝑝𝑝(𝒓𝒓, 𝑡𝑡)− 𝑡𝑡 𝜕𝜕𝜕𝜕𝜕𝜕 𝑝𝑝(𝒓𝒓, 𝑡𝑡) . (2.6.4) 

The second term with a time derivative represents a ramp filter suppressing low frequencies [125]. 
This form of back-projection is an exact solution to the inverse acoustic problem outlined in the 
section 2.5.3 for spherical, cylindrical, and planar detection surfaces (hence universal). 
Computational complexity of these algorithms for 𝑁𝑁𝐷𝐷 detectors and 𝑁𝑁𝑉𝑉  voxels is 𝒪𝒪(𝑁𝑁𝐷𝐷𝑁𝑁𝑉𝑉 ) ≈
𝒪𝒪(𝑁𝑁5), assuming a voxel grid 𝑁𝑁 ×𝑁𝑁 ×𝑁𝑁  and 𝑁𝑁2 detection elements [173]. Part of the 
computational load can be eliminated under the far-field approximation [173], applicable when the 
distance of the object from the detectors is significantly larger than the size of the features of 
interest, or |𝒓𝒓 − 𝒓𝒓𝑠𝑠| ≅ |𝒓𝒓𝑠𝑠|. In such case, the solid angle dΩ(𝒓𝒓,𝒓𝒓𝑆𝑆) no longer depends on 𝒓𝒓 and 
does not need to be computed for each voxel separately. Furthermore, the second term in equation 
(2.6.14) outweighs the first one, 𝑡𝑡 𝜕𝜕𝜕𝜕𝜕𝜕 𝑝𝑝(𝒓𝒓, 𝑡𝑡)≫ 𝑝𝑝(𝒓𝒓, 𝑡𝑡) and the back-projection function becomes 

 𝑏𝑏𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝒓𝒓, 𝑡𝑡) ≡ 𝑡𝑡 𝜕𝜕𝜕𝜕𝜕𝜕 𝑝𝑝(𝒓𝒓, 𝑡𝑡) . (2.6.5) 

Whereas the overall computation complexity of back-projection in 3D remains 𝒪𝒪(𝑁𝑁5) even under 
the far-field approximation, the algorithm can be parallelized using a graphics processing unit 
(GPU) and run in real-time [174]. Furthermore, in 2D the complexity is only 𝒪𝒪(𝑁𝑁3). Commercially 
available handheld OAT scanners utilize back-projection for real-time image reconstruction. 

Model-based methods 
Model-based methods treat the forward acoustic problem as a discrete linear system [164], where 
the initial pressure vector 𝒑𝒑0 and the vector of the detected pressure 𝒑𝒑𝑑𝑑 are related through a system 
(model) matrix 𝑴𝑴 : 

 𝒑𝒑𝑑𝑑 =𝑴𝑴𝒑𝒑0 . (2.6.6) 

Discretization is performed as a grid containing 𝑁𝑁𝑉𝑉  pixels and 𝑇𝑇  time-samples. The number of 
detectors, 𝑁𝑁𝐷𝐷, corresponds to the actual number of transducers. Then, 𝒑𝒑𝑑𝑑 is a vector of length 
𝑁𝑁𝐷𝐷𝑇𝑇 , 𝒑𝒑0 is a vector of length 𝑁𝑁𝑉𝑉 , and 𝑴𝑴  is a matrix of shape 𝑁𝑁𝐷𝐷𝑇𝑇 ×𝑁𝑁𝑉𝑉 . 

For the simplified case of perfect point-sources and point-detectors, the values of the matrix 𝑴𝑴  
are solutions to the equations (2.5.21)–(2.5.23). In practice, however, the sources are modelled as 
uniform spherical absorbers of diameter 𝑑𝑑 matching the discretization grid step size, generating a 
typical N-shaped pressure wave [109]: 

 
𝑝𝑝(𝒓𝒓, 𝑡𝑡) =

⎩�
⎨
�⎧ 𝑝𝑝0

2|𝒓𝒓 − 𝒓𝒓′|
�|𝒓𝒓 − 𝒓𝒓′|

𝑐𝑐𝑠𝑠
− 𝑡𝑡� if |𝒓𝒓 − 𝒓𝒓′|− 𝑑𝑑

2
≤ 𝑐𝑐𝑠𝑠𝑡𝑡 ≤ |𝒓𝒓 − 𝒓𝒓′| + 𝑑𝑑

2
,

0 otherwise.
 (2.6.7) 
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Equation (2.6.7) describes the propagation of the N-shape pressure wave with the initial amplitude 
𝑝𝑝0 emanating from a spherical absorber at point 𝒓𝒓′ in a medium with a speed of sound 𝑐𝑐𝑠𝑠. 

Furthermore, the detectors have a finite size and their response 𝑝𝑝𝑑𝑑 needs to be modelled 
accordingly. A simple model is averaging over the detector surface: 

 
𝑝𝑝𝑑𝑑(𝑡𝑡) = � 𝑝𝑝(𝒓𝒓, 𝑡𝑡)

𝒓𝒓∈Ω𝑑𝑑

 d𝒓𝒓 , (2.6.8) 

where Ω𝑑𝑑 denotes the surface of the detector. A computationally affordable approximation to the 
averaging model is a temporal convolution of the pressure pulse with a spatial impulse response 
function of the detector [175, 176]. 

Solving the linear system for a given 𝒑𝒑𝑑𝑑 (2.6.6) directly is impractical due to a potentially very 
large model matrix and iterative methods are preferred. The solution 𝒑𝒑0∗ can be found by 
minimization of the following least-squares objective: 

 𝒑𝒑0∗ = argmin
𝒑𝒑0

‖𝑴𝑴𝒑𝒑0 − 𝒑𝒑𝑑𝑑‖22 . (2.6.9) 

In practice, the solution may not be uniquely and accurately determined by the recorded data and 
the model. In that case, the problem is ill-posed and additional regularization is required [175]. 
Tikhonov regularization is a typical choice [177, 178]: 

 𝒑𝒑0∗ = argmin
𝒑𝒑0

‖𝑴𝑴𝒑𝒑0 − 𝒑𝒑𝑑𝑑‖22 + 𝜆𝜆‖𝑹𝑹𝒑𝒑0‖22 . (2.6.10) 

Here, 𝜆𝜆 is a parameter controlling the regularization strength and 𝑹𝑹 is a regularization matrix which 
can encode additional prior information about the solution. When set to identity, 𝑹𝑹 = 𝑰𝑰 , equation 
(2.6.10) becomes simple L2 regularization. A proper value of the 𝜆𝜆 parameter can be identified 
using the L-curve approach [179].  

Other regularization terms have been also utilized, such as L1 norm [180], total variation [180, 
181], or shearlet regularization [182, 183]. Additionally, it is reasonable to constrain the solution 
space to positive values, 𝒑𝒑0 ∈ ℝ+

𝑁𝑁𝑉𝑉  , as negative initial pressure violates the physical model [184]. 
Depending on the exact form of the optimization problem, a suitable least-squares solver needs to 
be applied [185]. 

Model-based image reconstruction methods are computationally much more demanding than 
analytical solutions and typically are too slow to be used for real-time image formation. However, 
the increase in computing power and availability of parallel processors such as GPUs in the recent 
years fuel the interest in model-based methods. In many aspects, they have major advantages over 
back-projection schemes. They afford integration of physical properties of the imaging system into 
the forward model, such as its detector geometry, detector shape [175, 186], and electrical response 
[181, 186]. Furthermore, the model can also account for the light [187] and sound [168, 188] 
attenuation in the medium. Overall, model-based reconstruction leads to images with less artifacts 
and considerably better image quality than back-projection [177, 181]. 

2.6.2 Optical inverse problem 

The optical inverse problem refers to recovering the distribution of the absorption coefficient inside 
the imaged tissue, 𝜇𝜇𝐴𝐴(𝒓𝒓), given the initial pressure distribution 𝑝𝑝0. Solving the optical inverse 
problem is required to ultimately obtain the distribution of concentration coefficients of the 



2    Background 

22 

individual chromophores. Unlike the acoustic inverse problem, the optical inverse problem is ill-
posed and remains unsolved in the general case [170].  

The relationship between the acoustic pressure and the optical absorption is modelled by the 
equation (2.5.15) as 𝑝𝑝0(𝒓𝒓) = Γ𝜂𝜂𝑡𝑡ℎ𝜇𝜇𝐴𝐴(𝒓𝒓)Φ(𝒓𝒓). The light fluence Φ at a point 𝒓𝒓 depends on the 
distribution of the absorption and scattering (𝜇𝜇𝑆𝑆 , unit m−1) coefficients within the tissue, which can 
be explicitly written as (omitting the energy conversion efficiency parameters): 

 𝑝𝑝0(𝒓𝒓) = 𝜇𝜇𝐴𝐴(𝒓𝒓)Φ(𝒓𝒓;𝜇𝜇𝐴𝐴,𝜇𝜇𝑆𝑆). (2.6.11) 

The difficulty of recovering 𝜇𝜇𝐴𝐴 from 𝑝𝑝0 has multiple roots. First and foremost, the light fluence Φ 
depends on both 𝜇𝜇𝐴𝐴 and 𝜇𝜇𝑆𝑆 , which are unknown. Estimating these coefficients together is an ill-
posed problem, since the same fluence profile can be generated by many different configurations 
of 𝜇𝜇𝐴𝐴 and 𝜇𝜇𝑆𝑆 . Hence, given 𝑝𝑝0, 𝜇𝜇𝐴𝐴 does not have a unique solution [189]. Second, the scattering 
coefficient affects the solution only through the fluence term, which smoothens out any high-
frequency noise component of 𝜇𝜇𝑆𝑆 . This leads to numerical instabilities in the inversion methods, 
resulting in amplifying the high-frequency component of 𝜇𝜇𝑆𝑆  [189]. Finally, the Grüneisen 
parameter Γ(𝒓𝒓) is also unknown and may vary throughout the tissue, although we refrain from 
discussing the issue here. 

Light fluence model 
The light fluence distribution is required for solving the optical inverse problem. Since the fluence 
inside the tissue is unknown, it needs to be modelled. A typical particle-based model of light 
transport is the radiative transfer equation. Because the illumination time-scale in OA imaging is 
much shorter than the acoustic propagation (stress confinement), the time-independent radiative 
transfer equation can be used [189]: 

 (𝒔𝒔̂ ⋅ ∇+ 𝜇𝜇𝐴𝐴 + 𝜇𝜇𝑆𝑆 )𝜙𝜙(𝒓𝒓,𝒔𝒔)− 𝜇𝜇𝑆𝑆 ∫Θ(𝒔𝒔,̂𝒔𝒔′̂)𝜙𝜙(𝒓𝒓,𝒔𝒔′̂)𝑑𝑑𝒔𝒔′̂ = 𝑞𝑞(𝒓𝒓, 𝒔𝒔)̂ , (2.6.12) 

where Θ(𝒔𝒔,̂𝒔𝒔′̂) is the scattering phase function (dimensionless), giving the probability that a photon 
travelling along the angle 𝒔𝒔 ̂will be deflected to the direction of 𝒔𝒔′̂; 𝑞𝑞(𝒓𝒓,𝒔𝒔)̂ is the light source, and 
𝜙𝜙(𝒙𝒙,𝒔𝒔)̂ represent the time-integrated light radiance (unit J·m−2·sr−1·s−1). Its integral over all angles 
𝒔𝒔 ̂corresponds to the light fluence: 

 Φ(𝒓𝒓) = ∫𝜙𝜙(𝒓𝒓,𝒔𝒔)̂ d𝒔𝒔.̂ (2.6.13) 

As solving the radiative transfer equation is usually infeasible, its approximations are used. In 
particular, the diffusion approximation is considered for biological tissue, where the scattering 
dominates the photon transport: 𝜇𝜇𝑆𝑆 ≫ 𝜇𝜇𝐴𝐴. The diffusion approximation has the following form: 

 𝜇𝜇𝐴𝐴Φ −∇ ⋅ (𝐷𝐷∇)Φ = 𝑞𝑞0. (2.6.14) 

Here, 𝐷𝐷 = [3(𝜇𝜇𝐴𝐴 + 𝜇𝜇𝑆𝑆′ )]−1 is the optical diffusion coefficient (unit m), 𝜇𝜇𝑆𝑆′ = (1− 𝑔𝑔)𝜇𝜇𝑆𝑆 is the 
reduced scattering coefficient with anisotropy factor 𝑔𝑔, and 𝑞𝑞0 is an isotropic light source term. 
This approximation is accurate at depths where all the photons have lost their original directionality 
(> 1 mm), which is given by the mean transport path. The light fluence typically reaches its 
maximum just below the tissue surface where both incident and backscattered photons contribute. 

Inversion 
Solving the optical inverse problem requires constraining the solution space by incorporating 
suitable inductive biases based on prior knowledge. Numerous methods to this end have been 
proposed and the reader is referred to the section 5.2 for a brief overview; a reader with a substantial 
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interest in the topic can then further benefit from the review by Cox et al. [189]. Here, one particular 
approach is discussed, which makes use of illumination with multiple wavelengths [170]. 

The main assumption is that the absorption spectrum at any imaged point should be an additive 
combination of absorption spectra of a limited amount (𝐾𝐾) of known optical absorbers present in 
the imaged tissue: 

 
𝜇𝜇𝐴𝐴(𝒓𝒓,𝜆𝜆) =�𝑐𝑐𝑘𝑘(𝒓𝒓)𝛼𝛼𝑘𝑘(𝜆𝜆)

𝐾𝐾

𝑘𝑘=1
. (2.6.15) 

Here, 𝜆𝜆 represents the illumination wavelength, 𝑐𝑐𝑘𝑘 represents the (non-negative) concentration of 
a chromophore 𝑘𝑘 and 𝛼𝛼𝑘𝑘 is its absorption spectrum. This assumption is valid in the near-infrared 
wavelength range where the absorption is dominated by hemoglobin, lipids, and water [190]. 

The second assumption is that the reduced scattering coefficient in tissue depends on the 
wavelength via the following relationship: 

 𝜇𝜇𝑆𝑆′ (𝒓𝒓,𝜆𝜆) = 𝑎𝑎(𝒓𝒓)𝜆𝜆−𝑏𝑏. (2.6.16) 

This assumption has been derived from experimental results and the values of 𝑏𝑏 are known; 𝑎𝑎 
represents an unknown scattering amplitude which is wavelength-independent. 

Using these two assumptions, the initial pressure is modelled as: 

 𝑝𝑝𝑚𝑚(𝒓𝒓,𝜆𝜆; 𝒄𝒄, 𝑎𝑎) = 𝜇𝜇𝐴𝐴(𝒓𝒓,𝜆𝜆; 𝒄𝒄)Φ(𝒓𝒓,𝜆𝜆; 𝒄𝒄, 𝑎𝑎). (2.6.17) 

Here, 𝒄𝒄 represents the vector of coefficients 𝑐𝑐1, …, 𝑐𝑐𝐾𝐾 . The model utilizes equations (2.6.16) and 
(2.6.17) to compute 𝜇𝜇𝐴𝐴 and 𝜇𝜇𝑆𝑆′  from 𝒄𝒄 and 𝑎𝑎, and the diffusion approximation from eq. (2.6.14) is 
used to compute the fluence Φ.  

Least-squares minimization is used to solve the inverse problem: 

 𝒄𝒄∗, 𝑎𝑎∗ = argmin
𝒄𝒄,𝑎𝑎

1
2
‖𝒑𝒑𝑚𝑚(𝒄𝒄, 𝑎𝑎)− 𝒑𝒑0‖22 + 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝒄𝒄, 𝑎𝑎) , (2.6.18) 

where 𝒑𝒑0 is a vector of initial pressure measurements for all pixels 𝒓𝒓 and wavelengths 𝜆𝜆, and 𝒑𝒑𝑚𝑚 
is a vector-valued function corresponding to the model evaluation at the matching values of 𝒓𝒓 and 
𝜆𝜆. Regularization function 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 is used to include additional assumptions on the distribution of 
coefficients. The original paper utilizes Tikhonov regularization to avoid noise amplification and 
improve the stability of the inversion. 

Overall, this method uses only very mild assumptions to solve the problem with robust 
mathematical tools. Despite the undisputable elegance of the presented framework, its 
demonstration has been limited to numerical simulations. The practical issues of imperfect acoustic 
inversion and unknown Grüneisen parameter distribution prevent its straightforward translation to 
real data. 

2.7 Image analysis 

The aim of medical image analysis is the extraction of measurements to provide a clinician with 
data needed to make decisions about the patient diagnosis and treatment. In multispectral OAT, the 
measurements of interest are related to concentrations of chromophores in the examined regions. 
The main chromophores of interest are oxygenated and deoxygenated hemoglobin, but in certain 
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cases lipids, water, and exogenous contrast agents are also targeted. To obtain the chromophore 
concentrations, the measured spectra need to be disentangled into the individual components 
according to some unmixing model. In this section, the typically used unmixing models are 
discussed. 

Linear model 
The linear model is a standard spectroscopic approach for disentanglement of spectrum 
constituents. It assumes that the absorption spectrum in each pixel is a linear combination of 
absorption spectra of a-priori known constituents [191]. The mathematical form of this mixing 
model was already introduced in the previous section in the equation (2.6.15). Inverting this model 
is known as linear unmixing: 
 argmin

𝒄𝒄
‖𝑨𝑨𝑨𝑨 − 𝒔𝒔‖2. (2.7.1) 

Here, 𝑨𝑨 is a matrix with the absorption spectra 𝛼𝛼𝑘𝑘 of the constituent chromophores stacked as 
columns: 

 
𝑨𝑨 =

⎣
⎢⎡
𝛼𝛼1(𝜆𝜆1) ⋯ 𝛼𝛼𝐾𝐾(𝜆𝜆1)
⋮ ⋱

𝛼𝛼1(𝜆𝜆𝐿𝐿) 𝛼𝛼𝐾𝐾(𝜆𝜆𝐿𝐿)⎦
⎥⎤ (2.7.2) 

The vector 𝒄𝒄 contains the concentrations of the 𝐾𝐾 chromophores and the vector 𝒔𝒔 is the measured 
spectrum at 𝐿𝐿 wavelengths 𝜆𝜆1, 𝜆𝜆2, …, 𝜆𝜆𝐿𝐿. 

Linear unmixing requires the constituent spectra to be linearly independent (i.e., the matrix 𝑨𝑨 has 
a full rank) and the number of wavelengths must be equal or higher than the number of unmixing 
components (𝐿𝐿 ≥ 𝐾𝐾), otherwise the problem is underdetermined and an infinite number of 
solutions exists. Additionally, the non-negativity constraint on the elements of 𝒄𝒄 is often used to 
ensure physically meaningful solutions. In that case, a non-negative least squares solver is 
employed to find the optimal solution [185, 191]. 

The main limitation of linear unmixing is that the measured spectrum 𝒔𝒔 is assumed to be a vector 
of optical absorption coefficients 𝜇𝜇𝐴𝐴(𝜆𝜆), but in practice it is a vector of reconstructed pressure 
signals 𝑝𝑝0(𝜆𝜆). As explained in the previous section, the absorption coefficients are related to the 
initial pressure through the unknown light fluence and the photoacoustic conversion efficiency 
coefficient (see eq. (2.5.15)). Furthermore, image reconstruction artifacts may create additional 
spectral variations violating the linear model. For all these reasons, linear unmixing produces 
satisfactory results only in simplified computational simulations and in idealized phantoms but 
fails at quantitative analysis of in vivo images. 

Eigenspectral model 
To overcome the limitations of the linear model, the eigenspectra optoacoustic tomography method 
(eMSOT) has been proposed by Tzoumas et al. [192], which accounts for the unknown light 
fluence and hence provides more precise estimates of oxygen saturation. The basic assumption of 
eMSOT is that the light fluence distribution is smooth and thus low-dimensional. Using computer 
simulations of tissue at various levels of oxygen saturation, the authors generated a dataset of light 
fluence maps. This dataset was analyzed via principal component analysis and the authors have 
found that the fluence spectrum at any point can be reliably modelled using only the first three 
principal components (which they call eigenspectra): 

 Φ(𝒓𝒓,𝜆𝜆) = ΦM(𝜆𝜆) +𝑚𝑚1(𝒓𝒓)Φ1(𝜆𝜆) +𝑚𝑚2(𝒓𝒓)Φ2(𝜆𝜆) +𝑚𝑚3(𝒓𝒓)Φ3(𝜆𝜆). (2.7.3) 

Here, Φ𝑀𝑀  is the mean spectrum of the simulated dataset, Φ1–Φ3 are the three eigenspectra, and 
𝑚𝑚1–𝑚𝑚3 are their coefficients. Estimation of the eigenspectra coefficients is performed in a two-
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step process for a regular grid of points. First, initial estimates are found for each grid point 
individually using oxygen saturation values obtained by the linear model. Then, the estimates for 
the grid points are jointly optimized in a constrained model-based inversion scheme. The model 
itself assumes that oxy- and deoxyhemoglobin are the only two absorbers in the tissue and the 
fluence can be modelled according to the equation (2.7.3): 

 𝑝𝑝0(𝒓𝒓,𝜆𝜆; 𝒄𝒄,𝒎𝒎) = 𝜶𝜶𝑇𝑇 (𝜆𝜆)𝒄𝒄(𝒓𝒓)�Φ𝑀𝑀(𝜆𝜆) +𝒎𝒎𝑇𝑇 (𝒓𝒓)𝚽𝚽𝑒𝑒(𝜆𝜆)�. (2.7.4) 

Here, 𝜶𝜶 is a vector of absorption coefficients of oxy- and deoxyhemoglobin, 𝒄𝒄 is the vector of their 
concentrations, 𝒎𝒎 is the vector of the eigenspectra coefficients and 𝚽𝚽𝑒𝑒 is the vector of the three 
eigenspectra. The model contains a normalization scaling factor on the concentration coefficients: 

 𝑐𝑐Ĥb(𝒓𝒓) = 𝑐𝑐Hb(𝒓𝒓)
Γ(𝒓𝒓)‖𝑝𝑝0(𝒓𝒓)‖2
‖Φ(𝒓𝒓)‖2

. (2.7.5) 

This scaling does not affect the oxygen saturation computation. The optimization constraints are 
of three types. First, spatial variations of coefficients 𝑚𝑚1 and 𝑚𝑚3 are penalized according to the 
distance of the points on the grid. Second, the coefficient 𝑚𝑚2 is constrained to become smaller for 
grid points deeper in the tissue. Finally, the coefficients 𝑚𝑚1 and 𝑚𝑚3 are required to be within a 
value range depending on the initial estimates. Besides these constraints on 𝒎𝒎, the concentrations 
of hemoglobin must be non-negative. 

After estimation of the fluence parameters on the grid, fluence can be computed for all points by 
interpolation of the fitted eigenspectra parameters, and oxygen saturation can be obtained with 
much higher precision than what is afforded by the simple linear model. eMSOT has shown good 
results in mouse imaging [192], but has not been translated into the clinical imaging practice. 
Further improvements to the optimization scheme have been published, including Bayesian 
optimization [193] and using neural networks to estimate the parameters [194]. 

Blind unmixing 
Blind unmixing5 (BU) is a category of algorithms that do not rely on prior knowledge of the 
constituent chromophores. Instead of fitting the observations to a predefined absorption matrix 𝑨𝑨, 
the matrix entries are estimated during the unmixing procedure. The unmixing is applied 
concurrently on a whole set of measurements—all pixels in one image, or a whole imaging study 
with multiple subjects—to ensure that the estimate of the matrix 𝑨𝑨 represents the whole dataset. 

The advantage of BU is that it does not attempt to overcome the notoriously hard problem of light 
fluence correction (like eMSOT) nor pretends the problem is not there (like the linear model). 
Instead, BU gives an answer to a different question:  

Which dominant spectral patterns are observed in the measured data? 

It is quite reasonable to assume that these dominant patterns are linked to the actual imaged 
chromophores. Note that this question drops altogether the impractical requirement of measuring 
the optical absorption coefficients—and the associated modelling of complicated physical, 
electronical, and computational processes between the illuminated chromophores and the 
reconstructed images—we can just as well analyze the spectral patterns in the initial pressure data. 
In this way, the question addressed by BU is a much easier one. Still, a correct answer to this easier 
question can give a better insight into the chromophore distribution than a wrong result produced 
by linear unmixing. 

 
5 Also called blind source separation in other contexts. 
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On the other hand, since the spectral components identified in a BU procedure do not have a 
specific biological meaning assigned per se, the analysis of such unmixed data is inherently more 
challenging. An extensive experience is required to interpret the meaning of the unmixed 
components, as the observed patterns are outcomes of biochemical processes (which chromophores 
are present together), physical processes (light fluence, acoustic reflections), imaging system 
(artifacts), and the unmixing algorithm (which components it picks up). Accordingly, there is not 
a single correct solution to the BU problem and often a different algorithm or parameter setup needs 
to be used to arrive at a useful result. Furthermore, as the results of BU methods are usually 
“married” to a specific dataset, they cannot be easily transferred to new data or generalized to 
different studies. 

Although BU algorithms are free of assumptions about the optical properties of the constituent 
chromophores, they rely on other assumptions that allow them to disentangle the measured spectra 
into individual components. Here, we discuss the assumptions behind three BU algorithms that 
have been applied to multispectral OAT: principal component analysis (PCA), independent 
component analysis (ICA), and non-negative matrix factorization (NNMF). To demonstrate the 
differences of the components they identify in the data, Fig. 2.5 shows the results of BU of an OAT 
image of a breast tumor using these three methods. The absorption spectra of the four main 
endogenous absorbers are shown for reference. 

PCA [195] is a method often used for explorative data analysis and as a pre-processing 
dimensionality reduction step. PCA identifies a linear transformation of the data into a new 
orthogonal representation where the first component matches the direction of the largest data 
variance, the next component is an orthogonal direction with the largest remaining variance, etc. 
Statistically, PCA is based on the assumption that the components (i.e., the constituting spectra) 
are uncorrelated. PCA can be computed through the singular value decomposition of the data 
matrix 𝑺𝑺 (after subtracting its column-wise mean): 

 
𝑺𝑺 =

⎣
⎢⎡
𝒔𝒔1𝑇𝑇
⋮
𝒔𝒔𝑁𝑁𝑉𝑉
𝑇𝑇 ⎦
⎥⎤ = 𝑼𝑼𝚺𝚺𝑽𝑽 𝑇𝑇 . (2.7.6) 

Here, 𝑼𝑼  is a matrix of shape 𝑁𝑁𝑉𝑉 ×𝑁𝑁𝑉𝑉  of the left singular vectors, 𝑽𝑽  is a matrix of shape 𝐿𝐿× 𝐿𝐿 
of the right singular vectors, and 𝚺𝚺 is a diagonal matrix of shape 𝑁𝑁𝑉𝑉 × 𝐿𝐿 containing the singular 
values in descending order. The (orthonormal) columns of the matrix 𝑽𝑽  are the principal 
components and the transformation is applied as: 

 

Figure 2.5: Four spectral components detected by different blind unmixing algorithms (PCA, ICA, 
NNMF) in a scan of a breast tumor in vivo. Absorption spectra of Hb, HbO2, lipids, and water are shown 
for reference in the rightmost plot. Abbreviations: OA, optoacoustic; a.u., arbitrary unit; PCA, principal 
component analysis; ICA, independent component analysis; NNMF, non-negative matrix factorization. 
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 𝑺𝑺 ̂= 𝑺𝑺𝑺𝑺 . (2.7.7) 

In practice, when only 𝐾𝐾 main components are of the interest, a truncated matrix 𝑽𝑽𝐾𝐾  with the first 
𝐾𝐾 columns of 𝑽𝑽  is used instead. Singular values on the diagonal of the matrix 𝚺𝚺 are equal to the 
amount of data variance captured by each component, which can be used to select 𝐾𝐾 such that the 
transformed matrix 𝑺𝑺  ̂contains a certain amount of the original data variance (e.g., 95%). 

ICA is another method to identify a linear transformation of the data matrix into a new 
representation. Unlike PCA, ICA relies on a stronger assumption that the individual components 
are statistically independent, but they do not necessarily have to be orthogonal. There are various 
algorithms to find the components maximizing statistical independence, a popular one being 
FastICA [196]. FastICA utilizes the central limit theorem stating that a sum of statistically 
independent variables tends towards normal distribution, i.e., the individual variables are expected 
to be less gaussian than their sum. A fixed-point iteration scheme is used, measuring the non-
normality of the components using kurtosis. A pre-requisite for ICA is preprocessing the data 
matrix to have a zero mean and a unit variance along the columns (whitening), which can be 
achieved via singular value decomposition. Since ICA produces 𝐿𝐿 components without any 
importance measure like PCA, the two methods are often used in tandem: PCA performs 
dimensionality reduction and whitening of the data which are then transformed with ICA. 

ICA has been used for BU of optoacoustic data in several works: Glatz et al. have used it to detect 
exogenous optical agents in a mouse model [197]; Arabul et al. have attempted to separate 
morphological parts of human carotid plaques ex vivo using a non-negative variant of ICA [198]. 
However, the ICA assumption of statistical independence conflicts with the expected distribution 
of endogenous chromophores in the biological tissue. Notably, oxy- and deoxyhemoglobin are 
always present together in the blood, so their distributions are not independent. Furthermore, 
hemoglobin is not expected to be present in the subcutaneous fat layer, breaking the independence 
of lipid and hemoglobin distributions. Thus, ICA is better suited for detection of exogenous 
contrast agents and targeted reporters whose distribution can be modelled as independent of the 
tissue chromophores [199]. 

NNMF is an approach based on the assumption that the data were generated as an additive 
combination of a limited number of non-negative components, i.e., the data matrix 𝑺𝑺 can be 
factorized into two non-negative matrices: 

 𝑺𝑺 ≈ 𝑪𝑪𝑨̂𝑨̂. (2.7.8) 

Here, 𝑨𝑨̂ is a matrix of the spectral components (𝐾𝐾 × 𝐿𝐿) and 𝑪𝑪  ̂is a matrix of their coefficients at 
each pixel (𝑁𝑁𝑉𝑉 ×𝐾𝐾). The value of 𝐾𝐾 is a parameter of the algorithm and when 𝐾𝐾 ≤ 𝐿𝐿, it plays 
the role of a compression bottleneck—the algorithm attempts to find the best representation of the 
data while using only 𝐾𝐾 components. In other words, the factor matrices have less elements than 
their product, enforcing data compression. The factorization is performed as a constrained 
optimization problem: 

 argmin
𝑪𝑪≥̂0,𝑨̂𝑨≥0

�𝑪𝑪𝑨̂𝑨̂ − 𝑺𝑺�
𝐹𝐹
. (2.7.9) 

The above optimization may be extended with additional regularizer terms to promote certain 
properties of the unmixing solution. For example, Jüstel and Irl et al. have used L1 and L2 penalties 
on the factor matrices to promote sparsity of the unmixed representation [200]. Grasso et al. have 
combined NNMF with a light fluence correction model and super-pixel analysis to arrive at a more 
robust framework for BU of OA data [201]. Fig. 2.5 shows that the results of NNMF unmixing are 
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the most similar to the absorption spectra of the main chromophores and hence offer better 
interpretability than the results of PCA and ICA. 

Overall, BU has not seen widespread adoption in the OAT image analysis. However, as the OAT 
image quality increases, so are the requirements for the precision of the chromophore analysis. 
Since the linear unmixing model cannot achieve the required level of accuracy in the absence of 
light fluence correction, BU algorithms might be used more frequently in the future. 
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————    ———— 

Motion quantification 
and frame selection 

Multispectral optoacoustic tomography (MSOT) facilitates resolving unique functional features 
based on optical contrast, including detailed visualization of vasculature and of tissue oxygenation. 
Many of the pathophysiological features recorded require the recording of absorption spectra of 
light absorbing tissue moieties, such as oxygenated or deoxygenated hemoglobin or lipids. To 
achieve this, MSOT records OA images sequentially at different illumination wavelengths to form 
a multispectral (MS) frame. Nevertheless, motion can impact the accurate unmixing of the relative 
contributions of tissue constituents on the collected spectrum. Even if modern MSOT systems can 
acquire a 25-wavelength MS frame within 1 second, any motion occurring within that period 
corrupts the measured spectra. A typical MSOT recording may contain a combination of stationary 
frames and frames corrupted by probe motion, especially if the operator moves the probe over the 
imaged volume, localizing suitable imaging positions and acquiring the data continuously. The 
stationary frames, affording the best spectral quality, need to be selected for further analysis. 
Currently, this selection is done manually, which is neither quantitative nor reproducible and is 
time consuming. An automatic method for selection of stationary frames in MSOT scans would 
simplify and standardize the image analysis pipeline and ensure optimal spectral quality of 
analyzed images. 

It has been recognized that motion presents an issue for MSOT and researchers have proposed 
various methods to suppress the negative effects of motion. In pre-clinical MSOT studies, artifacts 
caused by periodic motion following a regular pattern, such as heartbeat and breathing, have been 
suppressed with the help of frame rejection and motion clustering [202, 203]. These methods 
cannot be simply translated to the clinical handheld setting with highly irregular and non-periodic 
motion. Another option to mitigate the influence of motion, as demonstrated in a pre-clinical 
setting, is to use very fast illumination frequency in the kilohertz range [204]. In the clinical MS 
setting however, the illumination frequency is limited by the wavelength switching speed of the 
employed laser (up to 50 Hz in the current Acuity Echo® implementations) and by the ANSI 
maximum energy exposure limits for human skin, which regulates the permissible amount of 
energy per unit of time and presents a trade-off between energy-per-pulse and pulse 
frequency [113]. 

In clinical studies, motion correction has been employed to align the images within one MS frame 
to reduce motion-induced spectral artifacts [47, 205-207]. While effective at suppressing some of 
the motion artifacts, this approach struggles to align images at different wavelengths that vary too 
much in their appearance since they highlight different absorbers (which is desired in MS imaging). 
 
This chapter is based on the following manuscript intended for a later publication: Kukačka, Jan, Dominik Jüstel, and 
Vasilis Ntziachristos. "Motion score: Ensuring optimal spectral quality in handheld MS-OPUS scans through automated 
selection of stationary frames" in preparation (2022). 
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Furthermore, motion correction algorithms tend to be sensitive to their parameter settings and may 
require manual tuning to work well on a specific dataset. However, in principle, motion correction 
is orthogonal to stationary frame selection and can be applied to reduce the remaining motion 
artifacts in stationary frames. 

On the other hand, the problem of automatic selection of the optimal MS frames and the related 
task of motion quantification in MSOT scans have been neglected so far. A simple approach to 
address the quantification of motion in MSOT scans could be the evaluation of cross-correlation 
(or some other similarity measure) between consecutive images in the scan sequence. However, 
such an approach would suffer from the inability of a simple metric to correctly estimate various 
types of motion affecting the image appearance in complex ways. Furthermore, small jitter cannot 
be distinguished from more serious steady drift when considering only neighboring images. 

Therefore, a robust method is needed for quantification of motion in MSOT scans to enable a 
standardized, automated selection of the most stationary frames, ensuring optimal spectral quality. 
To address this need, we present Motion score—the first algorithm for robust quantification of 
motion in hybrid MS-OPUS scans and automatic selection of optimal stationary MS frames for 
downstream analysis. Relying solely on robust evaluation of similarity of the images in the US 
stream, Motion score does not require any external tracking or hardware modifications and can be 
directly applied to any existing MS-OPUS scans. We validate the ability of our algorithm to select 
optimal frames on a dataset of eight scans of an agar tube phantom and three in vivo scans of 
arteries. We demonstrate that Motion score overcomes the limitations of other methods for 
stationary position detection, outperforming them in terms of precision, recall, and mean average 
precision. Furthermore, we show on examples of phantom and in vivo scans that the MS frames 
selected by our algorithm do not suffer from motion-induced artifacts and thus yield the optimal 
spectral quality required for precise clinical analysis. Finally, we make a ready-to-use, open-source 
implementation of Motion score available in a public code repository.6 

3.1 Methods 

3.1.1 Multispectral optoacoustic-ultrasound tomography 

MS-OPUS is an imaging technology that acquires two streams of data in parallel using a single 
handheld probe (Fig. 3.1a). An MS-OPUS scan contains a sequence of US images, 𝐼𝐼𝑈𝑈𝑈𝑈

(𝑗𝑗) , 𝑗𝑗 =
1, … ,𝑁𝑁𝑈𝑈𝑈𝑈, and a sequence of single-wavelength OA images, 𝐼𝐼𝑂𝑂𝑂𝑂

(𝑘𝑘) , 𝑘𝑘 = 1, … ,𝑁𝑁𝑂𝑂𝑂𝑂.  As shown in 
Fig. 3.1b, the OA images are recorded cyclically at wavelengths from a predefined set Λ, depending 
on the system preset. One MS frame7 consists of 𝑁𝑁Λ = |Λ| consecutive single-wavelength images 
spanning the whole set of acquired wavelengths: 𝐼𝐼𝑀𝑀𝑀𝑀

(𝑘𝑘) = �𝐼𝐼𝑂𝑂𝑂𝑂
(𝑘𝑘) , 𝐼𝐼𝑂𝑂𝑂𝑂

(𝑘𝑘+1),… 𝐼𝐼𝑂𝑂𝑂𝑂
(𝑘𝑘+𝑁𝑁Λ−1)�, 𝑘𝑘 =

1, … ,𝑁𝑁𝑀𝑀𝑀𝑀 = 𝑁𝑁𝑂𝑂𝑂𝑂 −𝑁𝑁Λ + 1. The OA and US images are acquired in an interleaved fashion, and 
each image is assigned a timestamp 𝑡𝑡𝑂𝑂𝑂𝑂

(𝑘𝑘) , 𝑡𝑡𝑈𝑈𝑈𝑈
(𝑗𝑗) . Thus, we can define a sequence 𝒔𝒔(𝑘𝑘) of indices of 

US images corresponding to the 𝑘𝑘-th MS frame to be the ordered sequence of indices in the set 
�𝑖𝑖 ∈ ℕ�𝑡𝑡𝑂𝑂𝑂𝑂

(𝑘𝑘) ≤ 𝑡𝑡𝑈𝑈𝑈𝑈
(𝑖𝑖) ≤ 𝑡𝑡𝑂𝑂𝑂𝑂

(𝑘𝑘+𝑁𝑁Λ−1)�. In the following text, we omit the frame index (𝑘𝑘) where it is 
obvious from the context. 

 
6 www.github.com/jankukacka/optimal_frames 
7 Contrary to the usual protocol, we do not require the start of a MS frame to be aligned to the lowest 
wavelength image (i.e., 𝑘𝑘 ≡ 1 (mod 𝑁𝑁Λ)), but we still sort the images within the MS frame by wavelength 
before further processing. This has two implications: a MS frame can start at any single-wavelength image 
in the sequence and two consecutive MS frames share 𝑁𝑁Λ − 1 single-wavelength frames. 

https://www.github.com/jankukacka/optimal_frames
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3.1.2 Motion quantification 

Let 𝑑𝑑 be a dissimilarity function on the space of images (e.g., L2-norm). Assuming that two images 
will be similar in terms of 𝑑𝑑 if there is no motion occurring between their acquisitions, we can 
utilize 𝑑𝑑 for motion quantification. However, this assumption does not necessarily hold true for OA 
images acquired at different wavelengths which may display different absorbers, giving them a 
distinct appearance even in the absence of motion. The US images, on the other hand, have a 
consistent appearance and can be used to estimate the motion occurring during the MS-OPUS 
scanning. A naïve approach to compute motion 𝑚𝑚0 in a MS frame would be to take the mean of 
dissimilarities between consecutive US frames in its corresponding sequence 𝒔𝒔: 

 
𝑚𝑚0 = 1

|𝒔𝒔|
� 𝑑𝑑�𝐼𝐼𝑈𝑈𝑈𝑈

(𝑗𝑗) , 𝐼𝐼𝑈𝑈𝑈𝑈
(𝑗𝑗+1)�

𝒔𝒔|𝒔𝒔|−𝟏𝟏

𝑗𝑗=𝒔𝒔1

. (3.1.1) 

This approach has two limitations. First, it cannot differentiate between (acceptable) jitter and 
(much more problematic) steady drift. Second, it suffers from biases of the chosen dissimilarity 
function 𝑑𝑑 towards penalizing certain types of motion more than others. To overcome these 
limitations, we propose Motion score, a robust motion quantification framework for MS-OPUS. 

3.1.3 Motion score 

Fig. 3.1c outlines the Motion score computation. Let 𝑫𝑫𝑑𝑑 ∈ ℝ(𝑁𝑁𝑈𝑈𝑈𝑈−1)2  be a matrix of dissimilarities 
between US images within one MS-OPUS scan measured by 𝑑𝑑: 

 

Figure 3.1: MS-OPUS imaging and Motion score computation. a, Schematic of the handheld MS-OPUS 
operation with sources of motion highlighted. b, MS-OPUS scanning scheme. OA and US images are 
acquired at different frequencies in an interleaved fashion. Several US images are acquired during recording 
of a single MS frame. c, Dissimilarities between US images and their subsequent neighbors form the matrix 
𝐷𝐷𝑑𝑑. Values of 𝐷𝐷𝑑𝑑 are row-wise ranked to obtain a rank-normalized matrix 𝑅𝑅𝑑𝑑. Multiple dissimilarity 
measures 𝑑𝑑1, … , 𝑑𝑑𝑛𝑛 can be combined since the ranking normalization equalizes their scales. The Motion 
score of a MS frame is then computed as the mean of all dissimilarities between its corresponding US images 
(i.e., the US images that were acquired while recording the MS frame). The number of corresponding US 
images may vary between MS frames. d, A peak-finding algorithm is applied on the Motion score vector of 
the whole MS-OPUS scan (where a lower Motion score means less motion) to identify up to 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
stationary MS frames. Abbreviations: MS, multispectral; OA, optoacoustic; US, ultrasound. 
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𝑫𝑫𝑖𝑖𝑖𝑖
𝑑𝑑 = �𝑑𝑑�𝐼𝐼𝑈𝑈𝑈𝑈

(𝑗𝑗) , 𝐼𝐼𝑈𝑈𝑈𝑈
(𝑗𝑗+𝑖𝑖)� if 𝑖𝑖+ 𝑗𝑗 ≤ 𝑁𝑁𝑈𝑈𝑈𝑈 ,

undefined else.
 (3.1.2) 

Element 𝑗𝑗 in row 𝑖𝑖 corresponds to the dissimilarity between the 𝑗𝑗-th image and its 𝑖𝑖-th subsequent 
image in the US image sequence. Elements under the anti-diagonal are undefined since they 
correspond to subsequent images which would be beyond the end of the sequence. In practice, only 
the first 𝐾𝐾 = max

𝑘𝑘
�𝒔𝒔(𝑘𝑘)� rows of the matrix 𝑫𝑫𝑑𝑑 must be computed, while the rest is unused. 

Furthermore, let 𝑹𝑹𝑑𝑑 and 𝑵𝑵𝑑𝑑 be matrices with the same shape as 𝑫𝑫𝑑𝑑 and elements in the range 
[0,1], where 𝑹𝑹𝑑𝑑 is a matrix of normalized row-wise ranks of the elements of 𝑫𝑫𝑑𝑑, 𝑹𝑹𝑖𝑖𝑖𝑖

𝑑𝑑 =
�rank of 𝑫𝑫𝑖𝑖𝑖𝑖

𝑑𝑑  in 𝑫𝑫𝑖𝑖
𝑑𝑑� (𝑁𝑁𝑈𝑈𝑈𝑈 − 𝑖𝑖 − 1)⁄ , and 𝑵𝑵𝑑𝑑 is a matrix of row-wise min-max normalized 

elements of 𝑫𝑫𝑑𝑑, 𝑵𝑵𝑖𝑖𝑖𝑖
𝑑𝑑 = �𝑫𝑫𝑖𝑖𝑖𝑖

𝑑𝑑 −min
𝑘𝑘
𝑫𝑫𝑖𝑖𝑖𝑖
𝑑𝑑 � �max

𝑘𝑘
𝑫𝑫𝑖𝑖𝑖𝑖
𝑑𝑑 −min

𝑘𝑘
𝑫𝑫𝑖𝑖𝑖𝑖
𝑑𝑑 �� . Finally, let Δ =

{𝑑𝑑1,… , 𝑑𝑑𝑛𝑛} be a set of dissimilarity measures. Then we define the ranked Motion score, 𝑚𝑚𝑅𝑅
Δ, and 

the normalized Motion score, 𝑚𝑚𝑁𝑁
Δ, for a MS frame with a corresponding sequence of US image 

indices 𝒔𝒔 as: 

 
𝑚𝑚𝑅𝑅
Δ = 2

|Δ||𝒔𝒔|2
���𝑹𝑹𝑖𝑖𝑖𝑖

𝑑𝑑
𝒔𝒔|𝒔𝒔|−𝑖𝑖

𝑗𝑗=𝒔𝒔1

|𝒔𝒔|

𝑖𝑖=1𝑑𝑑∈Δ
 , (3.1.3) 

 
𝑚𝑚𝑁𝑁
Δ = 2

|Δ||𝒔𝒔|2
���𝑵𝑵𝑖𝑖𝑖𝑖

𝑑𝑑
𝒔𝒔|𝒔𝒔|−𝑖𝑖
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3.1.4 Frame selection 

Fig. 3.1d shows a motion vector 𝒎𝒎 of length 𝑁𝑁𝑀𝑀𝑀𝑀 obtained by computing the motion of all MS 
frames in a scan. To automatically select the best stationary frames, a peak-finding algorithm 
find_peaks of the SciPy library (v1.8.0) [208] was used to identify local minima of the vector 
𝒎𝒎. The minimal peak distance was set to 1/20 of the scan length (⌊𝑁𝑁𝑀𝑀𝑀𝑀 20⁄ ⌋), which was 
empirically observed to be a robust value over a large variety of scans used during the development 
of our method, and the other parameters were left at their default settings. The detected peaks were 
sorted by ascending values and the first 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 were taken, where the value of 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 was adjusted 
to the number of expected stationary positions depending on the scanning procedure. We found 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 5 to work well in practice; higher values decrease the risk of missing a desired location 
but increase the chance of false positives.  

3.2 Experiments 

3.2.1 Motion score validation 

Our first goal was to validate the ability of Motion score to automatically select stationary frames 
in MS-OPUS scans and to compare its performance to other metrics. 

MS-OPUS setup. We used two datasets acquired with MSOT Acuity Echo® scanners (iThera 
Medical GmbH, Munich, Germany) with a wavelength preset Λ =
{700 nm, 710 nm,… ,970 nm}, 𝑁𝑁Λ = 28. The acquisition frequency was 25 Hz and 6.25 Hz for 
the OA single-wavelength images and the US images, respectively.  
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Dataset 1 (10 scans) was obtained using a probe with 256 transducers (3.4 MHz central frequency) 
arranged in a 4 cm wide 125° arc filled with a gel pad for acoustic coupling. Various types of probe 
motion (linear, rotational, slow and fast, steady and jerking, etc.) are captured in this dataset. The 
first eight scans were conducted on a tissue-mimicking agar phantom with various optical absorbers 
(see below). Another two scans targeted the carotid artery of a healthy volunteer. The duration of 
the scans is between 35 s and 120 s; in total, the dataset contains 11.6 minutes of recorded data. 

Dataset 2 (1 scan) was obtained with an older prototype using a probe with 256 transducers (4 
MHz central frequency) arranged in a 6 cm wide 145° arc filled with heavy water. The scan, 
showing the radial artery from a healthy volunteer, resembles a typical MS-OPUS clinical 
acquisition. We selected this dataset to demonstrate the efficiency of our method on a generic 
acquisition and to showcase the negative effects of motion on the spectral quality in an in vivo 
example. 

Phantom manufacturing. A tissue-mimicking agar phantom (Fig. 3.2) containing various 
acoustic and optical imaging targets was manufactured using the following procedure. Five batches 
of phantom material were mixed according to the quantities listed in Table 3.1 and warmed up to 
90°C while continuously stirring to avoid creation of air bubbles. The heated mixture was poured 
into a box of size 20x30x20 cm and allowed to cool down and solidify for 30 min before adding 
the next layer. Material of varying density was used for different layers to mimic acoustic interfaces 
inside the tissue. Psyllium husks were added to create acoustic inhomogeneities providing texture 
on US images. No other optical scatterers or absorbers were admixed to the phantom material, 
resulting in a semi-opaque appearance. Three types of objects made of denser agar (same as layer 
1, see Table 3.1) were embedded into the phantom body: (1) agar blocks of various shape and size, 
(2) cylinders of denser agar containing indocyanine green (15 μg/ml), (3) blocks of denser agar 
with cylindrical cavities filled with optical absorbers (vegetable oil, oil red O stain). Whereas all 
three types are visible on the ultrasound, only targets (2) and (3) are visible in the OA images. 
Positions of all the insertions were noted during the phantom preparation. 

Stable position annotation. To derive the ground truth annotations, three separate human experts 
selected all stationary frame ranges in the US videos in Dataset 1. Their annotations were summed 
to assign a score 0–3 to each US image; MS frames were assigned the mean score of all their 
corresponding US images, and scores ≥1.5 were considered stationary. For quantitative evaluation, 
the stationary position selection task was framed as an event detection problem. Any uninterrupted 
sequence of stationary MS frames was considered to be a target event and selecting any MS frame 
within such sequence was considered a true positive prediction (TP). On the other hand, selecting 
a frame outside a target event (stationary sequence) was a false positive prediction (FP) and any 
event not covered by any prediction was counted as a false negative (FN).  

Table 3.1: Composition of layers of the tissue-mimicking agar phantom. 

Layer Deionized water (l) Agar (g) Glycerol (ml) Psyllium (g) 

1 1.0 36.0 50 5.8 
2 0.5 7.5 25 5.0 

3 0.5 10.0 25 7.0 

4 0.5 12.0 25 5.0 

5 0.5 10.0 25 5.0 
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Motion quantification. Motion in all scans of Dataset 1 was quantified using five different 
methods for comparison and the same frame-selection procedure was used on the motion vectors 
computed for all five methods (see section 3.1.4). To establish a baseline, the simple method (eq. 
(3.1.1)) was used with cross-correlation (XC), zeroed-normalized cross-correlation (ZNXC), and 
optical flow as dissimilarity measures: 

 𝑋𝑋𝑋𝑋�𝐼𝐼𝑈𝑈𝑈𝑈
(𝑖𝑖) , 𝐼𝐼𝑈𝑈𝑈𝑈

(𝑗𝑗)� = −𝐼𝐼𝑈𝑈𝑈𝑈
(𝑖𝑖) ⋅ 𝐼𝐼𝑈𝑈𝑈𝑈

(𝑗𝑗) , (3.2.1) 
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where 𝐼𝐼𝑈𝑈𝑈𝑈 is a vector of pixels contained in an ultrasound image and 𝜇𝜇(𝑖𝑖), 𝜎𝜎(𝑖𝑖) are the mean and 
the sample standard deviation of the image pixel intensities, respectively. Optical flow was 
computed by applying a pre-trained FlowNet2 [209] (weights obtained from 
www.github.com/NVIDIA/flownet2-pytorch) on pairs of ultrasound images resized to 192x192 
pixels. The resulting vector field was converted to a scalar by taking the mean of L2 norms of the 
displacement vectors at every pixel. 

Furthermore, the normalized Motion score (eq. (3.1.3)) and the ranked Motion score (eq. (3.1.4)) 
were computed using a set of two dissimilarity measures: structural similarity (SSIM) [210] and 
ZNXC. To compute SSIM, implementation of scikit-image (v0.19.2) [211] was used with default 
parameters. Since Motion score requires distances instead of similarity metrics, negative value of 
the SSIM was used. 

Evaluation metrics. To evaluate the accuracy of the five motion quantification methods, precision, 
recall, and mean average precision (mAP) were used. Precision is defined as the ratio of true 
positives in all predicted positions (TP/TP+FP). Recall is defined as the fraction of target events 
that were correctly detected, computed as the ratio of unique true positives (TP1) in all positives 
(TP1/TP1+FN). TP1 is a subset of TP allowing at most one predicted position per target event. For 
computing precision and recall, 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 was set to match the number of stationary positions 

 
Figure 3.2: Tissue mimicking phantom used in Dataset 1, scans 1–8. Dashed lines mark following 
insertions: (1) cavity with sunflower oil, (2) cavity with olive oil, (3) cavity with oil red O, (4) cylinder of 
agar with indocyanine green, (5) stiff agar, (6) rubber tubes filled with water. The photo captures the phantom 
before adding the last agar layer. 
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identified by the human annotators in each scan. Since this number is generally unknown, the area 
under the precision-recall curve for all values of 𝑁𝑁peaks was also computed for each scan (average 
precision), and the mean over all scans was computed to obtain the mAP. 

3.2.2 Spectral quality evaluation 

Our second goal was to demonstrate that the frames selected by the Motion score algorithm indeed 
suffer from fewer motion-related artifacts and thus have better spectral quality. Here, we assume 
that a measured spectrum in a pixel should be a linear combination of the absorption spectra of the 
chromophores present in that pixel. This linear combination can be computed by linear spectral 
unmixing of the form: 

 𝑪𝑪∗ = argmin
𝑪𝑪≥0

‖𝑪𝑪𝑪𝑪− 𝑰𝑰𝑀𝑀𝑀𝑀‖𝐹𝐹 . (3.2.3) 

Here, 𝑰𝑰𝑀𝑀𝑀𝑀 ∈ ℝ𝑝𝑝×|Λ| is a MS frame with spectra of its 𝑝𝑝 pixels arranged in rows, 𝑪𝑪 ∈ ℝ𝑝𝑝×𝑘𝑘 is a 
matrix of unmixing coefficients, and 𝑨𝑨 ∈ ℝ𝑘𝑘×|Λ| is a matrix of 𝑘𝑘 spectral components which are 
either fixed known spectra of pre-defined absorbers or optimized together with 𝑪𝑪 by a data-driven 
BU procedure; 𝑪𝑪 ≥ 0 denotes a non-negativity constraint on the elements of 𝑪𝑪; and ‖⋅‖𝐹𝐹  denotes 
the Frobenius norm. 

Processes violating the linear decomposition assumption cause spectral corruption. Aside from 
spectral coloring resulting from uneven light fluence in the tissue, motion is the main source of 
spectral corruption. Spectral corruption can be quantified as the magnitude of residuals after linear 
spectral unmixing, i.e., the amount of signal that cannot be explained by a linear mixing model. 
The residuals are expected to be low if the measured spectra can be decomposed (unmixed) into a 
linear combination of several spectral components corresponding to the absorbers in the image. 
However, if the spectrum is corrupted by motion, it will contain irregularities that cannot be 
unmixed into the expected components and the unmixing residuals will be high. The unmixing 
residual (error) is computed as the L2,1-norm (sum of L2-norms over the matrix columns) of the 
residuals relative to the norm of the image: 

 

 

Figure 3.3: Stationary position detection evaluation on MS-OPUS scans. Three human annotators 
reviewed US videos of ten MS-OPUS scans (Dataset 1) and identified 25 stationary positions (blue). Motion 
score of those scans was also computed (green) and the most optimal frames were selected (n=𝑁𝑁peaks), such 
that 𝑁𝑁peaks matches the number of true stationary positions. The selected frames are marked by green (true 
positive) and red triangles (false positive). Stationary positions missed by our algorithm (false negatives) are 
marked by yellow upside-down triangles. 
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𝐸𝐸(𝑰𝑰𝑀𝑀𝑀𝑀,𝑪𝑪,𝑨𝑨) =

‖(𝑪𝑪𝑪𝑪− 𝑰𝑰𝑀𝑀𝑀𝑀)𝑇𝑇 ‖2,1
‖𝑰𝑰𝑀𝑀𝑀𝑀𝑇𝑇 ‖2,1

 . (3.2.4) 

In our experiments, two types of spectral unmixing were used. For phantom scans from Dataset 1, 
blind unmixing by NNMF was used with 𝑘𝑘 = 4 to match the number of expected absorbers in the 
images (contrast agent, agar, psyllium husks, and probe membrane). For the clinical scan from 
Dataset 2, standard linear unmixing according to eq. (3.2.3) with spectra of oxy- and 
deoxyhemoglobin, lipids, and water were used. 

3.3 Results 

3.3.1 Motion score accurately identifies stationary frames in MS-OPUS scans 

Motion score has shown nearly perfect agreement with human annotators at finding stationary 
positions in MS-OPUS scans. Three annotators identified in total n=25 stationary positions in the 
ten scans of Dataset 1 (1–4 positions per scan). On average, the annotators needed 8.5 min for 
annotation of 1 min of US video. Motion score (ranked; Δ = {𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆}) values were used 
to select a number of frames in each scan to match the ground truth number. Fig. 3.3 shows that of 
these 25 selected frames, 23 were located within 22 of the true stationary positions (92% precision, 
88% recall). Furthermore, the two false positive frames were in positions that were labeled 
stationary by at least one annotator (red triangles). Similarly, the three false negative locations 
(yellow triangles) were also aligned with Motion score local minima, but their Motion score values 
were higher than in the 25 selected frames. Since the number of stable positions per scan is 
generally unknown, we also evaluated the mAP of stationary position detection, which measures 
the precision-recall over all values of 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, and obtained a high mAP of 91.67%. Table 3.2 shows 
a performance comparison of Motion score to other metrics. Motion score outperformed naïve 
approaches (rows 1–3), where only directly consecutive US images were compared, by a wide 
margin. In particular, unnormalized cross-correlation and optical flow performed poorly. Finally, 
the ranked Motion score achieved a better mAP by 3.3 percentage points more than the normalized 
version. 

3.3.2 Low Motion score correlates with optimal spectral quality 

We observed that stationary MS frames—having low Motion score—did not suffer from motion-
related artifacts. Fig. 3.4 shows the examples of motion-related artifacts in two phantom scans from 
Dataset 1 and the in vivo scan from Dataset 2. The phantom scans depict agar cavities filled with 
absorbers having distinct spectral appearances: oil red O organic dye (Fig. 3.4a) with a spectrum 

Table 3.2: Stationary position detection performance. Performance of five methods for identifying 
stationary positions evaluated on Dataset 1. Abbreviations: ZNXC, zeroed normalized cross-correlation; 
SSIM, structural similarity; mAP, mean average precision. 

Method Precision Recall mAP 

Cross-correlation 4/25 5/25 22.50% 

Zeroed normalized cross-correlation 20/25 19/25 74.17% 
Optical flow (FlowNet2) 17/25 15/26 58.33% 

Motion score normalized (ZNXC + SSIM) 22/25 21/25 88.33% 

Motion score ranked (ZNXC + SSIM) 23/25 22/25 91.67% 
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gradually decreasing with increasing wavelength, and olive oil (Fig. 3.4b) with a narrow absorption 
peak at 930 nm. Motion corrupts the spectra in both cases, regardless of the absorber. The images 
on the left, having a low Motion score, represent stationary frames, whereas the images on the right 
show frames corrupted by motion along the dashed arrows. In both cases, BU detected either 
spectral components with a different shape or different spatial distribution in the image (middle 
row). In Fig. 3.4a, the absorption spectrum in the stationary frame was decomposed into two 
components representing variations in light fluence, colocalized around the cavity edges. In the 
moving frame, three components were identified with disjoint absorption peaks at 700 nm, 760 
nm, and 820 nm, appearing in the image as three crescents horizontally shifted along the motion 
direction. In Fig. 3.4b, two similar spectral components were identified in both images—
component 1 (blue) fitting the true absorption peak of olive oil at 930 nm, and component 2 
(orange) with a peak shifted towards 950 nm. In the stationary frame, only component 1 is present 
in the cavity, whereas the moving frame contains two, partly disjoint discs of the two components. 
In both cases, unmixing results in the presence of motion defy the true phantom composition, 
demonstrating the unsuitability of such frames for spectral analysis. 

Furthermore, we observed that low Motion score indicates good spectral quality. To measure the 
spectral quality, we evaluated the unmixing residuals. The scatter plots in the bottom rows of 
Figs. 3.4a,b show the relationship between Motion score and the unmixing residuals. Although 
there were frames with low unmixing residuals despite high Motion score (Fig. 3.4b, gray circle—
these frames contain motion along the tubular cavity and hence the position of the absorber cross-
section remains stable), there were no frames with low Motion score and high unmixing residual, 
demonstrating that a low Motion score is a good indicator of optimal spectral quality. 

Finally, we verified that Motion score is effective at selecting stationary frames with good spectral 
quality in clinical scans. Fig. 3.4c demonstrates motion-induced spectral artifacts in a clinical scan 
of a radial artery (dashed circle) from a healthy volunteer. The upper row shows unmixing residuals 
(same color scale) for a stationary (left) and moving (right) frame. The bottom row shows 
visualization of the unmixed chromophores (oxy- and deoxyhemoglobin, lipid, and water) over 

 
Figure 3.4: Lower Motion score leads to fewer motion artifacts and better spectral quality. a, Scans of 
a cavity filled with oil red O embedded in an agar phantom without motion (left) and with motion (right). 
Grayscale US images are overlaid by color-coded concentrations of components identified via non-negative 
matrix factorization (NMF). Below, their spectra are shown in the matching colors. Bottom: relationship 
between Motion score and relative NMF unmixing residuals (4 components). b, The same analysis as in (a) 
for a scan of a cavity filled with olive oil. The gray circle in the bottom scatterplot denotes frames in which 
motion was parallel to the tubular cavity and did not cause considerable spectral corruption. c, Scans of a 
radial artery (dashed circles) and concomitant veins without motion (left) and with motion (right). Top row: 
Residuals after linear unmixing (both using the same color scale) show that motion causes spectral artifacts 
around the blood vessel edges that cannot be properly unmixed. Bottom row: visualization of unmixing 
coefficients of Hb (blue), HbO2 (red), water (yellow), and lipid (green). Motion-related spectral artifacts 
appear as additional stripes of water and fat signal around the artery and veins (arrows). Scalebars 5mm. 
Abbreviations: Msc, Motion score; US, ultrasound; Hb, deoxyhemoglobin; HbO2, oxyhemoglobin. 
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grayscale US. Whereas only hemoglobin is detected inside the blood vessels in the stationary frame 
(as expected), unmixing of the motion-corrupted frame contains erroneous signals of lipids and 
water around the blood vessel edges (arrows).  

3.4 Discussion 

In this chapter, we present Motion score—a new algorithm for motion quantification and 
automated stationary frame selection in MS-OPUS scans. We have validated the accuracy of our 
method and demonstrated its superiority to simpler approaches. Furthermore, we have shown that 
frames selected by Motion score have fewer motion-related artifacts, yielding optimal spectral 
quality.  

The selection of stationary frames is crucial, as moving frames suffer from various spectral artifacts 
that hinder molecular analysis. In the radial artery scan affected by motion, we observed increased 
water and lipid signals around the blood vessel edges. This type of unmixing error would have a 
negative effect on the accuracy of clinical MS-OPUS applications such as the evaluation of post-
prandial lipemia [212] or carotid plaques [63]. On the other hand, frames selected using Motion 
score showed consistently good spectral quality that is needed for precise molecular analysis. 

The automatic selection of the stationary frames eliminates the requirement for manual selection, 
which is non-reproducible and time consuming. In our experiment, a human annotator needed eight 
times more time to select good frames than the length of the scan itself. The economical 
improvement that Motion score provides is a clear, quantitative justification for its use in 
standardized MS-OPUS analysis.  

On our motion quantification benchmark, Motion score outperformed all other methods that we 
evaluated. The algorithm tackles both issues of the naïve approach presented in eq. (3.1.1). First, 
Motion score considers the distances between all pairs of US images within one MS frame, which 
enables penalization of undesirable continuous drifting motion. Second, Motion score alleviates 
the bias resulting from the selection of only one particular metric by combining any number of 
dissimilarity measures using the rank-score or min-max normalization. The normalization 
equalizes different value scales and makes the measures comparable. The rank-score normalization 
is less sensitive to outliers than min-max normalization, as an image pair with exceptionally high 
dissimilarity cannot outweigh the relative differences between other pairs since only the order of 
the values is considered. Ranking in Motion score has an additional advantage when comparing 
MS frames with different numbers of corresponding US frames (which happens unless ∃𝑘𝑘 ∈
ℕ: 𝑘𝑘 𝑓𝑓𝑈𝑈𝑈𝑈⁄ = 𝑁𝑁Λ 𝑓𝑓𝑂𝑂𝑂𝑂⁄ ): since the US images acquired further apart tend to have a higher 
dissimilarity, their perceived motion would also tend to be higher—using normalized ranks 
eliminates this bias. These advantages, together with better performance in our experiment, make 
the ranked Motion score the preferable variant. 

Motion score is a simple, yet robust algorithm. Herein, we validated Motion score using scans 
acquired with a 28-wavelength preset, where most MS frames had 9 or 10 corresponding US 
images. Possible performance deterioration could occur in illumination presets with fewer 
wavelengths (and fewer US images per MS frame). This could be remedied by simply combining 
several MS frames together for the purpose of motion quantification, though this might not be so 
crucial since the acquisition of fewer wavelengths is faster and less prone to motion artifacts. Due 
to its generic nature, Motion score can be extended by including additional similarity measures 
aside from ZNXC and SSIM shown herein. On the other hand, adding poorly performing metrics, 
such as the unnormalized cross-correlation or optical flow computed by a general purpose pre-
trained FlowNet2, would reduce the performance and should be avoided. Despite its motion 
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quantification capabilities, Motion score cannot be used as a general MS-OPUS scan quality 
measure since it produces relative values that are not comparable between scans. Furthermore, it 
also cannot be used as live feedback for the MS-OPUS operator since the whole scan must be 
finished before Motion score can be computed. Other motion quantification methods are needed 
for those scenarios to further advance the quality assurance in MS-OPUS.  

Overall, using Motion score for automated stationary frame selection has clear benefits for spectral 
quality achieved by MS-OPUS. Furthermore, it is a step towards standardization of MS-OPUS 
processing, mitigating the inter-operator variability during scanning and image analysis. Our open-
source implementation can be immediately used off-the-shelf in any MS-OPUS analysis pipeline. 
Altogether, this work is paving the way for better utilization of MS-OPUS for clinical applications. 
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4 Image processing 

C H A P T E R  4  

————    ———— 

Image processing 

Image processing controls the quality and the fidelity of OA images, which are essential factors for 
clinical translation of OAT. In this chapter, we present improvements to the image reconstruction 
and post-processing of the reconstructed images. Image reconstruction method utilizing total 
impulse response (TIR) correction and a heterogenous-speed-of-sound model is presented first in 
section 4.1. A post-processing method for averaging several multispectral frames utilizing elastic 
motion correction is then presented in section 4.2. We term the proposed pipeline second-
generation optoacoustic-ultrasound tomography (2G-OPUS). 

We hypothesize that using 2G-OPUS pipeline could lead to the most accurate image quality ever 
achieved in handheld OA imaging. We demonstrate the achieved performance on breast cancer 
scans from our study (Chapter 7). We characterize the size and contrast of the smallest structures 
that can be reliably resolved using 2G-OPUS. Our experimental results are presented in section 4.3. 

4.1  Image reconstruction 

Optoacoustic images are created from the recorded signals in a processing step called image 
reconstruction. Image reconstruction algorithms “reconstruct” the scanned object from the 
recorded signals using a mathematical model of the imaging system. The system model often relies 
on simplifying assumptions—either because they afford computationally simpler solutions, or 
because the exact properties of the system are unknown. However, the use of such simplifying 
assumptions leads to a mismatch between the recorded signals and the signals that would have been 
recorded had the model been exact. Equivalently, a hypothetical object that would have produced 
the recorded signals under the simplified model differs from the true imaged object. Hence, the use 
of a simplified model implies an incorrect solution. Typically, simplified models cause image 
distortions and fictious image features—artifacts.  

A system model accounts for the detector properties such as the spatial arrangement, element shape, 
impulse response, or bandwidth. Furthermore, the speed of sound propagation in the tissue and the 
coupling medium are important parameters. Whereas some of the parameters are specified by the 
device manufacturer, others must be obtained experimentally via system characterization [162]. 

A simple mathematical model, assuming homogeneous speed-of-sound and point-like detectors, is 
used by the universal back-projection algorithm. This widely used method affords a fast solution, 
yet the analytical formula applies only to spherical, cylindrical, or planar detector geometries [172]. 

 
This chapter is partially based on the following publication whose parts appear verbatim without further notice: 
Kukačka, Jan, Stephan Metz, Christoph Dehner, Alexander Muckenhuber, Korbinian Paul-Yuan, Angelos Karlas, Eva 
Maria Fallenberg, Ernst Rummeny, Dominik Jüstel, and Vasilis Ntziachristos. "Image processing improvements afford 
second-generation handheld optoacoustic imaging of breast cancer patients." Photoacoustics 26 (2022): 100343. 
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Time-reversal algorithms support arbitrary detector geometries, speed-of-sound heterogeneity, and 
frequency-dependent sound attenuation [173]. However, they only offer an analytical solution in 
their simple form, which is equivalent to back-projection. On the other hand, model-based 
approaches are computationally more demanding, but in many aspects, they have advantages over 
other schemes. They afford explicit integration of the physical properties of the imaging system 
into the forward model, such as detector geometry, shape [175, 186], and electrical response [181, 
186]. Furthermore, the model can also account for the light [187] and sound [168, 188] attenuation 
in the medium. Overall, model-based reconstruction leads to images with less artifacts and 
considerably better image quality than back-projection [177, 181].  

 
The integration of both the detector electrical impulse response and spatial impulse response is 
called TIR correction. Recently, a synthetic method for TIR derivation has been proposed [176], 
enabling characterization of the imaging system based on sparse experimental measurements of 
point sources. Avoiding the need for measurements on a dense grid vastly simplifies the model 
characterization. Furthermore, it has been shown that this approach allows appropriate modeling 
of the refraction caused by the acoustic impedance mismatch of the coupling medium and the 
tissue, which otherwise has a severe effect on the resulting image quality. We make use of this 
system characterization method and demonstrate its benefits on clinical data. 

4.1.1 Method 

We reconstruct the images by computing the initial pressure 𝒑𝒑0 from the filtered signals 𝒔𝒔 using an 
iterative model-based approach. We use an acoustic model 𝑴𝑴  of the scanner which accounts for 
the different SoS in the tissue and in the probe cavity filling (heavy water), the wave refraction on 
their interface, and for the physical properties of the transducers summarized in the TIR of the 
system [176]. Additionally, we use Tikhonov regularization to address the ill-posedness of the 
inverse problem and to mitigate the limited view artifacts and measurement noise [177, 178]. The 
regularization parameter 𝛼𝛼 is chosen using an L-curve approach [179]. A non-negative LSQR 
algorithm is used to solve the optimization problem [184]: 

 𝒑𝒑0 ≔  argmin
𝐩𝐩≥0

‖𝑴𝑴𝑴𝑴− 𝒔𝒔‖22 + 𝛼𝛼‖𝒑𝒑‖22 .  (4.1.1) 

The reconstructed OA images are of the size 401 x 401 pixels and correspond to a field of view 
(FOV) of 4 cm × 4 cm. Reconstruction of one multispectral image requires 15–30 min on a 
computer with an Intel® Xeon® E5-2630 CPU and 128 GB RAM. The implementation of our 
reconstruction code has been made available in a public code repository.8 

4.2 Motion correction and frame averaging 

Contrast in optoacoustic images decreases sharply with the depth. The main cause is elastic photon 
scattering, resulting in an exponential decay of the illumination fluence with the depth. 
Furthermore, the optoacoustic pressure waves are also attenuated while travelling through the 
tissue, albeit to a much lesser extent. The detection of the pressure waves is performed by an 
electronic system operating at a certain noise level. If the intensity of the incoming signals 
decreases below the noise level, image features can no longer be reconstructed. The reconstruction 
algorithms cannot distinguish between signal and noise and all recorded signals are treated equally. 
As a result, the noise-portion of the recorded signal is reconstructed along with the true signal, 

 
8 https://github.com/juestellab/mb-rec-msot 
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giving rise to imaging artifacts. Signal pre-processing and image post-processing are two parts of 
the processing pipeline to alleviate the detrimental effect of noise on the image contrast. 

The most straightforward way to suppress random noise is averaging of signals from multiple laser 
pulses [213]. Depending on the number of the averaged pulses, this can be time consuming. 
Furthermore, the effectiveness of the averaging is hindered by motion occurring between the pulses 
[213] as well as by temporal jitter of the laser optical build-up [214]. Averaging under such 
conditions results in blurring. 

An alternative to averaging is signal filtering. Simple frequency filtering has limited applicability 
to optoacoustic signals which are naturally broadband since the signal frequency spectrum is 
directly related to the target size distribution [213]. To avoid suppression of true signals, an 
adaptive filter may be applied [215], or other methods based on wavelet transforms or 
decomposition techniques [216]. 

Instead of working directly with acoustic signals, noise reduction may also be performed on 
reconstructed images. Averaging of multiple successive images has been shown to improve the 
signal-to-noise ratio considerably [47, 217]. In pre-clinical setting, motion clustering and frame 
rejection have been used to reduce the detrimental effect of periodic motion on image averaging 
[202, 203]. However, motion patterns in handheld clinical operation are highly irregular and non-
periodic, advocating the need for a more flexible approach. 

4.2.1 Elastic motion correction and frame averaging 

To improve the image contrast and reduce the noise, we propose aggregating several reconstructed, 
co-registered images together. The advantage of this approach over simple averaging of the 
recorded signals is that the image frames are first aligned to compensate for the motion occurring 
between them which avoids motion-induced blurring. 

Figure 4.1 presents a schematic overview of the proposed method. Formally, we denote 𝐼𝐼𝑛𝑛[𝜆𝜆] a 
single-wavelength image in a multispectral frame 𝑛𝑛 (out of 𝑁𝑁) at wavelength 𝜆𝜆 (nm). We assume 
that multispectral frames are acquired at 28 wavelengths between 700 and 970 nm at 10 nm 

 

Figure 4.1: Overview of the motion correction and the frame averaging post-processing. First, images 
at wavelengths 700–890 nm are registered to the image at 800 nm (intra-frame elastic displacements T1) and 
their mean is taken to represent the multispectral frame. Three consecutive multispectral frames are then 
registered to the middle frame (inter-frame elastic displacements T2). Images at wavelengths above 890 nm 
cannot be reliably registered to 800 nm because they are visually very different; T1 of 890 nm is used for 
them instead. All images are then transformed by composite transformations T1∘T2, and a mean multispectral 
frame is computed by averaging corresponding single-wavelength images from the three frames. Figure 
reproduced from Kukačka et al. "Image processing improvements afford second-generation handheld optoacoustic 
imaging of breast cancer patients." Photoacoustics 26 (2022): 100343. 
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intervals with illumination frequency of 25 Hz. At this acquisition rate, images 𝐼𝐼𝑛𝑛[𝜆𝜆] and 𝐼𝐼𝑛𝑛+1[𝜆𝜆] 
are acquired 1.12 s apart. 

First, intra-frame elastic transformations 𝑇𝑇1𝑛𝑛[𝜆𝜆] are estimated by minimizing the following 
objective:  

 𝑓𝑓�𝐼𝐼𝑛𝑛[800],𝑇𝑇1𝑛𝑛(𝐼𝐼𝑛𝑛[𝜆𝜆])�. (4.2.1) 

Here, 𝑓𝑓  denotes some image similarity measure. The images in the wavelength range 𝜆𝜆 ∈
[700,… , 890] are aligned to the image at 800 nm. At these wavelengths, the skin and the blood 
vessels constitute good landmarks to guide the image registration. At wavelengths over 900 nm, 
fatty tissue becomes the main source of contrast, complicating alignment with the rest of the stack. 
Instead of estimating the transformation 𝑇𝑇1 for images at wavelengths over 900 nm, we set 𝑇𝑇1𝑛𝑛[𝜆𝜆] ≜
𝑇𝑇1𝑛𝑛[890] for 𝜆𝜆 ∈ [900, . . ,970]. 

Second, mean images 𝐼𝐼𝑛̅𝑛 are generated to represent the individual multispectral frames: 

 𝐼𝐼𝑛̅𝑛 = 1
20

� 𝑇𝑇1𝑛𝑛[𝜆𝜆](𝐼𝐼𝑛𝑛[𝜆𝜆])
𝜆𝜆∈[700,…,890]

. (4.2.2) 

Next, inter-frame elastic transformations 𝑇𝑇2𝑛𝑛 are estimated by aligning mean images 𝐼𝐼𝑛̅𝑛 to 𝐼𝐼⌈̅𝑁𝑁/2⌉, 
where 𝑁𝑁  is the total number of the averaged images. Final images 𝐼𝐼∗[𝜆𝜆] are created by computing 
the mean of the co-registered images: 

 
𝐼𝐼∗[𝜆𝜆] = 1

𝑁𝑁
� 𝑇𝑇2𝑛𝑛 ∘ 𝑇𝑇1𝑛𝑛[𝜆𝜆](𝐼𝐼𝑛𝑛[𝜆𝜆])
𝑛𝑛≤𝑁𝑁

𝑛𝑛∈ℕ
. (4.2.3) 

In practice, we use 𝑁𝑁 = 3 images. The elastic registration is performed by iteratively optimizing a 
smooth displacement field to maximize ANTs neighborhood cross-correlation (Advanced 
Neuroimaging Tools; [218]) between the pair of images being aligned. To handle larger 
displacements, the algorithm is applied sequentially on ¼, ½, and full-resolution images, using the 
results of each step as initialization for the next. The algorithm implementation from the SimpleITK 
library is used [219]. 

4.2.2 Spectral median adjustment 

Additional contrast enhancement and artifact suppression can be achieved by aggregating images 
obtained at different wavelengths within a narrow band. This is possible thanks to a relatively 
smooth variation of the absorption spectra of the main endogenous chromophores in the 
optoacoustic illumination window (see Fig. 2.5).  

The main issue addressed by this approach is the wavelength-independent electrical noise exhibited 
as strong ring-shaped artifacts in the images. Since these artifacts have high intensities, it is 
beneficial to use the non-linear median function (denoted med) for aggregation instead of the mean, 
as median is not affected by outlier values. 

To generate a spectral-median-adjusted single-wavelength image 𝐼𝐼 [̃𝜆𝜆], we replace the intensity 
values in each pixel by the median of the intensities of the corresponding pixels in images within 
a narrow wavelength range. In other words, we apply a median filter on the spectrum in each pixel. 
In practice, we use a range of 40 nm, corresponding to 5 single-wavelength images in the above-
described setup: 

 𝐼𝐼 [̃𝜆𝜆] = med(𝐼𝐼∗[𝜆𝜆 − 20], 𝐼𝐼∗[𝜆𝜆 − 10], 𝐼𝐼∗[𝜆𝜆], 𝐼𝐼∗[𝜆𝜆+ 10], 𝐼𝐼∗[𝜆𝜆+ 20]). (4.2.4) 
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Figure 4.2: Improvements in image quality in 2G-OPUS images demonstrated on a case of invasive 
lobular carcinoma. a, Grayscale ultrasound image with hypoechoic tumor mass (white arrow). The tumor 
core is delineated by dashed contours in panels c and d. b, Hybrid OPUS visualization providing 
complementary morphologic and functional information about the lesions by overlaying optoacoustic signal 
(red, spectral median 850–890 nm) over grayscale ultrasound. c, Optoacoustic (OA) image (λ = 880 nm) 
reconstructed using a simple, uniform speed-of-sound (SoS) model without total impulse response (TIR) 
correction. d, OA image reconstructed using our proposed pipeline (spectral median 850–890 nm) e, Cut-
out marked in panels c, d by dotted square showing the cumulative effect of using dual SoS, TIR correction, 
frame averaging (AVG), and spectral median correction (MED). f, Contrast-to-noise ratio (CNR) evaluated 
in all scans from our breast cancer study (see Chapter 7). Mean CNR of images reconstructed without 
proposed improvements is –5.09 dB, with TIR –2.47 dB, with TIR and AVG –1.59 dB, and with TIR, AVG, 
and MED –1.46 dB. g, Line profiles (normalized to maximum) of a blood vessel cross-section, marked in 
the panel e, images 2 and 3. Decrease of full width at half maximum from 318 μm (No TIR) to 195 μm (TIR) 
indicates improved resolution. h, Line profiles (normalized to maximum) along the lines marked in the panel 
e, images 4 and 5. Peaks marked by yellow arrows correspond to ring-shaped artifacts caused by electrical 
noise (also marked by yellow arrow in e). Suppression of these peaks on the purple curve shows that the 
spectral median filter removes this type of noise. Figure reproduced from Kukačka et al. "Image processing 
improvements afford second-generation handheld optoacoustic imaging of breast cancer patients." Photoacoustics 26 
(2022): 100343. 
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4.2.3 Contrast-to-noise ratio computation 

To quantify the contrast improvements, we compute contrast-to-noise ratio (CNR) as 

 𝐶𝐶𝐶𝐶𝐶𝐶 = 10 ⋅ log10
𝜇𝜇𝑂𝑂𝑂𝑂𝑂𝑂 − 𝜇𝜇𝐵𝐵𝐵𝐵𝐵𝐵
�𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂 + 𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵

 , (4.2.5) 

where 𝜇𝜇 and 𝜎𝜎 represent mean and variance, respectively. These statistics are computed within the 
object (𝑂𝑂𝑂𝑂𝑂𝑂), defined as the tissue up to 1.5 cm under the skin, and the background (𝐵𝐵𝐵𝐵𝐵𝐵), 
defined as the area above the skin. When computing the statistics over a whole dataset, we evaluate 
the CNR on images at 880 nm (or 850–890 nm when considering the spectral median) 
reconstructed from signals pre-processed with the LCO700 band-pass filter (see section 5.1). 

4.3 Results 

Current handheld optoacoustic systems use simplistic image reconstruction methods [104] that fail 
to faithfully model their physical and electrical properties, leading to suboptimal resolution, spatial 
distortions, and imaging artifacts [162]. Our proposed 2G-OPUS image processing pipeline 
addresses these image quality problems by using a precise forward model with speed-of-sound 
correction, total impulse response correction, and compounding of motion-corrected frames, 
delivering high-resolution images with improved contrast, as showcased in Figs. 4.2 and 4.4. 
Figure 4.2 shows an image from a 75-year-old patient with an invasive lobular carcinoma appearing 
on the US as a hypoechoic mass (Fig. 4.2a; arrow) approximately 1.5 cm under the surface. The 
lesion is marked by a dashed line in all subsequent OA images. Fig. 4.2b shows that the US image 
(grayscale) is greatly enhanced by vascular structures upon superimposing the OA image (in red). 

 

Figure 4.3: Phantom measurement of the attained resolution. a, A 100 μm microsphere was embedded 
into an agar cylinder and placed in water bath ca. 2 cm below the probe membrane (denoted by the dashed 
line). Figure shows the image reconstructed from mean signal of nineteen MSOT frames using our model 
with total impulse response correction and spectral median taken over wavelength range 780–820 nm. A 
detail of the image containing the microsphere is shown in the inset magnification. Blue and orange arrows 
mark the ends of axial and lateral line profiles, respectively, which are plotted in panels b and c. b, Axial 
line profile of the imaged microsphere with 191 μm full width at half-maximum (FWHM). c, Lateral line 
profile of the imaged microsphere with 265 μm FWHM. Figure reproduced from Kukačka et al. "Image 
processing improvements afford second-generation handheld optoacoustic imaging of breast cancer patients." 
Photoacoustics 26 (2022): 100343. 
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The superimposed OA image is the output of the image formation pipeline developed herein and 
described above.  

We see a marked improvement when comparing the image reconstructed using a simple, uniform 
SoS model-based inversion (Fig. 4.2c; equivalent up to a non-negativity constraint to the 
reconstruction used in an earlier work [46]) to the image afforded by applying all the steps of the 
image formation pipeline proposed herein (Fig. 4.2d). The stepwise improvements achieved by the 
individual steps of our pipeline are shown in Fig. 4.2e (the displayed region of interest (ROI) is 
delineated in Fig. 4.2c,d with a dotted rectangle). Each step improves the image—minimizing 
background noise, the appearance of ring artifacts, and several other distortions—resulting in 
significantly higher image fidelity. The simple model-based inversion (and other simplistic 
methods as filtered back-projection) makes use of assumptions on sound propagation and detector 
properties that do not accurately capture the physical parameters of the experimental 
measurements. On the other hand, the use of a dual SoS model improves focusing and eliminates 
spatial distortions, correcting the position of the blood vessel in the middle of the ROI. 
Furthermore, the incorporation of the TIR, signal averaging, and spectral median correction 
reduces ring artifacts and improves the resolution, SNR, and CNR. 

Fig. 4.2f summarizes the CNR improvements afforded by each step across all 22 images from our 
breast cancer study (see section 7.1); an overall mean CNR improvement of 3.6 dB is achieved. 
Marked resolution improvements were observed after TIR correction (Fig. 4.2g), resulting in a 
sharper appearance of blood vessels and other image features. As demonstrated on phantom 
measurements (Fig. 4.3), TIR correction can yield image resolutions approaching the limits of the 
detector hardware, or around 200 μm in the case of Acuity Echo®. That is 1.5x improvement over 
the simple model [176] and more than 2x improvement over the resolution attained by the Imagio® 
scanner [108]. Applying TIR correction also improved CNR by an average of ~2.6 dB. 

Frame averaging (3-frames; see section 4.2.1) resulted in a further mean CNR improvement of 
0.9 dB, using elastic image registration to reduce blurring due to motion by aligning successive 
reconstructed images prior to averaging. Ring-shaped artifacts caused by electrical noise 
(Fig. 4.2e,h; yellow arrows) were suppressed by spectral median processing, whereby every pixel 
was replaced by the median of its spectrum in a narrow wavelength range (see section 4.2.2). 
Spectral median correction exploits the premise that the absorption of endogenous chromophores 
varies smoothly with illumination wavelength, whereas noise appears as peaks at arbitrary 
wavelengths. 

To further demonstrate the superiority of our image processing pipeline, Figure 4.4 provides a 
visual comparison with the image reconstruction approaches utilized in concurrent works—filtered 
back-projection and a uniform SoS model—on the eight cases displayed throughout this paper. For 
examples of image quality achieved by the Imagio® scanner, we refer the reader to relevant 
publications [55, 56, 108, 220]. 
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Figure 4.4: Visual comparison of images reconstructed using filtered back-projection (FBP), simple 
model-based inversion (MB), and our proposed pipeline with an improved model. Yellow arrows in the 
images denote some examples of image quality issues present in the FBP and simple MB reconstructions: 
negative values (N), bad focus (F), and ring-shaped noise artifacts (R). Furthermore, white arrows in our 
proposed images denote examples of fine details that cannot be properly distinguished in the images using 
FBP and simple MB. These include smaller blood vessels and deeper structures. Figure reproduced from 
Kukačka et al. "Image processing improvements afford second-generation handheld optoacoustic imaging of breast 
cancer patients." Photoacoustics 26 (2022): 100343. 
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4.4 Discussion 

In this chapter, we have introduced a pipeline for processing of multispectral optoacoustic images 
called 2G-OPUS, which sets a new mark in the image quality of handheld optoacoustic imaging. 
Application of the proposed pipeline to a dataset of clinical breast cancer scans afforded 3.6 dB 
improvement in CNR and significant reduction in visible artifacts. Moreover, the combination of 
the proposed improvements facilitated the ability to resolve blood vessels with diameters as small 
as 200 μm at depths up to 2 cm (see section 7.1: Case 1—Fig. 7.4 and Case 7—Fig. 7.6). 
Comparable imaging quality has been so far reported only with dedicated bed-based scanners SBH-
PACT [48] and PAM-03 [47], which nevertheless yielded lower resolution (255 μm and 370 μm, 
resp.). Unlike stationary imaging systems, handheld optoacoustic imaging can be seamlessly 
integrated in routine breast ultrasound [221-223], improving the information obtained in the 
imaging session. 

Currently, the 2G-OPUS image processing pipeline requires off-line computation which limits the 
benefits of the achieved image quality improvements during a radiological examination. Providing 
high-quality OA images to the operator in real-time would enable better localization of suspicious 
features and increase the efficacy of handheld OA examinations. Current efforts for acceleration 
of image reconstruction using deep learning show a promise towards achieving this goal [224]. 
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5 Image visualization 

C H A P T E R  5  

————    ———— 

Image visualization 

Optoacoustic tomography is—at present—primarily a qualitative modality. Until further advances 
in quantitative OAT enable precise measurements of chromophore concentrations, evaluation of 
OA images relies on detection and interpretation of visual patterns—features—by an expert 
observer. Detection of OA features depends crucially on an appropriate way of visualizing OA 
images, which is by no means a trivial task. An MSOT scan contains a huge amount of information 
in its spatial, spectral, and temporal dimensions. On top of that, the scan is accompanied by a stream 
of US images. A proper visualization needs to provide the right combination of information 
relevant for a certain clinical task and suppress the irrelevant scan content. 

In the first part of this chapter, we present the dual-band visualization method to properly display 
features on different scales together. Standard visualization methods for OA imaging are biased 
towards larger features. The size of the imaged features is inversely proportional to the frequency 
of OA signals they generate: large objects emit low-frequency waves and small objects emit high-
frequency waves [109], which are more strongly attenuated in the tissue [225]. Furthermore, since 
the pressure change is proportional to the total absorbed energy, which is proportional to the size 
of the absorber, the signal from smaller absorbers is weaker. Overall, the visibility of small 
absorbers in the image tends to be compromised in favor of large structures. The dual-band 
visualization utilizes two different band-pass filters on the OA signals to obtain two different OA 
images highlighting larger and smaller feature scales. The two images are then combined using a 
two-channel colormap, yielding a balanced representation of small- and large-scale features and 
offering a visual separation of tissue features from noise and out-of-plane signals. 

In the second part of this chapter, we present local contrast normalization and other non-linear 
image filtering methods addressing the issue of an extremely skewed pixel intensity distribution in 
OAT images. The distribution of pixel intensities is skewed (Fig. 5.4) due to the light fluence 
decaying exponentially with depth. This long-tailed value range requires re-mapping into a 256-
value range available on a computer screen to facilitate displaying relevant image features. 
Importantly, since the relevant local information on the absorption coefficient is convolved with 
the light fluence (primarily indicative of the depth), similar features may appear on completely 
different points on the intensity scale. Equalization of the visual appearance of similar image 
features is needed, yet intensity normalization methods applied globally, such as the power law 
normalization or histogram equalization, fail to achieve that goal. On the other hand, methods 
normalizing the contrast locally can adaptively enhance the dynamic range of the image and enable 
feature visualization across the whole intensity distribution. Since the optimal parameters of the 
presented filters vary across images, we develop an interactive user interface to aid in tuning the 
image appearance. 

 

This chapter is partially based on the following publication whose parts appear verbatim without further notice: 
Kukačka, Jan, Stephan Metz, Christoph Dehner, Alexander Muckenhuber, Korbinian Paul-Yuan, Angelos Karlas, Eva 
Maria Fallenberg, Ernst Rummeny, Dominik Jüstel, and Vasilis Ntziachristos. "Image processing improvements afford 
second-generation handheld optoacoustic imaging of breast cancer patients." Photoacoustics 26 (2022): 100343. 
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5.1  Dual-band visualization 

Current image visualization methods for OAT do not adequately handle the broadband nature of 
OA signals and the spatial sensitivity of the acoustic detectors. The acoustic signals produced in 
response to pulsed-light illumination are broadband, since optical absorbers in tissue emit 
ultrasound pulses at wavelengths proportional to their size [109]. Small absorbers produce waves 
at higher frequencies which are predominantly attenuated in tissue [225]. Moreover, the magnitude 
of the optoacoustic pulses is proportional to the absorbed energy, which in turn grows with the 
absorber size. Smaller absorbers thus produce signals closer to the noise level and are harder to 
properly visualize along larger objects producing stronger signals. 

Furthermore, the sensitivity field of focused linear detector arrays is frequency dependent, as 
shown in Fig. 5.1a. The relationship between the breadth of the sensitivity field around the imaging 
plane and the ultrasound frequency is inversely proportional: the sensitivity field grows as the 
sound frequency decreases [97]. Lower frequency parts of the OA signal contain thus larger 
contribution from out-of-plane (OOP) absorbers which cause image blurring and may be 
misinterpreted for in-plane features. 

A potential way for removing the bias towards larger structures is applying a high-pass filter. A 
term representing such filter is indeed employed in the commonly used universal back-projection 
algorithm (cf. equation (2.6.4)). Another approach, utilized in optoacoustic mesoscopy and 
microscopy, is separation of the signals into disjoint frequency bands. For each band, a separate 
image is reconstructed, and a final compound image is formed using separate colors for different 
frequency bands [99, 226, 227]. However, removing parts of the frequency content from the signal 
yields data incompatible with the OA physical model. As a result, artifacts are present in images 
reconstructed from single-band data. A principled approach to disentangling the frequency content 
of OAT scans and reconstructing features on different scales in separate images has been recently 
proposed [228]. Resulting images show small features in greater detail than standard model-based 
reconstruction, whereas the reconstruction residual errors are lower compared to reconstructing 
individual frequency bands. 

 

Figure 5.1: Frequency-dependent transducer sensitivity and band-pass filters. a, Schematic 
visualization of the acoustic sensitivity of broadband transducers. Higher frequencies, remaining in the signal 
after applying the LCO700 filter (shown in green), offer better definition of the imaging plane and are less 
affected by OOP signals, but suffer from reduced SNR. Lower frequencies, preserved by the LCO100 filter 
(shown in blue), correspond to a broader sensitivity field, resulting in more OOP signals. b, Schematic 
visualization of the frequency bands allowed through the three filters LCO100, LCO300, and LCO700. 
Whereas the upper cut-off is equal for all (8 MHz), the lower cut-offs are 100 kHz, 300 kHz, and 700 kHz, 
respectively. Abbreviations: LCO, lower cut-off; SNR, signal-to-noise ratio; OOP, out-of-plane. Figure 
reproduced from Kukačka et al. "Image processing improvements afford second-generation handheld optoacoustic 
imaging of breast cancer patients." Photoacoustics 26 (2022): 100343. 
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Suppression of OOP signals has also been attempted in several works. A method based on 
comparing images acquired with varying axial position of the transducer array has shown the ability 
to remove some of the OOP artifacts [229]. Instead of changing the axial position, the elevation of 
the detector can be modified to acquire multiple neighboring slices. An appropriate model-based 
method allows reconstructing those slices together while decomposing the signal contributions to 
the appropriate slices [230]. The elevation can also be altered via free-hand operation and a 3D 
volume can be reconstructed from the individual slices [231]. In such case, the OOP signals support 
the estimation of the unknown motion trajectory. The need for a dedicated hardware 
implementation and the increased scanning time—aggravating the sensitivity to motion—are 
limiting a broader applicability of these methods. 

5.1.1 Method 

There are clearly two contradictory objectives to be satisfied: Better acoustic focus on the imaging 
plane can be achieved by excluding the low frequencies and thus suppressing the OOP signals. 
This also leads to emphasizing smaller image features that would be otherwise obscured by stronger 
signals from bulky tissue. However, the OA signals are broadband by their nature and filtering 
makes the signal incompatible with the physical model. Removing low frequencies thus introduces 
artifacts and results in noisier images. Instead of finding a compromise by finding some “optimal” 
filtering threshold, we propose to reconstruct two different variants of the image and combine them 
to get the best of both worlds. 

To that end, we process the recorded acoustic signals using the Butterworth band-pass filter. The 
higher cut-off value is set to match the transducer sensitivity (8 MHz for the iThera Acuity Echo 
scanner used in this experiment); for the lower cut-off (LCO) value we use three increasing 
thresholds (Fig. 5.1b): 100 kHz (LCO100), 300 kHz (LCO300), and 700 kHz (LCO700). The order of 
the filter is set to 8th order on the low-pass edge and 2nd order on the high-pass edge. 

Using the signals processed with the above defined filters, we reconstruct three variants of the 
images. The LCO100 version contains most of the signal and thus is less noisy but more affected by 
OOP absorbers. The LCO300 version represents a trade-off between less and more aggressive 
filtering. The LCO700 variant emphasizes small structures but inevitably also noise. Moreover, it 
introduces some artifacts stemming from violation of the physical model by discarding valid OA 
signals. 

Finally, we generate the dual-band images by combining the LCO100 and LCO700 image variants 
using a two-channel color mapping. The color mapping is performed by applying the following 
procedure to every pixel. 

Two-channel color mapping 
Let 𝒙𝒙 ≡ (𝑥𝑥1,𝑥𝑥2) be a tuple representing the intensities in one pixel of a two-channel image with 
each channel normalized between 0 and 1: 𝒙𝒙 ∈ [0,1]2. The color mapping procedure converts 𝒙𝒙 to 
a color value represented as a three-dimensional vector in the RGB color space9 using a color 
mapping function 𝑓𝑓cm: [0,1]2 ↦ [0,1]3. The output colors are controlled by a colormap. Let the 
colormap be defined by four anchor colors corresponding to the corners of the unit square. It is 
represented by a matrix 𝑪𝑪 ∈ [0,1]3×4, whose columns are the anchor color vectors corresponding 
to the corners in the order (0,0), (0,1), (1,0), and (1,1). The output of the color mapping function 
is defined as a convex combination of the anchor colors, where the coefficients are given by an 
interpolation function 𝑏𝑏: [0,1]2 ↦ [0,1]4: 

 
9 The method is also applicable to other color spaces than RGB. Other commonly used color spaces are HSV 
(hue–saturation–value), or perceptually more uniform CIELAB, CIELChuv. 
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 𝑓𝑓cm(𝒙𝒙;𝑪𝑪) = 𝑪𝑪𝑏𝑏(𝒙𝒙). (5.1.1) 

The interpolation function 𝑏𝑏 maps the vector 𝒙𝒙 to the coefficients by computing its barycentric 
coordinates relative to triangles △ 𝑡𝑡1 ≔ (0,0), (0,1), (1,1) and △ 𝑡𝑡2 ≔ (0,0), (1,0), (1,1) in the 
following way: 

 
𝑏𝑏(𝒙𝒙) =

⎩�
⎨
�⎧�𝜆𝜆1

(𝑡𝑡1),𝜆𝜆2
(𝑡𝑡1), 0,𝜆𝜆3

(𝑡𝑡1)�
𝑇𝑇

if 𝒙𝒙 in△ 𝑡𝑡1 ,

�𝜆𝜆1
(𝑡𝑡2), 0,𝜆𝜆2

(𝑡𝑡2),𝜆𝜆3
(𝑡𝑡2)�

𝑇𝑇
if 𝒙𝒙 in△ 𝑡𝑡2 ,

  (5.1.2) 

where 𝜆𝜆𝑛𝑛
(𝑡𝑡) represents the 𝑛𝑛-th barycentric coordinate w.r.t. a triangle △ 𝑡𝑡 ≔

(𝑎𝑎1,𝑎𝑎2), (𝑏𝑏1, 𝑏𝑏2), (𝑐𝑐1, 𝑐𝑐2). For points on the diagonal, where both conditions are satisfied, the 
expressions are equal. The barycentric coordinates w.r.t. △ 𝑡𝑡 of a point (𝑥𝑥1,𝑥𝑥2) are obtained by 
solving the following linear system: 

 
�
𝑎𝑎1 𝑏𝑏1 𝑐𝑐1
𝑎𝑎2 𝑏𝑏2 𝑐𝑐2
1 1 1

�
⎝
⎜⎛
𝜆𝜆1
𝜆𝜆2
𝜆𝜆3⎠
⎟⎞ = �

𝑥𝑥1
𝑥𝑥2
1
�. (5.1.3) 

The third row of the above system ensures that ∑ 𝜆𝜆𝑖𝑖
3
𝑖𝑖=1 = 1 and the barycentric coordinates are 

unique. 

The dual-band visualization uses the following colormap matrix, where the columns are colored to 
match the values which they represent in the RGB space: 

 
𝑪𝑪db = �

0 1 0 0.945
0 0 0.613 0.836
0 0 0 0.051

�. (5.1.4) 

Figure 5.2 visualizes the full unit square mapped using the 𝑪𝑪db colormap. 

 

Figure 5.2: Dual-band visualization colormap. LCO100 and LCO700 represents images reconstructed using 
band-pass filters with lower cut-off frequencies set to 100 kHz and 700 kHz, respectively. Values from the 
LCO100 channel are plotted on the x-axis, values from the LCO700 channel are plotted on the y-axis. 
Abbreviations: LCO, lower cut-off. 
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5.1.2 Results 

We present the benefits of using the proposed dual-band visualization on an example scan from 
our breast cancer study (see Chapter 7). Fig. 5.3 shows an image of an invasive lobular carcinoma 
(dashed line) from a 75-year-old patient located approximately 1.5 cm under the skin surface. 
Figs. 5.3a and 5.3b show OA images reconstructed from signals processed with band-pass filters 
LCO100 and LCO700, respectively, differing in their lower cut-off thresholds. From the two images, 
the LCO100 variant exhibits noticeably less background noise and allows the reconstruction of 
larger-scale features. There is a higher contribution from OOP signals such as the larger blood 
vessel marked by the arrow 1. Moreover, the stronger low-frequency signals obscure the fine details 
visible in the LCO700 variant (Fig. 5.3b). The LCO700 variant appears crisper but exhibits more 
streak artifacts (arrow 2). Choosing a single cut-off level is thus a necessary compromise between 
these two aspects—Fig. 5.3c shows an image reconstructed using the LCO300 filter. It contains the 
drawbacks of both previous variants, albeit not as severe. 

Fig. 5.3d shows the dual-band visualization of the same image, formed as a combination of the 
LCO100 and LCO700 variants displayed in Figs. 5.3a and 5.3b, respectively. The dual-band 
representation allows distinction of fine structures (yellow) from artifacts and noise (green), 
because the fine structures are present in both images, but artifacts stemming from the frequency 
filtering are only in LCO700. This is an advantage over using disjoint frequency bands. Larger 
structures appear in red, hinting at possible OOP signals. Overall, the dual-band visualization 

 

Figure 5.3: Effect of signal filtering on visualization of information contained in 2G-OPUS images 
demonstrated on a case of invasive lobular carcinoma. a–c, OA images reconstructed from signals filtered 
with band-pass filters with lower cut-off frequencies set to 100 kHz (LCO100), 700 kHz (LCO700), and 300 
kHz (LCO300), respectively. Arrows highlight differences between LCO100 (a) and LCO700 (b); arrow 1 marks 
an out-of-plane large blood vessel that is suppressed by LCO700, while arrow 2 marks streak artifacts caused 
by limited view that are prominent in the LCO700 variant. d, Dual-band visualization, obtained by combining 
image variants LCO100 (a) and LCO700 (b) into a single image using a colormap shown in Fig. 5.2. All images 
show spectral median of 850–890 nm range. Dashed lines outline the tumor mass. The scalebar (a) represents 
5 mm. Abbreviations: 2G-OPUS, second generation optoacoustic-ultrasound tomography; OA, 
optoacoustic; LCO, lower cut-off. Figure panels reproduced from Kukačka et al. "Image processing 
improvements afford second-generation handheld optoacoustic imaging of breast cancer patients." Photoacoustics 26 
(2022): 100343. 
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provides a better way of displaying OA information within the ultrasound bandwidth recorded by 
2G-OPUS compared to using a single frequency band. 

5.2 Local contrast normalization 

Optoacoustic tomography images have an extremely broad intensity range which cannot be 
faithfully displayed on a computer screen. The MSOT scanner Acuity Echo (iThera Medical, 
Munich, Germany), employed in our research, records the acoustic signals with 12-bit resolution, 
yet the resolution of the human eye in the brightness range of computer screens is less than 10-
bit [232]. The main reason for the broad range of intensity values is apparent from the 
eq.  (2.5.15)—the initial pressure, which is recovered by standard reconstruction algorithms, is a 
product of the absorption coefficient and the light fluence. Whereas the distribution of the 
absorption coefficients is independent from the depth (up to the depth-dependent distribution of 
the biological tissue), the light fluence decays exponentially with the depth. The product of the two 
is also exponentially distributed. The implications are twofold: the image intensity distribution is 
extremely skewed towards small values and has a long tail of very high values. Fig. 5.4 shows the 
breast tumor image from Fig. 5.3a without any contrast adjustments and a distribution of its pixel 
intensities. Since most of the pixel intensities are concentrated at the bottom 10% of the value 
range, where the sensitivity of the human eye is lowest [233], most of the image details are 
imperceptible to an observer. To equalize the visual appearance of similar image features across 
the whole intensity range, a contrast normalization procedure is needed. 

The simplest method for brightness adjustment is linear scaling to a narrower range (Fig. 5.5a). A 
drawback is that the values outside of the range are saturated. Linear scaling can be combined with 
a non-linear function, such as log or power law, to linearize the value range before adjusting the 
endpoints. An example of log-normalization is shown in Fig. 5.5b. Choosing the right parameters 
can be done manually or heuristically using statistics of the intensity distribution, such as certain 
quantiles. Another approach based on the image statistics is histogram equalization (Fig. 5.5c), 
where the distribution of the values is remapped to a uniform distribution [234]. A shared 
disadvantage of the named methods is that they operate on the image globally, i.e., the same 
intensity transformation is applied to all pixels. As such, they cannot avoid the value range 
compression and the consequent loss of details. 

 
Figure 5.4: Distribution of intensity values in an unnormalized OAT image. a, An OAT image of a 
breast tumor before applying intensity normalization procedure (the normalized image is shown in Fig. 5.3a). 
b, A histogram of the intensity distribution of the 160 000 pixels forming the OAT image show in (a). Most 
pixels have intensities below 10, but a long tail of pixels with higher intensities exists (inset). Abbreviations: 
OAT, optoacoustic tomography. 



5.2    Local contrast normalization 
 

57 

Alternative to global contrast adjustments are methods that operate locally, such as adaptive 
histogram equalization [235-237], shown in Fig. 5.5d. These methods apply a different 
transformation to each pixel depending on its neighborhood. Adaptive methods are not bijective 
and the correspondence between the normalized values and the original values is lost. Since the 
new intensity values are detached from the original reconstructed values, images processed with 
adaptive methods cannot be used for any meaningful quantitative analysis. In exchange for 
invertibility, adaptive methods provide dynamic contrast, since the available value range can be 
used to display different sub-ranges of the original range as needed to deliver good contrast in all 
parts of the image. A drawback of adaptive histogram equalization is the potential amplification of 
noise in regions without any other features. Contrast-limited variant of the algorithm (CLAHE) has 
been proposed to limit the noise amplification [237]. It has been applied for contrast enhancement 
in pre-clinical MSOT [238]. 

The above-named methods are standard image processing procedures that disregard the physical 
origin of the contrast imbalance—the varying light fluence. On the other hand, numerous methods 
have been proposed for normalization of the light fluence in OAT. Elimination of the light fluence 
component from the OA images would ensure improved contrast, yet the problem has been 
notoriously difficult to solve. Park et al. have utilized a simple fluence model based on the Beer-
Lambert law‡ with adaptive estimation of the effective attenuation coefficient in 3D OAT [239]. 
They have demonstrated superior results to CLAHE on both simulated and experimental images 
of breast tissue. The accuracy of the method is limited by the assumption of optically homogenous 
tissue. Furthermore, over-amplification of noise in deeper regions of the image is also an issue. 
Another simple adaptive method for compensation of depth-dependent effects of light fluence and 
ultrasound attenuation has been utilized by the Imagio® handheld system [108]: Strong absorbers 
such as blood vessels and solid tumors are first segmented and excluded from the computation of 
the normalization factor. Then, each pixel intensity is divided by the mean of the pixel intensities 
in its row. Unlike the previous simplified physical model, this approach can adapt to non-uniform 
optical properties in the tissue, such as layers of subcutaneous fat over muscle tissue, yet it still 
leads to amplification of noise and may be sensitive to signal variations between image rows. Using 

 
Figure 5.5: Intensity normalization techniques demonstrated on an image of a breast tumor. a, Linear 
scaling with cut-off at 98th percentile. b, Logarithmic scaling. c, Histogram equalization. d, Adaptive 
histogram equalization. Inset axes show the intensity mapping for each technique. 
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a tissue model based on segmentation of a speed-of-sound map obtained from US data and a-priori 
known tissue properties, Pattyn et al. have simulated the light fluence with Monte Carlo (MC) 
approach [240]. Their method has the promise to account for heterogenous composition of real 
tissue, but its performance has only been validated on simple phantoms. Moreover, MC methods 
are notoriously computationally intensive and prohibit real-time usage. Besides estimating the light 
fluence directly, iterative methods have been proposed as well. Cox et al. have developed a model-
based fluence estimation utilizing the diffusion model of light transport [241]. This approach can 
be extended by using the more precise radiative transfer light transport model instead of the 
diffusion approximation [242], or incorporation of tissue segmentation into a regularizer to 
constrain optically homogenous regions [243]. A regularization parameter can also be used to 
control the noise amplification in low-fluence regions. To alleviate the noise amplification issue, 
Bu et al. have incorporated a precomputed fluence estimate directly into an iterative model-based 
image reconstruction procedure [187]. Their fluence map was computed via an MC simulation 
relying on assumed homogenous optical properties. Finally, a body of work has been developed 
exploiting the fact that the light fluence distribution is smooth and thus resides in a low-dimensional 
space which can be modelled using few basis functions. Rosenthal et al. have modelled the fluence 
as a sparse vector in the Fourier basis, avoiding errors from invalid light propagation modelling 
[244]. On the other hand, Tzoumas et al. have used simulations to identify the basis (eigen)spectra 
that suffice to accurately model the fluence in depth [192]. Overall, the existing fluence correction 
methods have shown impressive results considering the difficulty of the problem. However, they 
are still computationally demanding, require system-specific modelling, rely on a-priory assumed 
tissue properties, or suffer from noise amplification in the low-fluence region. 

5.2.1 Method 

Here, we introduce local contrast normalization (LCN)—a method for contrast adjustment in OA 
images for optimal visualization of features to facilitate qualitative analysis. Without the ambition 
to provide quantitative information, our method does not require any prior assumptions on the 

 

Figure 5.6: Variants of local contrast normalization. a, Unnormalized OA image of a breast tumor. b, 
Normalization 𝐼𝐼1 with Gaussian kernel size 𝑠𝑠 = 7. c, Normalization 𝐼𝐼2 with Gaussian kernel size 𝑠𝑠 = 7 and 
cut-off parameter 𝛼𝛼 = 0.22. d, Local contrast normalization (𝑠𝑠 = 7, 𝛼𝛼 = 0.22). Inset axes show the 
histogram of the intensity mapping of the respective techniques. 
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tissue properties nor light propagation modelling. This leaves the proposed method simple, fast, 
and universally applicable. 

As explained above, methods applying the same intensity transformation across the whole image 
are unsuitable for contrast enhancement in OA images and a localized adjustment is needed. The 
local adjustment can be based on the light fluence estimate or the neighborhood intensities. In fact, 
one can interpret the neighborhood-based adjustment used in adaptive methods as a form of local 
fluence estimation. In the proposed LCN, we normalize the intensities by dividing each pixel by a 
weighted average of its neighborhood. The weights are given by a Gaussian of the L2-distances 
from the normalized pixel. This operation can be efficiently computed by dividing the image by 
itself blurred by a Gaussian kernel. 

Formally, we denote the image as a function defined on a set of pixels in the 2D space, 
𝐼𝐼:Ω ⊂ ℝ2 ↦ ℝ. Furthermore, let 𝐺𝐺𝑠𝑠 be a Gaussian kernel with the scale 𝑠𝑠. Then the above-
described normalization scheme produces a new image, 𝐼𝐼1: 

 𝐼𝐼1 = 𝐼𝐼
𝐼𝐼 ∗ 𝐺𝐺𝑠𝑠

 . (5.2.1) 

Fig. 5.6b shows an example of the 𝐼𝐼1 normalization. It is apparent that 𝐼𝐼1 suffers from noise 
amplification in regions of the image where the intensities are low and the denominator is small. 
To avoid that, we clip the minimum value of the denominator at a cut-off value given as a fraction 
of the supremum of the denominator: 

 𝐼𝐼2 = 𝐼𝐼
max(𝐼𝐼 ∗ 𝐺𝐺𝑠𝑠,𝛼𝛼 ⋅ sup(𝐼𝐼 ∗ 𝐺𝐺𝑠𝑠))

 . (5.2.2) 

The value of 𝛼𝛼 acts as a regularization parameter controlling the noise amplification. With 𝛼𝛼 = 0, 
the eq. (5.2.2) reduces to eq. (5.2.1) and the noise amplification is not suppressed. At 𝛼𝛼 = 1, the 
whole image is divided by a constant value and no adaptive normalization is performed. 

Fig. 5.6c shows an example of the 𝐼𝐼2 normalization. One drawback of the 𝐼𝐼2 normalization scheme 
is that high-intensity features, often corresponding to important blood vessels, have a very high 
denominator and may be overly suppressed in the normalized image. This is apparent from the 
mapping distribution shown in the inset of Fig. 5.6c: the highest values in the original image are 
mapped below 75% of the maximum in the normalized image. To avoid that, we average the 
original and the normalized image. This way, the high-intensity features remain unchanged but 
low-intensity features are emphasized. Overall, our proposed LCN is defined as: 

 𝐼𝐼lcn = 1
2
� 𝐼𝐼
sup(𝐼𝐼)

+ 𝐼𝐼
max(𝐼𝐼 ∗ 𝐺𝐺𝑠𝑠,𝛼𝛼 ⋅ sup(𝐼𝐼 ∗ 𝐺𝐺𝑠𝑠))

�. (5.2.3) 

Fig. 5.6d shows the effect of LCN applied to a breast tumor image (cf. other methods in Fig. 5.5). 
A Python implementation of LCN is shown in Listing 5.1. 

Besides LCN, we utilize two additional transformations for visualization of OAT images: sigmoid 
normalization and unsharp masking. 

Sigmoid normalization (SN) is a flexible, non-linear intensity adjustment exploiting the S-shape 
of the logistic sigmoid function, 𝜎𝜎(𝑥𝑥) = 1/(1 + 𝑒𝑒−𝑥𝑥). The flexibility stems from the fact that 
before applying the logistic sigmoid, the input intensities are rescaled to ensure that the input values 
from a range (𝑥𝑥1,𝑥𝑥2) will be mapped to a range (𝑦𝑦1, 𝑦𝑦2). That means that the values from the range 
(−∞,𝑥𝑥1) will be compressed to the range (0, 𝑦𝑦1) and the values from the range (𝑥𝑥2,∞) will be 
compressed to the range (𝑦𝑦2, 1) by extension of the sigmoid. Fig. 5.7 demonstrates on four example 
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values of the control points that the rescaling effectively gives the user control over which part of 
the S-shape will be applied to the data. Formally, SN applies the following function: 

 
𝑓𝑓(𝑥𝑥;𝑥𝑥1,𝑥𝑥2, 𝑦𝑦1, 𝑦𝑦2) = 𝜎𝜎��𝜎𝜎−1(𝑦𝑦2)− 𝜎𝜎−1(𝑦𝑦1)�

(𝑥𝑥 − 𝑥𝑥1)
𝑥𝑥2 − 𝑥𝑥1

+ 𝜎𝜎−1(𝑦𝑦1)�. (5.2.4) 

Here, 𝜎𝜎−1 represents the inverse sigmoid function, defined as 

 𝜎𝜎−1(𝑥𝑥) = ln�𝜀𝜀+ 𝑥𝑥
1− 𝑥𝑥+ 𝜀𝜀

�, (5.2.5) 

where 𝜀𝜀 = 10−3 is added for numerical stability. A Python implementation of SN is shown in 
Listing 5.2. 

Unsharp masking (UM) is a standard method for sharpening the details in the image. It is defined 
as: 

 

Figure 5.7: Sigmoid normalization examples. Depending on the selection of the control points (marked on 
the axes), sigmoid normalization can represent a whole range of non-linear functions. The range between 
points 𝑥𝑥1 and 𝑥𝑥2 is mapped to the part of the sigmoid corresponding to the output range between 𝑦𝑦1 and 𝑦𝑦2 
(highlighted red). Input values outside the (𝑥𝑥1,𝑥𝑥2) range are mapped to the extension of the sigmoid outside 
(𝑦𝑦1, 𝑦𝑦2).  

Listing 5.1: Python implementation of the local contrast normalization. 

1. def local_contrast_norm(img, kernel_size, cutoff_fraction): 
2.     ## Compute input range 
3.     img_min, img_max = img.min(), img.max() 
4.   
5.     norm = gaussian_filter(img, kernel_size) 
6.     cutoff = np.max(norm) * cutoff_fraction 
7.     norm_img = img / np.maximum(norm, cutoff) 
8.     norm_img = np.nan_to_num(norm_img) 
9.   
10.     ## Ensure norm_img has same scale as input to enable averaging 
11.     norm_min, norm_max = norm_img.min(), norm_img.max() 
12.     scale = (img_max-img_min)/(norm_max-norm_min) 
13.     norm_img = img_min + (norm_img-norm_min)*scale 
14.     result = img+norm_img  
15.  
16.  
17.     ## Ensure output has same range as input 
18.     res_min, res_max = result.min(), result.max() 
19.     scale = (img_max-img_min)/(res_max-res_min) 
20.     result = img_min + (result-res_min)*scale 
21.   
22.     return result  
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 𝐼𝐼um = 𝐼𝐼 + 𝛽𝛽(𝐼𝐼 − 𝐺𝐺𝑠𝑠 ∗ 𝐼𝐼). (5.2.6) 
Here, 𝛽𝛽 controls the strength of the sharpening effect and the scale 𝑠𝑠 of the Gaussian kernel controls 
the size of the sharpened features. 

For optimal performance, the values of parameters 𝛼𝛼, 𝑥𝑥1, 𝑥𝑥2, 𝑦𝑦1, 𝑦𝑦2, 𝛽𝛽, and kernel sizes 𝑠𝑠 need to 
be selected manually for each image. In case of multi-channel images, these transformations are 
applied to each channel individually. We have implemented an interactive image viewer for 
selecting the transformation parameters and made it available in a public code repository.10 A 
screenshot of the user interface is shown in Fig. 5.8. 

 
10 www.github.com/jankukacka/image_viewer_mk2 

 

Figure 5.8: Screenshot of the interactive image viewer for manual tuning of contrast enhancement 
parameters. 

Listing 5.2: Python implementation of the sigmoid normalization. 

1. def sigmoid_norm(img, x1, x2, y1, y2): 
2.     img_min, img_max = img.min(), img.max() 
3.     eps = 1e-3 
4.   
5.     new_low = np.log(eps + y1/(1-y1))  # eps to avoid log(0) 
6.     new_high = np.log(y2/(1-y2+eps))   # eps to avoid division by 0 
7.     norm_img = (new_high-new_low) * (img-x1)/(x2-x1+eps) + new_low 
8.     norm_img = 1/(1+np.exp(-norm_img)) 
9.   
10.     norm_min, norm_max = norm_img.min(), norm_img.max() 
11.     scale = (img_max-img_min) / (norm_max-norm_min) 
12.     return img_min + (norm_img-norm_min) * scale  

https://www.github.com/jankukacka/image_viewer_mk2
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5.2.2 Results 

The proposed contrast enhancement methods are effective at visualization of detailed features in 
OAT images. Fig. 5.9 demonstrates on a scan of a breast tumor the incremental image 
improvements afforded by our proposed local contrast normalization, sigmoid normalization, and 
unsharp masking. Cut-outs displayed in Figs. 5.9e–h show a detail of a peritumoral region (tumor 
delineated by white contour) with numerous small blood vessels. Whereas the original image has 
poor contrast preventing observing any details, the application of LCN (𝑠𝑠 = 7, 𝛼𝛼 = 0.22) improves 
the visibility of small blood vessels. At the same time, it does not amplify the noise in the lower 
half of the image where the signal is weak. The application of SN (𝑥𝑥1 = 0.06, 𝑥𝑥2 = 1, 𝑦𝑦1 = 0.145, 
𝑦𝑦2 = 0.995) improves the contrast further by increasing the intensity values in the lower-mid-
range. Thanks to the utilized non-liner S-shape, SN avoids saturation in the high-intensity region 
and preserves dark values in the low-intensity region. The application of UM (𝛽𝛽 = 1.5, 𝑠𝑠 = 0.5) 
leads to additional enhancement of the visibility of small image features, although it also amplifies 
noise patterns. 

Fig. 5.10 shows the histograms of the image before (Fig. 5.9a) and after the contrast enhancement 
(Fig. 5.9d). The intensity distribution after the contrast enhancement is still skewed towards low 
intensities, which is not surprising given the FOV contains both deep tissue without OA signal as 
well as a region above the skin. However, the number of very dark pixels is reduced by a half, 
compared to the original image. Moreover, the mid- and high-intensity region is much more utilized 
in the contrast-enhanced image. From an information-theoretic point, we observe a 39% increase 
in the histogram entropy (from 2.073 nat to 2.884 nat), which can be seen as an increase in the 
information carried by the individual intensity values. 

 

Figure 5.9: Demonstration of proposed contrast enhancement methods on a scan of breast tumor. 
a, Unnormalized image. b, Local contrast normalization (LCN; 𝑠𝑠 = 7, 𝛼𝛼 = 0.22). c, LCN as in (b) with 
sigmoid normalization on top (SN; 𝑥𝑥1 = 0.06, 𝑥𝑥2 = 1, 𝑦𝑦1 = 0.145, 𝑦𝑦2 = 0.995). d, LCN and SN as in (c) 
with unsharp masking (𝛽𝛽 = 1.5, 𝑠𝑠 = 0.5). e–h, enlarged cut-outs of images shown in (a)–(d) (marked by 
dashed squares of the respective color) showing details of small peritumoral vasculature. White dashed 
contours delineate the tumor core. Inset axes in (b)–(d) show the histogram of the intensity mapping of the 
respective contrast enhancement techniques. 
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5.3 Discussion 

Hybrid 2G-OPUS imaging is an information-rich modality and proper visualization is needed to 
support qualitative evaluation of the images. In this chapter, we have presented dual-band 
visualization and contrast enhancement tools that together enable displaying of the smallest 
vascular features on par with large blood vessels and the epidermis layer—the only features visible 
in unprocessed images. This enables qualitative evaluation of the peri-tumoral microvasculature, 
which is an important indicator of many tumor parameters relevant for tumor staging, personalized 
therapy design, and lesion excision planning [29, 245]. 

The dual-band visualization is an effective technique for emphasizing small-scale image details 
and differentiating OOP features. It is a precursor to the frequency-band decomposition concept 
developed later in our group by Longo et al. [228]. The latter method has a better theoretical 
foundation and introduces less artifacts due to its more flexible signal decomposition. In that sense, 
the dual-band visualization has already been surpassed by a follow-up method at the time of writing 
this thesis. Furthermore, the dual-band visualization displays single-wavelength images that are 
suitable for showing a particular structure with a specific absorption peak. The example in Fig. 5.3 
uses 880 nm wavelength to show blood vessels. Wavelengths in the range 700–750 nm could be 
used for deoxy-hemoglobin-specific contrast, whereas 930 nm is the optimal wavelength for 
showing lipid contrast. However, the single-band images of the newer method by Longo are 
suitable for spectral unmixing and could be used for visualization of multiple chromophores in a 
single image. 

The contrast enhancement pipeline, proposed in the second part of this chapter, has proved to be 
effective at suppressing the negative effects of the exponential variation of light fluence with depth. 
Avoiding explicit modelling of the light transport in the tissue, our proposed method is 
computationally very fast and avoids errors stemming from simplifying assumptions. In its data-
driven approach to intensity normalization, our method is similar to the scheme implemented by 
Imagio ® [108], yet we do not give any false promises to provide quantitative images. 

The proposed local contrast normalization produces images visually similar to the adaptive 
histogram equalization (see Figs. 5.5d and 5.6d), yet the inspection of the mapping histograms 
(figure insets) shows that LCN maps the mid-range values to a broader intensity region and 
achieves thus a higher dynamical contrast. At the same time, LCN has an effective control over 
noise exaggeration in deeper regions. Using the presented graphical interface, it is easy to achieve 
a good visualization of individual OA images. 

 

Figure 5.10: Intensity distribution before and after contrast enhancement. The histograms were 
evaluated on breast tumor images shown in Fig. 5.9a (before) and Fig. 5.9d (after). The scale of the y-axis 
changes at 500 to better show the distribution of higher intensities. Abbreviations: a.u., arbitrary unit. 
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Overall, the importance of the methods presented in this chapter lies with the specific clinical 
scenarios which they enable. Chapter 7 is dedicated to clinical studies which we have performed 
within this thesis and a separate discussion of the clinical observations, enabled by our visualization 
methods, is deferred there. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
‡ Despite what its name might suggest, the only relation of Beer-Lambert law to beer the beverage is that the law can 
indeed be used to model the loss of light intensity upon its propagation through liquid media including beer and other 
beverages. The law owns its name to scientists Johann Heinrich Lambert and August Beer (pronounced [beːɐ̯], not [bɪːə]) 
and the reader is cordially invited—encouraged even—to make a toast to honor them upon the first suitable occasion. 
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6 Image segmentation 

C H A P T E R  6  

————      ———— 

Image segmentation 

Semantic image segmentation (SIS) is a fundamental task of advanced image analysis. The goal of 
SIS is separation of the image into coherent regions (segments) and identification of their contents 
(semantics). Alternatively, SIS can be thought of as classification of every single pixel of the image 
according to the object it belongs to. For example, an OAT image might be segmented into blood 
vessels, skin layers, fatty tissue, the probe membrane, and other targets [246]. In that case, the 
segmentation would yield a map of tissue distribution within that image. 

Knowledge of the tissue distribution in the FOV would benefit OA imaging on multiple levels. 
First, the image reconstruction can be improved by incorporating a speed-of-sound distribution 
estimated from the tissue segmentation [247, 248]. Second, quantitative OAT can be facilitated 
through a correction of the light fluence using a segmentation-based tissue model. The tissue model 
can be either used to directly simulate the light propagation [249, 250], or to regularize an 
optimization-based fluence correction scheme [243, 251]. Finally, further quantitative biomarkers 
can be derived from the morphology of the segmented anatomical features, such as parameters of 
the vascular network [252-255].  

Semantic segmentation of OA images has been attempted in various settings. In pre-clinical OAT, 
localization of the animal body in the FOV belongs to the most studied segmentation problems 
[250, 256]. Localization of the mouse body enables derivation of a speed-of-sound model for an 
improved image reconstruction. In pre-clinical optoacoustic microscopy (OAM), automatic 
segmentation of blood vessels has been demonstrated while studying wound healing mechanisms 
[254] and the vasculature of a prostate tumor model [255]. Raumonen and Tarvainen have devised 
a multi-step algorithm for blood vessel segmentation in pre-clinical OAT [257]. In clinical imaging 
of blood vessels, segmentation using deep learning has been demonstrated on healthy volunteer 
data from OAM [258] and OAT images [259]. Finally, the feasibility of multi-label tissue 
segmentation in hybrid MS-OPUS clinical scans of healthy volunteers using deep learning has been 
demonstrated by Schellenberg et al. [246]. Their study is the most advanced effort towards 
obtaining a precise tissue segmentation in clinical OAT so far. 

Despite the above-listed efforts, the problem of tissue segmentation in OAT is far from being 
solved. On one hand, the existing results suggest that—similarly to many other fields [260]—deep 
learning is currently the superior approach towards semantic segmentation in OAT. On the other 
hand, it is well known that the key to unlocking the potential of deep learning lies in the training 
data. While the above studies serve as a proof-of-concept of applicability of the deep learning 
methodology to the OAT domain, they lack in terms of the available training data. Schellenberg et 
al. acquired a dataset of 288 images from 16 healthy volunteers [246], Chlis et al. acquired 164 
images from 6 healthy volunteers [259], while Ly et al. acquired three volumetric scans from a 
 
This chapter is partially based on the following manuscript whose parts appear verbatim without further notice: 
Kukačka, Jan, Anja Zenz, Marcel Kollovieh, Dominik Jüstel, and Vasilis Ntziachristos. "Self-Supervised Learning from 
Unlabeled Fundus Photographs Improves Segmentation of the Retina." arXiv preprint arXiv:2108.02798 (2021). 



6    Image segmentation 

66 

single healthy volunteer [258]. Such datasets are too small to be representative of the tissue 
heterogeneity and larger datasets of annotated clinical OA images are unavailable. 

Collection of annotated datasets of clinical images is a challenging task in general [261]. Besides 
the patient privacy and ethical concerns, manual annotations by medical experts are also 
particularly costly to obtain, especially in the labor-intensive process of manual segmentation. 
Moreover, the manual segmentation is affected by inter-observer variability and the collected labels 
carry unknown uncertainty [262]. 

Apart from the general difficulty of collection of clinical datasets for deep learning, OAT imaging 
faces two specific challenges. First, no clinical standard for interpretation of OAT images exists 
[263]. Whereas established imaging modalities have been studied for decades, OAT is an emerging 
field and precisely understanding the meaning of the obtained images is a focus of active research. 
To that end, several studies have correlated OAT images with histological findings and other 
imaging modalities. Dual-wavelength OPUS images of ex vivo breast cancer specimens were 
examined for correspondences with histology [264] and X-ray images [265] to identify the 
appearance of adipose tissue, larger blood vessels, and microcalcifications. While offering a precise 
spatial co-registration of the images, ex vivo specimens do not realistically portray the appearance 
of the tumor tissue in vivo, primarily due to alteration of the hemoglobin contrast (or lack thereof). 
Images of breast cancer in vivo were correlated with the matching histological sections of the 
excised tumors in two studies demonstrating the relation between the detected OA features and the 
true distribution of blood vessels in the tumors [266, 267]. In pre-clinical setting, the location of 
blood vessels has been validated using golden nanorods as a contrast agent [268]. Besides imaging 
real tissues, the OA contrast may be also studied through realistic tissue phantoms [269]. In all 
cases, the interpretation of OAT images is further complicated by presence of various imaging 
artifacts caused by acoustic reflections [270, 271], detector sparsity and limited angular coverage 
[272]. Characterization and suppression of those artifacts is also important for further progress. 
Overall, the lack of consensus about correct labeling can be visualized on the result of an 
experiment performed by Schellenberg et al., where segmentations of blood vessels from five 
human annotators were compared to a baseline segmentation provided by another human expert. 
The resulting mean Dice coefficient was only 0.66±0.09, indicating a considerable level of 
disagreement [246]. 

The second challenge stems from a significant variability of the produced image appearance and 
quality between various implementations of OAT by various academic and industrial 
manufacturers [104]. Thus, datasets collected from one type of scanner are useless to users of 
another type. The competition among different scanner designs and the incompatibility of the 
collected data obstructs large-scale dataset-sharing collaborations between research groups. 
Moreover, the scanners and image processing pipelines evolve at a fast pace and considerably 
improved designs are presented every few years. This renders previously collected data obsolete 
and hinders the efforts towards collection of large, high-quality datasets [273]. 

For these reasons, researchers often resort to using simulated data [273]. However, a considerable 
domain gap between the simulated and in vivo data exists, and models trained on simulated data 
fail to perform well on experimental datasets. 

In our work, we focus on validation of deep learning methods that can operate under the constraints 
outlined above. We assume that obtaining a relatively large, unstructured database of OAT images 
from one or more scanners is feasible, whereas collecting a large, well-structured, reliably 
annotated dataset is not. Following this assumption, we propose to utilize self-supervised learning, 
where a neural network is trained from unlabeled data to discover patterns and learn a high-level 
representation of the training data. The obtained high-level representation can then be exploited to 
simplify learning of the segmentation task even if annotated data are scarce.  
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Facing the lack of available OAT data, we examine the assumed scenario using fundus photographs 
(retina images) instead. Similarly to OA, fundus photography also uses optical contrast to visualize 
blood vessels, making it a natural experimental substitute. Owing to the availability of numerous 
high-quality research datasets, fundus images have indeed been utilized in OA research 
previously [274, 275]. We make use of a large publicly available dataset of fundus images, 
EyePACS [276], as an unstructured data corpus to learn a general representation from. Then, we 
use various smaller annotated datasets to evaluate the benefits of using that pre-trained 
representation for retinal segmentation tasks. 

Our results show that through self-supervised learning, our network—without being provided any 
labels—learns to recognize distinct anatomical and pathological features of the retina, such as 
blood vessels, optic disc, fovea, and various lesions. Furthermore, when the network is fine-tuned 
on a downstream blood vessel segmentation task, it generalizes well and achieves a state-of-the-
art performance on images from different datasets. Additionally, the pre-training also leads to 
shorter training times and an improved few-shot performance on both blood vessel and lesion 
segmentation tasks. Altogether, our results showcase the benefits of self-supervised pre-training 
which can play a crucial role in real-world clinical applications requiring robust models able to 
adapt to new devices with only a few annotated samples. 

6.1  Methods 

An emerging type of learning neural networks from unlabeled data is self-supervised learning, 
where the network learns to solve an auxiliary pre-text task. Pre-text tasks are designed such that 
targets can be easily generated from unlabeled data, but and solving them requires learning a non-
trivial semantic representation of the data. A network pre-trained on the pre-text task can be further 
fine-tuned in the usual supervised manner on a downstream task. Self-supervised pre-training 
employing an image restoration pre-text task has been demonstrated for radiological images, 
outperforming generic representations transferred from ImageNet classification [277]. In the 
domain of fundus images, several self-supervised pre-training strategies have been shown to 
improve the accuracy of diabetic retinopathy classification, such as generic visual tasks performed 
on unlabeled images [278] or depth prediction from matching optical coherence tomography 
(OCT) images [279]. A multi-modal approach using fluorescein angiography images has led to 
enhanced optic cup and disc segmentation [280]. 

Recently, using the pre-text task of contrastive instance discrimination has become the primary 
method for self-supervised learning of general visual representations from large datasets such as 
the ImageNet [281-283]. In this type of learning, a neural network is trained to map randomly 
transformed variants of input images to a new representation, where samples originating from the 
same image are similar to each other and dissimilar to samples from other images. Despite its 
success in the general vision domain, the applicability of contrastive self-supervised learning to 
retinal imaging has not been demonstrated yet. We hypothesize that when combined with a rich, 
large dataset of retinal photographs such as the EyePACS dataset [276], the method can be used to 
learn a useful domain-specific representation from unlabeled images. Such a representation could 
improve the performance on downstream segmentation tasks. 

6.1.1 Experiments 

To evaluate our hypothesis of the benefits of contrastive self-supervised learning for retinal 
segmentation, we performed three experiments. 
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Representation learning experiment. We trained a convolutional encoder in a self-supervised 
manner on unlabeled images from the EyePACS dataset. Then, we inspected the learned 
representation by correlating the output feature activation maps to ground truth segmentation of 
retinal anatomical and pathological targets in the DRIVE, IDRiD, and HRF datasets to identify 
which targets are recognized by the network. This way, we could characterize the representation 
obtained through contrastive self-supervised learning. 

Image segmentation experiment. To the encoder pre-trained in the representation learning 
experiment, we appended a decoder with skip connections to form a U-Net network for image 
segmentation. We fine-tuned this network on DRIVE, HRF, and CHASE-DB retinal vasculature 
segmentation datasets and IDRiD retinal lesion segmentation dataset. Then, to evaluate the benefits 
of using the pre-trained representation, we compared the performance of the fine-tuned networks 
to baselines trained from a random initialization. We also examined the benefits of pre-training in 
limited data scenarios by repeating this experiment with decreasing numbers of training images 
down to a single one. We compared the two approaches in terms of segmentation quality and the 
number of training epochs needed to reach the optimal performance. To increase the sample size 
for the latter comparison, we pooled together experiments with varying numbers of training images. 

Domain transfer experiment (cross-training). To evaluate if pre-training improves the robustness 
of the model to domain shift, we repeated the cross-training experiment of Galdran et al. [284]. We 
trained a network on the DRIVE dataset and evaluated its performance on five other retinal 
vasculature segmentation datasets. As in the image segmentation experiment, we compared the 
performance of a pre-trained network with a baseline trained from scratch.  

Domain-transfer error analysis. To analyze how much of the performance drop accompanying 
model transfer can be attributed to domain shift and how much is caused by labeling mismatch, we 
tested three modifications: selecting the model checkpoint according to its performance on the 
target dataset, selecting the classification threshold on the target dataset, and a combination of both. 
This way, we compared the optimal performance that could be achieved with a model trained on a 
distinct source dataset and the performance that is achieved in practice due to labeling mismatch.  

6.1.2 Network architecture 

Previous research on retinal segmentation has demonstrated that a simple U-Net [285]  can 
outperform various other, more intricate networks [284]. Based on that, we utilized a variant of U-
Net architecture in our experiments, shown in Fig. 6.1a. U-Net is a type of a network comprising 
of a fully convolutional encoder-decoder pair with additional skip connections. The used encoder 

 

Figure 6.1: Method overview. a, Architecture of the used U-Net variant. b, Scheme of the momentum 
contrast (MoCo) self-supervised pre-training approach. 
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has 4 levels, each composed of two blocks of 3x3 convolution, ReLU activation, and batch 
normalization (BN). Additionally, each level has an additive residual connection with 1x1 
convolution and BN. Encoder levels are separated by 2x2 max-pooling layers. The encoder is 
followed by 3 decoder levels composed of the same blocks as the encoder levels. Before every 
decoder level, a transposed 2x2 convolution with stride 2 is used, whose output is concatenated to 
a skip connection from the encoder level with corresponding resolution. Optionally, the skip 
connections contain a 3x3 convolution, ReLU, and BN. Finally, a 1x1 convolution with sigmoid 
activation serves as the final binary classifier. The first encoder level uses 16 filters; this number 
is doubled after each pooling operation and halved by each transposed convolution. One exception 
is the domain transfer experiment where we use a constrained decoder with 16-8-4 features to 
reduce overfitting. 

6.1.3 Self-supervised pre-training 

Fig. 6.1b outlines the approach called momentum contrast (MoCo) [286] which we used in our 
experiments for self-supervised encoder pre-training. MoCo is a representation learning method 
based on the pre-text task of contrastive instance discrimination: randomly transformed variants of 
training images are encoded by the network to a latent space, where samples originating from the 
same image should be close to each other and far from samples from other images. 

Specifically, images 𝑥𝑥𝑖𝑖 from the training set are transformed by a stochastic transformation 𝑡𝑡 ̃(data 
augmentation) and encoded to a latent space by an encoder 𝑓𝑓𝑒𝑒 with a non-linear projection head 𝑔𝑔 
to obtain a set of keys 𝑘𝑘𝑖𝑖 ∈ 𝐾𝐾. The same procedure is applied to generate a query sample 𝑞𝑞𝑗𝑗 from 
an image 𝑥𝑥𝑗𝑗. Cosine distance is used to compute the similarity of 𝑞𝑞 to keys in 𝐾𝐾 and should be 
small for a positive key 𝑘𝑘+ ≡ 𝑘𝑘𝑖𝑖=𝑗𝑗 and large for other keys 𝑘𝑘𝑖𝑖≠𝑗𝑗. Assuming that vectors 𝑞𝑞 and 𝑘𝑘 are 
ℓ2-normalized, this objective can be expressed via the InfoNCE loss function [287, 288] with a 
temperature hyperparameter 𝜏𝜏 : 

 ℒ(𝑞𝑞,𝐾𝐾) = − log
exp(𝑞𝑞 ⋅ 𝑘𝑘+/𝜏𝜏)

∑ exp(𝑞𝑞 ⋅ 𝑘𝑘/𝜏𝜏)𝑘𝑘∈𝐾𝐾
 . (6.1.1) 

 
Having a large set of negative keys is essential for good learning, but recomputing embeddings and 
gradients of the whole training dataset after each update of the encoder is inefficient. To bypass 
this issue, MoCo uses small batches but maintains the keys in a queue of length 𝑙𝑙𝐾𝐾 . This enables 
efficient contrastive learning since only a small set of query points is passed through the encoder 
in each iteration, but a large set of negative keys is available in the queue. A necessary requirement 
for using such a queue is that the latent representation is not changing too rapidly. To ensure this, 
MoCo employs a separate momentum encoder 𝑓𝑓𝑚𝑚 to embed the keys, whose weights 𝜃𝜃𝑚𝑚 slowly 
follow the query encoder weights 𝜃𝜃𝑒𝑒 via the momentum update 𝜃𝜃𝑚𝑚 ← 𝛼𝛼𝜃𝜃𝑚𝑚 + (1−𝑚𝑚)𝜃𝜃𝑒𝑒, where 
𝑚𝑚 is the momentum parameter. 

Projection head. Using a non-linear projection head on top of the encoder improves the 
representations learned by contrastive self-supervised learning as it avoids enforcing invariance to 
transformations  𝑡𝑡 ̃[283, 286]. We utilized a shared non-linear projection head 𝑔𝑔 on top of both 𝑓𝑓𝑒𝑒 
and 𝑓𝑓𝑚𝑚 consisting of global average pooling and two fully connected layers per 128 units with 
ReLU activation after the first one. 

6.1.4 Datasets 

Table 6.4 contains a summary of datasets used in our work. For pre-training, we used 21 072 images 
from the EyePACS dataset [276]. The dataset was collected with different fundus cameras at 
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multiple centers in the US and is representative of a large variety of medical conditions and imaging 
artifacts. Although the dataset comes with labels for diabetic retinopathy classification, we did not 
use them. 

For blood vessel segmentation, we utilized several datasets: DRIVE [289], HRF [290], CHASE-
DB [291], STARE [292], LES-AV [293], AV-WIDE [294], and DR HAGIS [295]. For image 
segmentation experiments, we followed train/test splits proposed by [284]. For domain transfer 
experiments, we used the training split of the source dataset and tested on all data from the target 
dataset. We repeated experiments with different train/validation splits. 

Furthermore, we utilized the IDRiD dataset for lesion segmentation evaluation [296]. The dataset 
comes with segmentations of hard exudates (EX), soft exudates (SE), hemorrhages (HE), 
microaneurysms (MA), and optic disc (OD). Additionally, the location of the fovea (FO) is 
provided. The train/test splits are provided by the authors. We reserved 20% of the training data 
for validation. 

6.1.5 Training setup 

For pre-training of the encoder, we first resized and cropped the images to a uniform size 
512×512 px. Then, we generated two input samples from each image in the mini-batch by applying 
data augmentation, with one fed to the encoder and the other to the momentum encoder. Samples 
processed by the momentum encoder were stored in a queue of length 4 096 and used to compute 
the loss. In total, we pre-trained the network for 600 epochs. 

For training the whole U-Net on segmentation tasks, we resized the images from HRF and IDRiD 
datasets to a width of 1024 px, images from DRIVE and CHASE-DB datasets were used in their 
original resolution. For IDRiD, we trained networks for each segmentation target separately (one-
vs-all). In total, we trained the networks for 1500 epochs, saved checkpoints every 10 epochs, and 
finally selected the checkpoint with the best Dice score on the validation set. The validation sets 
were created by reserving 20% of the training data (rounded down) before the training. In 
experiments with reduced training set, the validation sets were still selected as 20% of the whole 
training set, not the reduced one. No pre-processing of the images or post-processing of the 
segmentation masks other than resizing was used. 

Table 6.1: Training hyperparameters for self-supervised encoder pre-training.  
Abbreviations: LR, learning rate. 

Dataset EyePACS (first 21 072 images) 

Data processing and 
data augmentation 

Resize + crop (512x512 px) 
Random crop (128x128 px) 
Color jitter (probability=80%, brightness 0.4, contrast 0.4, 
saturation 0.4, hue 0.1) 
Grayscale (p=20%), Horizontal flip (p=50%), Vertical flip (p=50%) 

Batch size 64 

Optimization Adam, LR cosine schedule [10−2, 10−8] with restarts after 50 epochs 
Weight decay 10-4 

Training length 600 epochs 

Queue length (𝑙𝑙𝐾𝐾) 4096 

InfoNCE temperature (𝜏𝜏) 0.07 

Momentum (𝑚𝑚) 0.999 
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Table 6.1 summarizes the hyperparameters used during self-supervised pre-training (representation 
learning experiment). The temperature hyperparameter 𝜏𝜏  and the momentum 𝑚𝑚 were set according 
to previous reports [282, 297]. Table 6.2 summarizes hyperparameters used for training of image 
segmentation networks (image segmentation experiment). Table 6.3 summarizes parameters used 
for cross-training (domain-transfer experiment). Weight initialization followed the scheme 
proposed by He et al. [298] in all experiments. 

Table 6.2: Training hyperparameters for segmentation network fine-tuning and training from 
random initialization. Abbreviations: LR, learning rate. 

Dataset DRIVE HRF CHASE-DB IDRiD 

Data processing  Resize 
(682x1024 px)  Resize 

(680x1024 px) 

Data 
augmentation 

Random rotation [−45°,45°] or scaling [0.95, 1.2] or 
horizontal translation [−5%, 5%] 

Color jitter (brightness 0.25, contrast 0.25, saturation 0.25, hue 0.1) 
Horizontal flip (p=50%), Vertical flip (p=50%) 

Batch size 4 

Optimization Adam, LR cosine schedule [10−2, 10−8], 50 epoch restarts Adam, LR=10-3 

Weight decay 0 

Training length 1500 epochs 

Convolutional 
skip connections No Yes 

 

Table 6.3: Training and testing hyperparameters for cross-training experiments. 
Abbreviations: LR, learning rate. 

 Training 

Dataset DRIVE 

Data processing Resize (512x529 px) 

Data 
augmentation 

Rand. rotation [−45°,45°] or scaling [0.95, 1.2] or horiz. transl. [−5%, 5%] 
Color jitter (brightness 0.25, contrast 0.25, saturation 0.25, hue 0.1) 
Horizontal flip (p=50%), Vertical flip (p=50%) 

Batch size 4 

Optimization Adam, LR cosine schedule [10−2, 10−8], 50 epoch restarts 

Weight decay 10-4 
Training length 1500 epochs 

Convolutional 
skip connections No 

Decoder layers 16-8-4 

 Testing 

Dataset HRF DRHAGIS AV-WIDE LES-AV CHASEDB STARE 

Data processing Resize 
682x1024px 

Resize 
682x1024px 

Resize 
w=1024px 

Resize 
w=512px 

Resize 
w=512 px 

Resize 
w=512px 

Augmentation Horizontal and vertical flipping 
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6.1.6 Evaluation protocol 

To ensure good reproducibility of our results, we adopted the evaluation protocol described by 
Galdran et al. [284]. In short, we followed the same train/test splits (Table 6.4). We selected the 
final classifier threshold which maximizes the Dice coefficient on the training set predictions. 
Then, we evaluated the final performance on all pixels of all testing images (except masked areas 
outside of the field-of-view) at their original resolution together (contrary to computing mean 
performance over individual images). Furthermore, we also utilized test-time augmentation by 
averaging the predicted segmentations for all four possible horizontal and vertical flip 
combinations. 

For blood vessel segmentation tasks, we evaluated the predictions using the Dice coefficient (F1 
score). For lesion segmentation, we computed the area under precision-recall curve (AUPRC) to 
match the evaluation used in the IDRiD challenge. 

6.1.7 Statistical analysis 

We performed statistical testing of the following hypotheses: in the image segmentation 
experiment, we tested whether 1) self-supervised pre-training leads to a higher Dice coefficient 
than the baseline, 2) pre-trained models converge in a lower number of epochs than the baseline, 
and in the domain transfer experiment, we tested the hypothesis that 3) self-supervised pre-training 
leads to a higher Dice coefficient on a transfer dataset than the baseline.  

We repeated the experiments several times (n=4 for image segmentation, n=12 for domain transfer) 
and paired the results from matching training/validation splits. To test the hypotheses, we computed 
one-sided 95% t-confidence intervals (CI) on the differences and declared the difference significant 
if zero was outside the CI. This test assumes normality of the distribution of differences, which 
was validated by the Shapiro-Wilk test. 

The analysis was performed using SciPy (v. 1.6.3) [208] and MS Excel (v. 2104). 

Table 6.4: Overview of datasets utilized in our experiments. For DRIVE, HRF, and CHASE-DB, we 
used the same test splits as proposed by [284]. For IDRiD, we used the official test splits. 

Abbreviations: SE, soft exudates. 

Dataset Train / Val / Test W × H Labels 

EyePACS [276] 21 072 400–5184 × 
289–3456 

None 

DRIVE [289] 16 / 4 / 20 565 × 584 Blood vessels 
HRF [290] 12 / 3 / 30 3504 × 2336 Blood vessels 

CHASE-DB [291] 6 / 2 / 20 999 × 960 Blood vessels 

STARE [292] 20 605 × 700 Blood vessels 

LES-AV [293]  22 1144 × 1620 
1958 × 2196 

Blood vessels 

AV-WIDE [294] 30 2816 × 1880 
1500 × 900 

Blood vessels 

DR HAGIS [295] 39 2816 × 1880 
4752 × 3168 

Blood vessels 

IDRiD 
IDRiD (SE) [296] 

43 / 11 / 27 
21 / 5 / 27 

4288 × 2848 Retinal lesions, optic disc, fovea 
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6.2 Results 

6.2.1 Representation learning experiment 

Our first experiment revealed that despite using no labels, the representation obtained by self-
supervised learning contains features that are specialized in recognizing various retinal structures. 
Specifically, we evaluated the spatial correlation of seven anatomical and pathological structures 
with the activation maps in the last layer of an encoder trained on unlabeled images from the 
EyePACS dataset. Fig. 6.2a shows that many of the 128 units developed a strong correlation with 
blood vessels, but some specialized in detecting other structures. Fig. 6.2b shows a detailed 
correlation of five selected units that respond strongly to blood vessels, optic disc, fovea, hard 
exudates, and soft exudates. Fig. 6.2c displays the spatial agreement of the activations of these five 
units with the respective targets. Good preservation of spatial information is an essential feature of 
the self-supervised representation for precise downstream segmentation. Additionally, the features 
are detected in images of a different population from a separate dataset (USA vs India), 
demonstrating the robustness of the representation to domain shifts. 

6.2.2 Image segmentation experiment 

Our second experiment confirmed that using the self-supervised representation as an initialization 
of the encoder of a U-Net benefits the downstream segmentation tasks and leads to higher 
segmentation accuracy, especially in the few-shot regime, and faster convergence. 

 
Figure 6.2: Visualization of the features learned by the self-supervised training. a) Diagram of Pearson 
correlation coefficients between the 128 learned features and localization of seven anatomical and 
pathological targets: blood vessels, optic disc, fovea, hard exudates, soft exudates, hemorrhages, and 
microaneurysms. b) Upper row: Enlarged diagrams for five features marked in panel a. Lower row: Diagram 
legend. c) Three representative images from the IDRiD dataset (left), corresponding activations maps of 
features 1–5 (middle two columns), and ground truth segmentations of optic disc, fovea, hard exudates, and 
soft exudates (right). Visual comparison of columns 3 and 4 shows a good spatial match between activations 
of these selected units with true segmentation. 
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First, we compared the performance of a pre-trained U-Net to a randomly initialized baseline on 
the IDRiD retinal lesion segmentation dataset and observed an improvement in three out of four 
lesion types. Table 6.5 shows that the pre-trained model achieved on average a higher AUPRC for 
hard exudates (EX; 1.09 percentage points, one-sided 95% CI [0.05, +∞]), soft exudates (SE; 2.55 
pp), and hemorrhages (HE; 1.64 pp, [0.29, +∞]), but not for microaneurysms (MA; −2.27 pp 
[−5.24, +∞]). Furthermore, the table lists reported results of the best performing methods from the 
IDRiD Grand challenge [296]. For EX and SE, the pre-trained model outperformed the challenge 
winners, whereas for HE and MA its mean performance was within 1 standard deviation of the best 
method. To provide a qualitative illustration of predictions by the pre-trained model, Fig. 6.3a 
shows a representative example of the segmentation. 

Fig. 6.4 shows that the pre-trained model outperformed the baseline even more when we reduced 
the number of training images. The improvements were statistically significant for hard exudates 

Table 6.5: Performance (AUPRC, %) of the best methods for retinal lesion segmentation from the 
IDRiD Grand challenge leaderboard (sub-challenge 1). Top two rows show test set performance of our 
U-Net trained with random initialization (baseline) and with self-supervised pre-training. Bold highlights 
highest performance in each column. Our experiments are reported as mean ± standard deviation of four runs 
with different training/validation splits. For performance of other methods, we report scores from the 
challenge leaderboard evaluated on the same test set as our results [296]. Abbreviations: EX, hard exudates; 
SE, soft exudates; HE, hemorrhages; MA, microaneurysms. 

Method EX SE HE MA 

Random initialization 88.33 ± 1.46 67.43 ± 1.82 64.73 ± 1.12 50.70 ± 1.37 

Self-supervised pre-training 89.42 ± 0.60 69.98 ± 5.46 66.37 ± 1.72 48.42 ± 1.87 

PATech 88.50 - 64.90 47.40 

VRT 71.27 69.95 68.04 49.51 

iFLYTEK 87.41 65.88 55.88 50.17 

LzyUNCC-I 76.15 66.07 - - 

LzyUNCC-II 82.02 62.59 - - 

SAIHST 85.82 - - - 

SOONER 73.90 53.69 53.95 40.03 
 

Table 6.6: Performance (Dice coefficient, %) of retinal vasculature segmentation on DRIVE, CHASE-
DB, and HRF. Our results are reported as mean ± std. deviation of four runs with different 
training/validation splits. For other methods we list results reported by their authors. We followed exactly 
the same evaluation procedure, including testing split, described in [284]. Methods using different 
training/testing split or different score computation procedure are marked by an asterisk (*). 

Method DRIVE CHASE-DB HRF 
Random initialization 82.66 ± 0.20 80.97 ± 0.44 81.48 ± 0.22 
Self-supervised pre-training 82.87 ± 0.13 80.72 ± 0.71  81.38 ± 0.35 
Little W-Net [284] 82.82 81.55 81.04 
M-GAN [299] 83.17 ± 0.02 81.10 79.72* 
HAnet [300] 82.93 81.91* 80.74 
M2U-Net [301] 80.30 ± 1.42* 80.22 ± 1.93* 78.00 ± 5.74* 
VGN [302] 82.63* 80.34* 81.51* 
DEU-Net [303] 82.70 80.37*  
DUNet [304] 82.37 78.83*  
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(21 images: 7.69 pp [2.74, +∞], 10 images: 5.02 pp [3.97, +∞], 5 images: 9.31 pp [3.77, +∞], 2 
images: 12.25 pp [2.83, +∞]) and hemorrhages (10 images: 16.56 pp [0.91, +∞]). However, for 
microaneurysms, the pre-trained model performed better only in the case of 2 training images. 

Second, we compared the performance of a pre-trained U-Net to a randomly initialized baseline on 
the three retinal vessel segmentation datasets, but in this case, we did not observe any significant 
differences. Table 6.6 shows that the Dice score on DRIVE improved slightly (0.21 pp, two-sided 
95% CI [−0.21, 0.63]) and decreased a little on CHASE-DB (−0.25 pp [−1.13, 0.64]) and HRF 
(−0.11 pp, [−0.40, 0.19]). As the confidence intervals show, neither of the differences is statistically 
significant. Additionally, the table lists the performance reported by several state-of-the-art 
methods (asterisks mark deviations from our evaluation protocol; see section 6.1.6) [299-304]. Our 
results confirm that a simple U-Net achieves comparable results to more complicated, specialized 
architectures.  

To provide representative segmentation examples, Fig. 6.3b and c show the worst and the best 
images from the HRF dataset respectively, with detailed segmentations of arteries (1), veins (2), 

 
Figure 6.3: Examples of lesion and blood vessel segmentation quality achieved by the pre-trained 
models. a) Image #59 from IDRiD test set, ground truth segmentations, and segmentation predictions. 
Microaneurysms are displayed on an enlarged cut-out due to their small size (enlarged region marked in the 
left image). b) Diabetic retinopathy patient #6 of HRF dataset (worst case, Dice 72.84%). c) Healthy patient 
#12 of HRF dataset (best case, Dice 88.30%). Cut-outs showing arteries (1), veins (2), and microvessels (3) 
with corresponding ground truth and predicted segmentation. Locations of the cut-outs are delineated in the 
images on the left in panels b and c. Abbreviations: GT, ground truth; Pred, prediction. 
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and microvessels (3). Fig. 6.3b shows a diabetic retinopathy case where the model achieved a 
72.84% Dice score. Here, the model correctly segmented the veins but failed to detect arteries with 
strong central reflex lending them a whitish appearance and atypical retinopathic 
neovascularization in a dark region of the image. Fig. 6.3c shows a healthy case where the model 
provided a correct segmentation for veins, microvessels, and arteries even in the presence of central 
reflex, and achieved a Dice of 88.30%. 

In the few-shot regime, the pre-trained model outperformed the baseline on the DRIVE and HRF 
datasets but not on CHASE-DB. Fig. 6.4 shows that the gap between the models grows as we 
reduce the number of available training images. For DRIVE, we observed significant improvement 

 
Figure 6.4: Performance comparison of pre-trained and randomly initialized U-Net on IDRiD lesion 
segmentation dataset (upper row) and retinal vasculature segmentation datasets DRIVE, HRF, and CHASE-
DB (bottom row) for decreasing amount of training data. Plots in the bottom row have a shared y-axis. The 
experiments were repeated four times with different training/validation splits (individual runs are plotted as 
thin lines, thick lines represent the means). Abbreviations: EX, hard exudates; SE, soft exudates; HE, 
hemorrhages; MA, microaneurysms. 

Table 6.7: Mean training length improvement of pre-trained network over a randomly initialized U-
Net (epoch count). The number of experiment runs considered is listed under n. Abbreviations: CI, 
confidence interval. 

Lesions n Difference 95% CI 

Hard exudates 20 232 64, +∞ 

Soft exudates 16 205 -139, +∞ 

Microaneurysms 20 292 75, +∞ 

Hemorrhages 20 283 133, +∞ 

Blood vessels    

DRIVE 24 173 99, +∞ 

HRF 28 180 50, +∞ 

CHASE-DB 16 289 154, +∞ 
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over baseline in case of one training image (2.98 pp, one-sided 95% CI [0.11, +∞]) and two training 
images (0.42 pp [0.01, +∞]). For HRF, the improvement was significant in case of one training 
image (4.12 pp [0.90, +∞]) and eight training images (0.28 pp [−0.03, +∞]). The segmentation 
task for the CHASE-DB dataset appears easier than in DRIVE and HRF and reducing the number 
of training images down to a single one does not alter the performance of either model. 

Besides improved segmentation performance, the pre-trained models were also converging faster. 
Fig. 6.5 shows the distribution of differences in the number of training epochs needed by the 
baseline and the pre-trained model to reach the best validation error across the lesion and blood 
vessel segmentation tasks. Table 6.7 summarizes the exact differences and shows that, except for 
soft exudates and microaneurysms, the improvements are statistically significant. 

6.2.3 Domain transfer experiment (cross-training) 

Our final experiment demonstrated that pre-trained models are also more robust to domain shift 
and thus better suited for domain transfer. Table 6.8 shows a performance comparison of models 
trained on DRIVE dataset and tested on other retinal vasculature segmentation datasets. In four of 
the six cases (STARE, LES-AV, DR HAGIS, AV-WIDE), the pre-trained model outperformed the 
baseline. The improvement was statistically significant for DR HAGIS (0.62 pp, [0, +∞]) and AV-
WIDE (1.89 pp, [0.14, +∞]). Furthermore, the table shows that in three cases (HRF, DR HAGIS, 
and AV-WIDE), our approach also outperformed Little W-Net [284], a state-of-the-art approach 
in retinal segmentation domain transfer using pseudo-label re-training on the target dataset. 

6.2.4 Domain-transfer error analysis 

We observed that although the self-supervised pre-training improves the model transfer, training 
even on a single image from the target dataset can yield superior performance to transferring a 
model from another, larger dataset (cf. Fig. 6.4). This performance gap is partially caused by 

Table 6.8: Cross-training evaluation. Dice coefficients (%). Mean ± standard deviation of 12 runs is 
reported. For Little W-Net, results reported by its authors are shown. 

Method CHASE-DB HRF STARE LES-AV DR HAGIS AV-WIDE 

Random init. 75.91 ± 0.61 75.93 ± 0.41 78.47 ± 0.62 77.12 ± 1.12 70.91 ± 1.16 67.43 ± 3.70 

SSL pre-training 75.79 ± 0.52 75.84 ± 0.51 78.77 ± 0.65 77.31 ± 0.79 71.54 ± 1.09 69.32 ± 1.51 

Little W-Net [284] 76.49 71.12 79.76 77.93 68.67 62.46 
 

 

Figure 6.5: Training length improvement of pre-trained network over a randomly initialized U-Net. 
Abbreviations: EX, hard exudates; SE, soft exudates; HE, hemorrhages; MA, microaneurysms. 
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domain shift, in which case the network is unable to recognize patterns in images from a different 
dataset, and can be potentially remedied by learning a more robust representation. Additionally, 
the performance is reduced due to labeling mismatch, in which case the network can recognize 
patterns, but it was trained to label them differently (e.g., small vessels). This mismatch is expected 
in fundus photographs, since the presence of retinal blood vessels cannot be exactly represented as 
a binary mask and there is a considerable inter-observer variability regarding how small vessels 
and vessel edges are handled [305]. The relevance of labeling-related performance drop for medical 
segmentation applications has been questioned in the past [306]. 

We estimate that about 2.5 pp are caused by labeling mismatch and expect that the remaining ~4 
pp could be reduced by further improvements to representation learning. To characterize the 
contribution of labeling mismatch to the performance gap, we used the target dataset for selection 
of the optimal checkpoint and classification threshold instead of the source dataset. These changes 
reduce the error due to labeling error but do not alter the training data and thus do not affect the 
domain shift problem. Table 6.9 lists the performance improvements achieved by these 
modifications. 

6.3 Discussion 

The discussion of this chapter is split into two parts. First, we discuss the results of our experiments 
from the perspective of retinal imaging. Later, we discuss the implications of this work on the 
segmentation of optoacoustic images. 

6.3.1 Retinal segmentation 

In this work, we have demonstrated for the first time the feasibility of learning robust 
representations of fundus images capable of recognizing important anatomical and pathological 
features in a completely label-free manner. Furthermore, we have identified benefits of using this 
representation for downstream image segmentation tasks, notably, an improved performance in 
few-label scenarios, shorter training times, and improved robustness to domain shifts. Our results 
suggest contrastive self-supervised learning as an effective way to exploit unlabeled fundus images 
and advance automated retinal diagnostics. 

Various methods to obtain useful representations of fundus images have been considered in the 
past. Unsupervised methods relying on handcrafted features have long been used to segment retinal 
vasculature [289, 290, 292]. It was recently shown that weakly supervised convolutional neural 
networks implicitly learn to detect retinopathic lesions [307, 308]. Our work is the first 
demonstration that a conv-net can learn to recognize retinal vasculature and lesions in a fully data-
driven manner without any labels. By learning directly from the data, the resulting representation 

Table 6.9: Influence of checkpoint selection and binarization threshold of models trained on DRIVE 
and tested on HRF. Means of n=4 runs are reported. 

Training set Checkpoint Threshold Dice (%) 

DRIVE 

DRIVE DRIVE 75.06 

DRIVE HRF 75.57 
HRF DRIVE 77.11 

HRF HRF 77.47 

HRF HRF HRF 81.38 
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is more robust than handcrafted approaches. Moreover, requiring no labels, the self-supervised 
approach can be easily applied to unannotated datasets, which are cheaper to obtain. 

Our work provides insight into the features learned during self-supervised pre-training. Currently, 
self-supervised pre-training is mostly used in other domains as a black-box method, and there is 
very little insight into the properties and quality of the learned representation. It is well recognized 
that the representation depends on numerous hyperparameters, such as stochastic transformations 
used for generating training samples and the encoder architecture, but their immediate effect on 
downstream tasks is not clear [281, 309, 310]. Only few studies have inspected the qualitative 
properties of the self-supervised representations, such as exploring nearest neighbors in the 
embedding space [310, 311], visualizing saliency maps [310], reconstructing inputs from the 
embeddings [312], or studying the intrinsic dimensionality of the embedded dataset [311]. 
Complementing these approaches, our feature correlation analysis (Fig. 6.26.2) allows to easily 
assess the impact of changing the hyperparameters on the features that the network recognizes 
without lengthy fine-tuning on a downstream task. 

Furthermore, we have identified specific benefits of using the self-supervised representation for 
downstream segmentation tasks. First, it achieved better segmentation performance in a few-shot 
learning regime than a baseline trained from scratch. In vessel segmentation tasks, this 
improvement diminished when we sufficiently increased the number of labeled images (Fig. 6.4). 
For more difficult, lesion segmentation tasks (EX, SE, HE), we did not observe such saturation 
even when the full training dataset was used (Fig. 6.4). The same saturation pattern was also  
recently reported on simulated data [313]. An interesting exception was performance on the 
CHASE-DB dataset, where the performance with full training dataset was comparable to 
performance of using a single training image for both baseline and pre-trained models. This task 
requires segmenting only large vessels and appears to be straightforward. Another exception was 
segmentation of microaneurysms where the pre-trained model performed consistently worse than 
the baseline. We assume this is because the pre-trained model does not contain any features that 
correlate very well with MA (Fig. 6.2) and cannot adapt to new targets from its initial 
configuration. Using different data augmentation enhancing their contrast could improve this 
situation. 

The second observed benefit was faster convergence of pre-trained models. This is not surprising 
since the pre-trained model has already learned necessary low-level feature detectors and similar 
results were reported in other studies [278, 314]. In practice, faster convergence can lead to large 
computation savings for hyperparameter tuning on the downstream task and serves as amortization 
of the pre-training computation costs. 

The third benefit was improved robustness to domain shifts—probably the most unique and 
important advantage of using self-supervised pre-training (Table 6.8). Self-supervised pre-training 
outperforms the pseudo-label method of Little W-Net in three out of six cases [284] but is generally 
worse than training on a combination of multiple datasets [301]. As these three approaches are 
independent, we expect that using them in combination could lead to superior results. We also 
remark that in cases of HRF, DR HAGIS, and AV-WIDE, we resized the target images to a width 
of 1024 px instead of 512 px used by the Little W-Net authors, which granted quite large 
improvements (observable in our baseline performance, Table 6.8). We conclude that attention 
must be paid to proper resolution matching between source and target images, considering the field-
of-view of the cameras and aspect-ratio of the image files, since a resolution mismatch can easily 
hinder improvements granted by advanced machine learning techniques. 

The advantages of self-supervised pretraining are essential for utilization in fast-evolving, low-
cost, smartphone-based fundus cameras [315-317], which exhibit large variability in imaging 
conditions and require methods that can easily adapt to new devices without large, annotated 
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datasets. Additionally, unlike large-scale self-supervised visual models, our approach can be easily 
used with consumer-level GPUs (pre-training for 600 epochs took 7 hrs on a single NVidia RTX 
3090). 

Whereas our experiments show promising results, open questions remain. It has been shown that 
large self-supervised networks can learn strong representations from huge datasets with billions of 
images and outperform their fully supervised counterparts [283]. Conversely, the representation 
learned by our small network did not improve beyond 21k images (only 1/4 of the available data). 
Using a larger encoder might enable learning even better representations. On the other hand, huge 
networks often perform poorly on small downstream datasets typical for the medical domain, and 
careful layer freezing [314] or knowledge distillation [283, 318] might be necessary to prevent 
overfitting. 

Overall, this work demonstrates how contrastive self-supervised learning can be applied to 
segmentation of fundus photographs. We identified specific benefits, such as better few-shot 
performance, faster convergence times, and improved domain transfer. These benefits are relevant 
for deploying automated models into screening programs based on fundus photography, which is 
essential to reduce the workload on individual ophthalmologists and increase the capacity of 
current healthcare systems. 

6.3.2 Optoacoustic tomography segmentation 

Although we did not perform experiments on OAT data, conclusions related to OAT segmentation 
can still be drawn from the presented work. 

First, we observed that the contrastive learning led to emergence of features responding to various 
anatomical features and abnormalities encountered in the unlabeled training data. We hypothesize 
that similar features could also be learned from OAT images in a label-free manner. Potential 
targets are blood vessels, subcutaneous fat, skin, but also frequently appearing artifacts such as 
streaks related to limited view. 

The image segmentation experiment has shown that a high accuracy of blood vessels segmentation 
in fundus photographs could be achieved even with a modest number of annotated images, and the 
pre-trained network did not improve this accuracy further. Since the detection of large blood 
vessels, adipose tissue, and skin is also relatively easy in OAT images, we expect that a pre-trained 
representation would have only a small benefit for segmentation of those targets. Indeed, Chlis et 
al. have achieved a very high Dice coefficient of 90% at segmentation of large blood vessels in 
MSOT scans [259]. On the other hand, the improvements on the harder, lesion-detection task were 
significant. Accordingly, a pre-trained model for OAT could also provide larger benefits for targets 
that are harder to detect, such as disease-related pathologies. 

Besides benefits to automated segmentation, a pre-trained representation sensitive to image 
artifacts could be exploited for image quality improvement. For example, penalization of activation 
of artifact-related features could serve as a regularizer in a model-based image reconstruction 
procedure. Alternatively, the activations could be used to mask-out artifact-related features as a 
post-processing step or highlight the features as uncertain during a clinical evaluation. 

To examine which features emerged from the contrastive learning, we proposed a feature 
interpretation method based on correlations between the feature map activations and the manual 
segmentations. The method can be used to evaluate if the representation contains the desired 
features (e.g., limited-view artifacts) and adjust the pre-text task as needed. Specifically, the 
combination of data augmentation transformations used to generate queries and keys play a crucial 
role in the representation obtained by a contrastive instance discrimination [281]. The amount of 
manually segmented data needed to compute the feature activation correlations is small compared 
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to the amount of data needed for training a neural network and should not present a practical 
limitation on the usability of the method. 

The EyePACS dataset contains images collected from multiple centers and multiple cameras. Our 
(unreported) examination of the embeddings revealed clusters corresponding to trivial image 
differences based on the FOV and the size of the black margins. It is a remaining open question if 
pooling the data from multiple devices improves the learned representation or hinders the learning 
due to trivial distinction between images from various sources. In the latter case, increased 
robustness of the representation could not be achieved by pooling data from multiple scanner types. 
It is more likely that a benefit could be observed when pooling data from a single scanner 
reconstructed with different variants of the reconstruction algorithms or different reconstruction 
parameters. 

A possible direction to utilize pooled datasets is through simulation of appearance of images from 
a certain scanner with image style transfer approaches [319, 320]. Specifically, the style transfer 
could be used as an image transformation in the pre-text augmentation to force the network to focus 
on image features instead of image appearance. Furthermore, as different scanners capture images 
at different wavelengths, image style transfer methods could be used, to a certain extent, to simulate 
the appearance of an image at a wavelength that was not obtained. Image style transfer approach 
has been successfully used for virtual staining of histology specimens from autofluorescence 
images [321] and UV-OAM [322, 323]. In OAT, style transfer has been utilized to reduce the 
domain gap between real and simulated data [324]. However, the feasibility of a simulation of the 
appearance of images from a different scanner has not been studied yet. 

Overall, this work supports our initial hypothesis that unlabeled OAT data could be utilized by 
contrastive learning to produce a neural representation with multiple benefits for downstream 
image segmentation. 
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7 Clinical applications 

C H A P T E R  7  

————     ———— 

Clinical applications 

The technical improvements to the image processing and visualization presented in this thesis—
collectively termed second-generation optoacoustic-ultrasound, or 2G-OPUS—empower OAT 
with new capabilities to visualize tissue features. In this chapter, we present the results of two 
clinical studies utilizing 2G-OPUS for in vivo imaging. In the first study, we characterized features 
observed in breast tumors, including tumor rim enhancement and hypoxia, centripetally arranged 
blood vessels resolved to a level of detail unprecedented in handheld OAT, as well as cysts and 
periductal inflammation. The second study explored the possibility of non-invasive detection of 
metastases in cervical lymph nodes with the aid of tumor-specific optical contrast agent. Unable to 
detect the tracer, we assess the limitations of our approach and recommend solutions to be adopted 
in future studies. We also characterize the differences in observed hemoglobin distribution in 
healthy and metastatic lymph nodes. Overall, the results of these two studies highlight the power 
of multimodal handheld OPUS imaging in clinical applications. 

 

7.1 Breast cancer 

The seriousness of breast cancer and the role of OA imaging in its clinical management have been 
already outlined at the very beginning of this thesis. Despite the long-standing promise of OAT to 
aid diagnosing breast cancer and monitoring its treatment, existing handheld solutions have been 
delivering images of insufficient quality. The 2G-OPUS processing pipeline pushes the boundaries 
of image features that can be resolved and may facilitate new clinical applications. We conducted 
a clinical study involving 22 patients to examine the breast cancer features that can be detected 
with the 2G-OPUS technique.  We present a detailed analysis of eight representative cases to 
characterize the observed patterns. We showcase both anatomical and spectral features from 
selected regions of the images. The findings presented herein highlight the most advanced state of 
handheld breast cancer OA imaging performance. 

 
This chapter is partially based on the following publications, whose parts appear verbatim without further notice: 

Kukačka, Jan, Stephan Metz, Christoph Dehner, Alexander Muckenhuber, Korbinian Paul-Yuan, Angelos Karlas, Eva 
Maria Fallenberg, Ernst Rummeny, Dominik Jüstel, and Vasilis Ntziachristos. "Image processing improvements afford 
second-generation handheld optoacoustic imaging of breast cancer patients." Photoacoustics 26 (2022): 100343.  

Vonk, Jasper, Jan Kukačka, Pieter J. Steinkamp, Jaron G. de Wit, Floris J. Voskuil, Wouter T.R. Hooghiemstra, Max 
Bader, Dominik Jüstel, Vasilis Ntziachristos, Gooitzen M. van Dam and Max J. H. Witjes. “Multispectral optoacoustic 
tomography for in vivo detection of lymph node metastases in oral cancer patients using an EGFR-targeted contrast 
agent and intrinsic tissue contrast: A proof-of-concept study.” Photoacoustics 26 (2022): 100362. 
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7.1.1 Related work 

Imaging of breast cancer has been attempted from the early days of OAT. In 1999, Oraevsky et al. 
demonstrated the feasibility of imaging endogenous optical contrast deep in breast tissue on 
phantoms and an ex vivo mastectomy specimen with a system called LOIS [31]. In 2001, the same 
group demonstrated a handheld LOIS system for imaging breast tissue in vivo [141, 220]. However, 
these early OAT prototypes employed detectors with an overall low number of ultrasound elements 
(12 and 32, resp.) and produced images using a simple back-projection inversion technique [325]. 
Correspondingly, the initial image quality left a large space for improvements. 

Since then, the quality of in vivo breast cancer imaging has been steadily increasing through various 
implementations of OAT. In 2005, the Twente photoacoustic mammoscope (PAM; Fig. 7.1) has 
been presented [45]. Although utilizing the same 1064 nm illumination wavelength as the LOIS 
systems, PAM was pioneering an application-specific design of bed-based OAT scanners. Bed-
based systems are integrated into a modified hospital bed where the patient lies prone with the 
scanned breast pendant through an aperture opening. The breast is immobilized which suppresses 
motion artifacts and enables 3D scanning and the use of large apertures, leading to image quality 
improvements and minimized intra-operator variability [104]. PAM utilizes a planar detector array 
with 588 elements. Results of the initial PAM clinical study on ten patients showed, similar to the 
first LOIS in vivo study, increased OA signal in breast lesions [50].  

 

Figure 7.1: Schematic drawings of photoacoustic breast imaging instruments with linear, curvilinear 
and planar detection apertures. With selection of details of their lasers and ultrasound detectors. 
Abbreviations: BW, bandwidth; CMUT, capacitive micromachined ultrasonic transducer; MDP, minimum 
detectable pressure; NC, nanocomposite; PAM, photoacoustic mammoscope; PVDF, polyvinylidene 
fluoride; TUM, Technical University of Munich; UKM, University Hospital Münster; US, ultrasound. Figure 
reproduced from Manohar, Srirang, and Maura Dantuma. "Current and future trends in photoacoustic 
breast imaging." Photoacoustics 16 (2019): 100134. 
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Later—in 2014—the bed-based design with a planar detector array was utilized also by the Kyoto 
University–Canon consortium and their PAM-01 [326, 327] and PAM-02 [59] scanner designs (Fig. 
7.1). Those systems were equipped with a tunable Q-switched Nd:YAG lasers, allowing 
illumination at multiple wavelengths (756 nm and 797 nm). From the two wavelengths, a semi-
quantitative estimate of oxygen saturation (sO2) called S-factor could be computed. A clinical study 
using PAM-01 on 42 patients has shown a micro-vessel-related signals at the tumor site in 74.4% 
cases [58]. Furthermore, reduced sO2 levels relative to subcutaneous vasculature and contralateral 
breast was observed in the imaged tumors. With an improved resolution of ~1 mm, PAM-02 images 
could resolve an important pattern of individual blood vessels centripetally arranged around the 
imaged tumor. A later design by the same group, PAM-03 [47], was based on a scanner design with 
a hemispherical arrangement of detectors forming a cup around the imaged breast, developed by 
Optosonics Inc. (USA) in 2013 [57]. PAM-03 (Fig. 7.2) employs a similar wavelength selection to 
its predecessors but yields a superior resolution of 0.37 mm axially and 0.57 mm laterally. A 
clinical study of PAM-03 published in 2017 included 25 breast cancer patients and revealed the 
typical centripetal vessel arrangement around the tumor in 61% of invasive disease, compared to 
only 35% cases of ductal carcinoma in situ (DCIS) lesions. Moreover, additional blood vessel 
signals were observed in one tumor imaged post a chemotherapy compared to a pre-treatment 
image, suggesting the ability of PAM-03 to observe the therapy-related increase in tumor blood 
flow before any apparent changes to the tumor size. 

Yet another design utilized in bed-based devices is a circular or semi-circular detector arrangement. 
The first scanner of this type, LOIS-64, was introduced in 2009 by the Oraevsky group [328]. A 
semi-circular array of 64 transducers resides in a plane perpendicular to the chest wall (Fig. 7.2). 

 
Figure 7.2: Schematic drawings of photoacoustic breast imaging instruments with curved, ring and 
hemispherical detection apertures. With selection of details of their lasers and ultrasound detectors. 
Abbreviations: BW, bandwidth; PETG, polyethylene terephthalate; PVDF, polyvinylidene fluoride; SBH, 
single breath-hold. Figure reproduced from Manohar, Srirang, and Maura Dantuma. "Current and future 
trends in photoacoustic breast imaging." Photoacoustics 16 (2019): 100134. 
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Using a 757 nm Q-switched Alexandrite laser for illumination, LOIS-64 has shown the tumor as a 
bulk of OA contrast in 18 out of 20 malignant cases imaged in the initial clinical study. The authors 
have demonstrated that OAT can detect tumors also in dense breasts which are inaccessible to 
XRM. In 2012, a scanner with a circular detector array parallel to the chest wall was demonstrated 
by a group from University of Florida [329, 330] (Fig. 7.2). Using three wavelengths (733, 775, 
and 808 nm), the authors unmixed the oxy- and deoxyhemoglobin concentrations to obtain 
functional OAT images. Clinical study on ten participants has shown that the functional OAT 
images revealed patterns consistent with MRI imaging. In 2018, another scanner with a circular 
detector construction has been presented by a Caltech group, called single-breath-hold 
photoacoustic tomography of the breast (SBH-PACT) [48]. Featuring 512 detectors (2.25 MHz 
central frequency) with an elevational scanning capability (Fig. 7.2), the scanner records 3D images 
of the breast in high 255 μm in-plane resolution within ~15 seconds. The produced images are 
obtained with a single wavelength illumination (1064 nm) and show in great detail the vascular 
networks inside the breast. An initial clinical study on one healthy volunteer and seven breast 
cancer patients has revealed increased vessel density at the tumor sites in eight of the nine 
malignant lesions, indicative of present angiogenesis. This observation was, again, unaffected by 
the breast density, supporting the complementary role of OAT to XRM. 

Despite the range of designs presented to date, bed-based scanners remain limited by the cost and 
difficulty of interfacing a complex 3D scanning geometry to the human breast. Moreover, their 
integration into the existing breast examination workflow may be challenging since dedicated 
scanners require separate examinations. Therefore, despite the attention given to bed-based 
scanners, handheld systems can offer ubiquitous OA examination, especially since they can be 
seamlessly integrated with handheld ultrasonography, which is routinely employed in clinical 
breast examinations, adjunct to x-ray mammography [221-223]. US and OA utilize different 
contrast mechanisms, and thus capture complementary morphologic and functional features of a 
tumor and the surrounding tissue that could enhance the performance of the examination, while 
fitting seamlessly into today’s clinical workflow.  

Handheld OPUS imaging has been demonstrated by two prominent systems. The Imagio® scanner 
(Seno Medical Instruments Inc.; Texas, USA) uses a linear transducer array with 128 piezo 
elements and a pair of lasers delivering light at two wavelengths (755 nm and 1064 nm), providing 
co-registered OA and US images (Fig. 7.1). Imagio® achieves axial and lateral resolutions of 
420 μm and 730 μm, respectively, relying on the filtered back-projection reconstruction 
algorithm [108]. This scanner was employed in two large, multi-center studies, for adjustment of 
grading of suspicious breast lesions via predefined semi-quantitative OA features [55, 56] and 
identification of cancer subtypes [331]. Based on those studies, Imagio® recently became the first 
OAT scanner with an FDA approval for use in breast cancer patients [95]. 

The Acuity Echo® multi-spectral optoacoustic-ultrasound scanner (iThera Medical GmbH; 
Germany), employed in the following study, features a curvilinear transducer array with 256 piezo 
elements and a 145° angular coverage (Fig. 7.1; TUM system). The curvilinear design affords 
superior imaging quality compared to linear arrays [66]. Moreover, using a fast-tunable laser, the 
Acuity scanner enables the collection of 28 images at different wavelengths within 1.1 seconds, 
offering high spectral definition in the 680−980 nm wavelength range while minimizing motion 
artifacts. Images reconstructed by filtered back-projection are delivered to the operator in real time, 
but simple model-based reconstructions computed off-line have also been used to achieve better 
image quality with axial and lateral resolution of 320 μm and 510 μm, respectively [176]. Variants 
of the Acuity scanner have been successfully utilized in clinical studies of melanoma metastatic 
status [74], Crohn’s disease [70], brown fat metabolism [69, 332], normal vasculature [333] and 
vascular malformations [64], thyroid disease [82], systemic sclerosis [334], and Duchenne 
muscular dystrophy [335]. In two pilot breast cancer studies, multi-spectral optoacoustic 
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tomography (MSOT) revealed increased vascularization in the periphery of tumors and a 
concomitant reduction in the tumor core, as well as heterogeneous total blood volume and irregular 
deoxy-hemoglobin (Hb) and oxy-hemoglobin (HbO2) signal patterns in the tumor area [46, 49]. 

For a more in-depth overview of the field of the OAT breast cancer imaging, the reader is 
encouraged to refer to existing review articles: [104, 263]. 

7.1.2 Methods 

OPUS setup. In vivo measurements were acquired with an Acuity Echo® (iThera Medical GmbH, 
Munich, Germany) hybrid handheld multispectral optoacoustic and ultrasound scanner (Fig. 7.3). 
Tissue illumination was performed in short light pulses (duration ~8 ns) that were produced by a 
tunable laser and delivered to the probe via an optical fiber bundle. A diffuser was used to produce 
a rectangular illumination spot on the skin (ca. 0.5×3 cm). The peak pulse energy was ≈16 mJ, 
which is within the permissible energy exposure limits set by the American National Standards 
Institute [113]. Fluctuations in the laser power were compensated by an inbuilt amplitude 
correction mechanism. Ultrasound signals, produced upon absorption of light energy in the tissue 
through the optoacoustic effect, were received by 256 piezoelectric elements (4 MHz central 
frequency) arranged to a curved linear array with 145° coverage and 6 cm distance between the 
endpoints. The cavity inside the arc was filled with heavy water (D2O) to ensure acoustic coupling 
while minimizing absorption of near-infra-red light. We recorded images at 28 separate 
wavelengths between 700 and 970 nm at 10 nm intervals using a single pulse-per-image acquisition 
with framerate of 25 Hz; acquisition of a full multispectral OA frame consisting of 28 single-
wavelength images took 1.1 s. Pulse-echo ultrasound images were acquired synchronously with 
the OA images during the pauses between individual laser pulses. The synthetic transmit aperture 
method with spatial compounding of sub-apertures was used [336]. The US images were acquired 
at the repetition rate of 6.25 Hz. 

Both the US and the OA images were displayed in real-time on the screen of the scanner. These 
images were reconstructed using a delay-and-sum algorithm, which can run in real-time but 

 
Figure 7.3: Visualization of the Acuity Echo scanner and the handheld probe during the data 
acquisition. US transducers are arranged in a 145° arc. The arc cavity is filled with heavy water. Laser light 
is delivered through an optical fiber bundle and a diffuser. Ultrasound (US) and optoacoustic (OA) images 
are displayed on the scanner screen in real time. Figure reproduced from Kukačka et al. "Image processing 
improvements afford second-generation handheld optoacoustic imaging of breast cancer patients." 
Photoacoustics 26 (2022): 100343. 
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produces images of inferior quality compared to off-line model-based reconstructions. To enable 
high-quality off-line reconstructions, the raw optoacoustic signals were stored. 

Image processing. High-quality OA images were obtained via the 2G-OPUS pipeline, consisting 
of band-pass filtering, model-based reconstruction, frame averaging, and dual-band visualization 
with local contrast normalization and sigmoid normalization. Hybrid OPUS images were obtained 
in a similar fashion to dual-band visualizations, using OA (LCO100) and US images as two channels 
mapped to RGB color space using the following colormap: 

 
𝑪𝑪OPUS = �

0 1 1 1
0 0 1 0
0 0 1 0

�. (7.1.1) 

 

Study protocol. The aim of this clinical study was characterization of the features extracted by 
hybrid 2G-OPUS imaging from breast tumor tissue using the 2G data processing pipeline. We 

Table 7.1: Overview of the analyzed masses (n=22) by their type and cancer grade distribution. 

Lesion type Grade: G1/G2/G3/Gx Total 

Benign  6 

Fibroadenoma  4 

Fibrosis  2 

Malignant  16 

No special type (NST) 2 / 7 / 2 / 1 12 

Lobular 1 / 1 / 0 / 0 2 

Ductal-lobular 0 / 1 / 0 / 0 1 

Inflammatory 0 / 1 / 0 / 0 1 
 

Table 7.2: Overview of the cases described in detail herein (Figures 7.4–7.6). Size denotes the diameter 
of the hypoechoic tumor core in the selected image, depth refers to the distance between the tumor center of 
mass and the skin surface. Estrogen receptor and progesterone receptor statuses are reported in percent, 
except Case 3 which was rated by a different histopathologist and is reported as immunoreactive score. All 
patients were female. Abbreviations: ER, Estrogen receptor; PR, Progesterone receptor; HER2, Human 
epidermal growth factor 2; ILC, invasive lobular carcinoma. 

      Immunohistochemistry 

Case Age Lesion type Size (cm) Depth (cm) Grade ER PR HER2 

Case 1 75 ILC 1.5 1.3 G1 100 100 Neg. 

Case 2 61 No special type 3.1 2.2 Gx 70 10 Neg. 

Case 3 51 No special type 3.2 1.6 G2 9/12 6/12 Pos. 

Case 4 76 No special type 0.8 0.8 G3 3 0 Pos. 

Case 5 27 Fibroadenoma 1.7 0.8 N/A N/A N/A N/A 

Case 6 50 No special type 1.1 2.3 G2 10 0 Neg. 

Case 7 49 No special type 0.8 0.8 G2 100 100 Neg. 

Case 8 62 Inflammatory 1.1 2.1 G2 10 0 Neg. 
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employed scans from 22 female patients (age range 21–79) with breast tumors that were clearly 
visible in the US and the OA images and were accompanied with complete information for each 
scan. The scans were performed by a senior radiologist experienced in breast ultrasonography who 
received additional training for 2G-OPUS imaging. The study was approved by the local ethics 
committee of the Technical University of Munich (Nr. 27/18 S) and all participants gave written 
informed consent upon recruitment. The types of scanned tumors are summarized in Table 7.1. 

Patients were scanned in the supine position in a quiet room with normal temperature (≈23°C). 
Standard ultrasound gel was used to ensure acoustic coupling between the probe and the tissue. 
Selection of the optimal field-of-view was performed manually by the operator as in a routine 
ultrasound examination, relying on the simultaneous co-registered ultrasound imaging provided by 
the hybrid 2G-OPUS setup for anatomical navigation. Each tumor was scanned for several seconds 
to record multiple frames. Nevertheless, the patients were not required to hold their breath during 
the examination period. The total examination length did not exceed 15 minutes, including patient 
preparation. 

Irrespective of the study participation, all patients underwent surgical removal of the tumor as part 
of the planned treatment. Histology images shown herein were obtained from the excised, paraffin-
embedded tissue and stained with hematoxylin-eosin for standard histopathological analysis. 
Evaluation of the images for our study was performed retrospectively by a senior pathologist. 

7.1.3 Results 

Despite the state-of-the-art hardware specifications of the Acuity Echo® scanner, which features a 
curvilinear detector and fast wavelength switching ability, the image quality of handheld scanners 
is challenged by the limited view angle, which reduces the resolution and contrast achieved and 
introduces imaging artifacts [337, 338]. In Chapter 4, we have presented the 2G-OPUS image 
processing pipeline, aiming to achieve the next level of image quality and accuracy in handheld 
OA imaging. To demonstrate the benefits of the improved image quality and evaluate the clinical 
potential of the technology, we have conducted a clinical study involving n=22 patients. We 
inspected the obtained OA images of breast lesions, grouped the observations that correspond to 
malignancy, and linked the findings to histological analysis and the clinical description of the 
lesions imaged. Figures 7.4–7.6 exemplify our findings on eight representative cases (see Table 
7.2). Fig. 7.7 contains clinical images of the eight cases obtained with standard radiological 
modalities (XRM, US, MRI) to provide additional details about the displayed masses. 

Case 1 (Fig. 7.4a–d; used also for the demonstration of image improvement in Chapters 4 and 5) 
is an invasive lobular carcinoma. Dual-band visualization (Fig. 7.4a) showed high vascular density 
surrounding the tumor core, with elongated blood vessels (arrows), up to 2 mm in diameter, starting 
more than 1 cm away from the lesion and centripetally arranged around the tumor mass. Moreover, 
vascular contrast in a patchy distribution is seen within the tumor mass. Histological analysis 
identified a lesion with a well-defined central core and spiculated infiltration typical of invasive 
lobular carcinoma (Fig. 7.4c). Vasodilation in the tumor neighborhood was histologically 
confirmed (Fig. 7.4d). The appearance of the OA image is markedly different than that of the 
ultrasound, showing involvement of a larger part of the breast tissue compared to the ultrasound-
based characterization of the tumor extent (Fig. 7.4b; grayscale). 

Case 2 (Fig. 7.4e–h) is a hormone-positive mamma carcinoma of no special type (NST). Histology 
identified a necrotic core and a highly perfused rim region with high cancer cell density (Fig. 7.4g, 
h) and confirmed the OA appearance showing high vascular density around the tumor rim 
(Fig. 7.4e, f); one such area is highlighted with an arrow on Fig. 7.4e. Case 3 (Fig. 7.4i, j) is also 
shown to better illustrate the carcinoma pattern seen in Case 2 and depicts a HER2-positive NST 
tumor. MSOT reveals a dense vascular bed surrounding the tumor mass (Fig. 7.4i, arrow). Fig. 7.4k 
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compares the absorption spectra of the rims in Cases 2 and 3. Case 2 has an absorption spectrum 
dominated by deoxyhemoglobin, whereas Case 3 shows better oxygenation. This observation 
suggests that the vasculature in the rim of Case 3 is more functional than in Case 2. Following the 
MSOT scans, both patients underwent neoadjuvant chemotherapy. The Case 2 patient did not 
exhibit any response (increase from cT2 to ypT3), whereby Case 3 had a positive response 
(decrease from cT2 to ypT1c). This finding can be explained by previous observations showing 
that tumor oxygenation correlates with neoadjuvant chemotherapy outcome [339, 340]. 

Case 4 (Fig. 7.5a–d) shows a HER2-positive mamma carcinoma NST with irregularly shaped 
peritumoral structures seen on the OA images (Fig. 7.5a, b, arrows 1–3). These peritumoral 
structures were found to contain increased hemoglobin signal (see Fig. 7.5e) compared to small 

 

Figure 7.4: MSOT visualizes vascularization and perfusion in the tumor area at high resolution. a–d, 
Case 1, an invasive lobular carcinoma. Dual-band visualization (a) and OPUS visualization (b) of the median 
of images in the 850–890 nm range shows dense vascular network (arrows) around the tumor core (white 
contour, segmented manually in the ultrasound image). Histopathology of the excised tumor (c; H&E stain) 
revealed that this pattern is likely caused by vasodilation induced by cancer cell infiltration outside of the 
main core (black pen circle). Magnification cut-out (d) shows blood vessels (arrows) outside the tumor core 
surrounded by cancer cells. Whereas grayscale ultrasound underestimates the true tumor extent, 2G-OPUS 
provides additional information about the true cancer spread into the surrounding tissue. e–h, Case 2, a 
hormone-positive mamma carcinoma NST. Dual-band visualization (e) and OPUS visualization (f) of the 
median of images in the 700–740 nm range shows patches of markedly increased signal in the upper rim of 
the tumor (e.g., arrow). Histology slice of the excised tumor (g; H&E stain) shows a necrotic center of the 
mass (result of an earlier therapy) and a region of densely concentrated tumor cells at the lesion upper rim. 
The high-resolution cut-out (h) shows that the rim region is highly perfused by a dense network of tiny 
capillaries. The individual capillaries are too small for 2G-OPUS to resolve; instead, the increased perfusion 
is exhibited as a patch of stronger signal. i,j, Case 3, a HER2-positive NST mamma carcinoma. Dual-band 
visualization (i) and OPUS visualization (j) of the median of images at 850–890 nm reveals marked increase 
in vascularization in the upper tumor rim. Contrary to the Case 2 shown in (e), the vessels in this tumor rim 
are larger and can be clearly recognized in the 2G-OPUS image. k, Comparison of mean absorption spectra 
of the enhanced rims in Cases 2 and 3 (denoted by arrows in e and i). The spectrum of rim of Case 2 has a 
notable signature of deoxyhemoglobin, which indicates reduced function of the capillary network. This 
observation correlates with the patient’s lack of response to neoadjuvant chemotherapy (cT2→ypT3). On 
the other hand, the spectrum of rim of Case 3 exhibits higher oxygen saturation and suggests better vascular 
function in supplying the tumor microenvironment. This correlates with this patient’s positive response to 
neoadjuvant chemotherapy (cT2→ypT1c). Scalebars represent 5 mm (b, c, g), 200 μm (d), and 100 μm (h). 
Figure reproduced from Kukačka et al. "Image processing improvements afford second-generation handheld 
optoacoustic imaging of breast cancer patients." Photoacoustics 26 (2022): 100343. 
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blood vessels (Fig. 7.5a, arrow 4) and to background tissue (Fig. 7.5a, circle 5). To perform this 
comparison between tumor and background hemoglobin signals, we selected lesions that were 
approximately the same depth to minimize possible depth-related attenuation effects on the OA 
signal. Decrease of the OA signals after 870 nm (observed uniformly in all cases) is caused by 

 
Figure 7.5: 2G-OPUS visualizes signs of inflammation and benign features. a–d, Case 4, a HER2-
positive mamma carcinoma NST. Dual-band (a) and hybrid OPUS (b) visualizations of median of images in 
the 850–890 nm range show numerous structures with irregular shape in the vicinity of the tumor core 
(arrows 1–3). Histology slice (H&E stain) of the excised tumor (c) shows extensive pre-cancerous 
proliferation in the ducts (thin arrows) around the invasive tumor (dotted ellipse). The high-resolution cut-
out (d) shows accompanying chronic periductal inflammation causing edema and increased blood perfusion. 
e, comparison of mean absorption spectra of the inflammation foci (arrows 1–3), a small blood vessel (arrow 
4), and background tissue (circle 5). f–h, Case 5, an ER-positive mamma carcinoma NST. Dual-band (f) and 
hybrid OPUS (g) visualizations of median of images at 700–730 nm show numerous patches of increased 
signal around the tumor site (arrows in f). Patches 2 and 3 are colocalized with hypoechoic regions on the 
US (arrows in g). Histology slice (H&E stain) of the excision at the tumor site (h) shows numerous cystically 
dilated ducts filled with proteinaceous fluid and foam cells. i, comparison of absorption spectra of the six 
patches marked by arrows in f. Whereas the spectrum of patch 1 resembles hemoglobin and corresponds to 
a cross-sectionally imaged blood vessel, patches 2–6 have a markedly different absorption spectrum 
appearing as mixture of deoxyhemoglobin and water. j–m, Case 6, a fibroadenoma. Dual-band (j) and hybrid 
OPUS (k) visualizations of median of images in the 700–740 nm range show numerous tubular branching 
structures inside the tumor core (white contour). Histology slice (H&E stain) of the excised tumor (l) shows 
a typical pattern for fibroadenomas: dense stromal proliferation with a network of compressed ducts. These 
ducts match the observed pattern in the optoacoustic images in both size and density. The high-resolution 
cut-out (m) shows a detail of a compressed duct filled with proteinaceous fluid. n, comparison of absorption 
spectra of the ducts (1) and a blood vessel in similar depth (2; marked by white arrows in j). The duct 
spectrum is similar to the blood vessel spectrum, indicating bleeding, occurring possibly in relation to a past 
compression of the mass. No signs of bleeding are present in the histological sample which was excised 7 
months after the scanning was performed. Tumor cores in (a), (f), and (j), denoted by white contours, were 
segmented in co-registered ultrasound images. Scalebars represent 5 mm (b, c, h, l) and 200 μm (d, m). 
Panels a, b, f, g, j, k have the same resolution. Figure reproduced from Kukačka et al. "Image processing 
improvements afford second-generation handheld optoacoustic imaging of breast cancer patients." 
Photoacoustics 26 (2022): 100343. 
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spectral coloring due to the absorption of lipids and water dominating the longer wavelengths. 
Histology results (Fig. 7.5c) revealed the presence of numerous pre-cancerous ductal proliferations 
(black arrows) around the invasive tumor (dotted ellipse), accompanied by chronic periductal 
inflammation causing edema and increased blood perfusion, as also seen at magnification 
(Fig. 7.5d). The presence of the inflammation foci explains our observations of the peritumoral 
structures described above, as their sizes and spatial arrangement match, and increased hemoglobin 
concentration has been previously observed in chronic inflammation of the gut [70]. 

Case 5 (Fig. 7.5f–i) shows an ER-positive mamma carcinoma with notable cystic dilation of the 
ducts around the tumor site visible in the histology slice (Fig. 7.5h) as well as the conventional US 
(Fig. 7.7). OA images of this tumor (Fig. 7.5f, g) show numerous patches of increased signal 
(arrows 1–6), as opposed to previous observations from tumors. The patch 1 corresponds to a cross-
section of a larger blood vessel, well visible in the contrast enhanced magnetic resonance image 
(Fig. 7.7), and its spectrum is dominated by oxyhemoglobin (Fig. 7.5i). The mean absorption 
spectra of patches 2–6 are different than patch 1 or those taken from peritumoral lesions and attain 
a spectral profile representative of a mixture of deoxyhemoglobin and water, similar to absorption 
profiles of breast cysts previously reported using optical imaging [341-343]. Some of the patches 
are colocalized with anechoic capsules on the US (Fig. 7.5g, arrows), supporting our hypothesis 
that they correspond to cysts or cystically dilated ducts. Compared to the optical imaging studies, 
the high resolution and spectral contrast afforded by our OA image formation pipeline enables 
more accurate signal interpretation and the differentiation of cysts from blood vessels. 

  

 
Figure 7.6: Additional cases of optoacoustic features of breast cancer. a–d, Case 7, a HER2-negative 
mamma carcinoma NST. Dual-band visualization (a) of median of images in the 850–890 nm shows blood 
vessels (arrows in a) arranged centripetally around the hypoechoic core (segmented in co-registered 
ultrasound image (b), white contour). Histopathology of the excised tumor (c; H&E stain; marked by dotted 
ellipse) confirmed presence of numerous vessels (arrows in d) adjacent to the tumor with sizes corresponding 
to OA observations). e, f, Case 8, an inflammatory mamma carcinoma. Dual-band visualization of median 
of images at 850–890 nm shows thickened cutis (between arrows) and conspicuous dilation of subcutaneous 
vasculature. This is related to the inflamed appearance of the skin accompanying the tumor proliferation. 
White contour delineates the tumor core, segmented in a co-registered ultrasound image (f). The scalebar 
represents 1 mm in (d) and 5 mm in (a) and (c). Panels (a), (b), (e), (f) have the same resolution. Figure 
reproduced from Kukačka et al. "Image processing improvements afford second-generation handheld 
optoacoustic imaging of breast cancer patients." Photoacoustics 26 (2022): 100343. 
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Figure 7.7: Conventional clinical images of the eight cases presented in the results. Lesions are marked 
by arrowheads. Case 1: Contrast-enhanced mammography of the right breast showing the enhancing mass 
with indistinct borders in the upper outer quadrant in lateromedial oblique (LMO) and craniocaudal (CC) 
views. Case 2: Contrast-enhanced mammography (LMO and CC) of the right breast showing a mainly 
circumscribed, partially indistinct tumor and adjacent non-mass enhancement (arrow NME) without clear 
findings in the Low energy (upper) image. Case 3: Mammography (LMO and CC) and a conventional 
ultrasound (US) image of the tumor containing well circumscribed hypoechoic parts (either cystic or 
containing more aggressively growing cells) and some spiculated, less hypoechoic infiltrating parts. This 
example reflects tumor heterogeneity. Case 4:  Mammographs (LMO and CC) and a conventional 
ultrasound image of the microlobulated round tumor. Case 5: Mammographs (LMO and CC), a conventional 
ultrasound, contrast-enhanced, T1- and unenhanced T2-weighted magnetic resonance (MR) images of the 
partially necrotic tumor. A large feeding blood vessel subtracted CE-MR, arrow BV) is visible near the lesion 
in a position matching the observation in the OA image (Fig. 7.5F, arrow 1). Necrosis is visible in the tumor 
core (T2 image, arrow N) usually reflecting a very fast tumor growth. The ultrasound shows a cyst or a 
dilated duct near  the tumor core (arrow C). Case 6: An ultrasound image of a fibroadenoma. The lesion has 
a typical appearance: hypoechoic, oval-shaped, with a uniformly distributed texture and smooth borders. 
Case 7: Contrast-enhanced mammography (LMO and CC) and an ultrasound image of the breast containing 
the tumor. The 10 mm large lesion is oval to round, with unsharp borders and a disruption of some anatomical 
structures. Case 8: Mammography (LMO and CC) and ultrasound images of the breast with a recurring 
inflammatory mamma carcinoma with skin thickening and two masses: arrowheads mark the mass imaged 
in this study, appearing in the as irregular mass with shadowing features. A secondary mass is marked by 
arrow M2. Figure reproduced from Kukačka et al. "Image processing improvements afford second-
generation handheld optoacoustic imaging of breast cancer patients." Photoacoustics 26 (2022): 100343. 
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In Case 6, we also showcase MSOT features revealed from a benign lesion—a fibroadenoma 
(Fig. 7.5j–n). The OA images show numerous tubular structures within the tumor core (Figs. 7.5j, 
k). However, there is no dense vascular network around the rim as seen in malignant tumors 
(Fig. 7.4). Histology slices of this tumor show that the observed structures correspond to numerous 
compressed ducts filled with proteinaceous fluid that form a linear branching network, a pattern 
often seen in fibroadenomas (Fig. 7.5l, m). Fig. 7.5n shows a comparison of the mean absorption 
spectrum in one of the ducts (arrow 1) and a small blood vessel at similar depth (arrow 2). The 
similar appearance of both spectra indicates the presence of blood in the ducts, possibly due to 
compression-induced bleeding. 

Case 7 (Fig. 7.6a–d) is a hormone-positive mamma carcinoma NST. The MSOT image of the tumor 
(Fig. 7.6a) as well as hybrid OPUS image (Fig. 7.6b) exhibit small vessels in a centripetal 
arrangement around the tumor core (arrows), similar to Case 1. Histopathology (Fig. 7.6c, d) 
confirms the presence of numerous vessels (arrows) around the tumor (ellipse) with sizes matching 
our optoacoustic observations. 

Case 8 (Fig. 7.6e, f) is an instance of inflammatory breast cancer (IBC). Although IBC is not an 
actual inflammation, it is typically accompanied by symptoms resembling acute mastitis, including 
skin thickening and redness. MSOT captures both symptoms: the cutis layer (between arrows) is 
considerably denser than in other scans (cf. Figs. 7.6a, 7.4e, 7.5j) and conspicuous dilation of 
subcutaneous vasculature correlates with observed erythema. 

Table 7.3 summarizes the frequency of the observed patterns in the OA images across all the 22 
analyzed lesions. Due to the exploratory nature of our analysis and the small sample size, we do 
not draw direct conclusions regarding the diagnostic value of these patterns. 

7.1.4 Discussion 

In this study, we utilized our new image processing platform and set a new mark in the image 
quality of handheld optoacoustic breast cancer imaging. The unprecedented image quality, 
achieved by 2G-OPUS, allowed the characterization of OA features in malignant and benign breast 
tumors. We examined 22 breast lesions and linked observed patterns to available clinical data and 
micrographs of the excised tissues. We could identify patterns of malignancy, such as enhanced 
rim and vascular density and functional parameters, in particular oxygenation/hypoxia, and 
showcased representative examples seen in eight cases.  

We demonstrated that using improved image processing tools—reconstruction models with TIR 
correction, averaging of motion-corrected frames, and color-coded visualization of two frequency 
bands—we could achieve optoacoustic imaging quality never before demonstrated with a handheld 
scanner (Acuity Echo®). Our approach showed the ability to resolve blood vessels with diameters 
as small as 200 μm at depths up to 2 cm in vivo (see Case 1—Fig. 7.4 and Case 7—Fig. 7.6). 

Table 7.3: Summary of presence of observed optoacoustic patterns in analyzed lesions grouped by the 
lesion malignancy status. Our study focuses on better understanding of the patterns visible thanks to high 
spatial resolution and spectral contrast of 2G-OPUS. We do not draw direct conclusions from this study 
regarding the diagnostic value of these patterns. 

Lesion type Malignant (n=16) Benign (n=6) 

Rim enhancement 5 0 

Blood vessels Ø > 1 mm 5 2 

Blood vessels Ø < 1 mm 13 5 

Cysts, ducts 2 3 
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Comparable imaging quality has been so far reported only with dedicated bed-based scanners SBH-
PACT [48] and PAM-03 [47], which nevertheless yielded lower axial resolution (255 μm and 
370 μm, respectively). Unlike stationary imaging systems, handheld optoacoustic imaging can be 
seamlessly integrated in routine breast ultrasound [221-223], improving the information obtained 
in the imaging session. 

Malignant tumors generally exhibited patterns of small blood vessels arranged centripetally around 
the tumor core, a finding that has been previously described as one of the most reliable OA imaging 
features to indicate malignancy [47, 54, 56, 58]. Compared to previous studies however, the 
superior image quality achieved herein facilitated detailed visualization of this feature, which could 
increase the confidence in diagnosis of suspicious borderline lesions, thus reducing the number of 
unnecessary biopsies. In a smaller number of cases, the findings also demonstrated the presence of 
dilated vasculature surrounding the tumor core. In Case 1, examination of the tumor histopathology 
revealed that the vasodilation was caused by infiltration of the cancer cells into the surrounding 
tissue. Whereas standalone US often underestimates the size of invasive lobular carcinoma [344, 
345], our results show, in line with earlier ex vivo experiments [346], that optoacoustics can help 
with assessment of tumor margins in vivo. 2G-OPUS could also characterize functional parameters 
associated with the tumor rim microenvironment. In Cases 2 and 3 we observed different 
oxygenation levels in the rim, reflecting the functional condition of these vessels, and 
corresponding differences in NAT response. Compromised vascular functionality exhibited 
through hypoxia reduces the efficiency of therapeutic drug delivery [347, 348] and has been shown 
to correlate with poor NAT outcomes [339, 340]. This observation indicates a potential for 2G-
OPUS to offer detailed functional images serving as a predictor for NAT outcomes.  

We further observed features associated with benign lesions, such as cysts, and chronic 
inflammation around ducts containing pre-cancerous proliferations. Although the relationship 
between inflammation and invasive progression of DCIS is not fully understood [349], some 
studies show that the presence of chronic inflammation relates to increased risk of recurrent 
invasive disease [350, 351]. MSOT has been used to monitor chronic inflammation of the gut [70, 
352]; however, this is the first time it has been used to visualize chronic inflammation in the human 
breast. Although the inflammation could not be distinguished from malignancy based on functional 
features such as oxygen saturation, a combination of 2G-OPUS with traditional modalities could 
facilitate identification of such risky DCIS cases early and could support better treatment decisions. 

Remaining limitations of handheld 2G-OPUS include the imaging depth limited to ~2 cm due to 
light scattering, which can be mostly remedied in breast imaging by positioning the handheld probe 
in a favorable location and applying mild pressure to bring the tumor into the FOV. Moreover, 
speeding up the image processing pipeline to provide high-quality OA images to the operator in 
real-time would increase the efficacy of handheld OA breast cancer examinations. Specialized 
hardware implementations or deep-learning-based acceleration are promising directions towards 
that goal. Furthermore, the motion artifacts corrupting the spectral information could be further 
remedied by recording less wavelengths to shorten the acquisition (e.g., omitting wavelengths 
beyond 930 nm). However, recording many wavelengths facilitates more reliable spectral 
unmixing, and finding the optimal trade-off between the imaging speed and the spectral 
information remains an open problem. Finally, while this study focused on characterization of 
tumor features, further research including healthy subjects is needed to fully understand their 
reproducibility, and diagnostic and predictive value. Overall, the combination of improved image 
processing with handheld, hybrid optoacoustic-ultrasound acquisition, label-free contrast, and fast 
operation make 2G-OPUS well suited for incorporation into the established breast cancer 
examination workflow. It expands the capabilities of routinely used conventional grayscale 
ultrasound with the ability to image additional pathophysiological features. Simultaneous hybrid 
acquisition of ultrasound along with optoacoustic images allows easy localization of tumors during 
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scanning. Future improvements to the quality of the built-in ultrasound might eliminate the need 
for two separate examinations, thus increasing patient comfort. Additionally, the rich spectral 
information provided by 2G-OPUS imaging allows label-free resolution of endogenous 
chromophores absorbing in the near-infrared range, primarily oxy- and deoxyhemoglobin, which 
can be used to estimate oxygen saturation of blood. Since 2G-OPUS can visualize these features 
within the established clinical routine by expanding the capabilities of common grayscale 
ultrasound, we see great potential for its translation into standard clinical breast care. 

7.2 Cervical lymph node metastases 

In majority of human carcinomas, cancer cells spread from the primary tumor initially to regional 
lymph nodes (LN) and form metastases there [353]. Presence of LN metastases is one of the most 
important prognostic factors and forms the basis of cancer staging [354]. For example, the nodal 
involvement in oral cancer patients is linked to a decreased survival rate by as much as 50% [355, 
356]. Staging of LN involvement in oral cancer patients is performed using standard radiological 
techniques such as CT, MRI, or US. Although imaging is more reliable at metastasis detection than 
palpation, these methods still fail to detect micrometastases [357] and 20–30% of patients with 
clinically negative neck (cN0) harbor occult nodal metastases. When the probability of occult 
metastases is >20%, elective neck dissection (END) has been advocated despite the cN0 stage, 
assuming that early detection and treatment of occult metastases leads to a better oncological 
outcome [356, 358, 359]. However, this approach results in a considerable overtreatment of 
patients without any metastases, and the END procedure is associated with frequent shoulder 
dysfunction morbidity, impairing the quality of life [360, 361].  

As an alternative to non-invasive clinical imaging, SLN biopsy can be performed. SLN is the first 
LN draining the primary tumor site and thus the first LN to harbor a metastasis. Pathological 
evaluation of the biopsied sentinel LN is thus a good predictor for the metastatic status of the 
remaining cervical LNs [362]. Localization of the SLN involves a peritumoral injection of a 
radioactive tracer followed by a gamma camera examination. Whereas the SLN biopsy has a high 
sensitivity of 87–92% and a negative predictive value of 94–96% [356], it is a time-consuming and 
invasive procedure with considerable morbidity and exposing both the patient and the caretaking 
personnel to radiation [363]. As such, there remains a need for improved non-invasive pre-
operative detection of LN metastases. 

Current imaging methods for cervical LN metastasis detection rely mainly on the LN size, the 
presence of central necrosis, the appearance of extranodal extension, or the contrast 
enhancement [364]. However, these morphological changes are preceded by biochemical changes 
triggered by the metastasizing cells. By targeting the early biochemical changes, molecular 
imaging approaches may have a diagnostic advantage and higher sensitivity to detect early-stage 
LN metastases. OAT is well-suited to the task at hand, as it resolves endogenous and exogenous 
optical contrast, provides images at sufficiently high resolution, and can achieve depth penetration 
of several centimeters required for imaging cervical LNs.  

Indeed, imaging LNs with OAT has been described in multiple works. With the aid of optical 
contrast agents, optoacoustic detection of SLNs [90, 365] and micrometastases [366] has been 
achieved in the pre-clinical setting. Moreover, optoacoustic scans of a mouse model of oral cancer 
have revealed significantly reduced background-subtracted oxygen saturation in metastatic LNs 
[367]. Guggenheim et al. have obtained high-resolution volumetric images of healthy excised 
human LNs showing the intranodal vasculature and the lipid layer surrounding the LNs [368]. 
Using the clinically approved optical agent indocyanine green, Stoffels et al. were able to localize 
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SLNs in vivo with MSOT [74, 75]. However, optoacoustic evaluation of the nodal metastatic status 
in patients in vivo remains an open problem. 

A possible avenue towards detection for nodal metastasis detection with OAT is the use of tumor-
specific optical contrast agents. Multiple studies have shown the use of Epidermal Growth Factor 
Receptor (EGFR)-targeted fluorescent tracers (e.g., panitumumab-800CW and cetuximab-800CW) 
to detect malignant LNs ex vivo in oral cancer patients using fluorescence molecular imaging [369, 
370]. Recently, Nishio et al. demonstrated the visualization of panitumumab-800CW in excised 
LNs using MSOT, differentiating the benign LNs from malignant ones [371]. 

Expanding upon the previous achievements, we are the first to demonstrate the use of 2G-OPUS 
for in vivo imaging of cervical LNs in oral cancer patients. We characterize the optoacoustic 
properties of the tumor-specific fluorescent tracer cetuximab-800CW in a tissue-mimicking 
phantom and determine an estimated minimal detectable concentration in vitro. Next, we image 
the LNs in vivo before and after cetuximab-800CW administration in patients and identify 
limitations that prevent a successful detection of the tracer. Furthermore, we analyze the features 
of the imaged LNs provided by resolving the intrinsic chromophores, HbO2 and Hb. Although the 
small sample size prevents a large-scale evaluation, we observe increased variance of Hb 
distribution in malignant LNs and demonstrate that clinically significant features of LNs can be 
observed with 2G-OPUS, providing the rationale and need for a larger clinical trial to substantiate 
these findings.  

7.2.1 Methods 

Production of cetuximab-800CW. Cetuximab-800CW was manufactured in the University 
Medical Center Groningen according to good manufacturing-practice guidelines, as previously 
described [372]: Cetuximab (Erbitux®) and IRDye800CW NHS Ester (LI-COR Biosciences, 
Lincoln, NE, USA) were conjugated under regulated conditions with a dye/antibody ratio of 1:2. 
Cetuximab-800CW was formulated in a sodium phosphate solution at a concentration of 1 mg/ml. 

Characterization of cetuximab-800CW. Prior to the clinical study, the optoacoustic spectra of 
cetuximab-800CW and IRDye800CW were determined with a MS-OPUS system. A tissue-
mimicking phantom was fabricated using 300 mL deionized water, 2% agarose and 6% intralipid 
to mimic the optical properties of biological tissue. At 1 cm depth, polyethylene tubes with a 
diameter of 3 mm were inserted. These were filled with cetuximab-800CW 1 mg/mL and 
IRDye800CW with an optical density of 2 as a reference. The phantom was placed in a water bath 

 

Figure 7.8: Phantom experiment. a, Schematic overview of the phantom experiment. b, Ultrasound image 
of the phantom with two embedded tubes (marked by red circles). Acoustic impedance difference of the 
tubes and the surrounding agar causes reverberations producing visible artifacts. c, Optoacoustic image 
(λ=780 nm) of the two tubes (marked by red circles) with highest concentrations of cetuximab-CW800. 
Abbreviations: US, ultrasound; OA, optoacoustics. Figure reproduced from Vonk, Kukačka et al. 
“Multispectral optoacoustic tomography for in vivo detection of lymph node metastases in oral cancer 
patients using an EGFR-targeted contrast agent and intrinsic tissue contrast: A proof-of-concept 
study.” Photoacoustics 26 (2022): 100362. 
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to ensure optimal coupling between the transducer and the phantom and imaging was performed at 
660–900 nm with 5 nm step size. The tubes were manually segmented in the reconstructed 
optoacoustic images and the spectra of cetuximab-800CW and IRDye800CW were determined as 
the mean absorption in the segmented regions. Fig. 7.8 shows an overview of the experiment and 
example US and MSOT images. 

To verify the linear relationship between the cetuximab-800CW concentration and the optoacoustic 
signal strength, and to estimate the minimal detectable concentration, a two-fold dilution series 
down to 1.6 μM was imaged in the phantom. Six wavelengths were used here (700, 730, 760, 780, 
800 and 850 nm) to match the in vivo imaging procedure. Non-negative least squares linear spectral 
unmixing using spectra of Hb, HbO2, and cetuximab-800CW was applied to compute the 
cetuximab-800CW concentrations in the optoacoustic images. Again, the mean of the unmixing 
coefficients in the ROI was computed to estimate the concentration measured by MSOT. 

Clinical study. A proof-of-concept clinical study was performed with the objective of visualization 
of tumor-specific fluorescent tracer cetuximab-800CW using MSOT. The study was performed at 
the University Medical Center Groningen, Groningen, the Netherlands. Approval was obtained at 
the Institutional Review Board of the hospital and the Central Committee on Research Involving 
Human Subjects. The study was performed in compliance with the Dutch Act on Medical Research 
involving Medical Subjects and the Declaration of Helsinki (adapted version 2013, Fortaleza, 
Brazil). The trial was registered at clinicaltrials.gov (NCT03757507). 

Participants. Patients ≥18 years eligible for inclusion in this study had histology-confirmed oral 
cancer and were already included in a concurrent clinical trial on fluorescence-guided surgery for 
margin assessment (ICON-study, NCT03134846). Subjects that underwent a surgical procedure of 
the neck with a concurrent primary tumor surgery were included, as histopathology was the 
reference standard of in vivo MSOT. All participants provided a written informed consent prior to 
any study-related procedure. 

Exclusion criteria. Patients with any of the following conditions were excluded from participation 
in the ICON study [373]: concurrent uncontrolled medical conditions, inadequately controlled 
hypertension, receiving an investigational drug <30 days prior to scheduled tracer administration, 

 
Figure 7.9: Study workflow. After baseline multispectral optoacoustic tomography (MSOT), all patients 
were intravenously administered with 75 mg cetuximab followed by 15 mg cetuximab-800CW. Two days 
later, MSOT was performed again. After surgical removal of the lymph nodes, single lymph nodes were 
imaged during pathology processing of the nodal specimen and correlated with final histopathology. 
Abbreviations: MSOT, multispectral optoacoustic tomography. Figure reproduced from Vonk, Kukačka et 
al. “Multispectral optoacoustic tomography for in vivo detection of lymph node metastases in oral cancer 
patients using an EGFR-targeted contrast agent and intrinsic tissue contrast: A proof-of-concept 
study.” Photoacoustics 26 (2022): 100362. 
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an event of myocardial infarction, cerebrovascular accident, uncontrolled cardiac heart failure, 
significant liver disease or unstable angina <6 months prior to enrolment. Other exclusion criteria 
were a life expectancy <26 weeks, Karnofsky performance status <70%, pregnancy, history of 
infusion reactions to cetuximab or other monoclonal antibody therapies, QTc prolongation (>440 
in males and >450 in females) and magnesium, potassium, or calcium deviations of CTCAE grade 
II and higher. 

Study protocol. Fig. 7.9 shows an overview of the study workflow. Included patients were scanned 
with MSOT to obtain baseline images of the neck LNs. Then, two days prior to surgery, patients 
were administered with 15 mg cetuximab-800CW preceded by 75 mg unlabeled cetuximab to 
prevent rapid plasma clearance and to occupy off-target receptors, previously determined as the 
optimal dosing strategy for primary tumor imaging [373]. The second MSOT scanning was 
performed before the surgery to obtain the post-administration images of the LNs. Following the 
surgery, the excised LNs were processed and analyzed by a head and neck pathologist. Clinical 
and pathological TNM (tumor–node–metastasis) staging was performed according to the 8th edition 
of the American Joint Committee on Cancer criteria. 

OPUS setup. MSOT imaging was performed with a prototype of Acuity Echo® (iThera Medical 
GmbH, Munich, Germany) hybrid handheld multispectral optoacoustic and ultrasound scanner 
(Fig. 7.3). The scanner comprises of a fast-tunable Nd:YAG laser (25 Hz pulse repetition rate, 4-7 
ns pulse duration) and a 256-element 125° arc-shaped ultrasound transducer array (3.4 MHz central 
frequency). The maximum output energy of this system is in accordance with the American 
National Standards Institute safety limit for laser exposure [113]. The cavity inside the arc was 
filled with a gel pad to ensure acoustic coupling while minimizing absorption of near-infra-red 
light. MSOT images were acquired at six wavelengths (700, 730, 760, 780, 800 and 850 nm) 
selected to reflect the characteristics of the absorption spectra of Hb, HbO2, and IRDye800CW. 
Using a single pulse-per-image acquisition with framerate of 25 Hz, acquisition of a full 
multispectral OA frame consisting of six single-wavelength images took 0.24 s.  Pulse-echo 
ultrasound images were acquired synchronously with the OA images during the pauses between 
individual laser pulses. The synthetic transmit aperture method with spatial compounding of sub-
apertures was used [336]. The US images were acquired at the repetition rate of 6.25 Hz. 

The imaging was performed in a dedicated MSOT-imaging room following all safety regulations 
for safe use of class IV lasers (e.g., laser interlock system, safety goggles). All patients were imaged 
in a supine position with the neck in hyperextension and turned away from the imaging area. The 
neck was explored for LNs using the inbuilt ultrasound guidance of the OPUS system. Of all 
identified LNs, a recording was obtained of ~10 seconds. The anatomical location of each identified 
LN within the various levels of the neck was mapped. Patients were asked for any symptoms 
present during or after imaging, and their skin was visually inspected. 

Image processing. High-quality OA images were obtained via the 2G-OPUS pipeline, consisting 
of band-pass filtering (Butterworth filter, 0.5–12 MHz), model-based reconstruction, and frame 
averaging. The LNs were manually segmented on the ultrasound images generated by the scanner 
along with MSOT to specify ROIs for further analysis. 

A depth-gain correction procedure (Fig. 7.10) was applied to avoid depth-effects biasing our 
quantitative analysis. Given an original MSOT image (Fig. 7.10a) 𝐼𝐼orig:Ω ⊂ ℝ2 × Λ → ℝ, where 
Ω denotes the set of image pixels and Λ the set of acquired wavelengths, a depth correction factor 
𝑐𝑐 is computed, as a function of depth 𝐷𝐷 (Fig. 7.10b) and wavelength 𝜆𝜆, to be the median (Fig. 
7.10c) of all pixels in the same depth which are not inside the LN ROI ΩLN: 

 𝑐𝑐(𝐷𝐷,  𝜆𝜆) = median�𝐼𝐼orig(𝒙𝒙,  𝜆𝜆) | 𝒙𝒙 ∈ Ω ∖ ΩLN ∧ 𝑑𝑑(𝒙𝒙) = 𝐷𝐷�. (7.2.1) 
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Here, 𝑑𝑑(𝒙𝒙) represents the depth of a pixel 𝒙𝒙. Then, the corrected image 𝐼𝐼corr (Fig. 7.10e) is defined 
as 

 
𝐼𝐼corr(𝒙𝒙,𝜆𝜆) =

𝐼𝐼orig(𝒙𝒙,  𝜆𝜆)
𝑐𝑐(𝑑𝑑(𝒙𝒙),  𝜆𝜆) + 𝜀𝜀

 , (7.2.2) 

where 𝜀𝜀 is a correction term to ensure numerical stability in the regions of the image with near-
zero values. In our analysis, 𝜀𝜀 was set to 1. Map of correction factors (𝑐𝑐 + 𝜀𝜀)−1 is shown in Fig. 
7.10d. Furthermore, to limit the artifacts of discretization of the depth map, the function 𝑐𝑐(⋅,  𝜆𝜆) 
was smoothened with a Gaussian kernel with 𝜎𝜎 = 0.3 mm. 

Image analysis. The concentrations of chromophores (Hb, HbO2, lipids, and cetuximab-800CW) 
were estimated using non-negative linear spectral unmixing. Specifically, we obtained the vector 
of concentrations 𝒄𝒄 ≥ 0 for each pixel 𝒙𝒙 with spectrum 𝒔𝒔 ≡ �𝐼𝐼corr(𝒙𝒙,𝜆𝜆1),… , 𝐼𝐼corr�𝒙𝒙,𝜆𝜆|Λ|��𝑇𝑇  by 
solving the non-negative least squares problem argmin𝒄𝒄‖𝑨𝑨𝑨𝑨 − 𝒔𝒔‖𝟐𝟐, where 𝑨𝑨 is a matrix with the 
absorption spectra of the four chromophores as columns (see section 2.7). 

The distributions of Hb and HbO2 concentrations in each LN were characterized using their 
variance relative to 3 mm margins around the LNs (Fig. 7.10a) as Var(HbLN) / Var(HbMargin), 
where HbLN and HbMargin are the sets of Hb unmixing coefficients for all pixels in the respective 
ROIs, and a corresponding formula is applied to HbO2 as well. This approach has a twofold benefit 
for the robustness of our analysis. First, the use of relative variance eliminates any subject-
dependent linear effects (i.e., constant offset and multiplicative bias) on the results that might be 
caused e.g., by varying melanin content between the subjects [374]. Second, normalizing by 
variance of neighborhood, whose size is proportional to the size of the LN, minimizes the 
possibility that an increased value is observed solely due to increased size of a LN. 

Statistical analysis. Statistical analyses were conducted using SciPy (version 1.8.0) [208]. Due to 
the limited sample size of this study, all data was considered non-normally distributed. The Mann-

 
Figure 7.10: Depth correction procedure demonstrated on the image of malignant lymph node (LN) M1. 
a, Uncorrected optoacoustic image (𝜆𝜆 = 700 nm) demonstrates the signal intensity decaying with depth. Only 
the top layer of the skin is visible, all other structures have too low intensity to be seen. The location of the 
LN and its 3 mm margin are denoted by dashed and dotted lines, respectively. b, Depth map. Pixels above 
the skin surface and inside the LN region are excluded. c, Map of median intensities. Each pixel shows the 
median intensity over all pixels in the image that are equally deep. Pixels in the LN region are excluded from 
the computation. As in (a), intensity decaying quickly with depth can be seen. d, Map of reciprocals to the 
median intensities shown in (c), which are used as multiplicative correction factors. e, Depth-corrected 
image, obtained by multiplying images (a) and (d), shows that the approach balances the signal intensities 
over the whole field of view. Abbreviations: a.u., arbitrary unit. Figure reproduced from Vonk, Kukačka et 
al. “Multispectral optoacoustic tomography for in vivo detection of lymph node metastases in oral cancer 
patients using an EGFR-targeted contrast agent and intrinsic tissue contrast: A proof-of-concept 
study.” Photoacoustics 26 (2022): 100362. 
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Whitney U test was used to analyze distributions of HbO2 and Hb. A p-value <0.05 was considered 
statistically significant. 

7.2.2 Results 

Optoacoustic characterization of cetuximab-800CW in a phantom 
First, we characterized the spectrum of cetuximab-800CW in MSOT and we verified a linear 
relationship between the contrast agent concentration and the unmixing coefficients computed from 
MSOT images. Figure 7.11a displays the spectra of cetuximab-800CW and unconjugated 
IRDye800CW as recorded by MSOT in vitro using a tissue-mimicking phantom. The spectrum of 
cetuximab-800CW has peaks at 780 nm and 700 nm, the former mirroring a peak of IRDye800CW 
and the latter related to the forming of H-aggregates [371, 375]. Figure 7.11b shows that the MSOT 
unmixing coefficients of cetuximab-800CW increase linearly with its concentration in the phantom 

 

Figure 7.11: Optoacoustic characterization of cetuximab-800CW and its detection in malignant lymph 
nodes in vivo. a, Absorption spectra of IRDye800CW and cetuximab-800CW solutions in a tissue-
mimicking phantom, acquired with the MSOT Acuity Echo. b, Unmixing coefficient of cetuximab-800CW 
in optoacoustic phantom images as a function of its concentration, showing a linear relationship. c, 
Distribution of unmixing coefficients of cetuximab-800CW in three malignant lymph nodes in vivo before 
and after injection of the contrast agent. Insets show the right tails of the distributions where a potential 
localized increase could be observed. Vertical lines denote 95th percentiles. d, Hybrid visualizations of 
cetuximab-800CW unmixing coefficients (green) overlapping greyscale ultrasound, providing  both 
morphological and molecular information on the tissue of interest. Cetuximab-800CW signal cannot reliably 
be detected with the current setup since it is not specifically present in the malignant LNs. The signal 
visualized throughout the image is most likely due to errors of linear unmixing, and presumably originates 
from hemoglobin contrast. In addition, administration of cetuximab-800CW does not result in an apparent 
increase in optoacoustic signal within the malignant LNs. LN locations are denoted by dashed lines. 
Abbreviations: LN M, malignant LN. Figure reproduced from Vonk, Kukačka et al. “Multispectral 
optoacoustic tomography for in vivo detection of lymph node metastases in oral cancer patients using an 
EGFR-targeted contrast agent and intrinsic tissue contrast: A proof-of-concept study.” Photoacoustics 26 
(2022): 100362. 
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(R2=0.9896) and can be reliably distinguished from the background signals at concentrations above 
400 μM. At concentrations below 400 μM, the linear relationship does not hold (R2<0).  

Clinical study participants 
Seven patients participated in this clinical study. Table 7.4 summarizes patient demographics and 
clinical characteristics. All patients received the study drugs and completed the imaging protocol. 
No adverse events or complaints were reported related to the MSOT procedure. Four patients 
presented with a clinically negative neck, and three patients with a clinically positive neck. Four 
patients underwent an END, of which one was extended to a modified radical neck dissection as a 
malignant LN was intraoperatively identified through frozen section biopsy. Three patients 
underwent a modified radical neck dissection, of which one also received an END on the 
contralateral side. The study was ended prematurely as the primary endpoint could be assessed 
earlier.  

Table 7.5: Overview of lymph nodes analyzed with MSOT. 
Abbreviations: LN, lymph node; N/A, not applicable; US, ultrasound. 

LN Patient Status Depth (mm) Diameter (US; mm) Diameter (histology; mm) 

M1 4  Malignant 4.1 12.9 13.8 x 8.4 

M2 6  Malignant 3.7 11.3 10.4 x 9.5 

M3 6  Malignant 2.9 8.1 11.4 x 9.3 

B1 1 * Benign 12.0 18.7 N/A 

B2 1 * Benign 5.7 8.3 N/A 

B3 7  Benign 10.4 7.7 N/A 

B4 7  Benign 5.0 6.0 N/A 

B5 1 * Benign 11.6 20.2 N/A 

B6 2  Benign 7.1 16.6 N/A 
 

* This patient presented with one solitary metastasis in the contralateral side of the neck. 

Table 7.4: Patient characteristics. Summary of patient and LN characteristics. Abbreviations: cTN, 
clinical tumor and nodal stage; pTN, pathological tumor and nodal stage; N/A, not applicable. 

Patient Sex Ethnicity Age 
Tumor 
location 

cTN pTN # metastases 

1 Female White 65 Tongue cT2N0 pT2N1 1 

2 Female White 78 Mandible cT4N0 pT4N0 N/A 

3 Female White 63 Maxilla cT3/4N0 pT2N0 N/A 

4 Female White 66 Mandible cT3-4aN1 pT4aN2a 1 

5 Male White 29 Tongue cT1N0 pT1N0 N/A 

6 Female White 65 Tongue cT4aN2b pT4aN3b 7 

7 Female White 47 Mandibula cT4aN0 pT4aN0 N/A 
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In vivo MSOT of lymph nodes in patients with oral cancer 
Due to the nature of the surgical procedure, exact tracking of all imaged LNs between in vivo 
imaging and histopathology was not possible. Only a subset of LNs where the metastatic status 
could be assigned with certainty was included in the in vivo image analysis (Table 7.5). 
Specifically, we included only LNs of patients showing no malignancies at all at the 
histopathology, classified as benign (n=11), and malignant LNs that were either palpable or close 
to anatomical landmarks and thus could be tracked until histopathology (n=3). Five benign LNs 
that allowed correlation with histopathology were excluded from the analysis due to image quality 

 
Figure 7.12: Intrinsic contrast in lymph nodes. a, Absorption spectra of main endogenous chromophores 
in the illumination range of the MSOT Acuity Echo scanner. Dashed lines denote the wavelengths used for 
the multispectral image acquisition (700, 730, 760, 780, 800, 850 nm). b, Ultrasound and linear spectral 
unmixing images of lymph nodes (LNs) M1, M3, B2, and B4. Arrowheads mark peripheral, feeding, and 
intranodal blood vessels. Small arrows mark signal enhancement around the LNs. Scalebar applies to all four 
images. Separate HbR and HbO2 maps are provided in Fig. S4. Strong HbR signal in the epidermis can be 
attributed to the presence of melanin. c, Ultrasound images of the LNs displayed in (b) with localization of 
surrounding anatomical landmarks. d, Distribution of Hb and HbO2 unmixing coefficients in three malignant 
LNs (M1-3) and six benign LNs (B1-6). e, Variance of chromophore concentrations in malignant and benign 
LNs relative to their 3 mm margins. Malignant LNs exhibit large increase of relative deoxy-hemoglobin 
variance. Abbreviations: LN M, malignant lymph node; LN B, benign LN; HbO2, oxyhemoglobin; HbR, 
deoxyhemoglobin. Figure reproduced from Vonk, Kukačka et al. “Multispectral optoacoustic tomography 
for in vivo detection of lymph node metastases in oral cancer patients using an EGFR-targeted contrast 
agent and intrinsic tissue contrast: A proof-of-concept study.” Photoacoustics 26 (2022): 100362. 
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issues: in one case the LN was obscured by skin reflection artifacts and four cases had surface 
contact issues causing strong artifacts while also having the view on the LN obscured by the 
sternocleidomastoid muscle. One malignant case (M1) was also partially affected by the skin 
reflection artifact but could still be used for the analysis after excluding the affected pixels. Fig. 
7.13 demonstrates these problems in detail.  

Analyzing the in vivo images, we observed that cetuximab-800CW could not be reliably detected 
in our setup. Fig. 7.11c shows the distributions of cetuximab-800CW unmixing coefficients in 
three malignant LNs pre- and post-injection. Comparing the tails of the cetuximab-800CW 
unmixing coefficient distributions, where a localized increase of coefficients would be apparent, 
we observed that the LN M3 exhibited an increase, LN M2 showed a decrease and LN M1 remained 
unchanged. We obtained the same result also when comparing the 95th percentiles or considering 
the means of the upper top 10% of the coefficient values, as reported in the earlier ex vivo 
study  [371]. Fig. 7.11d shows visualizations of the cetuximab-800CW signal as a green overlay 
on the grayscale ultrasound images. The post-injection scan of the LN M3 clearly shows patches 
of increased signal, albeit a discrepancy exists between imaging angles pre- and post-injection, 
preventing us from conclusively proving the possibility to detect cetuximab-800CW in vivo. 

On the other hand, using MSOT we could visualize intrinsic chromophores and related features in 
lymph nodes in vivo. Figure 7.12a shows the absorption spectra of the main tissue chromophores 

 
Figure 7.13: Image quality issues and reflection artifacts. a, Two examples of surface contact issues (red 
dotted line) and occlusion of the lymph nodes (yellow dashed line) by the sternocleidomastoid muscle (aqua 
dashed line). Both problems contribute to bad image quality and too weak signal in the lymph node region, 
as seen in the left optoacoustic images (𝜆𝜆=700 nm). Ultrasound images are shown on the right.  b, Two 
examples of the reflection artifacts and a scheme of the physical mechanism behind the phenomenon. An 
acoustic pressure pulse is emitted from an optical absorber in all directions (1). Part of the wave travels 
directly to the detectors, but part propagates into the tissue. Acoustic interfaces inside the tissue (2) act as 
reflectors. The wave gets reflected from the interface and travels outwards to the transducers (3). The 
reconstruction algorithm is oblivious to the reflections affecting the incoming waves and assumes the signal 
came along a straight line from an absorber at a distance given by the travel time and the speed of sound (4). 
A reflection artifact is thus observed behind the reflecting interface at a distance proportional to the distance 
between the interface and the true pressure wave origin. The most observed reflection is of the skin where 
the light fluence is highest, and thus, the optoacoustic signal is strongest. The skin reflection mainly affects 
the images of deoxyhemoglobin. This happens because the main absorber in the skin is melanin, whose 
absorption spectrum coincides with deoxyhemoglobin in the MSOT wavelength range. Abbreviations: 
LN+, malignant lymph node; LN-, benign lymph node. Figure reproduced from Vonk, Kukačka et al. 
“Multispectral optoacoustic tomography for in vivo detection of lymph node metastases in oral cancer 
patients using an EGFR-targeted contrast agent and intrinsic tissue contrast: A proof-of-concept 
study.” Photoacoustics 26 (2022): 100362. 
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in the wavelength range of MSOT. Dashed lines denote the wavelengths acquired during this study, 
allowing distinguishing Hb and HbO2. Figure 7.12b shows images of malignant LNs (M1 and M3) 
and benign LNs (B1 and B4) with distinct features, such as vasculature (peripheral, feeding, and 
internodal; marked by arrowheads) and enhancement of Hb and HbO2 signals in the LN borders 
(small arrows), although we could not establish apparent differences between malignant and benign 
LNs. Separate Hb and HbO2 images are provided in Fig. 7.14. Figure 7.12c shows US images with 

 
Figure 7.14: Intrinsic chromophore maps in malignant and benign lymph nodes. Standalone 
visualizations of deoxyhemoglobin (HbR) and oxyhemoglobin (HbO2) maps in malignant lymph nodes M1 
and M3 and benign lymph nodes B1 and B4. Figure reproduced from Vonk, Kukačka et al. “Multispectral 
optoacoustic tomography for in vivo detection of lymph node metastases in oral cancer patients using an 
EGFR-targeted contrast agent and intrinsic tissue contrast: A proof-of-concept study.” Photoacoustics 26 
(2022): 100362. 



7    Clinical applications 

106 

localization of adjacent anatomical structures to provide a better spatial context to the displayed 
MSOT images.  

Quantitatively, malignant LNs exhibited a larger variance of Hb coefficients than the benign ones. 
The distributions of the unmixing coefficients of Hb and HbO2 throughout the LN ROIs are shown 
in Fig. 7.12c. Figure 7.12d shows the variances of Hb and HbO2 distributions of malignant and 
benign LNs relative to their margins. Malignant LNs exhibit significantly higher variance of Hb 
than benign ones (p=0.047, n=9). No significant difference in HbO2-variance was observed 
between malignant and benign LNs (p=0.349, n=9). 

Ex vivo analysis of surgical specimens 
To verify the tumor-specific contrast of cetuximab-800CW, the fluorescence images of all 
formalin-fixed LNs that were surgically excised during this study were analyzed (n=149). 
Significantly increased mean and maximum fluorescence intensities were observed in the 
malignant cases compared to the benign ones, confirming the increased concentration of 
cetuximab-800CW. 

7.2.3 Discussion 

This study demonstrated MSOT for in vivo imaging of LNs in oral cancer patients. We 
characterized the optoacoustic properties of cetuximab-800CW using a tissue-mimicking phantom. 
Furthermore, we provided the first clinical results of in vivo EGFR-targeted molecular imaging 
with MSOT. Although we validated the suitability of cetuximab-800CW as a tumor-specific 
contrast agent for MSOT through our phantom and ex vivo experiments, we identified a number of 
obstacles preventing its reliable detection in vivo. Next, we compiled a list of recommendations for 
future studies. As a secondary goal, we assessed the qualitative and quantitative optoacoustic 
features of LNs in oral cancer patients. MSOT was able to detect altered tissue metabolism in 
malignant LNs, showcased by an increase in deoxyhemoglobin variance. 

Our phantom experiment demonstrated the ability of MSOT to detect the EGFR-targeted 
fluorescent probe, cetuximab-800CW, at concentrations above 400 μM. Furthermore, the analysis 
of the excised specimens verified the tumor-specific intake of the tracer in LNs, confirming 
observations from previous fluorescence molecular imaging studies [369, 370, 376]. Recently, 
Nishio et al. [371] reported that a IRDye800CW-labeled antibody could be used for ex vivo 
optoacoustic detection of LN metastases. We could not extend these results by observing the 
accumulation of cetuximab-800CW in MSOT scans of LNs in vivo. We observed an increase in 
cetuximab-800CW signal only in one out of three examined cases, but here also big discrepancy 
between the pre- and post-injection imaging angles was observed. On the contrary, the case with 
the best alignment between the pre- and post-injection images did not show any change. Multiple 
reasons could explain the differences between our results and the previously reported ex vivo study. 
First, the light scattering and absorption in the overlying tissue present during in vivo imaging cause 
spectral coloring and signal decay due to reduced light fluence, complicating the detection of 
optical contrast in the LNs compared to ex vivo imaging. Secondly, the maximum permissible light 
fluence exposure for in-human use [113] is well below the laser power used by Nishio et al., further 
limiting the MSOT signal strength in vivo. Overall, we surmise that the selected dose of cetuximab-
800CW lies below the detection limit of MSOT in vivo at depth, under the selected image 
acquisition parameters. 

A secondary aim of this study was to explore MSOT of intrinsic contrast, particularly HbO2 and 
HbR. The in vivo imaging of Hb and HbO2 allowed the visualization of multiple endogenous 
features within and around LNs, such as lymphoid vasculature which seemed more extensively 
present in malignant LNs [377, 378]. Furthermore, we observed a significant increase in Hb 
variance in malignant LNs. The increased Hb heterogeneity in malignant LNs may be explained 
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by the fact that malignant LNs contain both healthy tissue, that typically exhibits lower oxygen 
metabolism, and tumor tissue that is characterized by regions of hypoxia due to decreased oxygen 
supply (from dysfunctional microvasculature) and increased oxygen demand (from the 
hypermetabolic state of tumor cells) [367, 379, 380]. The non-invasive detection of malignant LNs 
with MSOT can help to better stratify oral cancer patients for surgical treatment of the neck and 
avoid overtreatment resulting from the limited sensitivity of current imaging methods. Moreover, 
the use of intrinsic contrast disposes the need for exogenous contrast agents, allowing for seamless 
implementation into standard of care. 

This first clinical proof-of-concept study revealed several limitations of the chosen methodology. 
First, the difficulties in linking in vivo imaging to the final histopathology aggravated the already 
quite low sample size, prohibiting significant results. Unlike in studies assessing the performance 
of established techniques (e.g., ultrasound), the novelty of MSOT LN imaging and the explorative 
nature of this study require meticulous correlation with histopathology before certain image 
characteristics can be attributed to the presence of tumor. Second, the mismatch of imaging 
positions between the pre- and post-injection scans complicates the comparison of chromophore 
quantities. Third, in this study we acquired images at six wavelengths matching the absorption 
spectrum characteristics of IRDye800CW. There are multiple other chromophores in the tissue and 
the spectral coloring increases the range of observable spectra even further, in which case six 
wavelengths do not facilitate reliable spectral unmixing. Finally, besides the challenges in the study 
procedure itself, the issue of detecting the contrast agent in vivo remains. We studied IRDye800CW 
as we could determine its potential noninvasively by including patients already administered with 
cetuximab-800CW as part of a fluorescence-guided surgery trial. However, better contrast agents 
could be considered to improve the tumor-specific signal generation for MSOT, such as gold 
nanoparticles [381]. The main criteria for optoacoustic contrast agents include strong and sharply 
peaked optical absorption in the near-infrared window, high optoacoustic efficiency, and optimal 
biocompatibility [37, 382]. Also, when evaluating novel optoacoustic contrast agents, it is helpful 
to realize that the accumulation of contrast agents involves complex pharmacokinetic processes, 
including both active binding of the target of interest (e.g., receptor) as well as nonspecific 
accumulation due to variety in lymph and blood physiological processes [383, 384]. To better 
quantify target expression one could use a paired-imaging approach, where a non-targeted tracer 
with a different absorption spectrum is administered simultaneously and used to correct for 
nonspecific accumulation [385, 386]. 

Based on the limitations that we identified during our study, we compiled the following 
recommendations for future studies: 1) ensure node-by-node comparison by establishing specific 
study designs [387] or including only patients of which the LNs identified with preoperative 
imaging can tracked until final histopathology  (e.g. preoperative lymphoscintigraphy and 
intraoperative Geiger meter-detection in the sentinel node procedure) [388, 389]; 2) when multiple 
sentinel LNs are identified, the endpoints should comprise the number of LNs identified, the 
metastatic state of the sentinel LN specimen and the number of malignant LNs; 3) a baseline MSOT 
could be performed to study pre- and post-injection scans; if a good match between pre- and post-
injection scans cannot be established, multiple angles should be scanned and their results averaged;  
4) additional wavelengths should be included in the image acquisition to increase the accuracy of 
spectral unmixing (i.e., at 25 wavelengths, the image acquisition takes 1s and motion is thus not a 
problem, but the redundancy in the spectral dimension makes spectral unmixing more robust to 
noise and light fluence effects); 5) blind spectral unmixing (e.g., non-negative matrix factorization) 
may be preferred to simple linear spectral unmixing when recording sufficient number 
wavelengths, as it can better adapt to observed spectral variations; 6) MSOT and, if the quantum 
yield of the of the contrast agent allows, fluorescence imaging of the excised and grossed LNs can 
be performed to validate in vivo imaging results. Here, MSOT of the excised LNs would require 
scanning in a water bath to improve acoustic coupling; 7) all sentinel lymph nodes should be 
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examined through histopathology to determine their metastatic status. Finally, when suspicious 
features are determined based on MSOT, subsequent studies can correlate the number of identified 
LNs with final histopathology as in studies with ultrasound.  

In conclusion, we identified possible reasons which prevent achieving the primary goal of detecting 
cetuximab-800 CW in vivo. Furthermore, we demonstrated that in vivo MSOT can observe 
clinically important features in LNs, specifically using hemoglobin parameters. In particular, 
increased variance of the deoxyhemoglobin distribution inside the LNs could serve as an 
optoacoustic marker of LN metastases. Additionally, we suggested several approaches to improve 
the efficiency of follow-up MSOT studies on LN imaging, such as a confined study population that 
allows correlation with histopathology, using more wavelengths during the image acquisition and 
the use of advanced spectral unmixing algorithms. Following our suggestions, future studies may 
better evaluate the clinical benefit of optoacoustic contrast agents as well as the intrinsic LN 
features observed with MSOT, facilitating improved preoperative detection of LN metastases. 
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8 Conclusion 

C H A P T E R  8  

————    ———— 

Conclusion 

With the aim to advance clinical optoacoustic tomography, this work has introduced improvements 
across the whole lifecycle of an optoacoustic image: from the recorded electrical signals to the 
clinical interpretation of the image contents. Altogether, this work presents the second generation 
of optoacoustic tomography methods and defines an improved standard for future clinical 
applications. 

First, we have proposed a formal framework called Motion score for quantification of motion in 
hybrid optoacoustic-ultrasound recordings. Motion is an inevitable element of handheld imaging, 
corrupting the spectral dimension of optoacoustic images. Selecting frames which are the least 
affected by motion is the first step towards achieving an optimal image quality. We have validated 
that Motion score can select stationary frames with a human-like accuracy and can be used for a 
reproducible, automated frame selection. Furthermore, we have shown that the frames selected by 
Motion score have indeed better spectral quality than other frames, ensuring higher precision of 
image analysis. 

Second, we have presented the current state-of-the-art optoacoustic image reconstruction procedure 
and proposed additional post-processing steps. The combination of these methods leads to a new 
level of image quality produced by a handheld optoacoustic tomography system. Images are 
reconstructed using a mathematical model of the imaging system which accounts for 
heterogeneities in the speed-of-sound and the related refraction on the probe membrane, as well as 
for the spatial and electrical impulse response of the ultrasound detectors. Explicit modeling of 
these effects ensures spatial fidelity of the reconstructed images as well as an improved spatial 
resolution of 200 μm. The subsequent post-processing is performed by alignment and aggregation 
of the optoacoustic images across the time and the wavelength dimensions. This step contributes 
towards artifact reduction as well as improving the contrast-to-noise ratio. Together, this image 
processing pipeline allows resolving minute features deep in the tissue to a level never before 
attained in handheld optoacoustic tomography. 

Third, we have addressed the topic of visualization of optoacoustic images, which is essential for 
optimal qualitative evaluation of the features present in the images. We have proposed solutions to 
two issues inherent to optoacoustic tomography visualization. First, we introduced the dual-band 
visualization that equalizes the clarity of visual features on different scales. This equalization is 
achieved by combining a full-band image with an image obtained from high-pass filtered signals. 
This way, the small features (corresponding to the high-frequency portion of the signal) are 
emphasized. A special colormap used for rendering of the two images avoids noise 
overamplification. Second, we have introduced a pair of non-linear adaptive filters to adjust an 
extremely skewed pixel-value distribution caused by the light fluence decay in depth. Implemented 
within a user-friendly GUI, local contrast normalization and sigmoid normalization allow optimal 
contrast enhancement for viewing the optoacoustic image features. 
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Next, we have considered the possibility of extracting morphological information from 
optoacoustic images by means of automated image segmentation. Achieving an accurate 
segmentation of the tissue in optoacoustic tomography images would be an important milestone 
towards quantitative optoacoustics. First, quantitative biomarkers could be extracted directly from 
the morphological information provided by the segmentation, such as vascular network metrics. 
Secondly, a tissue model based on the segmentation could be incorporated into an optical inversion 
scheme, enabling more precise chromophore concentration estimates. Although deep learning 
methods offer high accuracy, their use in optoacoustic tomography is limited by the availability of 
annotated data. To bypass this issue, we have explored the self-supervised learning paradigm for 
training models on unlabeled data. Our experiments with fundus images have validated advantages 
of the approach which could be transferred to the optoacoustic domain. 

Finally, we have applied the advanced tools presented herein to two oncological clinical studies. 
Our study on breast cancer patients has identified various features of breast tumors that can be 
resolved thanks to the improved image quality. To interpret the meaning of our observations, we 
have correlated them to histology images and clinical information on eight representative cases. 
This study serves as a guide for future studies on breast imaging in terms of recommended data 
processing as well as target features to validate on a larger cohort. Our second study was concerned 
with detection of lymph node metastases in oral cancer patients using a tumor-specific optical 
contrast agent. Despite positive results reported by earlier ex vivo studies, we could not detect the 
tracer in lymph nodes in vivo. We have outlined possible reasons and suggested improvements for 
future studies. Furthermore, we have proposed an alternative marker of malignancy based on the 
deoxyhemoglobin variance within the lymph node. 

8.1 Outlook 

Future clinical translation of optoacoustic tomography would benefit from advances in the 
following directions: 

Image processing 
The image processing pipeline proposed herein is limited by the offline computation requirement, 
preventing its utilization for real-time guidance of the operator during image acquisition. Advances 
in model-based image formation accelerated by deep learning have the potential to overcome this 
limitation and will surely play an important role in the future of clinical optoacoustic tomography. 

Furthermore, the proposed image processing pipeline would benefit from a stricter standardization 
and an open-source implementation that could be utilized by other groups working with Acuity 
Echo MSOT scanners. Although some parts of the pipeline have already been made available, 
using them still requires considerable expertise. 

Optoacoustic image processing would also benefit from the development of neural representations 
of the images. Our experiments have hinted at the possibility of learning image feature detectors 
solely from unlabeled data. Such models could be utilized for regularization in the image 
reconstruction step to promote certain patterns or suppress artifacts. Furthermore, they could be 
finetuned to perform tissue segmentation, which would in turn serve as a prior for an improved 
image reconstruction. 

Image visualization 
The presented image visualization GUI produces acceptable images under the default parameter 
settings, yet manual parameter tweaking is required for achieving the optimal contrast in each 
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image. This procedure may be time-consuming and not reproducible. The introduction of suitable 
image quality metrics would enable automatization of this process. 

Image analysis 
Blind unmixing methods are a promising direction for analysis of multispectral optoacoustic 
images. Although the development of accurate optical inversion methods would eliminate the need 
for blind unmixing, it is a useful tool for clinical image analysis in the meantime.  

Furthermore, the development of tissue segmentation models would enable automated extraction 
of quantitative morphological features. Whereas the curation of large, standardized datasets and 
open benchmarks would be needed, utilization of unsupervised neural representations of 
optoacoustic images could alleviate the lack of annotated data. 

Clinical validation 
Finally, the clinical translation of optoacoustic tomography requires clinical validation of the 
features and biomarkers that can be extracted from the images. Clinical studies should be planned 
carefully with the involvement of experts across the whole image lifecycle—radiologists, 
oncologists, engineers, and data scientists—to ensure all data are collected in the form that is 
required and the study goals can be achieved. Additionally, the interdisciplinary exchange should 
also take place during the clinical study to provide feedback between the involved parties, facilitate 
learning, and identify problems quickly. Furthermore, larger studies would require multi-center 
collaborations and standardization of the optoacoustic procedures. Experiments on the 
reproducibility of the measurements should be performed to identify potential issues related to 
larger studies. 
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