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Background: A hallmark signature of the tumor microenvironment in head and
neck squamous cell carcinoma (HNSCC) is abundantly infiltration of cancer-
associated fibroblasts (CAFs), which facilitate HNSCC progression. However,
some clinical trials showed targeted CAFs ended in failure, even accelerated
cancer progression. Therefore, comprehensive exploration of CAFs should
solve the shortcoming and facilitate the CAFs targeted therapies for HNSCC.

Methods: In this study, we identified two CAFs gene expression patterns and
performed the single-sample gene set enrichment analysis (ssGSEA) to quantify
the expression and construct score system. We used multi-methods to reveal the
potential mechanisms of CAFs carcinogenesis progression. Finally, we integrated
10 machine learning algorithms and 107 algorithm combinations to construct
most accurate and stable risk model. The machine learning algorithms contained
random survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise Cox,
CoxBoost, partial least squares regression for Cox (plsRcox), supervised principal
components (SuperPC), generalised boosted regression modelling (GBM), and
survival support vector machine (survival-SVM).

Results: There are two clusters present with distinct CAFs genes pattern.
Compared to the low CafS group, the high CafS group was associated with
significant immunosuppression, poor prognosis, and increased prospect of
HPV negative. Patients with high CafS also underwent the abundant
enrichment of carcinogenic signaling pathways such as angiogenesis, epithelial
mesenchymal transition, and coagulation. The MDK and NAMPT ligand–receptor
cellular crosstalk between the cancer associated fibroblasts and other cell clusters
may mechanistically cause immune escape. Moreover, the random survival forest
prognostic model that was developed from 107 machine learning algorithm
combinations could most accurately classify HNSCC patients.

Conclusion: We revealed that CAFs would cause the activation of some
carcinogenesis pathways such as angiogenesis, epithelial mesenchymal
transition, and coagulation and revealed unique possibilities to target glycolysis
pathways to enhance CAFs targeted therapy. We developed an unprecedentedly
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stable and powerful risk score for assessing the prognosis. Our study contributes to
the understanding of the CAFs microenvironment complexity in patients with head
and neck squamous cell carcinoma and serves as a basis for future in-depth CAFs
gene clinical exploration.
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Introduction

Head and Neck Squamous Cell Carcinoma (HNSCC) is an
aggressive tumor associated with poor prognosis. There are more
than 600,000 new cases are diagnosed worldwide each year (Bray
et al., 2018). A hallmark signature of the tumor microenvironment
(TME) in HNSCC is abundantly infiltration of cancer-associated
fibroblasts (CAFs), which facilitate HNSCC progression (Custódio
et al., 2020). CAFs could secrete exosomes which assist cell to-cell
communication with TME thereby remodeling extracellular matrix
(ECM) (Custódio et al., 2020). Biologically, the characteristics of cell
stromal appears to be no difference betweenHNSCC patients, suggesting
there is likely to exist a common weakness in stromal compartment
which could be potential CAFs treatment targets (Puram et al., 2017).

Previous studies revealed an immunosuppressive role of CAFs,
which could strongly induce the dysfunction of T cells and
macrophages (Thomas and Massagué, 2005; Tauriello et al., 2018).
The reason is attributable to CAFs secrete ECM components hence
developing a dense fibrotic barrier in the tumor (Drifka et al., 2016).
Benefit from bulk and single-cell RNA sequencing, A lots of new CAFs
biomarkers have been figured out. Targeted therapy for CAFs also has
made a breakthrough in hepatocellular carcinoma (Yin et al., 2019).
However, some targeted CAFs clinical trials ended in failure, even
accelerated cancers progression (Catenacci et al., 2015; Van Cutsem
et al., 2020). Therefore,more comprehensive exploration of CAFs should
solve the shortcoming and facilitate the targeted therapies in HNSCC.

Here, we collect 868 HNSCC samples from multi-dimensional
common datasets, using clustering and machine learning method to
detect the correlation between CAFs biological functions and clinical
characteristics in HNSCC. We hope to find some specific molecular
mechanisms to understand tumor progression and improve clinical
management in head and neck squamous cell carcinoma.

Methods

HNSCC dataset source and processing

We summarized 31 CAFs genes from Kürten, C. H. L. et al.
(Kürten et al., 2021) single-cell RNA sequencing research and
Chakravarthy, A.et al. (Chakravarthy et al., 2018) bulk-RNA
sequencing research. Total 868 samples from The Cancer
Genome Atlas HNSCC (TCGA-HNSC) cohort and Gene
Expression Omnibus cohort (GSE65858, GSE41613) were
involved in our study. We constructed a Combined cohort by
filtering common genes from GSE41613, GSE65858, and TCGA
cohorts. We used “combat” R software package to remove the batch
effects. The results were validated using internal and external cohort.

Construction of molecular types and score
system based on the CAFs genes

We used R package “ClassDiscovery” to distinguish CAFs genes’
expression pattern in the Combined cohort. The single-sample gene
set enrichment analysis (ssGSEA) method was used to construct
CAFs related score system CafS.

Estimation of immune infiltration

We used ssGSEAmethod and CIBERSORT algorithm (Newman
et al., 2015) to evaluated absolute abundance of multiple immune
cell populations. R package “ESTIMATE” was performed to
calculated stromal score.

Single-cell analysis

We downloaded GSE164690 single cell cohort from Gene
Expression Omnibus database. R package “Seurat” (Butler et al.,
2018) was used to analysis single cell database. We filtered
mitochondrial genes with parameter <10%. We selected highly
variable genes with parameter nfeatures = 2000. These variable
genes were used as inputs for PCA. Dims = 1:15 was used to
FindNeighbors and resolution = 0.5 were used for FindClusters.
We identified 18 primary clusters, and cluster analysis were
performed by the RunUMAP function. We found differentially
expressed genes (DEGs) for each cluster with parameters
min.pct = 0.25 & thresh.use = 0.25. We compared DEGs and
annotated CAFs (FAP, MMP11, PDGFRA, PDGFRB, ADAMTS2,
SFPR2); Endothelial cell (PLVAP, KDR, PTPRB) in clusters. “Single
R” package was used to annotate remaining clusters. MuSic
deconvolution method (Wang et al., 2019) was used to calculate
the proportion of CAFs. The CellChat method (Jin et al., 2021) was
used to analysis cellular communication.

Construction and verification of the
prognostic model

LASSO algorithm was first used to filter the candidate
prognostic CAFs genes. We then integrated 10 machine learning
algorithms and 107 algorithm combinations to construct most
accurate and stable risk model. The machine learning algorithms
contained random survival forest (RSF), elastic network (Enet),
Lasso, Ridge, stepwise Cox, CoxBoost, partial least squares
regression for Cox (plsRcox), supervised principal components
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(SuperPC), generalised boosted regression modelling (GBM), and
survival support vector machine (survival-SVM). All models were
detected in four datasets (GSE41613, GSE65858, TCGA-HNSC, and
Combined cohort). We calculated the concordance index (C-index)
across all datasets, and the model with the highest average C-index
was considered optimal. We used the optimal average C-index
model machine learning algorithm to validate the robustness of
prognostic model in the external cohort GSE42743.

Cell lines and quantitative real-time PCR
assay

HNSCC cell lines CAL-27, FaDu and normal nasopharyngeal
epithelial cell line (NP69) were obtained fromNational Collection of
Authenticated Cell Cultures. For reverse transcription, 2 μg of total
RNA was used to synthesize cDNA with a cDNA Synthesis Kit. β-
actin was used as an internal control. The PGAM1 forward sequence
of primer was 5-AAACGCAGGACAGTCTGATGC-3, and reverse
sequence of primer was 5-CCGTCTGCAGCTACAACTCA-3. The
ENO1 forward sequence of primer was 5-CGAGACCCAGTGGCT
AGAAGTT-3, and reverse sequence of primer was 5-AAGTGCCAC
CCAGAGAGGAC-3. The β-actin forward sequence of primer was
5-CATTAAGGAGAAGCTGTGCT-3, and reverse sequence of
primer was 5-GTTGAAGGTAGTTTCGTGGA-3.

Statistical analysis

All statistical analysis and bioinformatics methods used R
(V4.1.2, https://www.r-project.org/) or GraphPad Prism 9.
4 software. The correlation analysis was conducted using
Pearson method. The Wilcoxon test were performed to

compare continuous variables and ordered categorical
variables.

Data and code availability statements

All datasets used in this study are available in public database.
The codes supporting the conclusions of this article could provide by
reasonable request to corresponding author.

Result

Workflow of this study

The study of HNSCC cancer-associated fibroblasts signature
analysis is listed in Figure 1 workflow.

Enrichment analysis in 31 CAFs genes

We collected 31 CAFs genes from Kürten, C. H. L. et al. (Kürten
et al., 2021) single-cell RNA sequencing research and Chakravarthy,
A.et al. (Chakravarthy et al., 2018) RNA sequencing research. They
are GAPDH, ENO1, ITGA6, PGK1, TGFBI, ACTN1, FTH1,
KDELR2, CD82, SSR3, A2M, PHLDA1, TSC22D1, ISG15,
PRSS23, PGAM1, SFRP2, PDGFRB, CEBPB, TNFRSF12A,
MMP9, SNA12, ADAMTS2, MMP11, MMP12, COL4A6,
STEAP1, ITGAX, ADAMTS14, TLL1 and COL4A4. Some of
them have long been recognized as CAFs biomarker. For
example, CAFs marker matrix metalloproteinase 11 (MMP11)
can be delivered into gastric cancer cells to promote migration
(Xu et al., 2019). In addition, CAFs could express MMP9 to enhance

FIGURE 1
Workflow. The workflow of HNSCC cancer-associated fibroblasts signature analysis.
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proangiogenic phenotype thereby facilitating cancer cell invasion
ability in HNSCC (Li et al., 2022). We used “clusterProfiler” R
package (Yu et al., 2012) to plot enrichment landscape(Figures
2A–D). Gene Ontology (GO) analysis revealed 31 CAFs genes
were mainly enriched in functions such as endopeptidase activity,
extracellular matrix organization and collagen-containing
extracellular matrix. Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis revealed 31 CAFs genes functions were mainly
involved in pathway of focal adhesion. These enrichment function
results indicated CAFs genes could play a cellular barrier role in
medicine effects by regulating extracellular matrix (Lin et al., 2022).

Clustering analysis identified two CAFs
patterns

We collected a total of 868 head and neck squamous cell
carcinoma samples from TCGA and GEO cohorts to conjoint
analysis, the tabular format of clinical sample information
covered by this study, which are presented in Supplementary
Figures S1A–C. We used “combat” software package to avoid the
batch effects, the gene expression profile of each cohort is
dispersive (Figure 3A), after elimination of the batch effects,
the profile was agminated (Figure 3B). We identified two

different CAFs patterns using R package “ClassDiscovery”
and labeled as C1 and C2. We plotted a heat map which
showed 31 CAFs genes was differential expression in Clust-
C1 and Clust-C2 (Figure 3C). Then, after removing unreliable
and incomplete clinical data, we analyzed survival prognosis
between these two subtypes. The C1 cluster presented
particularly survival disadvantage, conversely, the C2 cluster
showed exceedingly survival benefit (log-rank, p = 0.018;
Figure 3D). Similarly, this modification pattern also was
observed in the external cohort of GSE42743, clustering
analysis identified two similar CAFs related subtypes
reminiscent of those observed in the previous combined
cohort (Figure 3E). Clust_C1 also exhibits shorter survival
than Clust_C2 (log rank p = 0.034, Figure 3F). These results
suggested there might exist two CAFs related subtypes which
could classify HNSCC patients’ survival time.

Construct a score system CafS to evaluate
31 CAFs genes expression and classify
HNSCC clinical characteristics

To further explored 31 CAFs genes expression functions in
head and neck squamous cell carcinoma, we used the single-

FIGURE 2
Enrichment analysis in 31 CAFs genes (A)MF function analysis for 31 CAFs genes. (B) BP function analysis for 31 CAFs genes. (C) CC function analysis
for 31 CAFs genes. (D) KEGG pathway analysis for 31 CAFs genes.
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FIGURE 3
Clustering analysis identified twoCAFs patterns. (A) Principal component analysis (PCA) showed the gene expression profile in the combined cohort,
before elimination of the batch effects. (B) Principal component analysis (PCA) showed the gene expression profile in the combined cohort after
elimination of the batch effects. (C) The heatmap displays the differential expression between the two groups of the 31 cancer associated fibroblasts
(CAFs) genes, C1 cluster, C2 cluster, “1” means dead, “0” means alive, “fustat” means survival status. (D) The Kaplan-Meier plot displays significant
differences survival rate among the two kinds of CAFs phenotypes in the Combined cohorts. C1 was worse than C2 (log rank p = 0.018), unit of Time
(years). (E) The heatmap displays the differential expression between the two groups of the 31 cancer associated fibroblasts (CAFs) genes in the external
cohort GSE42743. (F) The Kaplan-Meier plot displays the same trend of significant differences survival rate among the two kinds of CAFs phenotypes in
the external cohort GSE42743 (log rank p = 0.034).
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FIGURE 4
Construct a score system named CafS to evaluate 31 CAFs genes
expression and classify HNSCC clinical characteristics (A) CafS in the
groups of C1 and C2; combined database; p < 2.2e-16. (B–F) The
Kaplan-Meier plot displays significant differences of survival time
among the high-CafS and low-CafS groups in the Combined, TCGA,
GSE65858, GSE41613, andGSE42743 cohort, respectively. High group
was worse than low group, log rank p = 0.013, 0.036, 0.049, 0.00028,
0.0072. (G)CafS in TCGA cohort among the group of HPV positive and
HPV negative, p = 6e-10. (H) CafS in GSE65858 cohort among the
group of HPV positive and HPV negative, p = 0.002. (I–L) CafS in
TCGA, GSE65858, GSE41613, and external cohort GSE42743; among
the group of stages; respectively, (p = 0.101, 0.194, 0.451, 0.483).

FIGURE 5
CafS changes the tumor immune microenvironment and is
related to tumor associated macrophage (TAM) (A) Enrichment of
28 immune cell types infiltrating in the groups of CafS; combined
database; the asterisk represents the different p values (* <0.05;
** <0.01; *** <0.001, **** <0.0001). (B) Boxplot of 24 immune cell
types infiltrating by CIBERSORT algorithm in the groups of CafS;
combined database; the asterisk represents the different p values
(* <0.05; ** <0.01; *** <0.001, **** <0.0001). (C) Five genes’
expression of tumor associated macrophage (TAM) in the groups of
CafS; the asterisk represents the different p values (* <0.05; ** <0.01;
*** <0.001, **** <0.0001). (D–H)Correlation betweenCafS and CCL2,
CLEC7A, CSF1, CSF1R and PDGFB (CafS and CCL2: r = 0.28, p = 1.44e-
16; CafS and CLEC7A: r = 0.19, p = 1.69e-08; CafS and CSF1: r = 0.28,
p = 4.14e-17; CafS and CSF1R: r = 0.33, p = 3.1e-23; CafS and PDGFB:
r = 0.61, p = 1.28e-88).
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sample gene set enrichment analysis (ssGSEA) method to
construct a score system CafS which represented the
quantification of these 31 CAFs genes. We found CafS in
C1 cluster was significantly higher than C2 (t-test, p < 2.22e-16;
Figure 4A). According the CafS, we divided survival cohort
samples into high and low group by the optimal cut-off value,
we found CafS was a prognostic factor (log-rank, p = 0.013;
Figure 4B). In the internal TCGA, GSE41613 and
GSE65858 cohorts, high CafS indicated worse survival (log-
rank, p = 0.036; p = 0.00028; p = 0.049; respectively, Figures
4C–E). In the external cohort, high CafS also predicted bad
outcoming (Figure 4F). These results proved poor prognosis for
patients with high CafS. Ang, K. K. et al. (Ang et al., 2010) found
there was significant survival advantages in HNSCC patients with
HPV (+) comparing to HPV (-). In our study, we found that the
CafS level in the HPV (-) group was significantly higher than that
in the HPV (+) group (p = 6e-10; p = 0.002; Figures 4G, H). We
subsequently investigated the tumor mutation burden (TMB) in
the groups C1 and C2 from TCGA database, but no statistically
significant difference was found between them (p = 0.22,
Supplementary Figures S2A, B).Tobacco use may contribute to
the distribution of CafS, but we did not observe a significant
difference between the smoking and non-smoking groups
(TCGA, p = 0.76, GSE65858, p = 0.84, Supplementary Figures
S3A, B). Moreover, we evaluated the CafS levels across all stages of
head and neck squamous cell carcinoma (HNSCC), the results
showed no statistical difference in CafS among different HNSCC
stages (Figures 4I–L, p = 0.101, 0.194, 0.451, 0.483).

High CafS changes the tumor immune
microenvironment and is related to tumor
associated macrophage (TAM)

We explored the relevence between the immune cell
infiltration and CafS in the groups of C1 and C2. According
to Bindea, G. et al. (Bindea et al., 2013) study, we calculated
28 immune cells value by the method of ssGSEA. Our results
showed the proportion of activated CD4 T cell and activated
CD8 T cell were significantly higher in the C2 cluster, on the
contrary, the related macrophages infiltration was exceedingly
higher in the C1 cluster (Figure 5A). We used CIBERSORT
algorithm (Newman et al., 2015) to further detect the
differential immune infiltration in the clusters C1 and C2.
The results showed the expression of activated CD4 T cell
and CD8 T cell were higher but macrophages (including M0,
M1 and M2 status) were lower in C2 (Figure 5B). It reflected
that high CafS may prevent immune cell cytotoxic effects but
promote immune cell inflammatory effects in head and neck
squamous cell carcinoma. M2 status macrophage often referred
as tumor associated macrophage (TAM) which promote tumor
growth, invasion, and metastasis (Ovais et al., 2019). So, we
collected TAM markers from previous studies
(Ngambenjawong et al., 2017; Jiang et al., 2022), they are
CCL2, CLE7A, CSF1, CSF1R and PDGFB. We detected these
TAM markers expression in the combined cohort, found all of
them were significantly higher expression in high CafS group
(Figure 4C). The correlation plots showed CafS was significantly

positive correlated with these five TAM markers in combined
database (CCL2: r = 0.28, p = 1.44e-16; CLEC7A: r = 0.19, p =
1.69e-08; CSF1: r = 0.28, p = 4.14e-17; CSF1R: r = 0.33, p = 3.1e-
23; PDGFB: r = 0.61, p = 1.28e-88; respectively, Figures 5D–H).

FIGURE 6
CafS changes hallmark signaling pathway and promotes the
ability of tumor invasion (A) Complex-heatmap display the landscape
in the combined cohort; the panel display the expression of hallmark
signaling pathway involved in different CafS group; Proliferation,
Invasion, Immune, Metabolism, Mutation and DNA represented six
different pathway modules which arrange from the top down in
complex-heatmap and they are labeled at the bottom of it;
C1 represented high Cafs group and C2 represented low Cafs group;
“fustat” means survival status, “1” means dead, “0” means alive. (B–F)
Correlation between CafS and EMT, coagulation, angiogenesis,
hypoxia, and uv-response-down pathway (CafS and EMT: r = 0.87, p =
1.77e-268; CafS and Coagulation: r = 0.82, p = 7.12e-209; CafS and
Angiogenesis: r = 0.82, p = 3.19e-215; CafS and Hypoxia: r = 0.53, p =
1.09e-63; CafS and Uv-response-down: r = 0.60, p = 1.24e-86). (G)
StromalScore in the groups of CafS; combined database; p= 1.61e-36.
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CafS changes hallmark signaling pathway
and promotes the ability of tumor invasion

We used GSVA method to analysis the characteristics of the
associated signaling pathways in different CafS subtypes. The
hallmark signaling pathway gene set was download from The
Molecular Signatures Database (Liberzon et al., 2015) (MSigDB,
https://www.gsea-msigdb.org/). We found high CafS in C1 had a
remarkable enrichment in tumor invasion-related pathways such as
angiogenesis, epithelial mesenchymal transition, and coagulation. In
addition, we found there were different enrichments in pathways
including tumor proliferation-related, tumor immune-related,
tumor metabolism-related, tumor mutation-related, and tumor
DNA damage-related (Figure 6A). We explored the relationship
between CafS and tumor invasion-related pathways to further
understand the mechanism of tumor process, we found CafS was
significantly positive correlated with these tumor invasion-related,
DNA damage-related and metabolism-related signaling pathways
(EMT: r = 0.87, p = 1.77e-268; Coagulation: r = 0.82, p = 7.12e-209;
Angiogenesis: r = 0.82, p = 3.19e-215; Hypoxia: r = 0.53, p = 1.09e-
63; Uv-response-down: r = 0.60, p = 1.24e-86; respectively; Figures
6B–F). Fibroblasts contributed to a dominant component of the
tumor stroma (Kalluri and Zeisberg, 2006), so, we used
“ESTIMATE” R package to quantify the scores of stromal: the
“StromalScore”. We found the StromalScore is profoundly higher
in C1 than C2 group (Figure 6G).

Verification of CAFs characteristics in single-
cell RNA sequencing database

We used R package “Seurat” (Butler et al., 2018) to analysis
HNSCC single cell database. We selected CD45 negative as tumor
and non-immune stromal cells to elucidate the heterogeneity of head
and neck squamous. After quality control and filtering, we identified
10,244 cells from five head and neck squamous cell patients. We
distinguished 18 distinct clusters based on a resolution value 0.5

FIGURE 7
Verification of CafS clinical characteristic and biological function
in single-cell RNA sequencing database (A) UMAP plot of selected
10244 single cells in tumor and non-immune stromal cells
(CD45 negative). Different colors represent different cell types.
(B) UMAP plot showed the expression of endothelial cell and cancer
associated fibroblasts cell. (C)UAMP plot of selected 10244 single cells
in tumor and non-immune stromal cells (CD45 negative). 18 cell
clusters were divided into 12 cell types. (D) The Kaplan-Meier plot
displays significant differences of survival time among the high-CAFs
proportion and low-CAFs proportion in TCGA cohorts. Deconvolution

(Continued )

FIGURE 7 (Continued)
method. High proportion group had worse overall time than low.
(E) Display of the landscape of signaling pathways in different cell
clusters; the panel display the hallmark signaling pathway involved in
different cell clusters; Cluster (red module represent CAFs cell
type), p-value and Direction of up or down are labeled at the right of
plot; RRA represent significance. (F) Display of the landscape of gene
set up-regulation or down-regulation in different cell clusters; Cluster
(red module represent CAFs gene set), Method and Significance are
labeled at the right of plot. (G) The differential cell–cell cellular
communication shows CAFs weight coefficient between all cell types.
(H) The heatmap of cell–cell cellular communication shows the
counts of CAFs between all cell types. (I) Communication network of
the significant ligand-receptor pairs between CAFs and other cell
types, which contribute to the signaling from CAFs to Naive B cell,
Endothelial Cell, Epithelial cell, Monocyte cell, NK cell, CD4+ T cell and
Tissue stem cell subpopulations. Dot color reflects communication
probabilities and dot size represents computed p-values. Empty space
means the communication probability is zero. p-values are computed
from one-sided permutation test. (J) SDC1, SDC2, NCL, LRP1 in the
groups of Combined cohorts; p = 2.47e-06; p = 1.03e-22; p = 0.002;
p = 5e-12. (K) ITGA5 and ITGB1 in the groups of combined cohorts; p=
2.88e-85; p = 2.78e-45.
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(Figure 7A). We labeled cell types as endothelial cell (Endothelial,
gene expression of PLVAP, KDR, PTPRB) and cancer associated
fibroblasts cell (CAFs, gene expression of FAP, MMP11, PDGFRB,
SFRP2, PDGFRA, ADAMTS2; Figure 7B). In addition to endothelial
and cancer associated fibroblasts cell types classified above, we used
“Single R” package to identify several other distinct clusters, they
were b-cell Naïve, epithelial-cells bladder, epithelial-cells bronchial,
monocyte, monocyte:CD14+, monocyte:CD16+, NK cell, CD4+

central memory T cell, CD4+ central effector T cell and tissue-
stem-cells:BM_MSC:BMP2 (Figure 7C). To further understand the
characteristics for the CAFs, we performed a deconvolution method
(Wang et al., 2019) to calculate the bulk tissue proportion of CAFs in
TCGA cohort with this single cell RNA sequencing database
reference (Supplementary Table S1). Combining clinical data of
TCGA-HNSC, we found higher CAFs proportion indicated
significant poorer prognosis for head and neck squamous cell
carcinoma (log rank p = 0.0029, Figure 7D). This result validated
the high CAFs proportion may be identical to the high CafS as a
prognostic indicator in HNSCC.

We next used irGSEA (https://github.com/chuiqin/irGSEA)
package to analysis the associated signaling pathways in different
cell clusters and focused more on CAFs type. The results exhibited
CAFs cluster had a remarkable up-enrichment in tumor
progression-related pathways such as angiogenesis, epithelial
mesenchymal transition, coagulation, hypoxia and uv-response-
down (Figure 7E), which were observed as the same to high CafS
in group C1 (Figure 6A). We also detected CAFs cluster gene set
expression, undoubtedly, CAFs cluster gene set was up-regulation
(Figure 7F). These results illustrated up-regulation of CAFs genes
could play a precondition role in activating specific signaling
pathways such as angiogenesis, epithelial mesenchymal transition,
coagulation, hypoxia, and uv-response-down, etc. This alternation
influenced the tumor microenvironment and leaded to poorer
prognosis in head and neck squamous cell carcinoma patients.

To further detect the enrichment of CAFs populations in
HNSCC cells, we hypothesized that those CAFs populations
might be functionally distinct across other different cell type. We
hence performed the ligand–receptor-based cell-cell cellular cross-
talk analysis (Jin et al., 2021). The plot showed the different weight
coefficient distribution and counts frequency of CAFs to others
cellular cross-talk (Figures 7G–H). These results suggested that
HNSCC CAFs cells could preferentially reprogram and induce
their specific functional status-likely explained by the specificity
between genes’ differential expression, which could directly impact
TME. We used the same method (Jin et al., 2021) to distinguish the
signaling of ligand–receptor interactions network in HNSCC cells.

FIGURE 8
Construction and verification to the CAFs risk prediction model
using machine learning methods (A) LASSO coefficient profiles of
31 cancer associated fibroblasts marker genes in Combined cohort.
(B) 1000-time cross-validation for tuning parameter selection in
the LASSO model; Combined cohort. (C) A total of 107 kinds of
prediction models via machine learning and further calculated the
C-index of each model across training and all validation cohorts.
(D–H) Kaplan–Meier curves of overall survival according to the
median risk score in Combined, TCGA-HNSC, GSE41613, GSE65858,
and GSE42743 external validation cohorts. All log-rank p < 0.0001.

(Continued )

FIGURE 8 (Continued)
(I–M) Time-ROC value in Combined, TCGA-HNSC, GSE41613,
GSE65858, and GSE42743 external validation cohorts. (I) Combined,
AUC one-three-five years = 0.93, 0.99, 0.97. (J) TCGA-HNSC, AUC
one-three-five years = 0.97, 0.98, 0.96. (K) GSE41613, AUC one-
three-five years = 0.96, 0.97, 0.94. (L) GSE65858, AUC one-three
years = 0.98. (M) GSE42743, AUC one-three-five years = 0.95, 0.91,
0.96. (N–R) Multivariate Cox regression of risk score regarding to OS
in the Combined, TCGA-HNSC, GSE41613, GSE65858 and GSE42743.
Statistic tests: two-sided Wald test. Data are presented as hazard ratio
(HR) ± 95% confidence interval [CI].
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We identified MDK and Nicotinamide phosphoribosyl transferase
(NAMPT) ligand–receptor pairs contributing to the most
communication from CAFs to each HNSCC cell type (Figure 7I).
In combined bulk cohort, we further vitrificated high expression of
these related ligand–receptor genes in high CafS group (Figures
7J–K). Therefore, these ligand–receptor pairs specifically enriched in
HNSCC TME maybe provide a clue for targeted therapy.

Construction and verification to the CAFs
risk prediction model using machine
learning methods

Several studies have proved that CAFs genes were biomarker for
prognostic in many types of cancer (Wen et al., 2019; Li et al., 2021a;
Shelton et al., 2021). So, we used the Lasso algorithm to filter the
most candidate prognostic CAFs genes from the classification model
(Figures 8A, B). Considering the convenience for the future clinical
testing, we selected 9 CAFs genes (including ENO1, TSC22D1,
ISG15, PGAM1, SFEP2, PDGFRB, ITGAX, ADAMTS14 and
TLL1) and CafS to construct risk model. We set TCGA-HNSC
database as training cohort; the combined cohort, GSE65858, and
GSE41613 cohorts as validation datasets. GSE42743 cohort was used
to external verification. In TCGA-HNSC cohort, we first fitted
107 kinds of prediction models via the 10 machine learning
algorithms and further calculated the C-index value of each
model across all validation datasets (Figure 8C). Interestingly, the
optimal training model with the highest C-index value (0.95) was
designed by random survival forest (RSF) algorithm, and this model
also present highest average C-index value (0.61) in all validation
cohorts (Figure 8C). Next, a risk score for each patient was
calculated using the “predict” function in this RSF model,
according to their median risk score, all patients were divided
into high- and low-risk groups. The Kaplan–Meier curve showed
patients in the high-risk group had significantly dismal overall
survival (OS) compared to the low-risk group in the TCGA-
HNSC training dataset and four validation datasets (Figures
8D–G, all log rank p < 0.0001). The trend of this finding was
validated in the external cohort GSE42743 using the same method
(Figure 8H, log rank p < 0.0001). Time receiver operating
characteristic (ROC) method was applied to verify the sensitivity
and specificity to the risk model. As we had expected, the results
demonstrated that all datasets had remarkably delight Time-ROC
values (combined, AUC one-three-five years = 0.93, 0.99, 0.97;
TCGA-HNSC, AUC one-three-five years = 0.97, 0.98, 0.96;
GSE41613, AUC one-three-five years = 0.96, 0.97, 0.94;
GSE65858, AUC one-three years = 0.98; GSE42743, AUC one-
three-five years = 0.95, 0.91, 0.96; Figures 8I–M). Those results

FIGURE 9
Relationship between CafS classification pattern and CAFs risk
score model (A, B) The correlation between CafS and risk score in the
combined and external cohort GSE42743; Combined, r = 0.14, p =
3.1e-05; GSE42743, r = 0.5, p = 7e-06. (C–F)CafS in the high and
low risk groups in the combined, TCGA-HNSC, GSE41613 and
GSE42743 cohort p = 0.025, 0.012, 2.57e-06, 0.007, respectively.
(G–J) Kaplan–Meier curves of overall survival according to themedian
of ENO1 and PGAM1 expression in the Combined and
GSE42743 external validation cohorts. Combined, ENO1 and PGAM1,
log-rank p = 0.015, 0.035, respectively. GSE42743, ENO1 and PGAM1,

(Continued )

FIGURE 9 (Continued)
log-rank p = 0.0063, 0.015, respectively. (K–N) ENO1, PGAM1,
HK2, PFKP, BPGM, PGK1 and CafS expression in the CafS classification
model and risk score model; Combined and external
GSE42743 cohorts; the asterisk represents the different p values
(* <0.05; ** <0.01; *** <0.001, **** <0.0001). (O–R)
Immunohistochemical of PGMA1 and ENO1 in thematched tumor and
normal side.
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indicated this CAFs related risk model had considerably predictive
significance. Multivariate Cox regression demonstrated that risk
score remained statistically significant (all p-value < 0.05) in all
cohorts after adjusting for available clinical traits, such as age (less
than 60 vs. be equal or greater than 60); gender (Female vs. Male);
stage and HPV status, the results suggested that risk score is an
independent predict factor for overall survival (Figures 8N–R).

Relationship between CafS classification
pattern and CAFs risk score model

As the results showed above: the high CafS and CAFs related
high-risk score both indicate worse survival, we assumed that
those HNSCC populations with high-risk score seem to combine
with high CafS. Hence, we generated a correlation map which
showed CafS was significantly positive correlated with the risk
score in the combined and external validation cohort (r = 0.19; p =
3.1e-05; r = 0.5, p = 7e-06; Figures 9A, B). We further calculated
the CafS in the groups of risk model and found that the model risk
score might fit CafS distribution in the combined and validation
cohorts (combined, p = 0.025; TCGA-HNSC, p = 0.012;
GSE41613, p = 2.75e-06; GSE42743, p = 0.007; Figures 9C–F).
These results confirmed our hypothesis that there is a certain
degree of interaction between CafS and risk score thereby
bringing dark survival to HNSCC patients. In the Multivariate
Cox regression model, we found ENO1 and PGAM1were
glycolysis enzyme markers (Huang et al., 2022a; Yang et al.,
2022) may contribute to bad outcomes. According to the gene
median expression, the ENO1 and PGAM1 were significant
predictors in both combined and validation cohorts
(combined, ENO1, log-rank p = 0.015, PGAM1, log-rank p =
0.035; GSE42743, ENO1, log-rank p = 0.0063, PGAM1, log-rank
p = 0.015; Figures 9G–J). As the results described above, we infer
that high CafS and risk score could induce glycolysis
reprograming, we hence collected other four crucial glycolysis
enzyme biomarkers from previous study (Warmoes and Locasale,
2014), they are BPGM, HK2, PFKP and PGK1. In the CafS
classification model, the results showed these genes’ expression
presented higher in the group of C1 (Figures 9K, L). In the risk
model, glycolysis enzyme marker genes expression also was
observed increased trend in the combined cohort, but not all
were observed high expression in the GSE42743 external
validation cohort, possibly due to the sample size (Figures 9M,
N). Based on matched tumor and normal tissues from the patients
in Human Protein Atlas, we found both PGAM1 and ENO1 were
up-regulation in tumor side (Figures 9O–R). The qPCR assay also
validated that PGAM1 and ENO1 were over expression in
HNSCC cell lines compare to nasopharyngeal epithelial cell
line (Supplementary Figures S4A–D). Hence, the above results
provide us a clue for targeted glycolysis reprograming therapy
might make breakthroughs in CAFs treatment.

Discussion

At present, a lot of studies only use TCGA or single GSE cohort as
data sources to analysis malignant tumor, which are short of sample

size and beyond to the accuracy and effectiveness for medical
practice. In our study, we collected 868 cases to explore the
molecular actions of CAFs in head and neck squamous cell
carcinoma. We constructed a robust CAFs related classification
and score system using 31 CAFs marker genes, which could
effectively predict the prognosis of the HNSCC patients. We
found there were remarkable discrepancy in clinical and biological
characteristics such as HPV status and TAMs among different CafS
clusters. HPV-negative head and neck tumors patients was
confirmed with terrible prognoses (Johnson et al., 2020). In our
study, high CafS patient was more likely to be HPV-negative,
indicated that CafS could exert adverse impact on clinical
outcomes. Tumor associated macrophages marker genes
played a crucial role in tumor process, for example, high
expression CCL2 in macrophages could promote HNSCC
invasion and metastasis (Ling et al., 2022). CLEC7A also
called Dectin1, Daley, D. et al. (Daley et al., 2017) found it
activated macrophages and promotes pancreatic ductal
adenocarcinoma progression. CSF1/CSF1R signaling axis had
been proved induced macrophages to M2 polarization and
promoted tumor growth and lung metastasis (Fujiwara et al.,
2021). PDGFB as a platelet activation factor for promoting tumor
metastasis by recruitment of TAMs (Yang et al., 2016). In our
study, we showed these five TAMs markers not only were
exceedingly high expression in C1 group but closely associated
with CafS, these results illustrated high CafS was associated with
abundant M2 macrophages enrichment and provided us an
expanded knowledge for the CAFs genes’ role in the tumor
microenvironment.

Analysis for the associated signaling pathways in different
CafS groups revealed interesting findings. First, high CafS
represented extensively activation in pathways such as
angiogenesis, epithelial mesenchymal transition, and
coagulation, all these pathways enhanced tumor cell
malignancy (Nash et al., 2001; Zhang et al., 2021a; Huinen
et al., 2021). UV-response-down pathway was a process that
organism undergo UV-B or UV-A radiation may generate
genomic mutations and instability leading to tumorigenesis
(Tan et al., 2019). In this study, we found uv-response-down
was up-regulation in C1 group, it broadened our horizons of
CAFs carcinogenesis. Hypoxia pathway could activate multiple
genes’ expression which participate in iron metabolism, glucose
transport, cell proliferation thereby resulting in poor prognosis of
treatment (Nordgren and Tavassoli, 2011). Our result showed
high CafS aggravate head and neck squamous cell carcinoma
hypoxic condition and displayed a remarkable correlation
between these five tumor-related signaling pathways and CafS,
which enhanced our comprehension for CAFs promoting
HNSCC proliferation and metastasis. In addition, high CafS
was characterized by leading stromal score, hence are more
likely to lead to tumor capped by extracellular matrix and
induce immunosuppression (Buchheit et al., 2014).

Single cell RNA sequencing revealed head and neck squamous
cell complexity and heterogeneity. We identified CAFs clusters and
other 11 distinct cell types. Similar to the bulk tissue sequencing
results, our results validated CAFs population possess the
characteristics of strong cancer-promoting signatures, it indicated
angiogenesis, epithelial mesenchymal transition, coagulation, uv-
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response-down and hypoxia pathways were up-regulated in this cell
cluster. The up regulation of CAFs gene set profile contribute to the
activation of these related signaling pathways. Moreover, the
deconvolution result showed high CAFs proportion, just like high
Cafs, robustly correlated with poor survival in TCGA cohort,
suggesting a prospective adoption to CAFs biomarkers for
HNSCC treatment.

Comprehensive investigations of intercellular
communications are essential for understanding interactions
and spatial proximity between CAFs and other cell types.
Midkine (MDK) belong to a group of heparin-binding growth
factors that has been shown to have pleiotropic functions in
various biological processes during development and disease
(Cui and Lwigale, 2019). It has been reported to overlap with
the expression of SCD1 and LRP1 and promote epidermal growth
factor receptor (EGFR) signaling by interacting with surface
nucleolin (NCL) in hypoxic condition (Cui and Lwigale, 2019;
Kinoshita et al., 2020). In addition, overexpression of SDC1 and
SDC2 were associated with more aggressive in prostate cancer
and MDK-LRP1 will induce the differentiation of
immunosuppressive macrophages (Zhang et al., 2021b; Santos
et al., 2021). In our study, we first identified those MDK related
ligand-receptor pairs as the dominant signaling facilitate to the
cellular cross-talk between CAFs and other cell types. We further
contextualize this finding in our combined bulk cohort, thus
those ligand-receptor analysis of the putative interactions
displayed here can be pursued further to better understand the
ecosystem cultivated by intercellular communication in the
HNSCC tumor microenvironment. Nicotinamide
phosphoribosyl transferase (NAMPT) played a crucial role in
cancer cell metabolism, often overexpressed in tumor tissues and
was an effective target for antitumor treatments (Garten et al.,
2015). NAMPT inhibitor was proved to effectively repress cell
growth in head and neck squamous cell carcinoma (Cai et al.,
2022). In our study, we revealed the extensive enrichment of
NAMPT ligand-receptor pair (ITGA5, ITGB1) communication,
we also found ITGA5 and ITGB1 were overexpressed in high
CafS group, thus providing an explanation for the complex pro
tumorigenic mechanism of CAFs.

With the expression profiles of these CAFs genes, we developed
an integrative pipeline to construct a predictive model according to
the CafS classifier. We first used Lasso algorithm to screen the
contents of model container. In total, 9 CAFs related genes and
107 kinds of models were fitted to the training datasets via machine
learning. Further validation in independent cohorts revealed that the
optimal model was random survival forest (RSF). In contrast to the
former studies, the advantage of this model with consensus
performance on the prognosis of HNSCC is based on a variety of
machine learning algorithms and their combinations, which further
make this model more convincing to accurate prognosis. TIME-
ROC curve suggested that risk score calculated by this model
maintained the high precision and high stable performance in all
datasets, which indicated great potential for the future clinical
application using this risk score. In addition, compared to the
conventional tools such as age, gender, stage and HPV status for
evaluating clinical outcomes, the risk score signature worked
independently of these factors and had significantly superior
efficiency in predicting prognosis in training and validation

cohorts. We also reviewed previous published HNSCC-related
risk models which including different genes’ combination (Liu
et al., 2020; Li et al., 2021b; He et al., 2021; Wang et al., 2022a;
Huang et al., 2022b; Wang et al., 2022b; Chen et al., 2022; Chi et al.,
2022; Du et al., 2022; Han et al., 2022; Peng et al., 2022), among
these, none of them presented better AUC value performance than
our model. Therefore, our risk score signature could be a promising
surrogate for evaluating the prognosis of HNSCC in clinical practice.

Combining the Multivariate Cox regression model and
Kaplan–Meier curve, the result revealed glycolysis enzyme
biomarkers ENO1 and PGAM1 might be important predictors of
overall survival in HNSCC. They have been verified to promote
cancer cell proliferation and progression (Ishikawa et al., 2014; Qiao
et al., 2021). Another study proved CAFs could secrete cytokines and
chemokines thus triggering mobilization of glycogen in cancer cells
and induce glycolysis reprograming, this CAFs-mediated glycolysis
reprograming then results in the invasion and metastasis enhanced
in ovarian cancer (Curtis et al., 2019). In our study, we found
ENO1 and PGAM1 both were up-regulation in C1 and high-risk
score group. In addition, the same trend was observed in the other
four glycolysis enzyme markers, and we validate ENO1 and
PGAM1 were overexpression in matched tumor part compared
to normal side. Hence, we suggested CAFs could dominate the
tumor metabolism microenvironment by inducing glycolysis
reprograming in head and neck squamous cell carcinoma. To
this end, glycolysis inhibitors present a hopeful method to
improve CAFs targeted therapeutic strategy.

Although these promising findings were detected in this study, we
acknowledge some limitations. For example, we should verify our
results using fresh tumor samples, further biological experiment,
including cell and molecular assays need to validate the findings of
this study. In addition, we conducted a retrospective study, and future
validation should be performed in a prospective multicenter cohort.

In conclusion, we constructed a classification system to
distinguish the CAFs-related subtype in head and neck squamous
cell carcinoma. We observed the potential mechanism of
carcinogenesis to CAFs genes and revealed unique possibilities to
target glycolysis pathways to enhance CAFs targeted therapy. We
developed an unprecedentedly stable and powerful risk score for
assessing the prognosis. Our study contributes to the understanding
of the CAFs microenvironment complexity in patients with head
and neck squamous cell carcinoma and serves as a basis for future
in-depth CAFs gene clinical exploration.
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(A–C) The tabular formats of clinical sample information of TCGA, GSE65858
and GSE41613 cohorts.

SUPPLEMENTARY FIGURE S2
(A) The tumor mutation waterfall plot. (B) Tumor mutation burden (TMB) in
the groups C1 and C2 from TCGA database, p = 0.22.

SUPPLEMENTARY FIGURE S3
(A–B) CafS distribution in the smoking and no smoking groups; TCGA (p =
0.76) and GSE65858 (p = 0.84).

SUPPLEMENTARY FIGURE S4
(A–D) PGAM1 and ENO1 expression in normal nasopharyngeal epithelial cell
line (NP69) and HNSCC cell lines (CAL-27 and FaDu), quantitative real-time
PCR assay, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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