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Abstract
A lot of software today dealing with various domains of engineering and life sciences have to deal with non-linear problems. 
In order to reduce the problem to a linear problem, a lot of state of the art solutions already exist. This work focus on the 
implementation of Newton’s Algorithm (also known as Newton’s method), to determine the roots of a given function within 
a specific user defined interval. The software for this implementation is FORTRAN. Even though FORTRAN is considered 
to be outdated, it still has a lot of application due to its long history and the existing legacy code. The code is written in such 
a manner that a user can provide a function and a specific interval and the code should in turn run iterations over the interval 
and should display all the possible roots within that interval. The results are compared at the end for their accuracy. The 
program is successful in finding out all the roots within an interval.
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Introduction

FORTRAN programming language has been one of the 
earliest of its kind to be in use for the purpose of writing 
programs. In that regard, learning it is necessary to have a 
better grasp on it, in order to have a better understanding of 
those programming languages that followed. As a learning 
exercise, it was asked to make a program on FORTRAN, 
that uses Newton’s method as its base to approximate the 
roots of a function over a fixed interval (both the function 
and the interval are to be given by the user). The sequence 
is as follows:

•	 The theory behind Newton’s method will be discussed.
•	 The algorithm for Newton’s implementation will be 

described.
•	 Comparison of the program’s results with actual data.

We examine three variations of the strategy initiat-
ing from Newton’s strategy for discovering the roots of a 
function of a sole variable: the method in higher dimen-
sions, higher order method, and continuous method. A brief 
account of the advancement of Newton’s strategy is given 
and the inventiveness of this article is not claimed; accentua-
tion is put on applications of Newton’s strategy in abstract 
analysis, in specific, subjectivity of functions between finite 
dimensional Banach spaces [1].

Imperative hypothetical outcomes on Newton’s method 
regarding the convergence properties, the error estimates, 
the numerical stability and the computational complexity of 
the algorithm were assessed. In Newton or Newton Raphson 
strategy an arrangement of the nonlinear condition F = 0; 
where F0 is the Frechet derivative of F and X and Y are 
Banach spaces. In case F may be a real function the geomet-
ric interpretation of the Newton method is well known [2].

The proposed strategy is demonstrated to be productive 
with the assistance of the numerical performance and com-
parison. The first one, for finding roots of scalar functions, 
is the numerical comparison between the new Newton for-
mulas, Newton’s method and a third order Newton method. 
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We observe that the offered algorithm is effective for one 
dimensional real function [3].

Theoretical Background

Like many other root-finding methods, Newton’s method, 
also known as Newton Raphson method, is a mathematical 
technique to find the best possible vales (roots) of a real-
valued function. For many simpler equations (e.g. linear, 
quadratic), there already exists set of formulas to calculate 
the exact roots of an equation. But in cases where the equa-
tions are far more complex, this method is very useful to get 
quick and accurate results.

From the development of Newton’s strategy to the higher 
dimensional analogue (our first variation of Newton’s 
method) and to the newton’s applications isn’t as blunt. Why 
ought to one consider as it were the constant and the linear 
term as an approximation of F, in the Taylor expansion of F? 
Be that as it may, we can utilize Newton’s method to show 
that the condition (F = 0 = y) declares a solution [1].

The first and second derivative of F are signified by F0 
and F00 in the sense of Frechet. An over the top amount of 
extensions and variants of outcomes arose in the literature. 
The Kantorovich theorem, by its sheer significance and by 
the original and powerful proof technique could be a show-
stopper. Intensive research on Newton and related strategies 
were started by the results of Kantorovich and his school [2].

The Newton–Kantorovich theorem also alluded to as 
convergence theorem, was set up in 1948, Kantorovich. An 
inaccurate newton strategy was suggested by Dembo et al. 
[4]. This technique roughly answers the linear equation. 
Then convergence theorem of Newton’s strategy for distinc-
tive cases was set up by Fourier, Cauchy, and Fine. Newton 
initially utilized the Newton iteration to illuminate a cubic 
equation in 1916 [3].

Figure 1 gives a basic explanation of how the Newton’s 
method works.

•	 at the start the root is approximated
•	 the value of the function is calculated at that approxima-

tion
•	 the difference (delta y) between x-axis and the point at 

the graph is calculated.
•	 if delta y is greater than 0, then the slope of the function 

at the first approximations is calculated
•	 the point where the extended line of the slope cuts the 

x-axis is the next approximation

•	 if the difference between the results of the iterations is 
almost the same, we can assume that we have reached the 
root of the function.

The above process can also be written in the following 
mathematical expression:

And the general form of this process to find the nth 
approximation is:

Constraints of Newton’s Method

Newton’s method is considered to be one of the most fast-
est methods to give the results, since it normally requires 
fewer iterations to reach the results. Even so, there are some 
conditions that must be mentioned, where this method does 
not perform so well.

(a)	 Function with no roots
	   One of the most common case, where this method 

will fail is the no-roots case. The iterations keep on 
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Fig. 1   Graphical representation of Newton’s method.  Source: 
Adapted from [5]
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running for ever since whenever it finds the value of the 
function and analyses it, it is never close to zero hence 
the iterations keeps on finding the next possible root. 
The figure below can display why this can be a problem 
(Fig. 2).

(b)	 Problems with the derivative
	   In order to find the next approximation, the method 

not only needs the value of the function but also of its 
derivative. In the formulas above for the calculation of 
the next approximation, it is shown that the value of 
the derivative lies in the denominator. So, whenever 
the value of the derivative is zero (straight line), this 
means that it can never intersect with the x-axis hence 
the iteration cannot proceed further. On the other hand, 

a problem can also arise if the value of the derivative is 
too large. Because this the next iteration will give the 
same result as the previous one and hence the process 
will not move in any direction. The following figure 
shows the case for zero slope (Fig. 3).

(c)	 Cyclic problem
	   In some complex cases, there comes a time in the 

iterations when the process gets stuck between two 
points i.e. that one value leads to another and that new 
value leads back to the old one. This constant loop 
doesn’t allow the process to move further hence there 
cannot be any roots found for the function (Fig. 4).

  

Algorithm of the Program

The flowchart on the following page describes how the pro-
gram’s processes run in order to calculate the roots of a 
function over an interval (Fig. 5).

The flow chart can be broken down into two flow charts 
for easier understanding and implementation (Fig. 6).

Fig. 2   Case with no possible roots.  Source: Adapted from [6]

Fig. 3   Function having zero-slope.  Source: Adapted from [7]

Fig. 4   Cyclic problem.  Source: Adapted from [8]
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Variables of the Program

In order to understand any program, it is necessary to first 
know what the variables inside actually stand for. The fol-
lowing table is an insight into the description of those vari-
ables (Table 1).

Error‑Checking

Before writing the algorithm, it is necessary to first identify 
possible errors that could be problematic for the program. 
Methods to prevent them are then later incorporated into 
the program. The following errors were considered to be 
essential to be removed or to be dealt with:

•	 Lower bound should be different than the upper bound.
•	 Lower bound should be lesser than the upper bound.
•	 Step-width should be a non-negative number.
•	 The iterations should be lesser than the maximum allow-

able number of iterations.
•	 The maximum number of roots should be greater zero.

Comparison of Results

In order to test the credibility and accurateness of the pro-
gram, it is necessary to compare it’s results with the known 
thresholds. For the same reasons, the program was used for 
three given functions (3 cases) and the roots calculated by 
the program for those functions were compared those seen 
on a plotted graph. For plotting of the graph, online tools 
were used.

Case-1
The function for case-1 is given below:
(

1 − 5x − 2x2
)

× tan (2x)

(1 − x) sin (3x) × cos (4x)
.

Fig. 5   Algorithm for Newton’s method
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Fig. 6   Algorithm for Newton’s 
method (broken down)

Table 1   Variables and their description

Variable Description

rootsmax Maximum no. of roots
lb Lower bound
ub Upper bound
sw Step width
eps Precision
h h value for slope calculation
maxit Maximum no. of iterations
x Supposed root
fx Value of function
fsx Derivative of the function
le Length of array

Fig. 7   Results by the program for Case-1
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Fig. 8   Plot of the function in between the interval for Case-1

Fig. 9   Results by the program for Case-2

Fig. 10   Plot of the function in between the interval for Case-2

The results obtained by the program are shown by the 
figure below (Fig. 7).
The following graph shows the roots for the same interval 
as given in the program for case 1 (Fig. 8).
Case-2
The function for case-2 is given below:

The results obtained by the program are shown by the 
figure below (Fig. 9).
The following graph shows the roots for the same interval 
as given in the program for case-2 (Fig. 10).

x5

2
+ 2x4 + 3x38x2 − 5x − 1.
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Case-3
The function for case-3 is given below:

The results obtained by the program are shown by the 
figure below (Fig. 11).
The following graph shows the roots for the same interval 
as given in the program for case-3 (Fig. 12).

Discussion and Conclusion

The previous section shows side by side, the results of the 
program and the actual roots of those functions. By com-
parison it can be easily said that the number of roots and 
their values match those shown on the graphs. Therefore, 
it is safe to say that the program is accurate and gives reli-
able results.

Finding the roots of complex equations can be very dif-
ficult and tedious at times. With this technique it can be 

e−x∕5((1 − 2x) × cos (3x)) + ex∕5((1 + 2x) × sin (2x)).

Fig. 11   Results by the program for Case-3

Fig. 12   Plot of the function in between the interval for Case-3
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very easy to give good estimates of the results, provided 
that there are no errors possible during calculation within 
that interval.
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