
Vol.:(0123456789)

SN Computer Science (2020) 1:348
https://doi.org/10.1007/s42979-020-00360-3

SN Computer Science

ORIGINAL RESEARCH

Implementation of Newton’s Algorithm Using FORTRAN

Shahida Anusha Siddiqui1  · Ali Ahmad2

Received: 12 August 2020 / Accepted: 1 October 2020 / Published online: 17 October 2020
© The Author(s) 2020

Abstract
A lot of software today dealing with various domains of engineering and life sciences have to deal with non-linear problems.
In order to reduce the problem to a linear problem, a lot of state of the art solutions already exist. This work focus on the
implementation of Newton’s Algorithm (also known as Newton’s method), to determine the roots of a given function within
a specific user defined interval. The software for this implementation is FORTRAN. Even though FORTRAN is considered
to be outdated, it still has a lot of application due to its long history and the existing legacy code. The code is written in such
a manner that a user can provide a function and a specific interval and the code should in turn run iterations over the interval
and should display all the possible roots within that interval. The results are compared at the end for their accuracy. The
program is successful in finding out all the roots within an interval.

Keywords  Newton’s Algorithm · FORTRAN · Roots of a function · Non-linear problems

Introduction

FORTRAN programming language has been one of the
earliest of its kind to be in use for the purpose of writing
programs. In that regard, learning it is necessary to have a
better grasp on it, in order to have a better understanding of
those programming languages that followed. As a learning
exercise, it was asked to make a program on FORTRAN,
that uses Newton’s method as its base to approximate the
roots of a function over a fixed interval (both the function
and the interval are to be given by the user). The sequence
is as follows:

•	 The theory behind Newton’s method will be discussed.
•	 The algorithm for Newton’s implementation will be

described.
•	 Comparison of the program’s results with actual data.

We examine three variations of the strategy initiat-
ing from Newton’s strategy for discovering the roots of a
function of a sole variable: the method in higher dimen-
sions, higher order method, and continuous method. A brief
account of the advancement of Newton’s strategy is given
and the inventiveness of this article is not claimed; accentua-
tion is put on applications of Newton’s strategy in abstract
analysis, in specific, subjectivity of functions between finite
dimensional Banach spaces [1].

Imperative hypothetical outcomes on Newton’s method
regarding the convergence properties, the error estimates,
the numerical stability and the computational complexity of
the algorithm were assessed. In Newton or Newton Raphson
strategy an arrangement of the nonlinear condition F = 0;
where F0 is the Frechet derivative of F and X and Y are
Banach spaces. In case F may be a real function the geomet-
ric interpretation of the Newton method is well known [2].

The proposed strategy is demonstrated to be productive
with the assistance of the numerical performance and com-
parison. The first one, for finding roots of scalar functions,
is the numerical comparison between the new Newton for-
mulas, Newton’s method and a third order Newton method.

This article is part of the topical collection “Computational
Statistics” guest edited by Anish Gupta, Mike Hinchey, Vincenzo
Puri, Zeev Zalevsky and Wan Abdul Rahim.

 *	 Shahida Anusha Siddiqui
	 S.Siddiqui@dil‑ev.de

	 Ali Ahmad
	 aliahmad9292@gmail.com

1	 Technical University of Munich (TUM), Germany;
DIL-Deutsches Institut für Lebensmitteltechnik e.V.
(German Institute of Food Technologies), Quakenbrück,
Lower Saxony, Germany

2	 Suckfüll Holzbau Systeme GmbH & Co. KG, Nieheim,
Germany

http://orcid.org/0000-0001-6942-4408
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00360-3&domain=pdf

	 SN Computer Science (2020) 1:348348  Page 2 of 8

SN Computer Science

We observe that the offered algorithm is effective for one
dimensional real function [3].

Theoretical Background

Like many other root-finding methods, Newton’s method,
also known as Newton Raphson method, is a mathematical
technique to find the best possible vales (roots) of a real-
valued function. For many simpler equations (e.g. linear,
quadratic), there already exists set of formulas to calculate
the exact roots of an equation. But in cases where the equa-
tions are far more complex, this method is very useful to get
quick and accurate results.

From the development of Newton’s strategy to the higher
dimensional analogue (our first variation of Newton’s
method) and to the newton’s applications isn’t as blunt. Why
ought to one consider as it were the constant and the linear
term as an approximation of F, in the Taylor expansion of F?
Be that as it may, we can utilize Newton’s method to show
that the condition (F = 0 = y) declares a solution [1].

The first and second derivative of F are signified by F0
and F00 in the sense of Frechet. An over the top amount of
extensions and variants of outcomes arose in the literature.
The Kantorovich theorem, by its sheer significance and by
the original and powerful proof technique could be a show-
stopper. Intensive research on Newton and related strategies
were started by the results of Kantorovich and his school [2].

The Newton–Kantorovich theorem also alluded to as
convergence theorem, was set up in 1948, Kantorovich. An
inaccurate newton strategy was suggested by Dembo et al.
[4]. This technique roughly answers the linear equation.
Then convergence theorem of Newton’s strategy for distinc-
tive cases was set up by Fourier, Cauchy, and Fine. Newton
initially utilized the Newton iteration to illuminate a cubic
equation in 1916 [3].

Figure 1 gives a basic explanation of how the Newton’s
method works.

•	 at the start the root is approximated
•	 the value of the function is calculated at that approxima-

tion
•	 the difference (delta y) between x-axis and the point at

the graph is calculated.
•	 if delta y is greater than 0, then the slope of the function

at the first approximations is calculated
•	 the point where the extended line of the slope cuts the

x-axis is the next approximation

•	 if the difference between the results of the iterations is
almost the same, we can assume that we have reached the
root of the function.

The above process can also be written in the following
mathematical expression:

And the general form of this process to find the nth
approximation is:

Constraints of Newton’s Method

Newton’s method is considered to be one of the most fast-
est methods to give the results, since it normally requires
fewer iterations to reach the results. Even so, there are some
conditions that must be mentioned, where this method does
not perform so well.

(a)	 Function with no roots
	  One of the most common case, where this method

will fail is the no-roots case. The iterations keep on

x
1
= x

0
−

f
(

x
0

)

f �
(

x
0

) .

xn = xn−1 −
f
(

xn−1
)

f �
(

xn−1
) .

Fig. 1   Graphical representation of Newton’s method. Source:
Adapted from [5]

SN Computer Science (2020) 1:348	 Page 3 of 8  348

SN Computer Science

running for ever since whenever it finds the value of the
function and analyses it, it is never close to zero hence
the iterations keeps on finding the next possible root.
The figure below can display why this can be a problem
(Fig. 2).

(b)	 Problems with the derivative
	  In order to find the next approximation, the method

not only needs the value of the function but also of its
derivative. In the formulas above for the calculation of
the next approximation, it is shown that the value of
the derivative lies in the denominator. So, whenever
the value of the derivative is zero (straight line), this
means that it can never intersect with the x-axis hence
the iteration cannot proceed further. On the other hand,

a problem can also arise if the value of the derivative is
too large. Because this the next iteration will give the
same result as the previous one and hence the process
will not move in any direction. The following figure
shows the case for zero slope (Fig. 3).

(c)	 Cyclic problem
	  In some complex cases, there comes a time in the

iterations when the process gets stuck between two
points i.e. that one value leads to another and that new
value leads back to the old one. This constant loop
doesn’t allow the process to move further hence there
cannot be any roots found for the function (Fig. 4).

Algorithm of the Program

The flowchart on the following page describes how the pro-
gram’s processes run in order to calculate the roots of a
function over an interval (Fig. 5).

The flow chart can be broken down into two flow charts
for easier understanding and implementation (Fig. 6).

Fig. 2   Case with no possible roots. Source: Adapted from [6]

Fig. 3   Function having zero-slope. Source: Adapted from [7]

Fig. 4   Cyclic problem. Source: Adapted from [8]

	 SN Computer Science (2020) 1:348348  Page 4 of 8

SN Computer Science

Variables of the Program

In order to understand any program, it is necessary to first
know what the variables inside actually stand for. The fol-
lowing table is an insight into the description of those vari-
ables (Table 1).

Error‑Checking

Before writing the algorithm, it is necessary to first identify
possible errors that could be problematic for the program.
Methods to prevent them are then later incorporated into
the program. The following errors were considered to be
essential to be removed or to be dealt with:

•	 Lower bound should be different than the upper bound.
•	 Lower bound should be lesser than the upper bound.
•	 Step-width should be a non-negative number.
•	 The iterations should be lesser than the maximum allow-

able number of iterations.
•	 The maximum number of roots should be greater zero.

Comparison of Results

In order to test the credibility and accurateness of the pro-
gram, it is necessary to compare it’s results with the known
thresholds. For the same reasons, the program was used for
three given functions (3 cases) and the roots calculated by
the program for those functions were compared those seen
on a plotted graph. For plotting of the graph, online tools
were used.

Case-1
The function for case-1 is given below:
(

1 − 5x − 2x2
)

× tan (2x)

(1 − x) sin (3x) × cos (4x)
.

Fig. 5   Algorithm for Newton’s method

SN Computer Science (2020) 1:348	 Page 5 of 8  348

SN Computer Science

Fig. 6   Algorithm for Newton’s
method (broken down)

Table 1   Variables and their description

Variable Description

rootsmax Maximum no. of roots
lb Lower bound
ub Upper bound
sw Step width
eps Precision
h h value for slope calculation
maxit Maximum no. of iterations
x Supposed root
fx Value of function
fsx Derivative of the function
le Length of array

Fig. 7   Results by the program for Case-1

	 SN Computer Science (2020) 1:348348  Page 6 of 8

SN Computer Science

Fig. 8   Plot of the function in between the interval for Case-1

Fig. 9   Results by the program for Case-2

Fig. 10   Plot of the function in between the interval for Case-2

The results obtained by the program are shown by the
figure below (Fig. 7).
The following graph shows the roots for the same interval
as given in the program for case 1 (Fig. 8).
Case-2
The function for case-2 is given below:

The results obtained by the program are shown by the
figure below (Fig. 9).
The following graph shows the roots for the same interval
as given in the program for case-2 (Fig. 10).

x5

2
+ 2x4 + 3x38x2 − 5x − 1.

SN Computer Science (2020) 1:348	 Page 7 of 8  348

SN Computer Science

Case-3
The function for case-3 is given below:

The results obtained by the program are shown by the
figure below (Fig. 11).
The following graph shows the roots for the same interval
as given in the program for case-3 (Fig. 12).

Discussion and Conclusion

The previous section shows side by side, the results of the
program and the actual roots of those functions. By com-
parison it can be easily said that the number of roots and
their values match those shown on the graphs. Therefore,
it is safe to say that the program is accurate and gives reli-
able results.

Finding the roots of complex equations can be very dif-
ficult and tedious at times. With this technique it can be

e−x∕5((1 − 2x) × cos (3x)) + ex∕5((1 + 2x) × sin (2x)).

Fig. 11   Results by the program for Case-3

Fig. 12   Plot of the function in between the interval for Case-3

	 SN Computer Science (2020) 1:348348  Page 8 of 8

SN Computer Science

very easy to give good estimates of the results, provided
that there are no errors possible during calculation within
that interval.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Compliance with Ethical Standards 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Chill R. Three variations on Newton’s method. Math Stud.
2008;79:215.

	 2.	 Galántai A. The theory of Newton’s method. J Comput Appl
Math. 2000;124(1–2):25–44. https​://doi.org/10.1016/S0377​
-0427(00)00435​-0.

	 3.	 Saheya B, Chen G, Sui Y, Wu C. A new Newton-like method
for solving nonlinear equations. Springerplus. 2016. https​://doi.
org/10.1186/s4006​4-016-2909-7.

	 4.	 Dembo R, Eisenstat S, Steihaug T. Inexact Newton meth-
ods. SIAM J Numer Anal. 1982;19:400–8. https​://doi.
org/10.1137/07190​25.

	 5.	 Koblitz N (1998) Calculus. University of Washington. 1998. https​
://www.ms.uky.edu/~carl/ma123​/kob98​/kob98​htm/toc.html

	 6.	 Department of Biochemistry and Molecular Biophysics (2016)
Roots of quadratic equations and the quadratic formula. 2016. https​
://www.biolo​gy.arizo​na.edu/bioma​th/tutor​ials/quadr​atic/roots​.html

	 7.	 Collier N, Kaw A, Paul J, Keteltas M (2013) Zero slope—New-
ton–Raphson method. 2013. https​://mathf​orcol​lege.com/nm/simul​
ation​s/mws/03nle​/mws_nle_sim_newpi​tzero​.pdf

	 8.	 Burton A (2020) Newton’s method and fractals. https​://www.
whitm​an.edu/docum​ents/Acade​mics/Mathe​matic​s/burto​n.pdf

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0377-0427(00)00435-0
https://doi.org/10.1016/S0377-0427(00)00435-0
https://doi.org/10.1186/s40064-016-2909-7
https://doi.org/10.1186/s40064-016-2909-7
https://doi.org/10.1137/0719025
https://doi.org/10.1137/0719025
https://www.ms.uky.edu/~carl/ma123/kob98/kob98htm/toc.html
https://www.ms.uky.edu/~carl/ma123/kob98/kob98htm/toc.html
http://www.biology.arizona.edu/biomath/tutorials/quadratic/roots.html
http://www.biology.arizona.edu/biomath/tutorials/quadratic/roots.html
http://mathforcollege.com/nm/simulations/mws/03nle/mws_nle_sim_newpitzero.pdf
http://mathforcollege.com/nm/simulations/mws/03nle/mws_nle_sim_newpitzero.pdf
https://www.whitman.edu/documents/Academics/Mathematics/burton.pdf
https://www.whitman.edu/documents/Academics/Mathematics/burton.pdf

	Implementation of Newton’s Algorithm Using FORTRAN
	Abstract
	Introduction
	Theoretical Background
	Constraints of Newton’s Method
	Algorithm of the Program
	Variables of the Program
	Error-Checking
	Comparison of Results
	Discussion and Conclusion
	References

