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Abstract
Purpose In recurrent prostate carcinoma, determination of the site of recurrence is crucial to guide personalized therapy. In
contrast to prostate-specific membrane antigen (PSMA)–positron emission tomography (PET) imaging, computed tomography
(CT) has only limited capacity to detect lymph node metastases (LNM). We sought to develop a CT-based radiomic model to
predict LNM status using a PSMA radioguided surgery (RGS) cohort with histological confirmation of all suspected lymph
nodes (LNs).
Methods Eighty patients that received RGS for resection of PSMA PET/CT-positive LNMs were analyzed. Forty-seven patients
(87 LNs) that received inhouse imaging were used as training cohort. Thirty-three patients (62 LNs) that received external
imaging were used as testing cohort. As gold standard, histological confirmation was available for all LNs. After preprocessing,
156 radiomic features analyzing texture, shape, intensity, and local binary patterns (LBP) were extracted. The least absolute
shrinkage and selection operator (radiomic models) and logistic regression (conventional parameters) were used for modeling.
Results Texture and shape features were largely correlated to LN volume. A combined radiomic model achieved the best
predictive performance with a testing-AUC of 0.95. LBP features showed the highest contribution to model performance.
This model significantly outperformed all conventional CT parameters including LN short diameter (AUC 0.84), LN volume
(AUC 0.80), and an expert rating (AUC 0.67). In lymph node–specific decision curve analysis, there was a clinical net benefit
above LN short diameter.
Conclusion The best radiomic model outperformed conventional measures for detection of LNM demonstrating an incremental
value of radiomic features.
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Introduction

After initial therapy, biochemical failure in terms of a rising
PSA level is the clinical evidence of a PC recurrence [1]. In
this setting of locally recurrent prostate carcinoma (PC), pa-
tients regularly receive salvage radiotherapy (SRT) [2].

Besides the prostatic bed, pelvic lymph nodes (LNs) pres-
ent a common site of recurrent disease that might alter clinical
management. Using conventional imaging, it remains chal-
lenging to detect the exact site of recurrence to optimally
guide personalized therapy [3]. Computed tomography (CT)
is widely used for LN recurrence detection. In previous pub-
lications that used a short-axis diameter of pelvic LNs of 8mm
as an indicator for lymph node metastasis (LNM), only a lim-
ited sensitivity of 30–40% could be achieved [4, 5].

Previous studies could demonstrate inadequate coverage of
recurrent disease using irradiation fields according to the
Radiation Therapy Oncology Group (RTOG) clinical target
volume (CTV) consensus guidelines [6, 7]. This may be ex-
plained by the tendency of PC to metastasize to uncommon
sites after radical prostatectomy (RPE) and pelvic lymph node
dissection (PLND) due to altered lymphatic drainage [8, 9].

68Ga-prostate-specific membrane antigen (PSMA)–posi-
tron emission tomography (PET) imaging has shown high
accuracy in detecting LNMs. A recent meta-analysis found
high sensitivities for LNM detection in recurrent PC ranging
from 58 to 76% for accompanying PSA ranges of 0.2–1 ng/ml
and 1–2 ng/ml [10]. A different study demonstrated the added
value of using 68Ga-PSMA-11 PET/CT for SRT planning.
Forty percent of all 68Ga-PSMA-11 positive LNs would not
have been covered according to the treatment fields as defined
by the RTOG consensus guidelines based on conventional
imaging modalities [7].

PSMA radioguided surgery is a novel surgical approach
that enables intraoperative detection and resection of PSMA
PET-positive LNs following intravenous application of radio-
actively labeled PSMA with 111In-PSMA-I&T or 99mTc-
PSMA-I&S [11]. Maurer et al. could demonstrate that dissect-
ed LNs that showed a positive signal using a gamma-probe
(radioactive rating) in vivo also harboredmetastatic disease on
histopathological evaluation [12]. In a recent analysis, ex vivo
radioactive rating yielded a sensitivity of 83.6% and a speci-
ficity of 100% [13].

Radiomics describes the high-throughput extraction of
quantitative features from medical imaging studies [14, 15].
Extracted features quantify intensity distributions, shape prop-
erties, and texture parameters such as “heterogeneity” in pre-
viously defined volumes of interest (VOI) [16, 17]. After in-
corporation into prediction models, such features can be used
effectively to predict prognosis, histological properties, and
molecular aberrations [18–21]. In PC, previous studies could
demonstrate successful prediction of Gleason score and sur-
vival using radiomic models [22, 23].

To augment the evaluation of conventional CT for LN
evaluation, we chose a radiomic approach to improve the di-
agnostic performance of CT for prediction of LNM in recur-
rent PC. We used a retrospective cohort of recurrent PC pa-
tients who underwent RGS due to 68Ga-PSMA-11 positive
LNMs providing histological confirmation of all dissected
LNs. Different radiomic feature sets were compared to find
the optimal model. All models were validated using external
imaging studies and compared to conventional CT
parameters.

Methods

Patients

In this retrospective analysis, we evaluated a total of 108 pa-
tients with recurrent PC that received RGS of 68Ga-PSMA-11-
PET/CT positive PC recurrences between April 2013 and
September 2017. Patients’ characteristics were obtained by
reviewing the medical records. After exclusion of patients
with (i) only low dose CT imaging (defined with an x-ray tube
current smaller than 80 mAs [24]), (ii) no LNM present in
68Ga-PSMA-11-PET/CT analysis (locoregional recurrence
only), or (iii) a mismatch between 68Ga-PSMA-11-PET/CT
positivity and histology (PET-positive LNs without positive
histological correlate), 80 patients were used for further anal-
yses (see Supplemental Figure 1 [25, 26]). The patients pre-
sented with biochemical recurrence following initial treatment
(median PSA level before 68Ga-PSMA-11-PET/CT was
1.2 ng/ml, range 0.2–8.5 ng/ml) with a median Gleason score
of 7b (range 6–9) (see Supplemental Table 1). Patients pre-
dominantly (96.3%) received RPE as initial treatment.

This evaluation was done upon written informed consent
from all patients with the purpose of anonymized evaluation
and publication. This investigation was approved by the
Ethics Committee of the Technical University of Munich
(TUM) (ERB 466/16 s).

68Ga-PSMA-11-PET/CT

All patients received diagnostic contrast-enhanced CT imag-
ing during the late portal phase on a hybrid PET/CT scanner.
Forty-seven patients received inhouse imaging using a
Biograph mCT scanner after tracer injection of 68Ga-PSMA-
11 ligand complex (mean 401 MBq; range 90–775 MBq).
Thirty-three patients received 68Ga-PSMA-11-PET/CT scans
at external institutions (see Supplemental Table 2 for CT types
and acquisition parameters). Every imaging report was per-
formed by an experienced nuclear medicine physician and a
radiologist.
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Radioguided surgery

A detailed description of the applied technique was recently
described elsewhere [13]. In short, suspicious LNs detected on
68Ga-PSMA-11-PET/CT imaging and adjacent non-diseased
templates were selectively surgically resected guided by a
gamma probe following intravenous application of radioac-
tively labeled PSMA with 99mTechnetium-PSMA-I&T (66
patients) or 111Indium-PSMA-I&S (14 patients). Ex vivo
gamma measurements were performed to confirm successful
removal of suspected lesions. At the end of surgery, remaining
metastatic lesions were excluded by an additional round of
gamma probe measurements in situ. Histological analysis
was performed of all resected lymph node templates including
PSMA expression analysis (monoclonal murine PSMA anti-
body [clone 3E6]; Dako, Hamburg, Germany). Correlation of
imaging finding and histology was performed by anatomic
location, ex vivo gamma probe measurements, LN size, and
PSMA expression. In 87% of patients, there were only singu-
lar LNM or multiple LNMs had separate anatomic locations.
In 13% of patients with two LNM in one resection template,
lymph node diameter, and histopathology were assessed by a
physician to correlate histology to imaging findings.

LN segmentation

LN segmentation was conducted manually using Eclipse 13.0
(Varian Medical Systems, Palo Alto, USA) on the contrast-
enhanced diagnostic CT datasets (see Fig. 1 for a depiction of
the workflow). The segmentation was done by a radiation
oncologist with 4 years of experience. First, LNs suspicious
for LNM following the PSMA PET/CT report were segment-
ed. In total, 832 LNs were found in the histological workup
after RGS. Non-suspicious LNs were segmented on CT only
if the LN (i) was visible on CT, and (ii) a direct correlation to
the histological workup was possible. In total, 149 LNs with
confirmed histology (110 histologically positive LNs, 39 his-
tologically negative LNs) were analyzed. For the standardized
uptake value (SUV) calculation, regions of interest were semi-
automatically segmented using a 3D Slicer PET Tumor
Segmentation module which applies the “just-enough-interac-
tion” approach by Beichel et al. [27]. The focal maximum
uptake was calculated using the 3D Slicer PET-IndiC
extension.

The short diameter of all LNs was measured. All LNs were
evaluated with an expert rating regarding likelihood of LNM
by a blinded nuclear medicine physician with 5 years of
experience.

Two separte blinded delineations per LN were performed
by JP and MS in 20 patients from the training set (see Fig. 1)
to compensate for operator-dependent segmentation bias (37
LNs). The patients were selected by random sampling strati-
fied for LNM status. The Dice similarity coefficients (DSC)

was calculated using the SlicerRT extension of 3D Slicer (3D
Slicer, Version 4.8 stable release) [28].

Radiomics features extraction

Radiomics feature and preprocessing was performed using the
pyradiomics package (version 2.1) in Python (version 3.6.4)
[25]. For preprocessing, a fixed bin width of 5 was used for
image discretization to achieve a bin count between 16 and
128 [25, 29]. This resulted in a mean bin count of 37.

Isotropic resampling was performed to a voxel size of 1 ×
1 × 1 mm using Bspline interpolation. Shape, first-order, and
texture features were computed from the original image ac-
cording the “image biomarker standardization initiative”
(IBSI) guidelines [30]. Moreover, intensity features from local
binary pattern (LBP) filtered images were calculated. Among
other filtering methods, the LBP filter has not yet been defined
by the IBSI. LBP-derived images were computed three-
dimensionally using a level of one and two, as well as the
kurtosis image. In total, 156 features were extracted. All ex-
tracted features are listed in Supplemental Table 3.

ComBat batch harmonization

ComBatHarmonization has been proposed as a method for the
correction of batch effects among radiomics multicenter co-
horts [31, 32]. Its value to improve reproducibility between
different centers has been shown in multiple studies [33–35].
Based on the given feature distribution it estimates the addi-
tive and multiplicative batch effects using a maximum likeli-
hood approach. We applied parametric ComBat harmoniza-
tion (https://github.com/Jfortin1/ComBatHarmonization,
accessed April 16, 2020) correcting for PET/CT scanner
models.

Statistical analysis and model building

Statistical analysis and radiomic model building were per-
formed using R (version 3.4.0, R core team, Vienna,
Austria). All 47 patients that received inhouse PET/CT scans
were used for training and validation (87 LNs). Prior to
modeling, features susceptible to variances in segmentation
in the 20 patients that received multiple independent segmen-
tations (intraclass correlation coefficient (3,1) of < 0.8) were
excluded.

For modeling, the least absolute shrinkage and selection
operator (LASSO) was used. Using the “glmnet” package,
the hyperparameter “lambda” was optimized for the predic-
tion of histologically defined LNM status using 10-fold cross-
validation in the training set. All 33 remaining patients that
received external imaging were used as external test cohort
(62 LNs). All over, we compared four distinct radiomic
models: “Radiomics-texture,” “Radiomics-shape/intensity,”
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“Radiomics-LBP,” and a “Radiomics-combined” model.
Texture, shape, intensity, and LBP features were used as input
features for “Radiomics-combined.” For comparison, clinical
parameters such as LN short diameter, LN volume, and expert
evaluation (expert rating) were used as competing models.
Prediction performance stability was evaluated by
bootstrapping using the “fbroc” package (1000-fold). The fi-
nal models were tested on the external test set. The optimal
cutpoint for the radiomics model was determined using max-
imally selected rank statistics as implemented in the “maxstat”
package on the training set. As a performance metric, the area
under the receiver operator characteristic (ROC) curve (AUC)
was calculated. Two models were compared using the
rcorrp.cens function in the “Hmisc” package. Feature values
and values were compared between two groups using the
Wilcoxon rank-sum test. Correlation to LN volume was
assessed using the Spearman’s rank correlation. A p value of
< 0.05 was regarded as statistically significant. In cases of
multiple testing, p values were adjusted using Bonferroni cor-
rection. Calibration curves were computed using the “gbm”
package.

To compare the clinical net benefit, decision curve analysis
was performed as described by Vickers et al. [https://www.
mskcc.org/departments/epidemiology-biostatistics/

biostatistics/decision-curve-analysis] [36]. The net benefit is
calculated by subtracting the proportion of false-positive pa-
tients from the proportion of true-positive patients, weighted
by the relative harm of a false-negative and false-positive re-
sult. The decision curves for “treating no patients” and
“treating all patients” were depicted as reference.

Results

Histologically positive LNs represented 70.1% and 79.0% in
the training and test sets, respectively (see Table 1 for LN
characteristics). The mean LN short diameter was generally
short with 0.63 and 0.68 cm in the training and test set, re-
spectively (see Supplemental Figure 2 for LN volume
distribution).

The two independent segmentations overlapped with a me-
dian DSC of 0.89. Due to susceptibility to segmentation var-
iances, 57%, 18%, 19%, and 15% of shape, intensity, texture,
and LBP features were excluded, respectively.

In accordance with previous studies, 43% of all texture
features were correlated to LN volume with a Spearman’s
rank correlation coefficient of at least ± 0.6 [37–39]. Even
more markedly, 78% of all shape features were correlated to

Fig. 1 Schematic overview of the radiomics workflow. (1) Separation of
a training patient cohort with internal imaging studies and a testing patient
cohort with external imaging studies. (2) Manual segmentation of lymph
nodes with a clear correlation to histology. (3) Preprocessing and
radiomics feature extraction. (4) Modeling of prediction models using

the least absolute shrinkage and selection operator (LASSO) for radiomic
models and logistic regression for conventional CT parameters. (5)
Testing and evaluation of model performance using receiver operator
characteristic (ROC) curve, calibration curves and decision curve analysis
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volume. Only 6% of all intensity and 24% of all LBP features
showed a correlation coefficient in the same range (see
Supplemental Figures 3-6 for correlation coefficients of all
features).

Next, the values of all 156 features were compared using
theWilcoxon rank-sum test in the total patient set. Eighty-four
features showed a significantly different distribution between
histologically positive and negative LNs (see Supplemental
Table 4).

LBP features outperform intensity, shape, and texture
features

Among the radiomic models, Radiomics-texture, Radiomics-
shape, and Radiomics-intensity showed similar predictive per-
formances with AUCs of 0.78, 0.77, and 0.76 in the training
cohort, and 0.78, 0.83, and 0.73 in the testing cohort, respec-
tively. Radiomics-LBP achieved better predictive perfor-
mance with AUC values of 0.86 in the training set and 0.90
in the testing set.

The model Radiomics-combined trained on all radiomic
feature types further increased the discriminative performance
to an AUC of 0.89 in the training set and an even better
performance on the test set (AUC testing 0.95, +absolute dif-
ference 0.06). This was significantly better than Radiomics-
texture, Radiomics-shape, and Radiomics-intensity (training:
p = 0.01, p = 0.004, p = 0.006, respectively; testing: p = 0.004,
p = 0.02, p = 0.01, respectively), but not Radiomics-LBP
(training: p = 0.31, testing: p = 0.38). SUVmax as a guidance
model for LN evaluation achieved AUC values of 0.98 (0.95–
1.00) and 1.00 (1.00–1.00) in the training and test sets,

respectively. See Table 2 for 95% confidence intervals (95%
CIs), Fig. 2 for ROC curves, and Supplemental Figure 7 for
calibration curves.

Radiomics-combined showed superior predictive
performance compared to conventional CT measures

Of all conventional parameters, LN short diameter achieved
the best predictive performance (AUC training 0.76, AUC
testing 0.84), followed by LN volume (AUC training 0.74,
AUC testing 0.80) and expert rating (AUC training 0.65,
AUC testing 0.67). In direct comparison, Radiomics-
combined significantly outperformed LN short diameter

Table 1 Patient and lymph node characteristics. Lymph node metastases status was determined by histological confirmation following radioguided
surgery using 99mTechnetium- or 111Indium-PSMA-Prostate specific membrane antigen (PSMA) radionuclides

Training cohort (A) Testing cohort (B)

Number % Number %

Number of Lymph nodes 87 59.4% 62 41.6%

Number of patients 47 58.7% 33 41.3%

Age median (range) 69 years (49–78) 69 years (42–76)

Histology

Histology-confirmed positive LNs 61 70.1% 49 79%

Histology-confirmed negative LNs 26 29.9% 13 21%

Short-axis diameter (mm)

Mean 63 mm 68 mm

SD ± 28 mm ± 34 mm

Range (25–193 mm) (32–170 mm)

Volume (cm3)

Mean 0.16 cm3 0.14 cm3

SD ± 0.13 cm3 ± 0.07 cm3

Range (0.06–1.04 cm3) (0.05–0.51 cm3)

Table 2 Area under the receiver operator characteristic curve (AUC)
values of the predictionmodels for lymph nodemetastases. Four radiomic
models using different input features were compared with conventional
measures. The respective AUC values and 95% confidence intervals
(95% CI) are depicted

Model Training cohort Testing cohort
n = 87 LN n = 66 LN
AUC (95% CI) AUC (95% CI)

LN short diameter 0.76 (0.65–0.86) 0.84 (0.74–0.94)

LN Volume 0.74 (0.62–0.84) 0.80 (0.67–0.91)

Expert rating 0.65 (0.59–0.70) 0.67 (0.61–0.74)

Radiomics-texture 0.78 (0.67–0.88) 0.78 (0.65–0.91)

Radiomics-shape 0.77 (0.66–0.86) 0.83 (0.69–0.93)

Radiomics-intensity 0.76 (0.65–0.86) 0.73 (0.57–0.88)

Radiomics-LBP 0.86 (0.77–0.94) 0.90 (0.78–1.00)

Radiomics-combined 0.89 (0.81–0.95) 0.95 (0.88–0.99)
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(p = 0.002), LN volume (p = 0.001), and expert rating
(p < 0.0001) on the training set. This was reproducible in the
test set for all three conventional measures (expert rating
(p < 0.0001), LN volume (p = 0.007), LN short diameter
(p = 0.03)).

The conventional parameters and the best radiomic mod-
el (Radiomics-combined) were tested in logistic regression
for LNM status on the test set (see Table 3). After adjust-
ment for multiple testing, LN short diameter (odds ratio
(OR) 5.6, p = 0.026), and Radiomics-combined (OR 22,
p = 0.0024) were the only significantly associated factors.
In multivariate analysis of all three significant factors, only
Radiomics-combined retained its significance (p = 0.0035).
LN volume, LN short diameter, and the Radiomics-
combined score also showed a significantly different distri-
bution between histologically positive and negative LNs in
the test set (p = 0.0005, p = 0.048, p < 0.0001, respectively,
see Supplemental Figure 8).

Clinical usefulness of the Radiomics-combined model

On the test set, Radiomics-combined predicted LNM status
with a balanced accuracy, and Matthews correlation coeffi-
cient (MCC) of 0.73 and 0.46, respectively (see Table 4 for
more prediction metrics of all tested models). The best classi-
fication performance was achieved by Radiomics-LBP with a

balanced Accuracy and MCC of 0.84 and 0.74, respectively.
While limited in specificity, both models achieved good sen-
sitivity, negative predictive value, and positive predictive val-
ue measures. LN short diameter split at a diameter of 0.8 cm
predicted LNM status with a balanced accuracy and MCC of
0.67 and 0.29, respectively [5]. LN volume posed the best
conventional model with a balanced accuracy of 0.73, but an
inferior NPV.

Decision curve analysis computed to reflect the treatment
decision regarding a specific LN revealed a clinical net benefit
of Radiomics-combined above the two alternative options
“treat all lymph nodes” and “treat no lymph nodes” (see Fig.
3). Moreover, there was a larger net benefit than for LN short
diameter between a threshold range of 0.0 and 0.9.

Feature importance

Radiomics-combined was dominated by two LBP features
“10th-percentile” and “inter-quartile-range” both computed
from the kurtosis LBP image, and the shape feature
“SurfaceVolumeRatio” (see Supplemental Table 5 for a
feature importance ranking of all radiomic models). These
features were also the most important in their respective single
feature class models (Radiomics-LBP and Radiomics-shape),
respectively.
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Fig. 2 Receiver operator characteristic (ROC) curves for the prediction
of lymph node metastases status. Depiction of ROC curves for all models
in the training (top row) and test (bottom row) patient cohorts. The area

under the ROC curve (AUC) is depicted. The blue areas represent the
95% confidence intervals

Table 3 Univariate and multivariate analysis for histology confirmed lymph node recurrence. Univariate and multivariate logistic regression of the
linear predictors of the conventional parameters and the best performing radiomics model (Radiomics-combined)

Clinical Variables Univariate analysis Multivariate analysis

Odds ratio 95% CI p value Odds ratio 95% CI p value

Expert rating 2.7 0-Inf 1 – – –

LN short diameter 5.6 2–25 0.026* 2.34 0.59–15.2 0.34

LN Volume 9.8 2.1–8.6 0.08 – – –

Radiomics-combined 22 5.2–190 0.0024* 15.5 3.35–149 0.0035*

LN lymph node, Inf infinity. *Significant result
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Influence of ComBat harmonization

The results reported above were based on radiomic features
after ComBat harmonization. The omission of ComBat har-
monization led only to small changes in model performance.
The performance of the best model Radiomics-combined de-
creased by an AUC value of 0.01 without marked change in
contingency table measures or logistic regression analyses
(see Supplemental Tables 6, 7, and 8).

Discussion

In this work, we have developed CT-based radiomic models
for the detection of LNMs. A patient cohort that received RGS
for recurrent PC was used providing histological correlates as
gold standard for all analyzed LNs. The combined radiomic
model achieved the best predictive performance of all
radiomic models and significantly outperformed conventional
CT measures. The model retained significant correlation to
LNM status in multivariate analyses and showed a larger clin-
ical net benefit than LN short diameter.

A few previous studies have analyzed the value of compu-
tational feature extraction of LNs to predict LNM status. In
non-small-cell lung cancer patients, Flechsig et al. could dem-
onstrate that LN median intensity (“density”) was significant-
ly different between histologically confirmed LNMs and LNs
on non-contrast-enhanced CT. On contrast-enhanced CT there
was only a trend towards significance [40, 41]. Further on,
with an AUC value of 0.82, it showed better predictive per-
formance than short-axis diameter (AUC 0.65). Giesel et al.
performed a similar analysis including 40 PC patients. The
authors could demonstrate a correlation of LN density to
PSMA PET/CT positivity although without histological con-
firmation [42]. Our approach differed in several ways from the
studies discussed above. First, we used diagnostic contrast-
enhanced CT imaging data which is regularly used in the
clinic. Secondly, following the radiomics concept, we extract-
ed a large number of radiomic features enabling us to filter the
most relevant features.

One further study has performed radiomic analysis for
LNM detection in cervical cancer patients on the basis of
T2-weigthed MRI imaging. The resulting radiomic model
achieved similar a predictive performance for LNM status in
an internal validation cohort with an AUC of 0.85 [43]. Our
best model achieved a predictive performance with anAUC of
0.95 in the test set. This performance was significantly better
than all conventional CT measures including the current clin-
ical standard “LN short diameter”.
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Fig. 3 Lymph node–specific decision curve. The decision curve analysis
plots the expected net benefit against the threshold capacity on the test set.
The net benefit is calculated by subtracting the proportion of false-
positive lymph nodes from the proportion of true-positive lymph nodes,
weighted by the relative harm of a false-negative and false-positive result.
The decision curves for “treating no lymph nodes” and “treating all lymph
nodes” are depicted as reference. A decision model shows a clinical
benefit if it achieves larger net benefit values than both reference strate-
gies or any other model. This decision curve reflects the treatment deci-
sion on the lymph node level. The best radiomic model “Radiomics-
combined” was split at an optimal cutpoint which was determined on
the training set. It is compared to LN short diameter split at 0.8 cm

Table 4 Classification metrics of all tested models. Four radiomic
models using different input features were compared with conventional
measures. The respective performance metrics (Matthews correlation

coefficient (MCC), balanced accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV))
determined on the test set are reported

Model MCC Balanced accuracy Sensitivity Specificity PPV NPV

LN short diameter 0.32 0.67 0.35 1.00 1.00 0.29

LN Volume 0.37 0.72 0.67 0.77 0.92 0.38

Expert rating 0.32 0.67 0.35 1.00 1.00 0.29

Radiomics-texture 0.30 0.68 0.73 0.62 0.88 0.38

Radiomics-shape 0.37 0.73 0.61 0.85 0.94 0.37

Radiomics-intensity 0.25 0.57 0.98 0.15 0.81 0.67

Radiomics-LBP 0.74 0.84 0.98 0.69 0.92 0.9

Radiomics-combined 0.64 0.73 1.00 0.46 0.88 1.00
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Previous studies have highlighted the large dependency of
texture features to the VOI volume especially for small vol-
ume sizes [37–39]. Our study could demonstrate that a large
number of texture and shape features indeed correlated with
volume. Moreover, both feature types achieved a predictive
performance for the prediction of LNM status which was com-
parable to LN volume alone. This may indicate that texture
and shape features have only a limited incremental value in
small VOIs. In contrast, LBP features achieved good predic-
tive performances demonstrating their value despite small
VOI volumes.

LBP features have not yet been frequently used in radiomic
studies. LBP constitutes an image filter in which each voxel is
labeled according to its relationship between the gray levels
towards surrounding voxels. Each surrounding voxel receives
a binary label representing a higher or lower intensity value.
Each unique label combination of the surrounding voxels is
allocated a new gray value [44]. Different LBP values may,
thus, represent semantic properties such as edges. The two
most important features in our combined radiomics mode
were LBP features underlining the value of LBP features for
the analysis of small volume VOIs.

Our radiomic models outperformed all conventional
CT-based models. However, SUVmax showed the highest
predictive value of all models (AUC training 0.98, AUC-
testing 1.00). These results are biased by the fact that the
PSMA tracer uptake was used to define LNs suspicious to
be LNM before RGS. Moreover, PET-positive LNs with-
out positive histological correlate were excluded to in-
crease the reliability of the histological finding for the
training of CT models. As a consequence, this study de-
sign does not allow a comparison of the CT-based models
with the performance of PSMA-uptake. Due to this selec-
tion bias, all reported performances cannot be set equal to
the performance in unselected cases. Still, currently,
PSMA PET/CT remains the optimal choice for pre-
therapeutic assessment of lymph node involvement.

We performed a decision curve analysis demonstrating a
clinical net benefit of the Radiomics-combined model. This
analysis was done on a LN-specific basis. Thus, it evaluates
the treatment decision to include a LN into a targeted treat-
ment or not. A CT-based LMM detection model could be
applied to the optimization of SRT planning in the absence
of PSMA PET/CT imaging. First, the CTV could be extended
to cover atypically located LNs that are classified as LNM on
planning CTs. Secondly, suspected LNM could be treated
with the simultaneous integrated boost technique resulting in
larger radiation doses. On the contrary, the model predictions
may also alter the overall choice of treatment (e.g. salvage
PLND). This model was generated in recurrent PC patients.
However, it may also be valuable in the primary treatment
setting for decision support or guidance of the treatment
planning.

Our study bears several relevant limitations. First, his-
tological confirmation of PSMA-ligand positive LNs was
facilitated by RGS. However, despite the use of RGS, sys-
tematic template resection, and thorough comparison be-
tween imaging and LNs described in the pathology report
single misclassifications between imaging and pathology
could still be possible. To minimize this bias, we decided
to exclude all LNs positive in 68Ga-PSMA-11 imaging
without a positive histological correlate. Secondly, only a
small number of negative LNs could be segmented as we
focused on LNs that had a clear histological correlate and
that were situated in the pelvis. In fact, a large number of
only a few millimeters measuring LNs found in histology
could not be found on CT imaging. Thirdly, the developed
models were validated using only a “quasi-external” test
set. All of these patients received imaging at multiple ex-
ternal facilities with diverse scanner types and acquisition
protocols. On the other hand, all patients received RGS and
histological workup at one institution. Interestingly, the
radiomic model showed good reproducibility between both
cohorts. To achieve optimal proof for generalizability, a
completely independent external validation should be per-
formed. Moreover, the analyzed cohort was largely biased
by the fact that PET imaging was used for LN selection,
that only LN visible on CT could be segmented, and that
LNs with a mismatch between histology and imaging were
excluded. As a consequence, the relatively high AUC
values may be overestimated and not representative. To
reach a sample number sufficient for radiomics analysis,
multiple LNs were included per patient. It should be noted
that correlation in the radiomics phenotype of LNs from
the same patients may have impeded optimal model devel-
opment. Finally, the study was conducted in a retrospective
fashion. A future prospective RGS trial could be used to
validate the developed radiomics model with histological
confirmation. Despite these limitations, our study achieved
a radiomics quality score of 53% (see Supplemental
Table 7) [45]. This score was higher than in 97% of studies
analyzed in a recent review [46].

To conclude, we were able to develop a CT-based
radiomic model for the detection of LNMs. All included
LNs were histologically confirmed by PSMA radioguided
surgery. The combined radiomic model, based on texture,
shape, intensity and local binary pattern features signifi-
cantly outperformed conventional measures in predictive
performance and showed a clinical net benefit above the
short diameter of LNs. All models were validated using
external imaging studies. A future validated model could
be used to provide guidance for personalization of therapy
in case of unavailability of PSMA PET/CT imaging or in
cases of PSMA PET/CT indeterminate LNs. In case of
availability, PSMA PET/CT remains unmatched in diag-
nostic capacity.
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