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Simple Summary: Differentiating atypical lipomatous tumors from lipomas on MR images is a
challenging task due to similar imaging characteristics. Given these challenges, it would be highly
beneficial to develop a reliable diagnostic tool, thereby minimizing the need for invasive diagnostic
procedures. Therefore, the aim of this study was to develop and validate radiogenomic machine-
learning models to predict the MDM2 gene amplification status in order to differentiate between ALTs
and lipomas on preoperative MR images. The best machine-learning model was based on radiomic
features from multiple MR sequences using a LASSO algorithm and showed a high discriminatory
power to predict the MDM2 gene amplification. Due to the varying settings in which patients with
lipomatous tumors present, this model may enhance the clinical diagnostic workup.

Abstract: Background: The aim of this study was to develop and validate radiogenomic models
to predict the MDM2 gene amplification status and differentiate between ALTs and lipomas on
preoperative MR images. Methods: MR images were obtained in 257 patients diagnosed with ALTs
(n = 65) or lipomas (n = 192) using histology and the MDM2 gene analysis as a reference standard.
The protocols included T2-, T1-, and fat-suppressed contrast-enhanced T1-weighted sequences.
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Additionally, 50 patients were obtained from a different hospital for external testing. Radiomic
features were selected using mRMR. Using repeated nested cross-validation, the machine-learning
models were trained on radiomic features and demographic information. For comparison, the
external test set was evaluated by three radiology residents and one attending radiologist. Results:
A LASSO classifier trained on radiomic features from all sequences performed best, with an AUC
of 0.88, 70% sensitivity, 81% specificity, and 76% accuracy. In comparison, the radiology residents
achieved 60–70% accuracy, 55–80% sensitivity, and 63–77% specificity, while the attending radiologist
achieved 90% accuracy, 96% sensitivity, and 87% specificity. Conclusion: A radiogenomic model
combining features from multiple MR sequences showed the best performance in predicting the
MDM2 gene amplification status. The model showed a higher accuracy compared to the radiology
residents, though lower compared to the attending radiologist.

Keywords: radiomics; machine learning; soft-tissue sarcomas; radiology; MRI

1. Introduction

Lipomatous tumors are the most common neoplasms encountered by physicians and
the most frequent soft-tissue tumors of the extremities [1]. Of these, 40 to 45% are benign
adipocytic tumors (lipomas) or atypical lipomatous tumors (ALTs) [2–5]. Lipomas only re-
quire treatment if the mass effect causes symptoms such as pain or functional disorders [6].
ALTs may show locally aggressive growth and may dedifferentiate into high-grade sarco-
mas [7–10]. Therefore, ALTs are typically resected [11]. Histopathological differentiation
relies on the detection of atypical hyperchromatic nuclei and the immunohistochemical
evaluation of the molecular analysis of the mouse double minute 2 (MDM2) gene [12].
However, the detection of these atypical hyperchromatic cells can be challenging since
they are frequently scattered throughout the lesion, and detection is often complicated by
fibrous septa, subsequently requiring a careful analysis of the entire tumor [12–14]. Previ-
ous studies have shown that the MDM2 amplification status is the most accurate marker
to differentiate ALTs and lipomas, and there is a tendency towards sampling errors if the
MDM2 status is not determined [12,15–17]. Unfortunately, the majority of MR imaging
studies differentiating ALTs from lipomas did not include a molecular analysis, or only
performed a molecular analysis in a subset of patients [6,14,18,19].

MR imaging is the standard imaging modality for the assessment of soft-tissue tumors
due to its excellent soft-tissue contrast [20–22]. Specific imaging features such as the tumor
size, tumor location, presence of thick septa, and amount of contrast uptake can be used
to differentiate ALTs from lipomas [6,13,18,19,23]. However, since there is a substantial
overlap between these imaging features in both tumor types, differentiating ALTs from
lipomas is a challenging task. Moreover, previous studies of systematic radiologic readings
have reported relatively low inter-observer reproducibility, with a kappa agreement ranging
from 0.17 to 0.42 [13,19,24]. Given these challenges, it would be highly beneficial to develop
a reliable diagnostic tool to differentiate ALTs from lipomas on preoperative MR images,
thereby minimizing the need for invasive diagnostic procedures.

Machine-learning techniques, including imaging-based radiomics, permit a non-
invasive detailed analysis of a tumor phenotype by using a quantitative imaging feature
analysis [25,26]. However, one of the main challenges of radiomic models includes repro-
ducibility in different datasets [27,28]. Therefore, the aim of this study was to develop and
validate radiogenomic machine-learning models based on multiparametric MR examina-
tions to predict the MDM2 gene amplification status in order to differentiate between ALTs
and lipomas on preoperative MR images. The models were evaluated using an independent
external cohort for testing and were compared to the performance of radiologists.
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2. Materials and Methods

The local institutional review boards approved this retrospective multi-center study
(ethics committee 666/21 S) The study was performed in accordance with our institutional
ethic guidelines and the 1964 Declaration of Helsinki and its later amendments. Written
and informed consent was waived for this retrospective anonymized analysis.

2.1. Datasets

We retrospectively reviewed the records of all patients with lipomatous tumors in the
upper or lower extremities or trunk that had surgery performed at our sarcoma referral
center between 2010 and 2021 (n = 573). Of these, 424 patients had a histologically con-
firmed diagnosis of a lipoma or an ALT. The MDM2 amplification status, determined by
fluorescence in situ hybridization (FISH) of the MDM2 gene locus, was available for n = 257
patients. Patients without an MDM2 amplification status were excluded. Therefore, in the
final dataset, both the histology and the MDM2 gene amplification status were available
for all patients. Two senior pathologists specializing in the analysis of soft-tissue tumors
provided a final consensus diagnosis based on the MDM2 gene amplification status and
histology according to the World Health Organization criteria. The patient selection process
is shown in Figure 1.
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Figure 1. Subject selection flowchart. ALT = atypical lipomatous tumor; MDM2 = murine double
minute.

In addition, an external test set was obtained from a further sarcoma referral center,
the University Hospital of Freiburg (M1), for final independent testing and geographical
validation. The external test set included patients with a diagnosis of a lipoma or an ALT
confirmed by their histology and MDM2 amplification status.



Cancers 2023, 15, 2150 4 of 14

2.2. MR Imaging Protocol and Image Segmentation

Pre-operative MR images were acquired using 3 or 1.5 Tesla scanners. Sequences
were acquired in at least two planes that were oriented along the short and longitudinal
axes of the long articulating bone(s). The protocols included a T2-w turbo spin echo (TSE)
sequence (T2w), a T1-w TSE sequence (T1w), and a fat-saturated T1-w TSE sequence after
the administration of a contrast agent (T1fsgd). Detailed information on the acquisition
parameters is provided in Supplementary Material Table S1.

To define the volumes of interest (VOIs), tumor segmentations were performed manu-
ally by two radiology residents (S.C.F. and G.C.F.) using the open-source software 3D Slicer
(3D Slicer, Version 4.8, stable release) and extracted as Neuroimaging Informatics Technol-
ogy Initiative (NIfTI) label maps for further analysis. Multiple delineations were performed
by S.C.F. and G.C.F. in 20 randomly selected patients to account for inter-reader variability.

2.3. Radiomic Feature Extraction and Machine-Learning Model Development

All preprocessing steps and radiomic feature extractions were conducted in accor-
dance with the Imaging Biomarker Standardization Initiative guidelines [29] using the
Python package PyRadiomics (version 2.2) implemented in Python (3.7), as previously
described [30]. Image discretization was conducted using a bin width of 10 to achieve a
bin count between 16 and 128, as recommended by the pyradiomics documentation [31].
Image intensity normalization was achieved via redistributing the image at the mean with
a standard deviation and a scale of 100. Bspline interpolation was used to perform isotropic
resampling to a voxel size of 1 × 1 × 1 mm of the image and VOI mask. A total of 104 fea-
tures were extracted from the original image of each sequence within the segmented label
map (resulting in a total of 312 radiomic features), including first-order features, shape fea-
tures, and texture features. The latter comprised “gray-level co-occurrence matrix” features,
“gray-level size-zone matrix” features, “gray-level run-length matrix” features, “neighbor-
ing gray-tone difference matrix” features, and “gray-level dependence matrix” features. No
features were extracted from filtered versions of the image due to a missing IBSI consensus.
A detailed list of all extracted features is provided in Supplementary Material Table S2.
Feature values were transformed to a common scale using min–max normalization in order
to conserve their original distribution in the [0,1] range. Data normalization was performed
prior to splitting the data into training and testing groups due to the batch harmonization
step requirements. Nonparametric ComBatBatch harmonization was applied to account for
the variability introduced by different MR scanners, as described previously [30]. Clinical
features such as age, sex, and body region of the tumor (torso/head, upper extremity,
or lower extremity) were also included. Categorical features were encoded into dummy
numeric arrays using one hot encoder. All radiomic features susceptible to segmentation
variations were excluded using a threshold intraclass correlation coefficient (ICC 3,1) of 0.8.
This statistic resulted in 5, 15, and 4 radiomic features that were excluded from the T1w,
T2w, and T1fsgd sequences, respectively. ICC 3,1 was chosen, as the raters were not rated
as representative of a defined rater group due to their differing extents of training.

An estimate of the number of reduced features to use was calculated using a prin-
cipal component analysis (PCA) with 95% of data variance: 11 to 13 features for the
individual sequences (T1w, T2w, and T1fsgd) and 19 to 21 features for the combined fea-
tures of all sequences. Each respective number of features was selected using minimum
redundancy–maximum relevance (MRMR). Synthetic minority over-sampling and random
under-sampling of the majority class were used to counteract the class imbalance. The
ratios were tuned to find an optimal balance between data augmentation and data discard,
with ratios of 0.5–0.6:1 after SMOTE and 0.6–0.8:1 after the random under-sampling of the
majority class. The remaining class imbalance was handled by using balanced accuracy
as the optimization criteria during hyperparameter optimization. Four machine-learning
algorithms were implemented and compared in their performance: the support vector ma-
chine (SVM), the random forest classifier (RFC), the least absolute shrinkage and selection
operator (LASSO; built from a stochastic gradient descent classifier), and a fully connected,
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feedforward artificial neural network (ANN; multilayer perceptron classifier). A flow chart
of the data processing and analysis of the radiomic features can be found in Supplementary
Material Figure S1. For each algorithm, models were developed by (i) using demographic
information only, (ii) using radiomic features for each individual sequence (T1w, T2w, or
T1fsgd), (iii) using the radiomic features of all sequences, and (iv) using a combination of
both the radiomic features of all sequences and demographic information. An overview of
the radiomic workflow is shown in Figure 2.
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2.4. Model Optimization, Evaluation, and Statistical Analysis

Training and validation were performed using 3-fold nested cross-validation with
50 repetitions for statistical robustness, for a total of 150 averaged iterations per modeling
algorithm and dataset. Hyperparameter optimization was conducted using an exhaustive
grid search. This step was performed in the inner fold, after the feature selection step via
MRMR, to prevent data leakage. Balanced accuracy was used as the optimization criterion
to determine the best set of hyperparameters.

The performance of the models was evaluated with the area under the curve (AUC)
obtained from the receiver–operator curve (ROC), plotted after averaging the yielded
values. We also included the accuracy, sensitivity, and specificity as the output measures.
For an unbiased evaluation, a final cross-validation step was implemented by selecting
the best values obtained from the internal dataset before evaluating the performance on
the external dataset. Stochastic gradient descent was used to calculate the probability of
each class prediction. Calculations of model metrics were performed using scikit-learn
(version 1.0.2).

For comparison, MR images of the external test set were rated independently by three
radiology residents (I.L., S.C.F., and G.C.F., with 2, 3, and 5 years of experience, respectively)
and one musculoskeletal imaging fellowship-trained radiologist (A.S.G., with 10 years of
experience) experienced in musculoskeletal tumor imaging. All readers were blinded to all
clinical and histopathological findings.
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3. Results
3.1. Study Subjects

A total of 257 patients were included in the internal dataset (192 lipomas, 65 ALTs;
age, 62.4 ± 14.5 years; 125 (48.6%) women). Fifty patients were included in the external
dataset (30 lipomas, 20 ALTs; age, 60.6 ± 12.5 years; 22 (44%) women). All patients had
a lipomatous tumor in one of the following six regions: chest, back, neck, leg, arm, hand,
or foot. In both datasets, the highest number of patients had a tumor located in the leg
(143/257 in the internal dataset and 27/50 in the external dataset), while the fewest number
of patients had a tumor located in the foot (two in the internal dataset and none in the
external dataset). Table 1 provides an overview of the subject characteristics.

Table 1. Patient characteristics.

Patient Characteristics Internal Dataset (n = 257) External Test Set (n = 50)

Age (years) * 62.4 ± 14.5 60.6 ± 12.5
Sex (women) 125 22

Tumor Location (Anatomical
Region)

Chest/Back 19 6
Neck 15 2
Leg 143 27
Arm 75 14
Hand 3 1
Foot 2 0

Lipomas n = 192 n = 30
Age (years) * 62.3 ± 14.4 57.5 ± 11.1
Sex (women) 88 12

Atypical Lipomatous Tumors
(ALT) n = 65 n = 20

Age (years) * 62.5 ± 15 65.2 ± 13.5
Sex (women) 37 10

* Data are given as mean ± standard deviation.

3.2. Evaluation of the Developed Machine-Learning Models

Table 2 shows the final performance of the developed models on the external test set
using demographic information only, radiomic features only (of all sequences combined),
and a combination of demographic and radiomic features. The best-performing machine-
learning model was based on a LASSO algorithm using a combination of all sequences,
achieving an AUC of 0.88 at 70% sensitivity and 81% specificity with an accuracy of 76% on
the external test set. The feature importance table, a confusion matrix, and a boxplot of the
prediction probabilities from this model can be found in Supplementary Material Table S5,
Supplementary Material Figure S2, and Supplementary Material Figure S3, respectively.

The AUC and accuracy for the individual sequences were lower for most models
compared to models based on the radiomic parameters from all sequences combined, with
a more imbalanced sensitivity/specificity. For T1w, the LASSO algorithm yielded an AUC
of 0.83 at 80% sensitivity and 43% specificity with an accuracy of 58%. For T2w, the AUC
was 0.82 at 42% sensitivity and 83% specificity with an accuracy of 69%. The highest AUC
(0.84) was yielded for the T1fsgd sequences, though the sensitivity and specificity were
highly imbalanced at 6% and 100%, respectively, with an accuracy of 60%. The performance
of the developed models for the individual sequences on the external test set is shown in
Supplementary Material Table S3.
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Table 2. Performance of the machine-learning models on the external test set using demographic
information or radiomic features only, as well as combining radiomic features and demographic
information for the following model architectures: least absolute shrinkage and selection operator
(LASSO), support vector machine (SVM), random forest classifier (RFC), and an artificial neural
network (ANN). External performance represents the values yielded when a final cross-validation
step considering only the best 150 best hyperparameter sets was implemented to predict the external
test set.

Model
Architecture Score Demographic

Features
Combined
Sequences

Combined Sequences +
Demographic

Features

LASSO

AUC * 0.56 (0.540.58) ± 0.07 0.88 (0.85–0.91) ± 0.07 0.72 (0.66–0.78) ± 0.15
Accuracy 0.58 0.76 0.77
Sensitivity 0.05 0.70 0.40
Specificity 0.93 0.81 1.00

SVM

AUC * 0.54 (0.51–0.57) ± 0.12 0.84 (0.80–0.88) ± 0.11 0.85 (0.82–0.88) ± 0.09
Accuracy 0.56 0.53 0.69
Sensitivity 0.10 0.90 0.80
Specificity 0.87 0.31 0.63

RFC

AUC * 0.63 (0.61–0.65) ± 0.06 0.87 (0.85–0.89) ± 0.05 0.87 (0.85–0.89) ± 0.05
Accuracy 0.50 0.69 0.69
Sensitivity 0.00 0.50 0.40
Specificity 0.83 0.81 0.88

ANN

AUC * 0.68 (0.66–0.70) ± 0.08 0.81 (0.77–0.85) ± 0.10 0.81 (0.77–0.85) ± 0.10
Accuracy 0.60 0.69 0.65
Sensitivity 0.00 0.70 0.60
Specificity 1.00 0.69 0.69

* Data are given as mean (95% confidence interval) ± standard deviation.

Interestingly, combining radiomic features and demographic information as the input
for the machine-learning models did not improve the performance of the LASSO algorithm
to differentiate ALTs from lipomas and resulted in a decrease in the sensitivity from 70%
to 40%, though the specificity increased to 100%. The averaged nested cross-validation
results of the internal dataset are shown in Supplementary Material Table S4. The training
parameters and source code can be found online (https://github.com/deedeedav/alt-
lipoma-radiomics (accessed on 9 March 2023)). Figure 3 shows an example of an ALT with
typical imaging findings encasing the right gracilis muscle, while Figure 4 shows a typical
example of a well-defined intramuscular lipoma in the right posterior thigh. Both cases
were identified correctly by the machine-learning model.

3.3. Comparison with Radiologists

The results of the independent radiological readings of the external test are shown in
Table 3. The radiology resident with 2 years of experience achieved an accuracy of 60%, a
sensitivity of 55%, and a specificity of 63%; the resident with 3 years of experience achieved
an accuracy of 70%, a sensitivity of 60%, and a specificity of 77%; and the radiology resident
with 5 years of experience achieved an accuracy of 70%, a sensitivity of 80%, and a specificity
of 63%. In comparison, the attending radiologist that was experienced in musculoskeletal
tumor imaging achieved an accuracy of 90%, a sensitivity of 96%, and a specificity of
87%. Compared to the radiology residents, the model showed a higher accuracy and
higher specificity, while the sensitivity was lower compared to the resident with 5 years
of experience, but higher compared to the residents with 2 or 3 years of experience. The
attending radiologist had a higher accuracy, sensitivity, and specificity. Figure 5 shows an
ALT with atypical imaging findings located subcutaneously. The machine-learning model
and the attending radiologist classified this tumor as an ALT, while all residents classified
this tumor as a lipoma.

https://github.com/deedeedav/alt-lipoma-radiomics
https://github.com/deedeedav/alt-lipoma-radiomics
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Figure 3. Lipomatous tumor in the medial right thigh, encasing the gracilis muscle (G). (A) The
axial T2-weighted and (B) axial T1-weighted MR images show a large heterogeneous tumor with
thick septa. (C) Septal contrast enhancement on the coronal T1-weighted images with fat saturation.
(D) The machine-learning algorithm classified the tumor as an ALT with a probability of 99.8%. This
diagnosis was confirmed by pathology and immunohistochemistry after surgical resection.
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Figure 4. Axial T2-weighted (A) and T1-weighted (B) MR images showing a well-defined intramuscu-
lar lipomatous tumor (lipoma) in the right posterior thigh without significant contrast enhancement
on the axial T1-weighted image with fat saturation (C). (D) The machine-learning model classified
this tumor as a lipoma (probability of 97.8%). This was in accordance with the diagnosis made by the
radiology residents and the attending radiologist.

Table 3. Performance of the radiology residents with 2, 3, or 5 years of experience and the fellowship-
trained radiologist that was experienced in musculoskeletal tumor imaging. Readers were blinded to
all clinical and histopathological findings.

Score Radiology
Resident, 2y

Radiology
Resident, 3y

Radiology
Resident, 5y

Fellowship-Trained
Radiologist

Accuracy 0.60 (30/50) 0.70 (35/50) 0.70 (35/50) 0.90 (45/50)
Sensitivity 0.55 (11/20) 0.60 (12/20) 0.80 (16/20) 0.96 (19/20)
Specificity 0.63 (19/30) 0.77 (23/30) 0.63 (19/30) 0.87 (26/30)
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Figure 5. Sagittal T2-weighted (A) and axial T1-weighted (B) MR images of a lipomatous tumor
located subcutaneously, anteromedial to the right proximal tibia. (C) A sagittal T1-weighted image
with fat saturation shows a moderate septal contrast enhancement. All radiology residents classified
this tumor as a lipoma, while the attending radiologist classified this tumor as an ALT. (D) The
machine-learning algorithm also classified this tumor as an ALT with a probability of 71.6%. The
diagnosis of an ALT was confirmed by pathology after surgical resection.

4. Discussion

In this study, machine-learning models were developed and validated to predict the
amplification status of the MDM2 gene, to differentiate between atypical lipomatous tumors
and lipomas on preoperative MR images, and to compare the results to the performance
of radiologists using an external test set. The best-performing model was based on the
combination of all MR sequences and achieved an AUC of 0.88 at 70% sensitivity and 81%
specificity with an accuracy of 76%. In comparison, the accuracy of the readings by all
radiology residents was lower, while the accuracy of the fellowship-trained radiologist was
higher. Notably, the performance of the LASSO algorithm for each individual sequence
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was lower compared to the model that included all sequences (T2w, T1w, and T1fsgd),
suggesting that all sequences are required for optimal discrimination.

Radiomic models for differentiating lipomas from ALTs have previously been devel-
oped in smaller patient cohorts. Leporq et al. evaluated 2D radiomic models of 40 lipomas
and 41 ALTs, including one MR image slice per patient [32]. Their best-performing model
achieved an accuracy of 95% at 100% sensitivity and 90% specificity using the histology
as the reference standard, though no specific information regarding the MDM2 gene am-
plification status was included, which may have led to a false classification of ALTs as
lipomas [32]. Cay et al. evaluated 45 lipomas and 20 ALTs using histology and MDM2
amplification as the gold standards [33]. They achieved an AUC of 0.987 at 96.8% sensitivity
and 93.72% specificity using 1000-fold bootstrapping [33]. However, since there was no
separate test set, the algorithm was likely optimized on data used for validation in another
bootstrapping iteration; therefore, these results may be inaccurately high [33]. A study by
Vos et al. included 116 patients (58 lipomas and 58 ALTs) and used MDM2 amplification as
the reference standard [34]. Their model performance was lower compared to our study,
yielding an AUC of 0.81 at 66% sensitivity and 84% specificity with an accuracy of 75%. An
important limitation of these aforementioned studies is that no external validation on an in-
dependent dataset was included. Also notably, the model performance was comparatively
high in studies based on smaller patient cohorts (n < 90). A possible explanation may be
a lack of variation in smaller datasets, which could affect the reproducibility in different
datasets. However, this is not clear, since no external testing was included.

Interestingly, combining imaging parameters and clinical data did not improve the
performance of most models for differentiating ALTs from lipomas, or only improved
the performance marginally. While some demographic differences have been described
between patients with ALTs and lipomas [23], it is likely that radiomic MR features are
considerably more relevant for differentiating between these tumor types, and including
parameters with less predictive power could hinder the capability of the models to identify
relevant patterns. It should be noted that only a limited number of clinical features were
included (age, sex, and tumor body region). Including additional clinical features may im-
prove the predictive value of the radiomic models. Future studies could also include clinical
outcome parameters to detect image-defined high-risk patients, thereby individualizing
tumor treatment.

Some limitations are pertinent to this study. Since the cohort included only patients
with histopathologically confirmed tumors, this potentially introduced a selection bias.
Moreover, our specialized sarcoma center typically only receives larger or atypical lipomas
on referral, subsequently increasing the amount of particularly challenging lipoma cases in
the dataset. We also used manual segmentations as input for the models, and developing a
pipeline that includes automated segmentations would be highly beneficial. In addition,
more advanced sequences such as diffusion-weighted imaging or pharmacokinetic dynamic
contrast-enhanced imaging were not included in the protocol. Including these sequences
could potentially improve the differentiation between ALTs and lipomas. Finally, the
developed models only differentiated between ALTs and lipomas, and while this is the
most challenging and clinically relevant task, further studies are warranted on the ability
to distinguish among all benign and malignant lipomatous tumors.

The advantages of the current study include its multicenter design, which allowed the
evaluation of the models on an independent external test set, thereby reducing potential
bias introduced by overfitting. Moreover, the dataset used for training was, to the best of
our knowledge, the largest MRI dataset of histopathologically confirmed lipomas and ALTs.
In addition, a histopathological analysis was conducted by pathologists specialized in the
analysis of soft-tissue tumors and included the immunohistochemistry for the assessment of
the MDM2 status in all cases. Furthermore, we excluded inter-/intra-reader segmentation-
dependent features and included variability features, making the model performance more
stable and reliable for other datasets.
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5. Conclusions

In conclusion, radiogenomic models were developed that showed a high discrimi-
natory power for predicting the MDM2 gene amplification status to distinguish between
atypical lipomatous tumors and lipomas on preoperative MR images. The best-performing
model was based on a LASSO algorithm using all MR sequences, with a higher accuracy
compared to radiology residents, suggesting that these algorithms would be particularly
helpful for radiologists with less experience. Due to the varying settings in which patients
with lipomatous tumors present, this model may enhance the clinical diagnostic workup
and improve the detection rate for atypical lipomatous tumors.
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