
Citation: Gaweł-Bęben, K.; Czech, K.;

Luca, S.V. Cannabidiol and Minor

Phytocannabinoids: A Preliminary

Study to Assess Their

Anti-Melanoma, Anti-Melanogenic,

and Anti-Tyrosinase Properties.

Pharmaceuticals 2023, 16, 648.

https://doi.org/10.3390/ph16050648

Academic Editor: Chung-Yi Chen

Received: 16 March 2023

Revised: 14 April 2023

Accepted: 25 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

Cannabidiol and Minor Phytocannabinoids: A Preliminary
Study to Assess Their Anti-Melanoma, Anti-Melanogenic,
and Anti-Tyrosinase Properties
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Abstract: Currently, there is an increased interest from both scientists and consumers in the applica-
tion of cannabis/hemp/phytocannabinoids in skin-related disorders. However, most previous inves-
tigations assessed the pharmacological properties of hemp extracts, cannabidiol (CBD), or tetrahydro-
cannabinol (THC), with very few studies focusing on minor phytocannabinoids from hemp. In this
context, the current work explored the in vitro anti-melanoma, anti-melanogenic, and anti-tyrosinase
effects of cannabidiol (CBD) and three minor phytocannabinoids, namely cannabigerol (CBG),
cannabinol (CBN), and cannabichromene (CBC). Among the tested human malignant melanoma
cells (A375, SH4, and G361), only A375 cells were highly susceptible to the 48 h treatment with the
four phytocannabinoids (IC50 values between 12.02 and 25.13 µg/mL). When melanogenesis was in-
duced in murine melanoma B16F10 cells by α-melanocyte stimulating hormone (αMSH), CBD, CBG,
and CBN significantly decreased the extracellular (29.76–45.14% of αMSH+ cells) and intracellular
(60.59–67.87% of αMSH+ cells) melanin content at 5 µg/mL. Lastly, CBN (50–200 µg/mL) inhibited
both mushroom and murine tyrosinase, whereas CBG (50–200 µg/mL) and CBC (100–200 µg/mL)
down-regulated only the mushroom tyrosinase activity; in contrast, CBD was practically inactive.
The current data show that tyrosinase inhibition might not be responsible for reducing the melanin
biosynthesis in α-MSH-treated B16F10 cells. By evaluating for the first time the preliminary anti-
melanoma, anti-melanogenic, and anti-tyrosinase properties of CBN and CBC and confirming similar
effects for CBD and CBG, this study can expand the utilization of CBD and, in particular, of minor
phytocannabinoids to novel cosmeceutical products for skin care.

Keywords: cannabigerol; cannabichromene; cannabinol; melanin release; B16F10 cells; malignant
melanoma cells; tyrosinase

1. Introduction

With the discovery of the endocannabinoid system in the skin and its involvement
in maintaining skin homeostasis, the interest of both scientists and consumers in the
application of cannabis/hemp extracts or phytocannabinoids in the treatment of skin-
related disorders has increased. Synthesized by hair follicles, epidermal cells, and sebaceous
glands, endocannabinoids in the skin may modulate cannabinoid receptors type 1 and
2 (CB1 and CB2) and transient receptor potential vanilloid-1 (TRPV1); almost all skin
cell types express these receptors. Dysregulation of the endocannabinoid signaling may
lead to eczema, psoriasis, pigmentation disorders, atopic dermatitis, or impaired hair
growth [1,2]. The growing number of scientific publications show that cannabis, hemp,
or cannabinoids (endocannabinoids, phytocannabinoids, synthetic cannabinoids) may
have beneficial effects in ameliorating pruritus [3–5], atopic dermatitis [6], psoriasis [7,8],
acne [9,10], and eczema [11,12]. Among phytocannabinoids, cannabidiol (CBD) might
be suitable for such applications, as it possesses additional anti-inflammatory, analgesic,
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moisturizing, and anti-wrinkle properties [13]. The use of phytocannabinoids in treating
skin problems is also supported by their topical application since a better control of the
active substance concentration at the site of action is expected; thus, the risk of side effects
that might occur upon oral administration is reduced [14]. Non-cancer skin diseases
(e.g., hyper-/hypo-pigmentation disorders linked to impaired melanin biosynthesis and
tyrosinase activity), as well as malignant pathologies (e.g., melanoma), constitute promising
research directions with cannabinoids, as recently reviewed by several authors [2,15–17].

Melanocytes are skin cells that produce endocannabinoids (anandamide, AEA; 2-
arachidonoylglycerol) and their target receptors (CB1, CB2, TRPV1). At high concentrations,
AEA was shown to cause melanocyte apoptosis, whereas, at low concentrations, AEA
induces melanogenesis and activates tyrosinase. Tyrosinase converts L-tyrosine into L-3,4-
dihydroxyphenylalanine (L-DOPA) and, subsequently, into dopaquinone. Thus, tyrosinase
is considered the main enzyme involved in melanin synthesis. The mechanism of AEA-
induced melanogenesis seems to differ from the most common signaling pathways induced
by α-melanocyte stimulating hormone (αMSH) [18]. Due to the undeniable role of endo-
cannabinoids in the homeostasis of melanocytes, the use of phytocannabinoids in treating
malignant melanoma and pigmentation disorders is of particular interest.

Around 80% of skin cancer-related deaths worldwide are associated with melanoma, a
highly metastatic skin cancer whose incidence continues to rise globally [19]. The primary
chemotherapeutics for melanoma treatment are combinations of 5-fluorouracil (5FU) and
cisplatin; these agents selectively promote apoptosis in actively dividing cells by interfering
with DNA synthesis. Selective inhibitors of v-Raf murine sarcoma viral oncogene homolog
B (BRAF), such as temozolomide and dacarbazine, and antibodies targeting T-lymphocyte-
associated protein (CTLA4) have also been used in the modern melanoma therapies [20].
Unfortunately, due to the highly metastatic potential and multiple resistance mechanisms
of melanoma cells, the mortality rate of this disease remains very high [21]. Therefore,
developing novel therapeutic strategies to treat malignant melanoma is critical.

Numerous researchers investigated the anti-proliferative and pro-apoptotic effects of
endocannabinoids, phytocannabinoids, and synthetic cannabinoids in human and murine
melanoma cells [22,23]. Additionally, the data from the in vivo studies confirmed that
phytocannabinoids, alone or in combination, can decrease tumor growth and promote
autophagy and apoptosis in different melanoma models [24]. Most data related to the anti-
melanoma activity of phytocannabinoids come from experiments based on cannabis/hemp
extracts, hemp oils, CBD, or tetrahydrocannabinol (THC). Except for one study showing
the anti-proliferative potential of cannabigerol (CBG) in mouse skin melanoma cells [25],
the influence of other phytocannabinoids has not been previously investigated in vitro or
in vivo. Concerning the pigmentation-regulating properties of cannabis/hemp extracts
or phytocannabinoids, the results are sometimes contradictory. Essential oils, aqueous,
and methanol extracts obtained from hemp flowers downregulated melanin biosynthesis
and inhibited tyrosinase activity [26–28], whereas THC has been shown to inhibit melanin
synthesis in human hair follicles [29]. Furthermore, CBD and THC significantly increased
tyrosinase activity and melanin content in murine melanocytes [30,31]. However, the role
of other phytocannabinoids in regulating melanogenesis has not been described.

Considering the recently increased worldwide interest in cannabis/hemp/
phytocannabinoids-based cosmetic products, there is an imperious need to bring solid
scientific evidence to confirm their safety profile and beneficial effects on the skin. Further-
more, most studies that explored the skin-related effects of phytocannabinoids are generally
limited to CBD or THC. Thus, this work aimed to assess for the first time the in vitro anti-
melanoma, anti-melanogenic, and anti-tyrosinase properties of three minor phytocannabi-
noids from hemp, namely cannabigerol (CBG), cannabinol (CBN), and cannabichromene
(CBC) (Figure 1). The influence of the selected phytocannabinoids on the viability of hu-
man malignant melanoma A375, SH4, and G361 cells was evaluated by the neutral red
uptake assay. The modulation of melanin biosynthesis was assessed in αMSH-stimulated
murine melanoma B16F10 cells by quantifying the extracellular and intracellular melanin
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content. Lastly, the effects on tyrosinase activity were studied in both mushroom and
murine tyrosinase.
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Figure 1. Structure of the phytocannabinoids included in the current study.

2. Results and Discussion
2.1. Influence of Phytocannabinoids on Malignant Melanoma Cell Viability

The influence of four phytocannabinoids (CBD, CBG, CBN, and CBC) previously
isolated from hemp flower extracts [32,33] on the viability of several human malignant
melanomas (A375, SH-4, and G361) cells was initially studied. The results, presented as
concentration-response curves (Figure 2), show that the tested compounds (6.25–100 µg/mL)
were significantly cytotoxic to A375 cells but not to SH4 and G361 cells; in addition, the
four phytocannabinoids did not significantly affect the viability of non-cancer skin BJ
fibroblasts. Based on the calculated IC50 values (Table 1), it can be observed that CBN and
CBC displayed similar cytotoxicity as 5FU (IC50 between 23–30 µg/mL), whereas CBD and
CBG were twice as cytotoxic (IC50~12 µg/mL).

In a previous study, CBD reduced the viability and proliferation of malignant melanoma
(A375, FM55P, SK-MEL-28, and FM55M2) cells in a concentration-dependent manner; the
IC50 values in these cell lines were between 3.81 and 7.75 µg/mL. In addition, the viability
of human immortalized HaCaT keratinocytes was not significantly affected [34]. The lack of
CBD toxicity towards non-cancer skin cells also agrees with the research of Vacek et al. [35],
when no reduction in the viability of HaCaT keratinocytes and normal human dermal
fibroblasts was observed over the concentration range of 0.78–100 µM. Burch et al. [36]
showed that CBD displayed significant cytotoxic effects in murine melanoma B16 cells at
concentrations between 40 and 200 µg/mL. Choi et al. [37] also evaluated the effects of
CBD in A549 cells, demonstrating that CBD exhibited a time- and concentration-dependent
cytotoxicity when applied at concentrations ranging from 5 to 80 µM in a time course
ranging from 6 to 36 h.

The anti-melanoma activity of other endogenous, natural, or synthetic cannabinoids is
also documented. For instance, the endocannabinoid AEA exerted cytotoxic effects in A375
cells via modulation of caspase-dependent apoptotic signaling pathways [38], in the study
of Baek et al. [25], CBG displayed an IC50 value of 31.31 µg/mL in mouse skin melanoma
cells, comparable to the one reported in the current study for A375 cells. Additionally,
THC (1 µM) and a synthetic cannabinoid WIN-55,212-2 (100 nM) inhibited the growth
of melanoma A375 and B16 cells but not of normal melanocytes [39]. However, to the
author’s knowledge, the anti-melanoma effects of CBN and CBC are presented herein for
the first time.
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Figure 2. Concentration-response curves showing the effect of phytocannabinoids (6.25–100 µg/mL)
on the viability of (a) A375 cells, (b) SH4 cells, (c) G361 cells, and (d) BJ fibroblasts. Cells were
plated in 96-well plates (3 × 103/well) and incubated for 48 h with different concentrations of
phytocannabinoids (10–200 µg/mL). Graphs present the percentage cell viability (%) compared to
the control cells, set at 100%. Each point illustrates the average ± S.E.M. of at least three experiments
performed in triplicate. The gray-dashed horizontal line indicates the viability of 50%; 5FU, 5-
fluorouracil, CBC, cannabichromene; CBD, cannabidiol; CBG, cannabigerol; CBN, cannabinol.

Table 1. IC50 values of phytocannabinoids in malignant melanoma cells.

Cell Line CBD CBG CBN CBC 5FU

IC50 [µg/mL]

A375 12.02 ± 0.60 12.14 ± 2.34 25.13 ± 1.68 23.00 ± 2.60 29.96 ± 0.78
SH4 >100 >100 >100 >100 >100
G361 >100 >100 >100 >100 >100

BJ >100 >100 >100 >100 >100
5FU, 5-fluorouracil, CBC, cannabichromene; CBD, cannabidiol; CBG, cannabigerol; CBN, cannabinol.

2.2. Influence of Phytocannabinoids on Melanin Synthesis

The influence of phytocannabinoids (6.25–100 µg/mL) on melanin synthesis was in-
vestigated in a murine melanoma B16F10 cell model. Considering the previously reported
cytotoxic effects of some endocannabinoids in B16 mouse melanoma cells [40], the cytotoxi-
city of CBD, CBG, CBN, and CBC was initially assessed (Figure 3). The highest cytotoxic



Pharmaceuticals 2023, 16, 648 5 of 12

effects were detected for CBD, which reduced the percentage of viable cells by ca. 50%
at 25 µg/mL. In contrast, CBC showed the lowest cytotoxicity at the same concentration.
Based on the data presented in Figure 3, concentrations of 2.5 and 5 µg/mL were considered
non-toxic (safe) and used as working concentrations for further experiments.
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However, at 5 μg/mL, CBG and CBN additionally displayed inhibitory effects (29.76% 
and 34.14% of αMSH-stimulated cells, respectively) (Figure 4b). Concerning the melanin 
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Figure 3. Influence of phytocannabinoids (6.25–100 µg/mL) on the viability of B16F10 cells. Cells
were plated in 96-well plates (3 × 103/well) and incubated for 48 h with different concentrations
of cannabinoids. Bars present the percentage cell viability (%) compared to the control cells, set at
100%. Each bar illustrates the average ± S.E.M. of at least three experiments performed in triplicate.
* p < 0.05; ** p < 0.01; *** p < 0.001 vs. control. CBC, cannabichromene; CBD, cannabidiol; CBG,
cannabigerol; CBN, cannabinol.

The evaluation of melanin release revealed that, at 2.5 µg/mL, only CBD significantly
reduced the extracellular content to 52.49% of αMSH-stimulated cells (Figure 4a). However,
at 5 µg/mL, CBG and CBN additionally displayed inhibitory effects (29.76% and 34.14%
of αMSH-stimulated cells, respectively) (Figure 4b). Concerning the melanin synthesis,
CBD, CBG, and CBN significantly decreased the intracellular content, only at 5 µg/mL
(67.87%, 61.25%, and 60.59% of αMSH-stimulated cells, respectively) (Figure 4c,d). In
contrast, CBC did not show important modulatory effects of the extracellular or intracellular
melanin content.

To rule out the possibility that the inhibitory melanin production could have appeared
from the reduced cell viability, especially at 5 µg/mL, the microscopic examination of
treated cells was performed to complement the results from the previously analyzed neutral
red uptake assay. Compared to the positive control (αMSH+) cells, B16F10 melanoma
cells treated with αMSH and CBD, CBG, or CBN showed a round shape and less darkly
pigmented cells. B16F10 cells co-treated with αMSH and CBC were spindly in shape and
seemed darker in color (Figure 5).

The influence of cannabis/hemp/cannabinoids on αMSH-induced melanogenesis
has been scarcely explored. For instance, Chen et al. [41] showed that CBD and two
synthetic cannabinoids (S-88745 and S-91253) reduced the intracellular melanin content
in αMSH-stimulated B16F10 cells at concentrations of 0.0256–0.54 µM. The available data
indicate the involvement of phytocannabinoids in regulating basal melanin biosynthesis
in various murine and human experimental models. An aqueous hemp flower extract,
containing mostly CBD and cannabidiolic acid, displayed a concentration-dependent
inhibitory activity on the L-DOPA turnover induced by H2O2 in mouse skin tissues over
the concentration range of 1–500 µg/mL [26,28]. In addition, THC treatment (0.2–2 µM)
was also shown to inhibit melanin synthesis in human hair follicles [29].
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Figure 4. The effect of phytocannabinoids on melanin content in αMSH-stimulated B16F10 cells
presented as extracellular content at (a) 2.5 µg/mL and 5 µg/mL (b), and extracellular content at (c) at
2.5 µg/mL and (d) 5 µg/mL. B16F10 cells were plated in 6-well plates (0.5 × 105/well) and incubated
for 48 h with cannabinoids; αMSH (10 nM) was added to stimulate the melanin production; kojic
acid (KA, 200 µg/mL) was a positive control. Graphs presented the percentage of melanin content
compared to αMSH stimulated control (αMSH+) cells, set at 100%. Each bar illustrates the average ±
S.E.M. of at least three experiments performed in triplicate; # p < 0.001 vs. non-stimulated (αMSH-)
cells; * p < 0.05; ** p < 0.01; *** p < 0.001 vs. αMSH+ cells. CBC, cannabichromene; CBD, cannabidiol;
CBG, cannabigerol; CBN, cannabinol.

However, recent data obtained from in vitro experiments on primary human melanocytes
indicate that phytocannabinoids, namely CBD and THC, induce melanin synthesis. Hwang
et al. [30] measured the melanin content and intracellular tyrosinase activity in human
epidermal melanocytes treated with CBD. The melanin content and tyrosinase activity were
augmented in a concentration-dependent manner (1–6 µM). CBD also increased tyrosinase
gene and protein expression levels. Further investigations on the activation of specific
signaling molecules revealed that the CBD-induced melanin biosynthesis was mediated by
the activation of complement receptor 1 (CR1) and p38–Mitogen-activated protein kinase
(MAPK) pathway [30].
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Figure 5. Morphology of murine melanoma B16F10 cells grown for 48 h in the presence of (a) DMSO
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magnification; pictures are representative for three experiments.

Additionally, Goenka [31] investigated the influence of THC and CBD on melanogen-
esis in epidermal melanocytes from neonatal darkly-pigmented and lightly-pigmented
human donors. The study showed that a 6-day treatment with both THC and CBD at
1–2 µM increased the intracellular melanin levels and dendrite formation (indication of
increased melanosome transfer). Interestingly, the experiments with selective CR1 or CR2
receptor agonists did not confirm the involvement of CR1 in this process [31]. The contra-
dictory data on the phytocannabinoids’ effects on melanogenesis in different experimental
models indicate that further studies are still required.

2.3. Influence of Phytocannabinoids on Tyrosinase Activity

One of the mechanisms that might be responsible for a decrease in melanin biosyn-
thesis is related to the inhibition of tyrosinase, a metalloenzyme that influences the first
two rate-limiting melanogenesis steps [42]. Previous studies [43–45] showed that natural
compounds might interact differently with tyrosinase enzymes of various origins [46].
Alignment of the protein sequence of mushroom, murine, and human tyrosinase using
BLAST tool [47] showed a 23.23% amino acid identity between mushroom and murine
tyrosinase, a 23.42% identity between mushroom and human tyrosinase and an 85.37%
identity between murine and human enzymes. Thus, the four phytocannabinoids were eval-
uated for their tyrosinase inhibitory properties using mushroom tyrosinase from Agaricus
bisporus and murine tyrosinase from B16F10 murine melanoma cell lysates.

CBN, CBC, and CBG showed inhibitory activity towards mushroom tyrosinase at 100
and 200 µg/mL (Figure 6a). Only CBN showed moderate activity in the murine tyrosinase
inhibitory assay (Figure 6b). These results indicate that the inhibition of tyrosinase activity
might not be responsible for the observed reduction in the melanin release and content in
αMSH-treated B16F10 cells (see Section 2.2).
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Figure 6. The effect of cannabinoids (50–200 µg/mL) on (a) mushroom tyrosinase and (b) murine
tyrosinase. Data are presented as a percentage of tyrosinase activity compared to solvent (DMSO)
control, set at 100%. Kojic acid (KA, 50–200 µg/mL) was a positive control. Each bar illustrates
the average ± S.D. of three determinations; * p < 0.05; ** p < 0.01; *** p < 0.001 vs. control. CBC,
cannabichromene; CBD, cannabidiol; CBG, cannabigerol; CBN, cannabinol.

The inhibitory activity of cannabis/hemp/cannabinoids was previously evaluated.
For instance, hemp flower methanol extracts inhibited mushroom tyrosinase [27]. The
tyrosinase inhibition was also previously observed for essential oils obtained from different
hemp varieties (21.31–31.73 mg kojic acid equivalents/g oil) [26]. CBD and two synthetic
cannabinoids, S-88745 and S-91253, reduced the tyrosinase activity in αMSH-stimulated
B16F10 cells over the concentration domain of 0.0256–0.54 µM [41].

Nonetheless, the influence of minor phytocannabinoids (CBC, CBG, and CBN) on
mushroom or murine tyrosinase activity has not been thoroughly described. One patent
application indicated the inhibitory activity of CBG at 0.5 mg/mL on mushroom tyrosi-
nase and melanin biosynthesis in B16 mouse melanocytes following 3-day treatment [48].
However, the presented data are the first analysis of the mushroom and murine tyrosinase
inhibitory properties of CBC and CBN.

3. Materials and Methods
3.1. Chemicals

Dulbecco’s phosphate-buffered saline (DPBS), neutral red solution (3.3 g/L in DPBS),
Dulbecco’s modified Eagle’s medium (DMEM), Eagle’s minimum essential medium (EMEM),
synthetic melanin, glucose, L-3,4-dihydroxyphenylalanine (L-DOPA), murine tyrosinase,
kojic acid (≥98.5%) were acquired from Sigma Aldrich/Merck (Darmstadt, Germany).
Fetal bovine serum (FBS) was from Pan Biotech (Aidebach, Germany), whereas McCoy’s 5a
medium was from LGC Standards (Łomianki, Poland). Ethanol, acetic acid, and sodium hy-
droxide (NaOH) were purchased from Honeywell (Charlotte, NC, USA). Cannabidiol (CBD,
>99.0%), cannabigerol (CBN, >98.0%), cannabinol (CBN, >98.5%), and cannabichromene
(CBC, >95.0%) were isolated from hemp flower extracts, as described in [32,33].

3.2. Cell Lines

Human malignant melanoma A375 (ATCC CRL-1619), SH4 (ATCC CRL-7724), and
G361 (ATCC CRL-1424) cells, human BJ fibroblasts (ATCC CRL-2522), and murine melanoma
B16F10 cells (ATCC CRL-6475) were purchased from LGC Standards (Łomianki, Poland).
A375, SH4, and B16F10 cells were kept in DMEM supplemented with glucose (4.5 g/L)
and FBS (10%); G361 cells were grown in McCoy’s 5a Medium with 10% FBS, whereas BJ
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fibroblasts were grown in EMEM containing FBS (10%). All cell lines were cultured at 37 ◦C
in a humidified atmosphere with 5% CO2.

3.3. Cell Viability Assay (Neutral Red Uptake)

The influence of the tested phytocannabinoids on the viability of melanoma and
fibroblast cell lines was assessed using neutral red uptake (NRU) assay [49]. The cells
were plated overnight in 96-well plates (3 × 103 cells/well) and treated with different
concentrations of CBD, CBC, CBG, CBN, or 5FU (6.25, 12.5, 25.0, 50.0, and 100.0 µg/mL) or
appropriate volume of the solvent control (control cells = 100% viability). Following 48 h
of culture, the cells were treated with neutral red (33 µg/mL) for 3 h in the conditioning
medium containing FBS (1%). An inverted microscope (Nikon Eclipse, Nikon, Japan)
was used to examine the cell morphology, which was documented with an Invenio II
camera (DEltaPix, Smørum, Denmark). After DPBS rinsing and lysis with ethanol (50%)+
acetic acid (1%), the absorbance of the neutral red released from the cells was recorded
at λ = 540 nm with a FilterMax F5 microplate reader (Molecular Devices, San Jose, CA,
USA). The absorbance of the control cells was set as 100% cellular viability and employed
to express the percentage of viable cells in the other samples. The concentrations required
to decrease the cell viability to 50% (IC50) were calculated using a quick fit-dose response
with non-linear regression analysis (sigmoidal fit with Boltzmann function).

3.4. Melanin Assay

Murine melanoma B16F10 cells were plated onto 6-well plates (1 × 105 cells/well),
grown overnight, and treated with 10 nM α-MSH in combination with tested phytocannabi-
noids (at 2.5 or 5.0 µg/mL) or kojic acid (200 µg/mL) dissolved in cell culture medium.
Negative control cells (MSH-) were kept in the culture medium with an equal solvent
volume. Following 48 h incubation, the conditioned medium and cell pellets were collected.
The cell pellets were dispersed in NaOH (1 N), incubated for 2 h at 80 ◦C, and centrifuged
to remove cell debris. Subsequently, the media and cell lysates were placed in 96-well
plates, with the absorbance recorded at λ = 405 nm using the FilterMax F5 microplate reader.
The protein content in cell lysates was established by Bradford assay [50] with the DC
Protein Assay II kit (Bio-Rad Laboratories, Hercules, CA, USA). The melanin released in the
medium and the melanin content in cell lysates (µg melanin/mg protein) were determined
using calibration curves with synthetic melanin. The values measured for α-MSH-treated
control cells were set as 100% and employed to express the melanin release (extracellular)
and melanin content (intracellular) in the samples.

3.5. Tyrosinase Activity Assays
3.5.1. Mushroom Tyrosinase Activity Assay

The mushroom tyrosinase activity assay was performed as presented by Uchida
et al. [51] with slight changes. Briefly, phosphate buffer (100 mM, pH 6.8, 120 µL), tested
compound (final concentration of 50, 100, or 200 µg/mL, 20 µL), and mushroom tyrosinase
(500 U/mL, 20 µL) were mixed. After a pre-incubation period of 10 min at room temper-
ature, L-DOPA (4 mM, 40 µL) was added. Following an incubation period of 20 min at
room temperature in the dark, the absorbance of the formed dopaquinone was recorded at
λ = 450 nm using the FilterMax F5 microplate reader. The control sample (100% mushroom
tyrosinase activity) comprised phosphate buffer, tyrosinase, L-DOPA, and an equal solvent
volume. Kojic acid at comparable concentrations was used as the positive control. The
mushroom tyrosinase inhibitory activity was determined as follows: % of mushroom
tyrosinase activity = (AS/AC) × 100, with AS representing the sample absorbance (tested
compound + tyrosinase + L-DOPA) and AC representing the control absorbance (solvent +
tyrosinase + L-DOPA).
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3.5.2. Murine Tyrosinase Activity Assay

Murine tyrosinase activity assay was performed using the lysate of B16F10 murine
melanoma cells, prepared as previously described [43]. The B16F10 lysate containing 20 µg
protein, tested compound (final concentrations of 50, 100, or 200 µg/mL, 20 µL), L-DOPA
(4 mM, 40 µL), and phosphate buffer (100 mM, pH 6.8, up to 200 µL) were mixed. The
reaction was conducted in the dark for 4 h at 37 ◦C. The control sample (100% murine
tyrosinase activity) comprised an appropriate solvent volume. Kojic acid at comparable
concentrations was used as the control. The dopachrome formation measurement and the
murine tyrosinase activity calculation in each sample were obtained as described for the
mushroom tyrosinase activity assay.

3.6. Statistical Analysis

The cell-based experiments were carried out in triplicate, with the data representative
for at least three individual experiments and presented as mean ± standard error of
the mean (S.E.M.). The non-cell-based experiments were conducted in triplicate, with
the results provided as mean ± standard deviation (S.D.). The statistical analysis was
performed in OriginPro2020 (OriginLab Corp., Northampton, MA, USA) using ANOVA
with Tukey’s posthoc test; p < 0.05 was considered statistically significant.

4. Conclusions

Due to the recently increased interest in cosmetic products containing cannabis or
hemp extracts and the growing availability of phytocannabinoid-based cosmetics, there is
an imperious need to bring scientific evidence to confirm their safety profile and beneficial
effects on the skin. This study depicted the possible involvement of CBD and three minor
phytocannabinoids (CBG, CBN, and CBC) in modulating the viability, melanogenesis,
and tyrosinase activity of skin cells. Firstly, the four compounds were highly cytotoxic
(IC50 = 12.02–25.13 µg/mL) to human malignant melanoma A375 cells. Secondly, CBD,
CBG, and CBC impaired the melanin synthesis and release in αMSH-stimulated murine
melanoma B16F10 cells, as assessed via the reduced extracellular and intracellular melanin
content. Lastly, CBG, CBN, and CBC down-regulated the mushroom tyrosinase activity,
with CBN additionally inhibiting murine tyrosinase. Thus, by evaluating for the first time
the preliminary anti-melanoma, anti-melanogenic, and anti-tyrosinase properties of CBN
and CBC and confirming similar effects for CBD and CBG, this study can expand the
utilization of CBD and, in particular, of minor phytocannabinoids to novel cosmeceutical
products for skin care. However, further investigations are needed to elucidate their target
receptors or signaling pathways, as well as to extend the phytocannabinoid research to
animal or human studies.
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