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Abstract
In this paper we investigate the bifurcation structure of the cross-diffusion Shigesada–

Kawasaki–Teramoto model (SKT) in the triangular form and in the weak competition

regime, and of a corresponding fast-reaction system in 1D and 2D domains via numerical

continuation methods. We show that the software pde2path can be exploited to treat

cross-diffusion systems, reproducing the already computed bifurcation diagrams on 1D

domains. We show the convergence of the bifurcation structure obtained selecting the

growth rate as bifurcation parameter. Then, we compute the bifurcation diagram on a 2D

rectangular domain providing the shape of the solutions along the branches and linking the

results with the linearized analysis. In 1D and 2D, we pay particular attention to the fast-

reaction limit by always computing sequences of bifurcation diagrams as the time-scale

separation parameter tends to zero. We show that the bifurcation diagram undergoes major

deformations once the fast-reaction systems limits onto the cross-diffusion singular limit.

Furthermore, we find evidence for time-periodic solutions by detecting Hopf bifurcations,

we characterize several regions of multi-stability, and improve our understanding of the

shape of patterns in 2D for the SKT model.
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1 Introduction

Systems with multiple time-scales appear in a wide variety of mathematical areas but also

in many applications [38]. The basic class of multiple time-scale systems has two time-

scales, which are so-called fast–slow systems given by

du

dt
¼ 1

e
f ðu; v; eÞ;

dv

dt
¼ gðu; v; eÞ;

ð1:1Þ

where u, v are the unknowns and e[ 0 is a small parameter so that u is fast while v is slow.

There is quite substantial theory for the case of fast–slow ordinary differential equations

(ODEs). Although there are many links of the ODE theory to multiscale partial differential

equations (PDEs) [38, 39], a lot less is known about fast–slow PDEs. One important sub-

class are fast-reaction PDEs given by

otu ¼juDuþ
1

e
f ðu; v; eÞ;

otv ¼jvDvþ gðu; v; eÞ;
ð1:2Þ

posed on a domain Rþ � X, where D is the usual spatial Laplacian with respect to x 2 X,

t 2 ½0; TÞ for some T[ 0, u ¼ uðt; xÞ, and v ¼ vðt; xÞ. In this work, one of the two key

equations we study is a particular version of (1.2) arising in mathematical ecology [30]

otu1 ¼ d1Du1 þ ðr1 � a1u� b1vÞu1 þ
1

e
u2 1 � v

M

� �
� u1

v

M

� �
;

otu2 ¼ðd1 þ d12MÞDu2 þ ðr1 � a1u� b1vÞu2 �
1

e
u2 1 � v

M

� �
� u1

v

M

� �
;

otv ¼ d2Dvþ ðr2 � b2ðu1 þ u2Þ � a2vÞv:

ð1:3Þ

where the quantities uðt; xÞ; vðt; xÞ� 0 represent the population densities of two species at

time t and position x, confined and competing for resources on a bounded domain X � RN .

The population u is split into two states, distinguishing between less active and active

individuals, respectively denoted by u1 and u2 (thus u ¼ u1 þ u2). We assume throughout

that 0� u2ðt; xÞ�M on ½0; T � � X for a fixed constant M[ 0. The positive coefficients

di; ri; ai; bi ði ¼ 1; 2Þ describe the diffusion, the intrinsic growth, the intra-specific com-

petition and the inter-specific competition rates respectively. The coefficient d12 [ 0 stands

for competition pressure between the two sub-classes. Each individual in the sub-classes

converts its state into the other one depending on the spatial distribution of the competitor v.

Since e[ 0 is assumed to be small, it is natural to consider the fast-reaction limit e ! 0.

This limit aims to model the dynamics of the fast variables as instantaneous and reduce the

analysis to the slow time-scale dynamics. Yet, one easily sees that this limit is very

singular. To motivate this observation, suppose we discard the diffusion terms in (1.3) and

linearize the fast-reaction terms, then we get a matrix

Dðu1;u2Þf ðu1; u2; v; 0Þ 2 R2�2 ð1:4Þ

which always has a zero eigenvalue. This means that the classical normal hyperbolicity

condition [22] for fast–slow ODEs fails. Yet, the intuition is that the diffusion terms should

help to still obtain a well-defined fast-reaction limit as e ! 0.
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In the literature, several results for such fast-reaction limits for various PDEs exist. One

of the first works is the paper [29] presenting the fast-reaction limit in a system of one

parabolic and one ordinary differential equation. A reaction–diffusion system which

models a fast reversible reaction between two mobile reactants was then treated in [4] and

the limiting problem yields a nonlinear diffusion term. Also fast irreversible reactions (in

which two chemical components form a product) were considered, where the limiting

system is a Stefan-type problem with a moving interface at which the chemical reaction

front is localized [5]. Furthermore, in [27] a dynamical boundary condition has been

interpreted as a fast-reaction limit of a volume–surface reaction–diffusion system. It turns

out that when the fast-reaction system has three components, the limiting system are often

of two types: free boundary problems [42] and cross-diffusion systems [6], which also arise

in population dynamics [11, 17, 30]. In this framework, individuals of one or more species

exist in different states and the small parameter represents the average switching time. In

our context, it is known that the limiting system of (1.3) is a cross-diffusion PDE [28]

given by

otu ¼ Dððd1 þ d12vÞuÞ þ ðr1 � a1u� b1vÞu; on Rþ � X;
otv ¼ d2Dvþ ðr2 � b2u� a2vÞv; on Rþ � X;
ou

on
¼ ov

on
¼ 0; on Rþ � oX;

uð0; xÞ ¼ uinðxÞ; vð0; xÞ ¼ vinðxÞ; on X;

ð1:5Þ

where the quantities uðt; xÞ; vðt; xÞ� 0 again represent the population densities of the same

two species at time t and position x, confined and competing for resources on the bounded

domain X � RN . The coefficients as above are all supposed to be positive constants. The

model (1.5) is known as Shigesada–Kawasaki–Teramoto (SKT) model as it was initially

proposed in [45] in 1979 to account for stable non-homogeneous steady states in certain

ecological systems. These states describe, for suitable parameters sets, spatial segregation that

is a situation of coexistence of two competitive species on a bounded domain. Historically, the

SKT model was first postulated without any reference to a larger system such as (1.3). Only

later, in 2006, the fast-reaction system (1.3) was introduced in [30] in a more general setting.

In this paper, we aim to contribute the understanding of both variants of the SKT model:

the three-component fast-reaction PDE as well as its cross-diffusion singular limit. A

primary focus from the ecological and mathematical viewpoints is evidently played by the

steady states (or equilibria) of both of the models. So we briefly recall the well-known

structure of homogeneous steady states starting from the cross-diffusion SKT model (1.5).

The homogeneous solutions are the total extinction (0, 0) (always unstable), two non-

coexistence states ð�u; 0Þ ¼ ðr1=a1; 0Þ and ð0; �vÞ ¼ ð0; r2=a2Þ, and one coexistence state

(when it exists)

ðu	; v	Þ ¼
r1a2 � r2b1

a1a2 � b1b2

;
r2a1 � r1b2

a1a2 � b1b2

� �
:

While the non-coexistence equilibria exist for all the parameter values, the coexistence is

admissible (positive coordinates) only in two cases.

– weak competition or strong intra-specific competition, namely a1a2 � b1b2 [ 0.

Under the additional condition on the growth rates b1=a2\r1=r2\a1=b2, without

diffusion the coexistence homogeneous steady state is stable, while the non-coexistence

ones are unstable. With standard diffusion in a convex domain and with zero-flux

boundary conditions, any non-negative solution generically converges to homogeneous
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one, and this implies that the two species coexist but their densities are homogeneous in

the whole domain [36]. With cross-diffusion, the model exhibits stable non-homoge-

neous steady states if d1; d2 are small enough or d12 is large enough [30].

If r1=r2\b1=a2 or r1=r2 [ a1=b2, the coexistence homogeneous steady state is not positive

and the non-coexistence ones are stable for the reaction part (in absence of diffusion).

– strong competition or strong inter-specific competition, namely a1a2 � b1b2\0.

When a1=b2\r1=r2\b1=a2, the coexistence homogeneous steady state is unstable,

while the non-coexistence ones are stable. With only standard diffusion, in a convex

domain and with zero-flux boundary conditions, it has been shown that if positive and

non-constant steady states exist, they must be unstable [36], and numerical simulations

suggest that any non-negative solution generically converges to either ð�u; 0Þ or ð0; �vÞ,
that is, the competitive exclusion principle occurs between the two species. However,

adding the cross-diffusion term, it is numerically shown that even if the domain is

convex, there exists stable non-homogeneous solutions exhibiting spatially segregating

coexistence when d12 is suitable large [32].

Analogously to the previous regime, if r1=r2\a1=b2 or r1=r2 [ b1=a2, the coexistence

homogeneous steady state is not positive and the non-coexistence ones are stable for the

reaction part (in absence of diffusion).

We remark that the stationary problem of the classical Lotka–Volterra competition model

with linear diffusion endowed with Dirichlet boundary conditions has been extensively

studied (see [3, 12, 13] and references therein), and it shows different features to the SKT

cross-diffusion model. For the fast-reaction PDE (1.3), the homogeneous steady state is

ðu1	; u2	; v	Þ ¼ u	 1 � v	
M

� �
; u	

v	
M

; v	

� �

where u	; v	 have the same expression as in the cross-diffusion case. In particular, the

homogeneous steady state turns out to be independent of e, which is a nice starting point for a

comparative study as it remains to investigate also the non-homogeneous steady states.

Before proceeding to summarize the main results of our work, we briefly put it into

context with the existing literature. Both systems, the cross-diffusion model and the fast-

reaction model, are interesting from different mathematical viewpoints. From the modeling

point of view the justification of cross-diffusion terms by means of semilinear reaction–

diffusion systems including simple reactions and linear diffusion is fundamental to the

understanding of the hidden processes that they can capture. Vice versa, their approxi-

mation with simpler models (not in the number of equations but due to the possibility to

remove the nonlinearity in the diffusion) is useful both for the analysis and the numerics.

On the one hand, theoretical results require sophisticated techniques. Regarding the

cross-diffusion system, existence, smoothness and uniqueness of solutions have been

widely investigated (see [1, 2, 16, 23, 33] and the references therein). In [30], where the

fast-reaction system (1.3) was introduced, it has been shown that the time-dependent

solutions of the triangular cross-diffusion system (1.5) can be approximated by those

of (1.3) in a finite time interval if the solutions are bounded. The convergence of the

solution of the stationary problem have been treated in [32], while the convergence of the

solutions of the fast-reaction system (1.3) towards the solutions of the cross-diffusion

system (1.5) was shown in [10] in dimension one, and then generalized to a wider set of

admissible reaction terms and in any dimension [19]. Similar results were obtained for a

class of non-triangular cross-diffusion systems [41], assuming the same time-scale for all

the species. Finally, it has been proven that the limiting system inherits the entropy

structure with an entropy that is not the sum of the entropies of the components [14].
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On the other hand, the capability of the cross-diffusion system (1.5) to model the spatial

segregation of competing species is related to the appearance of non-homogeneous solu-

tions. Although the system (1.5) does not have an activator–inhibitor structure (the most

important mechanism in the Turing instability theory for pattern formation), the cross-

diffusion term turns out to be the key ingredient to destabilize the homogeneous equilib-

rium [24, 30, 49]. This effect is well-known as cross-diffusion induced instability. In this

framework bifurcations diagrams are useful to present and explore the bifurcating branches

and the non-homogeneous steady state solutions. Numerical continuation techniques are

going to allow us to obtain a more global picture far from the homogeneous branch. The

bifurcation diagram of the triangular cross-diffusion system on a 1D domain was presented

in [30]; the existence of these non-homogeneous steady states significantly far from being

perturbations of the homogeneous solutions, was proved in [7] applying a computer

assisted method. A mathematically rigorous construction of the bifurcation structure of the

three-component system was obtained in [9], while the convergence of the bifurcation

structure on a 1D domain was investigated in [30], and then extended in [32] with respect

to two different bifurcation parameters appearing in the diffusion part, both in the weak

and strong competition case. Only recently, the influence of the additional cross-diffusion

term in the system has been investigated, combining a detailed linearized analysis and

numerical continuation. To the best of the authors’ knowledge, not much has been done on

2D domains: the possible pattern admitted by the non-triangular SKT model was explored

in [25], but the bifurcation structure on 2D domain is not known.

To study the bifurcation structure, we use the continuation software for PDEs

pde2path [20, 46, 48], based on a FEM discretization of the stationary problem. Since

the general class of problems which can be numerically analyzed by the software does not

include the cross-diffusion term appearing in (1.5), it requires an additional setup to be

able to compare the fast-reaction PDE results with the singular limit cross-diffusion sys-

tems. Yet, it has been shown in the past for other classes of PDEs related to classical

elliptic problems that pde2path can be combined with other methods beyond its standard

setting [37]. This is the key reason, why we have chosen to carry out numerical contin-

uation within this framework.

Here is a summary of the main contributions of this paper.

– We explain how to set up the continuation software pde2path in order to treat cross-

diffusion terms. Then we cross-validate and extend previous computations for various

regimes of the time-scale separation parameter for 1D domains.

– We compute a new bifurcation diagram with respect to a parameter appearing in the

reaction part. We show how the bifurcation structure of the fast-reaction system

modifies when e ! 0. In particular, a novel ‘‘broken-heart’’ structure of non-

homogeneous steady state bifurcation branches is observed in the singular limit.

– Then we compute and interpret the various bifurcation diagrams and the non-

homogeneous solutions of the triangular SKT model on a 2D rectangular domain. Also

in this case the convergence towards the singular limit is analyzed carefully.

– We show a link between the computed bifurcation diagrams in 1D and 2D domains, and

the linearized analysis as a tool to fully understand and validate the numerical

continuation calculations.

The paper is organized as follows. In Sect. 2 we present the numerical continuation results

obtained with pde2path in the 1D case: we provide a detailed picture of the different

types of stable unstable non-homogeneous solutions to the cross-diffusion system arising at

each bifurcation point, and we quantify the convergence of the fast–slow system to the
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cross-diffusion one. Section 3 is devoted to the 2D case: we show the bifurcation diagram

and different patterns, as well as the bifurcation diagrams of the fast-reaction system. In

Sect. 4 some concluding remarks can be found. Appendix A contains the pde2path setup

for cross-diffusion systems, while in Appendix B we report the linearized analysis of the

cross-diffusion system for reference and validation.

2 Numerical continuation on a 1D domain

The numerical analysis of systems (1.5) and (1.3) is performed using the continuation

software pde2path, originally developed to treat standard reaction–diffusion systems

and here used to investigate cross-diffusion systems. The software setup required for

system (1.5) can be found in Appendix A. For the numerical results we use the set of

parameter values widely used in literature for the weak competition regime [7, 9, 30, 32],

here reported in Table 1. We set d1 ¼ d2 ¼: d and use d as one main bifurcation parameter.

It follows that

u1	 ¼
91

64
; u2	 ¼

13

64
; u	 ¼

13

8
; v	 ¼

1

8
;

2

3
\

r1

r2

\6;

which is one possible starting point for the continuation.

In this section we consider a 1D domain (interval) X ¼ ð0; 1Þ, as in [7–9, 30, 32]. We

provide in Sect. 2.1 a detailed characterization of different steady state types of the cross-

diffusion system (1.5). In Sect. 2.2 we study the convergence of the bifurcation structure of

the fast-reaction system (1.3) to the cross-diffusion system (1.5), taking the standard dif-

fusion coefficient d as bifurcation parameter. In this framework, reproducing such dia-

grams is crucial to test the numerical continuation software; we add to the existing

literature a quantification of the convergence of the bifurcation structure when e ! 0, a

clear picture of the behavior of the non-homogeneous solutions along the bifurcation

branches and their stability properties, and the corresponding bifurcation diagram in the L1-

norm. Finally, in Sect. 2.3 we consider the growth rate r1 as bifurcation parameter: also in

this case we present the bifurcation diagram of the cross-diffusion system and the

stable steady states appearing beyond the usual range of parameters, as well as the con-

vergence of the bifurcation structure of the fast-reaction system to the cross-diffusion one.

2.1 Bifurcation diagram of the cross-diffusion system

We numerically compute the bifurcation diagram of the cross-diffusion system (1.5) using

the continuation software pde2path and we provide a clear picture of the different

solution types.

In Fig. 1 the bifurcation diagram of the cross-diffusion system is plotted with respect to

different quantities on the y-axis, namely v(0), corresponding to the density of the second

Table 1 Parameter values used in numerical continuation

r1 r2 a1 a2 b1 b2 d12 M

5 2 3 3 1 1 3 1

The set ri; ai; bi; ði ¼ 1; 2Þ corresponds to the weak competition case (or strong intra-specific competition)
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species at the left boundary value of the domain, and the L1-norm of species u. From now

on, the homogeneous solution is denoted by the black line, while the other branches

correspond to non-homogeneous solutions originating by successive bifurcations. The

bifurcations corresponding to branch points are marked with circles, while fold/limit points

are marked with crosses. Thick and thin lines denote stable and unstable solutions,

respectively. Note that in the (d, v(0))-plane at each bifurcation point, two separate

branches appear, corresponding to two different solutions. In the ðd; jjujjL1Þ-plane, the two

branches are overlayed, since the solutions on the branches are symmetric on the domain.

The shape of the non-homogeneous steady states originating along the branches are

reported in Fig. 2. Markers on the branches indicate the positions on the bifurcation

diagram of different solutions reported in Fig. 2a–h (squares corresponds to solid lines,

triangles to dashed ones).

Starting from d ¼ 0:04 and decreasing its value, we can see that the homogeneous

solution is stable and no other solutions are present. At B1 the homogeneous solution

undergoes to a primary bifurcation losing its stability, and two stable non-homogeneous

solutions appear (blue lines). Along those branches the density of species v is greater in a

part of the domain, while species u occupies the other one. Note that the stable solutions on

those branches are symmetric (solid and dashed lines in Fig. 2a). At B2, further non-

homogeneous solutions appear (red lines), initially unstable; the solutions are again

symmetric but now the species density is concentrated either in the central part of the

domain or close to the boundary. Those solutions become stable for smaller values of d at a

further bifurcation point. We observe the same behavior at the successive bifurcation

points from the homogeneous branch: new branches appear (green, yellow and cyan), one

each branch the new solutions add half a bump to their shape (Fig. 2c–e). Along the

bifurcation branches, the differences between peaks and valleys increases, as the bifur-

cation parameter d becomes smaller. Finally, for small values of the bifurcation parameter

d there can be many different locally stable non-homogeneous solutions. Moreover, there

are bifurcation curves connecting three different branches of the homogeneous solutions

(magenta and orange lines): along the branches the solution changes shape in order to

match the solution profile on the primary branches (Fig. 2g, h). Black circles on the

homogeneous branch for small values of d indicate the presence of further bifurcation

points that we have not continued.

Fig. 1 Bifurcation diagram of the cross-diffusion system with respect to different quantities on the vertical
axis: a v(0), b jjujjL1
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2.2 Convergence of the bifurcation diagram

The idea to study bifurcation diagrams and the associated singular limit bifurcation dia-

gram as e ! 0 has been successfully carried out for fast–slow ODEs in several examples

[26, 31]. Yet, more systematic studies for fast-reaction limits for PDEs are missing. Here

we numerically compute the convergence of the bifurcation structure of the fast-reaction

system (1.3) to the one of the cross-diffusion system (1.5), as already reported in [30, 32],

quantifying the convergence of the bifurcation points.

Fig. 2 a–h Different solution types along the branches in the bifurcation diagram (i); the concentrations of
u, v are shown in black and blue respectively. Solid lines correspond to points (marked with yellow
triangles) located above the homogeneous branch in the bifurcation diagram, while dotted lines to points
located below (marked with yellow squares). In the bifurcation diagram, thick lines correspond to
stable solutions and thin lines to unstable ones (color figure online)
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In Fig. 3 the bifurcation diagrams corresponding to the fast-reaction system (1.3) for

different values of e are reported, showing the convergence of the bifurcation structure of

system (1.3) to the one of the cross-diffusion system (1.5). For the sake of clarity of the

visualization, we have reported here just the first few branches. In detail, for e ¼ 0:1,

system (1.3) does not exhibit non-constant solutions (or they exist for small values of the

parameter d and it is difficult to numerically detect them), and the homogeneous steady

state is stable for all the values of the bifurcation parameter d. For e ¼ 0:05, the homo-

geneous steady state becomes unstable for small values of d but we can see that the

bifurcation structure corresponding to the fast-reaction system is already qualitatively

similar to the one of the cross-diffusion system, but it is squeezed into a small region near

d ¼ 0. The stability properties also match with the cross-diffusion bifurcation structure.

For smaller values of e the bifurcation structure is expanding to the right, towards the

bifurcation structure of the cross-diffusion system. Note that Fig. 3c, obtained with

e ¼ 0:001, is almost indistinguishable from Fig. 3d corresponding to the cross-diffusion

system (e ¼ 0). Hence, from the viewpoint of the bifurcation structure, the three-compo-

nent fast-reaction system is indeed a good approximation for the cross-diffusion one (at

least concerning stationary steady states).

In Fig. 4 we quantitatively show the convergence of the first three bifurcation points on

the homogeneous branch, namely B1, B2, B3, using the difference between the bifurcation

values d0
Bi

and deBi . The order of convergence is approximately one.

Fig. 3 Bifurcation diagrams: a–c correspond to the fast–slow system (1.3) for different and decreasing
values of e, while d corresponds to the cross-diffusion system (1.5). The first three bifurcation points on the
homogeneous (black) branch are indicated by B1, B2, B3
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2.3 Changing the bifurcation parameter

After we have set up the system in pde2path, we can also change the bifurcation

parameter. One possible choice is r1, the growth rate of population u. This parameter

appears in the reaction part of the system and the homogeneous coexistence state ðu	; v	Þ
depends on its value. Note that, without diffusion, in the weak competition case (namely

a1a2 � b1b2 [ 0) the homogeneous coexistence state is positive (and stable) when

b1=a2\r1=r2\a1=b2, otherwise it is not meaningful and the non-coexistence states ð�u; 0Þ
and ð0; �vÞ are stable. With cross-diffusion, it has been shown in [8] that the homogeneous

equilibrium can be destabilized and stable non-homogeneous solutions arise, which survive
in a region of the parameter space in which the homogeneous solution is no longer

admissible, namely r1=r2 [ a1=b2.

In Fig. 5 we report the bifurcation diagram of the cross-diffusion system with respect to

the bifurcation parameter r1 and some solutions, obtained with the set of parameters of

Table 1 and d ¼ 0:02. Note that it is possible to compare it with the one reported in Fig. 1a,

since they are different cross-sections of a two-parameter bifurcation surface. The bifur-

cation diagram is composed by three rings and the solutions profile is shown in Fig. 5a–d.

In particular, the two outer (blue) rings contain qualitatively similar solutions (Fig. 5a, b).

Furthermore, Fig. 5b shows a stable non-homogeneous steady state corresponding to a

parameter value outside of the usual weak competition regime. Furthermore, the (red)

branches originating from the second bifurcation point are non-symmetric regarding the

stability properties even if they correspond to symmetric solutions (with respect to the

homogeneous one) on the domain (Fig. 5c, d).

In Fig. 6, we show how the bifurcation diagram with respect to r1 behaves when the fast

time-scale parameter e decreases. On the vertical axis the value v(0) is reported. Also in

this case we observe convergence of the bifurcation structure of the fast-reaction system to

the one of the cross-diffusion system of Fig. 5e (well approximated by taking e ¼ 10�4,

corresponding to Fig. 6f). However, we observe that the bifurcation structure is not only

10-3 10-2 10-1

10-3

10-2

|0 B
i
−

ε B
i
|

ε

d
d

Fig. 4 Convergence of the first three bifurcation points in loglog scale. We report on the horizontal axis the
values of e, and on the vertical axis the difference between the bifurcation value of the fast–slow system deBi ;

and the corresponding one of the cross-diffusion system d0
Bi
i ¼ 1; 2; 3; (blue, red and green refer to B1, B2,

B3 respectively) (color figure online)
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expanding as in the previous section, but it is qualitatively changing as e decreases. In

particular, in Fig. 6a, b there are only two non-homogeneous branches connecting two

primary branch points on the homogeneous branch and forming a bifurcation ring. For

smaller values of e other bifurcation points (and consequently other rings) appear inside the

main bifurcation ring; the inner rings expand while the outer ring folds in the middle part

forming a heart shape. Then the outer ring interacts with the inner ring and separates into

two rings, giving rise to the bifurcation structure of the cross-diffusion system, i.e., the

heart-shaped structure breaks.

Also in this case we quantitatively show the convergence of the first bifurcation points

on the homogeneous branch in Fig. 7. Although the bifurcation structure is qualitatively

changing, the convergence rate is comparable to Fig. 4. This clearly shows that locally one

can expect a convergence rate near the homogeneous branch. In fact, this leads one to the

conjecture that even the global diagram could be captured asymptotically by a convergence

rate towards the singular limit but since we have only captured part of the full diagram, this

is hard to validate completely numerically. Furthermore, many different convergence

metrics are conceivable if one moves beyond single points so we leave this conjecture as a

topic for future work.
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Fig. 5 a–d Different solution types along the branches in the bifurcation diagram (e) of the cross-diffusion
system (1.5) with bifurcation parameter r1. Species u and v are denoted in black and blue, respectively.
Thick lines correspond to stable solutions, thin lines to unstable ones (color figure online)
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3 Numerical continuation on a 2D rectangular domain

In this section we consider a 2D rectangular domain with edges of length Lx ¼ 1 and

Ly ¼ 4. This choice reduces the presence of multiple branch points. As in the previous

section, we set the standard diffusion coefficient d as our main bifurcation parameter. The

bifurcation analysis close to the homogeneous branch can be performed (see Appendix B).

It allows to compute the values of the parameter d at the bifurcation points on the

homogeneous branch, which can be compared to the values numerically obtained. It also

Fig. 6 Bifurcation diagrams with respect to the parameter r1: a–f correspond to the fast–slow system (1.3)
for different and smaller values of e. We clearly observe a highly non-trivial deformation of the bifurcation
diagram as e is decreased, starting from a ring and then heart-shape, we eventually have a ‘‘broken-heart’’
structure leading to two rings in the cross-diffusion limit
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predicts the shape of the steady state for each bifurcation point close to the homogeneous

branch, by looking at the eigenvalues of the Laplacian at the bifurcation point and the

associated eigenfunctions [35, 39].

In Fig. 8 we show part of the bifurcation diagram close to the homogeneous branch with

respect to the L2-norm of the species u. As in the 1D case, for decreasing values of d the

homogeneous solution destabilizes at the first bifurcation point, and stable non-homoge-

neous steady states appear (blue branch). For smaller values of d other bifurcation points

occur. We show in the figure just some of the successive branches and we report the

corresponding solution at the gray points (Fig. 8a–f), which turn out to be unstable. Note

that certain cross-sections of the 2D-solutions have a similar shape as the steady states of

1D steady states.

Different from the 1D case, in Fig. 9 the enlargement of the initial part of the first (blue)

branch is reported. It shows that the first bifurcation point is supercritical, but then two

successive fold bifurcations (indicated with a cross) appear leading to multi-stability of

solutions: in a small range of the bifurcation parameter the system admits four (two

symmetric) stable non-homogeneous steady states. Their shape is reported in Fig. 9a–d.

Close to the homogeneous branch (Fig. 9a, b) the steady states have half a bump on both

edges (in agreement with the eigenvalues corresponding to the first bifurcation point, see

Appendix B), while going further along the branch the shape modifies.

Finally, Fig. 10 shows four different branches, computed far away from the homoge-

neous one. The first (blue) branch undergoes a further bifurcation and a secondary

stable branch arises (marked in green). Then, on this branch a Hopf bifurcation point has

been detected. Note that this type of bifurcation is not present in the 1D case in the weak

competition regime and yields the existence of time-periodic solutions. Furthermore, the

bifurcation diagram in the 2D case seems to be even more intricate compared to the 1D

case, many branches are curly and they swirl back and forth. The solution along the

10-4 10-3 10-2
10-3

10-2

10-1

100

|r0 1,
B
i
−
r 1

,B
i
|

ε

ε

Fig. 7 Convergence of the bifurcation points in loglog scale. We report on the horizontal axis the values of
e, and on the vertical axis the difference between the bifurcation value of the fast–slow system re1;Bi ; and the

corresponding one of the cross-diffusion system r0
1;Bi

i ¼ 1; 2; 3; 4 (blue and red refer to Fig. 6, dots and stars

denote the first and the second bifurcation point, respectively, for each color). The black line corresponds the
order of convergence one (color figure online)

SN Partial Differential Equations and Applications

SN Partial Differ. Equ. Appl. (2020) 1:7 Page 13 of 26 7



branches deforms (see Fig. 10a–i), and various patterns are evident. Stripes occur in

Fig. 10b, f and spots in Fig. 10g, i, although they are unstable.

3.1 Convergence of the bifurcation structure

As in the 1D case, we investigate how the bifurcation structure deforms on a 2D domain

with respect to the time-scale separation parameter e. In Fig. 11a–d the bifurcation dia-

grams for different values of e are reported showing the convergence of the bifurcation

structure of the fast-reaction system (1.3) to the cross-diffusion one (1.5), shown in

Fig. 11e. For the sake of clarity of the visualization we only show stable branches. For

e ¼ 0:05 the instability region of the homogeneous branch is reduced, and the two primary

branches roughly sketch the cross-diffusion one: the first bifurcation point is supercritical,

the first branch is stable and the other (red) represents a stable part. However, there is no a

secondary bifurcation branch giving rise to a Hopf point. For decreasing values of e, the

cross-diffusion bifurcation structure is well recognizable.

Fig. 8 Bifurcation diagram and different solution types along the branches. Upper panel: partial bifurcation
diagram relative to a rectangular domain Lx ¼ 1; Ly ¼ 4. Lower panel: a–f solutions on different branches

(species u)
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Finally, in Fig. 12 we show three different stable stationary solutions of the fast-reaction

system with e ¼ 0:0001: they corresponds to points on the blue, green and red branches of

Fig. 11d, showing different (stable) patterns. It is interesting to observe the distribution of

the two different states of species u on the domain. It turns out that the ‘‘excited indi-

viduals’’ and the competing species v are more abundant in the same region of the domain.

Furthermore, the steady state solutions satisfy the algebraic equation derived by a quasi-

steady state ansatz from the three-species system (1.3)

u2 1 � v

M

� �
� u1

v

M
¼ 0:

In addition, we have found other stable non-homogeneous solutions of the cross-diffusion

system, and the corresponding steady states are stripe patterns.

4 Conclusion and outlook

In this paper we have investigated the bifurcation structure of the triangular SKT model

and of the corresponding fast-reaction system in 1D and 2D domains in the weak com-

petition case via numerical continuation. Despite the fact that part of the bifurcation

structure of this system in 1D has been already computed [7, 9, 30, 32], the key points of

our work can be here summarized.

– We have exploited the continuation software pde2path to treat cross-diffusion terms.

Providing the code in the appendix, this work can be used as a guide to implement such

class of problems.

– We have reproduced the already computed bifurcation diagrams for the triangular SKT

model on a 1D domain with respect to d. Even though this is not per se a new result, we

have quantitatively checked, how accurate the computation of bifurcation points is. It is

worthwhile to note that we have also provided information about the stability of non-

homogeneous steady states, which are in agreement with previous results [7, 30] and

confirms the reliability of our new software setup for cross-diffusion systems.

Fig. 9 Bifurcation diagram and multi-stable solutions along the first branch. Left panel: zoom in of Fig. 8
close to the first bifurcation point. Right panel: a–d solutions (species u) corresponding to points on the first
bifurcating branch marked with the gray dots

SN Partial Differential Equations and Applications

SN Partial Differ. Equ. Appl. (2020) 1:7 Page 15 of 26 7



– Once the software setup has been established, we have changed the bifurcation

parameter to obtain novel structures. We have selected as new bifurcation parameter

the growth rate of the first species, which appears in the reaction part. We have shown

that the bifurcation structure qualitatively changes as the small parameter tends to zero

leading to a ‘‘broken-heart’’ bifurcation structure.

Fig. 10 Bifurcation diagram and different solution types along the branches. Upper panel: partial bifurcation
diagram relative to a rectangular domain Lx ¼ 1; Ly ¼ 4. Lower panel: a–i solutions (species u) on different

branches
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– With respect to both of the considered bifurcation parameters, we have also provided a

novel precise quantification of the convergence of the bifurcation points on the

homogeneous branch of the fast-reaction system to the cross-diffusion ones.

– A major new contribution is that we have computed the bifurcation diagram and the

non-homogeneous steady states of the triangular SKT model on a 2D domain

(rectangular). This case is intricate; the resulting bifurcation diagram is not as clear as

in 1D. We have highlighted the main characteristics of the diagrams, and we have

presented different types of non-homogeneous steady states, with a focus on stability
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Fig. 11 Bifurcation diagrams obtained for the 2D domain ½�0:5; 0:5� � ½�2; 2�: a–d correspond to the fast-
reaction system (1.3) for different and smaller values of e, while e corresponds to the cross-diffusion system
(1.5)
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Fig. 12 Three different stable solutions to the fast-reaction system (1.3) (for each one the three species are
reported) with e ¼ 0:0001 on the 2D domain ½�0:5; 0:5� � ½�2; 2�. With respect to the bifurcation diagram
Fig. 11d, a–c correspond to the blue branch at d ¼ 0:0297, d–f to the green (secondary) branch at
d ¼ 0:0262, while g–i correspond to the red branch at d ¼ 0:0187 (color figure online)
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and pattern formation. We have seen that solutions can exhibit spots or stripes,

depending on the parameters, but such solutions turn out to be unstable (at least as far

as we have computed the bifurcation branches).

– We have provided a link between the computed bifurcation diagrams in 1D and 2D

domains, and the Turing instability analysis as a tool to fully understand and validate

the software output. It is worthwhile to note that the results obtained with the Turing

instability analysis only provide insights close to the homogeneous branch. However,

the global bifurcation structure has to be numerically computed to achieve a full

comprehension of the possible (stationary) outcomes of the system.

– Our numerical calculations can now provide also guidelines and conjectures for

analytical approaches to cross-diffusion systems, e.g., where in parameter space one

can expect entropy structures to behave differently, or where multi-stability and

deformation of global branches has to be taken into account.

Several research directions arise at this point. On the one hand, it is natural to further

combine analytical methods and numerical continuation techniques to the study of the full

cross-diffusion systems in order to understand the role of cross-diffusion terms on pattern

formation and their influence on the bifurcation diagram [8]. On the other hand, continuing

our work to numerically investigate of the convergence of the bifurcation structure of a

four-equation fast-reaction system leading to the full cross-diffusion SKT system, not only

the triangular one, is a straightforward continuation of this work. In this context, analytical

proofs of convergence of the solutions of the four species system with two different time-

scales to the non-triangular cross-diffusion one is an open problem [17].

Furthermore, the 2D case we have computed has shown that Hopf bifurcations can

appear, which can give rise to time-periodic solutions. Their presence could then also be

investigated further using the continuation software pde2path, in order to provide a

clearer picture on possible long-time asymptotic dynamics of the model. Another direction

is to explore other cross-diffusion systems which have been derived by time-scale argu-

ments [11, 17, 18], or simply proposed to describe different processes [34, 40]. To this end,

we have shown that the continuation software is easily applicable to different models and it

can be used to treat systems that do not exactly belong to the class of problems for which it

has been developed. For instance, another direction could be its extension to other non-

standard diffusion processes such as fractional reaction–diffusion equations [21].
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Appendix A: Software setup

We provide here an explanation how to implement our problem in pde2path in the

OOPDE setting [43], in particular how to treat the cross-diffusion term. Since the purpose

of this work is not to give a complete overview of the software for beginner users, we do

not explain in detail the basic setup; see [15, 44, 48] for complete guides on the contin-

uation software and for the notation adopted in the following.

In [44] the software setup for the quasilinear Allen–Cahn equation is explained, and

only recently this approach was used to treat a chemotaxis reaction–diffusion system

involving a quasi-linear cross-diffusion term of the form r � ðurvÞ [47]. However, the

previous approach is not directly applicable to the cross-diffusion system (1.5), since the

cross-diffusion term is not written in divergence form. Then we need to rewrite it as

Dððd1 þ d12vÞuÞ ¼ r � ððd1 þ d12v|fflfflfflfflffl{zfflfflfflfflffl}
cðvÞ

Þruþ d12u|{z}
~cðuÞ

rvÞ: ðA:1Þ

The steady state problem reads

0 ¼ GðuÞ :¼ �
r � ðcðvÞruÞ þ r � ð~cðuÞrvÞ

d2Dv

� �
�

ðr1 � a1u� b1vÞu
ðr2 � b2u� a2vÞv

� �
;

and on the FEM level it becomes

GðuÞ ¼
K21ðvÞuþ K12ðuÞv

Kv

� �
F1ðu; vÞ
F2ðu; vÞ

� �
; ðA:2Þ

where K is the standard one-component Neumann–Laplacian (stiffness matrix), K21ðvÞu
and K12ðuÞv implement r � ðcðvÞruÞ and r � ð~cðuÞrvÞ respectively, while F1; F2 belong

to the reaction part. In detail,

ðK21ðvÞÞij ¼
Z

X
cðvÞr/i � r/jdx; ðK12ðuÞÞij ¼

Z

X
~cðuÞr/i � r/jdx ðA:3Þ

depend on v and on u. Hence, they have to be computed at each step. In the OOPDE setting,

we can employ the routine assema to compute those matrices, but this needs c(v) and ~cðuÞ
on each element center, which is obtained interpolating u and v from the nodes to the

element centers, as it can be seen in Listings 1 and 2, which show the main files imple-

menting the triangular cross-diffusion system (1.5) in pde2path.
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function r=sG(p,u)
% compute pde -part of residual

u1=u(1:p.np); % extract the first component
u2=u(p.np+1:2*p.np); % extract the second component

5 par=u(p.nu+1:end); % extract parameters
d=par (1); d12=par (2);
r1=par (3); a1=par (5); b1=par (7);
r2=par (4); a2=par (6); b2=par (8);

10 f1=(r1-a1*u1-b1*u2).*u1;
f2=(r2-b2*u1-a2*u2).*u2;

gr=p.pdeo.grid;
% interpolate to element centers

15 u1t=gr.point2Center(u1);
u2t=gr.point2Center(u2);

c=d+d12*u2t;
cc=d12*u1t;

20 [Kc ,~,F1]=p.pdeo.fem.assema(gr,c,0,f1);
[Kcc ,~,~]=p.pdeo.fem.assema(gr,cc ,0,f1);
[K,~,F2]=p.pdeo.fem.assema(gr ,1,0,f2);
N=sparse(p.pdeo.grid.nPoints ,p.pdeo.grid.nPoints );
p.mat.K=[[Kc Kcc];[N d*K]];

25 F=[F1;F2];
r=p.mat.K*[u1;u2]-F;

end

Listing 1: sG.m. In particular in lines 18, 19 we define the functions c, c̃ defined in (A.1), and in line
20, 21 we use them to build the matrices K21 and K12 appearing in (A.3) using the OOPDE routine
assema. The system matrix is then assembled in line 26, following (A.2).

function p=oosetfemops(p)
gr=p.pdeo.grid;
[~,M,~]=p.pdeo.fem.assema(gr ,0,1,1); % assemble ’scalar ’ M
p.mat.M=kron ([[1 ,0];[0 ,1]] ,M); %build 2-component system M

5 end

Listing 2: oosetfemops.m. The stiffness matrix needs to be build at each step, while the mass matrix
M can be assembled here.

Appendix B: Linearized analysis

In this section the detailed linearized analysis of system (1.5) can be found, in order to

localize regions in the parameter space where cross-diffusion induced instability can

appear. Although it is a simpler case than the one treated in [8], this computation allows us

to identify the bifurcation points along the homogeneous branch. These values can be

compared to the ones numerically obtained using pde2path, so we present the analysis

for reference here.

We recall that in the weak competition case (a1a2 � b1b2 [ 0) there exists a homo-

geneous equilibrium ðu	; v	Þ, which is stable for the reaction under the additional condition

on the growth rates b1=a2\r1=r2\a1=b2. Then, the Jacobian matrix of the reaction part

and the linearization of the diffusion part of the cross-diffusion system (1.5) evaluated at

the equilibrium ðu	; v	Þ are
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J	 ¼
�a1u	 � b1u	

�b2v	 � a2v	

� �
; J	D ¼

d þ d12v	 d12u	

0 d

� �
;

where trJ	\0; det J	 [ 0. Hence, the characteristic matrix is

M	
k ¼ J	 � J	Dkk ¼

�a1u	 � ðd þ d12v	Þkk � b1u	 � d12u	kk
�b2v	 � a2v	 � dkk

� �
;

where kk denotes an eigenvalue of the Laplacian on the domain. The trace of the char-

acteristic matrix remains negative, while the determinant can be written as a second order

polynomial in kk (as usual in Turing instability analysis)

detM	
k ¼ d d þ d12v	ð Þk2

k � dtrJ	 þ d12að Þkk þ det J	; ðB:1Þ

where a :¼ ð2b2u	 � r2Þv	. In order to have cross-diffusion induced instability, the

determinant of the characteristic matrix has to be negative for some kk. This is possible

when a[ 0. The sign of the quantity a is not fixed but it depends on the parameter values

ri; ai; bi; ði ¼ 1; 2Þ; we have a positive a when

r1

r2

[
1

2

b1

a2

þ a1

b2

� �
:

Remark Note that the parameter set used in [7, 9, 30, 32] and reported in Table 1 gives

a[ 0.

If we rewrite (B.1) as a second-order polynomial in d

detM	
k ¼ k2

kd
2 þ ðd12v	k

2
k � trJ	Þd � d12akk þ det J	; ðB:2Þ

it is possible to locate the bifurcation points solving detM	
k ¼ 0; we obtain

dB ¼ dBðd12; kkÞ ¼
�ðd12v	kk � trJ	Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd12v	kk � trJ	Þ2 � 4ðdet J	 � d12akkÞ

q

2kk
;

ðB:3Þ

depending on the parameters and on the eigenvalue of the Laplacian. With homogeneous

Neumann boundary conditions and choosing a 1D domain with length Lx, the eigenvalues

are

kk ¼
pk
Lx

� �2

; k� 0;

while on a rectangular 2D domain

kk ¼ kn;m ¼ pn
Lx

� �2

þ pm
Ly

� �2

; n;m� 0:

In Table 2a we report the bifurcation values dBðkkÞ corresponding to the eigenvalue kk of

the Laplacian for the 1D domain (0, 1) and obtained by formula (B.3), for different values

of k, compared with the numerical values estimated by the software pde2path. The

obtained values are in good agreement. The scenario is more complicated in a rectangular
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2D domain, reported in Table 2b for different values of n and m. Also in this case we

compare the values obtained by formula (B.3) with the numerical values. Note that the

values are ordered with respect to the bifurcation values dB, which does not translate into

an order of the indices n; m: for instance the couple (0, 3) corresponds to a smaller

bifurcation value than (0, 7). The reason is evident in Fig. 13, due to a non-monotonicity of

the function dBðkkÞ w.r.t. kk.

Table 2 Bifurcation values cor-
responding to the eigenvalue of
the Laplacian kk for the 1D
domain (0, 1) (top) and kn;m of

the Laplacian for the rectangular
2D domain ½�0:5; 0:5� � ½�2; 2�
(bottom). Values dBðkkÞ are
obtained from formula (B.3),
while values BP are estimated by
pde2path, using an uniform
mesh with 26 grid points (on the
x�edge), maximal and minimal
step size p.nc.dsmax=1e-4
and p.nc.dsmin=1e-7

(a) 1D

k dBðkkÞ BP

0 – –

1 0.032788 0.03279

2 0.02049 0.02046

3 0.01138 0.01133

4 0.00699 0.00693

5 0.00467 0.00460

(b) 2D

n m dBðkn;mÞ BP

1 1 0.032934 0.032962

0 4 0.032793 0.032793

1 0

1 2 0.032783 0.032776

0 5 0.031545 0.031529

1 3

1 4 0.029211 0.029168

0 6 0.027865 0.027829

1 5 0.026269 0.026206

0 7 0.023975 0.023923

0 3 0.023589 0.023613

1 6 0.023198 0.023118

0 8 0.020495 0.020429

2 0
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