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Abstract: Vaccination is an essential tool for the management of infectious diseases. However, many
vaccines are imperfect, having only a partial protective effect in decreasing disease transmission
and/or favouring recovery of infected individuals and possibly exhibiting a trade-off between
these two properties. Furthermore, the success of vaccination also depends on the population
turnover, and the rate of entry to and exit from the population. We here investigate by means of a
mathematical model the interplay between these factors to predict optimal vaccination strategies.
We first compute the basic reproduction number and study the global stability of the equilibria. We
then assess the most influential parameters determining the total number of infected over time using
a sensitivity analysis. We derive conditions for the vaccination coverage and efficiency to achieve
disease eradication, assuming different intensities of population turnover (weak and strong), vaccine
properties (transmission and/or recovery) and the trade-off between the latter. We show that the
minimum vaccination coverage increases with lower population turnover decreases with higher
vaccine efficiency (transmission or recovery) and is increased/decreased by up to 15% depending
on the vaccine trade-off. We conclude that the coverage target for vaccination campaigns should be
evaluated based on the interplay between these factors.

Keywords: imperfect vaccine; vaccine trade-off; population turnover; mathematical model; global
stability; sensibility analysis

MSC: 34D23; 37N25; 92-10

1. Introduction

Vaccination is one of the most effective public health policies for protecting humans
and animals from infectious diseases. Global vaccination campaigns have helped eradicate
diseases such as smallpox, measles, poliomyelitis and rinderpest in most parts of the world,
ultimately saving the lives of millions of humans and animals. By definition, a perfect
vaccine would keep vaccinated individuals from becoming infected when exposed to the
pathogen. An imperfect vaccine, however, does not prevent vaccinated individuals from
becoming infected upon pathogen exposure but may still be beneficial in various ways [1].
For example, imperfect vaccines may provide benefits such as preventing infection, lim-
iting parasite within-host growth and thus reducing the damage done to the host [2] or
preventing transmission by infected hosts [3]. As we have seen recently with the epidemic
of COVID-19, imperfect vaccines can be used to reduce the number of infected individuals
and also to protect individuals at risk of developing a more lethal form of the infection. The
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use of imperfect vaccines may be advantageous when the vaccination efficiency is volatile
and decreases due to the appearance of new variants of the virus [4–6].

The effectiveness of a given vaccine is determined not only by its biochemical and
immunological properties but also by how the vaccine is deployed and what other health
management (biosecurity) measures are in place. Maintaining herd immunity during a
disease outbreak, for example, has been promoted as a highly effective disease control
strategy [7–9]. However, a continuous influx of new susceptible, possibly unvaccinated
individuals contributes to the long-term persistence of the disease in the population [10,11].
The frequent introduction of pathogens into a partially immune population (with an in-
termediate level of population immunity) can lead to longer-lasting epidemics and/or
a higher total number of infectious individuals than the introduction into a naive popu-
lation [10]. This phenomenon is named “epidemic enhancement” [10]. More generally,
the population turnover rate, that is, the rate at which individuals can enter and exit the
considered population, may affect the effectiveness of control strategies [12–14]. In humans
and also domesticated animals, population turnover takes the form of immigration and
emigration in and out of the population, as well as the birth and death of individuals. The
turnover is an often neglected factor in epidemiology when generalising predictions of
disease modelling from human to domesticated and wild animal populations.

Moreover, a second parameter of importance in studying the efficiency of vaccina-
tion strategies is the existence of biological trade-offs in the epidemiology of infectious
diseases. The prime example is the trade-off between parasite virulence and transmission
rate, which raises challenges for vaccine manufacturing. Indeed, in the seminal paper by
[3], vaccines affecting disease transmission are predicted to possibly lead to a decrease
in parasite virulence, while other types of vaccines (reducing within-host growth rate)
may lead to an increase in parasite virulence and thus the counter-effect of a worst epi-
demiological outcome. Interestingly, much work has been devoted to generating precise
predictions for virulence evolution in known parasite species by incorporating empirical
characterisations of vaccine effects into models capturing the epidemiological details of
a given system [15–17]. In contrast, the biochemical and immunological trade-offs of the
vaccine itself have received little attention. We specifically mean here that vaccination can
affect several aspects of the disease dynamics, such as within-host growth and transmission,
with possible trade-offs between these characteristics. For example, a vaccine reducing
within-host growth may be more or less effective in reducing disease transmission. We,
therefore, consider the definition of imperfect vaccines as (i) providing partial protection
(non-maximal efficiency) against infection (decreasing transmission) and (ii) partially en-
hancing the recovery of infected individuals. We are interested in the possible trade-off
between these two properties. There has been remarkably little work performed to generally
assess how the interplay between different vaccine properties, trade-offs and vaccination
strategies influences the burden of the epidemic in a heterogeneous community/population
with imperfect vaccination.

The aim of this study is, therefore, to assess, through mathematical modelling, whether
the use of vaccines decreasing the infection rate is more efficient to eradicate the disease
in a heterogeneous community than a vaccine that both reduces the infection and favours
recovery or a vaccine reducing the infection rate but favouring recovery. We also want
to assess whether these results depend on the effect of population turnover in order to
generalise our results to animal populations. The paper is organised as follows. First, the
model is formulated in Section 2. We then compute the basic properties of the steady-
state solutions as well as the existence of local and global stability of the equilibria of
the model (Section 3). We then perform a numerical sensitivity analysis of the model
and study examples of numerical analyses for different parameter values to describe the
interaction between population turnover and vaccine trade-offs on the epidemiological
outcome. We conclude by providing predictions on the applicability of these results to
vaccination strategies in human populations, but also domesticated (and wild) animal
species for which turnover rates represent a different end of a continuum.
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2. Model Formulation

The formulation of the model is based on compartmental modelling [18], which con-
sists of creating virtual reservoirs called compartments. A compartment is a kinetically
homogeneous structure. This means that any individual who enters a compartment is
identical, from the epidemiological point of view to any other already present in that com-
partment. A mathematical model, therefore, consists of describing the flow of individuals
between the various compartments.

To study the dynamics of an infectious disease during and after the vaccination
campaign, we modify the model formulated in [3] by adding a recovered compartment,
and we consider a frequency-dependent disease transmission (incidence rate). The model
takes into account only host-to-host transmission of the disease. Since many vaccines do
not guarantee perfect immunity, we consider a heterogeneous host community/population
with two types of hosts: fully susceptible to the disease or partially resistant to infection
due to the imperfect vaccination. The fully susceptible hosts consist of uninfected (S1)
and infected (I1) individuals. Among the partially resistant hosts, there are uninfected
(S2) and infected (I2) individuals. All infected individuals (fully susceptible or partially
resistant) can become recovered (R), and all recovered individuals are fully immune to
reinfection [19]. Thus, the total population at time t, N(t) is given by

N(t) = S1(t) + S2(t) + I1(t) + I2(t) + R(t).

We assume the parasite population to be monomorphic (having only one type or
genotype). We also assume that new uninfected hosts arise through birth and immigra-
tion at a constant rate, θ ≥ 0. Among these new uninfected, a proportion, 0 ≤ p ≤ 1,
is partially immune due to the vaccination, while the remaining proportion, 1 − p, is
susceptible (completely vulnerable to the parasite). Uninfected, infected and recovered
hosts die naturally at a rate µ ≥ 0, and infected hosts suffer additional mortality due
to the virulence of the parasite. Since host resistance due to vaccination may reduce the
impact of the parasite within-host growth [3], we assume the virulence of the parasite on
fully susceptible hosts, d1 ≥ 0, to be greater than that on partially resistant hosts, d2 ≥ 0.

Uninfected hosts become infected with the forces of infection λ1(t) = β11
I1(t)
N(t)

+ β12
I2(t)
N(t)

and λ2(t) = β21
I1(t)
N(t)

+ β22
I2(t)
N(t)

when they are fully susceptible or partially resistant,

respectively. The rates of transmission are β11 ≥ 0 (β21 ≥ 0) from infected, I1, to suscep-
tible individuals S1 (S2), while β12 ≥ 0 (β22 ≥ 0) is the transmission rate from infected,
I2, to susceptible individuals S1 (S2). Since the resistance can decrease the probability of
becoming infected [3], we generally assume β21 ≤ β11 and β22 ≤ β12. Recovery rates may
differ between the fully susceptible γ1 ≥ 0 and the partially resistant host, γ2 ≥ 0. The
schematic diagram of the model is shown in Figure 1.

Mathematically, the model is as follows:

dS1

dt
= θ(1− p)− λ1(t)S1(t)− µS1(t),

dS2

dt
= θp− λ2(t)S2(t)− µS2(t),

dI1

dt
= λ1(t)S1(t)− (µ + γ1 + d1)I1(t),

dI2

dt
= λ2(t)S2(t)− (µ + γ2 + d2)I2(t),

dR
dt

= γ1 I1(t) + γ2 I2(t)− µR(t).

(1)

A summary of the biological significance of the model parameters (1) is given in
Table 1.
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Figure 1. Schematic diagram of the epidemiological model with imperfect vaccination.

Table 1. Description and value of the model parameters.

Parameter Description Units Value Source

θ Recruitment rate person·day−1 variable Assumed
µ Natural mortality rate day−1 variable Assumed
p Proportion of new hosts vaccinated - variable Assumed

β11 Transmission rate from I1 to S1 day−1 variable Assumed
β12 Transmission rate from I2 to S1 day−1 variable Assumed
β21 Transmission rate from I1 to S2 day−1 variable Assumed
β22 Transmission rate from I2 to S2 day−1 variable Assumed
d1 Mortality rate due to infection of S1 day−1 0.0008 [9]
d2 Mortality rate due to infection of S2 day−1 0.0001 [9]
γ1 Recovery rate of I1 day−1 0.1 [9]
γ2 Recovery rate of I2 day−1 0.13 [9]

3. Mathematical Analysis
3.1. Basic Properties

First, we study the basic characteristics of the system solutions: the existence, non-
negativity and boundedness of solutions. These are (1) essential to make sure that the
model (1) is well defined mathematically and epidemiologically and (2) useful for the
proofs of the stability results.

3.1.1. Positive Invariance of the Non-negative Orthant

For any associated Cauchy problem, system (1), which is a C∞-differentiable system,
has a unique maximal solution.

Lemma 1. The following result corresponds to Proposition B.7, Appendix B in [20]. Let D be an
open subset of Rn, f : R× D → Rn, be a vector-valued function, f = ( f1, f2, · · · , fn). Consider a
system of ODEs of the form

x′ = f (t, x). (2)
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Suppose that f in Equation (2) has the property that solutions of initial value problems
x(t0) = x0 ≥ 0 are unique and for all i fi(t, x) ≥ 0 whenever x ≥ 0 satisfies xi = 0. Then
x(t) ≥ 0 for all t ≥ t0 for which it is defined, provided x(t0) ≥ 0.

Theorem 1. If the initial conditions of system (1) are such that S1(0) ≥ 0, S2(0) ≥ 0, I1(0) ≥ 0,
I2(0) ≥ 0 and R(0) ≥ 0, then the solution (S1(t), S2(t), I1(t), I2(t), R(t)) of the system equation
is non-negative for all t ≥ 0.

Proof. Considering model (1). We have

dS1

dt

∣∣∣
S1=0

=θ(1− p) ≥ 0,

dS2

dt

∣∣∣
S2=0

=θp ≥ 0,

dI1

dt

∣∣∣
I1=0

=β11
I1(t)
N(t)

S1(t) ≥ 0,

dI2

dt

∣∣∣
I2=0

=β21
I1(t)
N(t)

S2(t) ≥ 0,

dR
dt

∣∣∣
R=0

=γ1 I1(t) + γ2 I2(t) ≥ 0,

for all S1, S2, I1, I2, R ≥ 0. By using Lemma 1, we conclude that the solution
(S1(t), S2(t), I1(t), I2(t), R(t)) of the system equation is non-negative for all t ≥ 0.

Thus, solutions of system (1) with non-negative initial conditions will be non-negative
for all t ≥ 0.

3.1.2. Boundedness of Solutions

Since the variables of model (1) are non-negative, and we are dealing with the dynamic
of a number of individuals, it is important and biologically realistic that the total number
of individuals does not explode (that is, it is bounded).

Lemma 2. The closed set

Ω =

{
(S1(t), S2(t), I1(t), I2(t), R(t)) ∈ R5 : S1(t) ≥ 0, S2(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥ 0, R(t) ≥ 0, N(t) 6

θ

µ

}
is positively invariant and attracting for system (1).

Proof. Using system (1), the dynamics of the total human population satisfies:

dN
dt

= θ − µN − d1 I1 − d2 I2 6 θ − µN.

Integrating both sides of the expression above, we deduce that

N(t) 6
θ

µ
+

(
N(0)− θ

µ

)
e−µt, ∀t > 0, (3)



Mathematics 2023, 11, 1240 6 of 26

where N(0) is the value of N(t) at time zero. We deduce that if N(0) 6
θ

µ
, then 0 6 N(t) 6

θ

µ
,

∀t > 0 and Ω is positively invariant. If N(0) >
θ

µ
, then from Equation (3) the total popula-

tion decreases, and the solutions of system (1) enter Ω. Hence N(t) is bounded as t→ ∞,
which means that Ω is attracting.

Remark 1. We know from Theorem 13 in [21] that every maximal solution of the Cauchy problem
(2) that is bounded is global; that is, it exists for all t ≥ 0. Then, every maximal solution of system
(1) is well-defined for all t ≥ 0.

System (1) is epidemiologically and mathematically well-posed in Ω since its state
variables are non-negative, and the size of the total population is bounded. The maximum
value of N represents the size of the total population under the ideal situation without
infection.

3.2. Disease-Free Equilibrium and Its Stability

For the analysis of the spread of an infection, we define the disease-free equilibrium
(DFE), which is the state of the population without infection. The disease-free equilibrium
is deduced from the resolution of system (1) by taking I1 = 0 and I2 = 0. Thus, the
disease-free equilibrium satisfies the following system of equations:{

θ(1− p)− µS0
1 = 0,

θp− µS0
2 = 0.

(4)

Solving the system of equations (4) yields the disease-free equilibrium point:

Q0 = (S0
1, S0

2, 0, 0, 0),

where S0
1 =

θ(1− p)
µ

, S0
2 =

θp
µ

and N0 = S0
1 + S0

2 =
θ

µ
.

The linear stability of Q0 depends on the well-known reproduction numberR0, which
is defined as the average number of secondary cases caused by an infected individual
during its infectious period when introduced into a population of susceptible individuals.
We study the stability of the equilibrium through the next-generation operator [22,23].
Recalling the notations in [23] for system (1), the matrices F of the new infection and V of
the remaining transfer terms are, respectively, given by

F =


β11

S1 I1

N
+ β12

S1 I2

N

β21
S2 I1

N
+ β22

S2 I2

N

 and V =

(µ + γ1 + d1)I1

(µ + γ2 + d2)I2

.

The Jacobian matrices of F and V at Q0 are, respectively,

F =


β11

S0
1

N0 β12
S0

1
N0

β21
S0

2
N0 β22

S0
2

N0

 and V =

µ + γ1 + d1 0

0 µ + γ2 + d2

. (5)
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Then,

FV−1 =


β11S0

1
N0(µ + γ1 + d1)

β12S0
1

N0(µ + γ2 + d2)

β21S0
2

N0(µ + γ1 + d1)

β22S0
2

N0(µ + γ2 + d2)

,

and the reproduction number of model system (1) is

R0 = ρ(FV−1) =
1
2

[ S0
1

N0R0,11 +
S0

2
N0R0,22 +

√( S0
1

N0R0,11 −
S0

2
N0R0,22

)2
+ 4

S0
1

N0
S0

2
N0R0,12R0,21

]
,

R0 =
1
2

[
(1− p)R0,11 + pR0,22 +

√(
(1− p)R0,11 − pR0,22

)2
+ 4p(1− p)R0,12R0,21

]
, (6)

where
S0

1
N0 = 1− p (

S0
2

N0 = p) is the proportion of susceptible individuals that have not been

vaccinated (have been vaccinated) at the DFE Q0. Similarly, we defineR0,11 =
β11

µ + γ1 + d1
as the average number of secondary cases generated by an unvaccinated infected indi-
vidual during its infectious period through interaction with the unvaccinated population.

Furthermore,R0,12 =
β12

µ + γ1 + d1
represents the average number of secondary cases gen-

erated by a vaccinated infected individual in the unvaccinated part of the population,

R0,21 =
β21

µ + γ2 + d2
is the average number of secondary cases generated by an unvacci-

nated infected individual in the vaccinated part of the population, andR0,22 =
β22

µ + γ2 + d2
represents the average number of secondary cases generated by an infected vaccinated
individual in the vaccinated part of the population. Further, ρ(FV−1) is the spectral radius
of FV−1.

Remark 2. From the expression of the reproduction numberR0 in Equation (6), we deduce that
R0 ≥ max{(1− p)R0,11; pR0,22}. Moreover, using (6) for p = 0 (all new hosts are unvaccinated),
R0 = R0,11. Further, if p = 1 (all new hosts are vaccinated), thenR0 = R0,22.

The importance of the reproduction number is due to the result given in the next
lemma derived from Theorem 2 in [23].

Lemma 3. The disease-free equilibrium Q0 of system (1) is locally asymptotically stable in Ω if
R0 < 1, and unstable ifR0 > 1.

The biological meaning of Lemma 3 is that a sufficiently small number of infected
hosts does not induce an epidemic unless the reproduction numberR0 is greater than unity.
That is, the disease rapidly dies out (whenR0 < 1) if the initial number of infected hosts is
in the basin of attraction of the DFE, Q0. Global asymptotic stability of the DFE is required
to better control the disease. In addition, analysing the expansion of the basin of attraction
of Q0 is a more challenging task for the model under consideration, involving a fairly new
result. For this purpose, we use Theorems 2.1 and 2.2 in [24].

Theorem 2. IfR0 6 1, the disease-free equilibrium Q0 of system (1) is globally asymptotic stable
in Ω. If R0 > 1, Q0 is unstable, system (1) is uniformly persistent, and there exists at least one
endemic equilibrium in the interior of Ω.

Proof. See Appendix A.
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As a consequence of the meaning of Theorem 2 and Remark 2, we can confidently
deduce that the disease can be eradicated from the host community if the value of R0
is reduced to less than unity, independently of whether individuals introduced to the
population are all vaccinated or not.

3.3. Endemic Equilibrium and Its Stability

Let Q∗ = (S∗1 , S∗2 , I∗1 , I∗2 , R∗) be the positive endemic equilibrium (EE) of model system
(1). Then, the positive endemic equilibrium can be obtained by setting the right-hand side
of all equations in model system (1) to zero, giving:

θ(1− p)− β11
S∗1 I∗1
N∗
− β12

S∗1 I∗2
N∗
− µS∗1 = 0,

θp− β21
S∗2 I∗1
N∗
− β22

S∗2 I∗2
N∗
− µS∗2 = 0,

β11
S∗1 I∗1
N∗

+ β12
S∗1 I∗2
N∗
− (µ + γ1 + d1)I∗1 = 0,

β21
S∗2 I∗1
N∗

+ β22
S∗2 I∗2
N∗
− (µ + γ2 + d2)I∗2 = 0,

γ1 I∗1 + γ2 I∗2 − µR∗ = 0.

(7)

Given the complexity of system (7), we are not determining an explicit formula for
the endemic equilibrium point Q∗. Note that determining Q∗ is often very difficult to
be carried out when the system is complex and has a large size. However, to prove the
existence of Q∗, we can rewrite system (7) as a fixed point problem and use Theorem
2.1 in [25]. To do this, we solve system (7). After algebraic manipulations, we obtain:

R∗ =
γ1 I∗1 + γ2 I∗2

µ
, S∗1 =

θ(1− p)N∗

β11 I∗1 + β12 I∗2 + µN∗
, S∗2 =

θpN∗

β21 I∗1 + β22 I∗2 − d1 I∗1 − d2 I∗2 + θ
,

I∗1 =
θ(1− p)(β11 I∗1 + β12 I∗2 )

(µ + γ1 + d1)(β11 I∗1 + β12 I∗2 − d1 I∗1 − d2 I∗2 + θ)
= H1(I∗) and

I∗2 =
θp(β21 I∗1 + β22 I∗2 )

(µ + γ2 + d2)(β21 I∗1 + β22 I∗2 − d1 I∗1 − d2 I∗2 + θ)
= H2(I∗) with I∗ = (I∗1 , I∗2 ).

Then, the endemic equilibrium is the fixed points of H given by I = H(I) where
I = (I1, I2). By definition, H is continuous, monotonously non-decreasing and strictly
sublinear. H is also a bounded function that maps the non-negative orthant Ω into itself.
Moreover, H(0) = 0 by definition and the jacobian of H at the zero, H

′
(0), exists and is

irreducible since

H
′
(0) =

β11a1 β12a1

β21a2 β22a2

 = FV−1,

where a1 =
1− p

µ + γ1 + d1
and a2 =

p
µ + γ2 + d2

.

We deduce that the spectral radius ρ(H
′
(0)) of the matrix H

′
(0) is R0. Then, the

existence and the uniqueness of a non-negative fixed point occur if and only ifR0 > 1.

Proposition 1. System (1) has only one endemic equilibrium wheneverR0 > 1.

We establish the following result to analyse the stability of Q∗.

Theorem 3. IfR0 > 1, the endemic equilibrium Q∗ is globally asymptotic stable in Ω.

Proof. Consider the following Lyapunov candidate function:
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L = L1 + L2 + L3 + L4,

where L1 = S1 − S∗1 − S∗1 log

(
S1

S∗1

)
, L2 = S2 − S∗2 − S∗2 log

(
S2

S∗2

)
,

L3 = I1 − I∗1 − I∗1 log

(
I1

I∗1

)
and L4 = I2 − I∗2 − I∗2 log

(
I2

I∗2

)
.

Using the inequality 1− z + log(z) 6 0 for z > 0 with equality if and only if z = 1,
differentiation and using the EE values give

L
′
= L

′
1 + L

′
2 + L

′
3 + L

′
4,

where

L
′
1 =

(
1−

S∗1
S1

)
dS1

dt

=

(
1−

S∗1
S1

)[
β11

S∗1 I∗1
N∗
− β11

S1 I1

N
+ β12

S∗1 I∗2
N∗
− β12

S1 I2

N
− µS1 + µS∗1

]

= −
µ(S1 − S∗1)

2

S1
+ β11

S∗1 I∗1
N∗

[
1−

S∗1
S1
− S1 I1N∗

S∗1 I∗1 N
+

I1N∗

I∗1 N

]
+ β12

S∗1 I∗2
N∗

[
1−

S∗1
S1
− S1 I2N∗

S∗1 I∗2 N
+

I2N∗

I∗2 N

]
.

Then L
′
1 6 β11

S∗1 I∗1
N∗

[
I1N∗

I∗1 N
− log

(
I1N∗

I∗1 N

)
− S1 I1N∗

S∗1 I∗1 N
+ log

(
S1 I1N∗

S∗1 I∗1 N

)]

+β12
S∗1 I∗2
N∗

[
I2N∗

I∗2 N
− log

(
I2N∗

I∗2 N

)
− S1 I2N∗

S∗1 I∗2 N
+ log

(
S1 I2N∗

S∗1 I∗2 N

)]
.

(8)

We can also deduce in an analogous way:

L
′
2 6 β22

S∗2 I∗2
N∗

[
I2N∗

I∗2 N
− log

(
I2N∗

I∗2 N

)
− S2 I2N∗

S∗2 I∗2 N
+ log

(
S2 I2N∗

S∗2 I∗2 N

)]

+β21
S∗2 I∗1
N∗

[
I1N∗

I∗1 N
− log

(
I1N∗

I∗1 N

)
− S2 I1N∗

S∗2 I∗1 N
+ log

(
S2 I1N∗

S∗2 I∗1 N

)]
.

(9)

We also have
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L
′
3 =

(
1−

I∗1
I1

)
dI1

dt

=

(
1−

I∗1
I1

)[
β11

S1 I1

N
+ β12

S1 I2

N
− (µ + γ1 + d1)I1

]

=

(
1−

I∗1
I1

)[
β11

S1 I1

N
+ β12

S1 I2

N
− β11

S∗1 I1

N∗
+ β12

S∗1 I∗2 I1

N∗ I∗1

]

= β11
S∗1 I∗1
N∗

[
S1 I1N∗

S∗1 I∗1 N
− S1N∗

S∗1 N
− I1

I∗1
+ 1

]
+ β12

S∗1 I∗2
N∗

[
S1 I2N∗

S∗1 I∗2 N
−

S1 I∗1 I2N∗

S∗1 I1 I∗2 N
− I1

I∗1
+ 1

]
,

L
′
3 6 β11

S∗1 I∗1
N∗

[
S1 I1N∗

S∗1 I∗1 N
− log

(
S1 I1N∗

S∗1 I∗1 N

)
− I1

I∗1
+ log

(
I1

I∗1

)]

+β12
S∗1 I∗2
N∗

[
S1 I2N∗

S∗1 I∗2 N
− log

(
S1 I2N∗

S∗1 I∗2 N

)
− I1

I∗1
+ log

(
I1

I∗1

)]
.

(10)

Similarly, we obtain

L
′
4 6 β22

S∗2 I∗2
N∗

[
S2 I2N∗

S∗2 I∗2 N
− log

(
S2 I2N∗

S∗2 I∗2 N

)
− I2

I∗2
+ log

(
I2

I∗2

)]

+β21
S∗2 I∗1
N∗

[
S2 I1N∗

S∗2 I∗1 N
− log

(
S2 I1N∗

S∗2 I∗1 N

)
− I2

I∗2
+ log

(
I2

I∗2

)]
.

(11)

Therefore, by adding (8)–(11), we deduce

L
′
6

(
− I1N∗

I∗1 N
+ log

(
I1N∗

I∗1 N

))(
− β11

S∗1 I∗1
N∗
− β21

S∗2 I∗1
N∗

)

+

(
− I2N∗

I∗2 N
+ log

(
I2N∗

I∗2 N

))(
− β12

S∗1 I∗2
N∗
− β22

S∗2 I∗2
N∗

)

+

(
− I1

I∗1
+ log

(
I1

I∗1

))(
β11

S∗1 I∗1
N∗

+ β12
S∗1 I∗2
N∗

)

+

(
− I2

I∗2
+ log

(
I2

I∗2

))(
β22

S∗2 I∗2
N∗

+ β21
S∗2 I∗1
N∗

)
.

Then L
′
60, since − z + log(z) 6 −1, ∀z > 0.

Since {Q∗} is the only invariant subset in Ω where L = 0, therefore, by La Salle’s
invariance principle [26], Q∗ is globally global asymptotic stable in Ω.

The epidemiological consequence of this theorem is that the disease persists as endemic
in the host population as soon asR0 > 1.

3.4. Herd Immunity Threshold

Herd immunity is a form of indirect protection from infectious disease that occurs
when a sufficient percentage of a population has become immune to an infection, whether
through previous infections or vaccination and thereby reducing the likelihood of infection
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for individuals lacking immunity. This is due to the fact that immune individuals are
unlikely to contribute to disease transmission, disrupting chains of infection, which stops
or slows down the spread of disease. To compute the herd immunity threshold associated

with system (1), we set the reproduction number,R0, to one and solve for p =
S0

2
N0 , which

is the proportion of susceptible individuals that have been vaccinated at the DFE, Q0. Then
we have,

R0 = 1⇐⇒
[
2−R0,11 + (R0,11 −R0,22)p

]2
=
[
R0,11 − (R0,11 +R0,11)p

]2
+ 4p(1− p)R0,12R0,21

⇐⇒
[
(R0,11 −R0,22)

2 − (R0,11 +R0,22)
2 + 4R0,12R0,21

]
p2 +

[
2(2−R0,11)(R0,11 −R0,22)

+ 2R0,11(R0,11 +R0,22)− 4R0,12R0,21
]
p + (2−R0,11)

2 −R2
0,11 = 0.

Thus, solvingR0 = 1 is equivalent to finding the roots of polynomial Q(p) given by:

Q(p) = Ap2 + Bp + C, (12)

where A = 4R0,12R0,21 − 4R0,11R0,22, B = 4R0,11(1 +R0,22)− 4(R0,22 +R0,12R0,21) and
C = 4(1−R0,11).

Noting that negative thresholds are biologically meaningless (in our case), the con-
ditions for Q(p) to have positive real roots are determined below. For this purpose, we
perform a case analysis to determine the positive real zeros of Q.

Let ∆ = B2 − 4AC be the discriminant of the equation Q(p) = 0.

Case 1 Suppose A = 0. Then

pc = −
C
B

is the only real root of Q. In addition, pc > 0 if and only if B and C have opposite
signs and B 6= 0.

Case 2 Suppose A 6= 0 and ∆ = 0. Then

pc0 = − B
2A

is the only real root of Q. Further pc0 > 0 if and only if A and B have opposite signs.

Case 3 Suppose A 6= 0 and ∆ > 0. Then

pc1 =
−B−

√
∆

2A
and pc2 =

−B +
√

∆
2A

are the real roots of Q.

Moreover, if A > 0, then{
pc1 > 0 if and only if

√
∆ < −B,

pc2 > 0 if and only if
√

∆ > B.

Therefore, Q has two positive real roots if A > 0, B < 0, C > 0 and ∆ > 0. In addition,
it has one positive real root if (A > 0, B < 0, C < 0 and ∆ > 0) or (A > 0, B > 0 and
C < 0 and ∆ > 0).

Finally, if A < 0, then {
pc1 > 0 if and only if

√
∆ > −B,

pc2 > 0 if and only if
√

∆ < B.
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Therefore, Q has two positive real roots if A < 0, B > 0, C < 0 and ∆ > 0. It has one
positive real root if (A < 0, B > 0, C > 0 and ∆ > 0) or (A < 0, B < 0, C > 0 and
∆ > 0).

Theorems 2 and 3 can be combined to give the following result:

Corollary 1. An imperfect vaccine can lead to the elimination of the disease if Q(p) > 0 (i.e.,
R0 < 1). If Q(p) < 0 (i.e.,R0 > 1), then the disease persists in the population.

The implication of Corollary 1 is that the use of an imperfect vaccine can lead to the
elimination of the disease in the host population if the proportion of vaccinated individuals
satisfies one of the following conditions:

1. p > pc, if A = 0, B > 0 and C < 0;
2. p ∈ [0, pc[, if A = 0, B > 0 and C > 0;
3. p 6= pc0 , if A > 0, ∆ = 0 and B < 0;
4. p ∈ [0, pc1 [ or p > pc2 , if A > 0, ∆ > 0, B < 0 and C > 0;
5. p > pc1 or p > pc2 , if (A > 0, ∆ > 0, B < 0 and C < 0) or (A > 0, ∆ > 0, B > 0 and

C < 0);
6. p ∈]pc2 , pc1 [, if A < 0, ∆ > 0, B > 0 and C < 0;
7. p ∈ [0, pc1 [ or p ∈ [0, pc2 [, if (A < 0, ∆ > 0, B > 0 and C > 0) or (A < 0, ∆ > 0, B < 0

and C > 0).

Conversely, the disease persists in the population if the proportion of individuals
vaccinated satisfies one of these conditions:

1. p ∈ [0, pc[, if A = 0, B > 0 and C < 0;
2. p > pc, if A = 0, B > 0 and C > 0;
3. p 6= pc0 , if A < 0, ∆ = 0 and B > 0;
4. p ∈]pc1 , pc2 [, if A > 0, ∆ > 0, B < 0 and C > 0;
5. p ∈ [0, pc1 [ or p ∈ [0, pc2 [, if (A > 0, ∆ > 0, B < 0 and C < 0) or (A > 0, ∆ > 0, B > 0

and C < 0);
6. p ∈ [0, pc2 [ or p > pc1 , if A < 0, ∆ > 0, B > 0 and C < 0;
7. p > pc1 or p > pc2 , if (A < 0, ∆ > 0, B > 0 and C > 0) or (A < 0, ∆ > 0, B < 0 and

C > 0).

We conclude the analytical part of our study by stating that the eradication of a disease
is conditioned by the proportion of vaccinated individuals; this threshold for vaccination
coverage is called the critical vaccination proportion (pc). In some cases, there is one critical
proportion that determines whether the basic reproduction number,R0, is less than one
or not. In other cases, two critical proportions are found defining the occurrence of three
different possible dynamics: disease eradication whenR0 < 1, endemic disease dynamics
whenR0 > 1 with the presence or absence of epidemiological oscillations of the number of
infected individuals. In the latter case of the two thresholds, the analytical results derived
above do not allow the prediction of the epidemiological dynamics and the vaccination
proportions. We, therefore, provide numerical simulations in the follow-up section.

4. Numerical Simulations

We refine the above analytical results by numerical simulations to assess the influence
of the various model parameters and the impact of population turnover and trade-offs
in vaccination efficiency on the epidemiological dynamics (i.e., the number of infected
individuals andR0). To illustrate the behaviour of model (1), we use parameter values for
the mortality rates, d1 and d2, and the recovery rates, γ1, γ2, measured for COVID-19 as an
example of a highly transmissible disease (based on data from the United States [9]). In
order to assess the influence of the various parameters of the model on the epidemiological
outcome, we vary their values as described in Table 1. Note that we do not attempt here to
precisely model the COVID-19 epidemic, but we focus on highly transmissible diseases
relevant to public health. We indeed aim to go beyond applicability to a particular diseases
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(COVID-19) and to provide a generalised overview of the influence of vaccination trade-offs
on epidemics.

4.1. Global Sensitivity Analysis

Uncertainty/sensitivity analyses are first used to determine which model input param-
eters have the greatest impact on the epidemiological outcome [27]. The sensitivity analysis
of the model parameters is carried out to measure the correlation between the model param-
eters and 1) the total number of infected individuals (I1 + I2) and 2) the threshold parameter
R0. The analysis is performed using the Latin Hypercube Sampling (LHS) technique and
partial rank correlation coefficients (PRCCs) [27]. In our analysis, 1,000 model simulations
are performed by running the model for 200 time steps (equivalent to 200 days), and the
number of infected is recorded at time points 50, 100 and 200. To perform the sensitivity
analysis, each parameter has a parameter range defined by the maximum (the minimum),
being 50% greater (less) than its baseline (values in Tables A1–A4). We then divide each
parameter range into 1000 equally large sub-intervals, and draw a value per parameter
within that interval using a Uniform draw. By this means, we obtain a uniform distribution
of 1000 parameter values for each parameter. The parameter space (or LHS matrix) has
dimensions of length 11, with each dimension specifying an uncertain parameter vector of
length 1000. The base parameter values are chosen to define several scenarios of interest
regarding the intensity of the turnover (weak and strong) and the efficiency of the vaccine
(weak and strong). In PRCC analysis, the parameters with larger positive or negative PRCC
values (>0.5 or <−0.5) and with correspondingly small p-values (<0.05) are deemed the
most influential in determining the outcome of the model. A positive (negative) correlation
coefficient corresponds to an increasing (decreasing) monotonic trend between the chosen
response function and the parameter under consideration. The results of the PRCC analyses
are found in Tables A1–A4 in Appendix B.

Based on the results in Tables A1–A4, we provide, in Table 2, a summary of the param-
eters that significantly affect the number of infected individuals. Overall, it appears that the
recruitment rate, θ, and the recovery rate of the infected who have not been vaccinated, γ1,
are the two main parameters driving the number of infected individuals. This suggests that
an effective control strategy should aim to significantly limit the immigration of new hosts
in the population (to decrease θ) and improve the treatment of infected individuals (to
increase γ1). We then proceed to a similar analysis withR0 and summarise the sensitivity
analysis of the LHS and PRCC techniques in Figure 2. We find, perhaps unsurprisingly, that
the proportion of new hosts vaccinated, p, is the most significant parameter explaining the
change inR0, along with the transmission rate from unvaccinated infected to unvaccinated
susceptibles, β11, and the recovery rate of the infected who have not been vaccinated, γ1
(Table 2).

Table 2. Summary of the influence of parameters on the total numbers of infected at different time
points.

Scenarios
Total Infected: I1 + I2

t = 50 Days t = 100 Days t = 200 Days

Strong turnover and weak
efficiency θ(+), β11(+), µ(−), γ1(−) θ(+), β11(+), µ(−), γ1(−) θ(+), β11(+), µ(−), γ1(−)

Strong turnover and strong
efficiency θ(+), β11(+), µ(−), γ1(−) θ(+), β11(+), µ(−), γ1(−) θ(+), β11(+), µ(−), γ1(−)

Weak turnover and weak
efficiency β11(−), β21(−), β22(−) β21(−), β22(−), γ1(+), γ2(+) θ(+), β21(−), γ1(+)

Weak turnover and strong
efficiency θ(+), β11(−), β21(−), γ1(−) β21(−), µ(−), γ1(+) θ(+), β21(−), µ(−), γ1(+)
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(a) (b)

(c) (d)

Figure 2. PRCCs describing the impact of model parameters onR0 of model (1) with respect to some
scenarios: (a) strong turnover and weak efficiency, (b) strong turnover and strong efficiency, (c) weak
turnover and weak efficiency and (d) weak turnover and strong efficiency. The range of parameters
in (a–d) is the same as given in Tables A1–A4.

4.2. Interplay between Vaccine Efficiency and Population Turnover

We now study the effect of population turnover and vaccine efficiency on the epi-
demiological dynamics. Specifically, we use numerical simulations to find the vaccination
coverage necessary to eradicate the disease in the community (R0 satisfying the Corollary 1)
under two population turnover rates (fixing the ratio θ/µ, we define strong turnover with
θ = 1000 and µ = 0.09, and weak with θ = 10 and µ = 0.0009), when the efficiency of the
vaccine only reduces transmission. The vaccine efficiency is set as weak (β21 = (1− 0.5)β11
and β22 = (1− 0.5)β12, defining an efficiency of 50%) or strong (β21 = (1− 0.9)β11 and
β22 = (1− 0.9)β12, defining an efficiency of 90%).

4.2.1. Strong Population Turnover

The epidemiological dynamics in Figure 3b under strong turnover and weak vaccine
efficiency (R0 = 1.2352) show that the dynamics reach the endemic disease equilibrium.
Furthermore, if p takes a value between 0 and p1 (with p1 ≈ 0.696), the basic reproduction
number is greater than 1, but if p is between p1 and 1, the basic reproduction number is
less than 1 (as predicted in the analytical results in Corollary 1). Therefore, to eradicate the
disease under strong population turnover and weak efficiency of the vaccine, a minimum
vaccination rate is needed and is defined by p1. Under strong turnover and strong efficiency
(Figure 3d, withR0 = 0.9808) the disease becomes extinct. Furthermore, if parameter p is
between 0 and p2 with p2 ≈ 0.489, the basic reproduction number is greater than 1, while
for p between p2 and 1, the basic reproduction number is less than 1. Therefore, to eradicate
the disease in this context of strong turnover and strong efficiency of the vaccine, there is a
need to vaccinate more than 48.9% of the new host individuals.
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(a) (b)

(c) (d)
Figure 3. Epidemiological dynamics with initial conditions S1(0) = 1000, S2(0) = 700, I1(0) = 200,
I2(0) = 80 and R(0) = 20, for various scenarios assuming the parameters β11 = 0.35, β12 = 0.28,
p = 0.5 and strong population turnover (θ = 1000, µ = 0.09). We present, under weak vaccine
efficiency (β21 = 0.175, β22 = 0.14), the number of (a) uninfected and (b) infected individuals. We
present, under strong vaccine efficiency (β21 = 0.035, β22 = 0.028) the number of (c) uninfected and
(d) infected individuals. Others parameter values are as in Table 1.

4.2.2. Weak Population Turnover

To illustrate a weak population turnover, we consider the values θ = 10 and µ = 0.0009,
noting that the ratio of θ/µ is the same as for the strong turnover investigated above.
Under weak turnover, the epidemiological dynamics exhibit damped oscillations (recurring
outbreaks) before stabilising at the endemic state with disease persistence (Figure 4b with
R0 = 2.2551, Figure 4d with R0 = 1.8276). These oscillations are due to the fact that
individuals migrate rapidly in the recovered compartment, and a new outbreak only occurs
when a sufficient number of susceptible individuals are available for new recruitment into
the population and recovered individuals lose their immunity (so-called waning immunity).
This phenomenon was also described in [7,10,11,28], and the effect of turnover and waning
immunity is specifically described in [7,10].

With respect to the control of the disease, under weak vaccine efficiency, p can take
any value between 0 and 1, and the basic reproduction number is always greater than 1
(Figure 4b with R0 = 2.2551). In contrast, when vaccine efficiency is strong, three cases
occur, Figure 4d (withR0 = 1.8276). When p has a value between 0 and p3, with p3 ≈ 0.753,
the basic reproduction number is greater than 1, and we observe a damped periodicity of
the number of infected individuals converging towards a stable endemic state. When p
takes a value between p3 and p4 (with p4 ≈ 0.756), the basic reproduction number, R0,
is greater than 1, but no oscillations are observed. For p ∈ [p4, 1], the basic reproduction
number, R0, is less than 1, and the disease becomes extinct. Note that between p3 and
p4, the behaviour can change very finely, but the resolution of our simulations does not
allow us to decide on a very precise bound when oscillations occur or not. Therefore, to
eradicate the disease in this context of weak population turnover and strong efficiency of
the vaccine, high vaccination coverage (more than 75.6% of the new host individuals) is
needed. Our results extend those in [29], showing that it is feasible to control the disease by
a weakly efficient vaccine acting on disease transmission but that the required vaccination
coverage depends on the population turnover. We note that the persistence of an endemic
equilibrium is predicted by the condition R0 > 1, even if damped oscillations in the
number of infected individuals occur. In other words, while the population turnover does
not factor directly in the analytical expression ofR0, it enters only indirectly by affecting the
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proportion of susceptible individuals available (Equation 6). The simulation results provide
examples of the analytical expressions obtained in Equation (12) following Corollary 1.

(a) (b)

(c) (d)

Figure 4. Simulation of model (1) at the initial conditions S1(0) = 1000, S2(0) = 700, I1(0) = 200,
I2(0) = 80 and R(0) = 20, when θ = 10, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14, µ = 0.0009,
p = 0.5, (a) uninfected individuals with a weak turnover and weak efficiency scenario and (b) infected
individuals with a weak turnover and weak efficiency scenario. When θ = 10, β11 = 0.35, β12 = 0.28,
β21 = 0.035, β22 = 0.028, µ = 0.0009 and p = 0.5, (c) uninfected individuals with a weak turnover
and strong efficiency scenario and (d) infected individuals with a weak turnover and strong efficiency
scenario. Others parameter values are as in Table 1.

4.3. Interplay between Types of Vaccines and Population Turnover

We now assume that a vaccine has two potential mechanisms of action on the disease,
namely blocking transmission and/or favouring the recovery of infected individuals.
We investigate the effect of these vaccine types on the epidemiology depending on the
population turnover. Specifically, model (1) is slightly modified to allow for the assessment
of the efficiency of the vaccine regarding the probability of being infected and the recovery
rate. This is achieved by simply rescaling the parameters as follows:

β21 = (1− ε)β11, β22 = (1− ε)β12, and γ1 = (1− ν)γ2, (13)

where 0 ≤ ε ≤ 1 represents the effect of the vaccine on disease transmission, and 0 ≤ ν ≤ 1
represents the effect of the vaccine on recovery. Substituting the rescaled expressions in
Equation (13) into model (1), one deduces that the basic reproduction number in model (1)
can be rewritten as:

R0 =
1
2

[
(1− p)R0,11 + pR0,22 +

√(
(1− p)R0,11 − pR0,22

)2
+ 4p(1− p)R0,12R0,21

]
, (14)

with R0,11 =
β11

µ + (1− ν)γ2 + d1
, R0,12 =

β12

µ + (1− ν)γ2 + d1
, R0,21 =

(1− ε)β11

µ + γ2 + d2
and

R0,22 =
(1− ε)β12

µ + γ2 + d2
. Simulations are carried out to assess the interplay of the type of

vaccine and the population turnover.
Under a strong population turnover, as expected, the value of the reproduction number

decreases as coverage and efficiency of the vaccine on the transmission increase (Figure 5a),
and if the vaccine is designed to only decrease the transmission by 80% (i.e., ε = 0.8), the
eradication of the disease in the host population can be achieved (R0 < 1) if at least 70% of
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the population is vaccinated (Figure 5a). On the other hand, the value of the reproduction
number decreases as coverage increases and the efficiency of the vaccine favouring recovery
decreases (Figure 5b). With a vaccine designed to enhance recovery by 20% (i.e., ν = 0.2),
the eradication of the disease in the host population can be achieved (R0 < 1) if at least
68% of the population is vaccinated (Figure 5b). In Figure 5c, we present the effect of
the combined efficiency of the vaccine (decreasing transmission and favouring recovery)
on the reproduction number at p = 0.5. The eradication of the disease can be achieved
(R0 < 1) if the vaccine has a combined efficiency of at least 85% against infection (and
thus transmission) and at least 20% to enhance recovery (for a given vaccination coverage
of p = 0.5). These figures represent subsets of the general results presented in Figure A1,
in which R0 is a function of ε, ν and p. The use of a vaccine with a combined efficiency
(decreasing transmission and favouring recovery) can be associated with vaccination
coverage in order to achieve the elimination of the disease. For example, with vaccination
coverage of 20% (p = 0.2), it is not possible to eliminate the disease no matter the combined
efficiency of the vaccine (Figure A2), while at 80% coverage (p = 0.8), there are several
combinations of vaccine types, decreasing transmission and favouring recovery, that can
promote disease control (Figure A2).

(a) (b)

(c)

Figure 5. Contour plots of the basic reproduction number (R0) of model (1) with a strong population
turnover as a function of (a) vaccination coverage, p, and vaccine efficiency on disease transmission,
ε (with fixed ν = 0.5); (b) vaccination coverage, p, and vaccine efficiency on recovery, ν (with fixed
ε = 0.5); and (c) vaccine efficiency on recovery, ν, and vaccine efficiency on transmission, ε (with
fixed p = 0.5). The parameters are θ = 1000, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14, µ = 0.09,
d1 = 0.0008, d2 = 0.0001, γ1 = 0.065 and γ2 = 0.13.

The above results dramatically change under a weak population turnover. As expected,
the value of the reproduction number decreases as coverage and efficiency of the vaccine
on the transmission increase (Figure A3a), but higher vaccination coverage is needed
compared to the strong population turnover to achieveR0 < 1. Moreover, it is not possible
to eradicate the disease if (1) the vaccine is only efficient in enhancing recovery, no matter
the vaccination coverage (Figure A3b), or (2) if the efficiency of the vaccine is combined,
but vaccination coverage is p = 0.5 (Figure A4). The general results ofR0 as a function of ε,
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ν and p demonstrate that under weak population turnover, disease eradication requires a
very strong efficiency of the vaccine and high coverage (Figure A5).

4.4. Interplay between Vaccine Efficiency Trade-Off and Population Turnover

Thus far, we have assumed that all parameters of vaccine efficiency can be indepen-
dently chosen from one another. We study, here, the epidemiological dynamics when there
exists a possible (and realistic) trade-off (relationship) between the vaccine efficiency on
transmission and on recovery. We assume three possible trade-off curves: convex (ν = ε2),
concave (ν =

√
ε) or linear (ν = ε). Under a strong population turnover, assuming a vaccine

of at least 60% efficiency, disease eradication can be achieved (R0 < 1) if the coverage is
at least 65% under a convex trade-off (Figure 6a), at least 80% under a concave trade-off
(Figure 6b) and at least 75% under a linear trade-off (Figure 6c). Imposing vaccine trade-off,
therefore, affects the shape of theR0 curves in Figure 6a–c compared to Figure 5a,b, and
may be important to predict the minimum vaccination coverage to be achieved. However,
under a weak population turnover, the disease persists no matter the vaccination coverage
and whatever trade-off are assumed in the vaccine (Figure A6a–c).

(a) (b)

(c)

Figure 6. Contour plots of the basic reproduction number (R0) of model (1) with a strong population
turnover as a function of vaccine coverage, p, and vaccine efficiency on the transmission, ε when:
(a) ν = ε2 (convex relationship); (b) ν =

√
ε (concave relationship); (c) ν = ε (linear relationship).

The parameters are θ = 1000, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14, µ = 0.09, d1 = 0.0008,
d2 = 0.0001, γ1 = 0.065 and γ2 = 0.13.

5. Discussion and Conclusions

When a large proportion of a population becomes immune to a virus, it becomes
harder for the disease to spread. This is the core concept underlying the concept of herd
immunity [7–9]. However, there are numerous individuals who refuse to be vaccinated
because of various reasons (health concerns, lack of information, systemic mistrust, see [30]),
and some vaccines provide only partial protection from disease or can be only efficient
against a few disease variants (see the recent COVID-19 epidemics and the vaccine efficiency
and waning of immunity against different variants). Therefore, it is rather common that
pathogens face a heterogeneous population of vaccinated and unvaccinated hosts [30], and
this has consequences for the evolution of the disease itself [3,15,19]. In this study, we
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used mathematical modelling approaches (analysis and numerical simulations) to assess
the potential population-level impact of using different types of imperfect vaccines to
control the burden of a disease in a community. In the first part, we provide a theoretical
analysis of the model, including the basic reproduction numberR0 and conditions for the
stability of the equilibria. We derive the condition to be satisfied regarding the proportion
of vaccinated individuals at a steady state in order to attain herd immunity. We express
this condition as the critical coverage to be achieved forR0 < 1.

When the vaccine is developed to prevent infection and stop transmission, our results
show that it is possible to eliminate the disease with a strong population turnover if the
vaccination coverage is greater than 69.6% (48.9%) with a weak (strong) efficiency of the
vaccine. However, when population turnover is weak, we observe damped oscillations,
and eradication is possible with a vaccine with high efficiency and coverage greater than
75.6%. Otherwise, the disease persists and becomes endemic in the community. We
highlight here the effect of population turnover as an important first factor in deciding
the effectiveness of vaccination campaigns (as suggested in [10,11,13]). For example, with
respect to applications to a human population, the turnover can be considered migration
in and out of the community since the birth and death rate are usually small and fairly
constant. Our results suggest that for a community with strong migration (strong turnover),
we can vaccinate individuals coming in, in order to reduce the basic reproduction number.
However, if there is a weak migration (weak turnover) as, for example, when flights and
travel are restricted, the vaccination strategy should be improved by undertaking a mass
vaccination campaign and using a high-efficiency vaccine. A similar reasoning applies to
domesticated animals (livestock), with the migration of (potentially vaccinated) individuals
between farms influencing the epidemic.

We then analyse more finely the effect of the type of vaccine and its efficiency on
disease dynamics. The vaccine can decrease transmission and/or favour the recovery of
infected individuals. Disease eradication is possible if the vaccine decreases transmission
by 82%, enhances recovery by at least 25%, and a vaccination coverage of 82% is achieved
under a strong population turnover. Under weak turnover, maximum vaccine efficiency
and coverage are required. Therefore, there is also an interplay between the strength of
population turnover and the efficiency of the vaccine (and the property of the vaccine).
Finally, we explore the importance of vaccine design is a trade-off between the vaccine
efficiency to stop transmission (infection) and disease recovery is expected. We use three
trade-off curves and show that the convex (ν = ε2) function is the most desirable when the
efficiency of the vaccine is at least 60% under a strong turnover of population. However,
under a weak population turnover, the disease cannot be easily eradicated, no matter the
vaccination coverage and the efficiency of a combined vaccine. Furthermore, we notice
that a smaller vaccination coverage and/or efficiency is needed when using a vaccine
designed with a convex trade-off between the above two properties (decrease transmission
and favour recovery) than other vaccines (different trade-offs or no trade-off).

Our model has some limitations and advantages compared to previous work in the
literature, as we intend here to study the overall behaviour of our model under different
schematic scenarios. First, we use, for illustrative purposes, COVID-19 parameters to
exemplify the expected threshold for vaccination coverage for a highly transmissible
disease. We thus caution here against building precise recommendations (for COVID-19
vaccination) based on our results. Second, our model does not explicitly account for a
continuous vaccination (or large vaccination campaigns) of individuals in a community.
Vaccination is linked in our model to population turnover, explaining the appearance
of periodic oscillations in disease incidence (the honeymoon periods, [7,10,11,28]). Such
periodic epidemics occur and are predicted for COVID-19, and may likely be due to
immunity waning of the various vaccines against new variants [9]. Third, we use a
frequency-dependent transmission, which allows us to derive analytical results in more
depth than some previous models but may underestimate the spread of disease and speed
of disease dynamics. Thus, to obtain precise predictions regarding vaccination efficiency
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and campaigns for a given disease, the ad hoc parameters of our models need to be correctly
adjusted.

This model contains some general conclusions that are not only applicable to human
populations but also domesticated (livestock) and wild animals or even crops. Domesticated
animals also require vaccinations (e.g., [31,32]), and our study draws recommendations on
the importance of turnover and migration rates in and out of the population. Our results
also suggest that in livestock, the type of vaccine can be adjusted depending on the disease,
especially if it is desirable that infected animals recover well rather than attempting to
prevent any transmission (e.g., [31,32]). Our results may also be relevant to consider for
vaccination campaigns of wild endangered animals [33]. In addition, we also suggest that
the principles of the model apply to plant (crop) immunisation. To protect plants against
invasion of pathogens or pests, one can use different biotic and synthetic chemicals to
induce immunity in the plant [34] or protect plants by spraying fungicides [35]. In a field
or among fields, some plants will be more resistant than others for a certain period of
time. The spray is equivalent to the vaccination, and is, in that case, decoupled from the
population turnover, which is the planting/renewal and harvesting/removal of plants.
Plant epidemiology modelling has been used to predict the efficiency of imperfect fungicide
treatments on the epidemics and on yield [35,36], with results mirroring our own.

In summary, we show that it is possible to achieve disease control by vaccination in a
population with a strong turnover, even if we use a weak imperfect vaccine designed to
reduce only transmission. However, higher vaccination coverage and a strong efficiency
vaccine are necessary to control the disease under weak population turnover. Moreover, a
vaccine with a convex trade-off between the efficiency to reduce transmission and enhance
recovery is recommendable, along with high vaccination coverage.
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Appendix A. Proof of Theorem 3.4

Proof. The system (1) can be written as:

da
dt

= (F−V)a− f (a, b),

db
dt

= g(a, b),

(A1)
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where a = (I1, I2)
T is the vector representing the infected classes, b = (S1, S2, R)T is the

vector representing the uninfected classes, the matrices F and V are given as in Equation (5)
and

f (a, b) =


β11

(
S0

1
N0 −

S1

N

)
I1 + β12

(
S0

1
N0 −

S1

N

)
I2

β21

(
S0

2
N0 −

S2

N

)
I1 + β22

(
S0

2
N0 −

S2

N

)
I2

 and g(a, b) =


θ(1− p) + λ1S1 − µS1

θp + λ2S2 − µS2

γ1 I1 + γ2 I2 − µR

.

Then,

V−1F =


β11S0

1
N0(µ + γ1 + d1)

β12S0
1

N0(µ + γ1 + d1)

β21S0
2

N0(µ + γ2 + d2)

β22S0
2

N0(µ + γ2 + d2)

,

and the left eigenvector of V−1F, (ω1, ω2) associated with the eigenvalueR0 is given by:

ω1 = 1 and ω2 =
N0(µ + γ2 + d2)

β21S0
2

(
R0 −

β11S0
1

N0(µ + γ1 + d1)

)
since

(ω1, ω2)V−1F = R0(ω1, ω2).
Let us consider the following Lyapunov function:

Q =(ω1, ω2)V−1(I1, I2)
T

=
I1

µ + γ1 + d1
+

(
R0 −

β11S0
1

N0(µ + γ1 + d1)

)
N0 I2

β21S0
2

. (A2)

Then the derivative of Q with respect to t yields,

Q
′
= (R0 − 1)(ω1, ω2)

Ta− (ω1, ω2)
TV−1 f (a, b).

Since (ω1, ω2) > 0, V−1 > 0 and f (a, b) > 0 in Ω, then (ω1, ω2)
TV−1 f (a, b) > 0.

Therefore, Q
′
6 0 in Ω if R0 6 1 and Q is a Lyapunov function for the system (1). By

LaSalle’s invariance principle [26,37], Q0 is GAS in Ω.
IfR0 > 1, then Q

′
= (R0 − 1)(ω1, ω2)

Ta > 0 provided that a > 0 and b = (S0
1, S0

2, 0).
By continuity, Q

′
> 0 in the neighborhood of Q0. Solutions in positive cone sufficiently

close to Q0 move away from Q0, implying that Q0 is unstable. Thus, the model system
(1) is uniformly persistent [38,39]. Uniform persistence and the positively invariance of Ω
imply the existence of an endemic equilibrium.
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Appendix B. Tables

Table A1. PRCC of model’s parameters at time t (days) with strong PI and weak efficiency of vaccine.
The values θ = 1000, µ = 0.09, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14 are used as baseline.

Parameters
Range of Parameters Total Infected: I1 + I2

Min Baseline Max t = 50 Days t = 100 Days t = 200 Days

θ 500 1000 1500 0.71395 ** 0.78511 ** 0.76166 ***
p 0 0.5 1 0.020314 0.0029584 0.028397

β11 0.175 0.35 0.525 0.85757 *** 0.8731 *** 0.87175 ***
β12 0.14 0.28 0.42 0.0047432 0.027724 −0.030496
β21 0.0875 0.175 0.2625 0.0090246 −0.012341 0.026579
β22 0.07 0.14 0.21 −0.047262 0.02905 −0.037461
µ 0.045 0.09 0.135 −0.7695 ** −0.80652 *** −0.79222 **
d1 0.0004 0.0008 0.0012 −0.012188 0.03368 −0.046922
d2 0.00005 0.0001 0.00015 −0.025215 0.016188 −0.043869
γ1 0.05 0.1 0.15 −0.78315 ** −0.84015 *** −0.82903 ***
γ2 0.0625 0.13 0.1925 0.010702 0.05007 0.012449

**: PRCC values: 0.7 to 0.79 or −0.7 to −0.79; ***: PRCC values: 0.8 to 0.99 or −0.8 to −0.99.

Table A2. PRCC of model’s parameters at time t days with strong PI and strong efficiency of vaccine,
when θ = 1000, µ = 0.09, β11 = 0.35, β12 = 0.28, β21 = 0.035, β22 = 0.028 as baseline.

Parameters
Range of Parameters Total Infected: I1 + I2

Min Baseline Max t = 50 Days t = 100 Days t = 200 Days

θ 500 1000 1500 0.7381 ** 0.76387 ** 0.78486 **
p 0 0.5 1 0.003905 0.0037356 0.027257

β11 0.175 0.35 0.525 0.86469 *** 0.87427 *** 0.88181 ***
β12 0.14 0.28 0.42 0.0079816 0.033516 0.030158
β21 0.0175 0.035 0.0525 0.0012134 0.018087 −0.00058438
β22 0.014 0.028 0.042 0.021841 −0.0038364 0.018881
µ 0.045 0.09 0.135 −0.78849 ** −0.80304 *** −0.81535 ***
d1 0.0004 0.0008 0.0012 −0.054627 0.066816 0.019678
d2 0.00005 0.0001 0.00015 −0.033227 −0.021472 −0.028882
γ1 0.05 0.1 0.15 −0.80324 *** −0.83346 *** −0.84421 ***
γ2 0.0625 0.13 0.1925 −0.0099732 −0.02272 0.0020891

**: PRCC values: 0.7 to 0.79 or −0.7 to −0.79; ***: PRCC values: 0.8 to 0.99 or −0.8 to −0.99.

Table A3. PRCC of model’s parameters at time t days with weak PI and weak efficiency of vaccine,
when θ = 10, µ = 0.0009, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14 as baseline.

Parameters
Range of Parameters Total Infected: I1 + I2

Min Baseline Max t = 50 Days t = 100 Days t = 200 Days

θ 5 10 15 0.45737 0.37556 0.51163 *
p 0 0.5 1 −0.041574 0.028378 0.030938

β11 0.175 0.35 0.525 −0.63334 * −0.23892 0.355
β12 0.14 0.28 0.42 −0.23979 −0.24053 −0.13989
β21 0.0875 0.175 0.2625 −0.90072 *** −0.90502 *** −0.80837 ***
β22 0.07 0.14 0.21 −0.52059 * −0.50519 * −0.30843
µ 0.00045 0.0009 0.00135 −0.031697 −0.18722 −0.15951
d1 0.0004 0.0008 0.0012 0.012078 −0.038623 0.01511
d2 0.00005 0.0001 0.00015 0.028409 0.0088495 0.047733
γ1 0.05 0.1 0.15 −0.12428 0.81303 *** 0.59284 *
γ2 0.0625 0.13 0.1925 0.48726 0.62754 * 0.48082

*: PRCC values: 0.5 to 0.69 or −0.5 to −0.69; ***: PRCC values: 0.8 to 0.99 or −0.8 to −0.99.
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Table A4. PRCC of model’s parameters at time t days with weak PI and strong efficiency of vaccine,
when θ = 10, µ = 0.0009, β11 = 0.35, β12 = 0.28, β21 = 0.035, β22 = 0.028 as baseline.

Parameters
Range of Parameters Total Infected: I1 + I2

Min Baseline Max t = 50 Days t = 100 Days t = 200 Days

θ 5 10 15 0.5751 * 0.48818 0.61256 *
p 0 0.5 1 0.052835 0.014154 0.050557

β11 0.175 0.35 0.525 −0.70943 ** −0.47854 0.44458
β12 0.14 0.28 0.42 −0.16357 −0.16371 −0.03405
β21 0.0175 0.035 0.0525 −0.84854 *** −0.90973 *** −0.85731 ***
β22 0.014 0.028 0.042 −0.17909 −0.22613 −0.14446
µ 0.00045 0.0009 0.00135 −0.40329 −0.61646 * −0.72754 **
d1 0.0004 0.0008 0.0012 −0.072168 0.04039 −0.040258
d2 0.00005 0.0001 0.00015 0.019586 −0.053637 −0.030518
γ1 0.05 0.1 0.15 −0.81298 *** 0.76378 ** 0.69479 *
γ2 0.0625 0.13 0.1925 0.20028 0.31528 0.2891

*: PRCC values: 0.5 to 0.69 or −0.5 to −0.69; **: PRCC values: 0.7 to 0.79 or −0.7 to −0.79; ***: PRCC values: 0.8
to 0.99 or −0.8 to −0.99.

Appendix C. Figures

Figure A1. Scatter plots of R0 with a strong turnover as a function of ε, ν and p. The parameters
are θ = 1000, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14, µ = 0.09, d1 = 0.0008, d2 = 0.0001,
γ1 = 0.065, γ2 = 0.13.

Figure A2. Slice planes ofR0 orthogonal to the p-axis at the values 0.2, 0.5, 0.8 with a strong turnover.
The parameters are θ = 1000, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14, µ = 0.09, d1 = 0.0008,
d2 = 0.0001, γ1 = 0.065, γ2 = 0.13.
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(a) (b)

(c)

Figure A3. Contour plots of the basic reproduction number (R0) of the model (1) with a weak turnover
as a function of: (a) vaccine coverage, p, and vaccine efficiency on the transmission, ε (fixed ν = 0.5);
(b) vaccine coverage, p, and vaccine efficiency on the ability to enhance recovery, ν (fixed ε = 0.5);
(c) vaccine efficiency on the ability of being recovered, ν, and vaccine efficiency on the transmission,
ε (fixed p = 0.5). The parameters are θ = 10, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14,
µ = 0.0009, d1 = 0.0008, d2 = 0.0001, γ1 = 0.065, γ2 = 0.13

Figure A4. Slice planes ofR0 orthogonal to the p-axis at the values 0.2, 0.5, 0.8 with a weak turnover.
The parameters are θ = 10, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14, µ = 0.0009, d1 = 0.0008,
d2 = 0.0001, γ1 = 0.065, γ2 = 0.13.

Figure A5. Scatter plots of R0 with a weak turnover as a function of ε, ν and p. The parameters
are θ = 10, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14, µ = 0.0009, d1 = 0.0008, d2 = 0.0001,
γ1 = 0.065, γ2 = 0.13.
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(a) (b)

(c)

Figure A6. Contour plot of the basic reproduction number (R0) of the model (1) with a weak
turnover as a function of vaccine coverage, p, and vaccine efficiency on the transmission, ε when:
(a) ν = ε2(convex relationship); (b) ν =

√
ε(concave relationship); (c) ν = ε(linear relationship).

The parameters are θ = 1000, β11 = 0.35, β12 = 0.28, β21 = 0.175, β22 = 0.14, µ = 0.09, p = 0.5,
d1 = 0.0008, d2 = 0.0001, γ1 = 0.065, γ2 = 0.13.
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