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Abstract: Although voxel models have been applied to address diverse problems in computer-aided
design processes, their role in multi-domain data integration in digital architecture and planning has
not been extensively studied. The primary objective of this study is to map the current state of the art
and to identify open questions concerning data structuring, integration, and modeling and design
of multi-scale objects and systems in architecture. Focus is placed on types of voxel models that are
linked with computer-aided design models. This study utilizes a semi-systematic literature review
methodology that combines scoping and narrative methodology to examine different types and uses
of voxel models. This is done across a range of disciplines, including architecture, spatial planning,
computer vision, geomatics, geosciences, manufacturing, and mechanical and civil engineering.
Voxel-model applications can be found in studies addressing generative design, geomatics, material
science and computational morphogenesis. A targeted convergence of these approaches can lead to
integrative, holistic, data-driven design approaches. We present (1) a summary and systematization
of the research results reported in the literature in a novel manner, (2) the identification of research
gaps concerning voxel-based data structures for multi-domain and trans-scalar data integration in
architectural design and urban planning, and (3) any further research questions.

Keywords: voxel; computer-aided design; volumetric modeling; data-integrated-design workflows;
review; bibliometric analysis

1. Introduction

Computer-aided design (CAD) emerged in the 1950s at the intersection of the com-
puter and engineering sciences. Today, it bears central importance in the disciplines of
engineering informatics and architectural design and urban planning. CAD is defined as
“the use of computers to aid in the creation, modification, analysis, or optimization of a
design” (Lalit Narayan et al., 2013, p. 3) [1].

Voxel models emerged in the computer science field in the 1960s and their initial ap-
plications in the field of CAD were studied in the late 1980s by Granholm (Granholm et al.,
1987) and Jense (Jense et al., 1989) [2,3]. Voxel models are referred to as “spatial-knowledge
representation schemata” (Srihari, 1981) [4], implying that they can serve as spatial data
structures to encode the knowledge utilized in knowledge-based design processes. This re-
view examines the existing applications of voxel models in the fields of architecture, spatial
planning, computer vision, geomatics, geosciences, manufacturing, and mechanical and
civil engineering, to identify their possible role in interdisciplinary and knowledge-based
design processes.
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Section 1.1 outlines the scope of this review. The first paragraph outlines the problem
statement and research delimitation. The second paragraph discusses the aim and rationale
of this literature review. The third paragraph introduces the research aims followed by the
research objectives. This semi-systematic literature review is structured chronologically.
Based on the chronological order, Section 1.2 identifies the early definitions of voxels, to
establish the review context. Section 1.3 highlights the current state-of-the-art applications
of voxel models in the field of engineering sciences. Section 1.4 describes how key parame-
ters for this semi-systematic literature review were selected. Section 1.5 shows how key
parameters were translated into a methodological approach. Section 2.1 describes the data
collection, search, and selection processes and eligibility criteria. Section 2.2 presents the
narrative review methodology. Section 2.3 introduces the scoping-literature-review method-
ology. Finally, Sections 2.3.1–2.3.5 report details describing the method implementation
developed for this semi-structured review required to assure research transparency.

1.1. Outline of the Review Scope

Today, voxel models are used in various scientific fields to study man-made and
natural artifacts [5–7]. This is often carried out in relation to the spatial context and
environment [8–10]. Adopting this approach in architectural design and urban planning can
help to advance the addressing of interdisciplinary design problems, such as increasingly
complex sustainability requirements [11,12]. However, the digital-architecture and urban-
planning context lacks multi-domain data integration approaches and data structures that
can facilitate the embedding and visualization of the spatial representation of knowledge
in computer-aided urban planning or architectural-design processes. This article focuses
on the potential role of voxel models as “spatial-knowledge representation schemata”
(Srihari, 1981) [4] to address this gap. This involves examining voxel models as multi-
domain data structures for architectural design and urban planning. More specifically,
this paper addresses voxel applications in computer-aided design related to architectural
design and spatial planning, covering a wide range of voxel model applications, spanning
design, simulation, and the analysis of architectural objects across scales.

Literature reviews focusing on the voxel concept in relation to CAD processes are
sparse. Recent thematic reviews focused on the voxel applications for the structural analysis
of CAD models [5], four-dimensional (4D) printing [6], and additive manufacturing [7].
The potential of voxel models in the CAD field was stated in one of the earliest literature
reviews addressing these models [3]. The first literature review addressing application of
voxel models in CAD conducted by Jense (Jense, 1989) discussed applications, including
prosthesis design and interactive surgical and tool path planning in digital manufacturing
processes. Historically, possible voxel model applications were derived from 3D data
sources available at that time, such as computed tomography (CT) and magnetic resonance
imaging (MRI). At present, 3D scanning techniques, such as photogrammetry, time-of-flight
cameras, and light detection and ranging (LiDAR) are widely adopted across a wide range
of scientific disciplines. These technologies can be used to three-dimensionally capture
objects that differ in scale by orders of magnitude. At the same time, LiDAR sensors are
utilized in the computer vision discipline to capture objects commonly found in building
interiors and urban scenes. These technological advancements led to the emergence of novel
voxel model applications in CAD, in the construction industry [8], solar radiation modeling
in forested areas [9] and in species distribution modeling [10]. However, an interdisciplinary
semi-systematic literature review that integrates the elements of bibliometric analysis to
scope different voxel applications has not yet been conducted. While significant amounts
of research concerning the voxel model application in medical sciences exist, a detailed
comparison between the application of voxel models in medical studies and in the CAD
field is beyond the scope of this study. Applications of voxel models in medical studies
are based on data collection techniques such as CT and MRI imaging, and do not present
substantial novelty for a scoping literature review addressing the field of architectural
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and urban planning. This is largely due to the scale of objects studied in this field, which
encompasses buildings as well as urban and natural landscapes.

This review addresses the following objectives:

• Identification of the scope of existing voxel model applications in the context of CAD
and linked fields, based on existing interdisciplinary approaches and categorization
of the identified approaches based on the dominant sub-discipline related to the
interdisciplinary field of CAD;

• Analysis of each identified category to identify the existing discipline-specific appli-
cations of voxel models that can offer a key utility to the field of knowledge-based
computational methods and tools in architecture and urban planning;

• Discussion of novel approaches to voxel models as spatial-knowledge-representation
schemata in the context of computational architectural design and urban planning;

• Identification of further research questions based on the outcomes of the semi-syste-
matic literature review.

The methods selected for this review reflect these objectives. The first objective is
addressed through a narrative literature review methodology. The emergence of voxel
models is traced by searching for the earliest voxel definition. The reference tracing strategy
is used to create an initial understanding of the scope of the voxel model applications.
Scoping literature methodology is used to identify the scope of the research addressing the
application of voxel models in the CAD context. This step concludes with the definition of
thematic categories expressed as clusters in the bibliographic network. The resulting catego-
rization is further studied and synthesized by utilizing the narrative review methodology,
thereby addressing the third research objective.

1.2. Emergence of the “Voxel” Term

This section examines the definition of, and the theory related to, voxel models,
through a literature study, to identify the earliest publications mentioning or referencing
voxel models. The term “voxel” emerged in the 1970s in the field of computer science
to describe methods for volume rendering and early experiments in the 3D visualiza-
tion of medical images. Early attempts to work with 3D grids containing data can be
traced back to the time preceding the wide availability of computers. Efforts to gen-
erate 3D visualizations of datasets constructed by utilizing medical imaging were pub-
lished as early as 1970 [13]. In this context, terms such as “three-dimensional image”
(Greenleaf et al., 1970) [13], “three-dimensional array” (Artzy et al., 1980) [14], and “vol-
ume rendering” (Drebin et al., 1988) [15] are often interchangeably used with the term
“voxel”. In the 1980s, a series of works [14,16,17] were published that sought to systematize
concepts related to 3D arrays and the introduction of voxels as a mathematical concept.

Srihari [4] explained that “the term voxel is short for “volume element” analogous
to pixel for “picture element” in two dimensions”. He also pointed toward the potential
interdisciplinary application of voxels, “ranging from organs interior to the human body to
rock microstructures ( . . . )” [4]. The growing availability of computers led to a convergence
of the theoretical concepts related to voxels and volumetric rendering techniques. Arie
Kaufman [18–20] explained that “each voxel is a unit of volume and has a numeric value
(or values) associated with it that represents some measurable properties or independent
variables of a real object or phenomenon.” [21]. In the CAD field, early voxel applications
were studied by Jense and Huijsmans and initially related to 3D-object reconstruction and
visualization based on multiple two-dimensional (2D) sections [22]. Jense and Huijsmans
presented a literature review that outlined pioneering voxel applications in the CAD
context [3].

At the beginning of the 1990s, the term “voxel” was widely recognized in the
field of computer graphics and primarily linked to solid modeling and spatial-
partitioning representation [23] (p. 549). Subsequently, voxels were recognized as stan-
dalone concepts in the field of computer graphics related to the field of volumetric
models [24] (p. 349). Finally, a shift from the analytical to the representational charac-
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ter of voxels occurred, whereby “voxels have gone in and out of favor for rendering,
especially in entertainment” [24] (p. 349). However, the early definition of voxel models as
“spatial-knowledge representation schemata” [4] is of particular interest for this literature
review. Voxel-based spatial data integration and further abstraction toward spatial knowl-
edge representation might indicate a possibility for further development of voxel models
that could lead toward knowledge-based and data-integrated design and multi-domain
decision support for architectural design and urban planning. To gather detailed insights,
an in-depth literature review is needed to understand the diverse disciplinary approaches
that can contribute to using voxel models as knowledge representation schemata in the
CAD context.

1.3. Contemporary Voxel Applications in the CAD Field

Voxel models are used to study the properties of constructed objects ranging in scale
from the physical properties of a building material to the environmental properties of urban
neighborhoods. They also serve to integrate different spatial data representations. This
approach can be instrumentalized for knowledge-based and data-integrated design and
multi-domain decision support in architectural design and urban planning. To prepare the
grounds for this, a scoping review encompassing a selected range of disciplines related
to the CAD field is needed, to derive the possible future directions for interdisciplinary
applications of voxel models in architectural design and urban planning.

Kaufman et al. explained that a “voxel is a unit of volume and has a numeric value
(or values) associated with it that represents some measurable properties or independent
variables of a real object or phenomenon.” [21] Srihari, who primarily works in the fields
of pattern recognition, machine learning (ML), and computational forensics, stated that
“developing systems for processing and displaying these [3D] images has revealed the need
for developing new data structures, and more generally, for developing spatial-knowledge
representation schemata” [4]. The “spatial knowledge” term is used both in the contexts of
cognitive science and artificial intelligence (AI). Galton [25] offered a detailed elaboration of
the spatial knowledge representation in the AI context. In the CAD context, Jense stated that
“it is useful to note ( . . . ) the duality that exists between the interpretation of voxel models
as sets of cuboid volume cells, or as sets of 3D points, each representing a discretized point-
sample, taken from some continuous space” [3]. The early voxel definitions are different
from the common understanding of voxels as collections of boxes arranged in a 3D grid
related to the cuboid representation of voxels used, for instance, in computer games. In
general, voxel models containing numeric variables describing the properties and variables
of real objects or phenomena are data structures that encode spatial knowledge.

1.4. Identification of Key Parameters and Suitable Review Methodology

A general distinction between systematic, semi-systematic and integrative litera-
ture reviews was introduced by Snyder [26]. Semi-systematic literature reviews can
be conducted “when wanting to study a broader topic that has been conceptualized
differently and studied within diverse disciplines, [which] can hinder a full system-
atic review process” [26] (p. 334). This methodology addresses the practical constraint
where “to review every single article that could be relevant to the topic is simply not
possible” [26] (p. 335). Snyder elucidated that “a potential contribution [of a semi-syste-
matic literature review] could be, for example, the ability to map a field of research, syn-
thesize the state of knowledge, and create an agenda for further research or the ability
to provide an historical overview or timeline of a specific topic“ [26] (p. 335). According
to Snyder, semi-systematic literature reviews require adaptation and the development of
customized approaches for each study. Transparency of the process and the appropriate
coverage of literature can be achieved through the development of individual standards
and detailed research plans. As a result, such a method can very effectively provide an-
swers to research questions addressing a widely defined research scope and overcome the
limitations of the more narrowly defined systematic literature reviews [26] (p. 336). Meth-
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ods applied in semi-systematic literature reviews “often have similarities to approaches
used in qualitative research in general (. . . ) [and are] usually followed by a qualitative
analysis” [26] (p. 335). Based on this description, this literature review can be classified
as a semi-systematic review. Regarding the choice of methods, we considered Paré and
Kitsiou [24] (p. 169) who further distinguish literature review methods. For the qualita-
tive part of this semi-systematic literature review, we chose the scoping review method.
Quantitative analysis was covered by the narrative literature review method. Paré and
Kitsiou [27] (p. 169) provided an overview of the methodological requirements for scoping
and narrative literature reviews. However, example literature reviews implementing this
methodology in the field of architectural design and urban planning are sparse. A notable
exception is the study of Ullah [28], who proposed a “simplistic yet reproducible” method
for systematic reviews, based on the PRISMA guidelines [29], to construct a conceptual
framework for studies of the built environment. Table 1 compares the critical parameters of
six literature reviews [30–35] that are similar in scope and address different CAD-related
domains, to identify the methodological state of the art in the field.

Table 1. Overview of the literature reviews related to the CAD field that apply a similar methodology.
The critical parameters are presented in columns. Each studied review is evaluated in relation to the
identified parameters.
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Sharifi et al. [30] WoS no no VOS
CS yes yes yes

Guo et al. [31] WoS no no VOS
CS yes yes yes

Al-Mashhadani et al. [32] Sco yes yes VOS yes no yes

Sharifi [33] WoS no no VOS
SciM yes no yes

García-Leónet al. [34] Sco no no VOS
Bibl yes yes yes

Makabateet et al. [35] Sco yes no VOS yes no no
Tyc et al.

(this study)
WoS
Sco yes yes VOS

NLP yes yes yes

* WoS—Web of Science database; Sco—Elsevier Scopus database; VOS—VOSViewer software; SciM—SciMAT
software; Bibl—Bibliometrix software; and NLP—natural language processing (computational technique).

The table shows that simple keyword search strategies are used, and the time span
often covers multiple decades. Methods such as keyword co-occurrence analysis and the
yearly publication trend are frequently utilized. At the same time, the inclusion of more than
one data source, screening, and deduplication is rarely reported. Echchakoui [36] suggested
using both Scopus (Sco) and Web of Science (WoS) databases, while Liberati et al. [29]
advocated the inclusion of gray literature, referring to preprints and other publications not
indexed in the most popular databases. The method used in this study adopted the PRISMA
guidelines for the scoping-literature-review methodology addressing the interdisciplinary
field of CAD and the identified shortcomings. To decide on the time span for this literature
review, key publications were identified and mapped onto the timeline shown in Figure 1.
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Figure 1. Timeline comparing the time periods of literature reviews from similar disciplines [30–35].
The reviews listed in the table are related to the interdisciplinary field of study covered by this
publication, although none of the reviews address the topic of voxel models directly. The time span
for the scoping review part in this study is chosen based on this comparison. The periods for the
narrative parts of this review are chosen based on the initial research summarized in the voxel-
model-development timeline at the top [3,4,8,13,21,23,24]. This figure is available in Supplementary
Materials (Figure S1) as a high-resolution, full-page illustration.

1.5. Outline of the Review Scope

While a range of discipline-specific reviews have been published, no scoping review
investigating the possible intersections among disciplinary approaches to voxels exists.
The existing methods related to the literature reviews in different CAD-related domains
were studied, and are summarized in Table 1. Based on the listed references, a keyword
co-occurrence analysis was undertaken by utilizing VOSViewer as a software tool for “con-
structing and viewing bibliometric maps” [37]. This analysis was performed to understand
the knowledge components and structure and research trends [38], and to map the trends
in the research field development [39].

The initial screening showed that 82% of the 56.052 publications related to voxels was
published in the field of medicine. To address this issue, an ML and natural language
processing (NLP)-based screening method was developed to identify the publications
relevant to the scope of this study. The method builds on the algorithms implemented in
state-of-the-art open-source software developed for bibliometric analysis and systematic
literature reviews. The applicability of existing open-source literature-review tools, such
as revtools [40] and ASReview [41], was investigated herein. However, their application
in this interdisciplinary scoping review was unsuccessful because they operate on the
assumption that reviewers are starting the review process with a priori knowledge of the
exact scope of the study. For example, in the ASReview, reviewers were asked to select
some papers that were within the scope of the study and some papers that were outside it.
This selection was used to suggest the records for reviewer classification in the next stages.
While such a strategy can be useful in systematic reviews, the initial paper pre-selection can
increase the bias risk. In this scoping literature review, the exact definition of the scope is the
study result, not the a priori assumption made by the reviewers. The topic-modeling-based
classification method implemented in revtools was selected in this context. The constraints
related to the manual choice of the topic count and the dataset size were identified. The
topic-modeling algorithm implemented in revtools required making choices regarding
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the topic count, which directly affected the result quality. In the context of this scoping
literature review, this arbitrary defined parameter can increase the risk of introducing bias.
Therefore, the iterative coherence score method of choosing the optimal number of topics
was identified in the literature [42]. The dataset used in this scoping literature review
comprised 117,908 records, and was two-to-three orders of magnitude larger than the
datasets conventionally used in the systematic literature reviews conducted with revtools.
The iterative character of the coherence score method and the long processing times of
this implementation are currently limiting the applicability of revtools in similar scoping
literature reviews. To address these issues, the initial classification was derived from a
widely recognized literature database and iteratively validated by the reviewers supported
by the computational techniques implemented in ASReview and revtools. The initial
classification resulted in literature collections dominated by medicine-related publications
unsuitable for quantitative analysis. Based on the published scientific description of the
algorithms implemented in the ASReview software, the functionalities needed for this
study were implemented as described in the Materials and Methods Section. The scoping
literature review was complemented with the elements of a narrative literature study to
gain an initial understanding of the scope of the voxel model applications and the existing
disciplinary approaches. The narrative literature review methodology was also used for
a detailed study of the clusters generated by the keyword co-occurrence analysis. These
clusters are grouping disciplinary applications of voxel models used to initiate an in-depth
analysis of the possible contributions of discipline-specific voxel model applications to
CAD design and urban planning.

2. Materials and Methods
2.1. Data Source Description

The dataset used herein was created from the Web of Science Core Collection and
Elsevier Scopus databases, which were searched for all publications containing the word
“voxel” in title keywords or the abstract. Gray literature was retrieved from the CORE
database [43], using the same search criteria. The database search resulted in a dataset
containing papers published between 1981 and 2021. A subset of the Sco dataset containing
classification data was used in the training step of the AL-based record screening process.
In the next step, a dataset for the keyword co-occurrence analysis was created by classifying
and merging the complete Sco and WoS datasets. Finally, the CORE dataset was classified,
and the relevant publications were added to the final dataset used in the expert evaluation
phase. Figure 2 presents detailed information about the size of individual datasets and the
publication counts used in the final dataset.

The eligibility criteria were defined after the dataset retrieval, based on the manual
reviewer’s evaluation of the dataset quality. The initial inclusion criteria were set to limit
the publications to quantitative study types (i.e., journal and conference papers, books and
book chapters, and review and data papers), considering the quantitative character of the
keyword co-occurrence analysis. Publications containing incomplete metadata, particularly
the keyword and publication-date fields, were rejected, due to the keyword-co-occurrence
analysis requirements. Those that did not contain publication dates (e.g., preprints) and
other types of gray literature were reintroduced into the study by merging the CORE
database after the keyword-co-occurrence analysis step. In the last step, reviewers were
required to summarize the identified clusters based on the detailed study of the relevant
publications; hence, the dataset was limited to English publications.

The preliminary study showed that 82% of the research publications concerning voxels
were related to medical sciences. This was calculated based on the Scopus All Science
Journal Classification Codes (ASJC Codes), which were not available for all publications
in the Scopus database. This limited the method’s applicability to 77% of the records
from the Scopus database. The ASJC Codes assigned multiple research disciplines to each
publication, thereby allowing the preliminary exclusion of publications related to medical
studies. Figure 3 shows the results of this preliminary study.
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2.2. Narrative Review Methodology

The elements of a narrative literature study were introduced herein to extend the
timeline of the reviewed literature and trace back the emergence of publications on voxels
and the initial concepts that drove the voxel model development. This was performed
to facilitate the search for the early and interdisciplinary definitions of the voxel models.
Narrative literature-review methods combined with the reference-tracking method were
applied to identify the publications that would otherwise not be found through a systematic
database query. Furthermore, narrative elements were used to conduct a detailed analysis
of the clusters generated by the keyword co-occurrence analysis.
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Figure 3. Disciplinary distribution of the voxel-related papers related to the year of publication based
on the Scopus All Science Journal Classification Codes. The medicine-related publications are indicated
by the gray dashed line plotted on a logarithmic scale to compensate for the publication volumes of
a different order of magnitude. This figure is available in Supplementary Materials (Figure S2) as a
high-resolution, full-page illustration.

2.3. Scoping Review Methodology

Reviewing extensive collections of publications retrieved from publication databases
poses a challenge for reviewers, which is related to the inclusion of records irrelevant to the
target question [40], (p. 609) and overlapping content [44], (p. 2). To address some of these
challenges, a semi-automated deduplication AsySD algorithm is currently being developed
for extensive literature collections [44]. Active-learning (AL) algorithms are applied in liter-
ature review studies for interactive sorting and publication filtering [41]. Topic-modeling
algorithms, such as the Latent Dirichlet analysis (LDA), are also applied to assist reviewers
in screening extensive literature collections [40]. The open-source implementations of AL
algorithms, LDA-based topic modeling, and the semi-automated deduplication algorithm
were evaluated in this review. The de-duplication with the AsySD algorithm was only
possible after the initial screening, due to the size of the literature collection. A dedicated
implementation was developed after the initial experiments (Figure 4).

This entailed relating the steps required by the PRISMA method to the abovemen-
tioned algorithms. The implementation prepared for this review utilized the scikit-learn im-
plementation of the MultinomialNB algorithm [45] and the SciBERT transformer model [46]
for the semi-automated publication screening. The probabilities predicted by the two
independent ML models were combined by applying the Query-by-Committee approach
based on consensus entropy [47]. This strategy was taken to mitigate bias and gener-
ate datasets for the user-driven LDA-based topic modeling. The LDA component uses
Gensim [48] and Mallet [49] libraries for optimal topic number calculation based on the
coherence score [42]. Software implementation was developed in Python, utilizing the
widely adopted ML and NLP libraries, such as huggingface [50], PyTorch [51], and SpaCy
NLP [52]. The development method required considerable computation time, partially on
specialized ML hardware. A mobile workstation equipped with Intel i7-9750H CPU, 16
GB RAM, and NVIDIA RTX 2070 with 8 GB GPU memory was used. More advanced ML
workloads utilized a single cloud instance equipped with NVIDIA Tesla P100 with 16 GB
GPU memory. We report the hardware specifications of the two platforms used in this
study and refer to them in the subsequent paragraphs for future reference and to secure
research reproducibility.



Architecture 2023, 3 146
Architecture 2023, 3, FOR PEER REVIEW 11 
 

 

 

Figure 4. General workflow describing the NLP-based screening method applied in this study for 

the initial screening, followed by the keyword co-occurrence network analysis and a detailed study 

of the clusters. This figure is available in Supplementary Materials (Figure S3) in an alternative, 

horizontal layout. 

2.3.2. Description of the AL-Based Classification Component 

Undertaking AL required several stages (Figure 5). First, publications, abstracts, and 

a preliminary classification were used to train SciBERT on the cloud instance and Multi-

nomialNB models on the mobile workstation, to classify papers relevant to the scope of 

the study. Each training iteration required 4 h of computation on the cloud instance, ex-

cluding the time required for additional data processing and transfers between the cloud 

infrastructure and the local system. 

Figure 4. General workflow describing the NLP-based screening method applied in this study for
the initial screening, followed by the keyword co-occurrence network analysis and a detailed study
of the clusters. This figure is available in Supplementary Materials (Figure S3) in an alternative,
horizontal layout.



Architecture 2023, 3 147

2.3.1. General Description of the Method Implementation

Figure 2 (Section 2.1) depicts the publication counts retrieved from each database.
Due to the interdisciplinary character of this review, the conventional methods for defin-
ing the screening criteria were unsuccessful. A manual screening of the whole dataset
was practically impossible, and unexpected challenges regarding the keyword-based
filtering criteria were observed. For example, the same abbreviation might simultane-
ously refer to different concepts, depending on the disciplinary context. For instance, the
abbreviation “CAD” refers to both computer-aided design and diagnosis. The methods
used in medicine, such as CT, are applied in the CAD context (e.g., imaging techniques
in additive manufacturing processes). Each filtering attempt was evaluated by the
reviewers through a manual checking of individual records. The initial attempts to
generate a keyword co-occurrence network based on conventional screening approaches
were unsuccessful, resulting in a keyword co-occurrence diagram, in which most of the
CAD-related terms were rejected, due to a higher occurrence of medicine-related terms.
Accordingly, a multi-step screening strategy was developed to address this problem
(Figure 4). This method utilized the partially incorrect classification derived from the
Scopus ASJC Codes and the NLP-based screening method to distinguish the papers
related to the scope of this study.

The Scopus, WoS, and CORE databases were queried. The resulting datasets were
pre-processed to unify the bibliographic data formatting. The pre-processing step in-
cluded the unification of field names and their contents based on the ris file format
specification and the generation of the internal record index for the consistency valida-
tion in the subsequent processing steps. In the second step, an AL-based method was
introduced to assist the reviewers in screening the collected datasets. The classification
data derived from the ASJC codes were used to train the SciBERT and MultinomialNB
ML models. The ML models were used to classify the remaining datasets. Following
the AL principles, the iterative process of the reviewers’ validation and classification
was based on consensus entropy and repeated training. The reviewers validated the out-
comes by a manual classification of the LDA topics derived from individual publications.
The iterative validation procedure was applied both in the training and classification
steps to assure that the final results produced by the presented method were validated
by the reviewers. The datasets were then merged and deduplicated using the AsySD
tool [44]. The datasets for the keyword co-occurrence analysis in VOSViewer [37] and for
the manual reviewers’ evaluation were prepared. The VOSViewer dataset preparation
required keyword processing and file format conversion. The dataset for the reviewers’
evaluation was created by the merging and deduplication of the previously described
dataset with the records from the CORE database. Finally, the keyword co-occurrence
analysis was executed. The resulting clusters were evaluated by the reviewers. The
reviewers manually browsed the dataset for relevant publications based on the keyword
co-occurrence analysis and the resulting assignment of individual keywords to the the-
matic clusters. Finally, the reviewers analyzed and described the clusters, based on their
expert knowledge.

2.3.2. Description of the AL-Based Classification Component

Undertaking AL required several stages (Figure 5). First, publications, abstracts,
and a preliminary classification were used to train SciBERT on the cloud instance and
MultinomialNB models on the mobile workstation, to classify papers relevant to the scope
of the study. Each training iteration required 4 h of computation on the cloud instance,
excluding the time required for additional data processing and transfers between the cloud
infrastructure and the local system.

In the training step, the updated publication classification was used to train a new
iteration of SciBERT on the cloud instance and MultinomialNB models. This process was
repeated until the reviewers no longer reported any misclassified LDA topic. These stop-
ping criteria occurred after three iterations. The last iteration of the ML models was used
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to classify the remaining papers retrieved from the WoS and CORE databases. This final
classification step was conducted on the mobile workstation because the SciBERT predic-
tion step requires less GPU resources than the SciBERT fine-tuning (training) procedure.
In the classification step, the updated publication classification was used to update the
dataset partitioning and iterate over the LDA-based reviewer evaluation procedure until
the stopping criteria were reached.
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2.3.3. Description of the Reviewer Evaluation Component

The following step was concerned with the pool-based sampling and the LDA-based re-
viewer validation procedure (Figure 6). The reviewers used the LDA-based topic-modeling
method implemented on the mobile workstation to review papers whose uncertainty was
larger than the 75th-percentile threshold. The Mallet implementation of the LDA algorithm
for topic modeling was used. The optimal number of topics was calculated based on the
coherence score method [42]. In this method, the LDA procedure was iteratively run for
different topic numbers, and the coherence score was recorded.
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The relation between the topic number and the coherence score was plotted in a
similar manner as in the “elbow method”, widely used with the k-Means algorithm.
The number of topics was chosen for the last value of the coherence score, after which
the coherence score started to linearly decrease. This required running 35 iterations
of the LDA algorithm and resulted in 6 h of computation on the mobile workstation,
excluding the time required for additional data processing and user interaction. The
75th-percentile threshold was chosen based on the manual quality assessment, and
resulted in 40.372 records requiring manual validation. Thus, the reviewers classified
the LDA topics instead of individual publications, and the updated topic classification
was extrapolated to the individual publications.

2.3.4. Integrating Results of the AL-Based Screening with the Keyword
Co-Occurrence Analysis

At this stage, the number of publications was reduced from 79,830 to 10,119, and
semi-automated deduplication with AsySD was possible. The Sco and WoS datasets
containing keywords were merged and exported for the semi-automatic deduplication
with AsySD [44]. This procedure identified 877 duplicates, which was 12% of the whole
dataset. This quantity of duplicated entries can directly affect the results of the qualitative
keyword co-occurrence analysis because the keywords of the duplicated records would
occur multiple times in the keyword co-occurrence analysis. To address this issue, the
dataset was carefully deduplicated and validated. The resulting deduplicated dataset
was converted for the keyword co-occurrence analysis with VOSViewer [37]. Different
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spellings of the same keyword can negatively influence the results of the keyword co-
occurrence analysis. For example, in this study, multiple keywords containing the words
“three-dimensional”, “3d”, “3D”, and “3-dimensional” were identified, and their spelling
was unified into the “3D” form. VOSViewer allows users to supplement the analysis
with a thesaurus file. This file maps each keyword to its unified form, and must be
manually created.

The dataset used in this step contained initially 35.173 unique keywords, and a
manual generation of the thesaurus file was not plausible. Therefore, the keywords
were manually filtered and selectively processed using purpose-written Python regex
expressions and selectively lemmatized using the SpaCy NLP Python library [52]. To
assess the quality of this process, the reviewers selectively validated the keywords list.
In this iterative process, the keywords were alphabetically sorted, based on occurrence.
The list was updated after each regex operation. In the next step, the dataset was ex-
ported to VOSViewer, and the keywords were visually evaluated in the co-occurrence
network. This step was completed when the reviewers did not report any duplicate
keywords visible in the VOSViewer network, and by selectively checking the keyword
list. The resulting dataset was used to generate the keyword co-occurrence network with
VOSViewer (Results Section). The keyword co-occurrence analysis generated thematic
clusters and revealed patterns related to individual keywords. In the following step, the
gray literature from the pre-processed CORE dataset was merged with the processed Sco-
pus and WoS datasets, resulting in the final combined dataset. The reviewers manually
searched for all the metadata contained in this dataset and identified relevant clusters
and related keywords in relation to the research aim. In the next step, the reviewers
identified the key literature and analyzed the individual clusters, based on the final
combined dataset and their expert knowledge.

2.3.5. Evaluation Metrics and Manual Validation of the AL Component

Confusion matrices and the improvement in the accuracy score for each new
generation of the ML models were needed to evaluate the results of the NLP-based
screening method (Figure 7). Compared with the initial classification of the pre-
classified part of the Scopus dataset, this process identified 790 relevant publications
that would otherwise be excluded from the scope, and 2.027 irrelevant publications
which would negatively affect the quality of the keyword co-occurrence analysis. A
total of 40.372 publications were screened by the reviewers using the topic-screening
method. However, the wide application of the described method is currently limited,
given the technical complexity, cumulative computation time, and reviewers’ effort
required for the result validation. A detailed description of the computational method
is not the aim of this study, and will be considered for a separate publication. A further
adaptation of this method for future literature reviews is possible, given the growing
availability of computational resources.

Paré and Kitsiou pointed out that scoping and narrative literature-review method-
ologies do not require formal statements of bias-mitigation strategies [27] (p. 170). The
PRISMA methodology developed for the systematic literature reviews in the field of medi-
cal sciences is still attracting wide recognition and use. Consequently, literature reviews
in the engineering sciences are often required to comply with the PRISMA methodology.
The strategies applied to minimize the risk of bias in this scoping literature review are
illustrated in Figure 8 and reported below, to support the transparency and reproducibility
of this research.
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Figure 7. Evaluation metrics of the SciBERT and MultinomialNB models. The confusion matrices
for both models are aligned on a common grid representing the three active-learning iterations. The
classification improvement in each iteration is reflected in the increasing accuracy score.

First, the WoS, Sco, and CORE datasets were pre-processed to match the bibliographic
data formatting. The bibliometric data consistency was manually validated by the reviewers.
Custom indexing aligned with the partial dataset lengths was introduced. The custom
index was introduced to prevent duplicated or missing records and possible data processing
errors in the next steps. The reviewers manually validated the custom index values after
each processing step.

Next, the reviewers iteratively validated the AL process results with the LDA-based
topic-modeling method (Section 2.3). In this step, the potential risks are related to (1) the
bias inherent in the chosen ML models and choice of the method to combine the ML predic-
tions, and (2) the method for validating the outcomes of this algorithmic procedure. Two
possibly different state-of the-art ML models were identified, and the Committee Voting
strategy was applied. The AL strategy utilizing topic modeling for reviewer validation was
introduced. The inherent bias of the LDA algorithm and the bias introduced by the choice
of the topic number were considered. The available implementations of the LDA algorithm
were also tested for this dataset. The reviewers qualitatively evaluated the resulting topics
and the recorded coherence scores for the different topic counts generated by the LDA
algorithm. As a result, the Mallet implementation of the LDA algorithm [49] was chosen,
and the coherence score [42] method combined with the selective reviewers’ evaluation
was applied to select the optimal topic number.
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minimize the risk of bias. The validation steps are linked to the workflow components from Figure 4,
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Supplementary Materials (Figure S6) as a high-resolution, full-page illustration.

Deduplication and keyword processing for the keyword co-occurrence analysis were
subsequently undertaken. The semi-automatic AsySD deduplication procedure assigned
91 publication pairs for manual screening. This step showed that the duplicates accounted
for 12% of the whole dataset, directly affecting the qualitative keyword-co-occurrence
analysis. In relation to the keyword processing, the procedure resulted in a 17% reduction
of the total keyword count. Finally, the quality of the keyword co-occurrence network was
analyzed by the reviewers.
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3. Results

Figure 9 shows the steps taken in the AL-based screening procedure. In the first step,
79.830 records were identified from the databases, while 38.078 gray-literature items were
identified from other sources (e.g., CORE database). Deduplication was conducted in the
later step. Based on the inclusion criteria, 5.373 records were removed from the WoS and Sco
datasets, due to the publication type and the language criteria. Accordingly, 17.559 records
were removed from the CORE dataset, due to the language criteria. In the second step,
94.979 records were screened with the NLP-based method. As a result, 92.410 records were
classified as irrelevant in the AL-based screening.

In the next step, the results of the AL-based screening were combined with the
keyword co-occurrence analysis by the reviewers. A dataset describing the keyword
cluster assignment and the weighted importance of individual keywords within each
cluster was created using VOSViewer software [37]. This dataset was visualized as
a keyword-co-occurrence network diagram (Figure 10) and used by the reviewers
in the next steps. Further record exclusion and knowledge synthesis required the
systematic combination of the keyword dataset with the literature collection. The
reviewers separately selected the studies to be included in the next step for each cluster.
The filtered literature collection was queried by the reviewers, based on the selected
keywords derived from the weighted keyword occurrence in the studied cluster. All
publications containing the chosen keyword in the title, abstract, or keywords were
recorded, resulting in a dataset containing 2.569 records. The reviewers manually
screened all records in this dataset based on titles, keywords, and abstracts and marked
487 publications for full-text retrieval. They then studied the retrieved publications,
to summarize the cluster descriptions. Each cluster description contained a table, in
which all the publications listed in the description were further categorized based on
the keyword used in the retrieval process. Particular attention was given to the existing
literature reviews. The reviewers were then asked to identify the literature reviews
related to the studied cluster and to commence the cluster description with the overview
of the existing literature reviews.

3.1. Results of the Keyword Co-Occurrence Network Analysis

The merged dataset containing records from the Scopus and WoS datasets was
used to create the keyword co-occurrence network (Figures 10 and 11). The different
colors in Figure 10 represent the thematic clusters generated with the unified mapping
and clustering approach implemented in VOSViewer. The proximity between two
keywords reflects the close relations of both terms, even if the terms are assigned to
different clusters. The color scale in Figure 11 shows the average publication year
assigned to each keyword. The average publication year analysis presents information
that is similar to the one in the keyword burst analysis, in which the development
of certain concepts in relation to the studied topic can be matched with a particu-
lar time. The most recent trends can be traced back to individual keywords and
thematic clusters.

The node distribution in the network illustrated in Figure 10 is balanced, and the six
clusters can easily be identified. This network diagram does not contain keywords related
to medical sciences, which is the main aim of the NLP-based screening step. VOSViewer
software enables users to exclude the most frequent keywords from the network visu-
alization, allowing for informed decisions on excluding selected keywords to achieve
fine-grained and balanced clustering and mapping results. For example, the first and
second clusters contained the “computer graphics” and “computer vision” terms, respec-
tively, which suppressed most of the keywords in the respective clusters. Hence, they were
excluded from the visualization and chosen as the cluster names to reflect their relevance
in their respective clusters. The names of the remaining clusters were chosen based on
the reviewers’ expert knowledge, matching the name of the scientific discipline with the
keywords in the cluster. The nodes of the sixth cluster were scattered. This cluster was
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assigned to the general concepts related to the voxels present in a wide range of disciplines.
The clusters that emerged from the keyword co-occurrence analysis were assigned for
analysis by the reviewers.
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Figure 10. Keyword co-occurrence analysis and clustering presented as a network diagram.

3.2. First Cluster—Intersections between CAD and Computer Graphics

The first cluster represents research on computer graphics (Table 2). Keywords such
as “visualization” and “virtual reality”, describe the technologies relevant to digital design
and planning. Figure 11 shows that the keywords in this cluster have the lowest average
publication year. The applications related to the role of voxel models as spatial data struc-
tures for encoding knowledge for knowledge-based design processes were not identified in
this cluster. Therefore, the discussion in this cluster was limited to the description of the
role of the voxel models in dedicated visualization techniques. Most contributions in this
cluster were related to the voxel model applications for visualizing large datasets describing
buildings [53] and large territories [54]. Experiments with preliminary design exercises
both on-screen [55–57] and in virtual reality [58,59] exist. Voxel-based generative-design
interfaces have also been proposed [60,61].
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Figure 11. Overlay visualization of the average publication year mapped to the keywords in the
network diagram.

Table 2. Selected keywords and representative publications related to the first cluster.

Keywords Identified Publications

Visualization and volume rendering Liu et al. [53], Andres et al. [54]

Human–computer modeling interfaces Strehlke [55], de Vries and Achten [56],
Savov and Tessmann [57]

Virtual reality De Klerk et al. [58], Chen et al. [59]
Cell-based generative-modeling interfaces Fischer [60], Erioli and Zomparelli [61]

3.3. Second Cluster—Intersections among CAD, Computer Vision, and Urban Planning

The second cluster related to the field of computer vision shows multiple overlaps
with the computer graphics cluster. Keywords with a higher average publication year are
less related to the computer graphics cluster. The most recent research is related to point
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cloud classification and semantic segmentation, autonomous vehicles, and multimodal
data fusion. Table 3 lists the representative publications from this cluster. Different methods
of real-time 3D mapping and ML-based scene understanding are present in this cluster,
including “machine learning”, “convolutional neural networks”, “object recognition”,
“intelligent robot”, and “stereo vision” keywords. The keywords occurring in this cluster
are related to data acquisition and integration methods, such as “multimodal data fusion”,
“RGB D”, and “stereo vision.” The intersection between this cluster and the remote sensing
cluster contains terms describing urban environments, such as “roads and streets”, “trees”,
“transportation”, and “urban planning”.

Table 3. Selected keywords and representative publications related to the second cluster.

Keywords Identified Publications

Urban green spaces Susaki and Kubota [62], Wakita and Susaki [63],
Anderson et al. [64]

Tree identification and modeling Schmohl et al. [65], Guan et al. [66],
Vonderach et al. [67]

Urban analysis and simulation Fisher–Gewirtzman et al. [68],
Morello et al. [69]

Xu, Tong, and Stilla [8] recently reviewed voxel-based point cloud representations
for their potential role in the construction industry. Their review presented a detailed
overview of the algorithmic approaches addressing point cloud pre-processing, registra-
tion, segmentation, classification, and modeling. They primarily focused on the datasets
acquired through laser scanning and stereo vision applied for 3D urban-scene mapping,
which aligned well with the cluster described in this paragraph. Table 2 summarizes
the publications that went beyond the scope of the review published by Xu, Tong, and
Stilla [8] and focuses on the voxel model application in digital architecture and planning.
In this context, the voxel models were applied to quantify green space [62], estimate the
local landscape index [63], and communicate the importance of urban green volume to
non-expert stakeholders using digital fabrication technologies and different visualization
techniques [64]. Voxel-based methods can be applied to distinguish individual trees in ur-
ban locations [65], predict individual tree species [66], and estimate individual tree volumes
and the amount of carbon stored in a single tree [67]. Voxel models were also applied in
an urban context to study visibility in complex-terrain conditions [68] and extend Lynch’s
isovist theory into quantifiable, 3D metrics describing urban landscapes [69].

3.4. Third Cluster—Intersections among CAD, Geomatics, and Architectural and Spatial Planning

The third cluster summarized in Table 4 overlapped with the computer vision cluster.
The spatial data acquisition through autonomous vehicles, an understanding of the urban
scene, and the application of these concepts to urban planning were identified in the second
cluster. A similar synergy among data acquisition, the generation of information, and
the knowledge applied to design and planning was visible in the third cluster, extending
toward non-urban environments. The keyword ‘architectural design’ is assigned to this
cluster. The application of voxel models and generative adversarial networks (GANs) in
architectural form design [70] was identified. Furthermore, voxel models were applied to
design hospital layouts [71], connect the voxel-based simulation with the network analysis
for building-evacuation modeling [72], and integrate pathfinding and heat transfer for
the building-performance simulation [73]. The integration of the building-information
modeling (BIM) and voxel-based modeling approaches is gaining popularity. Combined
BIM and voxel environments allow the automatic monitoring of the daily construction site
progress [74] and crowd-behavior simulation during fire and toxic-gas expansion [75]. The
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voxelization of BIM models for cell-based path planning [76] and the automatic annotation
of exterior building elements [77] were recently studied. The conversion of 3D scans to
BIM objects can also utilize voxel models [78]. In addition, photogrammetric 3D scans of
lattice structures can be automatically converted into line-based 3D skeleton models used
for structural analysis [79].

Table 4. Selected keywords and representative publications related to the third cluster.

Keywords Identified Publications

Architectural design and planning Asmar [70], Cubukcuoglu et al. [71],
Gorte et al. [72], Goldstein, Breslav and Khan [73]

Building information modeling (BIM)
Golparvar-Fard et al. [74], Scherer et al. [75],
Wang et al. [76], Deidda [77], Liu et al. [78],

Chen et al. [79]
Building interiors Hübner et al. [80], Previtali et al. [81]

Building facades Truong–Hong et al. [82], Chen et al. [83],
Thariyan [84]

Solar analysis Bremer et al. [85], Heo et al. [86]

Geographic Information Systems (GIS)
Karssenberg and De Jong [87], Gebbert and
Pebesma [88], Sahlin et al. [89], Orengo [90],

Andersen et al. [91], Nolde et al. [92]

Spatio-temporal analysis Jjumba and Dragićević [93–95],
Shirowzhan et al. [96]

For building interiors, voxel models are used to reconstruct the semantic labels of
the building interior from the data collected with the 3D scanning sensor of a mobile
augmented-reality device [80]. The curvilinear walls, irregular slabs, stairs, and ramps
were successfully classified in the abovementioned example. Internal doors and windows
can also be reconstructed from incomplete point clouds using a voxel-based approach [81].
A similar approach was applied to building facades, where voxel models were used to
reconstruct the building facade geometry and directly use the results in structural analysis
software [82]. GANs could be utilized with voxelized facade models to generate the
fragments of the facade that are missing in the acquired datasets [83]. Voxel models were
also used to design building envelopes based on simulated solar radiation [84].

A voxel-based solar analysis was applied in the urban planning context [85] and in a
fine scale through single-laser scanner acquisition [86]. In the context of the Geographic
Information Systems (GIS), voxel models are widely utilized when 3D data and temporal
change must be introduced [87,88]. The identified applications spanned marine environ-
ments [89], volumetric recording of archaeological sites [90], urban planning support in
relation to 3D geological modeling [91], and underground energy storage [92]. In the GIS
field, the generative capabilities of voxel models were utilized by introducing voxel-based
geographic automata [93,94] applied, for example, to simulate the dispersal of airborne
pollutants [95]. The application of the voxel automata was recently reviewed in relation to
the spatio-temporal change of a built-fabric 3D density in urban contexts [96].

3.5. Fourth Cluster—Intersections among CAD, Materials Science, and Geosciences

The fourth cluster focused on the internal structure of the Earth’s surface and on
studying the processes happening on this surface (Table 5). Knowledge regarding structure
and processes was applied in CAD when planning terrain modifications and in large-scale
planning. The fourth cluster contained keywords, such as “porosity”, “permeability”, “flow
simulation”, “erosion”, and “microstructure”. In this context, voxel models were applied to
simulate and visualize the spatio-temporal change driven by natural processes and model
the multi-layered structure of the Earth’s surface.
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Table 5. Selected keywords and representative publications related to the fourth cluster.

Keywords Identified Publications

Terrain modeling and visualization Graciano et al. [97], Nonogaki et al. [98],
Shoaib Khan et al. [99]

Scientific visualization of landscapes Starek et al. [100], Mitasova et al. [101]

Soil properties and root modeling Ishutov et al. [102], Rabbi et al. [103], Teramoto,
Tanabata and Uga [104], Sengupta et al. [105]

Habitat modeling Sasaki et al. [106], Loraamm and Downs [107],
Downs et al. [108], Loraamm et al. [109]

Dedicated voxel-model visualization techniques contained stack-based terrain repre-
sentations [97] related to geotechnical-modeling applications [98]. A voxel-based earthwork
modeling methodology incorporating the geotechnical properties integrated with the BIM
processes was proposed [99]. Different natural processes can be modeled, analyzed, and
visualized through space–time cube representations [100] and collaborative, tangible in-
terfaces [101]. Digital rock physics (DRP) is a methodology for studying the petroleum
reservoir structure with a focus on the porosity of the Earth’s subsurface layers in relation
to pore interconnectivity and fluid–rock interaction on multiple scales. Voxel models were
applied to model the porosity of laboratory samples based on CT scans and integrate
large-scale data describing the geological structure of the studied territory. Integrating 3D
printing and DRP [102] allowed the physical manufacture of tangible samples of the digital
rock voxel models with different materials. These digital rock twins could be tested using
the same laboratory procedures as real rock samples. Moreover, voxel models were applied
to study the relations between various soil properties and plant roots [102]. Semi-automated
root vectorization techniques were also developed for CT scan-based voxel models [104].
A similar approach was taken to study the 3D spatial distribution and relations among
hydrological, geochemical, and microbiological processes [105].

Finally, voxel models were applied to study the relations among land-use patterns,
habitat classification, and their use by animals. These methods can support conserva-
tion and management planning in urban parks [108]. The application of voxel-based
probabilistic space–time prisms (STP) [107] can further advance studies that address urban-
habitat-use patterns at high-resolution temporal scales [108]. Voxel-based STPs utilized
GPS tracking data to map and predict the probability that the tracked agent (animal) can be
found at a specific location at a given time. This information can be overlaid with land-use
data to uncover otherwise unobserved daily use patterns related to urban habitats [109].
The temporal range can cover a few days [108] to multiple months [109], depending on the
tracking resolution data.

3.6. Fifth Cluster—Intersections between CAD and Computer-Aided Manufacturing

The fifth cluster summarized in Table 6 contained terms such as “3D printing”, “finite
element method”, “topology optimization”, and “concrete and thermal conductivity”.
Bacciaglia et al. [7] published a systematic review addressing the voxelization in additive
manufacturing. Momeni et al. [6] reviewed 4D-printing processes, addressing the design
and fabrication of shape-changing 4D-printed structures. In the structural analysis context,
Schillinger et al. [5] reviewed the finite cell method (FCM) for the structural analysis of
the CAD and image-based geometric models. Table 6 summarizes the representative
publications from this cluster.
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Table 6. Selected keywords and representative publications related to the fifth cluster.

Keywords Identified Publications

Subtractive manufacturing
Peddireddy et al. [110],

Yousefian and Tarbutton [111], Wang et al. [112],
Kukreja et al. [113]

Additive manufacturing Momeni et al. [6], Bacciaglia et al. [7],
Huang et al. [114], Greminger [115], Chi et al. [116]

Material performance and failure

Nguyen et al. [117], Taraben and Morgenthal [118],
Yang et al. [119], Li et al. [120], Barazzetti et al. [121],

Kudela et al. [122], Bitelli et al. [123],
Van De Walle et al. [124], Maaroufi et al. [125]

Conventional construction materials
such as concrete and wood

Vantyghem et al. [126], Leder [127], Xiao [128],
Hosny et al. [129], Naboni and Kunic [130]

Advanced materials and
material performance

Schillinger et al. [5], Michalatos and Payne [131,132],
Green et al. [133], De Schampheleire et al. [134]

Topology optimization and
generative design

Baron et al. [135], Mekki et al. [136], Ambrozkiewicz
and Kriegesmann [137], Craveiro et al. [138],

Aage et al. [139]

In subtractive manufacturing, voxel models were applied in combination with ML
to automatically identify the conventional machining processes from CAD models [110],
predict the cutting force [111] and resulting deformations [112], and generate efficient tool-
paths [113]. In additive manufacturing, voxel models and ML were applied to predict the
3D-printed-shape accuracy [114], enforce manufacturing constraints on topology optimiza-
tion [115], and design 3D-printed, self-organizing, and functionally graded materials [116].
The material performance and failure can be studied with the voxel model application.
Meanwhile, the mechanical damage on concrete can be studied at the micro scale [117] and
by using 3D-imaging techniques and autonomous platforms to monitor buildings [118,119]
and other civil engineering structures [120]. The voxel model application for the structural
analysis of existing buildings is studied in the context of heritage preservation, considering
that the 3D scanning of historical monuments is widely practiced. However, the conven-
tional cloud-to-BIM-to-FEM workflows [121] require sophisticated 3D modeling techniques
and expert knowledge. The direct structural analysis of voxelized point clouds with the
FCM methods is currently under study [122]. Accordingly, a semi-automated voxelization
method was developed to assess the structural stability of a partially collapsed heritage
building [123]. Aside from the structural performance, the thermal conductivity of building
materials [124,125] can also be studied with voxel-based methods.

In the context of digital architecture and planning, voxel modeling approaches were
applied to conventional building materials. An integrated voxel-based workflow ad-
dressing digital design, structural analysis, and 3D printing with concrete was recently
proposed [126]. Non-cuboid voxel models were used to propose a reconfigurable slip
formwork system for materializing continuous, modular concrete structures [127] and
constructing voxel-based aggregation structures materialized as stacked MDF units con-
nected by tenon and mortise joints [128]. Furthermore, voxel models were used to integrate
topology optimization into the digital design and fabrication process by utilizing concrete
and customized foam molds [129]. A similar approach accommodated voxel-based design
methods to construct structurally optimized and highly specified tectonic configurations
of wooden modules [130], combining multi-material topology optimization, robotic fab-
rication, and the encoding of design properties in individual voxel cells for the complex
multi-material configuration of the proposed voxel assembly.

Progressing beyond the materials widely adopted in architecture, Michalatos and
Payne [131] observed that the surface modeling paradigm currently predominant in 3D
architectural modeling does not permit incorporating multi-scalar material properties and
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fine-grained material performance. Their contribution resulted in a software prototype that
made designing within the volumetric paradigm possible, and incorporated the internal
complexity of solid objects related to the hierarchical complexity of physical materials [132].
A series of deformable physical objects were fabricated to explore the potentials of multi-
material 3D printing based on the analysis components implemented in their software. The
applicability of this modeling approach can be extended because voxel models were applied
to study the performance of complex materials, such as 3D woven composites [133] or
open-cell metal foams [134], in relation to their unique structural and thermal performances.

The advantages of combining voxel models, genetic algorithms (GA), and finite-
element analysis in the context of topological optimization are well studied [135]. Voxel-
based design processes utilizing GA can be combined with computational fluid dynamics
algorithms to simulate thermal and airflow performances. These concepts were recently
applied to design an organically shaped heat exchanger by utilizing a single-objective GA
for optimizing pressure drop and heat transfer, consequently combining two opposing
objectives [136]. Voxel-based generative processes can be used to design optimized, fail-safe
structures [137] and functionally graded and resource-efficient building components [138].
The growing availability of computation resources has led to a point where generative
voxel-based morphogenesis processes can reach giga-voxel resolutions and be applied
to generate objects incorporating structural details in scales ranging from millimeters to
tens of meters. Aage et al. [139] described this generative-material optimization process,
whereby a complete structure of a plane wing emerged from a computational process
constrained by the typical aerodynamic load cases and a 3D outline of a typical plane
wing. The generated multi-scalar structure showed similarities with the structural patterns
observed in bird bone structures. Aage et al. stated that: this “methodology (. . . ) is directly
applicable to similar morphogenesis problems in other engineering disciplines, as well as
in architecture and industrial design.” [139] (p. 86).

4. Discussion

The chronological structure of this study is informed by the timeline of the voxel
model development shown in Figure 1 (see page 5). The choice of methodologies follows
this structure, and the discussion is organized accordingly. The main findings of this study
have been listed below, to initiate the discussion on novel applications of voxel models in
the context of architectural design and spatial planning:

1. A useful starting point for developing novel applications of voxel models is the
observation that the widely adopted definition of a voxel model as “the 3D conceptual
counterpart of a 2D pixel in an image” [21] should be seen in its original context
and be complemented with the definition of a voxel model as “spatial-knowledge
representation schemata” [4].

2. Various applications of voxel models in architectural design developed over time,
shifting from human–computer interaction studies towards computational experi-
ments that reflect the generative dynamics of natural systems.

3. The growing availability of high-resolution, 3D data capturing urban scenes and large
territories has been instrumentalized in spatial planning, where voxel models are used
to integrate and enrich the raw data with the outcomes of analysis and simulation.

4. In various disciplines, spatio-temporal dynamics of the natural and man-made en-
vironment are studied using voxel-based methods. Design approaches addressing
the challenges of climate change and sustainable development can benefit from the
application of identified voxel-based approaches.

5. Applications of voxel models addressing all architectural project phases have been
identified. In urban planning projects, identified applications of voxel models are
covering initial design phases.
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4.1. Existing Voxel Model Defintitions and Their Relevance for Future Research

The following is the most widely adopted definition of a voxel: it is the 3D conceptual
counterpart of a 2D pixel in an image [21]. From today’s perspective, this creates a mis-
conception by analogy between a static 2D digital image and a voxel as its 3D equivalent.
Voxel models emerged at a time when digital photography was not as omnipresent as it is
today, and the majority of digital 2D images were computationally generated or acquired
through specialized scientific equipment, such as early CT and MRI devices. At that time,
the analytical character of a digital image was more evident, and the analogy between 2D
pixels and 3D voxels conveyed a different meaning. This initial understanding of voxel
models can be re-established by understanding their analytical character, which can extend
beyond the 3D geometry in integrating diverse datasets created with 3D mapping, analysis,
and simulation, as well as through the design process itself. The growing availability of
computational resources makes it possible to encode multidimensional datasets in voxel
models and represent the spatio-temporal changes of various parameters for datasets,
increasing in scale and resolution.

By extension, one of the interesting ways in which voxels can be used is to encode
different datasets, which leads to new insights and allows voxels to be considered as
“spatial-knowledge representation schemata” [4]. Nelson and Stolterman [140] posited that
design is inquiry for action. In this context, voxel models can be utilized to encode the
spatial knowledge encoded in voxel models such as to be actionable in the context of a
design-driven inquiry. This voxel model application is particularly suitable for interdisci-
plinary design environments, where different disciplinary datasets must be spatialized and
integrated to support an interdisciplinary design process. Therefore, we foreground herein
the integrative approaches that use voxels as knowledge representation schemata. This
review outlined several research topics in which voxel models were utilized to structure
disciplinary datasets and link them with a discrete geometric representation. In the context
of architectural design, voxel models are used for design and analysis of the scales of
architectural objects and urban systems. Advancing into a wider scope of computer-aided
design, contributions from material science, mechanical engineering, robotics, 3D scan-
ning, and automated object classification were identified. This extended scope outlines
the possible directions for future research, where the identified approaches can be utilized
to inform the design process. Designers are confronted with the growing complexity of
both the object of their design and the environment in which their design exists. In the
context of the built environment, the urgent need for innovative sustainable design and
construction practices drives the need for novel approaches to informed design methods.
The potential of voxel models relating to their interdisciplinary character and the possibility
to integrate multi-scalar data were identified in this review. The multi-scalar character of
voxel models allows the integration of diverse knowledge domains and the incorporation
of temporal change within one composite, spatial model. Composite voxel models un-
derstood as “spatial-knowledge representation schemata” [4] could be used to advance
spatial information into spatial knowledge, following the line argumentation proposed by
Srihari [4]. These models could be combined with expert knowledge to tackle contemporary
design challenges, such as climate change and sustainable development. Based on this,
targeted multi-domain decision-support systems can be developed and utilized to support
designers and decision makers.

4.2. Existing Voxel Model Applications in Computer-Aided-Design Studies

The early voxel model applications in architectural design utilized basic human–
computer interfaces, and were studied in pedagogical contexts [55,56]. Over time, they
evolved toward generative voxel-based design environments, such as Zellkalkül [60] and
Emergent Reefs [61]. These applications integrated computational logics with natural
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growth processes, and initially involved links with manufacturing processes and envi-
ronmental simulations. This line of inquiry more recently developed into a combined
application of voxel models and GANs in architectural design [70]. Such experiments are
often conducted in an abstract design space that disregards the spatial context inherent to
architectural interventions.

Advanced voxel-based methods currently existing in the field of CAD can be used
to integrate a wide range of physically measured or simulated properties directly related
to the affordances of the designed objects. Affordances incorporate relations among the
object, its user, and the environment. Voxel models can describe both occupied (the object)
and empty (the environment) spaces on a wide range of scales; hence, they can be applied
to design objects based on their desired affordances. This could be achieved by utilizing
ML-based affordance-detection algorithms to learn function-to-form mapping and generate
objects by combining the desired affordances [141]. Alternatively, non-geometric design
knowledge formalized as a SysML model can be used to represent the spatial conflicts across
multiple design domains in a voxel model space [142]. Spatial conflicts can be addressed
through the computational definition of the intended empty spaces related to the design
requirements defined by multi-domain design stakeholders that might change throughout
an objects’ lifecycle. These emerging voxel model applications demonstrate the differences
between the understanding of voxel models as the 3D equivalents of pixels versus the
analytical character of spatial-knowledge-encoding voxel cells that can be harnessed in
computational-design processes.

Findings described above indicate the strength of voxel models in providing approach-
able and playful interfaces for spatial interactions. It is possible to extend the capacity
of such voxel-based design interfaces to incorporate informed, generative-design envi-
ronments. Moreover, abstract concepts such as affordances and spatial conflicts, can be
expressed in geometric terms. Lastly, the multi-stakeholder perspectives and temporal
change can be introduced into voxel interfaces. On the other hand, weaknesses of the
existing voxel-based design experiments are related to the fact that they often operate in an
empty, abstract space, disregarding the constraints of pre-existing geometry and environ-
mental conditions. Moreover, the introduction of abstract concepts, such as affordances or
spatial conflicts, requires highly specialized approaches, and has been currently tested only
with small-scale objects. From here, the following research gap can be derived. The direct
integration of interactive voxel-based environments with data-driven, generative-design
processes has not been extensively studied in the field. In particular, concepts such as
affordances and spatial conflicts have not been considered in the context of voxel-based
methods in architectural design. Lastly, it is important to consider the role of different stake-
holders and the temporal change, while developing new voxel-based design approaches.
Based on this, the following further research questions arise. How can the user-centered
and data-driven, multi-temporal, voxel-based design processes converge to support the
architectural design processes? What are the challenges of incorporating affordances and
spatial constraints into such voxel-based design approaches? How can different stakeholder
perspectives be instrumentalized in such a design process?

4.3. Existing Voxel-Model Applications in Spatial-Planning Studies

By contrast, voxel models are ideally suited for integrating 3D scanned data repre-
senting urban scenes and large territories. Xu, Ting, and Stilla [8] extensively reviewed
this topic, showing that individual objects can be segmented, semantically classified, and
converted to geometric representations directly usable in the CAD context, through diverse
ML-based methods. Looking beyond the ML-based urban-scene understanding and analy-
sis, voxel models can be applied to integrate acquired and simulated geospatial data [143]
to support generative, performance-oriented design processes in non-urban contexts [144].
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In urban contexts, conventional spatial-analysis methods, such as isovists, can be
extended to their 4D counterparts through voxel-based methods [69]. At the same time,
urban trees can be located [65], identified [66], and quantified in terms of carbon storage [67].
Similar concepts can be applied at a larger scale to quantify the green space in cities [62,63]
and analyze and communicate the importance of urban green spaces through digital
visualizations and tangible models [64].

The strengths of the voxel models’ applications in this context are related to the
capacity to represent objects found in the physical world as objects in the abstract space of
the voxel model. These voxel-based representations can encode diverse datasets describing
physical properties of the physical objects captured. Weaknesses of such approaches can
be derived from the technological constraints of the devices used to capture the 3D scan
data. Physical resolution of the sensors, acquisition constraints and in-process errors limit
the direct use of such data in voxel-based design processes. Moreover, computational
techniques to process the acquired data and augment them with additional information are
actively developed, and an in-depth understanding of the techniques is required to integrate
voxel models in the design processes. This leads to the emergence of a research gap,
formulated as follows. The convergence of information-rich, voxel-based representations
of our physical environment and data-driven, architectural-design processes has not been
extensively studied. Understanding and the continuous development of technological
processes is needed for the convergence of the voxel-based methods and architectural-
design processes. Based on this, the following research questions arise. What are the
open challenges for the integration of information-rich, voxel-modeling approaches in
introducing physical environment constraints into the architectural-design process? How
can the development and dissemination of knowledge required for the integration of voxel
modeling and architectural design be accelerated?

4.4. Existing Voxel-Model Applications from the Interdisciplinary Perspective

The identified voxel-model applications in urban contexts bring together natural and
man-made elements. Voxel-model applications for ecological modeling and urban-habitat
characterization [106,108] were also identified. These spatio-temporal analysis methods
cover a wide range of scales and knowledge domains [145]. However, the voxel-based
integration of these methods in computational design processes that integrate urban and ar-
chitectural design with natural elements and urban ecology has not yet been fully explored.
Some research projects focusing on this integration are underway [146,147]. Natural growth
processes can also be modeled with voxel models, both in a design context [61] and to
study the plant root growth [104]. The convergence of these two approaches is observed in
the field of Baubotanik, where voxel models were recently applied to reconstruct a skeleton
model from 3D scanned examples of living architectures [148]. The integration of living
architecture in urban contexts could be facilitated through a voxel model to leverage the
data integration potential, combining different scales, disciplinary datasets, and methods.

The unique quality of voxel-model applications in this context is the ability to spatialize
expert data coming from other disciplinary contexts and possibly enable the data for
integration with voxel-based design processes in architectural design. The discussed
studies are contributing insights that can expand the impact that architectural design
and the spatial-planning profession can have on addressing the current sustainability
challenges. The perceived weaknesses of the discussed methods are the complexity of
individual disciplinary voxel-modeling approaches, requirements for expert data input and
the interdisciplinary expertise required for the validation of modeling results. Moreover,
existing voxel-model applications are often operating in different spatio-temporal scales
and resolutions, the application of which in architectural-design processes is conceptually
challenging. From there, the need to understand and integrate voxel-modeling approaches
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coming from the field of earth sciences within the future design and planning activities
can be seen as a possible research gap. Moreover, an understanding of the spatiotemporal
scales and resolutions utilized in other disciplines is required to succeed in interdisciplinary
design and planning approaches. Future research can focus on the following questions:
what are the constraints limiting the possible integration of voxel-modeling approaches
from the fields of earth sciences and ecology into design and planning activities? How
can the interdisciplinary, voxel-based data relating to different scales and resolutions be
integrated into and made an integral part of a design process?

4.5. Distribution of the Identified Voxel-Model Applications across AiA Project Phases

Voxel models can be linked with different architectural and urban-planning stages to
address sustainable development. Table 7 assigns the identified voxel-model applications to
the categories derived from the project phases, as described in this paragraph. The division
of the architectural planning process into phases is conventionally standardized by national
bodies, such as the Royal Institute of British Architects (RIBA), the American Institute of
Architects (AiA), and other national equivalents. The RIBA and AiA project phases were
established to standardize contracts signed between practices and clients and specify project
deliveries that architectural offices must submit at the end of each phase. The context of
this study extends beyond the understanding of the design process as a procedure to plan
and construct a building, by encompassing the relations between natural and man-made
environments. This is performed to enable holistic design processes toward sustainable
development. As presented through clear indicators, the architectural-design profession
recognizes the need for more holistic design processes to address, for instance, the relations
between buildings and the environment (e.g., through building life-cycle analysis). This
study establishes four categories derived from the building life-cycle [149] (p. 14) and
design phases [149] (p. 22) established by the AiA. The first category combines “Pre-design”
activities and building “Use and Maintenance” to underline the fact that each constructed
building becomes a part of the building stock. The term “building stock” describes a
group of buildings, while each constructed building is seen as a stock of raw materials
that can be adapted or recycled throughout its lifecycle. From this perspective, the “Use
and Maintenance” activities naturally blend with the “Pre-design” activities in the process
of the constant change of buildings and cities. The first category collects the voxel-model
applications that can be used to capture, quantify, and analyze the objects constituting
man-made and natural environments. The following two categories refer to the “Schematic
Design” and “Design Development” AIA project phases. Table 7 presents the voxel-model
applications related to the design activities assigned to the two project phases listed in
those categories. The fourth category contains the contributions related to the voxel-model
applications addressing the physical aspects of the architectural design process, including
building construction and the constraints related to materials and manufacturing.

The first category in Table 7 contains the voxel-model applications related to both
architectural and urban design. Nearly all voxel-model applications in the urban context fall
into this category, which can be explained by the adoption of diverse 3D-data-acquisition
and analysis techniques utilizing voxel-based representations. The applications related to
architectural design are related to the similar techniques applied to both building exteriors
and interiors. The category related to the “Schematic Design” phase involves different
approaches for design experimentation, utilizing voxel representations. The “Design
Development” category contains approaches addressing the analysis and optimization
of internal building organization and those for combining generative-design processes
with voxel-based representations. The last category identifies the voxel-model applications
related to digital manufacturing processes and material properties. The listed publications
show growing interest in incorporating material-performance and manufacturing-process
constraints in the design processes.
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Table 7. Selected voxel model applications assigned to categories based on the project phases derived
from the AIA Guide to Building Life Cycle Assessment in Practice [149].

Project Phases Architectural Design Urban Planning

Pre-design/
Use and Maintenance

Liu et al. [53]
Deidda [76]

Hübner et al. [80]
Previtali et al. [81]

Truong–Hong et al. [82]
Chen et al. [83]

Orengo [90]
Shoaib Khan et al. [99]

Taraben and Morgenthal [118]
Yang et al. [119]

Susaki and Kubota [62]
Wakita and Susaki [63]

Anderson et al. [64]
Schmohl et al. [65]

Guan et al. [66]
Vonderach et al. [67]

Fisher–Gewirtzman et al. [68]
Bremer et al. [85]

Heo et al. [86]
Andersen et al. [91]

Nolde et al. [92]
Graciano et al. [97]
Nonogaki et al. [98]

Sasaki et al. [106]
Li et al. [120]

Schematic Design

Strehlke [55]
Savov and Tessmann [57]

De Klerk et al. [58]
Fischer [60]

Erioli and Zomparelli [61]
Asmar [70]

Thariyan [84]
Leder [127]
Xiao [128]

Michalatos and Payne [132]

Morello et al. [69]
Mitasova et al. [101]

Design
Development

Cubukcuoglu et al. [71]
Gorte et al. [72]

Breslav and Khan [73]
Wang et al. [77]

Baron et al. [135]
Mekki et al. [136]

Ambrozkiewicz and
Kriegesmann [137]

Aage et al. [139]

Materials and
Manufacturing/

Construction

Golparvar-Fard et al. [74]
Peddireddy et al. [110]

Wang et al. [112]
Yousefian and Tarbutton [111]

Kukreja et al. [113]
Huang et al. [114]
Greminger [115]
Chi et al. [116]

Van De Walle et al. [124]
Maaroufi et al. [125]

Vantyghem et al. [126]
Hosny et al. [129]

Naboni and Kunic [130]
Michalatos and Payne [131]

Green et al. [133]
De Schampheleire et al. [134]

Craveiro et al. [138]

In reference to Table 7, the strength of the voxel-model applications in architectural
design can be assigned both to the large number of contributions related to the last design
phase and to the good coverage of all project phases. The advantage of voxel-modeling
approaches in spatial planning can be seen in the strong concentration in the initial design
phase. At the same time, the large fragmentation of architectural-design approaches can be
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seen as a weakness, since the individual studies are conventionally perceived as disjointed
approaches to instrumentalize voxel models to solve the problem at hand, instead of
constituting a larger picture of the voxel-modeling approaches in architectural design.
While the voxel-model applications in spatial planning are more concentrated, the lack
of voxel-model applications in the later project phases can be seen as a disadvantage.
The above-mentioned observations can constitute a research gap, expressed as a need to
further systematize the voxel-model applications in each of the architectural project phases.
Moreover, the transition of voxel-modeling approaches found in the later project phases
of architectural design into the domain of spatial planning might lead to new findings.
These observations suggest new research questions. In reference to each of the AiA Project
Phases, what are the existing voxel-modeling approaches, and how they can be extended?
How can the applications of voxel models from different AiA Project Phases and across
the architectural design and urban-planning activities be reapplied in different phases
and activities?

4.6. Summary of New Questions and Possible New Research Steps

Finally, the main findings of this study derive from the definition of voxel models
as “spatial-knowledge representation schemata” [4]. Research gaps emerging from the
findings and the following research questions have been presented for each of the main
findings. This engenders new further research steps:

• Focus needs to be placed on the investigation of the possible convergence of user-
centered and data-driven, multi-temporal, voxel-based design processes in the context of
architectural design. This includes the role of affordances and spatial conflicts and ways
of expressing them in a voxelized design space, incorporating stakeholder interactions.

• A second line of inquiry needs to focus on the integration of data-driven, voxel-
modeling approaches that incorporate physical-environment constraints into architec-
tural-design process. This can serve to underpin the development and dissemina-
tion of expert knowledge related to the data-driven voxel-modeling approaches in
architectural design.

• Further focus needs to be placed on the promotion of interdisciplinary collaboration
between the disciplines of architectural design, spatial planning, earth sciences and
ecology, through the development of interoperable voxel-modeling approaches and
the instrumentalization of disciplinary datasets ranging in scale and resolution.

• Finally, it will be useful to undertake systematic studies of voxel-modeling approaches
in architectural design and urban planning, addressing each of the AiA Project Phases
and possible innovations emerging from the application of identified methods in
different project phases or design activities.

5. Conclusions

This paper presented a semi-systematic literature review with the aim of uncovering
and discussing the possible intersections of diverse disciplinary methods related to voxel
models regarding their possible contribution to digital architecture and planning. This
study used scoping and narrative literature-review methods to map and summarize the
findings and trace the development of voxel models over time. The first part of the review
concluded with a keyword co-occurrence analysis. The analysis of the keywords contained
in the clusters revealed numerous voxel-model applications, and covered a wide range
of topics studied in computer-aided design. This analysis revealed the gap in examin-
ing how voxel models could serve as data structures for multi-domain and trans-scalar
data-integrated workflows. A detailed examination was conducted to identify the existing
and emerging research directions, based on the reviewers’ expert knowledge. According
to Snyder [26], a semi-systematic literature review aims to identify the scope of topics
encompassing a particular knowledge domain. The resulting description of the possible
research directions is not meant to be fully exhaustive, but aims instead to provide the
possibility for the research community to examine the outcomes of the scoping study
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and revisit different parts in the separate, systematic literature reviews. The discussion
initiated in this review concluded with the observation of numerous voxel-model applica-
tions understood as “spatial-knowledge representation schemata” [4] in computer-aided
design. However, attempts to integrate this type of voxel model and architectural design
are sparse and fragmented. Notable exceptions can be found in generative design [61],
geomatics [121], material science [131], and computational morphogenesis [139] (p. 86).
However, the full potential relating to the interdisciplinary, integrative, and holistic design
approaches addressing sustainable design challenges based on voxel models is only starting.
The possible future research directions identified in this review include the voxel-model
application for the data-driven design approaches, leveraging analysis and acquisition
methods from the field of geomatics. These processes might incorporate the identified
generative-design elements and be executed in both urban and non-urban contexts. The
identified environmental-modeling methods addressing the field of urban ecology often
utilize spatio-temporal, voxel-based representations. The application of such approaches in
the context of integrated design and planning processes will be further studied.
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