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Abstract: Background: Gadolinium (Gd)-enhanced Magnetic Resonance Imaging (MRI) is crucial in
several applications, including oncology, cardiac imaging, and musculoskeletal inflammatory imag-
ing. One use case is rheumatoid arthritis (RA), a widespread autoimmune condition for which Gd
MRI is crucial in imaging synovial joint inflammation, but Gd administration has well-documented
safety concerns. As such, algorithms that could synthetically generate post-contrast peripheral
joint MR images from non-contrast MR sequences would have immense clinical utility. Moreover,
while such algorithms have been investigated for other anatomies, they are largely unexplored for
musculoskeletal applications such as RA, and efforts to understand trained models and improve trust
in their predictions have been limited in medical imaging. Methods: A dataset of 27 RA patients
was used to train algorithms that synthetically generated post-Gd IDEAL wrist coronal T1-weighted
scans from pre-contrast scans. UNets and PatchGANs were trained, leveraging an anomaly-weighted
L1 loss and global generative adversarial network (GAN) loss for the PatchGAN. Occlusion and
uncertainty maps were also generated to understand model performance. Results: UNet synthetic
post-contrast images exhibited stronger normalized root mean square error (nRMSE) than Patch-
GAN in full volumes and the wrist, but PatchGAN outperformed UNet in synovial joints (UNet
nRMSEs: volume = 6.29 ± 0.88, wrist = 4.36 ± 0.60, synovial = 26.18 ± 7.45; PatchGAN nRMSEs:
volume = 6.72 ± 0.81, wrist = 6.07 ± 1.22, synovial = 23.14 ± 7.37; n = 7). Occlusion maps showed that
synovial joints made substantial contributions to PatchGAN and UNet predictions, while uncertainty
maps showed that PatchGAN predictions were more confident within those joints. Conclusions:
Both pipelines showed promising performance in synthesizing post-contrast images, but PatchGAN
performance was stronger and more confident within synovial joints, where an algorithm like this
would have maximal clinical utility. Image synthesis approaches are therefore promising for RA and
synthetic inflammatory imaging.

Keywords: image synthesis; inflammatory imaging; deep learning; rheumatoid arthritis; magnetic
resonance imaging

1. Introduction

Rheumatoid arthritis (RA) is a widespread autoimmune disorder observed in 0.5–1.0%
of the American population, with incidence rates being two to three times higher in women
than in men [1]. RA mainly affects the joints, typically the hands and feet, and is character-
ized by synovial joint inflammation. In the joints it can lead to bone tissue erosions and
soft tissue breakdown, often inducing stiffness and debilitating pain, but may also show
systemic effects in the skin, heart or lungs if left untreated [2]. It is typically diagnosed
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through a holistic assessment that begins with a medical history examination, paying
particular attention to pain, swelling, peripheral joint pain, and swelling/tenderness, all of
which can be indicative of RA. Furthermore, laboratory tests for rheumatoid factor (RF),
C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) are often performed to
confirm other RA indications. Lastly, medical imaging plays a crucial role in distinguishing
inflammatory phenotypes, providing additional evidence to confirm RA [3]. Once diag-
nosed, RA is usually treated with Disease-Modifying Anti-Rheumatic Drugs (DMARDs),
which see 75–80% of patients attain intended treatment outcomes, but 90% when initiated
in the early stages of RA [4]. Robust tools such as imaging are thus necessary for screening
and diagnosing RA at early stages, maximizing the odds of successful treatment.

Radiographs have traditionally been the clinical standard imaging modality for RA
diagnosis, as their acquisition is quick, inexpensive, and widely accessible, yielding two-
dimensional images that are effective in visualizing late-stage bone erosions [5]. In recent
years, however, Magnetic Resonance Imaging (MRI) has gained prominence despite its
higher costs and longer acquisition time, producing three-dimensional anatomic images
with excellent depiction of soft tissues and sharp details [6]. As a result, it has emerged
as a superior option for visualizing early-stage bone erosions and bone marrow edema
(BME) that can result from RA [7]. An added advantage of MR is the ability to administer
contrast agents such as Gadolinium (Gd) prior to scans, altering the magnetic properties of
underlying tissue to improve the visualization of numerous pathologies [8]. In RA imaging,
a post-contrast Gd MRI can better distinguish active soft tissue RA sites in joints, such
as synovitis, from general effusion [9], conveying critical information that conventional
MRI cannot provide [10]. However, Gd administration has long-term concerns such as
deposition in brain and bone [11,12], is contra-indicated in patient subgroups such as
those with renal diseases and pregnant women [13], and, more generally, adds scan time,
cost, and patient discomfort to the imaging protocol. As such, if post-contrast MR images
could be synthetically generated without Gd administration, the implications for RA
diagnosis and other musculoskeletal (MSK) inflammatory conditions or even sarcomas
would be significant.

The problem posed by this clinical context is one of “image synthesis”, or the de-
signing of algorithms to generate images from some input. While these inputs can be
multimodal, including text or patches of images, the focus here will be on synthesis algo-
rithms that accept full image inputs [14,15]. For image synthesis tasks, deep learning (DL),
and particularly convolutional neural networks (CNNs) [16], have taken on an outsized
role in recent years. When trained with sufficiently large datasets, CNN filters can be
optimized for a given task, with filters in early network layers typically being sensitive to
generic features such as edges, while those in later layers are typically sensitive to far more
complex, task-specific features [17]. The UNet is a commonly used image synthesis algo-
rithm in which inputted images are encoded by convolutional filters into a low-resolution,
high-dimensional representation that is decoded using deconvolutional filters, yielding
an output image. Originally designed for segmentation, the UNet has seen substantial
application in image synthesis for its ease of training and relatively low dataset size require-
ments compared to other DL approaches [18]. Another prominent approach is generative
adversarial networks (GANs), where an image-to-image translation network such as a
UNet (“generator”) is paired with a discriminator network that is trained to distinguish
between synthetic and real images [19]. By setting up training as a min-max game in which
generator and discriminator networks continually try to fool one another, substantially
sharper images can be obtained, although GANs are more difficult to train and are prone to
hallucinating artifacts compared to conventional approaches [20]. Other approaches such
as variational autoencoders (VAEs) and transformer networks have been investigated in
this space [21,22].

These methods have seen considerable application for medical imaging tasks. In brain
MRI, image synthesis has been studied for the reduction or elimination of the Gd dosage
required for post-contrast tumor imaging. In several studies, standard UNet or encoder-
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decoder style architectures accepted reduced-dose Gd post-contrast images and/or other
MR sequences as inputs, were trained to predict full-dose post-contrast Gd images, and
quantified model efficacy through radiologist assessment or the suitability of synthetic
images for downstream tasks [23–25]. Another approach in eliminating Gd dosage for
brain MRI used an innovative training scheme, training a network for tumor detection and
passing convolutional feature maps from that network as inputs to a conventional image
synthesis architecture. This allowed the image synthesis architecture to focus on pathologic
regions when optimizing parameters to produce synthetic post-contrast images [26]. Some
approaches beyond image synthesis have also been investigated to eliminate the need for
Gd administration. For instance, Gd is administered in cardiac MRI to identify regions
of myocardial infarction. Here, DL pipelines have been developed to accept exclusively
non-contrast MR images as inputs, localize the left ventricle, extract motion-based features
inherent to cardiac MRI, and integrate both to predict if a patient suffered from infarc-
tion [27,28]. On the other hand, features from non-contrast MR sequences such as synthetic
MRI and diffusion weighted imaging (DWI) have proven effective in differentiating benign
and metastatic retropharyngeal lymph nodes, a task that usually requires a post-contrast
MRI [29]. Also worthy of mention are recent image synthesis applications in biomedical
imaging outside of MRI: in histopathology, standard image synthesis generator networks
have been paired with multiple discriminators to generate synthetic stained images, while
in microscopy, GAN image synthesis pipelines have been applied for synthetic cell painting,
identifying cellular components from brightfield microscopy images [30,31].

These works mark substantial progress, with well-validated frameworks yielding
promising results on a wide variety of biomedical image synthesis tasks, including post-
contrast MR image synthesis. That said, there are some clear gaps in the literature. For RA
imaging, the authors are not aware of any previous work developing post-contrast MR
image synthesis algorithms. Such algorithms would have immense clinical utility, synthe-
sizing post-Gd images that could be used to identify synovitis and active inflammation
sites in RA patients, while eliminating the risks associated with administering Gd. More
generally, Gd is used in brain imaging to identify tumors and distinguish tumor types,
while in cardiac imaging it helps identify myocardial infarction sites, among others; in
MSK, however, it is administered to image inflammation. Synthetic inflammatory MSK
imaging has seen little to no investigation in previous works. Particularly in compari-
son with brain applications, synthetic Gd dosage reduction in MSK applications, such
as wrist imaging, brings about additional challenges such as severe motion artifacts, re-
duced signal-to-noise ratio (SNR), and considerably smaller datasets [32]. Lastly, despite
all these image synthesis works in biomedical applications, efforts to understand the basis
of model predictions have been limited; this work would be critical for radiologists to gain
confidence in model predictions, a prerequisite for eventual clinical deployment. As such,
post-contrast MSK MR image synthesis confers numerous unique challenges that must be
managed methodologically, and has been largely unexplored, making it ripe for an initial
proof-of-concept study.

This is precisely the niche this work seeks to fill: the purpose of this study was to
develop DL pipelines that generate synthetic post-contrast wrist MR images from their
pre-contrast counterparts [33], thereby marking the first known effort for synthetic MSK in-
flammatory imaging. We use image quality metrics to assess the diagnostic and perceptual
quality of model-generated synthetic post-contrast images relative to true post-contrast
images. We also generate occlusion and uncertainty maps to better understand model
performance, making its predictions more trustworthy. More specifically, the contributions
and novelty of our work are as follows:

1. To our knowledge, this proof-of-concept study is the first application of DL techniques
for generating synthetic post-contrast images for MSK inflammatory imaging.

2. We show that our trained pipelines perform strongly with regards to predicting post-
contrast image appearance, particularly in regions afflicted with synovitis, where
these models would see the most clinical utility.
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3. We investigate the deconvolution operator, checkerboarding artifacts that can be intrin-
sic to architectures that use it, and how they surface in conventional and adversarial
network training schemes.

4. We conduct a rigorous analysis of model predictions, identifying regions in pre-
contrast image inputs that were most important to predicted post-contrast images, and
regions in which predictions were most uncertain. This provides a straightforward
framework that can be used to understand predictions made by image synthesis
architectures in biomedical imaging applications.

2. Materials and Methods
2.1. Study Group

All studies performed in this retrospective study were Health Insurance Portability
and Accountability Act (HIPAA) compliant, approved by the UCSF Institutional Review
Board (Human Research Protection Program, IRB# 12-10418) and registered under Clinical
Trial NCT01773681. Informed consent was obtained from all study participants. Twenty-
seven UCSF patients with RA were recruited that met the following criteria: at least 18 years
old and fulfilled the 2010 ACR/EULAR criteria for the classification of RA. Patients were
treated with either methotrexate or a combination of methotrexate and tumor necrosis
factor alpha inhibitors (anti-TNFα) based on RA disease activity; intended sample sizes
were thus as large as feasible given the exclusion criteria and the requirements of informed
consent from study participants. Data was collected from patients as part of this cohort
from 20 March 2014 to 8 February 2018. Patients were imaged at baseline, 3-months, and
1-year follow-up time points, conducting MR imaging, sampling serum to measure ESR,
and recording clinical notes at each time point. As the dataset used in this study was
from a UCSF clinical trial, data privacy and patient confidentiality concerns prevent its
public release, but codes used in generating results can be obtained from the authors upon
reasonable request.

2.2. MR Acquisition

All patients underwent a standardized protocol that included coronal T1 IDEAL scans
pre- and post-Gd administration on a 3.0-T wide bore scanner (MR Discovery 750w, GE
Healthcare, Waukesha, WI, USA) using 8-channel HD wrist array coils (GE Healthcare,
Waukesha, WI, USA). Scans were done with acquisition matrices of 384 × 256 (n = 58) or
256 × 224 (n = 6), a slice thickness of 2 mm, a TR of 457 to 793 ms, and a TE of 10.06–12.48 ms.
Complete acquisition parameters for both sequences can be found in Table A1.

2.3. Anomaly Segmentations and Evaluations

In post-contrast images, synovitis was segmented in the following synovial joints:
intercarpal joints, carpometacarpal joints, the radioulnar joint, and radiolunar joints. Re-
gions with bone marrow edema (BME) were segmented in the following bones: the first
to fifth metacarpals, capitate, hamate, lunate, pisiform, scaphoid, trapezium, trapezoid,
triquetrum, ulna, and radius. Anomaly segmentations were performed by a radiologist
with over 30 years of experience (T.L.) using the Image Processing Package (version 6.43.01)
developed by the University of California, San Francisco Musculoskeletal Quantitative
Imaging Research Group.

T.L. also quantified synovitis severity for each patient at each time point with the
Rheumatoid Arthritis Magnetic Resonance Imaging Score (RAMRIS) for synovitis [34],
a 0–9 scale in which a higher score is associated with more severe imaging findings of RA.

Lastly, bounding boxes delineating wrist tissue and background were drawn using the
software MD.ai by a radiologist with two years of experience (J.L.), such that reconstruction
metrics for synthetic post-Gd images could be evaluated solely in wrist tissue and not be
sensitive to textures and noise in background pixels.
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2.4. Image Preprocessing

Six of 64 acquired imaging volumes had slices that were 256 × 256 pixels, with the
remainder being 512 × 512; the slices of these six volumes were upsampled to 512 × 512
using third-order b-spline interpolation. Pre-Gd volumes were then registered to post-Gd
volumes with a three-step process: (1) translation, (2) affine, and (3) third order b-spline
registration (maximum iterations = 256, 256, 512, respectively; Advanced Mattes Mutual
Information [35] criterion for all). B-spline registration was only done for scans where the
structural similarity index (SSIM) [36] between pre and post-Gd acquisitions was above
0.5; other scans had motion artifacts so severe that non-rigid registration was not possible.
All registrations were performed using SimpleITK 2.0.0 in Python (version 3.7.11) [37–39].
Example slices before and after registration can be found in Figure A1. Pixel values in the
slices of pre-Gd scans were scaled such that the middle 95% of pixel values were between 0
and 1. The unscaled pixel values in pre-Gd slices that corresponded to 0 and 1 in the scaled
slices were also mapped to 0 and 1 in the post-Gd slices, thereby scaling post-Gd slices
while preserving the relative enhancement across the volume.

2.5. Data Partitioning

The data were partitioned into training, validation, and test datasets, splitting such
that all scans from a given patient were in only one of the three datasets. Furthermore, four
patients without imaging findings of synovitis were in the dataset (RAMRIS synovitis of
0); splits ensured at least 1 of these patients were in each of training, validation and test.
Splits were intended to maintain similar age, BMI, and ESR across the three datasets, but
the relatively small overall dataset required some compromise. The full characteristics of
the data splits can be found in Table 1.

Table 1. Full Dataset and Splits Information. Demographics and patient information for the entire
dataset and splits into training, validation and test. All data are presented as mean ± 1 s.d. The dataset
consisted of 27 patients diagnosed with RA, each of whom were scanned up to three times (baseline,
3-month, and 1-year follow-up after one of two treatments). Data splitting was done at a patient level
while ensuring each of the training, validation and test datasets included at least one patient with
a RAMRIS synovitis of 0. The small dataset size and splitting conditions caused slight imbalances in
demographic and health variables across the splits.

Train Validation Test Full

Age 53.38 ± 13.50 45.94 ± 16.16 52.12 ± 18.60 52.41 ± 14.65
BMI 29.35 ± 8.90 25.32 ± 3.06 28.33 ± 1.26 28.79 ± 8.03

ESR [mm/h] 29.06 ± 26.07 32.00 ± 24.00 27.00 ± 20.12 29.05 ± 25.32
RAMRIS
Synovitis 4.57 ± 2.13 2.33 ± 2.62 1.67 ± 1.25 4.00 ± 2.37

Slices 783 87 105 975
Volumes 51 6 7 64

2.6. Network Architecture

All network architectures were implemented in PyTorch (version 1.10.2). Two-
dimensional UNet [18] architectures were used as image-to-image synthesizers in our
approaches, accepting as input a pre-processed pre-Gd coronal T1 IDEAL slice and out-
putting the corresponding synthetic post-Gd slice. A baseline UNet model was trained,
and in a separate pipeline version, an identical UNet was treated as a PatchGAN generator
and paired with a PatchGAN discriminator [40]. The PatchGAN discriminator accepted
concatenated inputs of the pre-processed pre-Gd slice and either the corresponding syn-
thetic post-Gd slice or the ground truth post-Gd slice, yielding a 16 × 16 output in which
each output pixel had a corresponding receptive field “patch” in the concatenated inputs.
The 16 × 16 outputs were trained to predict whether synthetic post-Gd generator outputs
were real or synthetic. Multiple baseline UNet and PatchGAN generator versions were
trained: one set in which all steps of the UNet/generator decoding path used a deconvo-
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lution operator, and another in which the deconvolutions were replaced by either a 2 × 2
bilinear upsampling interpolation operator followed by a convolution [41], or just the 2 × 2
bilinear interpolation. The exact network architecture and layers can be seen in Figure 1.
Weights for the UNets, UNet generators, and PatchGAN discriminators were initialized
randomly to have a mean of 0 and a standard deviation of 0.02.
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Figure 1. Network Architectures. The baseline UNet and PatchGAN generators used identical
architectures, while the PatchGAN pipeline also trained a discriminator whose architecture is pictured.
All generator encoding path convolutions had a stride of 2 and a padding 1, while all decoding path
convolutions had a stride and padding of 1. The first three discriminator convolutions had a stride
of 2 and a padding of 1, while the final two had a stride and a padding of 1. For PatchGAN and
UNet pipelines with deconvolutions, all “2X interpolate, 4 × 4 Conv2D” steps would be replaced by
4 × 4 2D transposed convolutions with a stride of 2 and a padding of 1. All leaky ReLU layers had
a negative slope of 0.2.

2.7. Training Details

The baseline UNets were trained with a weighted L1 loss, as shown below in Equation (1),
with loss function variables as follows: n = number of samples; Si = anomaly segmenta-
tion mask for slice i; ŷi = synthetic post-Gd image slice; yi = ground truth post-Gd slice.
The anomaly segmentation mask Si used to weight the L1 loss was calculated as follows:
anomaly segmentations were turned into binary masks, any pixel more than 20 pixels from
the nearest anomaly was set to a background value λB, pixels within anomalies were set
to 1, and intermediate pixels were set to a range from λB to 1 based on their Euclidean
distance from an anomaly segmentation. A sample distance map can be found in Figure A2.

LUNet =
1
n∑n

i=0 Si(ŷi − yi); (1)

On the other hand, PatchGAN generators were trained with the same weighted L1
loss and a GAN loss, as shown in Equation (2), while PatchGAN discriminators were
trained with the loss function shown in Equation (3). Additional variables for these loss
functions are as follows: xi = pre-Gd image slice; D(a, b) = PatchGAN discriminator output
for concatenated inputs a and b; λL1 = anomaly-weighted L1 loss weighting for generator;
λGAN = discriminator loss weighting for generator. With this loss function setup, the
discriminator was trained to predict values of 1 when fed ground truth data and 0 when fed
generator predictions, while the generator was trained to do the opposite. For any training
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batch, the following scheme was followed: (1) synthetic post-Gd generator predictions
were calculated; (2) pre-Gd, synthetic post-Gd, and ground truth post-Gd images were used
to calculate LDis and update discriminator parameters; (3) synthetic post-Gd generator
predictions and corresponding discriminator outputs were recalculated with new model
parameters, LGen was calculated, and generator parameters were updated; (4) steps (1) and
(2) were repeated again to update the discriminator parameters. This approach of two
discriminator steps and one generator step per training batch was empirically useful in
yielding similar generator and discriminator strength during training.

LGen =
1
n∑n

i=0 λL1 Si(ŷi − yi)− λGAN logD(xi, ŷi); (2)

LDis =
1

2n∑n
i=0 log D(xi, ŷi)− log D(xi, yi). (3)

Baseline UNets, PatchGAN generators, and PatchGAN discriminators were all trained
with a learning rate of 0.001, an Adam optimizer (β1 = 0.5, β2 = 0.999), and batch size
of 1 to ensure that full batches fit on a single GPU [42]. All pipelines were trained on
an NVIDIA Titan Xp 12 GB GPU. For baseline UNet and PatchGAN generator inputs,
the following augmentations were done on the training set, each with a probability 0.5:
[−2,2] degree random rotation, [−10,10] pixel random translation along both directions
in a slice, [−5,5] percent random zoom, and Gaussian noise addition with a mean of 0
and standard deviation of 0.02. Training was done in two stages: initially for 10 epochs
in a hyperparameter search to optimize λGAN and λB (more thoroughly described in the
following subsection), and finally for 35 epochs with optimized parameters. With 783 pairs
of pre and post-Gd slices seen in the training set, this means that 27,405 total slices were
seen by all selected models during training (3045 additional slices for validation).

2.8. Hyperparameter Search and Model Selection

For each of the four pipelines trained (UNet and PatchGAN, both with and without de-
convolutions), grid hyperparameter searches were carried out to optimize the background
pixel weighting in segmentation distance maps (0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2) and λGAN
(0.001–0.01, spaced by 0.001). λL1 was held constant at 1 for all searches. In hyperparameter
searches, models were trained for 10 epochs and model performances were evaluated on
the validation set. The most promising parameter set for each of the four pipelines was
then trained from scratch for 35 epochs to yield the final models.

The selection of optimal parameter sets was done through a combination of standard
reconstruction metrics and visual inspection. For each of the four pipelines, SSIM and
normalized root mean square error (nRMSE) were used to screen for top candidate models,
whose performance on the validation set was then assessed by visual inspection. The pri-
mary criteria for evaluating model performance were (1) the synthesis of new information
not obvious from pre-Gd scans, (2) the preservation of sharp textures in synthetic post-Gd
scans compared to ground truth post-Gd scans, and (3) the absence of obvious algorithm-
generated artifacts that may cause a radiologist to lose confidence in the reconstructed
image quality.

2.9. Model Performance Evaluation

The assessment of whether to use or omit the deconvolutions in the UNet decoding
path was done visually for the UNet and PatchGAN approaches; the best performing
models for both methods were then used for a more rigorous analysis. The quantitative
assessment of synthetic post-Gd image quality was performed using three standard re-
construction metrics: SSIM, nRMSE, and peak signal-to-noise ratio (PSNR) [43]. Due to
the slight misregistration of corresponding slices that may have been present even after
previous preprocessing, metrics were presented both with and without slice-wise regis-
tration: ((1) 256-iteration translation, (2) 256-iteration affine, and then (3) 512-iteration
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third order b-spline with a transformation bending penalty of 500, all with the Advanced
Mattes Mutual Information criterion). The slice-wise registration was solely for the calcu-
lation of model performance metrics; only unregistered model outputs are presented in
figures. The reconstruction metrics were evaluated per-volume in the following regions:
full imaging volumes, wrist anatomy bounding boxes, and synovial joints. While these
metrics do not correlate well with gold-standard radiologist annotations when evaluated
on full image volumes or slices, they are widely used in the image reconstruction and
image synthesis literature, and thus facilitate easy comparison of model performance with
those performing similar tasks [44,45]. Furthermore, our dataset affords us wrist and
anomaly bounding boxes; the calculation of these metrics specifically in these regions—one
discarding background, and another focusing specifically on tissues of highest clinical
interest when administering Gadolinium—can overcome the limitations of these metrics
when used conventionally, affording them more clinical significance.

2.10. Enhancement Maps

For UNet, PatchGAN, and ground truth post-Gd images, pixels among the top 10% in
predicted signal enhancement were identified. Enhancement maps were shown as follows:
pre-Gd slice, post-Gd slice, and post-Gd slice with the degree of enhancement overlaid for
the most enhancing pixels (top 10%), colored by the predicted extent of the enhancement.
For visual consistency, colormap ranges for the enhancement map were calculated with
respect to the enhancement observed in ground truth, with the same ranges being used for
the maps regardless of algorithmic approach.

2.11. Occlusion Maps

For each slice, pre-contrast IDEAL T1 images were pre-processed using previously
described techniques, which were used as inputs for UNet and PatchGAN generator
architectures, generating network outputs. The pixel values were then set to zero in a
32 × 32 occlusion, and the occluded image was fed through the same architecture, recording
the absolute difference in predicted pixel magnitude as compared to the unoccluded image.
This procedure was repeated for all 32 × 32 occlusions throughout the slice (with a stride
length of 8), summing up the predicted changes in pixel magnitudes in an aggregate
array and dividing each pixel by the number of occlusions in which it was contained.
The aggregate array values were then min-max normalized, divided by pre-contrast IDEAL
T1 pixel values (to incorporate into resulting maps information for regions other than
areas of high pixel intensity), and again min-max normalized, yielding occlusion maps.
For display purposes, the maps are thresholded such that only the top 5% of the occlusion
map magnitudes were visualized.

2.12. Uncertainty Maps

The uncertainty maps of the model predictions were generated by corrupting the
latent representations of a given slice [46]. Namely, for 100 iterations, Gaussian noise with
a mean of 0 and a standard deviation of 0.5 was added to the encoding path outputs at
each of the eight levels (seven layers that were concatenated to the corresponding decoding
path levels and the bottom of the encoder). The variance of the predicted pixel intensities
from these 100 perturbed latent spaces was then calculated, min-max normalized, and
thresholded for display purposes such that only the 15% most variant pixels would display,
thereby generating uncertainty maps for each slice.

2.13. Statistical Analysis

To assess if synthetic post-Gd scans provided significant improvements over baseline
pre-Gd images, 2-sample t-tests [47] were conducted. On a per-scanned-volume-basis, these
tests compared the metrics of model outputs (nRMSE, SSIM, PSNR) to those of the pre-Gd
scanned volumes; a Bonferroni correction [48] was applied when necessary to adjust for
multiple comparisons.
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3. Results

The hyperparameter search results are presented on the validation set, which was
used to select optimal values for λGAN and λB in training loss functions. The results from
finalized models are presented on the test set, on which finalized models were run just one
time. Key demographic information on the test set is available in Table 1.

3.1. Model Parameter Selection

The reconstruction performance metrics evaluating the similarity of the synthetic
post-Gd model outputs to ground truth were calculated for all 70 tested hyperparameter
combinations for each of the four model type configurations (PatchGAN and baseline UNet,
with and without decoding path deconvolutions). Sample results are shown for PatchGAN
without generator deconvolutions for SSIMs in Table A2, and for nRMSEs in Table A3.
Hyperparameter combinations with strong performances in either approach were carried
onto a visual inspection of post-Gd synthesis performance, an example of which is shown
for several hyperparameter combinations in Figure A3, also for the PatchGAN without
deconvolutions. Hyperparameters associated with the selected best models through this
process are listed below:

1. PatchGAN, no deconvolutions: λB = 0.05, λGAN = 0.01;
2. PatchGAN, with deconvolutions: λB = 0.15, λGAN = 0.001;
3. UNet, no deconvolutions: λB = 0.05;
4. UNet, with deconvolutions: λB = 0.15.

3.2. Utility of Deconvolution Operators in Baseline UNet and PatchGAN Generator Decoders

A comparison of sample synthetic post-Gd slices with and without deconvolutions in
the UNet decoding path can be found in Figure 2, while a comparison of synthetic post-Gd
slices with and without deconvolutions in the PatchGAN generator decoding path can be
found in Figure 3. In baseline UNet pipelines, checkerboarding artifacts were apparent
when deconvolutions were used, particularly in regions of relatively homogenous pixel
values, such as the muscles around the radius and ulna. When those deconvolutions were
replaced by 2 × 2 upsampling and standard convolutions, the checkerboarding artifacts
were largely absent. These checkerboarding artifacts were less apparent in both PatchGAN
pipelines, but in the version that used deconvolutions, they were evident at the extended
boundaries of sharp changes in pixel intensities. Checkerboarding was thus best avoided by
PatchGAN and UNet pipelines without deconvolutions, and these pipeline versions were
selected as top-performing pipelines for both approaches in the remaining experiments.

3.3. Standard Reconstruction Metrics Performance

Standard reconstruction metrics across the test set are shown in Table 2 for full imag-
ing volumes, wrist volumes, and synovial joints. Both synthetic post-Gd volumes had
showed significant improvements over pre-Gd volumes in PSNR and nRMSE, with the
baseline UNet pipeline also showing significantly higher SSIM. While the UNet baseline
model showed stronger performance in all metrics within full volumes and the wrist, the
PatchGAN showed stronger reconstruction performance in synovial joints when measured
by nRMSE and PSNR.
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Figure 2. Network Performance with and without Deconvolutions in Decoding Path of Baseline
UNet. The performance on example test set slices for baseline UNet, with and without decoding
path deconvolutions, with zoomed insets. The use of decoding path deconvolutions in baseline
UNets induces checkerboarding artifacts in larger regions of relatively homogenous pixel values,
such as the forearm muscle insets (particularly evident in patient 1). When replaced with convolution
and interpolation operators, these artifacts were substantially mitigated, making this the preferred
architecture when training baseline UNets.
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Figure 3. Network Performance with and without Deconvolutions in Decoding Path of PatchGAN
Generator. The performance on example test set slices for PatchGAN pipelines, with and without
generator decoding deconvolutions, with zoomed insets. At sharp transitions in pixel intensities,
such as intersections of the radius and ulna with muscles displayed in insets, clear checkerboarding
is observed when deconvolutions are used. This was substantially reduced when deconvolutions
were replaced with convolutions and interpolation; PatchGAN generators with these decoding path
operations were thus used when training PatchGAN pipelines in the remainder of this paper.
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Table 2. Coronal IDEAL Post-Gd T1 Image Synthesis Performance for Select Pipelines. Standard
reconstruction metrics of the PatchGAN and baseline UNet pipelines were evaluated on a per-patient
basis within the test set (n = 7) for entire imaging volumes (“full”), wrist tissue in each volume
(“wrist”), and synovial joints. Metrics were calculated with and without three-stage nonlinear
registration of synthetic post-Gd volumes to ground truth. UNet pipelines reflect the stronger bulk
reconstruction metrics in full volumes and within wrist tissue, whereas the PatchGAN pipeline shows
stronger performance in the synovial joints in which an algorithm like this would have most clinical
utility, and was therefore the stronger model. The 2-sample t-tests with Bonferroni correction showed
that nearly all pipelines offered significantly better reconstruction metrics than Pre-Gd baselines
(n = 7; * p < 0.05, ** p < 0.01, *** p < 0.001).

Full Wrist Only Synovial Joints

Pre-Gd
nRMSE 26.30 ± 9.16 17.82 ± 6.31 260.24 ± 158.56
PSNR 17.77 ± 0.95 22.99 ± 0.91 8.94 ± 1.64
SSIM 0.60 ± 0.03 0.94 ± 0.00

PatchGAN Registered
nRMSE 6.72 ± 0.81 *** 6.07 ± 1.22 *** 23.14 ± 7.37 **
PSNR 20.77 ± 0.65 *** 25.40 ± 1.24 ** 12.10 ± 1.34 **
SSIM 0.58 ± 0.02 0.94 ± 0.01

PatchGAN Unregistered
nRMSE 8.46 ± 1.03 *** 7.68 ± 1.41 ** 28.96 ± 10.57 **
PSNR 19.85 ± 0.69 *** 24.38 ± 1.21 * 11.23 ± 1.52 *
SSIM 0.56 ± 0.02 * 0.94 ± 0.01

UNet Registered
nRMSE 6.29 ± 0.88 *** 4.36 ± 0.60 *** 26.18 ± 7.45 **
PSNR 22.03 ± 0.60 *** 27.13 ± 0.69 *** 11.58 ± 0.93 **
SSIM 0.69 ± 0.02 *** 0.95 ± 0.00 **

UNet Unregistered
nRMSE 7.73 ± 1.03 *** 5.38 ± 0.73 *** 29.69 ± 7.60 **
PSNR 21.20 ± 0.62 *** 26.20 ± 0.77 *** 10.98 ± 0.87 *
SSIM 0.68 ± 0.02 *** 0.95 ± 0.01 *

3.4. Comparison of Reconstruction Performance across Synovitis Severity

The image quality metrics for synthetic post-Gd volumes are shown in Table A4
for test set patients without imaging findings of RA synovitis (RAMRIS synovitis = 0,
n = 2) and those with imaging findings of RA synovitis (RAMRIS synovitis > 0, n = 5).
Though the sample size limits the power of these conclusions, the metrics were slightly
stronger for RAMRIS > 0 than for RAMRIS = 0. Visual examples of the reconstructed
post-Gd volumes for a RAMRIS = 0 and RAMRIS > 0 patient are shown in Figure 4.
In the RAMRIS = 0 patient with no imaging findings of synovitis, the absence of synovial
enhancement was captured by both pipelines, whereas in the RAMRIS > 0 patient, UNet
and PatchGAN pipelines illuminated similar enhancement patterns in intercarpal regions,
with the PatchGAN pipeline depicting sharper enhancement pattern contours, particularly
in the muscles and bones.

3.5. Enhancement Maps Analysis

Enhancement maps are shown for an example slice for the PatchGAN and UNet
models, as well as ground truth, in Figure 5. The enhancement maps show that for the
PatchGAN model, general magnitudes of uptake were much more accurately preserved
than for the UNet, most notably across intercarpal joints. The predicted enhancement
locations were visually very similar for both pipelines.

3.6. Occlusion and Uncertainty Maps Analysis

Occlusion maps for the UNet and PatchGAN pipelines in sample test set slices are
shown in Figure 6. Encouragingly, occlusion maps for both pipelines show a substantial
focus on intercarpal joint regions in terms of their relative importance to the predicted
pixel values. Peripherally to the intercarpal joint, the occlusion maps show some focus
on muscles as well, perhaps slightly more so for the UNet than for the PatchGAN. On



Bioengineering 2023, 10, 516 13 of 26

the other hand, the uncertainty maps are shown in an example test set slice for UNet and
PatchGAN pipelines in Figure 7. The UNet shows considerable uncertainty in intercarpal
joint region predicted pixel values, whereas for the PatchGAN, uncertainty was highest
in the background and within the muscles. PatchGAN also showed some uncertainty in
predictions within bones such as the radius and ulna, as well as within bone marrow edema
regions; notably, however, uncertainty was limited in the synovial joints.
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Figure 4. Visual Comparison of Reconstructed Post-Gadolinium Images with and without Imaging
Findings of RA. Two example test set slices reconstructed by baseline UNet and PatchGAN pipelines
for patients with and without imaging findings of RA (RAMRIS = 3, RAMRIS = 0, respectively). There
was little to no enhancement in the synovial joints of the RAMRIS = 0 patient, which is captured by
both pipelines, as seen in the zoomed insets. In the RAMRIS = 3 patient, the contours of enhancement
in the zoomed inset were captured well within the intercarpal joint for both pipelines, with noise
distribution patterns better reconstructed by the PatchGAN. The reconstruction performance thus
shows promise for patients with and without imaging findings of RA.
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Figure 5. Predicted Gadolinium Enhancement Maps with PatchGAN, UNet, and Ground Truth
Models. Enhancement maps were generated by identifying the magnitude of pixel intensity increase
from synthetic or ground truth Post-Gd slices compared to corresponding pre-Gd slices, and by
highlighting the top 10%. While the performance in preserving the location of these top 10% of
enhancing pixels was similar for the baseline UNet and PatchGAN, the enhancement magnitudes
were far better preserved globally by the PatchGAN, including intercarpal regions susceptible to
synovitis. These maps reflect the long-term vision of a pipeline like this: given a pre-Gd scan, the
algorithm can identify locations susceptible to synovitis and distinguish active inflammatory sites
from general effusion with additional model development.
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Figure 6. Occlusion Maps for PatchGAN and UNet Pipelines. Occlusion maps were generated for
PatchGAN and UNet by occluding 32 × 32 patches of the input slices and assessing changes in
predicted pixel values compared to unoccluded slices. Occlusion maps were then normalized by
pre-Gd pixel intensities and thresholded to identify hotspots most impactful in model predictions.
For UNet and PatchGAN, hotspots primarily included intercarpal joint regions. Particularly for
the UNet, the maps also showed some emphasis on the forearm muscles. Given that the synovial
joints are where an inflammatory imaging algorithm would see the most utility, the fact that both
algorithms placed heavy emphasis on the intercarpal regions was promising, indicating that both
focused on synovitis-relevant regions to make predictions.
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Figure 7. Uncertainty Maps for PatchGAN and UNet Pipelines. Uncertainty maps for the PatchGAN
generator and baseline UNet were generated by corrupting the latent space of all encoding path
outputs, adding Gaussian noise with a mean of 0 and a standard deviation of 0.5 for 100 iterations,
and calculating the variance in the predicted pixel magnitudes for each output pixel across these
iterations. The most variant pixels were designated as the most uncertain ones. For the PatchGAN,
the uncertain regions were mainly in the background, muscles, and within bones. For baseline
UNet, the uncertainty maps placed a heavy emphasis on the intercarpal joint, with some residual
highlighting of background. In conjunction with occlusion maps, PatchGAN generator predictions
were more confident and less uncertain within intercarpal joint regions compared to the baseline
UNet. Considering that the intercarpal joint is crucial for synovitis diagnosis and is where both
algorithms would be the most useful, the PatchGAN’s confident predictions within it were promising.

4. Discussion

In this work, we developed multiple strong-performing DL pipelines that synthetically
generate post-contrast coronal IDEAL T1 wrist MR images from pre-contrast coronal IDEAL
T1 wrist images, marking steps toward synthetic inflammatory imaging of MSK tissues
for conditions such as RA. Reconstruction metrics show reasonably strong performances
for UNet and PatchGAN pipelines without generator decoding path deconvolutions—
PatchGAN nRMSEs in the wrist were 7.68 ± 1.41 (6.07 ± 1.22 after registration,
mean ± standard deviation (s.d.)) and for the UNet they were 5.38 ± 0.73 (4.36 ± 0.60
after registration, mean ± s.d.). Standard reconstruction metrics—nRMSE, PSNR, and
SSIM—showed the UNet to have superior performance across full volumes and within the
wrist, but purely in the synovial joints, where a pipeline like this would see the most utility,
the PatchGAN outperformed the UNet. These findings provide yet additional evidence
to a growing body of literature which suggests that standard reconstruction metrics do
not provide great correlation with clinically useful metrics when evaluated in a classical
fashion (across an entire tissue) [44,45,49]. This, in addition to a perceptually stronger
performance replicating sharper textures (particularly within muscles and bones, but at
times in the synovial joints as well), shows the PatchGAN pipeline without deconvolutions
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to be the strongest tested version and with the most potential for eventual clinical use with
further development. Additionally, enhancement maps showed that while both pipelines
exhibited similar performance in identifying the location of the top 10% of enhancing pixels,
the PatchGAN did a substantially better job in preserving the enhancement magnitudes.
These trends particularly held in the muscles and vessels, but also in many synovial joints.

To build clinicians’ trust in medical image processing algorithms, experiments such
as the proposed occlusion map and uncertainty analyses are vital to address the criticism
of deep learning algorithms being “black boxes”. These techniques yielded notable in-
sights in the PatchGAN and UNet pipelines: occlusion maps showed that both pipelines
focused heavily on intercarpal regions and synovial joints as a basis for generating model
predictions. At the same time, uncertainty maps yielded diverging conclusions: whereas
the PatchGAN was most uncertain in background, muscles, and within bones, the UNet
pipeline was the most uncertain within the intercarpal joints themselves. Given that in-
tercarpal joints—and more generally synovial joints—are where a synthetic inflammatory
imaging algorithm would see maximal utility in RA imaging, it is extremely encouraging
that the PatchGAN based much of its predictions on the intercarpal joints and was rela-
tively confident in its predictions. This, combined with the superior reconstruction metrics
obtained in synovial joints by the PatchGAN as compared to the UNet, confirms it to be the
pipeline with the most potential for clinical utility, and indicates that the combination of
a GAN and a focused, ROI-based loss can yield promising results for optimizing image
synthesis algorithms. Uncertainty and occlusion map approaches such as those applied in
this work are straightforward to implement and can be extended to other deep learning
applications such as image synthesis, image segmentation, and image reconstruction. In
doing so, they can make the findings of such algorithms easier to interpret while providing
valuable insights into how they work. From a clinical perspective, they can not only build
trust in algorithm outputs, but also direct a radiologist’s attention to uncertain regions in
an image that require closer examination.

The exploration of architectural designs also yielded interesting insights. Checker-
boarding artifacts have long been reported as a shortcoming of CNNs, and more specifically
UNets, with many strategies being proposed to mitigate them [50–52]. Our investigation
of UNet pipelines with and without one such mitigating strategy—replacing deconvolu-
tions with interpolation and standard convolutions—showed checkerboarding artifacts
to be widespread in larger areas of relatively homogenous pixel intensity with the stan-
dard deconvolutions, but absent with the mitigating strategy implemented. When paired
with a PatchGAN discriminator, even a UNet generator with deconvolutions resolved
the checkerboarding artifacts in larger homogenous pixel intensity areas, but saw minor
checkerboarding emerge at the boundaries between pixel intensities. Checkerboarding
artifacts are thus intrinsic to the standard UNet architecture, and among the tasks a dis-
criminator must learn in adversarial training is their removal. When deconvolutions are
replaced with interpolation and standard convolutions, the artifact removal responsibility
is simplified for a GAN discriminator, in theory allowing the discriminator to focus on
more minute differences between real and synthetic images and, thus, possibly producing
stronger synthetic images. These lessons can be translated to GAN training strategies
in other settings—training schemes may yield stronger results after the thorough inspec-
tion of generator architectures to ensure that obvious artifacts are not intrinsic to the
network design.

It is clear from our work that larger sample sizes are needed to derive statistical conclu-
sions with more power and to assess algorithm efficacy stratifying by race, RA status, and
others. However, this study nonetheless serves as a strong proof-of-concept indicating the
potential for DL algorithms to synthesize post-contrast images for inflammatory imaging
in MSK applications. Importantly, these algorithms can synthesize images in a negligible
amount of time, essentially providing free information for radiologists examining inflam-
mation, even for the many patients for whom contrast MR sequences would otherwise
not be prescribed. With additional validation, and through building clinicians’ trust in
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these algorithms, they can allow for safer, more comfortable, and less time-consuming RA
diagnosis and treatment through synthetic imaging. Beyond the proof-of-concept wrist
RA post-contrast synthesis, this work can seed new efforts in other MSK applications
such as synthetic RA imaging in other joints [53], synthetic screening for sarcoma [54],
more thorough investigations associating contrast and non-contrast MRI of Hoffa’s fat
pad with pain [55], larger cohort studies assessing bone perfusion [56], and safer imaging
techniques to diagnose spondylodiscitis [57]. In all these applications, Gd is administered
in standard imaging protocols, so similar datasets can be curated and used to train syn-
thetic post-contrast imaging algorithms to reduce and hopefully eliminate the need for Gd
administration. Furthermore, validated algorithms could synthesize post-contrast images
from existing large datasets such as the Osteoarthritis Initiative (OAI), K2S, and fastMRI+ to
allow for large cohort studies to facilitate a better understanding of inflammation [58–60].

This study had several limitations. Ideally, there would be a true comparison of
algorithm performance in patients with and without RA to ensure strong performance in
both, but ethical considerations prevented us from administering Gd to healthy controls.
In the absence of this, we used RAMRIS scores to stratify RA patients into subgroups of
those with and without imaging findings of RA for a pseudo-control study, but this is
not a true control study. Furthermore, the desire to compare algorithm performance in
patients with and without imaging findings of RA in a pseudo-control study, combined
with the small dataset size, led to some imbalance in demographic characteristics across
training, validation, and test datasets. Namely, test set patients had the least severe RA.
Additionally, pre-Gd coronal IDEAL images were registered to corresponding post-Gd
images in data preprocessing. Radiologist anomaly segmentations were performed only on
post-Gd images, so doing so allowed segmentations to be used in weighting loss functions
and assessing model performance in anomalous regions, but this registration step would
not be possible at the inference time. There was thus a tradeoff between optimizing trained
algorithms for strong performance in synovial joints and using a realistic workflow for
eventual clinical utility; the authors viewed the former as more important in a proof-of-
concept approach. Lastly, standard imaging protocols would typically use T1 pre-contrast
scans and fat-saturated post-contrast T1 scans for RA imaging. Our approach used IDEAL
scans before and after contrast administration, as these sequences were available in our
dataset, but for true clinical translation an algorithm should be trained on these other
sequences. The structure of our dataset thus conferred many limitations on our work, but
nonetheless, it represents a meaningful first step towards making synthetic inflammatory
imaging a larger research focus for the MSK community.

5. Conclusions

To the best of the authors’ knowledge, our work marks the first concerted effort at
leveraging DL for synthetic inflammation imaging for an MSK application. We developed
PatchGAN and baseline UNet pipelines that showed strong performance synthesizing
post-contrast IDEAL T1 images from corresponding pre-contrast IDEAL T1 images, with the
PatchGAN pipeline outperforming the UNet in synovial joints, generating more accurate
and confident predictions where a model would have the most utility. The PatchGAN also
showed magnitudes of signal enhancement that more closely match that of ground truth
images and retained sharp textures in synthetic images. As such, the PatchGAN model
was particularly promising in synthesizing post-contrast inflammatory images, and with
further development, it could reduce or eliminate the need for Gadolinium administration
in treating patients with RA. There are numerous future directions for research: (1) more
sophisticated GANs such as CycleGAN can be implemented to improve the sharpness
in reconstructed images; (2) generator architectures that learn registration transforms
and predict images can also be investigated, eliminating the need for the registering of
pre-Gd images to post-Gd images, which would not be possible at inference time in the
clinic; (3) investigating other loss functions, such as other types of GAN distances; and
(4) assessing model robustness by inferring from conventional wrist coronal T1 scans
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to evaluate predicted post-contrast scans on conventionally used clinical sequences in
inflammatory imaging. For substantial progress, however, the MSK field will require
concerted efforts to curate larger datasets for inflammatory RA conditions that will allow
for more statistically powerful conclusions, more complicated models, and comparisons
across population subgroups. Our hope is that the promise of our results can motivate
efforts to do so.
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Figure A1. Example Registrations. Coronal IDEAL pre-Gd slices were registered to coronal IDEAL
post-Gd slices to account for motion and slight alterations in patient position that occurred between
the sequences. Registration was done on a per-volume basis in a three-stage algorithm: (1) translation,
(2) affine, and (3) third order b-spline registration (maximum iterations = 256, 256, 512, respectively;
Advanced Mattes Mutual Information criteria). B-spline registration was done for patients where
SSIM between unregistered Pre-Gd and Post-Gd scans was above 0.5, which was used as a proxy for
detecting motion artifacts so severe that any non-linear registration would lead to overfitting.
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Figure A2. Example Anomaly Distance Map. Example anomaly segmentations and corresponding
anomaly segmentation maps that would result and be used to weight pixel-based L1 loss functions
during training.
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Figure A3. Sample Hyperparameter Search Slices. Examples of 10-epoch training results across
one slice for the PatchGAN pipeline. The metrics are listed below the images, the first for the
entire imaging slice and the second for only wrist tissue. After initially screening hyperparameter
configurations using the SSIM and nRMSE validation sets, optimal hyperparameter combinations
were selected based on visual inspection, with the primary criteria being the synthesis of new
information, the fidelity of reconstructed volumes to ground truth, and the absence of obvious
algorithm-generated artifacts. Models with optimal hyperparameter sets were then trained from
scratch for 35 epochs.

Table A1. MR Acquisition Parameters. Acquisition parameters for the 64 scanned volume pairs in
the 27-patient dataset of RA patients. The parameters for any given patient at any given time point
were the same for both pre- and post-Gadolinium coronal T1 IDEAL wrist scans.

Scanner GE Signa Discovery MR750w
Coil 8-channel HD Wrist Array
Field Strength 3T
Slice Thickness 2 mm
Spacing between Slices 2 mm
TR 457–793 ms
TE 10.06–12.48 ms
Frequency 127.8 Hz
Bandwidth 195.3 Hz (384 × 256, n = 58), 390.6 Hz (256 × 224, n = 6)
Acquisition Matrix 384 × 256 (n = 58), 256 × 224 (n = 6)
Flip Angle 90 (n = 2) or 111 (n = 62)
SAR 1.578–3.259
Pixel Spacing 0.234 × 0.234 mm (n = 58), 0.469 × 0.469 mm (n = 6)
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Table A2. SSIM for Full Volumes and Wrist Tissue from Hyperparameter Search. SSIMs obtained
for 10-epoch trains of all 70 hyperparameter combinations for the PatchGAN pipeline. The top 12
performing parameter sets by SSIMs are highlighted in bold, and were visually examined to find the
best-performing parameter set.

λB
λGAN 0 0.025 0.050 0.075 0.100 0.150 0.200

0.001
Full 0.596 0.590 0.593 0.560 0.584 0.573 0.572

Wrist 0.713 0.713 0.718 0.708 0.711 0.712 0.705

0.002
Full 0.555 0.553 0.548 0.537 0.567 0.557 0.556

Wrist 0.697 0.709 0.673 0.662 0.715 0.694 0.690

0.003
Full 0.538 0.577 0.541 0.590 0.538 0.634 0.592

Wrist 0.681 0.703 0.689 0.712 0.665 0.747 0.725

0.004
Full 0.496 0.550 0.582 0.594 0.548 0.555 0.581

Wrist 0.713 0.680 0.705 0.711 0.709 0.707 0.709

0.005
Full 0.591 0.554 0.585 0.575 0.584 0.622 0.578

Wrist 0.721 0.698 0.708 0.692 0.721 0.738 0.716

0.006
Full 0.519 0.527 0.596 0.583 0.565 0.505 0.577

Wrist 0.695 0.687 0.705 0.703 0.698 0.687 0.703

0.007
Full 0.557 0.587 0.607 0.491 0.579 0.555 0.56

Wrist 0.712 0.714 0.722 0.682 0.703 0.695 0.685

0.008
Full 0.561 0.567 0.585 0.553 0.565 0.526 0.567

Wrist 0.694 0.732 0.715 0.688 0.717 0.675 0.681

0.009
Full 0.560 0.510 0.624 0.550 0.571 0.580 0.507

Wrist 0.684 0.674 0.748 0.705 0.693 0.704 0.703

0.010
Full 0.518 0.496 0.574 0.582 0.502 0.567 0.632

Wrist 0.689 0.720 0.733 0.701 0.646 0.694 0.737

Table A3. nRMSEs for Full Volumes and Wrist Tissue from Hyperparameter search. nRMSEs obtained
for 10-epoch trains of all 70 hyperparameter combinations for the PatchGAN pipeline. The top 12
performing parameter sets by nRMSEs are highlighted in bold and were visually examined to find
the best-performing parameter set.

λB
λGAN 0 0.025 0.050 0.075 0.100 0.150 0.200

0.001
Full 11.5 6.1 11.4 7.8 14.8 8.7 24.1

Wrist 11.1 5.8 10.8 7.4 14.5 8.2 23.1

0.002
Full 12.6 9.7 6.2 10 23.9 20.3 20.3

Wrist 12 9.1 5.9 9.5 23.7 20 20.1

0.003
Full 10.6 12 9.9 10.6 38.4 10.1 12.6

Wrist 10.2 11.2 9.5 10 38.1 9.6 11.7

0.004
Full 9.2 18.5 22.5 11.6 10 33.8 10

Wrist 8.8 18 21.8 11.1 9.7 33.4 9.5

0.005
Full 12.8 16.7 11.8 11.3 15.3 24.5 18.9

Wrist 12.4 15.9 11.3 10.6 14.9 24.2 18.3

0.006
Full 21.2 6.2 17.9 13.1 5.8 14.5 12.3

Wrist 20.9 5.9 17 12.6 5.5 13.9 11.1

0.007
Full 10.1 6.4 22 11.4 10.4 8.9 19.1

Wrist 9.5 6.1 21.4 11 9.9 8.4 18.1

0.008
Full 9.9 11.4 9.4 8.9 9.6 9.8 7.9

Wrist 9.3 10.9 9 8.4 9.2 8.9 7.5

0.009
Full 15.3 47 10.5 12.7 9.9 10.7 13.2

Wrist 14.7 7.4 10 12.4 9.5 10.3 12.6

0.010
Full 10.9 12.9 11 10.6 15.4 6.8 8.7

Wrist 10.5 12.6 10.4 10.1 14.7 6.4 8.4
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Table A4. Reconstruction Metrics for Patients with and without Imaging Findings of RA. Bulk
reconstruction metrics in full imaging volumes, wrist tissue, and synovial joints in patients without
imaging findings of synovitis (RAMRIS = 0, n = 2) and patients with imaging findings of synovitis
(RAMRIS > 0, n = 5) within the test set. All metrics were evaluated on a per-patient basis. Small sample
sizes prevent proper statistical comparisons, but reconstruction metrics were generally stronger for
RAMRIS > 0 patients, as expected given the strong bias of this dataset towards RAMRIS > 0 patients
(23 of 27 patients).

RAMRIS = 0 RAMRIS > 0
Full Wrist Only Synovial Joints Full Wrist Only Synovial Joints

Pre-Gd
nRMSE 23.95 ± 4.71 23.72 ± 4.83 133.52 ± 43.31 27.24 ± 10.27 26.94 ± 10.43 310.93 ± 159.54
PSNR 17.76 ± 0.38 17.89 ± 0.38 9.38 ± 0.40 17.77 ± 1.10 17.95 ± 1.23 8.77 ± 1.90
SSIM 0.62 ± 0.03 0.75 ± 0.01 0.59 ± 0.03 0.73 ± 0.01

PatchGAN
Reg.

nRMSE 7.13 ± 0.80 6.85 ± 0.77 28.20 ± 11.85 6.55 ± 0.75 6.26 ± 0.73 21.12 ± 2.37
PSNR 20.44 ± 0.52 20.68 ± 0.51 11.53 ± 2.19 20.90 ± 0.64 21.16 ± 0.65 12.33 ± 0.64
SSIM 0.58 ± 0.02 0.72 ± 0.00 0.58 ± 0.02 0.73 ± 0.01

PatchGAN
Unreg.

nRMSE 8.93 ± 0.69 8.65 ± 0.68 36.44 ± 17.23 8.28 ± 1.09 7.96 ± 1.06 25.98 ± 2.54
PSNR 19.54 ± 0.34 19.73 ± 0.33 10.60 ± 2.45 19.98 ± 0.75 20.21 ± 0.75 11.49 ± 0.76
SSIM 0.56 ± 0.02 0.70 ± 0.00 0.56 ± 0.02 0.71 ± 0.01

UNet Reg.
nRMSE 7.26 ± 0.20 7.00 ± 0.17 28.74 ± 10.61 5.90 ± 0.73 5.67 ± 0.76 25.15 ± 5.39
PSNR 21.36 ± 0.07 21.57 ± 0.04 11.26 ± 1.58 22.30 ± 0.49 22.54 ± 0.51 11.71 ± 0.40
SSIM 0.68 ± 0.02 0.78 ± 0.01 0.69 ± 0.02 0.79 ± 0.01

UNet
Unreg.

nRMSE 8.35 ± 0.45 8.11 ± 0.45 31.51 ± 9.96 7.48 ± 1.09 7.24 ± 1.09 28.96 ± 6.28
PSNR 20.82 ± 0.15 21.00 ± 0.14 10.67 ± 1.36 21.36 ± 0.67 21.57 ± 0.67 11.10 ± 0.51
SSIM 0.67 ± 0.02 0.77 ± 0.01 0.68 ± 0.02 0.78 ± 0.01
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