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Abstract: Stochastic Model Predictive Control (SMPC) has attracted increasing attention for au-
tonomous driving in recent years, since it enables collision-free maneuvers and trajectory planning
and can deal with uncertainties in a non-conservative way. Many promising strategies have been
proposed on how to use SMPC to select appropriate maneuvers and plan safe trajectories in uncer-
tain environments. The limitation of these approaches is that they focus on scenarios where only
one vehicle is controlled by SMPC and is, thus, reacting to the surrounding vehicles; however, the
surrounding vehicles do not react to the SMPC-controlled vehicle, which means there is no mutual
interaction. However, when multiple autonomous vehicles are driving on the road, each individual
vehicle will take the behavior of the other surrounding vehicles into account and adjust its individual
decisions accordingly in trajectory planning. This paper, therefore, examines in simulations how the
interactive control system of multiple SMPC-controlled vehicles behave based on a Distributed SMPC
(DSMPC) framework. For a three-lane highway scenario, we first investigate the effects of the risk
parameter of the collision avoidance probabilistic constraint on non-interactive and interactive vehicle
systems and provide insights into how to parameterize the controllers in interactive vehicle systems.

Keywords: Model Predictive Control; autonomous vehicles; interactive systems

1. Introduction

Recent decades have witnessed rapid development in autonomous driving. Au-
tonomous vehicles driving in dynamic highway environments must be able to manage
the uncertainty resulting from the behavior of other traffic participants [1]. Nominal
control approaches that cannot deal with system uncertainties might cause hazardous
performance [1]. In contrast, robust control approaches can consider uncertainties but
are too conservative because they also consider worst-case scenarios [2]. SMPC has been
used to control autonomous vehicles because of its ability to consider uncertainties and
simultaneously avoid overly conservative behaviors [1,3–5].

MPC iteratively solves a constrained optimal-control problem on a finite prediction
horizon. That means a cost function is minimized while satisfying multiple constraints [6],
including a system dynamic model used for generating predictions and safety constraints.
In contrast, SMPC allows constraint violation with a specified small probability by applying
probabilistic chance constraints, resulting in non-conservative behaviors [7,8]. Autonomous
vehicles controlled by SMPC treat collision-avoidance constraints with adjustable risk pa-
rameters as probabilistic constraints [1,4]. However, in previous studies [1,3–5], simulations
that confirmed the suitability of SMPC-based controllers for autonomous vehicles assumed
that the surrounding vehicles used a much simpler controller and, in particular, did not
consider predictions of the surrounding vehicles and, thus, also did not react to SMPC-
controlled vehicles.
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In the simulations of this paper, for simplicity of description, vehicles that react to other
vehicles are called reactive vehicles, and those that do not react to other vehicles are non-
reactive vehicles. A system consisting of only one reactive vehicle and multiple non-reactive
vehicles is a non-interactive system. In real traffic, all vehicles tend to react to the vehicles in
the environment. Thus, after designing an individual SMPC algorithm for a vehicle treating
all surrounding vehicles as non-reactive vehicles, it is essential to also embed this controlled
vehicle system in an environment where all surrounding vehicles are reactive. We, thus,
obtain an interactive system. Not only is it important to investigate the performance of the
overall interactive control system but the findings from this investigation must be included
in the design of the SMPC for an individual autonomous vehicle.

Evaluating the performance of a novel controller requires simulating it in different
scenarios employing either microscopic traffic models or macroscopic traffic models. Mi-
croscopic traffic models focus on studying the traffic phenomena of individual vehicles and
analyzing how they interact with each other [9]. In microscopic traffic models, the dynamics
of each traffic participant are individually modeled [10]; this allows us to know each vehi-
cle’s detailed information, including the location, velocity, inertial heading, acceleration,
and steering angle [10]. Macroscopic traffic models research the overall characteristics,
e.g., the intensity, density, and mean speed, of the traffic flow, in which the details of
individual interactions between vehicles are ignored [9,11]. In this paper, we study the
performance of individual SMPC-controlled vehicles and the interactions between them
and, consequently, select a microscopic traffic model.

In a multi-vehicle highway environment, considering the interactions between reactive
vehicles contributes to more precise traffic prediction [12], which is fundamentally required
in intelligent transportation systems [11]. Interactions between reactive vehicles have
previously been investigated in microscopic traffic simulations [12,13]; however, to the
best of our knowledge, the interactions between SMPC-controlled vehicles, where it is of
interest to see the impact and the interplay of different risk parameters that determine the
aggressiveness/conservativeness level of vehicles when reacting to other vehicles, have not
been investigated. This motivated us to examine the interactions between SMPC-controlled
vehicles in a multi-vehicle interactive system for a highway environment in this paper.

To do this, we model the multi-vehicle interactive system using a Distributed SMPC
(DSMPC) framework [14–16]. In this framework, each vehicle interacts with its surrounding
vehicles by observing their current states and predicting their future behaviors and avoiding
potential collisions. Distributed MPC (DMPC) has been applied to solve vehicle platooning
problems [17–20], where multiple vehicles are typically involved and are controlled to
cruise at a constant speed. However, DMPC has not been used for problems where
individual vehicles do not have a common driving goal. In this paper, we use a DSMPC
framework to model multi-vehicle interactive systems, where individual vehicles have
unique driving goals, which are usually different. Here, we assume that all vehicles have
the same controller but with different parameterizations. In particular, the risk parameter
is chosen differently.

We summarize the contributions of this paper as follows:

1. Investigating the effects of SMPC risk parameters on non-interactive and interactive
vehicle-control systems on highways.

2. Providing guidelines on how to set risk parameters for vehicles in interactive systems.

Our work regarding interactive systems of SMPC-controlled vehicles is based on the
hypotheses below:

Hypothesis 1. The behaviors of a vehicle are determined not only by its own controller but also by
the controllers of other vehicles.

Hypothesis 2. The behaviors of one vehicle can influence the performance of the whole system.
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The rest of the paper is organized as follows. Section 2 presents the communication
topology used in the distributed framework and formulates the individual SMPC controller
and how all individual SMPC controllers are combined together. In Section 3, we introduce
elements of these SMPC problems and transform the stochastic optimal-control problem
into a deterministic problem. Finally, our simulation results are presented in Section 4
followed by our conclusions in Section 5.

Notation: R is the set of real numbers. Rm denotes the set of all column vectors with
m elements, which are real numbers. Rm×n stands for the set of all m× n matrices whose
elements are real numbers. We use Sn to denote the set of symmetric matrices of order n.
‖x‖2

Q = xᵀQx.

2. Model of the Multi-Vehicle System

In our multi-vehicle interactive control system model, each vehicle detects the position
in the lateral and longitudinal direction, velocity, and inertial heading angle of all currently
neighboring vehicles, which we refer to as ’information’ in the following; a graph theoretic
time-varying communication topology [19] models this information transmission.

In this section, we introduce the communication topology and the SMPC problem
that is solved by an individual vehicle and how all SMPC problems are combined into the
distributed SMPC control framework.

2.1. Communication Topology

The communication topology shows which of the surrounding vehicles is considered
in the controller of one particular vehicle. We assume that all vehicles are equipped with
sensors to detect information about their surrounding vehicles at a specified detectable
distance. This distance depends on the detection ability of each vehicle’s sensors. For
simplicity, we assume that the sensors of all vehicles have the same detection ability, which
means the detectable distance is the same.

Here, we introduce a communication topology at one time step as shown in Figure 1.
The communication topology is updated at each time step to account for changing vehi-
cle positions.

1

8

4

6

2

109

5 7

3

Figure 1. Communication topology at one time step. This topology shows, at one time step, which of
the surrounding vehicles is considered in the controller of one particular vehicle. This topology is
updated at each time step.

It is modeled as an undirected graph G = {V,E}, where V = {1, 2, . . . , Nv} is the
set of nodes, which represent vehicles, and E ⊆ V×V is the set of edges describing the
information detection among vehicles. The number of nodes (vehicles) in the graph is
given by Nv. The graph G can be denoted with an adjacency matrix A ∈ RNv×Nv

A = [aij] =

{
aij = 1, if {i, j} ∈ E
aij = 0, if {i, j} /∈ E

, (1)
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where {i, j} ∈ E means vehicle i senses the information about vehicle j, which is within
the detectable distance of vehicle i. Vehicle j is, therefore, a neighbor of vehicle i. The set
consisting of the neighbors of vehicle i is denoted by Ni = {j | aij = 1, j ∈ V}. We define a
dual set Oi = {j | aji = 1, j ∈ V}, which includes all vehicles that identify i as a neighbor.
The union of the two sets Ni and Oi is Ni ∪Oi. All vehicles in Ni ∪Oi categorize i as one of
their neighbors and are themselves simultaneously neighbors of vehicle i. The sets Ni, Oi,
and Ni ∪Oi are updated at each sampling time. Assuming that all vehicles have the same
detectable distance, the sets Ni, Oi, and Ni ∪Oi are equal.

Each controlled vehicle will attempt to avoid collisions with its neighboring vehi-
cles, and probabilistic constraints in the optimal-control problem reflect this requirement.
Any vehicle i incorporates the information about its neighbors from Ni into its collision-
avoidance constraints. All vehicles in Oi take the information of vehicle i into account in
their collision-avoidance constraints.

2.2. Vehicle Controllers

The multi-vehicle interactive control system consists of a number of individual vehicles
that are interactive because their individual controllers consider information about the
current states of surrounding vehicles. We assume that each vehicle is controlled by SMPC;
thus, the overall system is modeled using a distributed SMPC framework. The SMPC
optimal-control problem that is solved by each vehicle at every sampling time is introduced
in this section.

To decide on the current optimal control, each controlled vehicle, denoted as an Ego
Vehicle (EV), must consider its predicted behaviors as well as those of vehicles, denoted
as Target Vehicles (TVs), within a detectable distance. Simultaneously, an EV might be a
TV of other Ego Vehicles (EVs). For each vehicle i (i ∈ V) and each prediction time step
k (k = 0, . . . , N − 1), we define the predicted state ξ

p
i,k and predicted control input up

i,k
that will later be optimized over a prediction horizon of length N. Further, we introduce
assumed states ξa

i,k and assumed control inputs ua
i,k [18,19] to describe what other vehicles

(vehicles in Oi) assume about the future behaviors of vehicle i. Finally, ξ∗i,k and u∗i,k define the
optimal trajectories that vehicle i determines by solving the SMPC optimal control problem.

The SMPC optimal-control problem for EV i ∈ V is specified by a cost function Ji and
constraints. The cost function is minimized over all admissible control input trajectories

up
i =

(
up

i,0, up
i,1, . . . , up

i,N−1

)ᵀ
, where admissibility means that the control inputs up

i as well

as the corresponding state trajectory ξ
p
i =

(
ξ

p
i,0, ξ

p
i,1, . . . , ξ

p
i,N

)ᵀ
, which is found by iterating

the system dynamics

ξ
p
i,k+1 = f p

(
ξ

p
i,k, up

i,k

)
, i ∈ V, k = 0, . . . , N − 1, (2a)

do not violate constraints. The initial predicted state ξ
p
i,0 is the current state of the EV i.

A first version of the optimal-control problem is, thus, given by

min
up

i

Ji

(
ξ

p
i , up

i

)
(2b)

subject to state and input constraints

ξmin
i ≤ ξ

p
i,k ≤ ξmax

i , k = 0, . . . , N (2c)

umin
i ≤ up

i,k ≤ umax
i , k = 0, . . . , N − 1. (2d)

Remark: We used only box constraints here, though more general constraints would
be allowed.
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We still have to add collision-avoidance constraints that involve assumptions on the
surrounding vehicles’ behaviors. Summarizing the assumed models of all TVs in

ξa
TV,k+1 = f a

TV

(
ξa

TV,k, ua
TV,k, ωa

TV,k

)
, k = 0, . . . , N − 1, (2e)

where ωa
TV,k is the uncertainty in the prediction of TV behaviors, we obtain assumptions

for all times in the prediction horizon used to formulate probabilistic collision-avoidance
constraints for each TV summed up in

Pr
(

ξ
p
i,k ∈ Ξsafe,TV

i,k

)
≥ pi, pi ∈ [0.5, 1], k = 1, . . . , N. (2f)

These constraints are probabilistic constraints in our approach. The requirement
ξ

p
i,k ∈ Ξsafe,TV

i,k means that states ξ
p
i,k have to be in the safe set Ξsafe,TV

i,k to avoid potential

collisions with the TVs at prediction step k. The set Ξsafe,TV
i,k is determined from the predicted

states of EV i and the assumed states of all its TVs ξa
TV,k. Employing Pr(∗) ≥ pi, we ensure

that the event ∗ occurs with a probability of not less than pi. The probabilistic constraints
(2f) are designed to soften the collision-avoidance constraint between the EV i and its TVs.

A small probability of collisions between the EV i and its TVs is acceptable. This
softening prevents overly conservative driving behaviors caused by hard constraints in
robust MPC. In the following, pi in constraints (2f) is identified as a risk parameter of EV i
and is specified in advance. A smaller risk parameter pi corresponds to more aggressive
driving behaviors, which might increase the probability of collisions. Conversely, a larger
pi results in more conservative behaviors, a defensive driving mode.

We refer to the expressions (2a)–(2f) as ’the SMPC optimal-control problem’ in
the following. The model in (2e) collects the system models of all TVs of EV i. If we
assume that EV i takes m TVs labeled i1, i2, . . . , im (i1, i2, . . . , im ∈ Ni) into account, then
(2e) summarizes 

ξa
i1,k+1 = f a

(
ξa

i1,k, ua
i1,k, ωa

i1,k

)
ξa

i2,k+1 = f a
(

ξa
i2,k, ua

i2,k, ωa
i2,k

)
...

ξa
im ,k+1 = f a

(
ξa

im ,k, ua
im ,k, ωa

im ,k

) , k = 0, . . . , N − 1. (3)

The assumed states ξa
i1,k, ξa

i2,k, and ξa
im ,k correspond to TVs i1, i2, and im, respectively.

Similarly, the assumed control inputs are ua
i1,k, ua

i2,k, and ua
im ,k; the prediction uncertainties

are denoted by ωa
i1,k, ωa

i2,k, and ωa
im ,k. The dynamic model of the EV and TVs will be

discussed in more detail in Section 3.
In the same way, expression (2f) contains the collision-avoidance constraints between

EV i and all its TVs (i1, i2, . . . , im ∈ Ni):

Pr
(

ξ
p
i,k ∈ Ξsafe,i1

i,k

)
≥ pi

Pr
(

ξ
p
i,k ∈ Ξsafe,i2

i,k

)
≥ pi

...

Pr
(

ξ
p
i,k ∈ Ξsafe,im

i,k

)
≥ pi

, pi ∈ [0.5, 1], k = 1, . . . , N. (4)

Here, Ξsafe,i1
i,k , Ξsafe,i2

i,k and Ξsafe,im
i,k are the sets of safe states of EV i for preventing

collisions with TVs i1, i2, . . . , im at prediction step k, respectively.
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3. Elements of the SMPC Problem

In this section, we introduce the elements of the SMPC optimal-control problem,
including the vehicle models in Section 3.1, constraints in Section 3.2, and cost function
in Section 3.3.

Additionally, due to the presence of stochastic disturbances ωa
TV,k in the TV model (2e)

and the probabilistic chance constraints (2f), the SMPC optimal-control problem cannot
be solved directly [1]. To solve this, we transfer the stochastic optimal-control problem
into a deterministic one by (1) reformulating the dynamic model of the TV, as shown in
Section 3.1.4; and (2) tightening the probabilistic constraints as shown in Section 3.2.3.

3.1. Vehicle Models

A predictive controller requires a system model (2a). Thus, for our application, we
need a system model of each EV, which is used by the EV to decide on optimal controls.
In addition, we need a system model of each TV, which EVs use to predict TV trajectories
to avoid potential collisions.

Vehicle models with different modeling depths have been proposed in the literature,
including, e.g., the Fiala tire model, the dynamic bicycle model, and the kinematic bicycle
model [1,21–23]. In this paper, we use the kinematic bicycle model [24] because it is a
relatively coarse model and, thus, contributes to avoiding excessive computational load in
optimizations [24].

The kinematic bicycle model consists of nonlinear differential equations (see, e.g., [24]),
which are summarized as ξ̇ = f c(ξ, u) in this paper. The state vector ξ = (x, y, ψ, v)ᵀ

contains the longitudinal position x and lateral position y of the center of mass of the vehicle
as well as the velocity of the vehicle v and inertial heading ψ. The control inputs u = (a, δ)ᵀ

contain the acceleration a and steering angle δ. The nonlinear differential equations and
all notations for describing the kinematic bicycle model can be found in Appendix A.
In simulations, we use a linearized, discretized version of the model (see [5,25]).

3.1.1. Linear Discrete-Time Model

The linearized and discretized kinematic bicycle model (see [5]) is denoted as

ξk+1 = ξ0 + T f c(ξ0, 0) + A(ξk − ξ0) + Buk, k = 0, . . . , N − 1, (5)

where the state and control input at prediction step k are represented by ξk and uk, respec-
tively. The initial state is ξ0, and the sampling time is T. The system matrices A and B are
given in Appendix B.

3.1.2. Model of EVs

We use the model (5) for each EV i to generate predictions:

ξ
p
i,k+1 = ξ

p
i,0 + T f c

(
ξ

p
i,0, 0

)
+ Ai

(
ξ

p
i,k − ξ

p
i,0

)
+ Biu

p
i,k, i ∈ V, k = 0, . . . , N − 1, (6)

where ξ
p
i,k =

(
xp

i,k, yp
i,k, ψ

p
i,k, vp

i,k

)ᵀ
∈ RNξ,i and up

i,k =
(

δ
p
i,k, ap

i,k

)ᵀ
∈ RNu,i are the predicted

states and control inputs of EV i in prediction step k, respectively.

3.1.3. Model of TVs

For TVs, we choose a slightly adapted version of model (5) to include prediction
uncertainty. Let vehicle ĭ be one TV of any EV i (ĭ ∈ Ni), then ξa

ĭ,k is the assumed trajectory

of TV ĭ at prediction step k, and the TV model is

ξa
ĭ,k+1 = ξa

ĭ,0 + T f c
(

ξa
ĭ,0, 0

)
+ Aĭ

(
ξa

ĭ,k − ξa
ĭ,0

)
+ Bĭu

a
ĭ,k + Gĭω

a
ĭ,k, k = 0, . . . , N − 1, (7)
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where ξa
ĭ,k =

(
xa

ĭ,k
, ya

ĭ,k
, ψa

ĭ,k
, va

ĭ,k

)ᵀ
∈ RNξ,ĭ and ua

ĭ,k
=
(

δa
ĭ,k

, aa
ĭ,k

)ᵀ
∈ RNu,ĭ are the assumed

states and control inputs of TV ĭ at prediction step k, respectively. The system matrices Aĭ
and Bĭ can be found in [25]. The vector ωa

ĭ,k
∈ RN

ω,ĭ
is included to account for the uncertainty

at any prediction step k, which comes from the imprecision of the prediction.
The uncertainties ωa

ĭ,k
∈ RN

ω,ĭ
are assumed to be subject to a Gaussian distribution with

zero mean and covariance matrix ∑ωa
ĭ
, and thus ωa

ĭ,k
∼ N

(
0, ∑ωa

ĭ

)
.

3.1.4. Reformulation of the TV Model

The SMPC optimal-control problem in expressions (2a)–(2f) is replaced by an equiva-
lent deterministic problem that is numerically tractable. Here, we prepare this replacement
by splitting the TV model into deterministic and stochastic equations (see [26]).

The state of TV ĭ at prediction step k is decomposed into two components: the de-

terministic, nominal component za
ĭ,k

(za
ĭ,k

=
(

x̃a
ĭ,k

, ỹa
ĭ,k

, ψ̃a
ĭ,k

, ṽa
ĭ,k

)ᵀ
∈ RNz,ĭ ) and a zero-mean

stochastic error component ea
ĭ,k

ξa
ĭ,k = za

ĭ,k + ea
ĭ,k. (8)

The following assumption is made (see [1]):

Assumption 1. The state feedback is perfect, i.e., ξa
ĭ,0 = za

ĭ,0
, which suggests ea

ĭ,0
= 0 with a

probability of 1.

We incorporate a prestabilizing error feedback (see [7]) into the control input

ua
ĭ,k = Kĭe

a
ĭ,k + va

ĭ,k, (9)

where Kĭ is a stabilizing feedback gain that is obtained by applying a linear quadratic

control strategy, and va
ĭ,k

=
(

δ̃a
i,k, ãa

i,k

)ᵀ
∈ RNv,ĭ is the assumed control input used for an EV

to predict the behaviors of its TV ĭ. In the following, we set va
ĭ,k

= 0 (k = 0, . . . , N − 1),
so that the EVs assume that TVs will drive with almost constant speed in the prediction
horizon. The equations for the TV model are summarized as

za
ĭ,k+1 = za

ĭ,0 + T f c
(

za
ĭ,0, 0

)
+ Aĭ

(
za

ĭ,k − za
ĭ,0

)
+ Bĭv

a
ĭ,k, (10a)

ea
ĭ,k+1 = Φĭe

a
ĭ,k + Gĭω

a
ĭ,k, (10b)

where Φĭ = Aĭ + BĭKĭ is strictly stable for the system
(

Aĭ, Bĭ
)

of TV ĭ. The deterministic
equation (10a) will generate predictions of TV behavior, while the stochastic equation (10b)
will be used to evaluate the collision-avoidance constraints.

The distribution of all predicted errors ea
ĭ,k

is determined iteratively from the dis-

tributions of the initial error ea
ĭ,0

and the disturbances ωa
ĭ,k

. Let ea
ĭ,k
∼ N

(
0, ∑ĭ,k

)
, then

ea
ĭ,k+1

∼ N
(

0, ∑ĭ,k+1

)
, where ∑ĭ,k+1 = Φĭ ∑ĭ,k Φᵀ

ĭ
+ Gĭ∑ωa

ĭ
Gᵀ

ĭ
(see [1]). From Assumption 1,

we find that the covariance of the initial error ea
ĭ,0

is 0, and thus ∑ĭ,0 = 0.

3.2. Constraints

In this subsection, we introduce constraints on states and inputs for the SMPC optimal-
control problems of EVs. We consider (1) road boundaries, limitations on the inertial
heading, speed, and acceleration; and (2) collision avoidance, where collision-avoidance
constraints are probabilistic constraints, and all others are hard constraints.
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3.2.1. Hard Constraints

For any EV i, we incorporate the following hard constraints into the SMPC problem

ξmin
i ≤ ξi,k ≤ ξmax

i (11a)

umin
i ≤ ui,k ≤ umax

i (11b)

where ξmin
i =

(
0, yr,l + wveh

i /2, ψmin
i , vmin

i
)ᵀ

, ξmax
i =

(
lroad, yr,u − wveh

i /2, ψmax
i , vmax

i
)ᵀ

,
umin

i =
(
amin

i , δmin
i
)ᵀ, and umax

i =
(
amax

i , δmax
i
)ᵀ. The lower and upper boundaries of

the road are represented by yr,l and yr,u, respectively. The length of the road is denoted
by lroad. The width of EV i is given by wveh

i . The lower bounds of the inertial heading
angle ψmin

i , speed vmin
i , acceleration amin

i , and front steering angle δmin
i are considered. We

also consider the upper bounds of these states, denoted by ψmax
i and vmax

i , and the control
inputs, which are represented by amax

i and δmax
i . The values of these parameters are shown

in Table A1 in Appendix D.

3.2.2. Collision-Avoidance Constraints

In the following, we explain the calculation of the safe sets Ξsafe,ĭ
i,k in the collision-

avoidance constraints (4), where ellipse regions approximate the occupied area of one
vehicle that other vehicles are not allowed to enter (see [1,4]).

The non-accessible region around TV ĭ is given by an inequality constraint

dĭ,k =

(
∆xĭ,k

)2

s2
a

+

(
∆yĭ,k

)2

s2
b

− 1 ≥ 0 (12)

that defines an ellipse where the center of vehicle ĭ is the center of the ellipse (see [4]).
The size of the ellipse is determined by the semi-major axis sa and the semi-minor axis sb.
The longitudinal distance and lateral distance between EV i and its TV ĭ are given by ∆xĭ,k
and ∆yĭ,k, respectively, and are defined below:[

∆xĭ,k
∆yĭ,k

]
=

[
xp

i,k − x̃a
ĭ,k

yp
i,k − ỹa

ĭ,k

]
. (13)

The constraint (12) is usually overly conservative because, when the ellipse region
around the TV ĭ is larger than the actual vehicle shape, a vehicle might enter the ellipse
region without causing a collision. For this reason, we employ the probabilistic chance
constraint for collision avoidance that allows vehicles a small probability to enter the safety
ellipse of another vehicle:

Pr(dĭ,k ≥ 0) ≥ pi. (14)

3.2.3. Constraint Tightening

In order to directly solve the SMPC optimal-control problem, we replace the probabilis-
tic chance constraint (2f) by a tightened version of dĭ,k ≥ 0, where the upper bounds of the
tightened constraints depend on the risk parameter pi and the distribution of the prediction
uncertainties ω in the TV models. This allows for replacing the stochastic optimal-control
problem with a deterministic optimal-control problem. We adopt the constraint tightening
from [1,4] and summarize it as follows.

From (8) in Section 3.1.4, the error between the actual and nominal states of TV ĭ is
ea

ĭ,k
= ξa

ĭ,k − za
ĭ,k

. Given (13), the constraint (12) is linearized around the nominal state za
ĭ,k

of

TV ĭ, resulting in
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dĭ,k +∇dĭ,kea
ĭ,k ≥ 0 (15)

where

∇dĭ,k =
∂dĭ,k

∂za
ĭ,k

=

(
−2∆xĭ,k

s2
a

,
−2∆yĭ,k

s2
b

, 0, 0

)
. (16)

Using inequality (15), the probabilistic chance constraint (14) is rewritten as

Pr
(
−∇dĭ,kea

ĭ,k ≤ dĭ,k

)
≥ pi, pi ∈ [0.5, 1], k = 1, . . . , N, (17)

which can be divided into a deterministic inequality and a probabilistic equation:

dĭ,k ≥ γĭ,k (18a)

Pr
(
−∇dĭ,kea

ĭ,k ≤ γĭ,k

)
= pi, pi ∈ [0.5, 1], k = 1, . . . , N. (18b)

Then, according to Theorem 1 in [4], the probabilistic equation in (18b) is tightened
by choosing γĭ,k as

γĭ,k =

√
2∇dĭ,k∑ĭ,k

(
∇dĭ,k

)ᵀ
erf−1(2pi − 1). (19)

With the deterministic part of the TV model (10a) and the deterministic constraint
(18a), the SMPC optimal-control problem in expressions (2a)–(2f) can be transformed into a
deterministic problem (see Appendix C for the deterministic collision-avoidance constraints
for multiple TVs).

3.3. Cost Function

In this subsection, we explain how the cost function (2b) in the SMPC optimal-control
problem is designed to enable the tracking of reference states as well as to minimize
control inputs.

For any EV i, the cost function in expression (2b) [18] is chosen as

Ji

(
ξ

p
i , up

i

)
=

N−1

∑
k=0
‖ξp

i,k − ξref
i,k ‖

2
Qi

+ ‖up
i,k‖

2
Ri
+ ‖ξp

i,N − ξref
i,N‖2

Qi
. (20)

We define reference states for EV i as ξref
i,k and ξref

i,N to command EV i to enter or maintain
a target lane at a desired velocity for every prediction step k (k = 1, . . . , N).

The weighting matrices Qi ∈ S4 and Ri ∈ S2 are symmetric and positive definite.

3.4. Control Algorithm for One Vehicle

We summarize the process of solving the SMPC optimal-control problem by any EV i
in Algorithm 1.

Note that, in order to simplify the notation, we omitted a symbol for the current time t
in the previous sections, when we defined predictions starting from time t. Here, however,
in addition to the current time t, we use t + T for the successor time and use ξk|t and uk|t,
instead of ξk and uk to describe the states and control inputs at prediction step k ahead of
current time t. In simulations, we chose the system dynamic (5) as the real dynamics.
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Algorithm 1 The SMPC problem for each EV i.

Input: Ai, Bi, pi, t0, tend, ξ0.
Output: u∗i

1: t = t0
2: while t < tend do
3: Detect the current states of EV i and its TVs
4: Update Ni
5: Solve the deterministic SMPC optimal-control problem to find the optimal control

input trajectory u∗i,k|t (k = 0, 1, . . . , N − 1)
6: Apply first entry u∗i,0|t to real dynamics (5) and obtain successor state ξ∗i,1|t
7: t = t + T
8: end while

4. Simulation Results

The performance of the multi-vehicle interactive system was examined via simulations
of multiple vehicles on a three-lane highway. The right-most lane is the slow lane. For sim-
plicity, in our simulations, we assumed that all three lanes have the same width and that all
vehicles are the same size. The simulation setup, including the parameters of the highway,
vehicles, and controller, can be found in Table A1 in Appendix D. The simulations were
executed in MATLAB on a desktop computer with an Intel (R) Core (TM) i3-7100 CPU @
3.90GHz 3.91 GHz processor. The solving algorithm for the SMPC is based on the NMPC
toolbox [27], in which fmincon is used as a solver.

We first investigated the effects of the risk parameters on the behaviors of individual
SMPC-controlled vehicles in non-interactive systems. Then, we examined how various
settings of risk parameters of the SMPC-controlled vehicles influence the performance of
interactive systems and provide insight into how to set risk parameters.

4.1. The Effects of Risk Parameters on an Individual Vehicle

We studied the effects of risk parameters on the distance between vehicles in a non-
interactive system based on a two-vehicle scenario as shown in Figure 2. Here, one vehicle
is controlled by SMPC, and the other vehicle is non-reactive. The two vehicles start in
different lanes with different initial velocities. Vehicle 1 (the non-reactive vehicle) stays in
the center lane, and Vehicle 2 (the SMPC-controlled vehicle) merges into the center lane.
The simulation lasts 10 seconds. The corresponding initial settings, including the initial
states x0, y0, ψ0, and v0 and reference states yref and vref for the vehicles, are shown in
Table 1.

2

1

y

x

Figure 2. A two-vehicle scenario. There are two vehicles on a three-lane highway. Vehicle 1, in red,
is non-reactive in a non-interactive system but reactive in an interactive system and will remain in
the center lane. Vehicle 2, in blue, is an SMPC-controlled vehicle, starting in the right, slow lane and
later changing into the center lane. The longitudinal and lateral directions are represented by x and
y, respectively.



Electronics 2023, 12, 1270 11 of 20

Table 1. Initial settings for a non-interactive two-vehicle scenario.

x0 y0 ψ0 v0 yref vref

Vehicle 1 50 7.875 0 27 7.875 27

Vehicle 2 72 2.625 0 24 7.875 30

We define the distance dĭ,t between EV i and its TV ĭ at any iteration t/T (current
time t) by the evaluation of the collision-avoidance constraint (12) along the resulting
closed-loop trajectories.

dĭ,t =

√√√√√(
∆xĭ,t

)2

s2
a

+

(
∆yĭ,t

)2

s2
b

(21)

where the distance between EV i and its TV ĭ at iteration t/T (time t) in the longitudinal
direction is denoted as ∆xĭ,t, and its lateral counterpart is ∆yĭ,t.

We investigated how the risk parameters influence the distances between vehicles.
The risk parameter determines the probability of collision and, thus, controls the distance
between two vehicles. Small risk parameters indicate more-aggressive, less-conservative
driving with a higher probability of collision and small distances.

To better visualize the influence of the risk parameters on the distances between
vehicles, we chose the distance for risk parameter 0.95 as a baseline and evaluated the
deviations between the baseline (minuend) and the resulting distances for each of the other
risk parameters 0.70, 0.75, 0.80, 0.85, and 0.90. Each risk parameter setting was simulated
100 times, and in each simulation, the initial states of the vehicles were slightly different.

They were generated from a normal distribution with the initial states (x0, y0, ψ0, v0),
as presented in Table 1, as the mean values and a covariance matrix diag(0.1, 0.01, 0, 0.01).
The simulation results are presented in Figure 3, and it was confirmed that the greater the
risk parameter of the SMPC-controlled vehicle (the more conservative), the smaller the
average distance deviations—meaning larger distances between the two vehicles.

0 2 4 6 8 10 12

-5

0

5

10

15

20
10

-3

0.70

0.75

0.80

0.85

0.90

0.95

Figure 3. Distance deviations in a non−interactive two−vehicle scenario. The six colored lines
represent deviations between the distances for all risk parameters (0.70, 0.75, 0.80, 0.85, 0.90, and 0.95)
and the distance for the risk parameter 0.95 during the whole 12 iterations, respectively. The iteration
is represented by t/T, where t is the time, and T denotes the sampling time.

4.2. The Effects of Risk Parameters on Interactive Systems

In principle, the risk parameter will also determine the distance between vehicles
in an interactive system during close interaction. The performance of an individual ve-
hicle depends not only on its own risk parameter but also on the risk parameters of its
surrounding vehicles.
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4.2.1. The Same vs. Different Risk Parameters

We investigated the state trajectories of two vehicles for different pairs of risk pa-
rameters (p1, p2), including (0.70, 0.70), (0.70, 0.95), (0.95, 0.70), and (0.95, 0.95), based on
the two vehicle scenario in Figure 2. Here, both vehicles were reactive and controlled by
SMPC. In order to simulate a highly interactive scenario, we slightly adjusted the initial
settings of Vehicle 2, as described in Table 1, by (1) moving the longitudinal initial position
x0 of Vehicle 2 to 67 m, (2) increasing the initial velocity to 25 ms−1, and (3) decreasing
the reference velocity vref of Vehicle 2 to 27 ms−1 as summarized in Table 2. We depict the
lateral position y of these two vehicles as shown in Figure 4.

Table 2. Initial settings for an interactive two-vehicle scenario.

x0 y0 ψ0 v0 yref vref

Vehicle 1 50 7.875 0 27 7.875 27

Vehicle 2 67 2.625 0 25 7.875 27

0 20 40 60 80 100

8

8.5

9 (0.70,0.70)

(0.70,0.95)

(0.95,0.70)

(0.95,0.95)

0 20 40 60 80 100

4

6

8

(0.70,0.70)

(0.70,0.95)

(0.95,0.70)

(0.95,0.95)

Figure 4. Lateral positions in an interactive two-vehicle scenario. The risk parameter pairs (p1, p2)

for Vehicle 1 and Vehicle 2 are specified in the legend of the figures.

Figure 4 shows that both Vehicle 1 and Vehicle 2 finally reach their target lanes. We
first studied the performance for if both vehicles use the same risk parameter by comparing
their lateral positions for risk parameter pairs (0.70, 0.70) (red) and (0.95, 0.95) (purple).
Both vehicles reach their target lane slightly earlier when the common risk parameter is
0.70. Thus, setting a smaller risk parameter helped the vehicles reach the target lane earlier
but not significantly. In total, the resulting trajectories for the risk parameter (0.70, 0.70)
did not differ too much from those with (0.95, 0.95).

We next investigated how the vehicles behave if they use different risk parame-
ters. Comparing the trajectories for the risk parameter pair (0.70, 0.70) (red) with that
for (0.95, 0.70) (blue), we see that if Vehicle 1 chooses a small risk parameter (driving more
aggressively), it only slightly adjusts its behavior to avoid potential collisions before reach-
ing the target lane. Vehicle 2 behaves similarly when Vehicle 1 has a greater risk parameter
(driving more conservatively). These results are comparable to those for adjusting the risk
parameter of Vehicle 2, which can be found in the comparison of the plots for (0.70, 0.70)
(red) and (0.70, 0.95) (green). These results align with the symmetric roles that the two
vehicles play in the two-vehicle interactive system, where both vehicles are EVs and treat
the other vehicle as a TV.
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We summarize the findings for the two-vehicle interactive system as follows:

1. When two vehicles have the same risk parameters:

• Driving more aggressively can help both to reach the target lane slightly earlier.
• Changing the risk parameters for all vehicles in the same way does not affect

the resulting trajectories significantly and only introduces slightly more or less
distance between vehicles.

2. When two vehicles have different risk parameters:

• The more aggressive that an EV drives, the fewer collision avoidance adjustments
to its behavior are required before reaching the target lane.

• An EV’s more-aggressive driving style can contribute to reaching its target lane
earlier.

• A TV’s more-conservative driving style can help the EV to reach the target lane
earlier with fewer collision avoidance adjustments.

4.2.2. Resolving Conflicts

We now examine the role of the risk parameters in conflict situations. These conflicts
were observed in the simulations of the previous subsection where two vehicles could
not decide which of them had a higher priority to enter the target lane. This resulted in
unnecessarily long lane change durations with oscillations around the target lane. We see
that the aggressive vehicle typically dominated the behavior and reached the target lane
earlier. When both vehicles had the same risk parameter, target lane and reference velocity,
conflict situations often occurred.

We created this kind of conflict by (1) moving Vehicle 2 closer to Vehicle 1 in the
longitudinal direction of the initial settings, adjusting the longitudinal initial position x0 of
Vehicle 2, as described in Table 2, from 67 to 66 m; and (2) setting the same risk parameter
0.95 for both vehicles. Thus, the vehicles were initially close to each other, shared the
same target velocity of 27 ms−1, and had the same target lane, the center lane; thus, they
competed to occupy the center lane.

We investigated how the choice of risk parameters affects vehicle dominance by
observing the position and the steering angle δ of the vehicles for different risk parameter
pairs, including (0.95, 0.95), (0.95, 0.75), and (0.75, 0.95) as shown in Figure 5. We mark the
time periods where an obvious conflict appears in gray. The oscillating behavior, which is
seen in the steering angles in particular, indicates that both vehicles repetitively switched
between attempting to approach the target lane and moving away from the target lane to
avoid collisions.

Figure 5a displays the trajectories of the vehicles for different risk parameter pairs.
Figure 5b shows the corresponding steering angles. When both vehicles used the same
risk parameter 0.95, they remained in conflict until they longitudinally reached around 420
m at approximately iteration 70 and then exited the conflict situation. Reducing the risk
parameter of Vehicle 2 from 0.95 to 0.75 helped both vehicles escape from the conflict situation
even earlier—at around 160 m in the longitudinal direction and after around 20 iterations.
Later, Vehicle 2 occupied the target lane most of the time, playing the dominant role (see the
trajectories for (0.95, 0.75)). However, if we reduced the risk parameter of Vehicle 1 from 0.95
to 0.75, the conflict situation did not appear anymore, and Vehicle 1 played the dominant role
in terms of occupying the target lane (see the trajectories for (0.75, 0.95)).

Therefore, we can conclude that (1) reducing the risk parameter of one vehicle in the
two-vehicle interactive system shortened or fully eliminates conflict; (2) the vehicle with
a smaller risk parameter (more aggressive) tended to be the dominant one; additionally,
(3) the same amount of risk parameter reduction for Vehicle 1 and Vehicle 2 had different
effects on the conflict situations.
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(a) (b)

Figure 5. The trajectories and steering angles of Vehicles 1 and 2 for different risk parameter pairs in
an interactive scenario. The gray regions in the plots mark time periods of conflict. In sub-figure (a),
to display the relative positions of vehicles, we drew the vehicles as small squares every 10 iterations
and colored the squares in different shades of red and blue. (a) The trajectories of the vehicles. (b) The
steering angles of the vehicles.

4.2.3. Risk Differences

In the previous discussion in Section 4.2.2, we found that maintaining a difference
between the risk parameters of the two vehicles helped to either shorten or completely
avoid conflict. However, it is also important to know whether the absolute value of the
difference matters because this determines how much a vehicle should adjust its behaviors
to escape from a conflict situation. Consequently, we decided to further investigate how
gradually adjusting the risk parameters of one vehicle affected the resolution of the conflict.

We incrementally increased the risk parameter of Vehicle 1 from 0.75 to 0.95, and
the risk parameter of Vehicle 2 remained unchanged, 0.95, resulting in the following risk
parameter pairs: (0.75, 0.95), (0.80, 0.95), (0.85, 0.95), (0.90, 0.95), and (0.95, 0.95). We
evaluated the effects of these risk parameter pairs employing two metrics, the Distance
Deviation (DD) and State Deviation (SD), introduced as follows:

• DD: We consider the Euclidean distance between the centers of the two vehicles
(different from the distance definition in Section 4.1). The DD is defined as the devia-
tion between the Euclidean distances for any risk parameter pair and the Euclidean
distance for the risk parameter pair (0.75, 0.95).

• SD: The deviation between states and reference states, as defined below:

errξ =

√√√√ 1
Nite + 1

Nite

∑
n=0

(
ξn − ξref

n

)2
(22)

where errξ (errξ =
(
errx, erry, errψ, errv

)ᵀ) represents the deviation between the real
states ξn and the corresponding reference states ξref

n during all Nite iterations.

The results for DD and SD are illustrated in Figures 6 and 7, respectively.
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Figure 6. Distance Deviations (DDs) for the vehicles with different pairs of risk parameters,
(0.75, 0.95), (0.80, 0.95), (0.85, 0.95), (0.90, 0.95), and (0.95, 0.95) in an interactive scenario. To better
see the details, we enlarged the first 32 iterations of the plot and show them on the top left side of
the figure.

(0
.7

5,
0.

95
)

(0
.8

0,
0.

95
)

(0
.8

5,
0.

95
)

(0
.9

0,
0.

95
)

(0
.9

5,
0.

95
)

0

0.5

1

1.5
Vehicle 1

Vehicle 2

(0
.7

5,
0.

95
)

(0
.8

0,
0.

95
)

(0
.8

5,
0.

95
)

(0
.9

0,
0.

95
)

(0
.9

5,
0.

95
)

0

0.05

0.1 Vehicle 1

Vehicle 2

(0
.7

5,
0.

95
)

(0
.8

0,
0.

95
)

(0
.8

5,
0.

95
)

(0
.9

0,
0.

95
)

(0
.9

5,
0.

95
)

0

0.2

0.4

0.6

0.8
Vehicle 1

Vehicle 2

Figure 7. State Deviations (SDs) for the vehicles with different risk parameter pairs, (0.75, 0.95),
(0.80, 0.95), (0.85, 0.95), (0.90, 0.95), and (0.95, 0.95) in an interactive scenario.

In Figure 6, the oscillations reflect conflict where both vehicles are struggling between
reaching/maintaining the common target lane and moving away from the target lane to
ensure safety, which causes variations in the distances between them. We conclude from
the figure that: (1) the greater the risk parameter of Vehicle 1 (the more conservative),
the larger the distance between the two vehicles, which is safer; and (2) a smaller risk
parameter of Vehicle 1 can help the two-vehicle interactive system escape from the conflict
situation earlier as demonstrated by the results that, for the risk parameter pairs (0.85, 0.95),
(0.90, 0.95), and (0.95, 0.95), the conflict situations end roughly after 14, 30, and 68 iterations,
respectively.

We show the effect of different pairs of the risk parameters on the SD, including the
deviations of the lateral position erry, inertial heading errψ, and velocity errv, in Figure 7.
A greater risk parameter of Vehicle 1 (more conservative) causes larger state deviations for
Vehicle 1, smaller deviations in the lateral positions and velocities for Vehicle 2, and larger
inertial heading deviations for Vehicle 2. Therefore, when Vehicle 1 drives more conser-
vatively, Vehicle 2 can benefit from the conservatism more in terms of reaching the target
lane and reference velocity (see the first and third sub-figures in Figure 7). In contrast, this
results in larger inertial heading deviations for both vehicles (see the second sub-figure in
Figure 7) because they are trapped in the conflict situations for a longer time.

The effects of one vehicle’s driving style on the two-vehicle interactive system in
conflict situations when the other vehicle drives conservatively are summarized as follows:
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• The vehicles benefit from the conservative driving style in terms of safety.
• An aggressive driving style can help the two-vehicle interactive system escape

conflict situations.
• A vehicle driving more aggressively tends to reach its target lane and reference

velocity earlier.

5. Conclusions and Future Work

In this paper, we introduced a Distributed Stochastic Model Predictive Control (DSMPC)
framework for a system of vehicles that are coupled through their interactive controllers.
Within this framework, each vehicle is controlled by Stochastic Model Predictive Control
(SMPC), and each SMPC-controlled vehicle interacts with its TVs, attempting to drive safely
at a certain level through the consideration of probabilistic collision-avoidance constraints.
Based on this distributed control framework, we studied the effects of risk parameters,
which decide vehicles’ driving styles, on non-interactive and interactive systems and pro-
vide insights into how to set risk parameters in a multi-SMPC-vehicle interactive system.

The simulation in non-interactive systems showed that, when an SMPC-controlled
vehicle drives more conservatively, with a greater risk parameter, safety is increased. We
found the same results in the simulations in interactive systems. Further, in interactive
systems, an aggressive vehicle can reach its driving goals earlier, thus, requiring fewer
adjustments to its behaviors. An individual vehicle driving conservatively can also help
another vehicle to reach its driving goals earlier. Moreover, one vehicle can also influence
the whole system by adjusting its own risk parameter. Vehicles might be trapped in conflict
situations; therefore, they cannot decide which one has the higher priority to attain one’s
driving goals if there are conflicts among the goals. Modifying the risk parameters of one
vehicle can help both escape conflict situations; however, the vehicle with a smaller risk
parameter tends to dominate the situations.

The results in interactive systems confirmed our hypotheses that the behaviors of
one vehicle are not only determined by its own control and influenced by other vehicles’
behaviors but also can influence the performance of the whole system. These results can be
generalized to vehicles that are controlled by other controllers in the future.

In our future controller design, incorporating a more realistic prediction of TV’s
behaviors into the SMPC optimal-control problem will also be considered. In our current
SMPC optimal-control problem, any EV assumes that its TVs will stay in their current
lanes and maintain their current velocities. This is overly simplified and might cause huge
deviations between the TVs’ real trajectories and the assumed ones from the perspective
of the EV. Therefore, methods that provide more precise predictions of TV behaviors are
required. Research into this will be performed in the future.

We performed simulations with two vehicles. In the future, we will research more
complicated scenarios with multiple vehicles interacting with the surrounding vehicles.
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Abbreviations
The following abbreviations are used in this manuscript:

MPC Model Predictive Control
SMPC Stochastic Model Predictive Control
DMPC Distributed Model Predictive Control
DSMPC Distributed Stochastic Model Predictive Control
EV Ego Vehicle
TV Target Vehicle
DD Distance Deviation
SD State Deviation

Appendix A. Kinematic Bicycle Model

The kinematic bicycle model is described by the following nonlinear continuous time
equations [24],

ẋ = v cos (ψ + β) (A1a)

ẏ = v sin (ψ + β) (A1b)

ψ̇ =
v
lr

sin β (A1c)

v̇ = a (A1d)

β = tan−1

(
lr

l f + lr
tan δ

)
(A1e)

where x and y represent the longitudinal position and lateral position of the the center of
mass of the vehicle, respectively. The inertial heading is given by ψ, and the velocity of
the vehicle is denoted by v. The distances from the center of mass of the vehicle to the
front and rear axles are l f and lr, respectively. The angle of the vehicle with respect to the
longitudinal axis of the road is shown by β . The acceleration of the center of mass of the
vehicle is represented by a. The front steering angle is δ. The state and input vectors are
ξ = (x, y, ψ, v)ᵀ and u = (a, δ)ᵀ, respectively. The nonlinear continuous kinematic bicycle
model are summarized as ξ̇ = f c(ξ, u).

Appendix B. Linearized and Discretized System Matrices

The linearized, discretized system matrices A and B [25] in model (5) are given

by A =


1 0 −Tv sin z1 T cos z1 − z2 sin z1

2z4

0 1 Tv cos z1 T sin z1 − z2 cos z1
2z4

0 0 1 T tan δ
z4

0 0 0 1

 and B =


T2 cos z1

2 − T2vz7 sin z1
2 − z8 sin z1

z9
T2 sin z1

2
T2vz7 cos z1

2 + z8 cos z1
z9

T2 tan δ
2z4

Tz7
T 0


with z1 = ψ + arctan

(
lr tan δ
lr+l f

)
, z2 = T2v tan δ, z3 = (lr tan δ)2, z4 =

(
lr + l f

)(
z3

(lr+l f )2 + 1
) 1

2
,

z5 = v
(
(tan δ)2 + 1

)
, z6 =

(
lr + l f

)3
(

z3

(lr+l f )
2 + 1

) 3
2
, z7 = z5

z4
− z3z5

z6
, z8 = Tlrz5 and

z9 =
(

lr + l f

)(
z3

(lr+l f )
2 + 1

)
.
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Appendix C. Deterministic Collision-Avoidance Constraints for Multiple TVs

We introduce the deterministic collision-avoidance constraints for multiple TVs in
this section.

With the tightened constraints in expressions (18a) and (19), the probabilistic chance
constraints in (4) can be rewritten as the following deterministic expressions:

 di1,k ≥ γi1,k

γi1,k =
√

2∇di1,k∑i1,k
(
∇di1,k

)ᵀer f−1(2pi − 1) di2,k ≥ γi2,k

γi2,k =
√

2∇di2,k∑i2,k
(
∇di2,k

)ᵀer f−1(2pi − 1)
... dim ,k ≥ γim ,k

γim ,k =
√

2∇dim ,k∑im ,k(∇dim ,k)
ᵀer f−1(2pi − 1)

(A2)

where i1, i2, . . . , im ∈ Ni and k = 1, . . . , N.

Appendix D. Simulation Setup

We describe the parameter settings in the simulations in Table A1.

Table A1. Parameter Settings.

Physical Meaning Notation Value

Length of road lroad 1500 m

Width of lane wlane 5.25 m

Length of vehicle lveh 5 m

Width of vehicle wveh 2 m

Distance from mass center to front axle l f 2 m

Distance from mass center to rear axle lr 2 m

Lower boundary of road yr,l 0 m

Upper boundary of road yr,u 15.75 m

Minimum speed vmin 0 ms−1

Maximum allowable speed vmax 70 ms−1

Minimum inertial heading ψmin −1.2 rad

Maximum inertial heading ψmax 1.2 rad

Minimum acceleration amin −9 ms−2

Maximum acceleration amax 6 ms−2

Minimum front steering angle δmin −0.2 rad

Maximum front steering angle δmax 0.2 rad

Semi-major axis sa 9 m

Semi-minor axis sb 5.5 m

Prediction horizon N 10

Sampling time T 0.2 s

Weighting matrix Q diag(0, 0.5, 0.1, 1)

Weighting matrix R diag(3, 5)
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