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Abstract

The use of spacings between ordered real-valued numbers is very useful in many areas
of science. In particular, either unnaturally small or large spacings can be a signal of
an interesting effect. As particle physicists, we are interested in the appearance of the
unexpected clustering of values, indicating the presence of a new process, or large gaps
between the ordered values, allowing us to set upper limits on the normalization of a
distribution. By analyzing the distribution of spacings between consecutive ordered
data points, I develop sensitive test statistics, allowing for a quantitative measure of
agreement between a model and observed data. The statistics developed in this thesis
are used to perform unbinned non-parametric goodness of fit tests, without the need
of trials factor or look-elsewhere correction, that can be used to detect an unknown
signal against a known background or to set limits on a proposed signal distribution
in experiments contaminated by poorly understood backgrounds. This thesis aims to
provide a comprehensive understanding of the use of Order Statistics in physics, while
also addressing the challenge of extending goodness-of-fit tests to multivariate samples,
since out-of-the-box non-parametric tests that can target any proposed distribution are
only available in the univariate case. My approach relies on a multivariate probability
integral transformation of the data, that can be carried out analytically for simple models
or numerically using a Normalizing Flow in the case of arbitrary complex multivariate
distributions or multivariate data generation models. Once transformed, the problem is
reduced to a multivariate uniformity test, which is simplified by either considering the
independent marginal distributions of the data or by considering the volumes identified
by each sample. These methods effectively reduce the complexity of one multivariate
goodness-of-fit test to a single or multiple univariate ones.
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Kurzfassung

Die Verwendung von Abständen zwischen geordneten reellwertigen Zahlen ist in vielen
Bereichen der Wissenschaft sehr nützlich. Hier können entweder unnatürlich kleine oder
große Abstände ein Signal für einen interessanten Effekt sein. Als Teilchenphysiker inter-
essieren wir uns für das Auftreten unerwarteter Wertecluster, die auf das Vorhandensein
eines neuen Prozesses hindeuten, oder große Lücken zwischen den geordneten Werten,
die es uns ermöglichen, Obergrenzen für die Normalisierung einer Verteilung festzulegen.
Durch die Analyse der Verteilung von Abständen zwischen aufeinanderfolgenden geord-
neten Datenpunkten entwickle ich empfindliche Teststatistiken, die eine quantitative
Maßnahme für die Übereinstimmung zwischen einem Modell und beobachteten Daten er-
möglichen. Die in dieser Arbeit entwickelten Statistiken werden verwendet, um ungebinnte
nicht-parametrische Goodness-of-Fit-Tests ohne die Notwendigkeit von Trial-Faktoren
oder Look-Elsewhere-Korrekturen durchzuführen. Diese Tests können verwendet werden,
um ein unbekanntes Signal gegen einen bekannten Hintergrund zu erkennen oder Grenzen
für eine vorgeschlagene Signalverteilung in Experimenten zu setzen, die durch schlecht
verstandene Hintergründe kontaminiert sind. Diese Arbeit zielt darauf ab, ein umfassen-
des Verständnis der Verwendung von Ordnungsstatistiken in der Physik zu vermitteln
und gleichzeitig die Herausforderung der Erweiterung von Goodness-of-Fit-Tests auf
multivariate Stichproben anzugehen, da Out-of-the-Box nicht-parametrische Tests, die auf
jede vorgeschlagene Verteilung abzielen können, nur im univariaten Fall verfügbar sind.
Mein Ansatz basiert auf einer multivariaten Wahrscheinlichkeitsintegraltransformation
der Daten, die für einfache Modelle analytisch durchgeführt oder numerisch mit einem
Normalizing Flow für beliebig komplexe multivariate Verteilungen oder multivariate
Datengenerierungsmodelle durchgeführt werden kann. Nach erfolgter Transformation
wird das Problem auf einen multivariaten Uniformitätstest reduziert, der entweder durch
Betrachtung der unabhängigen marginalen Verteilungen der Daten oder durch Betrach-
tung der Volumina, die von jeder Stichprobe identifiziert werden, vereinfacht wird. Diese
Methoden reduzieren die Komplexität eines multivariaten Goodness-of-Fit-Tests effektiv
auf einen oder mehrere univariate Tests.
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1. Motivation and Overview

Physics, at its core, is the relentless study of the universe, a quest towards understanding
its fundamental nature and the intricate web of interactions that govern the behaviour of
matter and energy. As our knowledge of physics has advanced, so too have the experimen-
tal techniques and theoretical frameworks used to probe the world surrounding us. In this
pursuit, the analysis of experimental data plays a pivotal role, providing a critical link
between the predictions of theoretical models and the observations made in the laboratory.

One essential aspect of data analysis in physics is the ability to test the goodness of fit
between a theoretical model and experimental data. The outcome of such tests can be
helpful in determining whether a particular model is capable of explaining the observed
phenomena, if there is a need to refine the model or if it is necessary to search for
alternative explanations. Additionally, goodness of fit tests are often fast, allowing them
to be employed to filter a large number of datasets and select only the most promising
candidates for further analysis, such as a more detailed but also slower and more costly
Bayesian analysis of the data.

In this thesis, I explore unbinned non-parametric goodness of fit tests for discovery and
limit setting. The use of non-parametric tests can offer several advantages over that of
parametric counterparts. Unlike parametric tests, which rely on parameters that are
tuned to the observations, such as a choice of binning or a specific kernel function, and
whose value can affect the outcome of the test, non-parametric tests need no such tunable
parameters but simply a null-hypothesis, i.e. the assumed distribution of the observed
data. This allows for more robust and versatile tests, particularly in cases where the
distribution of the data is unknown or poorly understood. Moreover, the tests developed
here do not need any trials factor or look-elsewhere correction since the data can be
analyzed all at once.

The non-parametric tests considered in this thesis are based on Order Statistics, par-
ticularly spacings or gaps. Order Statistics refers to the arrangement of a set of data
points in ascending order and by considering the spacings or gaps between consecutive
ordered data, it is possible to construct sensitive test statistics that provide a quantitative
measure of the agreement between a given model and the observed data. In particular,
either unnaturally small or large spacings can be a signal of an interesting effect. These
test statistics can be used to perform goodness of fit tests either for signal discovery or to
set limits on signals affected by poorly understood backgrounds, thereby facilitating the
identification of new physical phenomena and the validation of theoretical predictions.

1



1. Motivation and Overview

Order Statistics have been studied in great depth in the statistics community, but
unfortunately, the work is poorly known in the physics community, which has led to the
rediscovery of results long-known to statisticians. An example of the use of spacings
between values in the particle physics community is presented by Yellin [1], where
the author proposes a method to set a limit on the interaction rate of putative dark
matter particles using the size of gaps in the observed energy spectrum of recorded
interactions. In this context, a large gap in the energy spectrum implies an upper limit
on the interaction strength. Conversely, in a discovery scenario, an abundance of small
spacings located close to one another can point to the presence of a signal on top of the
assumed background.

The development and application of such tests to the analysis of univariate datasets is
often aided by the probability integral transformation [2, 3], which allows transforming
the data at hand into a standardized space, the unit interval, [0, 1], using the cumulative
distribution of the provided model. Given this, the test statistics are developed in the
unit interval and at their core are uniformity tests.

While the univariate case is of substantial importance, the extension of goodness of fit
tests to multivariate samples is an open challenge. Multivariate datasets are increasingly
common in modern physics experiments, as advances in detector technology and data
acquisition systems enable the simultaneous measurement of multiple observables. The
ability to perform goodness of fit tests on multivariate samples would boost the effec-
tiveness of the analysis and interpretation of these data. To address this challenge, I
introduce two methods for performing unbinned goodness of fit tests for multivariate
samples. The applicability of these methods relies on a multivariate probability integral
transformation of the data.

The difficulty of performing this transformation depends on the complexity of the
proposed model. While it may be easy to perform the transformation in the case of
multivariate distributions with uncorrelated dimensions, it might not be easy to find an
exact transformation if correlations are present. When dealing with more complex models,
or when only a generative model is available, but no proper definition of a multivariate
probability distribution, it might be possible to numerically perform the multivariate
probability integral transformation by employing a Normalizing Flow.

Normalizing Flows are a powerful class of machine learning techniques that enable the
transformation of complex, high-dimensional probability distributions into simpler, more
tractable forms. By leveraging these techniques, it is possible to extend the applicability
of univariate goodness of fit tests to a broader range of multivariate problems, including
those involving correlated dimensions and intricate statistical structures.

In this thesis, Chapter 2 provides a general introduction to the topic of Order Statistics,
focusing mainly on the distribution theory of spacings in the case of an underlying
Standard Uniform (U(0, 1)) distribution of samples. Chapter 3 focuses mainly on the
description of goodness of fit tests based on spacings aimed at discovery applications:
here I introduce three new test statistics and then perform a general comparison of the
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performance of these tests using simulated experiments. Chapter 4 concerns test statistics
aimed at setting limits on signals affected by poorly understood background: here I discuss
the state-of-the-art test statistics present in the literature and introduce two new tests,
comparing the performance of all available tests against various background distributions.
Chapter 5 describes the extension to multivariate goodness of fit tests, introducing the
“projection” and “volume transformation” methods and presenting examples of their
utilization to both discovery and limit setting applications.

The comparisons between tests presented in Chapters 3 to 5 not only serve to validate
the effectiveness of the methods in a practical context but also provide valuable insights
into their relative performance in different scenarios, which can be referenced as guidelines
in the choice of the most sensitive tests for different applications.

Finally, to demonstrate the power and versatility of the newly introduced test statistics,
in Chapter 6 I show applications to physics analyses inspired by a proposed experiment
(RES-NOVA) to observe Supernovae by detecting neutrino flares and by reanalysing
the CRESST dark matter search data using the newly developed tests, hoping these
examples encourage their adoption in the broader physics community and stimulate
further research in this area. A mock “bump-hunting” example, such as the search for
an exotic particle decay with unknown mass, is also considered and a comparison of
the sensitivity of the newly introduced tests against a likelihood ratio approach in this
scenario is presented. Lastly, Chapter 7 contains a brief summary of my contributions
and a discussion of the future research outlooks building upon the results presented here.
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2. Order Statistics

2.1. Introduction

Given a sequence of n random variables {X1, X2, ..., Xn}, we construct their order
statistics by sorting them in ascending order:

X(1) ≤ X(2) ≤ ... ≤ X(n) (2.1)

where X(i) refers to the i-th order statistic, i.e. the i-th smallest sample.
In this thesis, we will assume the unordered samples Xi to be statistically independent

and identically distributed (i.i.d.). Still, even with this assumption, we recognize that the
ordered samples X(i) are necessarily dependent due to the inequality relations between
them.

The field of Order statistics explores the properties and applications of these ordered
random variables, as well as functions involving them.

Order statistics are used in characterizations and goodness-of-fit tests, which have
long-ranging applications in various scientific fields: model validation, signal detection,
background-rejection and limit setting. Additionally, most goodness-of-fit tests for
arbitrary parent distributions, implicitly involve order statistics, since they often focus
on deviations between the empirical quantile function and the hypothesized one. We
will focus on these in later chapters, reviewing existing tests and discussing my newly
proposed ones, adding to the large body of literature that has been devoted to the study
of order statistics.

For a more comprehensive and detailed review of the results that have been achieved
in the field of order statistics, I recommend the following books [4, 5] which at times I
closely follow in delivering this brief introduction.

2.2. Distribution of Order Statistics

In the following, I review the main results of the distribution theory of order statistics.
I begin investigating single order statistics and then derive the joint distribution of a
set of them. Finally, I review a general result on the conditional distribution of order
statistics which highlights how they can be interpreted as a Markov chain.

5



2. Order Statistics

2.2.1. Basic distribution theory

Assuming a sequence {X1, X2, ...Xn} of n i.i.d. variables with cumulative density function
(cdf) F (x) = Pr{X ≤ x}, it is possible to derive the distribution of any order statistic.
Starting with the largest order statistic, X(n), its cumulative distribution is simply:

F(n)(x) = Pr{X(n) ≤ x}
= Pr{all Xi ≤ x}
= [F (x)]n (2.2)

Similarly, the cumulative distribution of the smallest order statistics, X(1), is:

F(1)(x) = Pr{X(1) ≤ x}
= 1− Pr{X(1) > x}
= 1− Pr{all Xi > x}
= 1− [1− F (x)]n (2.3)

Generally, the cumulative distribution of the k-th order statistic, X(k), is:

F(k)(x) = Pr{X(k) ≤ x}
= Pr{at least k of Xi are at most equal to x}

=

n∑
j=k

Pr{exactly j of Xi are at most equal to x}

=
n∑

j=k

(
n

j

)
[F (x)]j [1− F (x)](n−j) (2.4)

Differentiating the cumulative distributions above yields the probability density function
(pdf) f(k) of any X(k):

f(1)(x) = n · f(x) · [1− F (x)](n−1) (2.5)

f(n)(x) = n · f(x) · [F (x)](n−1) (2.6)

f(k)(x) =
n!

(k − 1)!(n− k)!
· f(x) · [F (x)](k−1) [1− F (x)](n−k) . (2.7)

Given these results, it is now possible to consider the joint distribution of a set of order
statistics. If we consider two order statistics X(j) and X(k), with 1 ≤ j < k ≤ n, then

6



2.2. Distribution of Order Statistics

their joint distribution f(j)(k)(x, y) can be derived by considering that j − 1 observations
are at most equal to x, one is exactly x, another k − j − 1 are at least x and at most
y, one is exactly y and the remaining n− k observations are at least equal to y. This
configuration is depicted in Fig. 2.1, and using the distributions derived above, we can
translate our interpretation of this configuration into the formula of f(j)(k)(x, y):

f(j)(k)(x, y) =
n! [F (x)](j−1) f(x) [F (y)− F (x)](k−j−1) f(y) [1− F (y)](n−k)

(j − 1)!(k − j − 1)!(n− k)!
(2.8)

Figure 2.1.: Illustration of the position of order statistics relative to X(j) and X(k).

Based on the above-mentioned interpretation of f(j)(k)(x, y), one can easily generalize
and obtain the joint distributions of any combination of order statistics {X(n1), ..., X(nk)}
(1 ≤ n1 < ... < nk ≤ n):

f(n1)...(nk)(x1, ..., xk) =
n!

(n1 − 1)!(n2 − n1 − 1)!...(n− nk)!
·

· [F (x1)]
(n1−1) f(x1) [F (x2)− F (x1)]

(n2−n1−1) ·
· f(x2)... [1− F (xk)]

(n−nk)

=n!

 k∏
j=1

f(xj)

 ·

 k∏
j=0

[F (xj+1)− F (xj)]
(nj+1−nj−1)

(nj+1 − nj − 1)!

 (2.9)

where x0 = −∞, xk+1 = +∞, n0 = 0 and nk+1 = n+ 1.
If one considers all order statistics at once, their joint distribution is simply the number

of equally likely orderings of {X1, ..., Xn}, the n! permutations of samples, times the
likelihood of a given realization:

f(1)...(n)(x1, ..., xn) = n!

n∏
j=1

f(xj). (2.10)

Integrating Eq. 2.8 yields the cumulative distributions, which can also be obtained directly
with similar considerations to Eq. 2.4:
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2. Order Statistics

F(j)(k)(x, y) = Pr{at least j Xi ≤ x and at least k Xi ≤ y}

=
n∑

t=k

t∑
r=j

Pr{exactly r Xi ≤ x and exactly t Xi ≤ y}

=

n∑
t=k

t∑
r=j

n! [F (x)]r [F (y)− F (x)](t−r) [1− F (y)](n−t)

r!(t− r)!(n− t)!
(2.11)

Given the joint distribution of k order statistics, it is possible to derive the distribution
of any function of order statistics, using variable transformation methods. For example,
considering the gap between any two given order statistics, Wjk = X(k) − X(j), we
can express its value as wjk = y − x and substitute (x, y) → (x,wjk) into Eq. 2.8 and
marginalize over the variable x, in order to obtain the distribution of wjk:

fWjk
(wjk) =

n!

(j − 1)!(k − j − 1)!(n− k)!
·
∫ +∞

−∞
F j−1(x)f(x)·

· [F (x+ wjk)− F (x)]k−j−1 f(x+ wjk) [1− F (x+ wjk)]
n−k dx (2.12)

Such an approach, in principle, is possible for any function of order statistics h(X(i)),
but depending on the complexity of h and of the original probability distribution f , the
resulting integral might not be solvable in closed form. Exact results have been derived
for well-known distributions of events, such as the Uniform and Exponential distributions
and for “well-behaved” combinations of order statistics, such as the “gaps” mentioned
above, which are extremely important in the work of this thesis.

2.2.2. Order Statistics as a Markov Chain

Given the joint probability distribution of a combination of order statistics, Eq. 2.9, the
joint conditional distribution of {X(j+1), ..., X(k−1)} given X(i) for i ≤ j ∨ i ≥ k is:

fX(j+1)...X(k−1)|X(i)=xi,i≤j∨i≥k(xj+1, ..., xk−1) =

= (k − j − 1)!
k−1∏

i=j+1

f(xi)

F (xk)− F (xj)
(2.13)

for x1 < ... < xn. This result means that the conditional distribution of {X(j+1), ..., X(k−1)}
is just the distribution of all order statistics in a sample of k − j − 1 drawn from the
distribution f(x)

[F (xk)−F (xj)]
, i.e. f(x) truncated to the interval [xj , xk]. Additionally, we

notice that this conditional distribution is free of xi for i < j ∨ i > k, meaning that
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2.3. Uniform Order Statistics

{X(j+1), ..., X(k−1)} is independent of {X(1), ..., X(j−1), X(k−1), ..., X(n)} when X(j) and
X(k) are given. Conditioning on the lower order statistic Eq. 2.13 leads to:

fX(j+1)...X(n)|X(1)=x1,...,X(j)=xj
(xj+1, ..., xn) =

= fX(j+1)...X(n)|X(j)=xj
(xj+1, ..., xn) (2.14)

which shows that the order statistics in a sample from a continuous density f(x) form a
Markov chain. The transition density is given by:

fX(j+1)|X(j)=x(y) = (n− j)
f(y)

1− Fx

[
1− F (y)

1− F (x)

]n−j−1

, y > x. (2.15)

2.3. Uniform Order Statistics

So far, we have considered order statistics pertaining to arbitrary continuous distributions
f(x) with cumulative F (x). The case of standard uniformly distributed samples is
particularly important, since it allows a simple derivation of many important properties
of order statistics.

2.3.1. Probability Integral Transformation

Given an arbitrary cumulative distribution F (x), i.e. a non-decreasing and right con-
tinuous function with F (−∞) = 0 and F (∞) = 1, its associated inverse distributions
function, or quantile function, is defined by:

F−1(u) = sup{x : F (x) ≤ u} (2.16)

If U is a standard Uniform random variable, U ∼ U(0, 1), then F−1(U) has distribution
function F :

Pr{F−1(U) ≤ x} = Pr{U ≤ F (x)} = F (x) (2.17)

If we consider n i.i.d. standard Uniform random variables Ui and n i.i.d. random variables
Xi with distribution F (x), then:(

X(1), ..., X(n)

) d
=
(
F−1(U(1)), ..., F

−1(U(n))
)

(2.18)(
U(1), ..., U(n)

) d
=
(
F (X(1)), ..., F (X(n))

)
(2.19)

where d
= means they are identically distributed.
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2. Order Statistics

2.3.2. Distribution of Uniform order statistics

In the absolutely continuous case, the relationship highlighted by Eq. 2.18 points out
that it is possible to derive the joint density of Eq 2.10 from the much simpler joint
probability density of uniform order statistics:

f(1)...(n)(u1, ..., un) = n! (2.20)

Working with uniform order statistics allows simple derivations of moments and other
distributional features of order statistics, which can be translated into the original space
by a variable transformation. Additionally, this allows the study of order statistics
in a standardized space, defined by the unit interval [0, 1], which allows to formulate
constraints that are extremely useful in deriving distributions and asymptotic results.
One such constraint is the sum of all consecutive spacings arising from a random sample
of uniform order statistics always equals 1. In the following chapter, we will refer to
this constraint in our derivations. Furthermore, transforming random variables into
uniform ones by means of their cumulative distribution, U = F (X), is referred to as the
probability integral transformation [2, 3] and is extremely important in hypothesis testing,
as will be discussed in further chapters.

Considering n i.i.d. Uniform random variables Ui, Eq. 2.5 becomes:

fU(k)
=

n!

(k − 1)!(n− k)!
uk−1(1− u)n−k (2.21)

meaning that the k-th order statistic of the uniform distribution is distributed according
to a Beta distribution:

U(k) ∼ Beta(k, n+ 1− k). (2.22)

The joint distributions of (U(j), U(k)), for j < k, becomes:

fU(j),U(k)
(u, v) = n!

uj−1(v − u)k−j−1(1− v)n−k

(j − 1)!(k − j − 1)!(n− k)!
(2.23)

and using this to find the distribution of the distance between two uniform order statistics,
one finds that it follows a Beta distribution as well:

U(k) − U(j) ∼ Beta(k − j, n+ 1− (k − j)) (2.24)

which depends only on the difference (k − j), but not on k or j individually.
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2.4. Spacings

2.4. Spacings

2.4.1. Uniform Spacings

Given a set of n i.i.d. standard Uniform random variables, {U1, U2, ..., Un}, I am interested
in the distance between the corresponding order statistics, U(i), which are referred to as
spacings. Begin by considering an extended set of ordered values, namely the boundaries
of the range of U(i) themselves: defining U(0) = 0 and U(n+1) = 1.

The general spacing of rank k, Si,k, are defined as:

Si,k = U(i) − U(i−k) (2.25)

for k ≤ i ≤ n+ 1. These spacings are Beta random variables, since their distribution is
given by Eq. 2.24, where the difference between uniform order statistics depends only on
the difference of their indices:

Si,k ∼ Beta(k, n+ 1− k). (2.26)

In this thesis, I refer to the spacing between consecutive order statistics as simple spacings,
i.e. first rank spacings Si,1, and for convenience, I simplify their notation: Si := Si,1.
Given n samples, one can define n+ 1 (uniform) simple spacings.

One important constraint when it comes to simple spacings is their sum:

n+1∑
i=1

Si = 1 (2.27)

The cumulative distribution of a simple spacing is (from Eq. 2.26):

FSi(x) = FS1(x) = FU(1)
(x) = 1− (1− x)n (2.28)

while the joint probability of any two simple spacings is:

FSi,Sj (x, y) = FS1,S2(x, y) = Pr{S1 ≤ x, S2 ≤ y}
= Pr{U(1) ≤ x, U(2) − u(1) ≤ y}

= n

∫ x

0

[
1−

(
1− y

1− u

)n−1
]
(1− u)n−1du

= 1− [(1− x)n + (1− y)n − (1− x− y)n] . (2.29)

Given Eq.s 2.28 and 2.29, one can deduce that the joint cumulative distribution of k
simple spacings is:
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2. Order Statistics

FS1,...,Sk
(x1, ..., xk) = 1−

[(
k∑

i=1

(1− xi)
n

)
−
(
1−

k∑
i=1

xi

)n]
(2.30)

and their joint probability density is:

fS1,...,Sk
(x1, ..., xk) =

n!

(n− k)!

(
1−

k∑
i=1

xi

)n−k

(2.31)

which can be proven by induction. For general spacings, for samples Xi with arbitrary
distribution F (x), these distributions can be obtained either by using directly the joint
distribution of the first k order statistics, Eq. 2.9, or by considering that the order
statistics can be expressed as a Markov chain, as discussed in Sec. 2.2.2. An example of
such a derivation can be found in Pyke’s review of tests based on spacings [6].

2.4.2. Exponential Spacings

Considering Z(1) ≤ ... ≤ Z(n), denoting the order statistics of n samples from an
exponential distribution with rate λ , f(z) = λe−λz, then their joint distribution is:

fZ(1),...,Z(n)
(z(1), ..., z(n)) = n!λn exp

(
−λ

n∑
i=1

z(i)

)
(2.32)

which can be rewritten as:

fZ(1),...,Z(n)
(z(1), ..., z(n)) = n!λn exp

(
−λ

n∑
i=1

(n+ 1− i)(z(i) − z(i−1))

)
(2.33)

where z(0) = 0. Defining the exponential (simple) spacings as:

Di = Z(i) − Z(i−1) (2.34)

for 1 ≤ i ≤ n, we can substitue them in Eq. 2.33 and obtain the joint distribution of all
Di [7]:

fD1,...,Dn(d1, ..., dn) = n!λn exp

(
−λ

n∑
i=1

(n+ 1− i)di

)

=

n∏
i=1

λ(n+ 1− i) exp [−λ(n+ 1− i)di] (2.35)
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which shows that the joint density function of the exponential spacings is the product
of n marginal exponential densities. This means we can interpret Di as an independent
Exponential random variable with rate λ(n+1− i). Considering the normalized spacings :

Yi = λ(n+ 1− i)Di (2.36)

we notice that the samples Yi are statistically independent variates, distributed according
to a standard Exponential distribution.

As noted in [6], due to the independence of exponential spacings, the exact distribution
theory for functions of Di is relatively simple, and classical limit theorems for independent
random variables may be applied to obtain the limiting distribution of functions of
exponential spacings.

Finally, the transformation 2.36 allows Z(j) to be expressed as a linear function of
exponential i.i.d.:

Z(j) =

j∑
i=1

Di =

j∑
i=1

Yi
λ(n+ 1− i)

. (2.37)

From this follows that {Z(1), ..., Z(n)} form an additive Markov chain [8].

2.5. Construction of spacings

In the following, I list several ways of constructing Uniform spacings, closely following
the corresponding chapter from Pyke’s review [6].

2.5.1. Uniform spacings as Exponential r.v.’s

Given n+ 1 independent standard Exponential random variables {Y1, ..., Yn+1}, let T be
their sum:

T =
n+1∑
i=1

Yi (2.38)

and Di = Yi/T , then:

f(Y1,...,Yn,T )(y1, ..., yn, t) = e−t (2.39)

from which:

f(D1,...,Dn,T )(d1, ..., dn, t) = tne−t (2.40)

13



2. Order Statistics

for di ≥ 0, 0 ≤∑n
i=1 d1 ≤ 1 and t > 0. Marginalizing over the sum T , we get:

f(D1,...,Dn)(d1, ..., dn) = n! (2.41)

which is the distribution of the first n simple Uniform spacings (Eq. 2.31), thus,
{D1, ..., Dn+1} are distributed as the set of n+ 1 spacings determined by n independent
standard Uniform random variables:(

D(1), ..., D(n+1)

) d
= (S1, ..., Sn+1) (2.42)

An alternative route would have been to consider the conditional distribution:

f(Y1,...,Yn)|T (y1, ..., yn|t) = n!t−n (2.43)

which given T = 1 would yield the same result.

2.5.2. Uniform spacings as Inter-event times in a Poisson process

Let N(t) for t ≥ 0 be a Poisson process with parameter λ = E[N(1)], and let Tj , with
Ti ≤ Tj for i < j, denote the successive times of events in the process. For a given t ≥ 0,
set:

Yi = T1 − Ti−1 (2.44)

for 1 ≤ i ≤ N(t), with T0 = 0, and set YN(t)+1 = t− TN(t).
Given N(t) = n, then the distribution of {Y1/t, ..., Yn+1/t} is the same as n+1 Uniform

spacings: (
Y1
t
, ...,

Yn+1

t

)
d
= (S1, ..., Sn+1) . (2.45)

This is possibly the oldest construction of Uniform spacings and one which represents
the most natural relationship between the Poisson process (“random” points on a line)
and the Uniform distribution (“random” points on an interval).

2.5.3. Uniform spacings as Beta r.v.’s

Given n i.i.d. Uniform random variables, we can produce a set of n+1 Uniform spacings
0 ≤ Si ≤ 1 subject to the constraint:

n+1∑
i=1

Si = 1.
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2.5. Construction of spacings

Given this constraint, it is possible to interpret the set of Uniform spacings as a realization
of a Dirichlet random variable with all concentration parameters equal to 1: αi = 1 for
1 ≤ i ≤ n+ 1.

Generally, given an ensemble of n+ 1 Gamma variates Yi:

Yi ∼ Γ(αi, βi) (2.46)

is has been shown that upon normalization they follow a Dirichlet distribution [9]:

(
Yi∑n+1
j=1 Yj

)
= (Di) ∼ Dir(α1, ..., αn+1) =

Γ
(∑n+1

i=1 αi

)
∏n+1

i=1 Γ(αi)

n+1∏
i=1

dα1−1
i (2.47)

This result is not particularly surprising, because in order to construct a set of Uniform
spacings, one needs to fix αi = 1, as stated above, in which case the Gamma distribution
is equal to the Exponential one, Γ(1, λ) = Exp(λ), and Yi are nothing more than expo-
nential random variables, which are distributed as Uniform spacings upon normalization,
as shown previously.

Focusing on the description of Uniform spacings as a Dirichlet sample, I show how to
relate it to a set of independent Beta variables. This transformation was introduced by
Betancourt [10] when dealing with the problem of sampling directly from a Dirichlet
distribution in the context of Markov Chain Monte Carlo (MCMC) techniques such as
Hamiltonian Monte Carlo.

Given a set of n+ 1 Uniform spacings {Si}, consider the transformation:

Yi =
√
Si (2.48)

with support and distribution given by:

0 ≤ Yi ≤ 1

n+1∑
i=1

Y 2
i = 1

f{Yi}({yi}) = 2n+1n!

n+1∏
i=1

yi (2.49)

Given the quadratic constraint, instead of dealing with samples on a hyperplane (i.e. the
simplex where Dirichlet variables reside), the samples Yi reside on the surface of a n+ 1

dimensional hypersphere, which can be parametrised by transforming to hyperspherical
coordinates [11]:
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2. Order Statistics

Yi = r

(
i−1∏
k=1

sinΘk

)
·
{

cosΘi, i < n+ 1

1, i = n+ 1
. (2.50)

The support and distribution of this transformation is:

0 ≤ θ ≤ π

2

r2 = 1

f(r,{Θi})(r, {θi}) = 2n+1n!r2n+1
n∏

i=1

cos θi (sin θi)
2(n+1−i)−1 (2.51)

which upon marginalization over the radial component becomes:

f{Θi}({θi}) = 2nn!
n∏

i=1

cos θi (sin θi)
2(n+1−i)−1 . (2.52)

Finally, consider the last transformation:

Bi = sin2Θi (2.53)

with 0 ≤ Bi ≤ 1, whose joint distribution is:

f{Bi}({bi}) =
n∏

i=1

(n+ 1− i)bn−i
i =

n∏
i=1

Beta(n+ 1− i, 1) (2.54)

which can be factored as the product of n independent Beta random variables.
The mapping Si → Yi → Θ → Bi reduces the original Uniform spacings, distributed as

a Dirichlet random variable, to a simple product of independent Beta distributions. The
inverse transformation to construct Uniform spacings starting from Beta variates Bi is:

Si =

(
i−1∏
k=1

Bk

)
·
{

1−Bi, i < n+ 1

1, i = n+ 1
. (2.55)

2.6. Basic Asymptotic Theory

2.6.1. Order Statistics

So far we focused on the exact distribution theory for order statistics, where we saw that
the exact cumulative distributions is often computationally messy except for some very
special cases. For large sample sizes, i.e. n ≫ 1, then it might be beneficial to investigate

16



2.6. Basic Asymptotic Theory

the asymptotic behaviour in hope of finding easier approximations to the distributions
we seek.

Representing order statistics as X(i)
d
= F−1(U(i)) proves to be useful also in deriving

their asymptotic distributions. Given X(⌈np⌉), where p ∈ [0, 1] and n ≫ 1, consider the
corresponding uniform order statistic U(⌈np⌉) whose distributions is that of a Beta random
variable, Eq. 2.22:

U(⌈pn⌉) ∼ Beta (np, n(1− p)) . (2.56)

Such a Beta variable can also be represented as the combination of independent Gamma
variates [5], i.e. has the same distribution as:

n∑
i=1

Vi∑n
i=1 Vi

∑n
i=1Wi

(2.57)

where the variables Vi are i.i.d. from Γ(p, 1) and the variables Wi are also i.i.d. but from
Γ(1− p, 1) and independent from Vi. By using the multivariate central limit theorem and
delta method, one can prove that the asymptotic distribution of U(⌈np⌉) is Normal [12]:

U(⌈np⌉) ∼ N
(
p,

p(1− p)

n

)
. (2.58)

From this result, one can derive the asymptotic distribution of the original X(⌈np⌉):

X(⌈np⌉) ∼ N
(
F−1(p),

p(1− p)

n [f(F−1(p))]2

)
. (2.59)

For a given value of p, X(⌈np⌉) does not represent an extreme order statistic, since
the ratio np/n is constant as n increases. Extreme order statistics such as X(1) or
X(n) have different, non-normal, limiting distributions, as first guessed by Tippett [13]
and later proven and derived by Fisher, Tippet [14] and Gnedenko [15]. Considering
X(n), its distributions will depend only on the upper tail of F (x). For example, if
F̄ (x) = 1− F (x) ∼ cx−α for x → ∞, then:

Pr
{
bnX(n) ≤ x

}
= Pr

{
X(n) ≤

x

bn

}
=

[
F

(
x

bn

)]n
=

[
1− F̄

(
x

bn

)]n
=

[
1−

(
x

bn

)−α
]n

(2.60)
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2. Order Statistics

and if one chooses bn = n−1/α, then Pr
{
bnX(n) ≤ x

}
= [1− x−α/n]

n, which converges
to e−x−α , often called the extreme value distributions of the Frechét type.

This follows from a more general result, the Fisher–Tippett–Gnedenko theorem, also
known as the Fisher–Tippett theorem or the extreme value theorem. This is a general
result in extreme value theory concerning the asymptotic distribution of extreme order
statistics. The maximum of a sample of i.i.d. random variables can only converge in
distribution to one of 3 possible distributions: the Gumbel distribution, the Fréchet
distribution, or the Weibull distribution.

2.6.2. Spacings

When it comes to spacings, we start considering Exponential spacings Di, which them-
selves are independent Exponential random variables with rate λ(n+1− i), Eq. 2.35. As
the number of events increases, (i, n) → ∞ with i/n → u, 0 < u < 1, then the variable
nDi has distribution:

nDi ∼ Exp

(
λ(n+ 1− i)

n

)
−→ Exp(λ(1− u)). (2.61)

Considering more spacings, letting j/n → v, then we can write the joint cumulative
distributions as:

lim
n→∞

F(nDi,nDj)(x, y) =
[
1− e−λ(1−u)x

] [
1− e−λ(1−v)y

]
. (2.62)

Although this is an obvious result for Exponential spacings, it is possible to generalize to
spacings derived from arbitrary distributions with cdf F (x) and pdf f(x). For 0 < u, v < 1,
suppose s = F−1(u) and t = F−1(v) are uniquely defined, then if i/n → u and j/n → v:

lim
n→∞

F(nD∗
i ,nD

∗
j )
(x, y) =

[
1− e−f(s)x

] [
1− e−f(t)y

]
(2.63)

where D∗
i refers to the general spacings obtained from f(x). An outline of the proof

of this result can be found in [6]. Additionally, any finite set of spacings retaians the
asymptotic independence and Exponential distribution [16].

2.6.3. Functions of Uniform Spacings

The study of Order statistics and Spacings is important because using these components
we are able to build statistical tools to investigate the fit between a set of data and a
proposed model. I will discuss these tests in the next chapter, but for now it will suffice
to say that they are built assuming a Uniform distribution of samples. This is due to the
Probability Integral Transformation, which can be operated on any set of data provided a
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candidate distribution, allowing to develop statisticla tools in a standardized environment
where we can always transform into.

Some of the tests I discuss and use in my work can be expressed as a combination of
functions of Uniform Spacings. For example, given a set of n+ 1 Uniform Spacings {Si},
consider the test statistic:

Ωn =
n+1∑
i=1

g(nSi) (2.64)

where g is an arbitrary real valued funciton.
Even when working with Uniform spacings, very rarely it is possible to derive the exact

distribution of statistics Ωn, and even then, it might be difficult to write down suitable
explicit expressions for the exact distribution.The first to provide a unified approach to
the problem of finding the limiting distribution of a statistic such as Ωn (Eq. 2.64) was
Darling [17]. In his work, Darling targets the more general class of functions gi(nSi),
deriving a simple formula for the characteristic function of Ωn, from which it is possible
to obtain general properties of spacings and exact moments of Ωn.

Subsequently, in 1958, LeCam [18] derived an easier general approach to finding the
asymptotic distribution of Ωn. Consider a set of standard exponential random variables
Yi and set:

K =
1√
n

n+1∑
i=1

(Yi − 1) (2.65)

J =
n+1∑
i=1

g(Yi). (2.66)

From the construction of Uniform spacings as Exponential random variables, it follows
that:

Pr{Ωn ≤ x} = Pr{Jn ≤ x|Kn = 0} (2.67)

so instead of directly deriving the asymptotic distribution of Ωn, LeCam seeks the
asymptotic joint distribution (Jn,Kn) and derives the desired conditional distribution
of J given K = 0. Since Jn and Kn are sums of i.i.d. random variables, their joint
asymptotic distribution may be obtained using classical limit theorems:

lim
n→∞

Kn = K ∼ N (0, 1) (2.68)

lim
n→∞

Jn = J = JN + JP (2.69)
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where J is split between its Normal part, JN , and its non-Normal (Poisson) part, JP .
LeCam’s theorem states that if (Jn,Kn) → (JN + JP ,K) then Ωn → J − cK where
c = E[JNK].

Specifically, if (Jn,Kn) converges asymptotically to a two-dimensional Normal distri-
bution (J,K), then:

lim
n→∞

Ωn ∼ N (0, σ2
J − σ2

JK). (2.70)

This does not exhaust the results regarding the asymptotic distribution of combinations
of functions of Spacings, regardless whether Uniform or not. For a broader and more
detailed overview of limiting distributions of Spacings see [6, 4, 5].
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3. Goodness-of-fit tests using Spacings

3.1. Introduction

Assessing the Goodness-of-Fit (GoF) of a distribution given a number of random samples
is an often-encountered problem in data analysis. A GoF test consists in deciding whether
a set of i.i.d. samples {X1, ..., Xn} of a univariate random variable X was obtained from
a population that can be described by a cumulative density function F (x).

Such statistical hypothesis tests find applications in many fields, ranging from the
natural and social sciences over to engineering and quality control.

For most “non-parametric” tests, the goodness-of-fit to a specific distribution F (x),
may be reduced to a uniformity test, i.e. testing whether or not the given observations
have come from a Uniform population. This is possible due to the probability integral
transformation [2, 3]: given the samples Xi and the null-hypothesis distribution F (x), we
transform using Ui = F (Xi); if the samples Xi are distributed according to F (x), then the
samples Ui ∈ [0, 1] are distributed according to the standard Uniform distribution U(0, 1).
Such a transformation allows to develop and derive the distribution of a test statistic as-
suming the underlying distribution is only the standard Uniform one, and use these results
by transforming into a space where this assumption holds true under the correct choice of
the null-hypotheis F (x). Therefore, in the rest of this work, without loss of generality, I
only consider samples Ui assuming a standard Uniform distribution as the null-hypothesis.

Several non-parametric tests exist, some of which have become standard tools, such as
the Kolmogorov-Smirnov (KS) test [19, 20], the Cramér–von Mises (CvM) test [21] or
the Anderson-Darling (AD) one [22]. Apart from these tests, which are based on the
empirical cumulative distribution (ECDF Statistics), there is a rich literature regarding
goodness-of-fit methods based on Order Statistics and Spacings. In the following, I briefly
list and describe existing test statistics, borrowing from excellent reviews on this topic [23,
24, 6]. I then discuss two new proposed tests, the “Recursive Product of Spacings” (RPS),
developed in collaboration with Dr. P. Eller [25], and the “Best Sum of Ordered Spacings”.
Finally, I present a detailed performance comparison between the tests presented here.

Parts of the text presented in this chapter closely follow [25].

3.2. ECDF Statistics

This class of test statistics compares the empirical cumulative distribution function
(ECDF) Fn(u) to the cumulative distribution function (CDF) F (u), (here F (u) = u).
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3. Goodness-of-fit tests using Spacings

Clustering of points under the null hypothesis of a uniform distribution would induce a
steeper ECDF compared to the expected CDF, leading to a large deviation between the
two, as shown in Fig. 3.1.

0.00 0.25 0.50 0.75 1.00
Samples

0.00

0.25

0.50

0.75

1.00 Data
ECDF
CDF

Figure 3.1.: Example of the the empirical distribution function (ECDF) of a set of samples
ui ∈ [0, 1] against the null-hypothesis CDF F (u) = u.

In particular, the following tests are widely used in order to detect such deviations.

Kolmogorov-Smirnov (KS) test:

Dn = sup
u

|Fn(u)− F (u)| = max(D+
n , D

−
n ) (3.1)

where

D+
n = max

i

{
i

n
− U(i)

}
and D−

n = max
i

{
U(i) −

i− 1

n

}
(3.2)

which are the largest vertical differences between Fn(x) and F (x). Kolmogorov [19]
showed that the distribution of Dn, if F (x) is the underlying distribution, is independent
of F (x), and derived the asymptotic distribution of Dn as n → ∞, as well as recursion
formulae to calculate the pdf of Dn for finite n. Later, Smirnov [20] provided a tabulation
of the asymptotic distribution. Tabulations of the distribution for finite n have also been
provided [26, 27, 28].

Quadratic family of tests:

Qn = n

∫ +∞

−∞
[Fn(u)− F (u)]2Ψ(u)dF (u) (3.3)
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3.3. Tests based on Order Statistics

where Ψ(u) is a weighting function. When Ψ(u) = 1 we have the Cramér–von Mises
(CvM) statistic W 2

n [21] and when Ψ(u) = [F (u)(1− F (u))]−1 we deal with the Anderson-
Darling (AD) statistic A2

n [22]. These tests can be expressed in terms of Order Statistics:

W 2
n =

n∑
i=1

[
U(i) −

2i− 1

2n

]2
+

1

12n
(3.4)

A2
n = −n− 1

n

n∑
i=1

(2i− 1)
[
log(U(i))

(
1− log(U(n+1−i))

)]
(3.5)
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Figure 3.2.: Anderson-Darling weighting function Ψ(u) = [F (u)(1− F (u))]−1 asuming
F (u) = u.

Regarding the AD test, we notice that the choice of the weighting function Ψ(u) =

[F (u)(1− F (u))]−1, shown in Fig. 3.2, has the effect of assigning more importance to
discrepancies located at the edges of the unit interval, making it better suited to detect
clusters of events located at the edges of the analysis window. The asymptotic distribution
of the AD test was derived in the original publication, while the q-values of the lower
tail of the asymptotic distribution have been tabulated by Lewis [29].

3.3. Tests based on Order Statistics

These tests are based on the deviation (δi) of each order statistic U(i) from its expected
value:

δi = U(i) −
i

n+ 1
. (3.6)

Some tests based on the deviations δi are:

• C+
n = maxi δi

• C−
n = −mini δi
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3. Goodness-of-fit tests using Spacings

• Cn = max(C+
n , C−

n )

• Kn = C+
n + C−

n

where Cn is referred to as Pyke’s modified KS test [30] (whose critical values are tabulated
in [31]) and Kn is Brunk’s modified KS test [32].

3.4. Tests based on Spacings

Since the goal of a goodness-of-fit test is detecting discrepancies in the distribution of
samples, this can be applied in a discovery context, whereby one searches for a signal
by trying to spot an unusual cluster of events. Clusters of points lead to an increased
number of unusually small spacings compared to the expectations, thus it is possible to
construct tests sensitive to small spacings. Several such test statistics built from spacings
Si are considered in the literature. Typically, they are of two main types:

• sum of a function of the spacings Si, as considered in Eq. 2.64:

Ωn =

n+1∑
i=1

g(Si) (3.7)

• function of the ordered spacings S(i), which just like the order statistic U(i) are
the ordered set of samples Ui, S(i) are the ordered (sorted) set of corresponding
spacings Si (S(i) < S(j) for i < j).

Borrowing from Pyke [6], examples of the former are:

• Greenwood statistic, proposed in [33]:

Ωn =

n+1∑
i=1

S2
i (3.8)

whose limiting density function was derived by Moran [34, 35, 36]

• Kimball statistic proposed in [37]:

Ωn =
n+1∑
i=1

Sr
i for r > 0 (3.9)

• Irwin-Kimball statistic, proposed in [33, 38]:

Ωn =
n+1∑
i=1

[
Si −

1

n+ 1

]2
(3.10)
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3.4. Tests based on Spacings

• Kendall statistic, proposed in [33]:

Ωn =
n+1∑
i=1

∣∣∣∣Si −
1

n+ 1

∣∣∣∣ (3.11)

whose limiting density function was derived by Sherman [39]

• Moran statistic proposed in [35] and studied by Darling as well [17]:

Ωn = −
n+1∑
i=1

log(Si) (3.12)

• Darling statistic proposed in [17], where its limiting distribution was derived:

Ωn =

n+1∑
i=1

1

Si
(3.13)

The exact distribution of the tests listed here has not been found for a finite value of n,
apart from a few easy cases (such as n ≤ 3), which shows that although one might deal
with a simple combination of spacings this might already prove too difficult to solve for
or to obtain a closed form solution. On the other hand, their asymptotic distributions
have been studied in detail, and most of them can be derived using LeCam’s theorem
[18], as discussed in Sec. 2.6.3.

When it comes to ordered spacings, S(i), there have been fewer proposals; here are some:

• extreme ordered spacings S(1) or S(n+1) (references in [40])

• ratio S(n+1)/S(1) or difference S(n+1) − S(1) of extreme spacings: proposed by
Kendall in [33] and whose limiting distributon was derived by Lévy [41] and Darling
[17]

• sum of k largest spacings
∑n+1

i=n+2−k S(i), whose exact distribution was derived by
Mauldon [42].

These tests are very sensitive to an overall mismatch between the empirical distribution
of original samples and the null-hypothesis F (u) = u, but when it comes to detecting a
cluster of events, they tend to be less powerful than the previous proposals since they
are agnostic to location information: sorting the spacings has the effect of shuffling the
ordered samples U(i), as shown in Fig. 3.3, partially delocalizing the clustered events.

Finally, it is also possible to construct tests based on higher rank spacings, Si,k =

U(i) − U(i−k). Cressie considers statistics based on overlapping spacings of rank k and
defines generalizations of the Moran and Greenwood statistics:
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3. Goodness-of-fit tests using Spacings

Figure 3.3.: Examples of ordered samples U(i) (top) and corresponding ordered spacings
S(i) (bottom).

• Logarithms of higher rank spacings [43]:

Ln,k = −
n+2−k∑
i=1

logSi,k (3.14)

• Squares of higher rank spacings [44]:

Sn,k =

n+2−k∑
i=1

S2
i,k. (3.15)

This concludes the overview of the tests present in literature, but is not an exhaustive
list of proposed statistics.

3.5. Recursive Product of Spacings

Here I present the first of the newly proposed tests, the “Recursive Product of Spacings”.
This work was done in collaboration with Dr. P. Eller and presented in [25], which I
closely follow for the coming discussion.

3.5.1. Definition

The goal is to construct a new test statistic, that has better sensitivity to narrow features
or clusters in an otherwise Uniform distribution of samples. The tell-tale sign we are
looking for is a localized group of uncommonly small spacings of the ordered data. For
this purpose, I propose a new class of test statistics that includes higher rank spacings in
a recursive way.
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3.5. Recursive Product of Spacings

The Recursive Product of Spacings (RPS) can be thought of as an extension of the
Moran statistic and is defined as:

RPS(n) =

n∑
j=1

Mj = M1 +M2 + · · ·+Mn, (3.16)

where the term M1 is the simple sum of negative log spacings equivalent to the Moran
statistic (Eq. 3.12):

M1 = −
n+1∑
i=1

log (Si,1) (3.17)

The sum over all log(Si) is the same as the logarithm of the product over all spacings Si,
thus the name product for the test. Additionally, working with logarithms is numerically
more stable than products. All terms in Eq. 3.5.1 are computed in the same way as
Moran’s test:

Mj = −
n+2−j∑
i=1

log
(
S∗
i,j

)
, (3.18)

but with modified spacings S∗
i,j , defined for 1 < j ≤ n as:

S+
i,j =

S∗
i,j−1 + S∗

i−1,j−1

2
(3.19)

S∗
i,j =

S+
i,j∑
i S

+
i,j

(3.20)

which there are n+ 2− j of, and that depend on the spacings S∗
i,j−1 used to compute

the previous term Mj−1 (hence the recursiveness). Obviously S∗
i,1 = Si,1 = Si.

In order to better understand Eq. 3.20, turn to Fig. 3.4, where it is shown how to
transition from layer j − 1 (top) to layer j (bottom): in the top plot, it is shown a list of
events (blue), where we also the boundaries 0 and 1 are highlighted, since they contribute
to defining spacings; in the middle plot the middle points of the top row spacings are
shown, forming a reduced set of "events", which is then transformed in order to ensure
that the spacings of the new set sum up to 1, as shown in the bottom plot; the number
of spacings going from the top plot to the bottom one is reduced by one, showing how
there is a finite number of reduction steps in the definition of the RPS.
Regarding Eq. 3.18, I would like to point out its sequence reversal invariance: if the
events were to be flipped ({xi} → {1 − xi}), then one would obtain the same list of
spacings in reversed order at all layers. The time reversal invariance in the formulae
follows directly from the commutativity of sums and products.

27



3. Goodness-of-fit tests using Spacings

Figure 3.4.: Example of the reduction step included in the RPS calculation. Given an
initial set of events (top; blue), the middle points are calculated (top and
middle; green) following Eq. 3.19, which are then scaled in order to fill the
[0, 1] interval, forming a new set of data (bottom; red), following Eq. 3.20.
The evolution of sample positions on the [0, 1] interval are annotated via the
arrows.

We can see that term M2 is identical to Ln,2 (Eq. 3.14) up to a normalization factor
1/
∑

i Si. If we considered the most regular and uniform case — a completely equidistant
distribution of data, yielding all equal spacings (1/(n+ 1)) — then it would be helpful if
the value of the test statistic for such a configuration were an extremum of its support.
This is achieved by including a normalization at each layer of RPS. Doing so ensures that
the equidistant samples remain equidistant in each layer, thus summing over the minimal
contributions to the Moran test, which then yields the smallest possible RPS value. This
minimum value of RPS(n), given by the configuration of equidistant samples, can be
expressed easily, as each spacing S∗

i,j is equal to 1
n+2−j , and thus:

RPSmin(n) = −
n∑

j=1

n+2−j∑
i=1

log

(
1

n+ 2− j

)
=

n∑
j=1

(j + 1) · log(j + 1). (3.21)

At the other extreme, very small spacings will yield a large contribution to the sum of
Eq. 3.18, thus RPSmax(n) = ∞ for any given number of samples n. These extrema show
that RPS measures the irregularity in sample positions. The RPS statistic increases the
more samples aggregate into local clusters.

The RPS quantity calculated so far has an infinite support [RPSmin(n),+∞). In
order to bound the support of RPS, consider a new quantity RPS∗, with support [0, 1],
defined as:

RPS∗(n) =
RPSmin(n)

RPS(n)
(3.22)

since the bounded interval makes extending the approximating function to the extrema of
the test’s support easier. This is the definition that should be considered when using the
RPS test and for the remainder of this thesis. An interesting property of the construction
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3.5. Recursive Product of Spacings

of RPS is that spacings in the middle (order-wise, not w.r.t. the analysis window) will
have a larger impact on the overall value of the statistic compared to spacings towards
the edges: this means that the test is more sensitive to centrally located non-uniformities.
Such a behaviour is not uncommon, in fact both the KS and AD tests do not possess
uniform sensitivity over the analysis window: KS is more sensitive towards the middle
while AD is more sensitive towards the edges.

Similarly to the definition of the RPS test, it is also possible to define an extension to
Greenwood G(n) statistic, that instead of summing over logarithms of spacings, sums over

the squares of spacings. This means substituting Eq. 3.18 with Gj =
∑n+2−j

i=1

(
S∗
i,j

)2
,

while keeping the definition of S∗
i,j from Eq. 3.20. We call this recursive form the

“Recursive Sum of Spacings” (RSS) test statistic.

3.5.2. Illustration

To better illustrate how the RPS statistic works and to highlight differences to other
tests, two sets of samples, one drawn from a Uniform distribution (null hypothesis H0)
and one from a non-uniform distribution, shown in Fig. 3.5. The example given is a
particularly challenging one and is used to illustrate the workings of different tests and
highlight their difference, but it is not meant as a performance comparison between them.
Actual performance comparisons using a large number of random replications are given
in the following sections.
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Figure 3.5.: Example of 15 standard uniformly distributed samples (left) and 10 standard
uniformly + 5 normally (µ = 0.5, σ = 0.1) distributed samples (right). The
sample positions on the [0, 1] interval are annotated via the arrows + text.

The Moran test is based on the spacings between samples, and the smallest and largest
spacings in the specific example are present in the uniform case. This leads to a more
extreme test statistic value and hence p-value p = F (T ≥ t|H0 = U(0, 1)) of 0.117 for
the uniform case, while it evaluates to p = 0.335 in the non-uniform case.

The KS test can detect such clustering via the CDF, however in this example, it is
challenged by the fact that samples trend towards the left in the uniform case, while they
are more balanced in the non-uniform case. This leads to p-values of 0.048 for uniform
and 0.356 for non-uniform cases respectively.
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3. Goodness-of-fit tests using Spacings

The RPS test, however, taking into account also higher rank spacings, finds a p-value
of 0.532 for the uniform case, and a much lower p-value of 0.057 for the non-uniform
samples. The behaviour of RPS is further illustrated in Fig. 3.6, which shows the individ-
ual contribution of spacings of all recursion levels that build up the test statistic value.
The Moran statistic corresponds to the sum over the first row (M1), while all subsequent
levels are added for RPS. By construction, Moran’s test does not preserve information
about the position of spacings, meaning that the value of the test is unchanged under
reordering of spacings (the test’s definition is invariant due to the commutative property
of sums and products): clusters of samples, as in the non-uniform case, do not affect
Moran’s test. Including the recursive layers allows to preserve the information about the
relative position of small spacings. This can be noticed by the stronger contributions
to the RPS test value coming from different layers in the presence of a cluster of events
(darker color on the right panel of Fig. 3.6) as opposed to the small contributions coming
from layers beyond the first one in the case of uniform events (left).
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Figure 3.6.: Illustration of the test statistic contributions from all recursion levels for the
uniformly distributed samples (left) and the non-uniform samples (right).
The sum over the first level only (M1) is equivalent to the Moran statistic.

3.5.3. Cumulative Distribution

In order to use RPS as a statistical test yielding p-values, we need its cumulative
distribution FRPS∗ . In the case of n = 1, where only two spacings are present—the
simplest non-trivial case we can encounter—the distribution of the only event present is
the standard Uniform. So it is possible to write the formula of the test as a function of
the sample value and find its distribution RPS∗(1) as a simple transformation of random
variables, which is:

FRPS∗(x;n = 1) = 1−
√

1− 4
x−1
x (3.23)
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3.6. Sum of Spacings

For n ≥ 2, however, it is not simple to derive this distribution, therefore, it is necessary
to to numerically approximate the distribution of RPS∗.

I have built an approximation for the cumulative distribution FRPS∗(x;n) precise
enough to compute meaningful p-values up to relatively extreme values of up to 10−7,
and large sample sizes n of up to 1000. Fig. 3.7 shows some examples of RPS∗ distribu-
tions for a few values of n.
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Figure 3.7.: Example of CDFs of the RPS∗ distribution for a few different values of n.
N.B.: the x-axis is displayed in inverted logarithm.

The approximate distributions are based on simulations, drawing events with Uniform
distribution in the range [0, 1] for a given n. The detailed approximation and fitting
procedure are described in Appendix C.

3.6. Sum of Spacings

Since we want to detect clusters of points by being sensitive to small spacings, instead
of considering a combination of functions of spacings, we could rely on the spacings
themselves and look for unusually small ones (compared to the expectation).

3.6.1. Best Sum of Spacings

Suppose we knew that a number of k events out of the collected data, n in total, are
generated from an unknown narrow signal distribution. In such a scenario, we would be
looking for clusters of at least k events. One possible strategy to detect such a cluster,
would be that of considering all collections of k consecutive samples and select the set
with the smallest width as the best signal-cluster candidate.

The metric used to single out this candidate is the distance between the first and k-th
sample, i.e. the smallest spacing Si,k or rank k:
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3. Goodness-of-fit tests using Spacings

Smin
k (n) = min

i
Si,k (3.24)

In order to quantify how improbable it is that the cluster is due to statistical fluctuations
of Uniform samples, we need to calculate the p-value of this observation using the
cumulative distribution of Smin

k (n). The CDF derivation is discussed in Appendix B,
where I present an integral solution. Ultimately, such a solution proves to be impractical
to evaluate for large values of n, so I rely on a numerical approximation, whose details
are presented in Appendix C.

For now, assume we know the distribution, and hence we can calculate the p-value.
The assumption we made at the beginning, approximately knowing the number of
samples contained in a signal cluster, cannot be expected in a realistic scenario. In a real
experiment, we might not know anything about the expected count rate of a possible
signal and would like to be sensitive to narrow clusters of any number of samples k.

In such a case, we might think of testing for all possible orders k, thus obtaining the
p-value corresponding to Si,k for of 1 ≤ k ≤ n:

pk = Pr{Smin
k ≤ xobs,k}. (3.25)

Out of these n p-values we could reference the smallest one as the one indicative of the
largest deviation from the expected behaviour of samples. I refer to this value as the
smallest Best Sum of Spacings (BSSmin):

BSSmin = min
k

pk (3.26)

Since we choose the smallest value of all pk, BSSmin is not a valid p-value anymore. In
order to calculate a true p-value, we need to know the distribution of BSSmin. Since the
distribution of Smin

k (n) is approximated numerically, so will be the distribution of BSSmin,
similarly to the distribution of the RPS test. The approximate distributions are based
on simulations, and details about the fitting procedure are described in Appendix C.

3.6.2. Best Sum of Ordered Spacings

In the pursuit of discovering sample clustering against a uniform expectation, we could
consider the ordered (sorted) spacings S(i) instead of Si. Since clusters of points produce
a local abundance of small spacings, it might be possible to compare the observed sorted
list of spacings against the expected one. For a given rank k, one might consider the
statistic defined by the Sum of the k smallest Ordered Spacings, Smin

(k) :

Smin
(k) (n) =

k∑
i=1

S(i). (3.27)
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3.6. Sum of Spacings

The exact distribution of Smin
(k) (n) for a given rank k and a given number of samples n is

known:

Pr
{
Smin
(k) (n) ≤ x

}
=

=
A(k,N)

N

k∑
i=1

a(i, k)(k + 1− i)

(N + 2− i)

(
1−

[
1−

(
N + 2− i

k + 1− i

)
x

]N
H

(
x, 0,

k + 1− i

N + 2− i

))
(3.28)

where H(x, a, b) = 1 if a ≤ x ≤ b and 0 otherwise, while the coefficients A(k,N) and
a(i, k) are given by:

A(k,N) =
N(N + 1)!

(N + 1− k)k−1(N + 1− k)!
(3.29)

a(i, k) =
(−1)i−1(k + 1− i)k−2

(k − i)!(i− 1)!
. (3.30)

I derived this result using a proof by induction reported in Appendix A. However, I need
to mention that after more careful literature research, I found out that this result is not
entirely novel. Mauldon [42] derived the exact distribution, using different methods, of
the sum of the largest k ordered spacings, Smax

(k) (n):

Smax
(k) (n) =

n+1∑
i=n+2−k

S(i) (3.31)

and since the sum of all spacings is constrained to 1, then:

Smin
(k) (n) = 1− Smax

(k) (n) (3.32)

thus, knowing the cumulative distribution of Smax
(k) for any k and n:

Pr{Smin
(k) (n) ≤ x} = Pr{Smax

(n+1−k)(n) ≥ 1− x}. (3.33)

Much like with the BSSmin test, we would like to test all available ranks of Smin
(k) for a

given set of data, and compute the respective p-values:

pk = Pr{Smin
(k) (n) ≤ xobs,k} for 1 ≤ k ≤ n+ 1 (3.34)

Out of these p-values, we construct the test statistic based on the smallest one:
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3. Goodness-of-fit tests using Spacings

BSOSmin(n) = min
k

pk = min
k

F [Smin
(k) (n)]. (3.35)

The distribution of BSOSmin is not simple to derive, and although it could be expressed
in a nested integral form, like the distribution of the BSSmin statistic, these are not easily
solvable. Therefore, I resort to approximating the distribution of the BSOSmin statistics
with simulations. I have tabulated the distribution of BSOSmin(n) for relatively few
values of n and use these to interpolate the approximate distribution across all values of
n ≤ 103, similarly to the RPS test. Details on the interpolation and error estimation of
the accuracy of the approximate distribution are reported in Appendix C.

3.7. Spacings as time-series

Before showing examples of the applications of the test I proposed in previous sections, I
would like to introduce an additional class of tests, derived from spacings.

During the review of the basic results of Order Statistics, I showed in Sec. 2.5 how to
transform spacings in a set of independent random variables, either Exponential or Beta
distributed. Given these transformations, it is possible to translate the observed spacings
Si in any collection of independent random variables, targeting any arbitrary univariate
distribution, using a probability integral transformation. For example, given that we
are able to transform the spacing Si into an independent variate Bi with distribution
Beta(n+1− i, 1), we can then transform Bi into a Standard Normal random variable Yi:

Yi = F−1
Normal (FBeta(Bi)) . (3.36)

Given that we can transform the n+ 1 spacings {Si} into n standard Normal variables
{Yi}, these can represent a time-series of normally distributed deviations from a baseline.
When faced with such a dataset, we are suddenly exposed to a multitude of tests
developed in the signal-processing community in order to detect sizable deviations from
the expectation in a stream of data.

3.7.1. Success runs statistic for Spacings

Given n independent, normally distributed variables Yi ∼ N (µi, σi), an observation is
considered a success if the observed value exceeds the expected value (Y1 > µi), while
it is considered a failure is it doesn’t (Yi < µi). Based on this definition we focus on
success runs: uninterrupted sequences of successes in a set of data. In order to analyse
these runs, we resort to the “Run Statistic” introduced by Beaujean & Caldwell [45]:

• split the data {Yi} in runs, keeping the success runs and ignoring failure runs,
denoting by Aj = {Yj1 , Yj2 , ...} the set of observations in the j-th success run
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3.7. Spacings as time-series

• each run is associated with a weight, w(Aj), which indicates the discrepancy
between model and observation:

w(Aj) = χ2
j =

∑
i∈{j1,j2,...}

(Yi − µi)
2

σ2
i

(3.37)

• choose the largest weight as the value of the test statistic TRUN :

TRUN = max
j

χ2
j (3.38)

• the p-value is:

pRUN = Pr{TRUN ≥ Tobs|n} = 1− Pr{TRUN ≤ Tobs|n} (3.39)

The exact derivation of the RUN statistic TRUN is reported in [45]. The use of the
exact distribution becomes computationally costly for n ≳ 100 and a high-precision
extrapolation from a few dozen up to millions of data points is reported in [46].

We can use this test statistic to analyse events {Xi} (i ≤ n) against the null-hypothesis
F (x) by using the RUN statsitic on a set of Standard Normal random variables {Yi}
(i ≤ n) obtained using the transformation chain:

X(i) → U(i) → Si → Bi → Yi.

To be sure that this transformation covers the support of the Standard Normal distribution
correctly, we can compare the distribution of p-values obtained using repeated random
events produced according to a Standard Uniform distribution and then transformed
into Gaussian variates against the p-value distribution obtained by generating directly
Gaussian variates with the correct distribution (N (0, 1)). The results of this consistency
check are shown in Fig. 3.8, where we notice that both distributions are flat.
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Figure 3.8.: RUN statistic p-value distribution for transformed samples (black) and
original samples (red) for n = 20.
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3. Goodness-of-fit tests using Spacings

Although the p-value distribution is flat, there are a few peculiarities regarding the
transformation of spacings into Gaussian variates that need to be mentioned. The
transformation of random variables from one distribution to another shown in Eq. 3.36
conserves all quantiles, meaning that if Bi corresponds to the median of FBeta, then Yi will
be equal to the median of FNormal as well. The mean on the other hand is not conserved
in random variable tranformations, unless both the starting and target distributions
happen to be symmetric. In this case, the starting Beta distribution is not symmetric,
thus:

E[Y |fNormal] = 0 ̸= F−1
Normal (FBeta(E[B|fBeta])) . (3.40)

Given a set of equidistant events, which represent the expectation of a random collection
of n standard Uniform variables and translates into n+ 1 equal spacings Si = 1/(n+ 1),
after transforming into standard Normal variates we do not have a set of n variables all
equal to 0, but instead, the Gaussian samples plotted in Fig. 3.9.
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n = 3 n = 6 n = 9 n = 12 n = 15 n = 18 n = 21 n = 24

Figure 3.9.: Strandard Normal random variables transformed from equal spacings for
different values of n.

Additionally, the transformation of spacings is not invariant under sequence reversal:
mirroring all samples Ui with respect to 0.5 (i.e. Ui → 1− Ui), the spacings Si would be
in reverse order, but since the Beta distribution applied to transform them depends on
the index i, the transformed samples Yi would not be the same, meaning we transform
to a different time-series.

In this thesis, I consider the transformation of spacings without any further modification,
since I show that it yields a valid p-value, but in order to render the test invariant under
sequence reversal, one suggestion would be to transform both the original and reversed
samples, obtaining two time-series, calculate the p-values for both and consider only the
smallest one, pmin. The distribution of pmin is not uniform, as shown in Fig. 3.10, so one
could parametrize this distribution across the values of n, using the same interpolation
and approximation schemes describe in Appendix C in order to estimate a valid p-value.
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Figure 3.10.: Distribution of smallest p-value of the RUN statistic between the transfor-
mation of the spacings and reversed spacings, for different values of n.

3.8. General Performance Comparison

This section presents an in-depth performance comparison of the proposed tests (RPS,
BSSmin, BSOSmin and RUN statistics) to several other tests referenced in the introduction
(KS, AD, CvM and Moran — all those that allow computing p-values).

The goal is to detect small changes in an otherwise uniform distribution, therefore
consider the following generic benchmark scenario: for one simulation of a specific
test case HK(n, s, w) generate (1 − s) · n random variates1 from a standard Uniform
distribution U(0, 1), where s is a signal fraction. In addition, include s · n samples
distributed according to ∆+N (0, w/2) with the offset ∆ = U(0, 1−w), i.e. a truncated
(in the interval [0, 1]) Normal distribution with σ = w/2 located randomly within the
interval [w/2, 1− w/2]. In these tests, I vary all three parameters of HK(n, s, w): the
number of samples n, logarithmically distributed between 10 and 1000; the fraction of
signal events s, which goes from 0 to 30% of the total number of samples n; the “width”
of the signal distribution w, which ranges from 0.01 to 0.35, in order to test narrow and
wide signals. A sensitive test should be able to detect the presence of the added, narrower
signal samples by reporting a low p-value. For each choice of HK(n, s, w), I produce a
distribution of p-values obtained by 105 trials.

In order to quantify the sensitivity of a test statistic, I compute the median of its
corresponding p-value distribution for each HK(n, s, w). This quantity can be interpreted
as the median significance at which a test is expected to be able to reject the null
hypothesis. When comparing tests with one another, I interpret a lower reported median
p-value as a more powerful test (higher sensitivity).

The performance (sensitivity) of the various tests as a function of (n, s, w) is shown in
Fig. 3.11. The outer axes at the top and left of the table of plots indicate a specific choice
of number of samples and signal width respectively. Given (n,w), the sensitivity of each
test statistic (its median, row-specific log-scale can be seen on the right of Fig. 3.11) is
plotted as a function of the signal fraction s (shared horizontal axis of each subplot).

1Numbers of samples are rounded to the closest integer
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Figure 3.11.: Comparison of the performance (median p-value of repeated trials, indi-
vidual panel’s y-axis) as a function of the number of total samples (large
y-axis), the width of the signal (large x-axis) samples, and the fraction of
signal samples (individual panel’s x-axis). The number of signal samples is
rounded to the closest integer, hence the “step”-like features visible mostly
in the first few rows.
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3.8. General Performance Comparison

Examining Fig. 3.11, we notice that for n < 50 and w > 0.1, the performance of all test
statistics is very similar, with the BSSmin one being slightly more sensitive than the rest,
although the overall sensitivity is quite low given the small size and large width of the
signal distribution, which cannot be easily distinguished from the null-hypothesis. As the
width of the signal decreases, and the number of total events increases, all tests become
more sensitive and are able to reach sensitivities of the order of 3− 5σ.

Focusing on the ECDF statistics (KS, CvM and AD), we notice that they perform
very similarly, with the KS test being slightly more sensitive for narrow signals and the
AD test overtaking it by a small margin when dealing with large signals (w > 0.2) and
large signal fractions (s > 15%). Given this grouping, I refer to the sensitivity of the
ECDF statistics as a baseline against which I compare the performance of the Spacings
based statistics.

Looking at the BSOSmin and Moran statistics, we also notice that their sensitivities are
very close, showing a comparable performance across the board. These statistics prove
to be more sensitive than the ECDF ones only when dealing with very narrow signals
(w < 0.05), but as the width of the signal increases they become less powerful. The
reason for this behaviour can be explained by considering that these statistics are based
only on the first-rank spacings (Si), and in the case of BSOSmin the local structure of
the signal event-cluster is broken down by the reordering of spacings. The sole presence
of small first-rank spacings can be sufficient only if they are extremely small (in the case
of a narrow signal with w < 0.05). As soon as this condition is lifted, by widening the
signal, then the sensitivity of the tests suffers.

The RPS statistic, which relies on higher-ranked spacings through its recursive con-
struction, shows a much better sensitivity. When dealing with signals with width w < 0.2,
the RPS test’s sensitivity is orders of magnitude better than the ECDF ones, being able
to reach discovery thresholds (∼ 5σ) far sooner than the KS test. For w ≲ 0.1 the RPS is
practically on par with the best statistics, while it becomes the second best for w ∼ 0.2.
For w ∼ 0.25 its sensitivity is similar to the ECDF statistics and for wider signals it
deteriorates further.

Considering the RUN statistic, we notice that it is on par with the best statistics
only for very narrow signals (w ∼ 0.01); as the width of the signal increases it quickly
becomes the second-best for w ∼ 0.05 and then comparable or less sensitive than the
ECDF statistics for w > 0.05. The reason for this behaviour is due to the fact that the
RUN statistic is based only on the first-rank spacings, much like Moran and BSOSmin.
Moreover, if one of the spacings produced by the clustering of signal events is transformed
to a Gaussian variate less than 0, then this would break the “run”, yielding a larger
p-value, thus a lower sensitivity: for example, given 10 consecutive positive small spacings,
if they were transformed in 10 consecutive positive Gaussian variates, that would make a
“run” of 10, while if one of them is non-positive, this leads to two “runs”, of say 3 and 6
samples, which individually are more likely to yield a larger p-value. The probability
of having a “run-breaking” spacing increases with wider signals, causing the decline in
sensitivity seen in Fig. 3.11.

Finally, looking at the BSSmin statistic, we notice that it is always the most sensitive
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3. Goodness-of-fit tests using Spacings

test, regardless of the width or strength of the signal or the number of events. For narrow
signals, its sensitivity is matched by the RPS and briefly by the RUN statistics (only
for w ∼ 0.01) but for wide signals it stands out as the best of the bunch, being several
orders of magnitude better than the ECDF statistics even for large sample sizes.

Apart from the median, I also investigated other metrics to judge the tests’ performance,
such as the area under the receiver operating characteristics (ROC) curve between the
p-value distribution of signal and null hypothesis trials, but the overall picture does not
change substantially.

Given these results, I am able to recommend the use of the BSSmin statistic as a
goodness-of-fit test for any discovery application since it appears to be one of the most
sensitive non-parametric tests available.

In case more information is known about the possible signal, for example, if there are
upper limits to its width or strength, then the results presented in Fig. 3.11 could guide
the selection of the most sensitive tests that can be employed. All of the Spacing-based
tests presented here are available using the SpacingStatistics.jl [47] package for Julia, so
instead of relying on the general guidelines presented in Fig. 3.11, it is possible to try out
these statistics and characterize their sensitivity on a customized model of background
and signal, as would be usually done during validation studies before the unblinding and
analysis of the data of an experiment.
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4.1. Introduction

Many experiments tasked with the discovery of theorised rare processes might find
themselves in a situation where the collected data is insufficient to claim a positive
detection. In such cases, the data is used to set an upper limit on the number of events
resulting from the rare process under consideration, which in turn can be used to set
an upper limit on physical quantities of the proposed model. An example would be
the determinations of upper limits on the cross-section of Weakly Interacting Massive
Particles (WIMPs) recoiling off atoms in a detector, such as for the CRESST [48] or
the CDMS [49] experiments. The experiments in question are often contaminated by
a poorly understood background, in which case the signal strength limit must be set
from properties of the observed event distribution without any background subtraction.
Spacing statistics are one method to go beyond pure event counting in setting signal
strength limits.

Since the expected shape of the event distribution produced by the targeted process is
known, it is possible to estimate the number of events it accounts for, up to a desired
confidence level, leveraging the difference between the observed event distribution and
the expected one. Such an analysis is carried out using goodness-of-fit tests allowing for
the assumption that the observed number of events collected in the analysis window is
just a realization of a random variable following a Poisson distribution with unknown
rate µ. For a selected goodness-of-fit test, the goal is to determine the event rate µ

coinciding with the desired confidence level.
In the following, I briefly review how to use goodness-of-fit tests to set upper limits,

accounting for the random number of observed events in the definition of the p-value.
I then discuss various spacings-based tests to provide upper limits: I begin with a quick

review of the Maximum Gap and Optimum Interval methods [1] and then introduce two
new tests based respectively on the sorted list of spacings and on the product of spacings.

The content of this chapter closely follows [50], where these results were first presented.

4.2. Setting upper limits with test statistics

Several non-parametric goodness-of-fit tests exist to test a univariate distribution. Tar-
geting vastly different univariate distributions is made possible by the probability integral
transformation [2, 3], which basically reduces the goodness-of-fit to a simple uniformity
test, as we have previously seen.
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As a reminder, given n samples {xi}, if we want to quantitatively test the hypothesis of
these samples being random variates of a known continuous cumulative distributions F (x),
independent and identically distributed (i.i.d.) according to f(x), then we transform
the samples onto the unit interval [0, 1] via ui = F (xi). This reduces the task at hand
to test transformed samples {ui} being distributed according to the standard Uniform
distribution U(0, 1).

In the rest of this chapter, I always consider samples ui ∈ [0, 1] distributed according
to a standard Uniform null hypothesis unless otherwise stated.

4.2.1. Poisson distribution and p-value

In a standard goodness-of-fit test scenario, given a dataset consisting of n uniformly
distributed samples {ui}, we consider a test statistic T , based on a scalar function of
the data t = g({ui}). From this, we can extract a p-value, which can be calculated
directly from FT (t|n), where FT is the cumulative distribution function of the test T for
exactly n events. In this case, the p-value treats the number of events in the analysis
window as a fixed parameter. If we assume that the observed number of events is not
fixed, but rather a random variable with an associated Poisson distribution, then it is
possible to correct the definition of the p-value by averaging over all possible numbers of
events. Considering a Poisson distribution with rate µ, and an observed test statistic
value tobs = g({ui}), the Poisson-averaged p-value is calculated as:

p = FT,Pois(tobs|µ) =
∞∑
n=1

FT (tobs|n) ·
µne−µ

n!
(4.1)

where the sum starts at n = 1 since the test statistic often is not defined for n = 0. In
case of no observed events, n = 0, no improvement upon the simple Poisson statistic is
possible, which becomes the extension of this approach in the limit of empty datasets.

4.2.2. Setting upper limits

Given a test statistic T and its Poisson-averaged cumulative distribution FT,Pois, I showed
above how to calculate the p-value of a given dataset {xi} comprised of n events, for a
selected value of the event rate µ. Instead of performing a goodness of fit test, assessing
how well the event distribution fits that of a uniform distribution for a given µ, we could
determine which is the rate µ that yields a desired p-value, determining the event rate
representative of the uniformly distributed subset of events up to a desired confidence
level (CL).

As an example, for a given dataset {ui} the upper limit on the event rate, µ, at a
confidence level CL is such that:

p = FT,Pois(tobs|µ) = CL (4.2)
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4.3. Spacing statistics

Given a uniformly distributed and ordered set of n events {U(i)} in the interval [0, 1], we
can consider the spacings Si,k between the samples, with U(0) = 0 and U(n+1) = 1.

Based on these spacings it is possible to construct test statistics capable of setting
much more competitive upper limits on the event rate than the simple counting (Poisson)
test, since they not only consider the total number of data contained in the analysis
window, but also their distribution, taking advantage of regions of relatively low event
density in order to estimate the underlying uniform component of the event distribution.

As an intuitive example of the power that spacings can have in estimating upper limits,
consider the dataset shown in Fig. 4.1. We notice that the distribution of events is clearly
not uniform, since the density of events closer to the edges of the analysis window is
evidently higher than the density observed in the middle. Looking at this dataset, we
are led to believe that there is some unknown background that produces events closer to
the edges 0 and 1, while it does not affect as drastically the distribution of events closer
to the middle of the range. Thus we assume that the regions with the lowest density
of events are those least affected by additional backgrounds, or in the worst case, only
affected by backgrounds that are indistinguishable from the signal under study. Regions
with low density of events, are also regions that present larger spacings between samples.
In a symmetric situation to the one considered in the previous chapter, here we would
like to be sensitive to the presence of large spacings in our data, filtering out collections
of small spacings, thus trying to filter out any clusters and only look at the underlying
uniform distribution.

Figure 4.1.: Example of dataset presenting a possible background contamination at the
edges of the analysis window.
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4.3.1. Maximum Gap

The Maximum Gap test has been proposed in the physics literature [1] and earlier, as a
test statistic, in the statistics literature [51]. It consists of the largest spacing present in
order to determine the upper limit on the event rate. The test statistic is defined as:

TMG({ui}) = Smax
1 = max

i
(Si,1) (4.3)

The distribution of Smax
1 , for a given number of events n, is known [51, 1]:

Pr{Smax
1 ≤ x|L} =

m∑
t=0

(−1)t
(
n+ 1

t

)(
1− tx

L

)n

(4.4)

where L is the total length of the range of events (ui ∈ [0, L] and
∑

i Si = L instead of 1;
this is a simple rescaling) and m is the greatest integer such that m ≤ L/x. Under the
assumption of a uniform distribution of events, a large proposed event rate, µ, will lead
to a small probability to observe large values of Smax

1 . If the observed value of Smax
1 is

indeed large relative to our expectations, this can be used to exclude values of µ at a
specified confidence level.

This definition of the test is particularly helpful since it is little affected by possible
clustering of events in the unit interval, whose distribution deviates from the standard
uniform one.

The Poisson averaged cumulative distribution, FMG,Pois, can be easily computed
analytically and has been given by Yellin [1]:

FMG,Pois(x|µ) =
m∑
t=0

∞∑
j=0

e−µµ
j

j!
(−1)t

(
j + 1

t

)(
1− tx

µ

)j

=
m∑
t=0

(tx− µ)te−tx

t!

(
1 +

t

µ− tx

)
(4.5)

where the author considers L = µ to derive the simplified formula consisting of a finite
sum. The CL upper limit on the event rate, µMG, is such that:

FMG,Pois(S
max
1 |µMG) = CL (4.6)

4.3.2. Optimum Interval

In addition to the Maximum gap method, Yellin proposes also the Optimum Interval (OI)
method [1] which instead of looking at the largest spacing, considers sums of spacings:
i.e., spacings of higher rank.
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The Maximum Gap method compares the size of the largest first rank spacing against
the expectation of it containing no events for a given event rate µ. Similarly, given higher
rank spacings, for example k = 2, we might find the largest second rank spacing, Smax

2 ,
and compare its size to the expectation of it containing only one event given a proposed
event rate µ. Such an investigation can be performed for any rank of spacings allowed
by the data (k ≤ n, where n is the number of events) and would result in n different
Poisson-averaged p-values, one for each rank of spacing, for a given event rate µ:

Smax
k = max

i
(Si,k) (4.7)

pk = Fmax,k,Pois(S
max
k |µ) (4.8)

where Fmax,k is the cumulative distribution of Smax
k for a given number of events. The

analytic formula of Fmax,k (k > 1) for n events is not known, but Yellin calculated
numerical approximations using large Monte Carlo campaigns, similarly to how I derived
previous approximate distributions. Additionally, Yellin produced an approximate
asymptotic distribution for large values of n [52], leveraging the asymptotically normal
behaviour of the spacings for large n.

In order to exclude the proposed event rate µ, one might look at the largest available
p-value, as the one that most strongly rejects the hypothesis of the rate being µ:

pmax = max
k

(pk) (4.9)

So defined, this test is similar to the Best Sum of Spacings (BSSmin), with the only
difference that we consider the largest p-value instead of the smallest and we account for
a random number of events via the Poisson-averaging of the p-value calculation.

Since pmax does not have a uniform distribution, it can’t be interpreted as a valid
p-value, thus one needs to know its cumulative distribution for a given event rate µ, FOI.
Knowing this, the final p-value is:

pOI = FOI(pmax|µ) (4.10)

The analytic formula of FOI is not known, and a numerical approximation is derived
using Monte Carlo simulations. Fig. 4.2 shows the value of the 90% quantile of pmax as
a function of µ.

Finally, the upper limit µOI on the event rate up to a given CL is such that:

FOI(pmax|µOI) = CL (4.11)
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Figure 4.2.: Plot of the 90% quantile of pmax as function of µ for the Optimum Interval
method. Image taken from [1].

4.3.3. Best Sum of Ordered Spacings

The tests discussed so far were developed in order to be sensitive to the presence of any
abnormally large gaps between the events. For relatively few events under analysis, there
might be only one such abnormally large gap, in which case the Maximum Gap method
might already provide the most stringent upper limit. If more than one such abnormally
large gaps are present, and if these gaps happen to be located near one another, then
they can be integrated into one higher rank spacing, and the Optimum Interval method
provides more competitive limits.

However, if the abnormally large gaps are interspaced by many small gaps, then the
Optimum Interval method would lose sensitivity and not offer significant improvements
compared to the Maximum Gap method: in these cases, the Best Sum of Spacings
approach, i.e. the Optimum Interval, saturates and is dominated by individual low-rank
spacings.

Ideally, we would like to combine the abnormally large gaps individually, without the
(smaller) gaps interspaced between them. This approach would increase the sensitivity of
the test and potentially allow setting more competitive upper limits. We now describe
such an approach.

Given a set of n events {ui} in the unit interval [0, 1], consider the ordered set of
spacings , S(i). Given {S(i)}, it is possible to consider higher rank spacings by summing
over its elements. The k-th Sum of Ordered Spacings, Smax

(k) , is just the sum of the k

largest order spacings:

Smax
(k) =

k∑
i=1

S(n+2−i) =
n+1∑

i=n+2−i

S(i) (4.12)

In total there are up to n non-trivial Smax
(k) given n events (1 ≤ k ≤ n), since the sum

over all n+ 1 ordered spacings is constrained to be equal to 1.
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It is now possible to evaluate the p-value of each rank of sum of ordered spacings for a
given event rate µ:

pk = Fmax,(k),Pois

(
Smax
(k)

∣∣∣µ) (4.13)

where Fmax,(k),Pois is the cumulative distribution of Smax
(k) for a given number of events.

The analytic formula of Fmax,(k),Pois for n events is known: it was first derived by
Mauldon [42], and I have independently re-derived it using an alternative approach,
reported in Appendix A.

As with the Optimum Interval method, it is possible to use the largest p-value as a
test statistic in order to exclude a value of µ that is too large. I call this test value the
largest Best Sum of Ordered Spacings (BSOSmax):

BSOSmax = max
k

(pk) (4.14)

Since BSOSmax is not a valid p-value any more, one needs to know its cumulative
distribution for a given event rate µ, FBSOS,max, and the final p-value is calculated in
this case as:

pBSOS,max = FBSOS,max (BSOSmax|µ) (4.15)

The analytic formula of FBSOS,max is not known, and a numerical approximation is
derived from Monte Carlo simulations. All the details on the approximation and fitting
of the cumulative distribution are reported in Appendix C. To set a limit, one needs to
find the CL upper limit µBSOS such that:

FBSOS,max(BSOSmax|µBSOS) = CL (4.16)

Although the analytic formula of Fmax,(k) for a fixed n is available, it is not well-behaved,
since it relies on the iterative difference of extremely large numbers (as n increases),
making it susceptible to catastrophic numerical cancellation when used on a computer.
In order to avoid these problems, I computed the values of the function with high
numerical precision on a suitable grid in order to construct a reliable monotonic cubic-
spline interpolation [53] that can be used with default 64-bit floating-point arithmetic.
Currently, these interpolations have been tabulated up to n = 1000 and allow the
estimation of event rates up to µ ≲ 800, correspondingly limiting the number of events
it is possible to analyse. The speed-up tables and the code used to compute the test
statistic and the limits are available through the SpacingStatistics.jl [47] package for
Julia.

47



4. Limit setting using spacings

4.3.4. Product of Complementary Spacings

Finally, I propose another test statistic that combines spacings between events regardless
of their relative location. The stepping stone of this proposal is a test first proposed by
Moran [35] which consists of the product of all the spacings between consecutive events
Eq. 3.12:

M(n) = −
n+1∑
i=1

log(Si).

This statistic was proposed as a goodness-of-fit test sensitive to clusters of data against
the null-hypothesis of a Uniform distribution: the presence of small spacings will drive
the whole product of spacings towards more extreme values.

In order to make this test sensitive to the presence of large spacings, we consider the
complements of each spacing and take their product:

C(n) = −
n+1∑
i=1

log(1− Si) (4.17)

The distribution of this quantity for a fixed number of events n, FC(C|n), is not known
analytically, but I derived a numerical approximation based on Monte Carlo simulations
and tabulated them for n ≤ 1000. Additionally, since the definition of the test is of
the form

∑
g(Si), it is possible to derive its asymptotic distribution, as described in

Sec. 2.6.3, using Darling’s [17] or LeCam’s [18] theorems. The asymptotic distribution of
C(n) as n → ∞ I derived is:

fC(C|n → ∞) = N (n · µ∞, n · σ∞) (4.18)

where the parameters are given by:

µ∞(x) = e−x [E1(−x)− 2iπ] (4.19)

σ2
∞(x) = e−x

[
2A(x)− 4iπB(x)− 2xe−xE1(−x)

]
− 1− (x2 + 1)e−2xC(x) (4.20)

where:

A(x) = xFHG

(
[1, 1, 1]

[2, 2, 2]
;x

)
+

ln2(−x)

2
+ γ ln(−x) +

π2

12
+

γ2

2
(4.21)

B(x) = γ + ln(x) + x (4.22)
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C(x) =
[
e−xE1(−x)

]2
+ 4iπe−xE1(−x)− 4π (4.23)

with E1 being the scaled exponential integral function, FHG the hyper-geometric function
and γ the Euler–Mascheroni constant.

Given this result, we can use it to estimate the test statistic for any large value of
n and effectively extend the applicability of this test and its limit calculation to large
numbers of events. The Poisson-averaged p-value of this test for a given event rate µ is
simply:

FC,Pois(C|µ) =
∞∑
n=1

FC(C|n) · µ
ne−µ

n!
(4.24)

Using this formula, one finds the CL upper limit µC such that:

FC,Pois(C|µC) = CL (4.25)

The tabulated distributions as well as the code used to compute the test-statistic and
the limits are available through the SpacingStatistics.jl [47] package for Julia.

4.4. Performance comparison

The performance of the proposed methods was extensively studied using simulated
examples, where backgrounds of varying shapes and strengths were introduced.

In the following, I compare the new methods described above methods against the
standard Poisson test and the Optimum Interval method, which is considered the state
of the art for setting limits in experiments affected by unknown backgrounds.

4.4.1. Background-free experiment

To begin with, consider the case in which no added background contaminates the
experiment, in order to estimate the baseline of the different methods. For simplicity,
I chose a uniform distribution for the generation of the events, which coincides with
the null-hypothesis of all tests, and I varied the event rate used in the data generation.
Fig 4.3 shows the median of the CL = 0.90 upper limits on the event rate set using
different methods. In order to better discern differences between the efficiency of each
method, we can look at the results normalized to the Poisson limit, as shown in Fig. 4.4.
We notice that in this baseline scenario, the Poisson test is the best of the bunch, setting
the lowest upper limits, as expected. Nevertheless, the results of the Poisson test do not
drastically outperform any other test, showing that they all consistently estimate the
true rate of events.
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4. Limit setting using spacings

Figure 4.3.: Median CL = 0.90 upper limit normalized to the event rate used in the
simulations; data generated according to a uniform distribution (background-
free).

Figure 4.4.: Median CL = 0.90 upper limit normalized to the Poisson-test’s result; data
generated according to a purely Uniform distribution (background-free).

4.4.2. Exponential background-only experiment

Next we investigate the case in which a background is present in the simulations and
the signal strength is negligible in comparison: this mimics a rare process search in
which the signal might be absent. In the simulated experiments, I produce data directly
in the cumulative space (hence the signal distribution is always assumed to be flat,
i.e. the null-hypothesis) and I first consider an exponential background with rate 0.1,
truncated on the unit interval [0, 1]. In dark matter search experiments, it is often
the case that the distribution of events, after transforming to the cumulative space, is
peaked at one end of the analysis window with rapidly decaying tails. Thus, the chosen
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Figure 4.5.: Median CL = 0.90 upper limits for data generated according to an Expo-
nential distribution of rate 0.1 (only-background): absolute results (bottom)
and results normalized to the Optimum Interval limit (top).

exponential background example is representative of such a case. Fig. 4.5 reports the
median CL = 0.90 upper limits of the measured event rate normalized to the injected
background event rate (bottom), as well as the ratio of the results of all methods (minus
Poisson) to the Optimum Interval test (top). The Poisson limit was omitted as it would
simply scale with the total number of events, producing a correspondingly large upper
limit. Analysing the results, we notice that when dealing with relatively peaked event
distributions, all methods perform similarly, just like the background-free case. All
methods are able to filter out most of the background contribution and reconstruct
small overall event rates. For small injected background rates (≤ 100), the non-local
methods (Sum of sorted spacings and product of complementary spacings) are able to
set up to 5− 10% more stringent limits. As the background rate increases (≥ 200), the
performance of the Sum of sorted spacings’ test matches the Optimum Interval’s one,
while the Product of spacings’s results are up to 5− 10% worse.

4.4.3. Mixing background and signal

Now we investigate the case in which a detectable signal distribution is contaminated by
an unknown background. In the simulated experiments, I consider a background-to-signal
ratio of 5, i.e the rate of background events is 5 times larger than the rate of signal events.
Since we operate directly in the cumulative space, we always assume a uniform signal
distribution. The total support of the background event distribution spans a quarter
of the analysis window (meaning that the background events occupy a quarter of the
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4. Limit setting using spacings

Figure 4.6.: Comparison of limit-setting methods depending on event distribution in the
cumulative space: (left column) background and signal event distribution;
(middle column) median CL = 0.90 upper limit normalized to the Optimum
Interval’s result for simulated event distributions with a background and
signal mixing of µbkg/µsig = 5; (right column) median 90% CL upper limit
normalized to the Optimum Interval’s result for purely background-like event
distributions (µbkg/µsig = ∞).

unit interval) but the shape of the distribution is varied: specifically, the background
distribution is a mixture of one or more uniform distributions whose total width sums
up to 0.25.

Fig. 4.6 shows different choices of background distributions in the left column and the
resulting median CL = 0.90 upper limits obtained with different methods (normalized to
the Optimum Interval’s result) in the central column.

If the background distribution is fully concentrated in one region, localised at either end
of the analysis window, as shown in the first row of Fig. 4.6, this creates an uninterrupted
low-density region of the resulting event distribution. This is the best case scenario for
the Optimum Interval method, as previously discussed. This expectation is reflected in
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the results, where the Optimum Interval method’s results are up to 20% better than the
other methods.

As the background distribution is moved to the middle of the analysis window, or even
split into two or more peaks, then we notice how the proposed tests are more sensitive,
being able to set more competitive limits. For a bimodal background distribution, it is
possible to set limits 20% lower than the Optimum Interval method on average, while
the gain rises up to 40% for a pentamodal background distribution. The performance
of the proposed tests (central column of Fig. 4.6) is due to their sensitivity to all large
regions of low event density, regardless of their number or location, while the Optimum
Interval method can only choose the most significant, ignoring the others.

The case of multimodal background distributions, especially when it presents well-
defined and relatively narrow peaks, is interesting since it is similar to experimental
scenarios in which the event rate of a three or multi-body decay is sought after: the
expected spectrum of such a decay is relatively flat and could be contaminated by peaking
background distributions which are representative of processes with a Standard-Model
counterpart. The BSOSmax and PCS methods would be well-suited to tackle these
problems since they are able to filter out the contributions coming from these “peaks”
and estimate the underlying “flat” event rate, without introducing additional parameters
in the analysis (biasing the result) to modify, limit or segment the Region-of-Interest in
order to exclude peaking backgrounds.

Vanishing signal

Considering the case of a very faint or absent signal, we can analyse the resulting limit
if events were distributed only according to the background distribution. The results
of these simulations are shown in the right column of Fig. 4.6, where we notice that,
regardless of the shape of the background distributions, the 90% CL median upper
limits of the BSOSmax and PCS statistics are always smaller than the Optimum Interval
counterpart, with limit gains increasing up to a factor of 3 as the number of event-free
regions increases.

4.4.4. Comparison to a Likelihood-Ratio Test

As a final example, I compare the efficiency of the non-parametric tests discussed so far
against a Likelihood-Ratio (LR) test in the case of peaking backgrounds. I consider a
mixture of Gaussian backgrounds with an associated event rate ten times stronger than
the signal’s event rate, νtrue, which is varied from 10 up to 50.

Assuming m distinct Gaussian background peaks are present, the distribution of events
can be expressed as a mixture model:

H(νsig,νbkg,µ,σ) =
νsig · U(0, 1) +

∑m
j=1 νbkg,j · N (µj , σj)

νsig +
∑m

j=1 νbkg,j
(4.26)
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(a)

(b)

Figure 4.7.: Background distribution in the cumulative space: mixture of Gaussian
distribution with σ = 0.01; Median CL = 0.90 upper limit normalized to the
signal event rate.
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where νsig is the signal event rate, νbkg = {νbkg,1, ..., νbkg,m} are the background event
rates and µ and σ are the locations and standard deviations of the Gaussian peaks
respectively. Given H(νsig,νbkg,µ,σ), the corresponding unbinned extended likelihood
is simply the product of the probability density function evaluated at each sample ui
times the Poisson probability of the observed number of samples:

L(νsig,νbkg,µ,σ) =
νntote

−νtot

n!

n∏
i=1

[
νsig +

∑m
j=1 νbkg,j · fN (xi|µj , σj)

νtot

]
(4.27)

where:

νtot = νsig +
m∑
j=1

νbkg,j . (4.28)

To find a limit on the signal event rate, consider the reduced model H(νbkg,µ,σ|νsig = ν0),
where the value of νsig is fixed to a specific value ν0. Given these two models, the LR
test statistic ρ is defined as:

ρ(ν0) = −2 log

[
supL(νbkg,µ,σ|νsig = ν0)

supL(νsig,νbkg,µ,σ)

]
(4.29)

which is a test statistic that depends on the value of ν0. The distribution of ρ(ν0)

converges asymptotically to a χ2
1 distribution with one degree of freedom for any value of

ν0. Given the relatively large number of samples involved (n ∼ 11 · νtrue) and the small
number of degrees of freedom of the asymptotic distribution, it would be reasonable
to assume that ρ(ν0) already follows a χ2

1 distribution. This assumption was verified
numerically for different values of ν0 and allows us to estimate the 90% limits of the signal
event rate, which are the values of ν0 such that Fχ2

1
[ρ(ν0)] = 0.9. This usually results

in two distinct values of ν0 that satisfy the equation, defining an interval [νmin
sig , νmax

sig ]

that contains the true signal event rate with a 90% confidence level. In practice, νmin
sig is

almost always 0, or very close to being zero, hence νmax
sig is the de-facto 90% upper limit.

Fig. 4.7 shows two examples, one in which the background comprises a single Gaussian
peak (top) and another comprising three Gaussian peaks. Given these backgrounds, the
median CL = 0.90 upper limits are obtained at different signal event rates. Inspecting
the results, we notice that the most stringent limits are set by the LR method in all
cases, which is hardly surprising since partial information of the background (shape and
number of peaks) was folded into the analysis. The limits set by the non-parametric
spacings-based tests, although more conservative, are still close enough to the LR ones,
even without any assumption on the background shape. In the unimodal background
case of Fig. 4.7 (top), spacings-based methods provide results no more than 20% larger
than the LR for low event rates and up to 10% larger limits for higher event rates,
with BSOSmax and PCS methods being slightly ahead of the Optimum Interval. In the
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multimodal background case of Fig. 4.7 (bottom), the results provided by the BSOSmax

and PCS limits range from being 50% higher than the LR one for low event rates, down
to being 25% larger for higher νtrue. The difference between the limits of the Optimum
Interval method and the LR approach, in this case, is roughly twice as much as the other
non-parametric tests, which is due to the presence of multiple background modes that
split up the low event density regions in the analysis window.
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5. Goodness-of-fit tests for arbitrary
multivariate models

5.1. Introduction

So far I have discussed the use of goodness-of-fit tests as a discovery tool, in order to
detect an unknown signal against a known background, as well as a tool to set limits on
the event rate of proposed signal distributions in experiments contaminated by poorly
understood backgrounds. All the models and data considered so far were univariate.
Often enough, experiments collect multivariate samples, and having to resort only to one
dimension in order to quickly sieve through their large datasets can be reductive.

In the following, I discuss how to build goodness-of-fit tests for arbitrary multivariate
distributions or multivariate data generation models. The resulting tests perform an
unbinned analysis and do not need any trials factor or look-elsewhere correction since the
multivariate data can be analyzed all at once. The proposed distribution or generative
model is used to transform the data to an uncorrelated space where the tests are developed.
Depending on the complexity of the model, it is possible to perform the transformation
analytically or numerically with the help of a Normalizing Flow algorithm.

The flexibility of targeting vastly different univariate distributions is made possible by
the probability integral transformation [2, 3]. Building upon the univariate case, I start
discussing how to perform this transformation in the multivariate case. I then discuss
different ways of performing a multivariate uniformity test and how to adapt this tool in
the case of signal discovery or setting upper limits.

Finally, I consider examples for each application in order to test the sensitivity of these
methods.

The content of this chapter closely follows [54], where these results were first presented.

5.2. Multivariate probability integral transformation

In the univariate case, the probability integral transformation allows to develop tests in
a standardized environment, where the null-hypothesis is represented by the standard
Uniform distribution U(0, 1). Concretely, given m i.i.d. samples xi and a continuous
distributions f(x) with cumulative F (x), we transform the samples onto the unit interval
[0, 1] via ui = F (xi).

Much like the univariate case, the goal with multivariate samples (in n dimensions) is
to develop uniformity tests in the unit hyper-cube [0, 1]n. In order to target any given
multivariate distribution M, we need to transform the probability space described by M
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5. Goodness-of-fit tests for arbitrary multivariate models

into [0, 1]n. This transformation can be easy or difficult depending on the distribution M,
specifically, depending on the correlation among the dimensions of M. In the following I
show how to perform the transformation into the unit hyper-cube in three main cases:
first, distributions comprised of uncorrelated dimensions are considered, moving then
to distributions with correlated dimensions or sample-generating processes for which a
probabilistic model is not available and finally hierarchical models are discussed.

5.2.1. Independent dimensions

If the dimensions of the proposed distribution M are all independent of each other, then
M is just a composition of n independent univariate distributions:

M = [M1,M2, ..,Mn] (5.1)

where Mj is the distribution of the j-th dimension. Much like the univariate case, it is
possible to transform the j-th component of each sample using the corresponding cumula-
tive distribution function FMj . Thus, the transformation of sample x i = (xi,1, xi,2, .., xi,n)

in [0, 1]n is simply:

u i = [ui,1, ui,2, .., ui,n] = [FM1(xi,1), .., FMn(xi,n)] (5.2)

5.2.2. Correlated dimensions and generative models

If the dimensions of the distribution to be compared to the data are not mutually
independent, then it might be difficult to write down a transformation to the hyper-cube.
This is still possible when dealing with nicely behaved distributions, such as a multivariate
Normal distribution whose covariance matrix is not diagonal, but that might not be
the case for a more complex distribution, such as a weighted sum of distributions. In
such cases, it is possible to learn the transformation to the unit hyper-cube by using a
Normalizing Flow (NF) which can perform a whitening of the distribution; i.e., transform
the distribution so that it becomes a diagonal multivariate Normal distribution in the
new coordinates. Once the original distribution is transformed in this way, it is then
possible to further transform it to the unit hyper-cube one component at a time as shown
earlier.

The Normalizing Flow (NF) is made up of a Neural Network which is trained using
samples from the proposed distribution M . The samples needed for training can be
obtained from an associated generative model or by sampling M using a Markov chain
Monte Carlo. The use of the generative model is particularly interesting because it
allows to train the NF without having a normalized distribution or any model at all. In
such cases, the NF is learning the associated distribution and the transformation all at
once. [55, 56] offer a nice review of the theory and some of the many applications of
Normalizing Flows. I briefly summarize this topic in Appendix D, where I report some
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5.2. Multivariate probability integral transformation

details of our NF implementation, developed in collaboration with M. Dudkowiak during
his Bachelor thesis work, as well as with other collaborators from our group. In order to
show the feasibility of this approach, a proof of principle example is presented where a
Normalizing flow is used to whiten data sampled from a sum of three two-dimensional
Normal distributions. A sampled distribution is depicted in Fig. 5.1 and the resulting
marginal distributions of the whitened samples are shown in Fig. 5.2. The Normalizing
Flow used for this example was adapted from [56].
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Figure 5.1.: Sample distribution of the sum of three two-dimensional Gauss distributions.
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Figure 5.2.: Whitened marginal distributions after transforming with the Normalizing
Flow.
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5.2.3. Hierarchical models

Given a hierarchical model, the distribution of some components of the data is dependent
on the values of other components, which are referred to as hyper-parameters of the
model. If the hyper-parameters are mutually independent or if a transformation to the
unit hyper-cube is available for their distribution and if the same is true for all the
dependent parameters at each layer of depth of the hierarchical model, then it is possible
to transform the whole distribution into the unit hyper-cube in stages.

Consider for example a 2 layer hierarchical model producing distributions M =

[M 1,M 2(M 1)]. M 1 models the distribution of the hyper-parameters xhigh of the model
and these components can be transformed to the corresponding uniform unit hyper-space
using the associated function TM 1 . The distribution of the dependent parameters x low

is affected by the observed value of the hyper-parameters xhigh:

x low
i ∼ M 2(x

high
i ) (5.3)

For any given sample x i, the value of the hyper-parameters xhigh
i is fixed, so the

distribution M 2(x
high
i ) is fully defined and it is possible to compute the corresponding

transformation to the unit hyper-space. While TM 1 is sample-independent, TM 2 is sample-
dependent. In case of hierarchical models with more layers, this staged transformation
approach is to be repeated for each layer.

5.3. Uniformity tests in the unit hyper-cube

In the following, I discuss various methods that allow performing a multivariate uniformity
test by reducing this task to a series of univariate uniformity tests. These tests are
sensitive to non-uniformities in a transformed dataset and their application is twofold:

• detection of clustering of events against a uniform background, in a discovery
scenario

• estimation of the upper limit on the rate of events corresponding to the uniform
component of the data, representative of a proposed signal, against unknown
backgrounds

For the latter, a desired confidence level is set in advance.

5.3.1. Projection - Discovery

Assume we have m samples within a unit hypercube {u i} ∈ [0, 1]n. The n components of
each sample are assumed independent of one another after the necessary transformations.
The projections of the samples along each axis of the hyper-cube, therefore, yield n

univariate uniformly distributed sets of data: {ui,j} for the j-th dimension. For each one
of these projected datasets, {ui,j}, it is possible to perform a uniformity test using a
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test statistic of choice and condense the information for the j-th dimension in one scalar
p-value pj . A simple two-dimensional depiction of these projections is shown in Fig. 5.3.

Figure 5.3.: Dataset consisting of two-dimensional samples distributed uniformly in the
hypercube [0, 1]2 and projections.

Given our assumptions, the expected distribution of each p-value pj is uniform, and
moreover, the p-values will be independent of one another. On this resulting dataset,
{pj}, it is possible to perform a uniformity test using a test statistic of choice in order to
check whether there are any significant deviations from uniformity. The result of this
last uniformity check results in one last p-value pfinal which is the overall p-value of the
multivariate goodness-of-fit test.

As pointed out in the discussion above, in order to obtain the intermediate p-values,
{pj}, and then the final one, pfinal, it is possible to use any test statistic of choice, as
long as the chosen statistics preserve the non-correlation among dimensions (results from
tests that have a Poisson dependent factor, for example, will be correlated, since the
same number of samples is projected on all dimensions). What is important is that the
distribution of the resulting p-values is uniform. This implies that the test statistic used
for the evaluation of the intermediate p-values, {pj}, does not have to be the same as
the one used to evaluate pfinal; as a matter of fact one could also use different tests for
different dimensions in the evaluation of {pj}, but it might be a more consistent approach
to consider all dimensions equally and use the same test for all projections.

In the previous discussion, we considered a dataset of m samples {u i} ∈ [0, 1]n. In
such a case, if the number of events m is large, it might be appropriate to use a test such
as BSSmin, RPS or KS in order to pick up a signal in any of the projections. Afterwards,
when considering the n p-values {pj}, it could be better to look for outliers, since already
one of a few small pj could be indicative of the presence of a signal in the data. In this
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case, especially when dealing with low-dimensionality spaces (n small), instead of using
RPS or KS on the set {pj} it might be more informative to look at the smallest p-value
or rather their product in case we want to improve the sensitivity in the presence of
multiple small p-values.

Minimum p-value

As discussed, observing one small p-value might already be enough to point to a possible
signal in the data. Under the assumption of a uniform distribution of {pj}, the distribution
of pmin = min{pj} is simply the first Order Statistic, and it follows a Beta distribution:

pmin = min
j

{pj} ∼ Beta(1, n) (5.4)

where n is the dimensionality of the original data. Thus the final p-value is:

pfinal = n · (1− pmin)
n−1. (5.5)

Product of p-values

Given more than one small p-value pj , looking only at the smallest one might be reductive
and we could gain in sensitivity by combining the small p-values together. One way of
doing so is to consider the product of all p-values:

pprod =

n∏
j=1

pj (5.6)

Once again, we expect all {pj} to be uniformly distributed, and the distribution of pprod
is known [57]:

Pr{pprod = x;n} =
(−1)n−1

(n− 1)!
[ln(x)]n−1 (5.7)

thus the final p-value ,pfinal, is:

pfinal = pprod ·
n∑

j=1

(−1)j−1

(j − 1)!
[ln(pprod)]

j−1 (5.8)

5.3.2. Projection - Limit setting

Several spacings-based tests have been developed for this task in the univariate case, as
we discussed in Ch. 4, but for the multivariate case, I do not know of any method being
available.
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It is noteworthy that Yellin reports in [52] an idea regarding the extension of the
Optimum Interval method to multiple dimensions, by looking at the hyper-rectangular
volumes containing a fixed number of samples. This proposal is computationally costly
in calculating the test statistic value, and even more so in tabulating results for a large
number of samples. The author hints at the possibility of developing asymptotic results in
order to lessen the burden of the cumulative distribution parametrization. Although this
idea has been presented, as far as I know, it was not developed further or implemented.

In this work, I decided to take a different approach from the one outlined by Yellin.
Instead of tackling the problem in all its complexity, by considering hyper-volumes and
the number of samples that might occupy them, we might rely on a simplification of the
problem, by considering the projections of samples on the axis of the hypercube. This
allows us to reduce the complexity of the problem and to obtain a solution, even at the
cost of this method potentially being less powerful than a direct n-dimensional approach.

As discussed before, given m uniformly distributed samples {u i} ∈ [0, 1]n, we consider
the projection of the samples on the n axes, knowing these will be uniformly distributed
as well. For each one of these projected datasets {ui,j} it is possible to estimate an upper
limit µj on the event rate with confidence level L1.

Out of the upper limits {µj}, j = 1, .., n obtained from each projection, we can use a
best-of-the-bunch approach and select the smallest one as the final limit:

µfinal = min
j

{µj} (5.9)

At this point we must consider the confidence level Ln associated with this estimate. If
the projected limits {µj} were completely independent of one another, then we might
consider that selecting the smallest limit amounts to a resulting confidence level Ln equal
to the product of n Bernoulli variables with rate L1, thus:

Ln = (L1)
n (5.10)

Under this assumption, we could easily select the confidence level L1 of the individual
projection limit estimations in order to ensure that Ln is equal to a desired value.

This assumption, however, is not correct. Although the distribution of the projected
events on each axis is independent, the number of samples projected on each axis is not:
if there are m samples in the multi-dimensional space then there will be m samples on
each projected dataset {ui,j}, j = 1, ..,m. In order to set a limit we consider both the
distribution of events and the total number of events, merging a goodness-of-fit test with
a Poisson test. Since all projected datasets {ui,j} share the same number of events, this
introduces a correlation in the Poisson statistic part of each limit-setting estimation,
rendering all resulting limits correlated.

Although the projection-independence assumption is not valid if applied after the
Poisson-averaging, it is possible to calculate the corrections necessary to ensure the desired
final confidence level Ln. We assume that Ln is a function of the projection-specific
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confidence level L1 and that it is dependent on the value of the reconstructed limit µfinal,
for a given number of dimensions n: Ln(µfinal, L1|n). If we seek a specific Confidence
Level CL, then we need to find the value of L1 that for the resulting best limit µfinal

yields:

Ln(µfinal(L1), L1|n) = CL (5.11)

This equation is just a one-dimensional root finding problem in L1 which can be solved
iteratively (for example using a Bisection algorithm) by estimating the error at µfinal(L1)

for a proposed value of L1. The estimation of the error rate can be done via Monte-Carlo
simulations, producing data according to a uniform distribution in the n-dimensional
hypercube, since the Eq. 5.11 only needs to hold in this nominal case.

Although this procedure might seem complicated, it is easy to devise and can be
performed well before any real analysis has to be run, during the method validation
phase, allowing for the tabulation, interpolation and sharing of Ln(µfinal, L1|n). I have
calculated the exact correction for the BSOSmax method and an approximate correction
for the Optimum Interval method up to five dimensions.

5.3.3. Product of Complementary Spacings - Limit setting

Best projection

As discussed above, if one calculates the Poisson-averaged p-value on each projected
dataset and then chooses the most significant value, a correction needs to be calculated
to account for the correlation of these values due to the fixed number of samples on each
axis. In order to avoid this problem, if the definition of the chosen test statistic allows it,
it is possible to perform the selection of the best p-value before averaging with a Poisson
distribution. In such a case it would be trivial to calculate the correct confidence level
without having to resort to numerical corrections.

Consider the Product of Complementary Spacings (PCS) statistic from Eq. 4.17:

C(m) = −
m+1∑
i=1

log(1− Si).

For each of the projected datasets, one can compute the corresponding value of the test Cj

and its p-value (here pj = FC(Cj)). The n projected p-values, {pj}, form order statistics
with Uniform distribution. If we were to select the largest FC(Cj), its distribution would
be simply:

max
j

{FC(Cj)} ∼ Beta(n, 1). (5.12)

Given the test-statistic values Cj for each projection, the Poisson-averaged p-value of
the largest one, Cmax = maxj{Cj}, is:
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FC,Pois(Cmax|µ) =
∞∑

m=1

FBeta [FC(Cmax|m) |n] · µ
me−µ

m!
. (5.13)

It follows that the upper limit µlim, with a confidence level CL, is such that:

FC,Pois(Tmax|µlim) = CL (5.14)

Sum of projections

Given the PCS test-statistic values Cj on each projection, instead of selecting the largest,
we can consider their sum:

Csum =

n∑
j=1

Cj (5.15)

which can be interpreted as a product of the product of complementary spacings. As-
suming we know the distribution of Csum for a fixed number of events m, F (Csum|m),
then we can compute the Poisson-averaged p-value of this test for a given event rate µ:

FPois(Csum|µ) =
∞∑

m=1

F (Csum|m) · µ
me−µ

m!
(5.16)

Given this definition, it is possible to invert the formula and find the upper limit on the
event rate up to a desired confidence level. For example, the 90% confidence level upper
limit µlim is such that:

FPois(Csum|µlim) = 0.9 (5.17)

If F (Cj |m) is known, it is rather easy to compute F (Csum|m). Since Cj are all i.i.d., the
distribution of Csum is just fC,m convolved n− 1 times with itself:

f(Csum|m) = f(C|m) ∗ f(C|m) ∗ .. ∗ f(C|m)︸ ︷︷ ︸
n times

(5.18)

Since F (C|m) has been tabulated in the Julia package SpacingStatistics.jl [47], and is
available as a monotonic cubic spline polynomial function, it is possible to easily obtain
its derivative f(C|m), transform it to the Fourier space using a FFT, raise it to the
power of n and transform back to the real space to obtain f(Csum|m):

f(Csum|m) = FFT−1 {[FFT (f(C|m))]n} (5.19)
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5. Goodness-of-fit tests for arbitrary multivariate models

This procedure is used for the tabulated FPCS,m (m ≤ 103). For values of m larger than
103 one can use the asymptotic distribution of FPCS,m, Eq. 4.18, which is a Gaussian
distribution, thus rendering the calculation of the convolution much easier.

These two approaches show how to adapt the PCS test to a multivariate limit-setting
scenario, similarly to how the minimum p-value and product of p-values were used in
the multivariate discovery case. Although I discussed the PCS test specifically, these
corrections apply in general to any test-statistic T where the Poisson-averaging can be
calculated as a final step.

5.3.4. Projection - Problematic configurations

Before moving on, I would like to point out a data configuration that might be difficult
to analyse using projection methods.

Considering a simple two-dimensional sample distribution, such as the one shown in
Fig. 5.4, we can see that if we were to take the projections of these samples along the x

and y axis, these would all be uniform.

0.0 0.2 0.4 0.6 0.8 1.0
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0.8
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Figure 5.4.: Distributions of samples that are not easily detectable via projection on the
axis.

We notice then that if served with such a distribution of data, we would not be able to
distinguish it from a truly uniform one in the hypercube. For a signal to go undetected, it
needs to be perfectly aligned along a diagonal of the hypercube, and this is a rather unlikely
configuration. Nevertheless, in order to correct for this shortcoming, if visualization of the
data is not possible, then one could think of testing the data twice: testing the original
dataset (in the hypercube [0, 1]n) then transforming the data into a Standard Multivariate
Gaussian, perform a rotation and transform back into the uniform hypercube. Such a
transformation would maintain the uniform distribution of data in the hypercube under
the null-hypothesis, but would also break the alignment between possible problematic
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5.3. Uniformity tests in the unit hyper-cube

signals and the hypercube’s diagonals.
This operation produces two p-values, which will be correlated for small numbers of
events m, but that will reach a stable distribution for large sample sizes. Out of these two
p-values one could select the smallest and tabulate its distribution, in order to calculate
from it a true p-value. This parametrization is not too computationally expensive and
can be carried out in a preparatory step, before having to use the test on real data.
Since this parametrization is transformation dependent, I stop here and do not produce
examples, but I would like to bring to the reader’s attention the need of considering such
cases when using projection methods to perform goodness-of-fit tests.

5.3.5. Volume transformation

Finally, I consider a different dimensionality reduction strategy. Given m samples
{u i} ∈ [0, 1]n, instead of projecting them onto the axes and obtaining n independent sets
of univariate data, we can use a dimension-reducing transformation to map them all at
once onto a single univariate dataset. To achieve this, calculate the volume contained
in the hyper-rectangle defined by its projections simply by taking the product of its
coordinates:

vi = V (u i) =
n∏

j=1

ui,j . (5.20)

Calculating the volume this way for each multivariate sample, yields a simple univariate
dataset: {u i} V−→ {vi}. Since the {u i} were i.i.d. samples, so are the {vi} (although not
uniformly distributed). Since vi is the product of n independent uniform variables, whose
distribution is given by Eq. 5.7, its probability distribution is known:

Pr{vi = x;n} =
(−1)n−1

(n− 1)!
[ln(x)]n−1

Using the probability integral transformation, Eq. 5.8, we can therefore transform {vi}
into a set of uniform i.i.d. samples {zi}. We can then use these to perform a univariate
uniformity test using a test statistic of choice; standard univariate discovery (Ch. 3) and
limit-setting (Ch. 4) tests can be used in order to analyse the data.

Problematic configurations and origin selection

In the transformation described above, the volume calculation is not an injective function,
meaning that multiple points in the hypercube [0, 1]n can share the same volume,
specifically, all points lying on one of the hyperboles shown in Fig. 5.5 (for a 2D example).
This means that if all points lying on a given hyperbola were to be moved to a single
point on the same hyperbole, this would not be detectable from the transformed set.

Additionally, in my studies, I also found out that the choice of the origin, for the volume
calculation, might matter. Given a set of samples distributed according to a multivariate
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Figure 5.5.: Example of 2D surfaces (hyperbole) that share the same volume.
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Figure 5.6.: Example of 2D Gaussian signal located in different positions inside the
hypercube [0, 1]2 (left) and the corresponding distribution of events after the
volume transformation (right).

Normal distribution with a diagonal covariance matrix, the resulting distribution of
events in the unit range [0, 1] after the full volume transformation will depend on the
location of the signal distribution in the hypercube. Considering a 2D example, shown in
Fig. 5.6, we notice that signals located at the corners of the anti-diagonal (top-left and
bottom-right positions) will have a wider distribution after the volume transformation
compared to those present on the main diagonal, and of these, those furthest away from
the origin yield the narrowest distribution after transforming. This will impact the
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goodness-of-fit test, since narrower distributions tend to yield smaller p-values. If we
were to change the vertex from which the volume is calculated, we would end up in the
same situation, just shuffling the plots already shown.

Nevertheless, for a given choice of the origin used for the volume transformation,
the resulting p-value is valid and correct, given that its distribution is flat under the
null-hypothesis of a Uniform distribution of samples in the hypercube.

5.4. Example - nD Discovery

Here I illustrate how the proposed goodness-of-fit tests can be used in a scenario where a
possible “new physics” model is searched for but it is not wished to specify how the new
physics might populate the data space. It is then to be tested whether the data follows
a known distribution, which is a “background” to a possible new signal. After having
collected some data, one wants to quantify the goodness-of-fit of the background-only
distribution to the data and a resulting low p-value could indicate the presence of events
distributed according to an additional, previously unknown, signal distribution.

5.4.1. Multivariate Gaussian signal

In this example the background is modelled by a simple Uniform distribution in the
5-dimensional hyper-cube [0, 1]5 and in order to illustrate how the presence of an actual
signal (alternative hypothesis) would affect the outcome, additional events are injected,
following a multivariate Normal distribution randomly positioned within the hyper-
cube with an isotropic variance of either 0.01 or 0.1. The number of events is Poisson
fluctuated for both background and signal populations, with respectively expected values
of ⟨nb⟩ = 104 and expected values of ⟨ns⟩ ranging up to 103.

The p-value distributions under the assumption of H0 (i.e. only background is present)
are shown in Fig. 5.7: the results corresponding to the narrow signal (Σ = I5 · 0.01) are
on the left column and those corresponding to the broad signal (Σ = I5 · 0.1) are on the
right column; the first two rows present p-value distributions calculated using projection
methods while the third row presents p-value distributions obtained with the volume
transformation method; the fourth row presents the sensitivity of each test quantified
as the median p-value for each distribution. Regarding the results of the projection
method, the evaluation of the intermediate p-values was performed using the KS test,
given the large count rates, while the evaluation of the final p-value, since there are
only 5 dimensions, was performed using the two tests previously described, namely the
minimum and the product of intermediate p-values, corresponding to the first and second
rows respectively. Similarly, the KS test statistic was used in the final uniformity test
after performing the volume transformation.

Distributions with no signal (⟨ns⟩ = 0) show a flat p-value distribution, as expected.
The distributions of trials with injected signals are trending towards smaller p-values,
indicating the worsened goodness-of-fit for the background-only model. The distributions
of trials where the signal has a smaller variance (left) are much more skewed towards
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Figure 5.7.: Distributions of p-values for background only samples (⟨ns⟩ = 0) and back-
ground plus randomised signal injections from a 5D Gaussian distribution:
‘narrow’ signal with random µ ∈ [0.2, 0.8], Σ = 0.01 ·I5 (left) and ‘wide’ signal
with random µ ∈ [0.2, 0.8], Σ = 0.1·I5 (right) of varying strength; comparison
to the background model for either the minimum p-value statistic (first row),
the product of p-values statistic (second row) or the volume-transformed p-
value (third row); median p-value (sensitivity) both in linear and logarithmic
scale (fourth row).

70



5.4. Example - nD Discovery

pmin
10 1

100

101

102

PD
F(

r
=

0.
02

) < ns > =  0.0 % of < nb >
< ns > =  1.0 % of < nb >
< ns > =  2.5 % of < nb >
< ns > =  5.0 % of < nb >
< ns > =  7.5 % of < nb >
< ns > = 10.0 % of < nb >

pmin
10 1

100

101

102

PD
F(

r
=

0.
1)

pprod
10 1

100

101

102

PD
F(

r
=

0.
02

)

pprod
10 1

100

101

102

PD
F(

r
=

0.
1)

0.0 0.2 0.4 0.6 0.8 1.0
pvol

10 1

100

101

102

PD
F(

r
=

0.
02

)

0.0 0.2 0.4 0.6 0.8 1.0
pvol

10 1

100

101

102

PD
F(

r
=

0.
1)

0.000 0.025 0.050 0.075 0.100
< ns > / < nb >

10 10

10 5

Se
ns

iti
vi

ty

0.000 0.025 0.050 0.075 0.100
< ns > / < nb >

0.1

0.2

0.3

0.4

0.5

Se
ns

iti
vi

ty

pmin : PDF( r = 0.1)
pmin : PDF( r = 0.02)
pprod : PDF( r = 0.1)
pprod : PDF( r = 0.02)
pvol : PDF( r = 0.1)
pvol : PDF( r = 0.02)

Figure 5.8.: Distributions of p-values for background only samples (⟨ns⟩ = 0) and back-
ground plus randomised signal injections from a 5D Gaussian-shell distri-
bution: ‘narrow’ signal with random µ ∈ [0.25, 0.75], r = 0.25, σr = 0.02

(left) and "wide" signal with random µ ∈ [0.25, 0.75], r = 0.25, σr = 0.1

(right) of varying strength; comparison to the background model for either
the minimum p-value statistic (first row), the product of p-values statistic
(second row) or the volume-transformed p-value (third row); median p-value
(sensitivity) distribution both in linear and logarithmic scale (fourth row).
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5. Goodness-of-fit tests for arbitrary multivariate models

small p-value compared to those where a larger variance signal was injected (right). This
shows how the sensitivity of the tests varies when targeting clusters of varying width
and strength relative to the background.

In this example, since the signal can be spotted in the projection of multiple dimensions,
the product of p-values test (second row) offers the largest rejection probability of the
null hypothesis compared to the volume-transformed p-value (third row) or the minimum
p-value test (first row).

5.4.2. Multivariate Gaussian-shell signal

Instead of injecting a clustered signal, we can assess the sensitivity of the methods for
a Gaussian-shell signal. This signal is five-dimensional and characterized by a radius
r = 0.25, a radial standard deviation of either σr = 0.02 or σr = 0.1 and the center of its
distribution, µ, chosen at random within the hypercube [0.25, 0.75]5. The results of these
trials are shown in Fig. 5.8. In this case, we notice that the sensitivity to either signal
thickness, σr, is very similar, which shows that all methods are mostly sensitive to the
shell-like structure and its radial extension. Of the three tested methods, the product of
p-values shows the highest sensitivity, followed by the minimum p-value and then the
volume transformed p-value.

Note that the data in the previous examples were analyzed all in one pass for each
trial, meaning that the extracted p-values do not need any corrections for a ‘trials effect’
or ‘look-elsewhere effect’. Of course, if one analyzes many separate sets of data, the
resulting p-values will need to be corrected, as is usually done in the univariate case.

5.5. Example - nD Limit setting

The performance of the proposed methods for limit-setting is explored in a series of
simulated experiments for multivariate sample distributions. Consider the case where
a background model is absent, and only a distribution of counts according to a signal
model is available. In this case, the task is to set a limit on the signal strength of the
signal model.

5.5.1. Background-free experiment

To begin with, consider the case in which no background contaminates the experiment,
in order to estimate the baseline of the different methods. Fig. 5.9 shows the median
of the CL = 0.90 upper limits on the event rate normalized to the median limit of the
Poisson test. We notice that in this baseline scenario, the Poisson test is the best of
the bunch, as expected, but it does not drastically outperform the others, much like the
univariate case.
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Figure 5.9.: Median CL = 0.90 upper limit for the Poisson test, upper panels, and for
tests discussed in the text normalized to the limit from a standard Poisson
probability test, lower panels, from 2D up to 5D uniform signal distributions
and no background.

5.5.2. Background-only experiment

Next, we investigate the case in which a background is present in the simulations and the
signal strength is negligible in comparison: this mimics a rare process search in which
the signal is absent.

Exponential distribution

We first consider a background resulting from the product of n independent Exponential
distributions of rate 0.1 in each dimension. The exponential distributions peak at the
origin, from which the volume is calculated, thus being a rather conservative location for
the background distribution, referencing the discussion in Sec. 5.3.5.

Fig. 5.10 reports the median CL = 0.90 upper limits of the measured event rate
normalized to the smallest median result for a specific background event rate µbkg.
Analysing these results, we notice that the volume transformation method provides the
best limits, regardless of the test used. All other projection-based methods perform

73



5. Goodness-of-fit tests for arbitrary multivariate models

Figure 5.10.: Median CL = 0.90 signal upper limit for the best available test, normalized
to the background strength, upper panels, and for tests discussed in the
text normalized to the limit from the best test, lower panels, from 2D up to
5D distributions containing only an exponentially distributed background.

similarly: in the two-dimensional scenario, the limits are a factor 1.5 − 2 worse than
the volume transformation results, and in the case of a three-dimensional distribution, a
factor 2− 3 worse. The limits for large event rates become up to 4 and 5 times worse in
the respective number of dimensions. Overall though, the limits set by all methods are
quite good, since they reject more than 90% of the background rate when it is small and
able to reject up to 99% for large rates µbkg ≥ 300.

Gaussian distribution

Next, we consider a background distributed according to a multivariate Gaussian centered
in the middle of the hypercube and with covariance matrix Σ = I · 0.01.

Fig. 5.11 reports the median CL = 0.90 upper limits of the measured event rate
normalized to the smallest median result for a specific background event rate µbkg. Once
again, the volume transformation method provides the best limits, regardless of the test
used. Out of these, the BSOSmax test sets the lowest limits. This is to be expected since
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Figure 5.11.: CL = 0.90 upper limit normalized to minimum median result, from 2D up
to 5D multivariate Normal distributions with Σ = I · 0.01 centered in the
middle of the hypercube. The upper panels in each case show the best limit
result normalized to the background expectation.

it is better suited to analyse datasets that present multiple disconnected low-density
regions.

The projection-based methods provide weaker limits: the BSOSmax and PCS version
being up to a factor 1.25(1.5, 1.75, 2) larger in the 2D (3D, 4D, 5D) case respectively; the
Optimum Interval test’s limits are weaker by a factor 1.5(1.75, 2, 2.5) in the 2D (3D, 4D,
5D) case respectively. This is understandable since this test relies only on one low-density
region to estimate its limit.

Overall, all tests are able to reject more than 90% of the background rate for µbkg ≥ 300.

Concave distribution

Finally, we can consider a bowl-shaped background, obtained by reversing the roles
of signal and background distribution of the previous example: assuming a uniform
background and a Gaussian signal in the real space (truncated to the unit interval [0, 1]
with µ = 0.5 and σ = 0.1), if we performed the probability integral transformation with
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Figure 5.12.: CL = 0.90 upper limit normalized to minimum median result, from 2D up
to 5D multivariate Normal distributions for the concave background model.
The upper panels in each case show the best limit result normalized to the
background expectation.

respect to the latter, we would obtain a bowl-shaped background distribution in the
cumulative space. Fig. 5.12 reports the median CL = 0.90 upper limits of the measured
event rate normalized to the smallest median result for a specific background event rate
µbkg. We notice that the best results, in this case, are set by the Optimum Interval test
with volume transformation. This is reasonable since there is only one fully connected
region of low event density, namely the basin of the bowl, thus being the best-suited case
for the OI test. The next best results are obtained by the OI-projection method up to
three dimensions and beyond by the BSOSmax and PCS volume transformations, which
yield no more than 25% larger limits. Finally, the remaining projection-based methods
yield the most conservative limits. Overall we notice that as the number of dimensions
grows, the tests are able to reject more of the background distribution, ranging from 60%
up to 75% rejection for larger values of µbkg.

These examples show how to apply the multivariate goodness of fit tests I introduce and
give an idea of their performance in the case of realistic analysis scenarios.
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In this chapter, I illustrate how the tests introduced above could be used in a physics
scenario, both for signal discovery and limit setting, in the univariate case. I consider
examples inspired by real or proposed experiments, either constructing the models based
on realistic expectations of the background and signal involved or by replicating previous
analysis using the newly proposed Spacings-based tests.

In order to show the versatility of the tests, I consider three examples: a hypothetical
bump-hunting scenario, where the task is to identify a narrow peaked signal against
a background; a limit setting example, in which I replicate the analysis of CRESST
data in order to set an upper limit on the spin-independent WIMP-nucleus scattering
cross-section; lastly, I develop an online trigger for neutrino-flare detection (hopefully
due to Supernovae) to be used in the future by the RES-NOVA experiment.

The examples shown here have already been presented in [25, 50, 58], which I closely
follow in the following for my discussion.

6.1. Example Particle Physics: Bump Hunting

I consider a detector that collects a number of events in an observable x, where x could
for example be the energy of an event, the detection time, or a reconstructed quantity
like an invariant mass. I expect some or all of the observed events to follow a known
background distribution fB(x), but there may be an additional contribution of events
from an unknown signal distribution fS(x)—such as a rare, exotic particle decay with
unknown mass. Hence I want to quantify the goodness-of-fit of the background-only model
to the data. A resulting low p-value could indicate the presence of events distributed
according to an additional, unknown signal distribution.

In this example, I use an exponential distribution fB(x) = e−x for the background
model (null-hypothesis). In order to illustrate how the presence of an actual signal
(alternative hypothesis) would affect the outcome, I also inject additional events following
a normal distribution centred at x = 1 and standard deviation σ = 0.05. The number
of events is Poisson fluctuated for both background and signal, with expected values of
⟨nb⟩ = 100 and ⟨ns⟩ varied as specified. In Fig. 6.1, an example distribution of observed
events is shown, together with the assumed background distribution, and the distribution
with injected signal events (here ⟨ns⟩ = 5). Repeating this example multiple times and
analysing each trial with all available test statistics, yields a p-value distribution for each
of them, which can then be used to determine the sensitivity of each test as a function of
the number of injected signal events. Apart from the non-parametric tests considered
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in the general comparison of Sec. 3.8, I also discuss a Likelihood-Ratio approach and
compare the results.
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Figure 6.1.: Example of physics analysis problem, with observed events distributed in x.
I test the goodness-of-fit of the background only model (blue) to the samples.
Here the samples have been generated according to a different distribution
with an injected signal (orange).

6.1.1. Non-parametric tests

No assumption is made on the rate of the underlying processes, meaning that the number
of observed counts is not included in the analysis other than for the calculation of the
test statistic. This means the “shape” of the distribution is tested for, not its normaliza-
tion. The conversion of events via the CDF of the distribution function considered, fB,
(probability integral transformation) transforms the problem into a test of uniformity.

The p-value distributions under the assumption of H0 (i.e. only background is present) for
repeated trials with ⟨nb⟩ = 100, and various injected ⟨ns⟩ = [0, 3, 6, 9, 12, 15] are shown
in Fig. 6.2. All distributions with no signal (⟨ns⟩ = 0) show a flat p-value distribution,
as expected, since in that case all events are drawn from the background distribution fB .
For trials with injected signal, the distributions are trending towards smaller p-values,
indicating the worsened goodness-of-fit for the background-only model. In the example,
all tests exhibit this behaviour. The largest rejection of the null-hypothesis is offered by
the RPS and BSSmin tests, which present the most skewed p-value distributions for any
number of injected signals ⟨ns⟩.
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Figure 6.2.: p-value distributions for background only samples (⟨ns⟩ = 0) and background
plus randomised signal injections comparing to the background model for
several choices of test statistics.
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6.1.2. Likelihood Ratio test

An alternative approach to using non-parametric test statistics is the Likelihood-Ratio
(LR), especially if partial information about the signal is known or assumed.

Assuming it is known that the signal has a Gaussian shape, the distribution of the
events could be represented by a mixed distribution:

H(λ, c, µ, σ) = c · Exp(λ) + (1− c) · N (µ, σ) (6.1)

where c is the fraction of background, λ the exponential rate of the background and
(µ, σ) the position and standard deviation of the Gaussian signal.

The likelihood is simply defined as the product of the probability density function
evaluated at each sample xi:

L(λ, c, µ, σ) =
n∏

i=1

[c · fExp(xi|λ) + (1− c) · fN (xi|µ, σ)] . (6.2)

The null hypothesis corresponding to the background-only distribution is denoted by
H(λ) = H(λ|c = 1, µ = 1, σ = 0.05), where the rate λ is not fixed, but will be allowed
to vary in order to maximize the corresponding likelihood given the data. For a given
alternative hypothesis, such as the one shown in Eq. 6.1.2, the likelihood ratio test
statistic is:

ρ = −2 log

[
supL(λ)

supL(λ, c, µ, σ)

]
. (6.3)

Given the current example, I consider three different alternative hypotheses: H(λ, c, µ, σ),
where it is only assumed that the signal has a Gaussian shape, with very loose constraints
on its location or width; H(λ, c, µ|σ = 0.05) where apart from the shape there is also
an assumption on the width of the signal; H(λ, c, σ|µ = 1) where only the shape and
location are assumed, but not the width of the signal.

Under the assumption that the null hypothesis is correct, the distribution of ρ is not
known a priori, but for large enough sample sizes, due to Wilk’s theorem [59], we know it
converges asymptotically to a χ2

k distribution with k degrees of freedom, where k is the
difference between the number of free parameters of the null and alternative hypotheses.
In this case, for a given value of ρ, its p-value would be 1− Fχ2(ρ|k).

Given that the rate of events drawn in each trial is ∼ 100, the asymptotic regime might
not approximate the distribution of ρ correctly under the null hypothesis.

In order to test this assumption, I collected samples of ρ for each alternative hypothesis
and compared them to the corresponding asymptotic χ2 distributions. The results are
shown in Fig. 6.3, where we notice that the empirical distribution of ρ when generating
data according to the null hypothesis is not correctly approximated in either case (empiri-
cal distribution in black and asymptotic distribution in red). The largest discrepancy can
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be noticed for the alternative hypothesis with the most free parameters, H(λ, c, µ, σ): the
tail of the χ2

3 distribution decays faster than that of the empirical one, meaning that if we
were to use this one to calculate a p-value for a given ρ, the estimate would be too small,
not close to the real p-value. In the case of H(λ, c, µ|σ = 0.05) or H(λ, c, µ|µ = 1), the
asymptotic distribution appears to be closer to the empirical distribution, nevertheless, it
can be noticed that the empirical distributions are more peaked at the origin, exhibiting
a slightly faster decay compared to the asymptotic distribution: in this case, the p-value
calculated using the asymptotic distributions would be slightly larger than its actual
value.

In order to estimate p-values correctly for the various likelihood ratio approaches, I
use the empirical distributions instead of the asymptotic ones. For given background and
signal rates, ⟨nb⟩ and ⟨ns⟩, the reference distribution is produced from 2 · 107 trials where
samples are generated with a Poissosn rate of < nb + ns > according to the background
distribution.
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Figure 6.3.: Distribution of the likelihood ratio statistic, ρ, for the different choices
of the alternative hypothesis, compared to the corresponding asymptotic
distributions (red).

6.1.3. Results

I quantify the sensitivity of the analysis to reject the background-only model at different
significance levels under the assumption of the presence of a signal. Therefore, I check
the median p-value of repeated trials, and at what value of ⟨ns⟩ it crosses specific critical
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Figure 6.4.: The expected significance level at which the background model can be
excluded under the assumption of a signal, as a function of ⟨ns⟩ for the
different tests.
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Figure 6.5.: Sensitivity of likelihood ratio alternatives, as a function of ⟨ns⟩, calculated
using the empirical and asymptotic distributions.
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values, as shown in Fig. 6.4. In the chosen example, for a signal of strength ⟨ns⟩ ∼ 10, I
expect to reject the background-only model at the 2σ significance level1 using RPS or
BSSmin, whereas for the other non-parametric tests (apart from the RUN statistic), a
signal rate of at least ⟨ns⟩ ∼ 20, is needed to achieve the same exclusion level. Such a large
signal of ⟨ns⟩ ∼ 20 would allow rejecting the background-only model at > 4σ significance
with the RPS or BSSmin tests while the RUN statistic achieves a significance of 3σ.
For lower signal rates, the RUN test reaches the 2σ significance level at approximately
⟨ns⟩ = 16, a rate at which the RPS or BSSmin can already reject the null-hypothesis with
a significance of 3σ. Looking at the sensitivity of the LR statistics, we notice they are
higher compared to the ECDF ones, but they show vastly different behaviour depending
on the number of free parameters: considering H(λ, c, µ, σ), it performs similarly to the
RUN statistic, but it does not reach a 3σ significance even for ⟨ns⟩ ∼ 20; H(λ, c, µ|σ)
and H(λ, c, σ|µ), on the other hand, reach a sensitivity of 3σ for ⟨ns⟩ ∼ 10 and at
⟨ns⟩ ∼ 20 can reject the null hypothesis with > 5σ significance. The overall performance
of the LR statistics is not surprising, since they are supplied with additional knowledge
regarding the signal. Still, it is noteworthy the effect that fixing either µ or σ has on
the sensitivity, compared to allowing both to be free. As stated above, the sensitivity of
the LR statistics was calculated using the empirical distributions. A comparison of the
sensitivity assuming the asymptotic distributions to that from the empirical distributions
is shown in Fig. 6.5. Since the asymptotic distributions of H(λ, c, µ|σ) and H(λ, c, σ|µ)
were similar to the empirical ones, the sensitivity is reasonably accurate, but as expected,
it is slightly worsened. The sensitivity of H(λ, c, µ, σ) calculated using the χ2

3 distribution
shows a much larger discrepancy since it ends up being similar to the previous two cases,
producing a wrong result. This example shows that unless one has reliable information
on the detailed shape or location of an eventual signal, then spacings-based statistics
such as RPS or BSSmin are able to reach noticeably better sensitivities compared to a
likelihood ratio approach.

6.2. CRESST Analysis Example

As a further example, I replicate the analysis of the CRESST Collaboration [48] to
determine upper limits on the WIMP cross-section.

I begin with a brief introduction on the importance of dark matter searches and its
experimental signature. For a comprehensive description of the theory behind direct
search approaches and the CRESST experiments, I refer to Dr. Iachellini’s thesis [60],
from which I borrowed for the following introduction and theoretical background.

6.2.1. Introduction

Dark matter is a fundamental brick of modern day cosmology. Its significance in
contemporary research is due to the great success of the ΛCDM model, which convinced

1A significance level in terms of numbers of k standard deviations σ can be translated to a p-value as
one minus the integral over a unit normal distribution form −k to +k.

83



6. Physics applications

the scientific community of the existence of a large fraction of non-luminous matter in
the Universe. Dark matter has a profound impact on our understanding of the Universe:
it plays a pivotal role in galaxy formation and evolution, its presence can help explain
the observed motion of galaxies within galaxy clusters, and it even acts as the underlying
framework for the large-scale structure of the Universe.

Popular dark matter candidates are Weakly Interacting, very Massive and stable
Particles: WIMPs. Currently, the most favoured hypothesis regarding their origin
assumes they are a thermal relic of an earlier epoch of the Universe. Their creation and
annihilation, at the time of a hot and dense Universe, was analogous to all other particles,
but the rapid expansion of the Universe lowered their density to the point of suppressing
their annihilation, freezing the population of WIMPs.

Ongoing experiments and research projects are dedicated to uncovering the nature of
dark matter, targeting various candidates apart from WIMPS, such as axions, and sterile
neutrinos. Detection efforts include direct detection experiments, indirect detection
through cosmic rays and gamma rays, and collider searches. The CRESST experiment is
one of the most promising experimental efforts for the direct detection of dark matter
particles present in the Milky Way using extremely sensitive cryogenic detectors, with
great energy resolution and an event-by-event particle identification.

6.2.2. Experimental signature

The experimental signature of direct detection experiments is the differential event rate:

dΓ

dER
=

ρχ
mNmχ

∫ ∞

vmin

d3v̄f(v̄)v
dσ(v,ER)

dER
(6.4)

where mN is the nuclear mass, mχ the WIMP particle mass, ER the recoil energy, σ the
cross section for the scattering process, ρχ the local density of dark matter, f(v̄) the
dark matter particle velocity distribution and vmin the lowest velocity that can transfer
ER energy to the recoiling nucleus:

vmin =

√
ERmN

2µ2
(6.5)

where µ is the reduced mass of the combined system of dark matter particle and nucleus.
The differential cross-section σ(v,ER) contains the physics of the interaction between

the nucleus and the dark matter particle. In general, it consists of both a scalar and a
vector coupling, with the latter describing the interaction of the dark matter particle
with the net spin of the target nucleus. Sensitivity to the spin-dependent interaction
requires that target nuclei have a non-vanishing net spin, but the relevant target in
this case (CaWO4) does not have a significant nuclear spin. Therefore, we will neglect
spin-dependent interactions.

The differential cross-section for spin-independent dark matter particle-nucleus scatter-
ing is:
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(
dσ

dER

)
SI

=
mNσ0
2µ2v2

F 2(ER) (6.6)

where F (ER) is the form factor and σ0 is the point-like, zero-momentum cross-section
for the scattering process:

σ0 =
4

π
A2f2µ2 (6.7)

where f is the strength of the coupling (which is generally considered to be equal
for protons and neutrons). A2 represents the coherence-induced enhancement of the
interaction and for this reason, heavy targets are preferred for direct detection of dark
matter, because of the quadratic dependence on the atomic mass number A. Details
regarding the parametrization and choice of form factor and velocity distribution are
reported in [60].

Given the differential rate, Eq. 6.4, for a specific value of mχ, it is possible to predict
the shape of a WIMP-induced nuclear recoil signal in a direct detection experiment, and
since CaWO4 is a composite material, the total event rate has to be computed for each
nuclear species and the total rate is the sum of the single components.

In a real experiment, the theoretical event rate I just described has to be corrected
in order to account for finite energy resolution, energy threshold, and cut-survival
probability.

6.2.3. Cross section limit

The goal is to replicate the analysis of the most recent spin-independent public dataset
[61] released from the CRESST collaboration and to compare the performance of the
different test statistics I have studied. These data are accompanied by information
regarding the energy resolution and efficiencies of their setup for CaWO4 targets that
allow calculating the corrected differential rate dN

dE for a specific WIMP mass across an
energy range of interest [Emin, Emax].

The data I analyse are shown in Fig. 6.6 (top). Denoting the integral of the differential
rate over the whole energy range as Λ =

∫ Emax

Emin

dN
dE dE, for a given set of ordered events

{Ei}, the probability integral transformation is simply:

xi =
1

Λ
·
∫ Ei

Emin

dN

dE
dE (6.8)

yielding a set of ordered events {ui} in the unit interval [0, 1].
Fig. 6.6 (bottom) shows the distribution of events in the cumulative space after

transforming using the signal distributions calculated at two different WIMP masses.
Apart from small differences, the two datasets are very similar, showing an extremely
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Figure 6.6.: (top) Histogram of CRESST data [61] consisting of energy deposition from an
interaction of a particle in the CaWO4 crystal; (bottom) Histogram of data
transformed using the signal distribution for two proposed WIMP masses,
0.5 and 2 GeV/c2
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Figure 6.7.: CL = 0.90 upper limit on the WIMP-nucleon cross-section as a function of
the WIMP mass calculated with different tests.

peaked distribution close to 1 and an almost linear distribution of events in the rest of
the unit interval.

Fig. 6.7 shows the CL = 0.90 upper limits on the cross-section calculated using our
methods as well as those computed with the Optimum Interval method, officially used
by the CRESST collaboration, which match the officially published limits.
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Figure 6.8.: CL = 0.90 upper limit on the WIMP-nucleon cross-section normalized to
the Optimum Interval’s result as a function of the WIMP mass calculated
with our proposed methods.

Comparing the results of our calculations I do not notice any large deviations from
one another. To better grasp the differences across results, I normalize the limits
obtained with our methods to the official ones (obtained with the Optimum Interval
method), as shown in Fig. 6.8. Here, I notice that, for the given data, the Product-of-
Complementary-Spacings method yields 25% to 50% higher limits on average, whereas
the Sum-of-Ordered-Spacings presents an oscillating behaviour, being able to provide
up to 30% lower limits for low WIMP masses and up to 40% higher limits for masses of
the order of ∼ 5GeV/c2. Since the CRESST experiment focuses on the low mass regime
(and is less competitive at higher masses), this is a particularly interesting result and it
aligns with the expectations shown in Sec. 4.4.2 - 4.4.3 for peaking backgrounds.

Finally, for WIMP masses ≥ 20GeV/c2, all methods saturate and yield the same result,
reconstructing a signal event rate of ∼ 2.3 events, corresponding to the CL = 0.90 limit
of the Poisson test for an empty analysis window.

This example based on a published data set, as well as the results of our performance
comparisons, shows that in general there is no “best” test statistic when it comes to
setting upper limits in the presence of unknown backgrounds, but the results are highly
dependent on the actual distribution of events.

6.3. Online trigger for supernova detection

Here I present an application of the RPS statistic to the design of an online trigger for
Supernova detection for the RES-NOVA experiment. This work was done in collaboration
with Dr. L. Pattavina, Dr. N. Ferreiro Iachellini and Dr. P. Eller and the material
presented here closely follows extracts from [62, 58].
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6.3.1. Introduction

Supernovae (SNe) are among the most energetic events in the Universe. They mark
the end of a star’s life with an intense burst of neutrinos [63, 64]. Why and how
massive stars explode is one of the important long-standing unsolved mysteries in
astrophysics. Neutrinos are known to play a crucial role in such events [65], nevertheless
our understanding is still limited due to the lack of experimental observations. The
knowledge we have relies mostly on hydro-dynamical simulations of the stellar matter,
where also neutrino are propagated, but a direct validation of these simulations is still
missing [66]. A timely, high resolution and high statistics detection of these neutrinos
can be decisive for the understanding of the gravitational collapse and the connected
neutrino emission [67]. In fact, neutrinos and gravitational waves (GWs), carry imprints
of the explosion mechanism in real time, enabling a direct access to the inner stellar
core [68]. A simultaneous detection of neutrinos and GWs is considered the Holy Grail
of modern multi-messenger astronomy.

Multiple neutrino detectors are currently operating, and scrutinizing different region of
the cosmos waiting for the next SN event. These experiments can be classified into three
main categories: water-based Cherenkov (WBC) detectors [69, 70], liquid scintillator
(LS) detectors [71, 72, 73] and liquid Ar (LAr) time projection chambers [74]. They all
have two common features: they run detectors with active volumes ranging from few m3

to several thousands m3, and they are mostly sensitive only to νe/νe.
Coherent Elastic neutrino-Nucleus Scattering (CEνNS), discovered few years ago [75],

is an ideal channel for neutrino detection. In fact, it opens a window of opportunities for
the study of neutrino properties [76, 77, 78], thanks to its high interaction cross-section
and its equal sensitivity to all neutrino flavors. Currently, the SN neutrino community
is lacking an experimental technique highly sensitive to the full SN neutrino signal.
Recently, dark matter (DM) detectors, searching for nuclear recoils induced by galactic
DM particles, were proposed to detect SN neutrinos via CEνNS [79, 80, 81], given the
similarities in the expected signal (i.e. low energy nuclear recoils).

It is difficult to forecast when and where the next SN will occur. Though, some predic-
tions can be made through the study of the stellar formation rate and the distribution
of SN remnants in a galaxy [82]. In [83] it is shown that in the region around 1 kpc
from the Sun the expected SN rate is 5-6 times greater than the galactic mean value.
Furthermore, looking at the spatial distribution of all the past galactic SNe, they all
occurred in a range between 1 kpc and 4 kpc [84] of the sun. Such proximity demands
suitable detectors, able to tolerate high neutrino interaction rates. This requirement can
be challenging for large-volume monolithic detectors, as the ones which are currently
operated or planned in the near future. Compact and highly modular detectors are
ideally suited to fulfil this requirement.

RES-NOVA is a recently proposed neutrino observatory that exploits CEνNS as
detection channel and uses an array of archaeological Pb-based cryogenic detectors [85].
Pb is an ideal target for the detection of neutrinos from astrophysical sources via
CEνNS. In fact, it is the only element of the periodic table that ensures simultaneously
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the highest cross section, as this scales with the square of the neutron number of the
target nucleus, and the highest nuclear stability, for achieving low-background levels.
Furthermore, archaeological Pb promises unprecedented isotopic purity [86, 87], leading
to low background levels in the region of interest (ROI) [88, 89].

6.3.2. Detector background model

In order to deliver a robust estimate of the experimental sensitivity to SN neutrinos,
the development of a detailed background model is mandatory. For this reason, starting
from the current knowledge on the concentration of radioactive impurities in cryogenic
low-background experiments, a Monte Carlo tool was developed in order to simulate the
energy spectra produced by the distributions of radioactive contamination in different
detector components. It is possible to estimate the expected background level in the ROI,
which lies between the detector energy threshold and 30 keV [85], using as input to the
Monte Carlo the detector geometry and the concentration of background sources. For a
detailed description of the detector background model and its response to SN neutrinos,
the reader is referred to [62].

Nevertheless, it has to be pointed out that, in a real setup, especially when dealing
with low-background experiments, the radioactive backgrounds are difficult to assess
exactly and do show a time dependence that we do not account for. Uncertainties on
these spoil the application of simple Poisson statistics for the determination of expected
rates and the confidence on them. Furthermore, not all backgrounds can be attributed
to radiogenic origin. An example of this comes from the CRESST experiment, where it
is observed that there are time periods (minutes of duration) where the trigger rates are
substantially higher than the standard operating conditions [90, 91], due to instabilities
of the cryogenic system.

For what concerns the radioactive background, the best possible estimation for the
background rate rbkg is its direct measurement and monitoring once the experiment is
set in operation: the background rate can be extracted from a selection of collected data
using Monte Carlo methods, and once an estimate is available, it can be used to define the
parameters of the analysis, as discussed in Sec. 6.3.4. The situation is more complicated
when dealing with the other sources and because of that, in the following, I present other
test statistics beyond Poisson counting, when facing the problem of identifying a neutrino
signal.

6.3.3. Early identification of neutrino signals

The next galactic SN will bring information on physics processes that cannot be studied
in any terrestrial experiment, and the elusive rate of such an event makes this information
extremely valuable. For the first time in history, technologies to detect neutrinos,
gravitational waves, and electromagnetic radiation from SN events are in place. It is of
uttermost importance to record all possible data in the best quality, and to do so, the
SN event needs to be detected as early as possible.
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The Supernova Early Warning System (SNEWS) [92] is an international group of neutrino
sensitive experiments aiming at providing the astronomical community with an early
alerts for SN events. The ability to combine the signals from experiments sited at different
locations on the globe brings several advantages. Firstly, by integrating data from multiple
observatories, it allows to increase the detection sensitivity, especially for weak signals
coming from distant SNe, and improves the accuracy of source localization by analyzing
the time delays and spatial distribution of neutrino detections across the participating
observatories. Secondly, by operating a coincidence trigger between experiments, it
effectively reduces the false alarms, minimizing the likelihood of erroneous alerts due to
background noise or local interferences.

A multi-messenger observing strategy is key to fully exploit the wealth of information
carried away by neutrinos. The neutrino emission starts before the core’s collapse even
begins, meaning that neutrinos can provide an early warning signal. Knowing when and
possibly where to anticipate the signal dramatically improves detection prospects. During
the stellar collapse of the core, the neutrino emission is accompanied by the emission
of GWs. As discussed in [93], the arrival time of the neutrinos can also act as a trigger
for SN, increasing the sensitivity of GW experiments. In addition, an early detection of
neutrinos, and possibly pre-SN neutrinos, can anticipate the electromagnetic burst by
several minutes or days [93].

6.3.4. Statistical tools and data processing

This section discusses approaches for building a triggering system to detect transient
events—such as SNe—based on the real-time data stream of a neutrino detector. Detected
signal events are interspersed with background events that, for now, are considered to
be distributed according to a fixed-rate process, of which the true rate is known. The
top panel of Fig. 6.9 shows an example of the expected count rate in a RES-NOVA like
detector for neutrinos from a SN at a distance of 10 kpc, together with the uniform
expectation of background events. The middle panel shows what an example data stream
could look like, generated from random variates of the expected count rate. The goal is
to find a statistical method that can deliver a yes/no answer in near real-time to decide
whether there was a SN signal present in the data. The false alarm rate (FAR) (i.e., type
I error rate)—as an external constraint to our system—cannot exceed 1 per week, as
required for participation in SNEWS.

A standard way to analyze such time series data is to use fixed or variable length
windows in time, and reduce the task at hand to decide whether the events inside a
window exceed the expected Poisson count from the background rate. If the background
rate is exactly known, and the windows are non-overlapping, the threshold for a given
FAR can be directly calculated from the Poisson distribution. Since such a configuration
depends on the location of the time window edges, often overlapping windows are used.
For 50% overlapping windows, approximations for the calculation of the p-value can be
used. Such overlapping time window Poisson tests represent the current state-of-the-art,
as used, for example, in [95]. Alternative approaches have been proposed, for example,
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Figure 6.9.: Example of a CC-SN signal and Poisson analysis: (top) Expected count
rate for a SN at t = 10 s at distance of 10 kpc, plotted together with a
constant background rate of 0.18 Hz. The considered CC-SN model is taken
from hydrodynamical simulations performed by the Garching group [94] (ref.
name s27_ls220). (middle) Random realization of counts as seen in the
detector. (bottom) Analysis using 50% overlapping windows of 1 s length.
For each window, the Poisson evidence is calculated and indicated with the
black dot for the window extending 1 s into the past. The green line gives a
threshold that would yield a FAR of 1 per 15 days.

with dynamic time windows [96]. The bottom panel of Fig. 6.9 shows the Poisson evidence
for 1 s, 50% overlapping windows for our example, and a threshold value that results in a
FAR of 1 per 15 days.

This type of system has a few parameters, including the background rate rbkg that
can be estimated from background-only data, and the window configuration. There is a
balance between choosing the window size ω large enough so that most of the signal is
contained within the window and at the same time small enough so that signal events will
not be washed out by an additional background contribution. The refresh rate, i.e., how
often is a window analyzed, is another parameter of choice. A refresh rate of 1/ω yields
the configuration of non-overlapping windows, and 2/ω would correspond to the 50%
overlap. In order to retain the freedom of exploring more complicated window choices,
and later also different statistical tests, I first introduce a simulation-based method to
calculate critical values for a desired FAR.
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Computation of critical values

Given a custom test that operates at a certain refresh rate, we can calculate a test
statistic value TS, which for example could be the Poisson p-value itself. However, for
overlapping windows this quantity TS can no longer be interpreted as the p-value of the
test, and its distribution is in general unknown. To make a statistical statement about
TS we need to know, or rather estimate, its cumulative distribution FTS .

The estimation FTS can be obtained using simulated data, producing values of TS for
the detection of neutrinos with a predetermined rate of the background-only scenario.
The simulation cannot be done with independent runs, since this would remove the
important correlations of successive values of TS in consecutive time windows. Therefore,
I simulate an extended run of the experiment and collect the values of TS in a serial
fashion, at least for time scales of the order of a day and below.

Since we are interested in using FTS to construct very low FAR thresholds for our
analysis, we need a good approximation of its distribution for extreme values. This means
in practice that we need to simulate and analyse a very long run of our experiment to
produce enough statistics. In our simulations, I simulate between 25 and 100 years of
background data.

Since the dataset modelling FTS was obtained through simulations, it means that it is
completely dependent on the setup of the simulated experiment, namely the background
rate rbkg, the refresh time tr, the window size ω and the definition of the test statistics
TS. If any of the simulation parameters are changed, the dataset needs to be recalculated.
Out of the parameters listed above only one of them will not be specified by us during the
real operation of the experiment, and that is the background rate rbkg. The estimation
of this parameter is discussed in detail in Sec. 6.3.2, but for now, we can assume that it
is known using a nominal value of rbkg = 0.18 cts/s. Finally, given a model of FTS and a
false alarm interval τfalse, expressed in seconds just like the refresh time, I can derive
the corresponding threshold value TS∗ for the trigger:

TS∗ = F−1
TS

(
tr

τfalse

)
(6.9)

This threshold estimation holds for any possible test TS that can be used to implement
a trigger and is how the thresholds are calculated for all the test statistics I considered.

Trigger evaluation and comparison

Given a specific setup of the experimental parameters tr, ω, and TS, the efficiency of the
trigger can be assessed by evaluating the success rate when it comes to trigger activation
in the presence of signal events. In order to test this, I simulate experiments with injected
events that follow a possible model distribution of neutrinos after a SN explosion, as
shown in Fig. 6.9. Here I present results pertaining to a small selection of neutrino flare
models, although the number of proposed models is abundant in literature and unknown
in reality [66].
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The number of neutrino events λsig is determined by the distance of the SN and after
repeating these experiments a large number of times, I can estimate the fraction of
successful trigger activations (i.e. 1−type II error). Fig. 6.10 shows the maximum
distance to achieve a 95% rate of success for different choices of the window size parameter
ω, as a function of the time after the explosion. The refresh time tr is kept constant at
0.5 s, an indicative value that matches the expected overall throughput of the raw data
processing rate.

Figure 6.10.: The 95% quantile of successful SN detection distance, based on a FAR of
15 days, for different choices of the window size w. The refresh time is kept
constant at 0.5 s.

Examining Fig. 6.10 we notice that around one second after the SN explosion the trigger
starts to activate with a sharp turn on due to SN neutrinos. For very short windows, not
all signal can be contained inside the window and the curve dies down rapidly again. For
larger windows, further distances can be probed, since more of the signal can contribute to
the statistic inside a window. For windows that are too large, however, more background
events are being picked up that deteriorate the performance again. So there is an optimal
window size, for the example in Fig. 6.10 this lies at around 5 s.

Non-parametric Tests as Alternatives to Poisson

In the case of an optimal choice of window size and known background rate, the Poisson
test will, in general, perform well. We have not found any alternative test outperforming
an optimized Poisson test. However, the Poisson test relies on the fact that the background
rate is known or can be reliably estimated from the data. This may not always be the
case, or the background rate can even fluctuate. Furthermore, considering different
signals of various time scales and shapes, or even a priori unknown transient signals, it is
worthwhile to explore alternatives to the Poisson test.

I investigate non-parametric tests as a viable alternative to, or used in combination
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Figure 6.11.: The 95% quantile of successful detection distance for rbkg = 0.18 cts/s,
based on a FAR of 15 days, for different choices of the window size ω. The
refresh time is kept constant at 0.5 s.

with, Poisson. In our application, the null hypothesis is events only from background,
resulting in a flat, i.e. uniform, distribution.

In this study, I have evaluated various statistical tests. To compare and evaluate the
performance of different tests, I consider a simulated experiment with a background rate
of rbkg = 0.18 cts/s, signal expectation of λsig = 29.65 cts at a reference distance of 10 kpc
and a refresh time tr = 0.5 s. I inspect the sensitivity of analysis windows of various sizes
and perform a first screening by filtering for the SNe farthest detected at the 95% success
rate. To guarantee a fair comparison, the trigger thresholds for each test were evaluated
in the same way as the one for the Poisson test, i.e., simulating an extended run of the
experiment assuming a known background rate. For comparisons across different tests,
I condense the information given by success rate curves as in Fig. 6.10 into a single
number corresponding to the maximum distance that can be explored at the set success
rate of 95% for a given test and window size. The results comparing the sensitivity
through a selection of tests are shown in Fig. 6.11. In particular, here are shown the
best-performing test based on the rate (Poisson), the EDF (KS) and spacings (RPS). As
we can see, for short analysis windows, the Poisson test outperforms the others, but as
the window size becomes larger, the KS and RPS tests become more sensitive and yield
better results. Looking at the furthest distance probed by each test for any given window
size, the Poisson test appears to be the most sensitive, with the RPS test as a close
second. Out of the test statistics we studied, the Poisson and the RPS tests excelled due
to their sensitivity, and in the following section we will show that for non-optimal signal
shape, window size, or background rate choices, RPS can in fact outperform Poisson.

Application to prompt detection of SN neutrino emission

Following the previous example of CC-SN neutrino detection, after analyzing different
window sizes ω and different test statistics, the best choice in terms of the farthest
successfully detected SN signal from the one shown in Fig. 6.9 is a window of 5 s analyzed
with the Poisson test. The signal distribution used in this example is just one possible
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signal that we would like to detect with our experiment. A very short list of possible
SN models is available in [97], where 30 models are presented with time distributions
spanning from 0.5 s to 15.4 s. When selecting the correct analysis scheme, i.e., the
window sizes and tests to use, we should also study the robustness of our choice against
multiple models. As an example, I consider an alternative signal distribution, modelling
a neutrino burst coming from a failed CC-SN event that results in the formation of a
black hole, as depicted in the right panel of Fig. 6.12.

Figure 6.12.: Normalized signal distributions for a core-collapse SN (left) and failed CC-
SN (right), for progenitors stars with 27 M⊙ and 40 M⊙ respectively. These
are 1D hydrodynamical simulations performed by the Garching group [94]
and named s27_ls220 and s40_s7b2c.

These models are 1D hydrodynamical simulations performed by the Garching group [94].
They are the same adopted in [85] and named LS220 and failed-SN fast, and they
refer to progenitor stars with 27 M⊙ and 40 M⊙, respectively. In the latter case, the
signal strength that is seen by the detector is λsig = 16.39 cts, weaker than the one
induced by the CC-SN LS220 model and this will result in shorter distances that can
be probed by the detector. I repeat the same analysis previously described, namely,
estimating the maximum distance at which we can reliably detect a neutrino burst with
a 95% success rate, while at the same time considering different values of the background
rate, to account for possibly higher background levels in our experiment. The analysis of
both the CC-SN and the failed CC-SN signals shown in Fig. 6.12 using both the Poisson
test and the RPS test, and the results of this study are shown in Fig. 6.13.

Looking at these results, we notice that for both signals, as the background rate
increases, the 95% detection horizon starts to decrease. Given a fixed background rate,
we notice that, while using the Poisson test, it is possible to achieve the furthest detection
only for a select few analysis windows, while the horizon probed via the RPS test appears
to be much more robust to changes of the window size, an effect that is particularly
visible in the case of the failed CC-SN signal. If we have detailed knowledge of the
background affecting our experiment at any given time, and especially if we knew the time
distributions of all the signals we might detect, then we could select the best combination
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Figure 6.13.: Maximum distance probed at 95% success rate for different background
rates and window sizes. The refresh time is kept constant at 0.5 s. The white
corners in the bottom row plots are due to the high total event expectation
surpassing 103, which is currently the upper limit when it comes to the
parametrization of the RPS test.

of test statistic and window sizes. Looking at the results of Fig. 6.13 it would appear that
the Poisson test is the most sensitive, provided that we have detailed knowledge of both
the background and the signal. Although there are lists of different possible signals, in
order to maximize the detection of all signals we might run a dedicated analysis for each
proposed model. Such an approach would translate in running a multitude of parallel
analysis streams, each with their own optimized window size for a given background
rate. Our objective is to integrate our analysis with the SNEWS alert system; thus,
we must curtail the FAR of our final analysis. If we were to use independent analysis
windows, then the FAR of each analysis stream would have to decrease to account
for the total number of windows, which would discourage having too many of them.
Additionally, such an approach may well not be the best suited one when we consider
the sensitivity of our analysis to unknown signals whose model was not considered
during the development of the analysis scheme. Furthermore, during the operation of
our experiment, the background may realistically experience fluctuations in time, which
could affect the sensitivity of the analysis windows. In order to limit the number of
analysis windows needed, and in order to retain good sensitivity against background
fluctuations or with respect to unknown signals, it is reasonable to consider using few
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analysis streams, each with their own window size and using either the Poisson test or the
RPS test. To gauge the potential and shortcomings of either test, I test the sensitivity of
the analyses optimized against a known signal with a known background against another
signal distribution at different background levels.

Figure 6.14.: Maximum distance probed at a 95% success rate as a function of time
with respect to two sample signals, the Core-Collapse SN and the failed
Core-Collapse SN, obtained using analysis windows optimised on each of
the tested signals.

The results of this study are shown in Fig. 6.14. If we consider a CC-SN signal and a
nominal background rate of 0.18 cts/s, we can select one of the best window sizes for each
test, i.e., the window sizes that allow the detection of the furthest sources. Once a window
has been selected for each test, the background rate is increased and I estimate the new
horizon with 95% trigger success. These results are reported in Fig. 6.14 (top-left) where
we notice that both horizons are decreasing, as expected, while the Poisson one remains
dominant. If instead of the CC-SN signal we try to detect the failed CC-SN signal, while
retaining the CC-SN-optimized windows, in Fig. 6.14 (top-right) we see that the horizon
delivered by the RPS windows is roughly the same as the Poisson one for the nominal
background rate and for higher backgrounds it becomes the better one, meaning that the
RPS analysis proves to be more sensitive to narrower than expected signals compared to
the Poisson analysis. Repeating the same analysis, this time optimizing with respect to
the failed CC-SN signal and then testing against the CC-SN one, we notice that both
analyses are equally sensitive to the latter signal.
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These results, coupled with the overall picture presented in Fig. 6.13, show that the
RPS analysis can be more sensitive than the Poisson one when considering different
signal distributions, as in a real-case scenario, especially when the detector operates in
high background conditions. This shows the advantages of non-parametric test statistics
for the application in a real-case scenario, where the details of the sought-for signal
are unknown and not all the experimental conditions are fully under control: under
these conditions, non-parametric tests tend to be more robust. If on the other hand,
the observations match the expectation of a Poisson process with a known rate and the
correct signal model is considered, then it is hardly surprising that the Poisson test would
be more sensitive, just like a likelihood-ratio approach that considers the correct model
with few degrees of freedom shows the largest rejection of the null-hypothesis, as seen in
Sec. 6.1.2.

Lastly, I would like to point out that these studies were conducted and published
prior to the development of the BSSmin statistic, hence the reason why it is not included.
Nevertheless, looking at the result presented above for the RPS statistic, we notice that
the width of the assumed signal distribution is narrow with respect to the size of the
analysis window that maximizes its discovery. Knowing this, and referencing Fig. 3.11,
we notice that we fall in the category of simulations where the RPS and BSSmin are
equipollent, thus we expect the BSSmin results to be similar to the ones presented here.
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The main topic of this thesis was the study and development of non-parametric goodness
of fit tests for signal discovery and limit setting in one and multiple dimensions.

In the univariate case, I developed new test statistics based on Order Statistics, more
specifically based on spacings (or gaps), which are the intervals between samples in a
given dataset. If an unknown signal is present in a dataset, it could produce clusters of
samples which give rise to small spacings between events in the vicinity of the signal.
The spacings’ distribution can be used to provide more sensitive test statistics, such as
the three novel ones presented in this thesis: the “Recursive Product of Spacings” (RPS),
which at its core considers the product of spacings between samples; the “Best Sum
of Spacings” (BSSmin) which considers the smallest distance comprising k consecutive
ordered samples for all values of k and then selecting the one that is most significant,
i.e. whose p-value is the smallest; the “Best Sum of Ordered Spacings” (BSOSmin)
which considers the sorted set of spacings and selects the most significant sum of k

smallest such elements. Regarding the probability distribution of these test statistics,
I derived analytic closed-form results for the Sum of Ordered Spacings (Appendix A)
and provided a general integral solution for the others (Appendix B). The difficulty of
deriving closed-form results stems from the use of higher-rank spacings (i.e. spacings
between non-consecutive ordered samples), which entail a highly correlated variable
set that proves very difficult to solve analytically as the overall number of samples
grows. Ultimately, a numerical approximation of the cumulative distribution function
is necessary: I discussed an approach based on simulations and a novel estimate of its
statistical uncertainty based on Order Statistics (Appendix C). Given an approximate cdf
of a test statistic, the uncertainty of a p-value estimate p will depend on its absolute value:
the smaller the value of p, the larger its expected relative error since it is more susceptible
to statistical fluctuations during the sampling process. For the discovery-oriented tests,
the approximate distributions I report reach a relative error of approximately 100% for
p-values of the order of 10−7; such a high error is not alarming, since it does not alter
the magnitude of such an extreme quantile.

Additionally, relying on the transformation of a Dirichlet random variable into a set
of independent Beta variables [10], I showed how to transform spacings into a set of
independent Gaussian variables, allowing to perform goodness of fit tests using tests
statistics devoted to the analysis of time-series, such as the RUN statistic [45, 46].

The performance of these proposals was tested and compared against well-known ECDF-
statistics, such as Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and Cramér–von
Mises (CvM). The results of these studies show that the BSSmin test is the best perform-
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ing one, improving the discovery sensitivity by several orders of magnitude for tested
signals (Fig. 3.11). When dealing with narrow signals, the RPS test is as good as BSSmin,
followed closely by the adapted RUN test statistic. Based on these results, I presented
an application of the RPS test to an online trigger for supernova detection in the context
of the RES-NOVA experiment: I discussed how to optimize the analysis in order to
maximize the discovery success rate for the RPS and Poisson tests in the case of an
expected signal distribution and background event rate (νbkg) and then showed that RPS
proves to be more robust than Poisson when analysing an unexpected signal, especially
if affected by higher levels of νbkg (Fig. 6.14).

Apart from signal discovery, I also investigated the application of spacing-based test
statistics to the problem of setting upper limits in the presence of unknown backgrounds.
Interestingly enough, when it comes to spacings, discovery and limit setting appear to
be symmetric problems: small spacings lead to small p-values in the former, while large
spacings yield higher confidence levels to exclude a proposed rate in the latter. In this
light, it is possible to interpret the Optimum Interval method (introduced by Yellin
[1]) as the counterpart to BSSmin, where instead of considering the higher-rank spacing
with the smallest p-value one chooses the one with the largest p-value. Similarly, in this
thesis, I presented two new test statistics, namely the “Best Sum of Ordered Spacings”
(BSOSmax), which is the counterpart of the discovery-oriented BSOSmin, and the “Prod-
uct of Complementary Spacings” (PCS), which can be interpreted as the counterpart
of the Moran statistic. Both these tests leverage the presence of regions in the analysis
window with low event density, regardless of their number or location relative to one
another, to estimate the underlying uniform event distribution in the cumulative space.
These features allow these tests to be viable alternatives for the analysis of rare process
searches that aim to set competitive limits on their parameters of interest, as shown by
the analysis of the spin-independent WIMP-nucleus scattering cross-section obtained
for all methods using the data released from CRESST [61] (Fig. 6.8). Additionally, the
newly proposed tests are the best suited, among non-parametric methods, to setting the
most competitive limits when faced with peaked multimodal backgrounds (Fig. 4.6).

Finally, I tackled the challenging problem of multivariate goodness of fit tests, presenting
two main approaches for such tests: either by considering the volumes identified by each
sample or by taking into account their projections. Based on these, it is possible to
reduce the complexity of the problem and break it down into a series of independent
univariate datasets, which can be analysed using univariate test statistics. The tests
developed with these methods perform an unbinned analysis of the data and do not
need any trials factor or look-elsewhere correction since the multivariate data is analyzed
all at once. These novel methods allow testing for the presence of a signal beyond the
known background expectation, as well as setting a limit on a signal’s event rate in
cases where the background is not well modelled. The sensitivity of these proposals was
tested in the context of mock signal searches (Fig. 5.7-5.8). Similarly, the limit-setting
capabilities of these methods were assessed in simulated rare process searches under
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a variety of background behaviours (Fig. 5.10-5.12). The results of these comparisons
suggest that projection-based tests are better suited for discovery applications, while
volume transformation tests are preferable when seeking to set upper limits.

The use of these tests is made possible thanks to a multivariate probability integral
transformation, which is achieved either analytically in the case of simple models or
numerically, using a Normalizing-Flow for complex models.

The test statistics and methods developed in this thesis hold great promise for further
refinement and broader adoption, even beyond the realm of physics. The development
of user-friendly software tools and packages incorporating these non-parametric tests
would greatly facilitate their adoption by researchers. Most of the tests described in this
thesis are available through the SpacingStatistic.jl [47] software package, which will be
continuously maintained and updated, alongside software implementing Normalizing-
Flows which we are currently developing. Since simple models are difficult to come
by, Normalizing-Flows will assume a critical role in being able to apply the methods I
describe for multivariate goodness of fit tests. For this reason, this is one of my main
research goals beyond the scope of this thesis.
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A. Appendix: Distribution of Sum of
Ordered Spacings

Given n i.i.d. samples Xi, Ui denotes the variables after the probability integral transfor-
mation. Denoting by U(i) the corresponding ordered statistics, Si describes the first-rank
spacings, i.e. the distance between consecutive U(i), and similarly S(i) is the ordered set
of spacings.

Here I provide the analytic form of the distribution for the sum of extreme ordered
spacings, i.e. either the k smallest S(i) or the k largest. This is done both for the
case where the boundaries of the unit interval are included as fictitious order statistics
(U(0) = 0 and U(n+1) = 1), or when only the inner spacings are considered ({S2, S3, ..., Sn).
This Appendix will closely follow [98], where this derivation was first presented.

The starting point of my derivation is the distribution of the smallest ordered spacing
S(1):

Pr{S(1) = x|n,L = 1} = n(n+ 1) [1− (n+ 1)x]n−1 (A.1)

Pr{S(1) ≤ x|n,L = 1} = 1− [1− (n+ 1)x]n . (A.2)

where n indicates the number of samples and L the sum of all spacings, i.e. the length
of the interval. This distribution can be easily derived by induction using a recursive
formula, which allows calculating the probability density function of S(1) given n samples
as follows:

Pr{S(1) = x|n,L = 1} = Pr{S1 = x|n,L = 1} · Pr
{
S(1) ≥

x

1− x

∣∣∣∣n− 1, L = 1

}
+

+

∫ 1−nx

x
Pr{S1 = y|n,L = 1} · Pr

{
S(1) = x

∣∣n− 1, L = 1− y
}
dy =

= n(1− x)n−1

(
1− nx

1− x

)n−1

+

∫ 1−nx

x
n(1− y)n−1n(n− 1)

1− y

(
1− nx

1− y

)n−2

=

= n [1− (n+ 1)x]n−1 +

∫ 1−nx

x
n2(n− 1) [1− y − nx]n−2 dy

= n [1− (n+ 1)x]n−1 + n2 [1− (n+ 1)x]n−1

= n(n+ 1) [1− (n+ 1)x]n−1 (A.3)
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where the distribution of S1 is given by Eq. 2.26.

The sum of the smallest k ordered spacings is defined in Eq. 3.27:

Smin
(k) (n) =

k∑
i=1

S(i).

The distribution of Smin
(k) (n) can be derived by induction.

A.1. Sum of minima: k = 2

Considering Smin
(2) , its joint distribution with the smallest ordered spacing is:

Pr{S(1) = x, Smin
(2) = s|n,L = 1) =Pr{S(1) = x|n,L = 1}·

· Pr{Smin
(2) = s|n,L = 1, S(1) = x} (A.4)

In order to derive an expression for Pr{Smin
(2) |S(1)} we can consider that once we have

chosen the length on the smallest spacing, by definition all the other spacings need to be
longer or equal to this minimum length. We can then proceed to subtract S(1) from the
length of all the other spacings:

S(i) − S(1) = S∗
(i−1) , for i = 2, ..., n+ 1 (A.5)

This operation leaves a reduced set of spacings (since subtracting S(1) from itself results
in 0, do it can be discarded), where the reduced spacings retain their ordering:

{S(1), ..., S(n+1)} → {S∗
(1), ..., S

∗
(n)} (A.6)

and they sum up to:

n∑
i=1

S∗
(i) = 1− (n+ 1)S(1). (A.7)

The set {S∗
(1), ... ,S∗

(n)} can be interpreted as ordered uniform spacings determined by
sampling n− 1 values in an interval of length 1− (n+ 1)S(1). Given this rearrangement,
we can express the sum of k minima using this new set of spacings:

Smin∗
(k−1) =

k−1∑
i=1

S∗
(i) =

k∑
i=1

(S(i) − S(1)) = Smin
(k) − k · S(1) (A.8)
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This allows to rewrite the conditional distribution of Smin
(2) as:

Pr{Smin
(2) = s|n,L = 1, S(1) = x} = Pr{Smin∗

(1) = s− 2x|n− 1, L = 1− (n+ 1)x}

=

(
1

1− (n+ 1)x

)
n(n− 1)

[
1− n(s− 2x)

1− (n+ 1)x

]n−2

.

(A.9)

Putting Eq. (A.1, A.4, A.9) together we obtain:

Pr{S(1) = x, Smin
(2) = s) = (n+ 1)n2(n− 1) [1− (n+ 1)x]n−2

[
1 + (n− 1)x− ns

1− (n+ 1)x

]n−2

= (n+ 1)n2(n− 1) [1− (n− 1)x− ns]n−2 (A.10)

The support of Smin
(2) is

[
0, 2

n+1

]
and the support of Smin∗

(1) with n− 1 samples is
[
0, 1

n

]
,

thus the joint distribution is bound within a triangle as shown in Fig. A.1.

Figure A.1.: Support of the joint distribution Pr{S(1), S
min
(2) }

The distribution of Smin
(2) is obtained by marginalizing Eq.A.10 over S(1):
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Pr{Smin
(2) = s} =

∫ s
2

0
(n+ 1)n2(n− 1) [1 + (n− 1)x− ns]n−2 dx for 0 ≤ s ≤ 1

n

=

∫ s
2

ns−1
n−1

(n+ 1)n2(n− 1) [1 + (n− 1)x− ns]n−2 dx for
1

n
≤ s ≤ 2

n+ 1

=
n(n+ 1)

(n− 1)

([
1−

(
n+ 1

2

)
s

]n−1

− [1− ns]n−1

)
for 0 ≤ s ≤ 1

n

=
n(n+ 1)

(n− 1)

[
1−

(
n+ 1

2

)
s

]n−1

for
1

n
≤ s ≤ 2

n+ 1

(A.11)

A.2. Sum of minima: k

Given the exact distribution of Smin
(2) , it is possible to make a hypothesis regarding the

general distribution of Smin
(k) :

p(Smin
(k) = s|n, 1) = A(k, n)

k∑
i=1

a(i, k)

[
1−

(
n+ 2− i

k + 1− i

)
s

]n−1

·H
(
s, 0,

k + 1− i

n+ 2− i

)
(A.12)

where H(x, a, b) = 1 if a ≤ x ≤ b and 0 otherwise, while the coefficients A(k, n) and
a(i, k) are given by:

A(k, n) =
n(n+ 1)!

(n+ 1− k)k−1(n+ 1− k)!
(A.13)

a(i, k) =
(−1)i−1(k + 1− i)k−2

(k − i)!(i− 1)!
(A.14)

To prove the inductive step we start from the joint distribution of Smin
(k) and S(1):
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Pr{Smin
(k) = s, S(1) = x|n,L = 1} =

= Pr{S(1) = x|n,L = 1}Pr{s∗k−1 = s− kx|n− 1, L = 1− (n+ 1)x}

= Pr{S(1) = x|n,L = 1}
(

1

1− (n+ 1)x

)
Pr

{
s∗k−1 =

s− kx

1− (n+ 1)x

∣∣∣∣n− 1, L = 1

}
= n(n+ 1)A(k − 1, n− 1) ·

(
k−1∑
i=1

a(i, k − 1)·

·
[
1 + x · i(n+ 1− k)

k − i
− s · (n+ 1− i)

k − i

]n−2

·H
(

s− kx

1− (n+ 1)x
, 0,

k − i

n+ 1− i

))
(A.15)

Marginalizing over S(1) we have:

Pr{Smin
(k) = s|n,L = 1} =

∫ s
k

0
Pr{Smin

(k) = s, S(1) = x|n,L = 1}

= n(n+ 1)A(k − 1, n− 1)·

·
k−1∑
i=1

∫ s
k

max
(
0,

s(n+1−i)−k+i
i(n+1−k)

) a(i, k − 1)

[
1 + x · i(n+ 1− k)

k − i
− s · (n+ 1− i)

k − i

]n−2

=
n(n+ 1)

(n− 1)(n+ 1− k)
A(k − 1, n− 1) ·

((
k−1∑
i=1

a(i, k − 1) · (k − i)

i

)
·
[
1− s · (n+ 1)

k

]n−1

−

−
k∑

i=2

a(i− 1, k − 1) · (k + 1− i)

i− 1
·
[
1− s · (n+ 2− i)

k + 1− i

]n−1

·H
(
s, 0,

k + 1− i

n+ 2− i

))
(A.16)

Looking back at Eq. A.13 notice that:

n(n+ 1)

(n− 1)(n+ 1− k)
A(k − 1, n− 1) =

n(n+ 1)

(n− 1)(n+ 1− k)
· (n− 1)n!

(n− k − 1)k−2(n− k − 1)!

=
n(n+ 1)!

(n+ 1− k)k−1(n+ 1− k)!

= A(k, n) (A.17)

and:
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−a(i− 1, k − 1) · (k + 1− i)

i− 1
= −(−1)i−2(k + 1− i)k−3

(k − i)!(i− 2)!
· (k + 1− i)

i− 1

=
(−1)i−1(k + 1− i)k−2

(k − i)!(i− 1)!

= a(i, k) for 2 ≤ i ≤ k

(A.18)

The result of Eq. A.18 implies a recursion formula for the coefficients a(i, k) = f [a(i−
1, k − 1)]. Making use of this recursion we can relate any a(i, k) to a(1, k + 1− i):

a(i, k) =
(−1)i−1(k + 1− i)i−1a(1, k + 1− i)

(i− 1)!
(A.19)

Finally, we have that:

k−1∑
i=1

a(i, k − 1) · (k − i)

i
=

k−1∑
i=1

(−1)i−1(k − i)i−1a(1, k − i)

(i− 1)!
· (k − i)

i

= −
k−1∑
i=1

(−1)i(k − i)ia(1, k − i)

i!
(A.20)

For Eq. A.16 to satisfy the hypothesis, it is necessary that:

k−1∑
i=1

a(i, k − 1) · (k − i)

i
= a(1, k) (A.21)

Putting together Eq. A.20 and Eq. A.21, we find a recursion rule for the coefficients of
a(1, k). Using this recursion, we get:

−
k−1∑
i=1

(−1)i(k − i)ia(1, k − i)

i!
= −

k−2∑
i=1

ik

(i+ 1)
· (−1)i(k − 1− i)ia(1, k − 1− i)

i!

= −
k−m∑
i=1

i · km−1(−1)i(k −m+ 1− i)ia(1, k −m+ 1− i)

(m− 1)!(i+m− 1)i!
for 1 ≤ m ≤ k − 1

=
kk−2

(k − 1)!
· a(1, 1) = a(1, k) (A.22)

where we have used Eq. A.21 to express the first factor in each of the sums, allowing us
to reduce the limits of the sum by means of this recursion. The result we obtain proves
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A.3. Sum of largest ordered spacing

the consistency of the recursion relation, proving the consistency of the initial hypothesis.

The cumulative distribution function of Smin
(k) is:

Pr{Smin
(k) ≤ x|n,L = 1} =

=
A(k, n)

n

k∑
i=1

a(i, k)(k + 1− i)

(n+ 2− i)

(
1−

[
1−

(
n+ 2− i

k + 1− i

)
x

]n
H

(
x, 0,

k + 1− i

n+ 2− i

))
(A.23)

A.3. Sum of largest ordered spacing

Since the sum of all the spacings is 1, knowing the sum of the k smallest spacings allows
us to know the value of the sum of the largest (n+ 1− k) spacings:

Smax
(k) =

k∑
i=1

S(n+2−i) = 1−
n+1−k∑
i=1

S(i) = 1− Smin
(n+1−k) (A.24)

which implies that:

Pr{Smax
(k) = s|n,L = 1} = Pr{Smin

(n+1−k) = 1− s|n,L = 1} (A.25)

thus the probability and cumulative density functions are:

Pr{Smax
(k) = s|n, 1} =

= A(n+ 1− k, n)
n+1−k∑
i=1

a(i, n+ 1− k)

[
s(n+ 2− i)− k

n+ 2− k − i

]n−1

H

(
s,

k

n+ 2− i
, 1

)
(A.26)

Pr{Smax
(k) ≤ s|n,L = 1} =

A(n+ 1− k, n)

n

n+1−k∑
i=1

a(i, n+ 1− k)(n+ 2− k − i)

n+ 2− i
·

·
[
s(n+ 2− i)− k

n+ 2− k − i

]n
H

(
s,

k

n+ 2− i
, 1

)
(A.27)

where the coefficients A and a are the same as Eq. A.13-A.14.
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A.4. Excluding boundaries

So far, the boundaries of the unit interval, 0 and 1, have been included in the set of
samples as fictitious events, U(0) = 0 and U(n+1) = 1. This means that in all previous
derivations we considered an effective population of n+2 values, where U(n+1)−U(0) = 1

and the remaining n values determine the spacings Si.
This approach introduces some possibly unwelcome artifacts in the analysis of spacings
data. For example, if we shift all the inner n values slightly towards one of the boundaries,
then:

{U(1), ..., U(n)} → {U(1) ± ϵ, ..., U(n) ± ϵ} =⇒ S1 ± ϵ, Sn+1 ∓ ϵ (A.28)

Depending on the application, it is possible that one is interested only in the spacings
between the inner n values, without considering how close this set is to either boundary.
Therefore, distributions of known test statistics that exclude the boundaries might be of
interest.

In this scenario, we will derive the spacing statistic of only the inner spacings
{S2, ..., Sn}, thus U(1) and U(n) become the new boundaries:

{U(1), ..., U(n)} → {U †
(0), ..., U

†
(n−1)} → {S†

1, ..., S
†
n−1} → {S†

(1), ..., S
†
(n−1)}. (A.29)

This means that given n values in the no boundary scenario, we have an effective popula-
tion of n− 1 spacings in an interval with length X(n) −X(1) = X†

(n−1) −X†
(0) = ℓ.

Given ℓ, we can reuse the same distribution of a quantity we have studied with the
presence of the boundaries decreasing the number of spacings from n+ 1 to n− 1 and
by rescaling the support of the distribution to an interval of length ℓ by means of the
change of variable rule.
Looking at ℓ we notice that it is none other than the spacing between the extremes of
the ordered values and its distribution is given by Eq. (2.24).

Given n values, a quantity of interest A and its distribution with boundaries fw.b.(A =

x|n,L = ℓ), in order to derive the distribution of A without boundaries, fn.b.(A =

x|n,L = 1), we have to marginalize over all possible values of ℓ:

fn.b.(A = x|n+ 1, L = 1) =

∫ 1

0
p(ℓ) · fw.b.(A = x|n− 1, L = ℓ)dℓ

=

∫ 1

0
n(n− 1)ℓn−3(1− ℓ) · fw.b.

(
A =

x

ℓ

∣∣∣n− 1, L = 1
)
dℓ

(A.30)
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B. Appendix: Distribution of extreme sum
of Spacings

Here I present a general integral solution to the distribution of test statistics based on
spacings, including functions of spacings such as mini,j f(Si,j) or maxi,j f(Si,j). In the
example below, I consider the distribution of the smallest spacing of rank k, Smin

k , whose
cumulative distribution can be expressed as:

Pr{Smin
k ≤ x} = 1− Pr{Si,k ≥ x ∀i} (B.1)

where the RHS is a joint probability over all spacings of order k, which are not independent
of one another.

To derive this distribution, we can resort to the transformation of spacings into
independent random variables, in order to better express the constraint relative to the
minimum or maximum of a population being respectively greater or less than a specific
value. Referencing Sec. 2.5.3, we consider the transformation (Eq. 2.55) of the spacings,
Si, in independent Beta variates, Bi, which allows us to express the general spacings Si,k

as follows:

S1,k =

k∑
j=1

Sj =

k∑
j=1

(1−Bj) ·
j−1∏
t=1

Bt = 1−
k∏

j=1

Bj

Si,k =
i+k−1∑
j=i

Sj =
i+k−1∑
j=i

(1−Bj) ·
j−1∏
t=1

Bt =

i−1∏
j=1

Bj

1−
i+k−1∏
j=i

Bj


...

Sn+2−k,k =

n+1−k∏
j=1

Bj . (B.2)

This allows us to rewrite the RHS of Eq. B.1 as a system of independent inequalities:

Si,k ≥ x ∀i ≡


1−∏k

j=1Bj ≥ x(∏i−1
j=1Bj

)(
1−∏i+k−1

j=i Bj

)
≥ x

...∏n+1−k
j=1 Bj ≥ x

(B.3)
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B. Appendix: Distribution of extreme sum of Spacings

In order to calculate Pr{Si,k ≥ x ∀i} we can simply integrate over the joint probability
distribution of {Bi} satisfying the constraints of Eq. B.3. Since the Bi variables are
independent, their joint probability distribution is just the product of the individual Beta
distributions, thus:

Pr{Si,k ≥ x ∀i} =

∫
constr.

n∏
j=1

(n+ 1− j)bn−j
j db1...dbn (B.4)

This integral is easy to calculate for reasonably small values of n, but it quickly becomes
complicated as n increases. The integrand of Eq. B.4 is polynomial, thus easy to integrate,
but the system of constraints is not easy to linearize, especially since each Bi variable is
limited to the range [0, 1], meaning that the extremes of integration will change depending
on the value of x and clipped to either 0 or 1 when outside the support of the Beta
distribution.

One way of solving this integral would be to derive all intervals that satisfy the
constraints of Eq. B.3 using Cylindrical algebraic decomposition and then solve the
integral using symbolic integration, given that we only deal with polynomial functions.

A numerical approach to the estimation of Eq. B.4 would be that of using Monte-Carlo
integration: we consider the joint distribution of Bj as the prior distribution and use
a simple likelihood equal to 1 when all proposed Bj variables satisfy the constraints
and 0 otherwise. Given this setup, we can use the Bayesian evidence to estimate the
value of the integral, using MC integration routines such as Adaptive Harmonic Mean
Algorithm [99], Bridge Sampling [100] or many others. If the value x at which the
CDF, thus the integral, needs to be calculated is small, then it might be difficult to
randomly find a good point in the prior space that yields a likelihood of 1. In such
cases, a good starting point for the MC chains can be the list of Beta variables cor-
responding to a set of n+1 equal spacings, which always satisfy the constraints of Eq. B.3.

An alternative approach to the estimation of the desired p-value, Eq. B.1, would be to
consider the transformation of spacings Sj into independent Exponential variates Yi, as
shown in Sec.2.5.1. Assuming we knew that the sum of all Yi was equal to T , we could
start expressing the conditions of the RHS of Eq. B.1 in terms of Yi:

Si,k ≥ x ∀i ≡



∑k
j=1 Yj ≥ x∑i+k−1

j=i Yj ≥ x

...∏n+1−k
j=1 Yj ≤ T − x∑n

j=1 Yj ≥ T

(B.5)

where the last inequality is due to the constraint on the sum of all Yi being equal to T .
Since the variables Yi are independent of one another, we could rewrite a similar integral
to Eq. B.4:
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∫
constr.

n!t−n dy1...dyn (B.6)

where the integrand is the joint distribution of Yi conditioned on their sum, from Eq. 2.43.
The integral of Eq. B.6 is not equal to the p-value we seek, but is necessary for its
estimation, and appears easier to solve since the constraints that limit it are all linear
and since the integrand is independent of the integration variables. This means that in
order to solve the integral above we need “only” compute the volume of a n-dimensional
convex polytope, which even if the faces are explicitly given, as is our case, is still a
#P-hard problem.

This shows that solving Eq. B.6, or equivalently Eq. B.4, is not an easy task. Moreover,
even if we were able to find a closed-form solution of Eq. B.4, this would end up being
polynomial, given the nature of its integrated, and in such cases it is not assured that
the solution can be computationally easy to use for large values of n, because it might
rely on the difference of very large numbers, an operation that is prone to numerical
cancellation when using floating-point arithmetic. This very case arises when using the
exact distribution formulae of the Sum of Ordered Spacings derived in Appendix A:
considering Eq. A.23, the sign of the factors inside the sum changes depending on the
parity of the index, and the absolute value of the factors can grow as an exponential of
k, the rank, which is k ≤ n.

Since we do not have a closed-form solution for the p-value we seek, I built an
approximation for the cumulative distribution of Smin

k (n), precise enough to compute
meaningful p-values up to relatively extreme values as 10−8, and sample sizes n of up to
1000. Finally, the distribution of BSSmin will also be approximated numerically, similarly
to the distribution of the RPS test. The approximations are based on simulations, and
details about the fitting procedure are described in Appendix C.
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C. Appendix: Numerical interpolation of
approximate distributions

Most of the test statistics I consider in this thesis are functions of higher rank spacings
Si,k (k > 1), which tend to produce a set of highly interdependent variables that renders
the usual formulations of their cumulative distribution hard to untangle and solve for, as
seen in Appendix B.

In order to use these tests, I resort to numerically approximating their cumulative
distributions, with the goal of computing meaningful p-values of up to 10−7 or 10−8 for
signal-discovery applications and up to 10−6 for limit setting applications.

In the following, I consider the RPS statistic to show the approximation and fitting
procedure for test statistics that develop over only one dimension (RPS(n) has only n,
the number of observed samples, as a degree of freedom). The approximation and fitting
procedures are discussed in Sec. C.1 and Sec. C.2 respectively. In Sec. C.3 I discuss the
error of the p-value estimates produced by these approximate distributions. The same
approximation and interpolation procedure of the RPS statistic is used to produce the
distributions of BSSmin, BSOSmin and BSOSmax, given the distributions of Smin

k , Smin
(k)

and Smax
(k) , which are discussed in Sec. C.4. This discussion will closely follow [25], where

it was initially reported.

C.1. Approximate Distribution

The approximation of the RPS statistic is based on simulations: events with uniform
distribution in the [0, 1] range are drawn for a given n, collecting N = 2 · 108 samples
of RPS∗(n). Such simulation could be directly used to calculate p-value estimates by
counting the fraction of trials below or above an observed RPS∗ value x for a fixed n.
However, the goal is to provide a continuous and smooth function valid for any n ≤ 1000.
For this, I use simulated data to infer the values x of our test statistics corresponding to
a discrete list of specific quantiles p ∈ [10−7, 1− 10−7]. Taking the i-th element in the
sorted simulation set gives an estimate for the value of x(p = i/N). In order to improve
this estimate, we could use bootstrapping [101], collecting different realisations of x by
resampling the original dataset with replacement, resulting in a distribution of values
of x for each p, from which we can then extract the mean and the standard deviation,
indicative of the error (see Fig C.1). Instead of manually performing the bootstrapping,
we can calculate the probability of each sample x to represent a specific quantile p if
we were to sample randomly with replacement. For simplicity, let us consider rational
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quantiles that can be expressed in the form p = k
N ; the probability that the i-th sample

could end up representing the k-th quantile is:

πk,i = FB

(
i

N

∣∣∣∣ k,N + 1− k

)
− FB

(
i− 1

N

∣∣∣∣ k,N + 1− k

)
(C.1)

where FB(t|a, b) is the cumulative function of the Beta distribution with parameters (a, b)
estimated at t. The distribution Beta(k,N + 1− k) represents the k-th order statistic
of the uniform distribution [4], i.e. the k-th smallest element of a set on N uniformly
distributed random variable. Eq. C.1 corresponds to the limiting case of performing an
infinite number of bootstrapping steps and can be used to quickly estimate the mean
and standard deviation of all x(p) for a choice on n, especially when dealing with large
datasets:

E

[
x

(
k

N

)]
=

N∑
i=1

xi · πk,i (C.2)

Std

[
x

(
k

N

)]
=

√√√√ N∑
i=1

(
xi − E

[
x

(
k

N

)])2

· πk,i. (C.3)

It would be inefficient to produce such simulation for any n, and hence I repeat the above
procedure for only 180 different choices of n between 2 and 1000 following approximately
a logarithmic spacing.

C.2. Fitting procedure

Using Eq. C.2 and Eq. C.3 we are able to define a grid of points with mean µ(n, p)

and standard deviation σ(n, p). The goal is to estimate a set of points x̂(n, p), used
to interpolate and infer the distribution of the test statistic for all values of n and p

defined above. The points x̂(n, p) are allowed to deviate from the means µ(n, p) within
the uncertainties σ(n, p), and can thereby provide a more accurate approximation by
smoothing out stochastic noise. Additionally, points from the analytic solution for n = 1

(Eq. 3.23) are added to the list as anchor points at the boundary.
Given a trial set x̃(n, p), I interpolate a cubic spline polynomial across the values of n

for each value of p, similarly to the fits shown in Fig C.1. Given one such cubic spline,
I evaluate the third derivative on both sides of each node, calculating the square of
their difference and summing up across all nodes. Since we are using cubic splines, the
third derivative is not continuous, and the "size" of the discontinuity is indicative of the
smoothness of the interpolation. Summing up the contributions form all nodes of all cubic
splines constructs the smoothing cost function. The construction of this cost function is
based on [102, 103, 104], where smoothness is treated very similarly. The estimation of
the cubic spline coefficients and the evaluation of the smoothness cost function can be
represented as a quadratic objective function, which we want to minimize:
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C.3. Error estimation

G(x̃) ∝ 1

2
x̃T ·Q · x̃+ h̄T · x̃ (C.4)

In addition to obtaining a smooth fit, there are also some additional constraints that
need to be considered: monotonicity and sum of squared residuals.

Since the samples x̃(p|n) should represent a cumulative density function, then it is
important they are properly ordered, ensuring that x̃(pi|n) ≤ x̃(pj |n) for i ≤ j. This
is ensured by including a number of linear inequality constraints modelled as a linear
constraint matrix:

A · x̃ ≤ b (C.5)

Lastly, we assume that the values x̃(n, p) are normally distributed with means µ(n, p)

and standard deviations σ(n, p). Since we want to move away from the initial values
µ(n, p) to obtain a smoother fit, it is important to limit this movement the further away
we get. We do so by considering the sum of squared residuals, which is a typical measure
to account for the global deviation from the mean. Since we assume gaussian deviations,
the sum of all squared residuals can be modelled by a χ2 distribution with m degrees of
freedoms, where m is the total number of parameters, i.e. the number of nodes. Given
this distribution, we can estimate the value of the cost function to be limited to the mean
(m) plus one standard deviation (

√
2m) of the χ2 distribution, thus:

m∑
i=1

(x̃i − µi)
2

σ2
i

≤ m+
√
2 ·m (C.6)

Fig. C.1 shows a fitted spline representation of x̂(n|p) for different values of p. Based
on the resulting list of corresponding p and x̂ values, that we obtained for any n, we
generate another spline interpolation as the approximation of the desired cumulative
distribution F (x̂;n) for a given n. As the cumulative distribution function F is strictly
monotonous in x̂, we use the [105] monotonic spline interpolation on the points [x̂(p|n), p]
to produce the final CDFs, shown in Fig. 3.7 for a few values of p.

C.3. Error estimation

Finally, we are also able to estimate the precision of our approximation. Given any set
of i.i.d. random variables, such as x, the corresponding list of estimated quantiles p

represents a random set of uniform variates. For any rational quantile ptest =
k
N we can

estimate it 98% credible interval [p0.01(ptest), p0.99(ptest)] using the distribution of the
k-th order statistic Beta(k,N + 1− k):
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Figure C.1.: Example of spline fitted x-values across n for a few extreme p-values. The
colored bands show the 1, 2 and 3 sigma bands estimated via bootstrapping,
the black, dashed lines show the approximations by the spline fits.

p0.01

(
k

N

)
= F−1

B (0.01|k,N + 1− k)

p0.99

(
k

N

)
= F−1

B (0.99|k,N + 1− k) (C.7)

where F−1
B is the inverse of the cumulative distribution Beta(k,N + 1− k). Given this

credible interval, we calculate the relative error of ptest against the extrema of the interval,
considering the largest value representative of the relative error of a random ECDF up
to a specified credible level. The results of the estimated relative error for our choice of
N = 2 · 108 and for quantiles as low as p = 10−7 are shown in Fig. C.2.

As expected, the errors are increasing towards smaller p-values and exhibit an approxi-
mately linear behaviour in the log-log plot. We see that the estimated upper bound of the
relative error for a p-value of 10−3 is below 1%, while for a p-value of 10−5 it increases to
< 10% and ultimately to < 100% for p-values of 10−7. Such a "large" relative error for
small p-values may sound alarming at first, but estimating a p-value of 10−7 and knowing
it could actually be closer to 2 · 10−7 would hardly change the statistical interpretation
of a result.

In order to show the validity of these results, we compute the relative error of our
approximate distributions against a test dataset containing 10 times more samples using
bootstrapping. We do so for a few choices of number of events n, and in Fig. C.3 it
can bee seen that the behavior of the relative error is in complete agreement with our
analytic estimates of Fig. C.2.

So defined, the relative error δ(p|N) is a function of the quantile p and number of
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C.3. Error estimation

Figure C.2.: Estimated relative error of empirical p-value with respect to the 98 % credible
interval and 2 ·108 samples. The vertical axis reports the scale of the relative
error in percent for two extremes, the 1% and the 99% quantile of the order
statistic distribution.

Figure C.3.: Estimated relative error of fitted p-value with respect to p-values obtained
via bootstrapping. The vertical axis reports the scale of the relative error in
percent for two extremes, the 1% and the 99% quantile of the bootstrapping
distribution. Results for n = 75.
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samples N , but this relationship can also be inverted in order to determine the number
of samples necessary to achieve a desired relative error for a specific quantile: N(p|δ).
Our choice of N = 2 · 108 was in fact guided by the requirement of having a relative error
lower than 100% for a p-value of 10−7 in at least 99% of cases.

It is worth stressing that these estimates of the relative error are accurate with
respect to the ECDF that was sampled for each independent n, but might be subject to
small changes after the smoothing fit we performed in order to regularize and infer the
distributions for all missing values of n.

C.4. Interpolation over n and k

So far, I discussed the fitting procedure only in one dimension, i.e. for test statistics of
the form T (n), where only the number of samples n is varied.

When considering the distribution of statistics such as the smallest or largest higher
rank spacings, Smin

r (n) and Smax
r (n) respectively, we notice that they develop along two

dimensions, the number of samples n and the rank r, thus a slightly different fitting
procedure is needed for these quantities.

For a given n and r, the approximate distribution of Smin
r (n) is obtained as described

above, by means of repeated simulations, which yield an estimate of the average position
of the test statistic value µ(n, r, p) and its standard deviation σ(n, r, p) for different
p-values p. Considering the subspace (n, r), we notice that this region is not rectangular,
but triangular, since r ≤ n. The result of sampling this triangular region at selected
values of n and r(n), produces an irregular triangular grid, such as the one shown in
Fig. C.4. Due to this, we cannot resort to a simple bicubic interpolation scheme on an
irregular grid as we did before but would need to resort to finite element interpolation
over triangular elements. This approach would yield an approximate surface for each
value of p, over which it would be possible to calculate the derivative at each node and
produce a smooth fit using a cost function similar to Eq. C.4. This approach can be
computationally intensive, and during testing, I noticed that high numerical precision is
required not to produce artefacts in the final result. In order to simplify the problem,
one could consider applying the smoothing only to surfaces corresponding to extreme
p-values, since those are the ones where the statistical noise is more prominent.

In first approximation, I adopt the values µ(n, r, p) as our estimates of the test statistic
value regarding the Smin

r (n) statistic, whose approximations rely on 2 · 109 samples,
allowing to estimate p-values as low as 10−8, and reducing the statistical uncertainty on
p-values above 10−7.

Given a list of quantiles p̄ = {p1, ..., pW }, a list of number of samples values n̄ =

{n0, n1, ..., nV } and for each ni a corresponding list of rank values r̄ i = {ri,1, ..., ri,j ...}, the
approximate distibution of Smin

ri,j (ni) is collected. We refer to the estimated test statistic
value of these approximations as xnode(n, r, p). In order to construct the approximate
distribution of Smin

b (a), we need the test statistic values x(A,B, p) for each quantile in
p̄, indicated as xres in red in Fig. C.4. For a given value of p, for each value of ni, the
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Figure C.4.: Interpolation of test statistic value for a given p-value based on a triangular
grid.

values xnode(ni, r̄ i, p) can be use to calculate a set xhelp(ni, r(ni), p) such that all points
(ni, r(ni)) lie on the same line as (1, 1) and (A,B), as shown in blue in Fig. C.4. The
values xhelp are calculated interpolating along each row of ranks, r̄ i for each ni ∈ n̄ ;
the interpolation is carried out with a cubic spline just like the described for the RPS
statistic above. The values r(ni) need not be integers, since they are just auxiliary
variables in this fit. Finally, the value of xres is obtained by interpolating across the
auxiliary variables xhelp. To recap, this triangular interpolation procedure relies on the
initial grid of points xnode(p) to calculate a list of auxiliary variables xhelp(p), which
then is the base of a second interpolation that yields the value of xres(p), all of this
for each quantile p ∈ p̄. As a note, the values of xnode(ni, 1, p) and xnode(ni, ni, p) can
be calculated analytically (the former from Eq. A.2, the latter can be easily derived)
and used during the interpolation to improve the estimates for extreme ranks. This
interpolation scheme is depicted in Fig. C.4.

Such an interpolation scheme is also used to produce an approximate distribution
for the Sum of Ordered Spacings. Although I derived the exact distribution for Smin

(k)

and Smax
(k) , their cumulative distributions are not numerically stable for large values of

n. For example, considering Eq. A.23, the sign of the factors inside the sum changes
depending on the parity of the index, and the absolute value of the factors can grow
as an exponential of k, the rank, which is k ≤ n. This leads to numerical cancellation
when n and consequently k become large. In order to accurately use this formula one
needs to use increased precision floating-point arithmetic, which can become costly both
in terms of memory and time when calculating a test statistic like BSOSmax, which
entails calculating Smax

(k) for all k. In the case of Smin
(k) or Smax

(k) , we do not need to rely
on simulations, but can use the exact distribution to find the exact value for xnode. Thus
the “approximation” comes only from the interpolation procedure, not the sampling.
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D. Appendix: Normalizing Flows

A Normalizing Flow (NF) is a chain of transformations used to convert a complex proba-
bility distribution into a simpler one, for example, into a Standard Normal distribution,
hence the name. Normalizing Flows, first introduced by Tabak and Vanden-Eijnden [106],
are built using Deep Neural Networks and trained on samples of the target distribution,
ensuring the following:

• the input and output dimensions of samples are the same

• the transformation is bijective and invertible

• efficient (and differentiable) computation of the determinant of the Jacobian of the
transformation.

Normalizing Flows are mainly used as generative models, since drawing samples from
the Standard Normal distribution is easy and transforming them (backwards) yields i.i.d.
random variables distributed according to the target distribution.

Such a feature is particularly useful in the context of Bayesian inference when running
an MCMC. Using a Normalizing Flow allows to run Markov Chains in the transformed
space, where the distribution is already Gaussian, thus no particular tuning or special
choice of proposal function is necessary. This would especially prove useful in simplifying
integration problems, such as the Evidence estimation, necessary to calculate Bayes
Factors.

Other common uses of Normalizing Flows include clustering and classification [107],
density estimation [55, 108, 109, 110], and variational inference [111].

Density estimation is particularly interesting since it offers a way of learning the
distribution of data as long as a generative model is available. Given a set of samples
{x1, ..., xn}, one could resort to fitting the distribution if their probability density function
fX is unknown. However, even in this case, one still needs to calculate the integral of
the distribution to normalize fX properly. Such an integration is often a highly complex
or impossible task to be carried out in the original space, but it becomes tractable using
Normalizing Flows.

To achieve this, consider a random variable Y with a known and tractable probability
density function fY and consider an invertible and differentiable bijection T such that
y = T (x). Using the change of variable formula, fX(x) can be expressed as:

fX(x) = fY (T (x)) · |det(JT (x))| (D.1)
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where JT denotes the Jacobian of the transformation T .
Given a set of samples from the complex target distribution fX it is possible to train

the Normalizing Flow and learn the transformation T , at which point the calculation of
fX(x) becomes trivial given the expression above.

The limitations on the efficiency of Normalizing Flows in the applications described
above come down to the efficacy and flexibility of the transformation T used to transform
the actual data. Research into Normalizing Flows is progressing at an accelerated pace,
and many approaches are proposed in the literature to tackle this problem. For a detailed
review of recent methods, see [112].

The method we decided to implement in our work is proposed by Papamakarios et
al. [56]. In their method, they combine coupling transforms and special piece-wise
defined Spline functions to achieve an element-wise data transformation. In the coupling
transforms, the transformation of a subset of components of a sample xi depends on the
value of another subset of components of xi, thus embedding the inherent correlations
among dimensions in the data transformation. Additionally, the transformations are
defined as piece-wise functions, specifically monotonous rational quadratic splines, which
are bijective and invertible. Such a definition of the transformation is ideally suited to
be implemented as a Neural Network.

In our group, collaborating with Prof. Dr. A. Caldwell, Dr. O. Schulz, Dr. V. Hafych and
M. Dudkowiak, we have produced a Julia implementation of a Spline Normalizing Flow.
We are currently investigating their use to transform complex or multimodal probability
distribution functions, using space-partitioning [113], and including the Normalizing Flow
in an MCMC as a sampler, in order to train the NF and perform Bayesian inference at
the same time. Once trained, the NF would contain the full description of the posterior
distribution and could be made available or shared with other collaborators in order to
include it as a prior in future analysis. More details on our implementation and use of
Normalizing Flows for Bayesian inference will be available in M. Dudkowiak’s Bachelor
thesis.
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