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Abstract
This study presents a solution of the ‘1 cm Geoid Experiment’ (Colorado Experiment) using spherical radial basis functions
(SRBFs). As the only group using SRBFs among the fourteen participated institutions from all over the world, we highlight the
methodology of SRBFs in this paper. Detailed explanations are given regarding the settings of the four most important factors
that influence the performance of SRBFs in gravity field modeling, namely (1) the choosing bandwidth, (2) the locations of
the SRBFs, (3) the type of the SRBFs as well as (4) the extensions of the data zone for reducing the edge effect. Two types
of basis functions covering the same spectral range are used for the terrestrial and the airborne measurements, respectively.
The non-smoothing Shannon function is applied to the terrestrial data to avoid the loss of spectral information. The cubic
polynomial (CuP) function which has smoothing features is applied to the airborne data as a low-pass filter for filtering the
high-frequency noise. Although the idea of combining different SRBFs for different observations was proven in theory to be
possible, it is applied to real data for the first time, in this study. The RMS error of our height anomaly result along the GSVS17
benchmarks w.r.t the validation data (which is the mean results of the other contributions in the ‘Colorado Experiment’) drops
by 5% when combining the Shannon function for the terrestrial data and the CuP function for the airborne data, compared to
those obtained by using the Shannon function for both the two data sets. This improvement indicates the validity and benefits
of using different SRBFs for different observation types. Global gravity model (GGM), topographic model, the terrestrial
gravity data, as well as the airborne gravity data are combined, and the contribution of each data set to the final solution
is discussed. By adding the terrestrial data to the GGM and the topographic model, the RMS error of the height anomaly
result w.r.t the validation data drops from 4 to 1.8 cm, and it is further reduced to 1 cm by including the airborne data.
Comparisons with the mean results of all the contributions show that our height anomaly and geoid height solutions at the
GSVS17 benchmarks have an RMS error of 1.0 cm and 1.3 cm, respectively; and our height anomaly results give an RMS
value of 1.6 cm in the whole study area, which are all the smallest among the participants.

Keywords ‘1 cm Geoid Experiment’ · Spherical radial basis functions · Regional geoid modeling · Heterogeneous data
combination

1 Introduction

The unification of physical height systems is an essential
geodetic application of the Earth’s gravity field. It is impor-
tant and urgent to have a globally consistent height system
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within a few centimeters or better, for both scientific and
societal reasons (Plag et al. 2009; Sánchez 2012; Ihde et al.
2017). In 2015, the International Association of Geodesy
(IAG) introduced the International Height Reference System
(IHRS) as the global standard for the determination of phys-
ical heights (see Drewes et al. 2016). The IHRS is defined
as a geopotential reference system corotating with the Earth.
Station coordinates are given by (1) potential values W (X)

(and their changes with time dW (X)/dt) defined within the
Earth’s gravity field and, (2) geocentric Cartesian coordi-
nates X (and their changes with time dX/dt) referring to the
International Terrestrial Reference System (ITRS, Petit and
Luzum 2010). For practical purposes, potential valuesW (X)
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and geocentric positions X can be transformed to geopo-
tential numbers CP and ellipsoidal heights h, respectively
(Ihde et al. 2017). The determination of potential values as
IHRS coordinates may be performed following the strategies
applied for the (quasi-) geoid modeling. In the following,
we basically determine the disturbing potential T (X), and
after restoring the reference potential U (X), we can obtain
W (X) = U (X)+T (X). According to Ihde et al. (2017), the
target uncertainty ofW (X) should be at the 10−2 m2/s2 level
(equivalent to around 1 mm for physical heights). However,
the reliability of the potential estimation undergoes the same
limitations of the precise (quasi-) geoid modeling. Thus, a
high-resolution and high-precision (quasi-) geoid model is
the key for the realization of the IHRS.

Satellite gravity observation missions such as the Gravity
Recovery and Climate Experiment (GRACE, Tapley et al.
2004) and the Gravity Field and Steady-State Ocean Circu-
lation Explorer (GOCE, Rummel et al. 2002) are the main
data sources for global geoid modeling. However, the main
limitation of satellite gravity models is the spatial resolution,
since they lack information about spatial wavelengths below
70–80 km (Pail et al. 2011). This missing high-frequency
part of the gravity signal can cause an omission error of 20 to
40 cm in terms of geoid heights (Rummel 2012). This value
can be even higher in regions with very rough topography. In
contrast, other types of measurements such as airborne, ship-
borne or terrestrial gravity observations can provide a much
higher spatial resolution of a few kilometers. Thus, they can
be used in addition to the global models for regional geoid
refinement to improve the resolution and accuracy. High-
resolution regional gravity modeling is especially inevitable
in mountainous areas, since the very short wavelengths are
correlated with local topography to a large extent (Bucha
et al. 2016).

This study focuses on the computation of height anoma-
lies, geoid heights, and geopotential values (as IHRS coor-
dinates) in Colorado, USA (Fig. 1). These results contribute
to the ‘1 cm Geoid Experiment’ (Wang et al. 2020). This
study is of great interest and importance for three reasons,
namely (1) Colorado is a mountainous area with high ele-
vations and rugged topography, which makes the gravity
field modeling challenging, (2) with altogether fourteen con-
tributions worldwide (see Wang et al. 2020 for the list of
the participants) involved in this experiment with different
methodologies, the comparison of the results should high-
light the disparities of eachmethod, (3) we apply an approach
based on spherical radial basis functions (SRBFs), which
has not been widely studied for modeling the airborne data
(Li 2018). According to Sánchez et al. (2020), the calcula-
tion of reference stations for the IHRS realization might be
distributed worldwide, and the calculation methods have to
be verified and documented beforehand. Within the ‘1 cm
Geoid Experiment,’ we prove that our SRBF-based (quasi-)

geoid model is consistent with thirteen independent results
calculated by different methods, and we provide a detailed
documentation about our method within this paper.

Wu et al. (2017a) pointed out that it is difficult to combine
heterogeneous data using the Stokes/Molodensky integral,
since it requires a grid interpolation; and when dealing
with large number of point-wise data (which is the case
for the ‘Colorado Experiment’), the least-squares colloca-
tion (LSC) is numerically inefficient (Wittwer 2009). SRBFs
are an appropriate tool for regional gravity field modeling,
since they fulfill the Laplace equation such as the spherical
harmonics (SHs), due to their relations to the Legendre poly-
nomials.AlthoughSRBFs are thus also global functions, they
can be used appropriately for regional applications to con-
sider the heterogeneity of different data types, due to their
localizing feature. SRBFs are a good compromise between
ideal frequency localization (SHs) and ideal spatial local-
ization (Dirac delta functions) (Freeden et al. 1998). The
fundamentals of SRBFs are introduced by Freeden et al.
(1998), Freeden and Michel (2004), among many others.
They have been applied in gravity field modeling during the
last two decades, e.g., by Schmidt et al. (2006), Schmidt
et al. (2007) andKlees et al. (2008). The SRBFs are placed on
point grids, towhich the unknown coefficients are associated.
These coefficients can be estimated from the observations,
and they reflect the energy of the gravity signal (Naeimi et al.
2015). The modeled gravitational functionals are then com-
puted from these estimated coefficients. Four factors of the
SRBFs need to be specified, which influence the modeling
accuracy. We discuss in detail (see Sect. 4.2) the choice of
(1) the choosing bandwidth, (2) the locations of the SRBFs,
(3) the type of the SRBFs, and (4) the extensions of the data
zone for reducing edge effects.

Two types of high-resolution data sets, the terrestrial and
the airborne gravity measurements, are combined in this
study. However, theGRAV-D (Gravity for the Redefinition of
the American Vertical Datum) airborne gravity data require
additional editing or low-pass filtering before being used
(see e.g., GRAV-D Science Team 2018). Various low-pass
filtering methods exist and have been applied to the air-
borne gravity data, such as the spatial Gaussian filter, the fast
Fourier transform (FFT, Childers et al. 1999), and the Butter-
worth filter (Forsberg et al. 2001). Lieb et al. (2015) proposed
a low-pass filtering in the spectral domain by SRBFs. Li
(2018) demonstrated that the SRBFs show certain de-noising
or smoothing properties of the high-frequency noise in the
airborne data. In this study, we apply the low-pass filter to the
airborne gravity data by using the cubic polynomial (CuP)
function, and the smoothing features in this type of SRBFs
are used for filtering the high-frequency noise in the airborne
data. An advantage of using theCuP function for low-pass fil-
tering is that the filtering process is automatically done when
establishing the observation equations, i.e., no extra compu-
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tation efforts are required. For the terrestrial gravity data, the
non-smoothing Shannon function is preferred to avoid the
loss of spectral information (Bucha et al. 2016). Schreiner
(1999) showed that it is possible to use different types of
SRBFs for different types of observations, since the coeffi-
cients are independent on the choice of the SRBFs, as long
as they cover the same frequency range. Klees et al. (2018)
achieved an improvement by applying a truncated SRBF for
the terrestrial data but a tapered SRBF for the satellite data,
based on simulations. However, to the best of our knowledge,
the idea of combining different types of SRBFs for different
types of observations has not been applied to real data sets
yet. Thus, our results based on real data also indicate the
validity of this idea.

We apply the remove–compute–restore (RCR) procedure
(e.g., Forsberg and Tscherning 1981; Forsberg 1993), in
which a global gravity model (GGM) is usually removed
before the computation. In this study, however, not only a
GGM, but also a topographic model is removed, due to the
high elevation and rugged terrain of the study area. Forsberg
and Tscherning (1981) pointed out that the inclusion of the
topographic effects is indispensable for regional gravity field
modeling in mountainous areas. Hirt (2010) showed that the
signal omission error (gravity field components which are
omitted by a truncated expansion) can be greatly reduced, and
the model accuracy can be significantly improved by includ-
ing the residual terrain model (RTM) in mountainous areas.
After the remove step, the remaining part is then modeled
by the combination of the terrestrial and airborne observa-
tions. These two types of observations are combined within
a parameter estimation procedure (Schmidt et al. 2007).
However, the derived least-squares system is in most cases
ill-posed or even singular, due to three reasons, namely (1) the
number of used basis functions is usually larger as required,
(2) the given data gaps as well as (3) the downward continu-
ation of the airborne or satellite measurements to the surface
of the Earth. Thus, regularization is necessary to obtain a
numerically stable solution. We apply the Tikhonov regular-
ization which can be interpreted as an estimation with prior
information (Koch 1990). The relative weight between the
two observation types as well as the relative weight between
the observations and the prior information, which can be
interpreted as the regularization parameter, is determined by
the method of variance component estimation (VCE, Koch
1999; Koch and Kusche 2002). Naeimi et al. (2015) demon-
strated, however, that VCE does not always give reliable
regularization results. Thus, the L-curve method (see e.g.,
Hansen 1990) or the generalized cross-validation (GCV, see
e.g., Golub et al. 1979) could be used instead. We here pro-
pose a method which combines VCE for determining the
relative weight between the two observation types and the L-
curve method for determining the regularization parameter
(Liu et al. 2020).

This work is organized as follows: In Sect. 2, we present
the study area as well as the available data; also the pro-
cedure of data preprocessing is briefly described. Section 3
introduces the fundamental concepts of SRBFs, the spher-
ical convolution, and the parameter estimation procedure.
We explain how the observation equations are formulated,
how the unknown coefficients are estimated, and how the
resulting gravitational functionals are calculated. Section 4
explains the computation procedure: the RCR, the choices
of each factors in SRBFs, and the combination of the data
sets. Section 5 presents our models as well as the validation
of the results. Finally, Sect. 6 provides the conclusions and
outlook.

2 Study area and data preprocessing

2.1 Study area and data

This study is conducted between − 110◦ and − 102◦ lon-
gitude and between 35◦ and 40◦ latitude (Fig. 1a), majorly
located in Colorado, USA. It is a mountainous area, with an
average elevation of 2017 m. The highest location reaches
4386 m, the lowest 932 m. The eastern part of the study area
is more flat than the western and the central part, while it is
still higher than 1000 m. The larger the topographic heights
are, the worse the accuracy of the geoid becomes (Foroughi
et al. 2019). Thus, this is a challenging study area, due to the
rugged terrain, high elevation, and varying gravity field.

Two data sets are provided by the National Geodetic Sur-
vey (NGS). Figure 1b shows the spatial distribution of these
two data sets, projected on the Earth’s surface. The terrestrial
gravity data (blue points) have full coverage over the whole
study area, but they are not evenly distributed. Comparing
Fig. 1a, b, it is clear that this data set has a higher density
in the area with higher elevation and a lower density in the
low elevation area (eastern part). However, the average point
distance reaches approximately 3 km for the whole terrestrial
data set. The airborne gravity data (green flight tracks) were
collected by the GRAV-D project (GRAV-D Science Team
2017) at a mean flight altitude of 6186 m. They cover most
of the study area in the southeastern part, generally between
− 109◦ and − 102◦ longitude and between 35◦ and 38.5◦
latitude. The along-track spatial resolution depends on the
aircraft speed, with an average of around 100 m; the cross-
track resolution is almost 10 km. We use the data given at
their original observation sites, i.e., the observation equations
are directly established at the observation points.

We compute two sets of output gravity functionals, and the
results will be presented and discussed. The first one is at the
Geoid Slope Validation Survey 2017 (GSVS17) benchmarks
(red line in Fig. 1b), and the second one is the quasi-geoid
and geoid model for the target area from − 109◦ to − 103◦
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Fig. 1 a Terrain map of the study area; b given terrestrial (blue points) and airborne (green flight tracks) gravity data, GSVS17 benchmarks (223
points of the red line) as well as the model grid area (black rectangle)

and 36◦ to 39◦ (black box in Fig. 1b) with a spatial resolution
of 1′ × 1′.

2.2 Data preprocessing

In the original terrestrial data (with a total amount of 59,303
points), there are cases that several gravity observations
locate at the same position, and we then use only the first
of these observations (1090 points deleted). However, in
case gravity observations at the same position differ with
more than 2mGal from each other, we delete both of them
(85 points deleted). Since the measurements are provided in
orthometric heights H , we transform them to the ellipsoidal
heights h using the geoid model ‘GEOID 12B,’ provided by
the National Geodesy Survey (NGS 2012)

h = H + NGeoid 12B. (1)

The airborne data have a very dense distribution with a total
amount of 283,716 observation points, resulting in a design
matrix with a size of 55 GB (see Sect. 3.3). To save com-
putation time and to improve the efficiency, we reduce the
sampling interval from 1 to 1/8 Hz, i.e., only one observation
of an eight-observation block is kept. Thus, an average spa-
tial resolution of approximately 1 km along-track is obtained.
The reason that justifies the ‘down sampling’ procedure of
the airborne data is that consecutive airborne observations
are highly correlated.

Then, for both types of observations, the following data
preprocessing steps are performed:

1. Transfer the observations in terms of absolute gravity g to
gravity disturbance δg by subtracting the normal gravity
γ at the ellipsoidal height h of the observations

δgobs = g − γ. (2)

2. Add the atmospheric correction to the observations

δg = δgobs + δgATM, (3)

the atmospheric correction δgATM is calculated following
Torge (1989) by

δgATM = 0.874 − 9.9 · 10−5h + 3.56 · 10−9h2. (4)

3 Methodology

3.1 Spherical radial basis function

In general, SRBFs are centered at points Pk with position
vector xk on a sphere ΩR with radius R. A spherical radial
basis function B(x, xk) can be defined between Pk and an
observation point P by the Legendre series (Freeden et al.
1998; Schmidt et al. 2007),

B(x, xk) =
∞∑

n=0

2n + 1

4π

(
R

r

)(n+1)

Bn Pn(rT rk) (5)

wherein x = r · r = r · [cosφ cos λ, cosφ sin λ, sin φ]T
is the position vector of the observation point P , λ is the
spherical longitude,φ is the spherical latitude, and r = R+h′
with h′ the spherical height of P above the sphere ΩR . The
position vector of Pk reads xk = R · rk , Pn is the Legendre
polynomial of degree n, and Bn is the Legendre coefficient
which contributes to specify the shape of the SRBFs.

A harmonic function F(x) can be represented as a series
expansion of the SRBFs B(x, xk)
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F(x) =
K∑

k=1

dk B(x, xk), (6)

where K is the number of basis functions, and thus, the num-
ber of grid points Pk and unknown coefficients dk as well.

The general expression (Eq. 5) needs to be adapted for
describing different gravitational functionals (Lieb et al.
2016). In this study, the observations are given in terms of
gravity disturbances δg, which can be expressed as the gradi-
ent of the disturbing potential T . In spherical approximation,
the magnitude of the gravity disturbance can be written as
(Heiskanen and Moritz 1967).

δg = −∂T

∂r
. (7)

Thus, if T is modeled as in Eq. (6), the adapted spherical
basis function for describing δg(x) given at an observation
site P with position vector x is given as

Br (x, xk)=
∞∑

n=0

2n+1

4π

(
n + 1

r

)(
R

r

)(n+1)

Bn Pn(rT rk).

(8)

A complete list of basis functions adapted to different func-
tionals of the disturbing potential can be found in Koop
(1993) or Liu et al. (2020).

3.2 SRBF as a filter

Any SRBF (Eq. 5) can be used as a high-pass, low-pass,
or band-pass filter (Schmidt et al. 2007; Lieb 2017), and
a harmonic function F(x) can be filtered by it through a
spherical convolution. The filtered function G(x) can then
be represented by

G(x) = (B ∗ F)(x). (9)

In case the SRBF B(x, xk) in Eq. (6) is chosen as a unique
reproducing kernel Z(x, xk), in which Bn = 1 for n =
0, . . . ,∞, i.e.,

Z(x, xk) =
∞∑

n=0

2n + 1

4π

(
R

r

)n+1

Pn(rT rk), (10)

the filtered function equals the original function

F(x) = (Z ∗ F)(x) =
K∑

k=1

dk Z(x, xk). (11)

In case of using a band-limited SRBF, which means setting
the Legendre coefficient Bn = 0 for all degree n > nmax, the

SRBF acts as a low-pass filter. Schreiner (1999) and Freeden
et al. (1998) prove a theorem which shows that the coeffi-
cients dk are independent on the type of SRBFs as soon as
they are band-limited to the same degree.

Theorem In a Hilbert space L2(ΩR) of all real square-
integrable functions F on ΩR , let B(x, xk), Eq. (5), be a
band-limited SRBF with

Bn =
{ �= 0 for n = 0, 1, . . . , nmax

= 0 for n > nmax
(12)

thefiltered functionG1 (x) by the spherical convolution reads

G1(x) = (B ∗ F)(x) =
K∑

k=1

dk B(x, xk). (13)

If C(x, xk) = ∑∞
n=0

2n+1
4π ( Rr )n+1Cn Pn(rT rk) has the band

limitation Cn = 0 for n > nmax, then

G2(x) = (C ∗ F)(x) =
K∑

k=1

dkC(x, xk) (14)

holds by using the same coefficients dk , as in Eq. (13). The
only condition is that they are band-limited to the samedegree
nmax. This theorem makes it possible to use different SRBFs
for different data sets and to use different SRBFs in the anal-
ysis step (in which the unknown coefficients are estimated)
and in the synthesis step (in which the estimated coefficients
are used to calculate the output gravitational functionals),
respectively.

3.3 Estimationmodel

As discussed in Sect. 3.1, an observation in terms of gravity
disturbance can be represented as

δg(x) + e(x) =
K∑

k=1

dk Br (x, xk), (15)

where e(x) is the observation error and Br is described in Eq.
(8). With L observations, we can set up the Gauss–Markov
model

f + e = Ad with D(f ) = σ 2P−1 (16)

where f is the observation vector, e is the error vector, A
is the design matrix which contains the corresponding basis
functions, d is the vector of the unknown coefficients, and
D(f ) is the covariance matrix of the observation vector f ,
with σ 2 being the unknown variance factor and P being the
given positive definite weight matrix. However, the associ-
ated least-squares system is ill-posed or even singular due to
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the three reasons mentioned in the Introduction. This prob-
lem can be solved by introducing the expectation vector
µd = E(d) of the coefficient vector d as prior information.
Then, the additional linear model can be formulated as

µd + ed = d with D(µd) = σ 2
d P

−1
d , (17)

where ed is the error vector of the prior information.
Combining the terrestrial observations f 1 and the airborne
observations f 2, as well as the additional linear model, the
extended Gauss–Markov model can be set up (see e.g.,
Schmidt et al. 2007; Liu et al. 2020 for more details). Apply-
ing the least-squares method to the extended Gauss–Markov
model, the unknown coefficients are estimated as

d̂ = (AT
1 P1A1 + ωAT

2 P2A2 + λPd)
−1

(AT
1 P1f 1 + ωAT

2 P2f 2 + λPdµd), (18)

with the covariance matrix:

D(̂d) = σ 2
1 (AT

1 P1A1 + ωAT
2 P2A2 + λPd)

−1. (19)

ω = σ 2
1 /σ 2

2 is the relativeweight between the airborne obser-
vations f 2 and the terrestrial observations f 1, λ = σ 2

1 /σ 2
d

is the regularization parameter (Koch and Kusche 2002;
Schmidt et al. 2007), and the numerical values for the vari-
ance factors σ 2

1 , σ 2
2 , σ 2

d can be estimated by VCE (see
Sect. 4.3). The covariance matrix (19) describes the accu-
racy of the estimated coefficients. Its main diagonal contains
the variances v(̂d), which define the standard deviations of
the estimated coefficients as σ̂ =

√
v(̂d).

3.4 Computation of the resulting gravitational
functionals

In the synthesis step, the estimated unknown coefficients are
used to determine the disturbing potential T at the computa-
tion points xc

T̂ = Bd̂, (20)

where T̂ is the vector of the computed disturbing potential
andB is the designmatrix, which contains the basis functions
between the grid points Pk and the computation points Pc.

Applying the error propagation law to Eq. (20), the covari-
ance matrix

D(T̂) = BD(̂d)BT (21)

is obtained. The estimated standard deviations of themodeled
disturbing potential, σ̂T =

√
v(̂T), indicate the accuracy of

the resulting gravity model.

The gravity potential valuesW (Pc) at computation points
Pc are then calculated by adding the normal gravity potential
U (Pc) to the disturbing potential T (Pc), i.e.,

Ŵ (Pc) = T̂ (Pc) +U (Pc). (22)

From the disturbing potential, the height anomaly (quasi-
geoid) ζ at the computation points Pc can be calculated
following the Bruns’ formula (Heiskanen and Moritz 1967):

ζ̂ = T̂

γ
(23)

where γ is the normal gravity at the normal height of point Pc.
Following Sánchez et al. (2018), we use the ellipsoid GRS80
(Moritz 2000) for the computation of U and γ . According
to the error propagation law, the standard deviation of the
quasi-geoid vector σζ can be calculated by

σ̂ζ = σ̂T

γ
. (24)

The geoid height N can then be calculated from the quasi-
geoid ζ following the transformation formula in Heiskanen
andMoritz (1967). It is worthmentioning that since the geoid
height is obtained from a transformation which includes an
approximation, it is expected to be less accurate than the
quasi-geoid model. The same transformation formula is also
used bymost of the other participants in the ‘ColoradoExper-
iment,’ in order to facilitate the comparison between different
contributions.

It is worth mentioning that the zero-degree terms T0 and
ζ0 (Heiskanen andMoritz 1967) have been added to our final
results (see Sánchez et al. 2018), which include the difference
between the constant GM values of the GGM (which is the
XGM2016 in our case) and the reference ellipsoidGRS80, as
well as the difference between the reference potential value
W0 adopted by the IHRSand the potentialU0 on the reference
ellipsoid (Sánchez et al. 2016; Sánchez and Sideris 2017),

T0 = GMGGM − GMGRS80

rP
(25)

ζ0 = (GMGGM − GMGRS80)

rP · γQ
− ΔW0

γQ
(26)

with GMGGM = 3.986004415 · 1014 m3/s2, GMGRS80 =
3.986005 · 1014 m3/s2, ΔW0 = −7.45m2/s2, and rP is the
geocentric radial distance of the computation points Pc.
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4 Computation configuration

4.1 Remove–compute–restore procedure

We apply the remove–compute–restore (RCR) procedure
(e.g., Forsberg 1993). As is described by its name, the RCR
procedure means that a part δgR of the observations (signal)
δg is removed before the computation

Δδg = δg − δgR . (27)

The remaining part Δδg is then processed using the SRBFs
to model the gravitational functional ΔT̂ . Afterward, the
removed part is restored in terms of the disturbing potential
TR as

T = ΔT̂ + TR . (28)

The removed part δgR is usually the long-wavelength compo-
nent from a GGM, since existing global models approximate
this part very accurately (Lieb et al. 2016). The RCR proce-
dure also solves the problem that regional gravimetry cannot
estimate the long-wavelength parts (Lieb et al. 2016). Beside
the GGM, a further improvement in the modeling results can
be achievedby additionally including a residual terrainmodel
(RTM) to δgR in the remove step (Hirt et al. 2010; Sjöberg
2005). The topographic effect plays a key role especially
in mountainous areas, since it smoothens the input observa-
tions, and this smoothing step is of utmost importance for
obtaining a good least-squares fit (Bucha et al. 2016).

In this study, the long-wavelength component is computed
from the global gravity model XGM2016 (Pail et al. 2018)
up to maximum degree 719 for both the terrestrial and the
airborne data. The topographic model dV_ELL_Earth2014
(Rexer et al. 2016) from degree 720 to degree 2159 and a
residual terrain model ERTM2160 (Hirt et al. 2014) from
degree 2160 to degree ∼80,000 (equivalent to a spatial res-
olution of 250 m) are removed from the terrestrial data;
the dV_ELL_Earth2014 from degree 720 to degree 5480
is removed from the airborne data. We use two different
topographic models above degree 2160 for the terrestrial
and airborne data; this is justifiable due to the fact that the
two models (dV_ELL_Earth2014 and ERTM2160) are cal-
culated using the same original data and contain the same
signal (Hirt et al. 2014; Rexer et al. 2016). For airborne data,
the effect of dV_ELL_Earth2104 from degree 2160 to degree
5480 is equal to the ERTM2160, but the ERTM2160 is only
available as a grid on the Earth surface, i.e., not as spherical
harmonic coefficients with which the gravity values can be
computed at any height.

Figure 2 visualizes the remove step. Comparing the last
two rows, it is clear that after the GGM reduction, the gravity
field is dominated by the topographic effect, which is very

large in this study. This implies the importance of including
the topographic effect in the RCR, especially in mountainous
areas. After subtracting this topographic effect, the gravity
field becomes much smoother, especially in regions with
varying elevation (mid part of the study area). As shown by
the statistics listed in Table 1, the terrestrial observations are
smoothed by 42% in terms of the standard deviation (SD) by
subtracting the GGM, and by 82% after including the topo-
graphic model. The airborne observations are smoothed by
72% by subtracting the GGM and by 89% after including
the topographic model. Such significant smoothing effects
enable a better least-squares fit. Including the topographic
model gives larger smoothing effects for the terrestrial obser-
vations than for the airborne observations. This could be
explained by the fact that the high-frequency signal of the
gravity field decreases with height, and the airborne grav-
ity measurement is less sensitive to the high-frequency part
than the terrestrial gravity measurement. Thus, subtracting
the topographic effect affects the terrestrial gravity data more
than the airborne gravity data.

4.2 Model configuration

4.2.1 Maximum degree of expansion

The maximum degree nmax of expansion is related to the
spatial resolution (sr) of the observations (Bucha et al. 2016),
and their relation reads (Lieb et al. 2016).

nmax ≤ πR

sr
. (29)

Although the observations are distributed unevenly in this
study area, the mean spatial resolution counts around 3.5 km
for the whole study area. Consequently, nmax = 5600 is
chosen as the maximum degree of expansion.

4.2.2 Definition of the target, observation, and
computation area

In regional gravity modeling, the extension of the target
area ∂ΩT, the observation area ∂ΩO, and the computation
area ∂ΩC needs to be defined carefully. In the border of the
observation area ∂ΩO, the unknown coefficients dk cannot be
appropriately estimated, due to the lack of fully surrounding
observations. This fact provokes edge effects. The observa-
tion area ∂ΩO, where the observations are given, should
be larger than the target area ∂ΩT, in which the final out-
put gravitational functionals are computed. Furthermore, the
computation area ∂ΩC, where the SRBFs are located, should
be larger than the observation area ∂ΩO. The reason for this
extension is due to the oscillation of the SRBFs, especially
at the boundaries of the computation area ∂ΩC, where the
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Fig. 2 a, b The observations (δg); c, d the remaining gravity disturbance after the GGM reduction (δg-δgGGM); e, f the remaining parts after both
the GGM and topographic reduction (δg-δgGGM-δgTopo) for the terrestrial data (left column) and the airborne data (right column)

Table 1 The statistics of the
observations δg, the remaining
parts after subtracting the GGM,
and the remaining parts after
subtracting both GGM and the
topographic model

Min (mGal) Max (mGal) Mean (mGal) SD (mGal)

Terrestrial δg −146.37 207.87 0.34 38.71

Terrestrial δg − δgGGM −151.46 137.17 − 5.83 22.39

Terrestrial δg − δgGGM − δgTopo −135.98 75.12 0.57 6.91

Airborne δg −43.56 123.87 7.66 29.47

Airborne δg − δgGGM −43.07 68.28 0.26 8.14

Airborne δg − δgGGM − δgTopo −17.82 17.96 0.30 3.19
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Fig. 3 The different extensions for the areas of computation ∂ΩC, of
observations ∂ΩO and of target ∂ΩT, as well as the location of the
observations (grey points) and the location of the grid points (red points)

oscillations cannot overlap and balance with each other (see
Naeimi et al. 2015; Lieb et al. 2016 for more details). Thus,
∂ΩT ⊂ ∂ΩO ⊂ ∂ΩC.

To minimize the edge effects in the computation, margins
η need to be defined between the three areas. Usually, the
margin size ηO,T between ∂ΩO and ∂ΩT and the margin
size ηC,O between ∂ΩC and ∂ΩO are chosen equally (Bentel
et al. 2013a, b). In our case, the target area ∂ΩT is given to be
between − 109◦ to− 103◦, and 36◦ to 39◦. The observations
(grey points in Fig. 3) aremainly located between− 110◦ and
− 102◦ and 35◦ and 40◦. So, the margin size ηO,T between
∂ΩO and ∂ΩT is fixed to be 1◦. The determination of the
margin size ηC,O between ∂ΩC and ∂ΩO follows a method
described by Lieb et al. (2016), but it is modified to

ηC,O = 360◦

nmaxcos(|φmax|) , (30)

where φmax is the maximum latitude value of the target area.
The margin size is influenced by the shape of the SRBFs,
when the nmax is higher, the SRBFs become narrower, and
thus, a smaller margin size should be chosen. With nmax =
5600, the value ηC,O ≈ 0.1◦ follows. Figure 3 visualizes the
target area, the observation area, the computation area, as
well as the margins.

4.2.3 The location of the SRBFs

The location of the SRBFs depends on the type and number
of the grid points. Eicker (2008) examined four types of grids,
and the results indicate that the Reuter grid and the triangle
vertex grid are the most suitable choices for space localizing
basis functions. According to Bentel et al. (2013a), differ-
ent grid types do not have a strong impact on the modeling
results, especially comparing to the other three factors listed
in the Introduction. In this study, the Reuter grid (Reuter

1982) is chosen. The points of the Reuter grid have a homo-
geneous coverage on the sphere ΩR . The total number Q
of the Reuter grid points on the global sphere is determined
following the rule (Lieb et al. 2016),

(nmax + 1)2 ≤ Q ≤ 2 + 4

π
(nmax + 1)2, (31)

and it amounts to Q = 31,828,509. Then, those Reuter grid
points that are distributed in the computation area ∂ΩC are
used as the locations of the SRBFs (see Fig. 3). In this case,
the number of the SRBFs amounts to K = 26,012.

4.2.4 The type of the SRBFs

Different types of basis functions are introduced and stud-
ied in, for example, Schmidt et al. (2007) and Bentel et al.
(2013b). Here, the following three types are considered:

1. The Shannon function, and its Legendre coefficients are
given by

Bn =
{
1 for n ∈ [0, nmax]
0 else

. (32)

2. The Blackman function, and its Legendre coefficients are
given by

Bn =
⎧
⎨

⎩

1 for n ∈ [0, n1)
(A(n))2 for n ∈ [n1, nmax ]
0 else

, (33)

where

A(n) = 21

50
− 1

2
cos

(
2π(n − nmax)

2(nmax − n1)

)

+ 2

25
cos

(
4π(n − nmax)

2(nmax − n1)

)
. (34)

3. The cubic polynomial (CuP) function, and its Legendre
coefficients are given by

Bn =
{

(1 − n
nmax

)2(1 + 2n
nmax

) for n ∈ [0, nmax]
0 else

.

(35)

Figure 4 visualizes the characteristics of these three basis
functions in the spatial and the spectral domain, correspond-
ingly. The Shannon function has the highest localization in
the spectral domain, but it also gets the strongest oscillations
in the spatial domain. In contrast, the CuP function has the
least oscillations in the spatial domain but has a smooth-
ing decay and extracts the least spectral information in the
spectral domain. The Blackman function is regarded as a
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Fig. 4 Different SRBFs in the
spatial domain (top, ordinate
values are normed to 1) and the
spectral domain (bottom) for
nmax = 5600 (n1 = 3000 is
chosen in the Blackman
function)

compromise between these two domains. Usually, the Shan-
non function is used in the analysis step to avoid the loss of
spectral information, and the Blackman function or the CuP
function is applied in the synthesis step to reduce erroneous
systematic effects (Lieb et al. 2016).

In this study, we apply the CuP function in the synthesis
step. In the analysis step, we use the Shannon function for
the terrestrial observations; the advantages of using the Shan-
non function for terrestrial data are explained in Bucha et al.
(2016). For the airborne observations, however, we choose
the CuP function in the analysis step. This is due to the fact
that noise in the high frequencies of the airborne data is
large; thus, a low-pass filtering is necessary. Forsberg and
Olesen (2010) explained why all types of airborne gravity
data need filtering; the filtering is a compensation between
the resolution and the accuracy. In the low-frequency part
of the airborne data, the gravity signal dominates the noise
(Childers et al. 1999); thus, low-pass filters are themost com-
monly usedfilters. Bucha et al. (2015) showed that the SRBFs
could act as a low-pass filter, and Naeimi (2013) demon-
strated that both the Blackman function and the CuP function
can be used as build-in low-pass filters, due to their smooth-
ing features. We used the Blackman function and the CuP
function for low-pass filtering, and the results (presented in
Sect. 5.1) show that both of these two functions can low-
pass-filter the airborne observations well.We choose the CuP
function for the airborne observations in this study, as it gives
slightly better results than the Blackman function does (see
Table 2 in Sect. 5.1). And as already discussed in Sect. 3.2,
different types of SRBFs can be used for different observa-
tion types, in case of the same band limitation.

4.3 Combination of the terrestrial and the airborne
data

We combine the terrestrial data and the airborne data using
the extended Gauss–Markov model (see Sect. 3.3). Since

information about the data quality is not available, we assume
that themeasurements have the same accuracy and are uncor-
related, and thus, P p = I, where I is the identity matrix. The
same assumptions are commonly used in existing publica-
tions (see e.g., Lieb et al. 2016;Wu et al. 2017b; Slobbe et al.
2019), since it is usually difficult to acquire the realistic full
error variance–covariance matrix, and the procedure would
become computationally intensive by including it.Moreover,
Olesen et al. (2002) showed that for airborne gravity distur-
bances, noise correlations can be ignored if one aims at a
1-cm quasi-geoid model. Furthermore, we set Pd = I by
assuming that the coefficients are not correlated and have the
same accuracy. The models subtracted in the remove step
of the RCR procedure serve as the prior information; in this
case, we can set the expectation vector µd to the zero vector
(Schmidt et al. 2007). The solution for the estimated coef-
ficients can be obtained from Eq. (18), where two variables
need to be determined; one is the relative weight ω between
the two types of observations, and another is the regulariza-
tion parameter λ.

The relative weight ω is determined by VCE, which is an
iterative process to estimate the variance factors σ 2

1 , σ 2
2 , σ 2

d
of different observation types and the prior information. The
iteration starts from initial values for σ 2

1 , σ 2
2 , σ 2

d , and it ends
when convergence is reached. The variance factors obtained
from VCE read σ̂ 2

1 = 6.13×10−10, σ̂ 2
2 = 1.61×10−10, and

σ̂ 2
d = 8.17×10−14. These estimates indicate that the airborne

gravity data might have a higher quality than the terrestrial
data. It is explainable since the terrestrial observations were
gathered during a large time span (since the late 1930s), and
thus, their qualitymay vary regionally. On the other hand, the
GRAV-Dairborne datawere collected in the recent fewyears.
Moreover, the value of σ̂1 (2.48 mGal) coincides with Saleh
et al. (2013), who estimated theNGS’s terrestrial gravity data
to contain error with an RMS of ∼ 2.2 mGal. However, it
should be noted that the estimated variance factors actually
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Table 2 RMS values of the height anomaly results w.r.t the validation data, when using the Shannon function, the Blackman function, and the CuP
function for the airborne observations, respectively

Terrestrial + Airborne Min (cm) Max (cm) Mean (cm) RMS (cm)

Shannon + Shannon −3.95 1.78 −0.28 1.135

Shannon + Blackman −3.93 1.57 −0.34 1.080

Shannon + CuP −3.89 1.87 −0.13 1.075

represent the quality of the least-squares fit rather than the
accuracy of the data (Bucha et al. 2016).

From the estimated variance factors, the relative weight
between the terrestrial data and the airborne dataω = σ̂ 2

1 /σ̂ 2
2

and the regularization parameter λVCE = σ̂ 2
1 /σ̂ 2

d can be
obtained. However, according to Liu et al. (2020), this reg-
ularization parameter is not always reliable, so we apply the
L-curve method (see e.g., Hansen and O’Leary 1993; Eriks-
son 2000) to regenerate the regularization parameter λ, based
on the relative weighting ω. In this case, the regenerated reg-
ularization parameter is λ = 10,000.

5 Results and discussion

As already mentioned in Sect. 2.1, we compute two sets of
output gravity functionals. The first one is at the GSVS17
benchmarks, at which thirteen groups worldwide have pro-
vided independent height anomaly results as well as geopo-
tential values, and fourteen groups have provided the geoid
height results. A list of all participants, as well as an exter-
nal validation to the leveling-based physical heights, can be
found in Wang et al. (2020). Since we do not have access to
the leveling-based validation data, we validate various solu-
tions using themean value of the other groups. Thus, the term
‘validation data’ used in Sects. 5.1–5.2 refers to the mean
height anomaly results of the other twelve groups along the
GSVS17 benchmarks. We do not include our own results in
the evaluation of models to keep the comparison indepen-
dent; however, the validation of our final results to the mean
value of all participants (including ours) is also presented in
Sect. 5.4. The second one is a model grid from − 109◦ to
− 103◦ and 36◦ to 39◦ with a resolution of 1′ × 1′. Thirteen
groups have provided the height anomaly grid models, four-
teen groups have provided the geoid height grid model, and
the comparison between our models and the mean of all the
models are given.

5.1 Evaluation of the low-pass filtering

To test the validity of the low-pass filtering based on the CuP
function, we compare this low-pass filtering result to the ones
using the Shannon function or the Blackman function for
the airborne observations. The height anomaly results at the

GSVS17 benchmarks when using these three functions for
the airborne data, respectively, are compared with respect to
the validation data. (The Shannon function is used for the ter-
restrial data as already discussed in Sect. 4.2.4.) The statistics
are listed in Table 2. The RMS deviations w.r.t the validation
data when using the CuP function and the Blackman function
for the airborne data are 1.075 cm and 1.080 cm, respectively,
which are around 0.5 mm smaller than that when using the
Shannon function for both the data sets. It should be noted
that when using the Blackman function or the CuP function
as low-pass filters, the results improve by 5%, which is not
neglectable. These results also indicate the importance of the
low-pass filtering for the airborne data. Although the results
obtained from the Blackman function and the CuP function
are similar, the CuP function still gives a slightly better result
(i.e., smaller RMS error) than the Blackman function, and
thus, the CuP function is chosen for low-pass filtering the
airborne data.

It isworthmentioning thatwe have also tried to smooth the
airborne gravity observations directly by a mean filter, i.e.,
assign the average value of consecutive observations to the
mid observation, and then use the Shannon function. How-
ever, the results are worse than those using the CuP function
to the original data, which indicates the efficiency of applying
the CuP function for smoothing the airborne observations.

5.2 Evaluation of the combined solution comparing
to the terrestrial or the airborne-only solution

Shih et al. (2015) demonstrated that the RMS error of their
gravity anomaly model drops when an additional data set
is incorporated. Jiang and Wang (2016) showed that by
adding the GRAV-D airborne data, the agreement to the
GPS/leveling data (GSVS11) improves from 1.1 to 0.8 cm in
Texas, USA. Forsberg et al. (2012) reported an improvement
by the airborne data from 15 to 13 cm in the United Arab
Emirates. To assess how much our quasi-geoid model bene-
fits from the regional terrestrial and airborne gravity data, the
computation is also conducted to the terrestrial observations
and the airborne observations, individually, in the sameman-
ner. Each result is compared to the combined solution with
respect to the validation data. The differences between our
height anomaly results and the validation data when using
both data sets, using the terrestrial data only, using the air-
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Fig. 5 Differences between our
solutions and the mean value of
all the other institutions at the
GSVS17 benchmarks

Table 3 Comparison between
the combined solution and the
terrestrial-only, airborne-only, or
models-only solution at the
GSVS17 benchmarks, w.r.t the
validation data

Min (cm) Max (cm) Mean (cm) RMS (cm)

Combined −3.89 1.87 −0.13 1.08

Terrestrial-only −5.37 2.88 −0.70 1.76

Airborne-only −9.14 5.30 −0.64 2.38

Models-only −7.93 7.90 −1.03 4.04

borne data only, and using no observation data, i.e., only the
GGMand the topographic model (models-only solution), are
plotted in Fig. 5, respectively. (The ellipsoidal height of the
GSVS17 benchmarks is plotted for interpretation reasons.)
The statistics are listed in Table 3.

Compared to the validation data, using only the GGM and
the topographicmodelwithout any observation data gives the
worst result, with an RMS error of 4.04 cm; it is improved to
1.76 cm by adding the terrestrial data and further improved to
1.08 cm by including the airborne data. Figure 5 shows that
themodels-only solution (grey) has the largest variation com-
paring to the validation data (zero value line), although the
models reach a very high harmonic degree. It shows that the
topographicmodels cannot represent the true high-frequency
gravity signal accurately, since they usually assume the topo-
graphic masses to have constant density (Hirt et al. 2010;
Bucha et al. 2016), which is not the case in practice. Thus,
regional gravity field refinement with local data is neces-
sary, despite the availability of high-resolution topographic
models. From Fig. 5, we can see that the airborne-only solu-
tion (blue) has larger oscillations than the terrestrial-only
solution (green), and the combined solution (red) benefits
from both data sets. The terrestrial-only solution is better
than the airborne-only solution, which could be explained
by the larger coverage of the terrestrial data as well as the
downward continuation of the airborne data. To be more spe-
cific, the airborne measurements are collected at an average
altitude of 6 km to model the gravity field on the Earth sur-
face, and thus, the modeling results are expected to be less
accurate than using the surface gravity data. The improve-

ment in the combined solution is 39% compared to using
terrestrial data only and 55% compared to using airborne
data only, and it reaches 73% compared to using no gravity
observations but only GGM and topographic models. Such
significant improvements indicate the validity of our combi-
nation model.

A significant outcome from Fig. 5 is that the differ-
ences between the terrestrial-only solution and the validation
data are highly correlated with the variations of the topog-
raphy (black) at the GSVS17 benchmarks. To be more
specific, when the ellipsoidal heights are constant (between
around benchmark Nr. 110–180), the terrestrial solution is
almost identical to the combined solution; when there are
big changes in the ellipsoidal heights (e.g., between around
benchmark Nr. 30–90 as well as after benchmark Nr. 180),
larger differences between the terrestrial-only solution and
the validation data can be observed. Including the airborne
data seems to improve the terrestrial-only solution the most
in rugged region, which could give some hints about where
to place new airborne measurements in mountainous study
areas. According to the findings in this study, airborne obser-
vations should be taken place in rugged terrain in order to
give the maximum benefits, in addition to the local terres-
trial data.

5.3 Significance of the estimated coefficients

The estimated coefficients d̂ and their standard deviation σ̂

are plotted in Fig. 6a, b. As we can see, the estimated coef-
ficients inside the observation area ∂ΩO (black rectangle)

123



Regional gravity field refinement for (quasi-) geoid determination based on spherical radial… Page 13 of 19 99

Fig. 6 a The estimated coefficients d̂, b their standard deviations σ̂ , c the histogram of the estimated coefficients, d the test statistic |d̂|/σ̂ , e the
histogram of the test statistic, and f the corresponding significant coefficients when p = 0.9 is chosen

represent the gravitational structures well, i.e., a correlation
between Figs. 2e, f and 6a is visible. Larger values in the
estimated coefficients (positive and negative) indicate that
additional gravity signals with respect to the background
model are captured, which shows the physical meaning of
the estimated coefficients (Lieb 2017). Outside the observa-
tion area ∂ΩO (i.e., in the margin between ∂ΩO and ∂ΩC),
the estimated coefficients are close to zero, and their standard
deviations are much larger than those inside the observation

area. Larger standard deviations also occur in areas with data
gaps (referring to Fig. 1b), which is reasonable.

Theoretically, only the coefficients that are significantly
different from zero contribute to the obtained signals and,
thus, to model the gravitational functionals. The nonsignif-
icant coefficients then must be removed. To test how many
coefficients are significant in our study case, we conduct a
t test by the test statistic |d̂|/̂σ (Bentel et al. 2013a). It is
worth mentioning that the t test can be applied here because
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Fig. 7 The least-squares residuals of a the terrestrial gravity data, and b the airborne gravity data

we assumed that the coefficients are not correlated with each
other (see Sect. 4.3). The hypothesis statements to test an
individual coefficient d are

H0 : d = 0 vs. H1 : d �= 0 (36)

The hypothesis H0 : d = 0 will be rejected if its test statis-
tic |d̂|/σ̂ (Fig. 6d) is larger than a critical value tnu,p for
the t test. Figure 6e shows the histogram of the test statis-
tic |d̂|/σ̂ . In our case, the degree of freedom nu is equal
to 90,236 − 26,012 = 64,224, where 90,236 is the num-
ber of observations and 26,012 is the number of unknown
coefficients. The confidence level p = 0.9 is chosen, then
t64224,0.9 = 1.282. It means that if the test statistic |d̂|/σ̂ is
larger than 1.282, then this coefficient is significantly differ-
ent from zero with 90% confidence, and the corresponding
coefficients are considered. The corresponding significant
coefficients are plotted in Fig. 6f.

5.4 Final results and validation

5.4.1 Least-squares residuals of our estimated model

Figure 7 displays the residuals of the least-squares adjust-
ment for the terrestrial gravity observations (Fig. 7a) and the
airborne gravity observations (Fig. 7b). The residuals of the
terrestrial observations have a mean value of −0.19 mGal,
with a SD of 2.13mGal, and the residuals of the airborne data
have a mean value of −0.15 mGal, with a SD of 1.25 mGal.
The functional model fits the airborne data better than the
terrestrial data, which could be explained by the fact that
the airborne data get a higher weight than the terrestrial data
during the VCE procedure. It is also clear from Fig. 7 that
the prominent residuals are located in high-elevation areas
for both the terrestrial and airborne data, and a clear correla-
tionwith Fig. 1a can be observed. This indicates that a further

improvement in our model could be achieved by (1) applying
a more accurate terrain model that might be available in the
near future, or (2) including a better gravity data distribution
on the rugged topography areas.

5.4.2 Height anomaly and geoid height results at the
GSVS17 benchmarks

Our height anomaly as well as the geoid height results are
displayed in Fig. 8, in comparison with the mean value of
all participants. It is visible that our results agree very well
with other contributions, with differences ranging between
−4 and 4 cm. The geoid height (blue) fits worse than the
height anomaly (red) with respect to the mean, which is as
expected due to the transformation (see Sect. 3.4). Accord-
ing to Wang et al. (2020), the RMS errors of our height
anomaly and geoid height compared to the mean value of
all groups are 1.0 cm and 1.3 cm, respectively, which are
the smallest among all the participants. It is worth men-
tioning that we have also calculated the geopotential values
W , and it has a mean of 0.01 m2/s2 with a standard devia-
tion of 0.09 m2/s2 comparing to the mean results of all the
contributions, which is also the smallest. A detailed compar-
ison of the geopotential values is presented in Sánchez et al.
(2020).

The validationwith theGPS/leveling data is done byWang
et al. (2020), and the differences of our height anomaly results
compared to the GSVS17 GPS/leveling data range between
−7.6 and 4.5 cm, with a mean value of 0.81 cm and a SD
of 2.89 cm. Considering the not homogeneously distributed
observations with obvious data gaps, this result is quite sat-
isfying. However, it has to be mentioned that the quality of
these GPS/leveling data is not reported by data providers yet,
and thus, the validation with the mean values of all partici-
pants is of higher importance.
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Fig. 8 Results at the GSVS 17
benchmarks

Fig. 9 a Height anomaly and b its standard deviation

5.4.3 Height anomaly and geoid height results in the whole
study area

Figure 9a visualizes the quasi-geoid model for the whole tar-
get area ∂ΩT, with a grid resolution of 1′ × 1′. The standard
deviation map of the modeled height anomaly is plotted in
Fig. 9b, which ranges from only few millimeters to around
2 cm. The values are smaller in regions with denser obser-
vations. The RMS error of our height anomaly and geoid
height grid model comparing to the mean value of all groups
are 1.6 cm (which is the smallest among all the participants)
and 2.9 cm, respectively (Wang et al. 2020).

Comparisons are also made between our height anomaly
model and two widely used global gravity models, namely
EGM2008 with d/o 2190 (Pavlis et al. 2012, 2013) and
EIGEN6c4 with d/o 2190 (Förste et al. 2014). As shown in
Fig. 10a, b, the differences are at the decimeter level. Com-
paring these differences to the terrain map (Fig. 1a), it is
clear that the large differences are mainly observed in areas
with high topography. These differences could be coming
from the effects above degree 2190, i.e., the GGMs are only
modeled till degree 2190, while we model the gravity signals
till a much higher degree. To verify the reason for these dif-
ferences, we also compare our height anomaly model to the
XGM2019e with d/o 5540 in Fig. 10c, and their difference

does not show a correlation with the topography as strong
as in Fig. 10a, b. In Fig. 10d, we add the residual terrain
model ERTM2160 to the EIGEN6c4 and compare it with our
height anomaly model. The difference is heavily reduced in
this case, and the plot becomes much smoother. Due to the
consideration of the topographic effect as well as the large
amount of observations in the mountainous area, our model
improves a lot in this study area comparing to the global grav-
ity model. The poor performance of the GGMs implies that
they are not reliable for engineering purposes or geophysical
investigation (Wu et al. 2017a), especially in mountainous
areas. Moreover, the regional gravity field modeling with
locally distributed data improves the fine structures primar-
ily, which demonstrate the importance of regional gravity
field refinement.

6 Conclusion and outlook

In this study, we calculate the high-resolution quasi-geoid
model and geoid model using spherical radial basis functions
in Colorado, USA. The results contribute to the ‘1 cm Geoid
Experiment,’ which enables a comparison of our SRBF-
based results to thirteen independent solutions calculated
within other approaches, such as LSC (Moritz 1980; Tsch-
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Fig. 10 Height anomaly differences between our model and a EGM2008, b EIGEN6c4, c XGM2019, d EIGEN6c4+ERTM2160

erning 2013) and the least-squares modification of Stokes’
formula (Sjöberg 2003, 2010). Detailed explanations are
given regarding the choice of the SRBFs characteristics: the
bandwidth, the location, the type of the SRBFs as well as the
extensions of the data zone.

We combine two types of basis functions covering
the same spectral domain in the analysis step. The non-
smoothing Shannon function is applied to the terrestrial data
to avoid the loss of spectral information. The CuP function
is applied to the airborne data as a low-pass filter, and the
smoothing features of this type of SRBFs are used for filtering
the high-frequency noise in the airborne data. The RMS error
of our height anomaly result along the GSVS17 benchmarks
w.r.t the mean results of the other twelve groups drops by 5%
when combining the Shannon function for the terrestrial data
and the CuP function for the airborne data, compared to those
obtained by using the Shannon function for both the two data
sets. We present a theorem which shows that the unknown
coefficients are independent of the type of SRBFs as soon as
they are band-limited to the same degree, and thus, different
types of SRBFs can be used for different types of observa-
tions. As no publications based on real data are known to the
authors which applied the idea of combining different types
of SRBFs for different observations, our results also serve
as an application of this idea and further indicate its validity
and benefits.

We combine the GGM, topographic model, terrestrial
gravity data, and airborne gravity data within the RCR pro-

cedure and the parameter estimation procedure. Numerical
investigations show that including the topographic model
is of great importance in mountainous areas, as it helps to
obtain a better least-squares fit. However, the topographic
model alone does not guarantee an accurate regional grav-
ity field model, despite their high resolution. Comparing to
the mean value of other contributions at the GSVS17 bench-
marks, combining theGGMand the topographicmodel gives
an RMS error of 4.04 cm, which is reduced to 1.76 cm after
adding the terrestrial observations and further reduced to
1.08 cm after including the airborne data. These results indi-
cate the importance of local data sets in regional gravity field
refinement.

Comparisons are made with respect to the mean results of
all the contributions, andour height anomaly andgeoid height
solutions at the GSVS17 benchmarks give an RMS error of
1.0 cm and 1.3 cm, respectively. Our quasi-geoid and geoid
grid models for the whole study area deliver an RMS value
of 1.6 cm and 2.9 cm, respectively. Both our height anomaly
and geoid height results at the GSVS17 benchmarks, as well
as the height anomaly result in the whole study area, have the
smallest RMS value w.r.t the mean values of all participants,
which validates our SRBF-based model. However, there is a
disagreement between theRMSerrorw.r.t themean solutions
and w.r.t the GPS/leveling data. Thus, a major concern for
the future work is to understand this disagreement after the
release of the GPS/leveling data.
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