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Abstract: Advanced glycation end-products (AGEs) are implicated in vascular aging due to their
pro-inflammatory properties. Skin autofluorescence (SAF) is a measure to estimate their deposition.
It is an easily quantifiable marker that has been shown to correlate with cardiovascular risk and
parameters of metabolic diseases. Herein, we compared skin autofluorescence with other techniques
indicating increased cardiovascular diseases, namely, pulse wave velocity (PWVao) and intima–media
thickness (IMT). We also studied the impacts of other parameters in deeply phenotyped cohorts of
young, middle-aged, and older individuals. SAF, aortic PWVao, and IMT proved to be significantly
correlated with each other and with age. However, based on a moderator analysis, we could not
show that these associations were affected by age. Some specific parameters such as creatinine and
CRP were found to be significantly associated with skin AGE values after adjusting for confounding
variables. In conclusion, SAF is a simple screening tool for vascular health with comparable power to
more elaborated technical tests.

Keywords: skin autofluorescence; advanced glycation end-products; vascular health; atherosclerosis
risk; intima–media thickness; pulse wave velocity

1. Introduction

Advanced glycation end-products (AGEs) are a group of glycated proteins or lipids
that have attracted significant interest in recent years due to their established role in
the aging process and their involvement in the development of multiple chronic dis-
eases. Through a process called the Maillard reaction, AGEs are formed between reducing
sugars and proteins, lipids, or nucleic acids, resulting in an irreversible crosslinking of
molecules. AGEs can be produced endogenously in the body or ingested via different foods.
Once taken up, they are resistant to proteolytic degradation and, therefore, very stable
if deposited in tissues. AGEs signal through a 35 kDa receptor for advanced glycation
end-products (RAGE, also called AGRE) from the immunoglobulin superfamily involv-
ing nuclear factor kappa B (NF-κB)-activation and, thus, mediate inflammatory signals.
According to their pro-inflammatory character, AGEs are implicated in vascular aging,
and, therefore, studies have linked AGEs to the development of cardiovascular disease [1],
diabetes [2], osteoporosis [3], and neurodegenerative diseases [4,5], which are considered
to grow in an inflammatory background.

One of the ways that AGEs accumulate in the body is through crosslinking with
proteins such as collagen, leading to the formation of long-living proteins, which can also
be monitored in the skin [6]. Because of the significant involvement of AGEs in the aging
process, they are considered as potential surrogates to indicate general health. Facilitated
access to a reliable measure of AGE deposition might also have therapeutic implications.
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AGE crosslink-breakers are a newly discovered class of therapeutics that may be potentially
valuable for the prevention or treatment of chronic cardiovascular diseases [7].

AGEs mostly appear with a brown color. As such, it is possible to detect Maillard
products via skin autofluorescence (SAF) according to their physical properties. This is
one of the most promising ways to assess the abundance of AGEs non-invasively [8,9].
However, it is reported that SAF measurement can be influenced by multiple factors such
as the concentrations of hemoglobin in skin capillaries and other dermal factors such
as melanin pigmentation, blood flow, renal function, or cosmetics [10,11]. Despite these
limitations, SAF measurement remains a valuable tool for assessing AGEs in the skin.

In addition to SAF measurement, there are already other established surrogate pa-
rameters, namely, aortic pulse wave velocity (PWVao) and intima–media thickness (IMT).
Meanwhile, PWVao reflects a composite measure of the different elasticities of large arteries
to indicate their ability for vascular deformation in response to pressure, and IMT measures
the inner parts of an artery, typically the carotid artery, namely, the intima and the me-
dia. Both techniques were shown to reflect changes associated with human aging [12–14]
and, in particular, have been confirmed to indicate aging-related complications such as
cardiovascular diseases and type 2 diabetes [15–19]. Besides such age-related metabolic
disorders, it is worth noting that AGE levels in skin biopsies in other previous studies have,
furthermore, predicted microvascular complications in type 1 diabetes [20,21].

As SFA, the other two techniques to measure PWVao and IMT, either using ultrasound
imaging or oscillometric methods, respectively, are non-invasive, relatively inexpensive,
and reproducible. However, these methods differ in their methodological complexities.
For this reason, the aim of our study was to analyze (1) how age interferes with different
measures of PWVao, skin SAF values, and IMT, and (2) how these three parameters are
interrelated. (3) We, furthermore, identified extrinsic markers for skin aging with a focus on
selected phenotypic factors in adolescent and adult cohorts of our nutrition cluster enable.
Our results may help to improve our understanding of the aging process and develop new
strategies for the prevention and treatment of age-related diseases.

2. Methods
2.1. Ethics Statement

The ethics committee of the Technical University of Munich approved the study
protocol (no. 425/15 S and no. 201/17 S) to ensure that this research was conducted
ethically and in compliance with all relevant regulations and guidelines. The committee
evaluated the study design, including the recruitment of participants, data collection
methods, and potential risks and benefits to the participants.

To ensure transparency and accountability, this study was registered in the German
Register of Clinical Trials (DRKS00009797). By registering this study, we made the study de-
sign and protocol publicly available, which increases the scientific rigor and reproducibility
of the research process.

As a crucial aspect of ethical research, written informed consent was obtained from
all subjects involved in this study. We provided a detailed explanation of the research
procedures, potential risks and benefits, and the participant’s right to withdraw from
the study at any time. Participants were also informed about the confidentiality of their
personal information and data protection regulations, and their consent was documented
in writing. All personal data collected during this study were anonymized to prevent
any unintended disclosure of participants’ identities. We also followed strict protocols for
data storage, handling, and sharing to ensure that participants’ personal information was
safeguarded and only accessible to authorized members of the research team.

2.2. Study Design

Data were collected in the enable study center at the ZIEL Institute for Food and Health,
Freising, Germany. This study was performed in the Munich area from March 2016 to
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February 2018. The original cohorts of various age ranges within the competence cluster of
the nutrition research enable have been described elsewhere [22].

For the analysis of SAF and PWVao, we used a study population consisting of 3 groups
of individuals: adolescents (from 18 to 25 years), middle-agers (from 40 to 65 years), and
older adults (from 75 to 85 years). A total of 329 individuals were recruited for the study,
with 93 adolescents, 187 middle-agers, and 49 older adults. After removing volunteers
lacking sufficient data, 309 subjects remained in this group. Volunteers were excluded from
this study if they had a history of smoking; known diabetes mellitus type 1 or 2; severe
diseases such as coronary heart disease, chronic liver affections, or kidney diseases; and
immobility. For our comprehensive examination protocol, participants were required to
fast for 12 h overnight.

To additionally investigate IMT, we took advantage of a subgroup of the middle-
aged population in the group of 40–65-year-old participants who were recruited for an
interventional nutrition study [23]. All enrolled individuals were of Caucasian descent.
Besides anthropometric parameters such as height, weight, body composition measured
via bioimpedance analysis, and hip and waist circumference, only subjects with a complete
data set from PWVao, IMT using ultrasound, and SAF were included in this further analysis,
resulting in a final sample size of 77 individuals.

2.3. Data Collection
2.3.1. Anthropometric Measurements

Anthropometric measurements are an essential component of clinical research as they
provide a quantitative assessment of body size and composition. In this study, all anthro-
pometric parameters and body composition, including waist-to-hip ratio (WHR) and body
mass index (BMI), were measured in the morning with the Seca 213 Stadiometer device
(Seca GmbH & Co KG, Hamburg, Germany). To further ensure accuracy, established stan-
dard operating procedures (SOPs) were followed during all measurements. Additionally,
all participants were strictly required to have fasted overnight before the anthropometric
experiments.

2.3.2. Blood Samples

Venous blood samples were obtained by medical doctors from fasted participants.
Lipid parameters such as total cholesterol, triglycerides, high-sensitivity C-reactive protein
(hsCRP), and insulin were analyzed by a certified laboratory (Synlab Analytics & Service
Germany GMBH; Munich, Germany). Blood glucose concentrations were determined
using HemoCue Glucose 201+ (plasma-calibrated, HITADO GmbH, Möhnesee, Germany).
Glomerular filtration rate (GFR) was calculated as mL/min/1.73 m2 from serum creatinine
using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.

2.3.3. Pulse Wave Velocity of the Aorta (PWVao)

The TensioMed Arteriograph device TL 2 (TensioMed Ltd., Budapest, Hungary) was
used to measure PWVao. Strict instructions were given to participants prior to the mea-
surements. Participants were asked to refrain from eating, drinking coffee, and smoking
three hours before the test. They were instructed to avoid drinking alcohol 10 h before the
measurements as well. Before the measurements, the participants rested for at least 10 to
15 min in a quiet room at normal room temperature.

2.3.4. Skin SAF Measurement

Skin SAF was measured using the AGE Reader (AGE Reader mu, Type DMU00100,
Diagn-Optics; Groningen, The Netherlands). The rubber cushion-like top of the device was
designed to hold the volar side of a subject’s lower forearm and seal the glass measuring
window from any disturbing light. Each participant’s elbow was in line with the edge of
the cushion. The skin was free of tattoos, skin creams, birthmarks, or scars in the measured
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area. Each experiment was performed on the right arms of the participants. The whole
process took approximately 12 s. The data were immediately available and recorded.

2.3.5. Intima–Media Thickness (IMT)

In order to assess the thickness of the common carotid artery, the IMT was measured
with the high-frequency ultrasound ACUSON X700 device (Siemens Healthcare GmbH,
Erlangen, Germany). Participants were placed in a supine position for the measurements.
The IMT was determined during the peak systole according to a parallel ECG reading.
Images were taken, centered approximately 10 mm below the carotid artery bulb.

2.3.6. Oral Glucose Tolerance Test (OGTT)

To determine fasting blood glucose and insulin levels, blood samples were taken prior
to the ingestion of a solution containing 75 g α-D(+)-Glucose (water-free) in 300 mL of
tap water. Further blood glucose measurements were performed at 30, 60, 90, 120, 180,
and 240 min. The area under the curve (AUC) of the OGTT was calculated using the
trapezoid method.

2.3.7. Questionnaires

In addition to the objective measures above, participants had to fill out question-
naires on physical activity, dietary intake, and general health, as recently described in [21].
The physical activity levels (exercise frequency) of participants were self-reported using
6 categories from level 1 (“once a day”) to level 6 (“never”).

2.3.8. Data Analysis

The dataset was first set up and edited with the spreadsheet application Excel (Mi-
crosoft, Version 16.58). Data analysis was conducted in a programming environment of
Python version 3.9.0 [24].

Notably, the multiple linear regression model was established using statsmodel version
0.13.2 [25]. The Spearman’s correlation coefficient was calculated using Pingouin version
0.5.1 [26]. Categorical data were numerically labeled using the LabelEncoder function in
sklearn version 1.0.2 [27]. Quentin André’s PyProcessMacro version 1.0.12, a transforming
Python package from Process Macro, was used to analyze the potential moderating effects
of age between skin SAF and IMT and PWVao [28].

The residuals of both cohorts’ data were tested for their normality using the Shapiro–
Wilk test. p-values were determined as follows: not significant (n.s.): p ≤ 1.00; *: 1.00 × 10−2

< p ≤ 5.00 × 10−2; **: 1.00 × 10−3 < p ≤ 1.00 × 10−2; ***: 1.00 × 10−4 < p ≤ 1.00 × 10−3;
and ****: p ≤ 1.00 × 10−4. The significant moderation effect of age was verified based on
the values of its confidence intervals ULCI (upper level of confidence interval) and LLCI
(lower level of confidence interval).

In the regression analysis, the consideration of the variance inflation factor (VIF)
was important to ensure the reliability of the regression model. VIF explains how much
multicollinearity, which is the correlation between predictors, is present. A VIF under 5
was considered an acceptable multicollinearity.

3. Results
3.1. Age with PWVao, Skin SAF Value, and IMT

First, we assessed the relationships between age, skin SAF value, and PWVao in a
group of middle-aged individuals aged 40 to 65 years old (n = 309). Both parameters
revealed highly significant correlations with age, with PWVao showing a correlation co-
efficient of 0.75 (p = 5.74 × 10−58) and age with SAF showing a correlation coefficient
of 0.69 (p = 1.03 × 10−45) (Figure 1A). To determine the relative contributions of these
parameters to age, we used a multiple regression model. We found that SAF had a higher
regression coefficient than PWVao, with a coefficient of 19.52 (p = 9.18 × 10−25) compared
with PWVao’s coefficient of 4.19 (p = 5.24 × 10−28) (Figure 1B).
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Figure 1. Associations between age and PWVao (yellow) and skin SAF value (red), respectively,
in the cohort (n = 309). (A) The Spearman’s correlation between age with PWVao and skin SAF
value is visualized in the scatter plot. (B) The bar plot reveals the contributions and the association
significances of the independent variables, PWVao and SAF value, with the dependent variable, age,
in a multiple linear regression model. Significances is given as ****: p ≤ 1.00 × 10−4.

Next, we analyzed the correlation between age and all three parameters of vascular
function in a subset of the middle-aged group who also underwent IMT measurement
(n = 77). We analyzed the Spearman’s rank correlation between the age of the individuals
and the three parameters of vascular function (PWVao, skin SAF, and IMT). All of them
showed highly significant correlations with age, with PWVao showing a correlation coeffi-
cient of 0.53 (p = 6.98 × 10−7), SAF showing a correlation coefficient of 0.58 (p = 2.66 × 10−8),
and IMT showing a correlation coefficient of 0.63 (p = 7.89 × 10−10) (Figure 2A). Multiple
linear regression models were applied to gain insight into the relative contributions of the
three parameters with age. We found that IMT had the closest association with age, with a
coefficient of 18.07 (p = 1.74 × 10−6), while SAF and PWVao showed weaker associations,
with coefficients of 5.53 (p = 8.73 × 10−4) and 0.82 (p = 2.89 × 10−3), respectively (Figure 2B).

3.2. Interrelationship between Skin SAF Value and PWVao and IMT

The results of this study show a significant and positive association between SAF
values and PWVao in the larger cohort of middle-agers consisting of 309 individuals, with
a Spearman’s correlation coefficient of 0.54 and a p-value of 6.48 × 10−25 (Figure 3A). Age
did not appear to play a moderator role in the relationship between the SAF value and
PWVao across the middle-aged group, as the confidence interval of LLCI to ULCI crossed
zero, as evidenced by Table 1.

Table 1. Conditional effects of PWVao on skin SAF at the values of the moderators in the cohort
n = 309. Three representative age values were chosen. SE stands for standard error. T-value is
abbreviated as T.

PWVao-SAF

Age Effect SE T p-Value LLCI ULCI

2.85 × 101 −3.40 × 10−3 1.78 × 10−2 −1.93 × 10−1 8.47 × 10−1 −3.83 × 10−2 3.14 × 10−2

4.75 × 101 2.80 × 10−3 1.24 × 10−2 2.23 × 10−1 8.24 × 10−1 −2.16 × 10−2 2.71 × 10−2

6.65 × 101 9.00 × 10−3 1.26 × 10−2 7.16 × 10−1 4.75 × 10−1 −1.56 × 10−2 3.36 × 10−2
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Figure 2. Association between age and the parameters of vascular function, PWVao (yellow), skin
SAF value (red), and IMT (purple), in the subgroup of participants with all three measurements
(n = 77). (A) Spearman’s correlations between age and the three variables are depicted in the
scatter plot. (B) The bar plot reveals the contributions of the three independent variables PWVao,
skin SAF value, and IMT, with the dependent variable, age, in a multiple linear regression model.
Significances are given as **: 1.00 × 10−3 < p ≤ 1.00 × 10−2; ***: 1.00 × 10−4 < p ≤ 1.00 × 10−3; and
****: p ≤ 1.00 × 10−4.
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Figure 3. Interrelationship analysis between skin SAF values and PWVao or IMT. (A) Spearman’s
correlation between PWVao and SAF values (yellow) in cohort (n = 309); (B) spearman’s correlation
between PWVao (yellow) or IMT (purple) with SAF values in cohort (n = 77); Significances are given
as ***: 1.00 × 10−4 < p ≤ 1.00 × 10−3; and ****: p ≤ 1.00 × 10−4.

In the smaller cohort (n = 77), the relationship between SAF values and IMT or PWVao
was investigated. A positive and significant Spearman’s correlation in both pairs was
confirmed with Spearman’s correlation coefficients of 0.39 and 0.40, respectively, and
p-values of 4.16 × 10−4 and 3.43 × 10−4, respectively (Figure 3B). Again, no moderation
effect of age was detected in the relationship between SAF values and IMT or PWVao since
in this age range, the confidence intervals did contain zero, as shown in Table 2.
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Table 2. Conditional effects of IMT (A) or PWVao (B) on skin SAF at the values of the moderators in
the cohort n = 77. Three representative age values were chosen. SE stands for standard error. T-value
is abbreviated as T.

A: IMT-SAF

Age Effect SE T p-Value LLCI ULCI

4.67 × 101 1.34 × 10−1 5.00 × 10−1 2.68 × 10−1 7.90 × 10−1 −8.47 × 10 −1 1.11 × 100

5.28 × 101 1.21 × 10 −1 3.48 × 10−1 3.48 × 10 −1 7.29 × 10 −1 −5.61 × 10 −1 8.03 × 10−1

5.89 × 10 1 1.08 × 10 −1 2.78 × 10−1 3.88 × 10−1 6.99 × 10−1 −4.38 × 10−1 6.53 × 10−1

B: PWVao-SAF

Age Effect SE T p-Value LLCI ULCI

4.67 × 101 −2.28 × 10−2 3.39 × 10−2 −6.73 × 10−1 5.03 × 10−1 −8.92 × 10−2 4.36 × 10−2

5.28 × 101 5.80 × 10−3 2.14 × 10−2 2.71 × 10−1 7.87 × 10−1 −3.62 × 10−2 4.78 × 10−2

5.89 × 101 3.44 × 10−2 2.03 × 10−2 1.69 × 100 9.46 × 10−2 −5.40 × 10−3 7.42 × 10−2

3.3. Relationship between Skin SAF Value and Other Parameters

We further analyzed how other phenotypic variables were correlated with skin SAF
values in the three age groups of the cohort (n = 309) with a multiple linear regression
analysis. As shown in Table 3, the VIF of each variable was below the value five. Apart from
the information in the table, the regression model reported an F-value equal to 1.26 × 10−36.

Table 3. Multiple linear regression analysis for studying the relationship between SAF value with
phenotypic factors. VIF presents the multicollinearity indicator of corresponding variables. Significant
factors (p ≤ 5.00 × 10−2) are indicated by bold letters. SE stands for standard error. T-value is
abbreviated as T.

Independent Variable Coefficient SE T p-Value VIF

Age 1.42 × 10−2 1.00 × 10−3 1.07 × 101 0.00 × 100 1.91 × 100

BMI 1.90 × 10−3 6.00 × 10−3 3.42 × 10−1 7.33 × 10−1 1.91 × 100

Cholesterol 7.00 × 10−4 1.00 × 10−3 1.26 × 100 2.09 × 10−1 1.61 × 100

Const a 5.05 × 10−1 3.20 × 10−1 1.58 × 100 1.16 × 10−1 0.00 × 100

Creatinine 3.69 × 10−1 1.59 × 10−1 2.31 × 100 2.10 × 10−2 1.49 × 100

CRP 4.29 × 10−2 1.80 × 10−2 2.33 × 100 2.00 × 10−2 1.04 × 100

Exercise b −8.70 × 10−3 1.40 × 10−2 −6.18 × 10−1 5.37 × 10−1 1.04 × 100

Insulin 2.00 × 10−4 5.00 × 10−3 4.60 × 10−2 9.63 × 10−1 1.45 × 100

Month −9.50 × 10−3 5.00 × 10−3 −1.78 × 100 7.60 × 10−2 1.02 × 100

OGTT_AUC −3.48 × 10−6 5.27 × 10−6 −6.59 × 10−1 5.10 × 10−1 1.30 × 100

Sex b 3.34 × 10−2 5.80 × 10−2 5.78 × 10−1 5.64 × 10−1 2.52 × 100

Triglyceride 7.21 × 10−5 0.00 × 100 1.80 × 10−1 8.58 × 10−1 1.48 × 100

WHR 1.15 × 10−1 3.28 × 10−1 3.51 × 10−1 7.25 × 10−1 3.07 × 100

a The constant term ensures that the model will be unbiased; b Data was transformed into numerical status from
original categorical data.

It was observed that phenotypic variables such as age, creatinine, and CRP had a
significant and positive association with SAF values after adjusting for the rest of the
factors (Figure 4). To gain a better understanding of the relationship between the different
variables in our dataset, we also examined their pairwise Spearman’s correlations, as shown
in Supplementary Figure S1.

3.4. Seasonal Effect on Skin SAF Values

We also investigated whether there was a seasonal effect on skin SAF values. We
acquired deeper insight into the skin SAF value difference between the summer (from
May to September) and winter months (from October to April). The definition of summer
and winter was based on information about sunshine hours and temperatures during the
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duration of this study provided by the German Weather Service (Supplementary Figure
S2). However, after replacing the month variable with the season variable in our multiple
linear regression model, we found no significant association between skin SAF values and
season (p-value = 1.03 × 10−1).
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4. Discussion

AGE products are powerful chemical structures conferring a significant risk for various
diseases. Their pro-inflammatory properties have made the respective RAGE receptor a
promising target, and various small molecules have been designed and tested to blunt
disease progression [29]. In addition to this positive influence on the course of Alzheimer’s
disease, metabolic complications could also be targeted in the future.

The deposition of these AGEs in the body makes them easily accessible by measuring
their fluorescent properties in the skin. This measure was previously identified as a signifi-
cant marker for cardiovascular disease [1]. According to our data, PWVao, which is another
established marker of cardiovascular risk and prognosis [30,31], was significantly associ-
ated with SAF. Furthermore, SAF is significantly associated with intima–media thickness,
which has also been tested as a surrogate marker for cardiovascular complications [32]. All
these techniques are, therefore, helpful for the early diagnosis of a specific cardiovascular
disease risk. Technically, the mortality risk due to PWVao alterations can be quantified
with an increase of up to 39% for each 1 m/s increment [33]. However, for reproducible
and reliable measures, the examination procedure has to be highly standardized to avoid
incorrect measurements as some substances, e.g., alcohol, nicotine, or caffeine, interfere
with the readings. Additionally, PWVao may be misinterpreted in certain pathological con-
ditions such as heart failure with an ejection fraction of less than 50% [34]. Those patients
were excluded from our study. IMT measurement using ultrasound, on the other hand,
requires trained and experienced examiners to be able to interpret vascular physiology at
the scanning site correctly. It also needs some technical prerequisites that might not be
available in every study location.

In turn, SAF is considered to be the most straightforward and least expensive technique
for measuring AGEs deposition. It can be measured within seconds and does not require
any extensive training. However, there might be some restrictions in its application. One
such restriction is that natural skin pigmentation can interfere with readings. According to
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Fitzpatrick et al., six skin types can be subdivided from ivory (I) to dark brown (VI) [35].
In our study, only Caucasians were selected, which generally only includes types I to
IV. Although the skin types of the individual subjects were not assessed, we assumed an
equal distribution across the types I–IV, as is usually observed in the Caucasian population.
Additionally, tanning might interfere, as sun exposure has already been shown to affect
SAF readings in other cohorts [36]. In our cohort, however, no seasonal impact could be
demonstrated (Supplementary Figure S1), which agrees with other studies reporting that
the seasonal impact on SAF values in human skin was limited among their control and
diabetic patients [37,38].

SAF was significantly and positively associated with age. Although IMT was revealed
to have the highest coefficient in the multilinear regression analysis (Figure 2), IMT, PWVao,
and SAF were not measured on the same scale. For IMT, a change of one unit might be
quite large, whereas a change of three units for SAF is relatively realistic. Thus, this study
concluded that skin SAF value is of comparable value, while SAF measurement has the
advantages of simplicity and short duration for measurement with high reproducibility [39].

Further analysis of the interrelationships revealed significant correlations between
SAF and IMT and PWVao (Figure 3A,B). However, since the three parameters all correlate
with age, it is thus essential to verify the independence of the valuated interrelationships.
Based on a moderation analysis, we confirmed that the associations between skin SAF and
IMT and PWVao were significantly independent of age in both cohorts (Tables 1 and 2).

Comparing the combined effect of all tested variables in Table 1, an F-value equal
to 1.26 × 10−36 indicated a significant performance in our regression model. Standard
errors revealed that the covariance matrix of the errors was correctly specified. Meanwhile,
every parameter had a variance inflation factor (VIF) under five, meaning that no severe or
moderate multicollinearity should be considered in the model. Variables that shared higher
VIF values, such as sex and WHR, implied a potentially strong correlation between those
two parameters (Supplementary Figure S2).

Due to our multilinear regression model, creatinine levels were positively and signifi-
cantly associated with skin SAF values, which is supported by other research works. Sharp
et al. confirmed the significant correlation between serum creatinine and low-molecular-
weight AGEs, which was measured using fluorescence spectroscopy, in both healthy
non-diabetic volunteers (n = 106) and patients with diabetes (n = 499). Similarly, Stam
and his team pointed out a significant relationship between AGE peptides and creatinine
clearance [40,41].

Additionally, our study also found a significant positive relationship between SAF
values and CRP levels. This can be explained, at least in part, by the stimulatory role of AGE
on the expression of interleukin-6 (IL-6) and interleukin-1 beta (IL-1β) from monocytes,
which in turn raises CRP production in the liver [42].

5. Conclusions

Being a fast, non-invasive, and reproducible way to estimate AGE deposition, SAF
seems to be of comparable power for predicting cardiovascular risk to more elaborated
technical tests. Moreover, SAF reveals positive correlations with multiple phenotypical
parameters such as age, IMT, PWVao, CRP, and creatinine. Using SAF as a time-saving and
simple screening method thus deserves more attention in the relevant clinical setting.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15071597/s1. Figure S1. Meteorological data of Weihenstephan-
Dürnast, Bavaria Germany from January 2016 to December 2018. Figure S2. Spearman rho rank
correlation of all variables visualized in a heat map.

https://www.mdpi.com/article/10.3390/nu15071597/s1
https://www.mdpi.com/article/10.3390/nu15071597/s1
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