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Conditional logistic regression (CLR) is the indisputable standard method for
the analysis of matched case-control studies. However, CLR is strongly restricted
with respect to the inclusion of non-linear effects and interactions of confound-
ing variables. A novel tree-based modeling method is proposed which accounts
for this issue and provides a flexible framework allowing for a more complex
confounding structure. The proposed machine learning model is fitted within
the framework of CLR and, therefore, allows to account for the matched strata
in the data. A simulation study demonstrates the efficacy of the method. Fur-
thermore, for illustration the method is applied to a matched case-control study
on cervical cancer.
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1 INTRODUCTION

Case-control studies are a popular tool to determine risk factors for specific diseases, especially if the disease is rare in
the population of interest because it guarantees for a sufficient number of cases in the study. Another popular field of
application is the case of disease outbreak investigation. In case-control studies, researchers select a group of cases and
a group of controls, which are known to be free of the respective disease. Cases and controls are compared with respect
to an exposure, which is usually collected retrospectively. Often, the analysis of a case-control study requires adjustment
for potential confounders because the respective exposure was not assigned randomly. A well-known problem is that
confounders may be very unbalanced between cases and controls if no restrictions were used for the selection of the
controls. For example, for many types of cancer the average age of cases will be higher than in a randomly chosen control
group. Also, younger people seem to be more willing to participate in biomedical research.1

Therefore, matched case-control studies are frequently used to guarantee balance with respect to important con-
founders.2 In individual matching, each case is matched directly to a certain amount of controls specifically selected for
this case. Among others, age and sex are popular matching factors. Controls can be recruited from different sources,
including neighborhood/community, family, hospital/clinic.3 These controls might share environmental and societal
exposures with cases, thus one automatically accounts for potential confounders simultaneously that are difficult to
measure on an individual level. Examples are regional or geographic differences, social status or environmental factors.4
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There is an ongoing debate about common misconceptions regarding the benefit of matching itself and whether
matched data always require a data analysis that accounts for the matching structure.2,5 The aforementioned publications
agree that matching can increase the efficiency by increasing the precision of the estimation of the exposure effect because
cases and controls are well balanced with respect to potential confounders. However, matching can also have an adverse
effect, namely to create selection bias. Selection bias, which can be removed by adjusting for the matching variables, is
caused by the fact that matching makes cases and controls more similar, not only with respect to potential confounders
but also with respect to the exposure. In an extreme scenario, all cases match their controls also with respect to the expo-
sure of interest purporting the absence of an effect of the exposure. This is in contrast to the common misconception that
matching on certain factors allows to ignore these factors in data analysis.5

Another strongly related and important question is whether the matching structure has to be considered in the statis-
tical analysis. Commonly, this leads to the question whether conditional logistic regression (CLR), originally proposed by
Breslow et al,6 or unconditional logistic regression (ULR) is more appropriate.7,8 Following the argumentation of Pearce,5
matched case-control data do not necessarily have to be analyzed in a “matched analysis.” Especially in cases of so-called
“loose-matching,” where matching is performed on only few rather unspecific factors like gender and age, it can be suffi-
cient to account for these confounders as covariates while using ULR. However, if matching is performed on many factors
or factors with a large number of possible values (eg, neighborhood), the matching should be accounted for in the statisti-
cal analysis. In these circumstances, CLR is the preferable choice because compared to ULR it helps to avoid the so-called
sparse data problem.9,10 In general, the sparse data problem occurs if for any statistical model an increasing number of
observations is accompanied by an increase in the number of parameters, leading to inconsistent estimators. In matched
case-control studies, it particularly occurs if matching is performed on many different factors or on factors with many
possible values (eg, neighborhood), which would require a large number of adjustment parameters to be estimated in
ULR. CLR can avoid this problem by conditioning on the respective strata and, thereby, eliminating the large number of
parameters from the likelihood. CLR makes it unnecessary to account for exactly matched factors, while interval-matched
factors still should be accounted for (see also Section 3.3). Furthermore, Wan et al8 demonstrated that ULR is very
sensitive to misspecifications of the functional form of the matched factors while CLR is much more robust. Therefore,
even if a “matched” statistical analysis may not be required for each matched case-control study, it is a robust choice in
most cases.

In recent years, some other alternatives to the classical CLR have been proposed. For example, Avalos et al11

and Reid and Tibshirani12 proposed regularization approaches using an L1 penalty term, which can better deal with
high-dimensional data and sparse exposure or confounding variables than classical CLR. Stanfill et al13 proposed a
pre-processing step for paired matched case-control data which allows to use a wide variety of machine learning
approaches. However, this procedure is restricted to the special case of 1:1 matching. Zetterqvist et al14 proposed the
concept of doubly-robust CLR.

In this work, we propose an alternative method to the classical CLR when dealing with matched case-control-studies.
The main idea is to combine CLR with the concept of tree-based classifiers. Instead of using a linear combination
of the variables, partitions in the covariate space are determined in a data-driven manner and embedded into the
CLR framework (also accounting for the matching strata) using indicator variables. The approach proposed in this
manuscript differs from the previously mentioned approaches and from classical CLR as it does not require linearity
for the associations between covariates and the binary outcome and automatically accounts for interactions between
covariates.

Up to now, no statistical learning or machine learning approach has been proposed that goes beyond linear modeling
of the covariate effects. In principle, there exists a variety of machine learning methods as possible candidates, such as
nearest neighbors, Naive Bayes, neural networks, or bagging, only to name a few. Here, we make a first start using trees.
The main challenge is the need to incorporate the specific data structure (the matched strata) into the learning method
adequately. Second, as typically machine learning models are black boxes with a limited ability to interpret the effects of
individual variables, it is reasonable to allow for a separate modeling of the exposure effect. Both challenges are solved by
the approach proposed in this manuscript.

This manuscript is structured as follows: Section 2 describes the basic concept of CLR while Section 3 introduces the
the newly proposed tree-based method for the analysis of matched case-control data. Section 4 extends the proposed tree
framework by separating the exposure effect from the other covariates. The efficacy of the proposed method is illustrated
by a simulation study in Section 5 and by an application to real matched case-control data in Section 6. Section 7 closes
the article with a discussion and some concluding remarks.
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2 CONDITIONAL LOGISTIC REGRESSION

The basic CLR model has the form

log
(P(yij = 1)

P(yij = 0)

)
= 𝛼i + zT

ij𝜸 i = 1, … ,n, j = 1, … ,mi, (1)

where yij ∈ {0, 1} denotes a binary outcome. The observations come in n clusters si, i = 1, … ,n, of size mi. The cluster
structure is accounted for in the model via cluster-specific intercepts 𝛼i. The linear predictor of the model further contains
the linear term zT

ij𝜸 with coefficient vector 𝜸 and covariate vector zij.
In matched case-control studies, it holds that yij = 1 for cases and yij = 0 for controls and that the clusters are defined by

the matching strata. The vector zij collects the exposure variable (in the following denoted by x) and all further covariates
of observation j in cluster i. Due to the fact that the stratum-specific intercepts automatically inherit all effects of exactly
matched variables, these are explicitly not included in z. However, z may also contain interval matched variables, that is,
where matching was not exact (frequently used for age-matching).

We assume each of the n strata to contain only one case, that is,
∑mi

j=1yij = 1. For simplicity, in each stratum we assume
the first observation to be the case, that is, yi1 = 1 for i = 1, … ,n. Commonly, parameter estimation in logistic mod-
els is done using the maximum likelihood approach. In CLR, the stratum-specific intercepts 𝛼i are eliminated from the
likelihood by conditioning on the number of cases per stratum. This leads to the conditional likelihood

Lc(𝜸) =
n∏

i=1

exp(zT
i1𝜸)∑mi

j=1 exp(zT
ij𝜸)

,

and the corresponding conditional log-likelihood

lc(𝜸) =
n∑

i=1

(
zT

i1𝜸 − log

( mi∑
j=1

exp(zT
ij𝜸)

))
.

See Breslow and Day9 for further details. The maximum likelihood estimates are derived by maximizing the conditional
log-likelihood. The conditional log-likelihood from CLR models equals the partial log-likelihood of stratified Cox models,
where all event times are assumed to be equal to 1, cases are treated as observations experiencing their event and controls
are treated as right-censored observations. Therefore, many software implementations use routines for fitting stratified
Cox models to estimate CLR models.

3 CONDITIONAL LOGISTIC REGRESSION TREES

The method proposed in this manuscript is based on the concept of classification trees, which is an established classi-
fication method in statistical or machine learning. They originate from the framework of classification and regression
trees (CARTs) proposed by Breiman et al.15 In CARTs, the covariate space is partitioned using recursive binary splits. In
each partition, a constant is fitted (to obtain predictions or predicted probabilities). For classification tasks, the predicted
probabilities can simply be derived from the relative frequencies of the single outcome categories among the observations
which fall into the respective partition. CARTs are commonly visualized via hierarchical decision trees (see Figure 1 for
an illustrative example).

3.1 Algorithm

Ordinary classification trees cannot be applied to data from matched case-control data as they would not account for
the matching structure. Therefore, we propose to implement the concept of recursive partitioning in the covariate space
within the framework of CLR. Thus, we take advantage of the fact that CLR accounts for matching by conditioning on
the number of cases per stratum. The main idea is to replace the linear predictor of model (1) by a tree structure. This tree
structure is built up by sequential splits in the covariate space.
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f(Z)

 1.132

n0=156 n1=195

 0.459

n0=97 n1=63

 1.743

n0=8 n1=19

−0.112

n0=129 n1=53

−1.059

n0=309 n1=46

−2.164

n0=501 n1=24

+ −

Z5<=−0.03 Z5>−0.03

+ −

Z4<=−0.04 Z4>−0.04

+ −

Z3<=−0.25 Z3>−0.25

+ −

Z1=0 Z1=1

− +

x=0 x=1

F I G U R E 1 Estimated tree structure for illustrative data with confounding variables Z1, … ,Z5 and exposure variable X . Terminal
nodes display the corresponding estimated parameters 𝛿1, … , 𝛿6 and the numbers of cases n1 and controls n0

The initial model M0 is the model only containing the strata-specific intercepts

M0 ∶ log
(P(yij = 1)

P(yij = 0)

)
= 𝛼i.

Starting from the root node (containing all observations), we gradually search for binary splits in the covariates collected
in z that further improve the fit of this model. A split divides the respective nodes into two sub-nodes, and is incorporated
into the model using a corresponding indicator variable. For a metric (both continuous and discrete) or ordinal variable,
the model after the first split at threshold c in variable zk has the form

log
(P(yij = 1)

P(yij = 0)

)
= 𝛼i + 𝛿I(zijk ≤ c),

where I(⋅) is the indicator function. Step by step, the variable and the split point are chosen that lead to the high-
est improvement of the conditional log-likelihood of the model. After termination of the algorithm according to an
appropriate stopping criterion (see below), the final model can be denoted as

log
(P(yij = 1)

P(yij = 0)

)
= 𝛼i + f (zij),

where f (zij) describes the effect of the variables collected in z represented by a tree. With S1, … , St representing the
terminal nodes of the tree, f (zij) can be denoted as

f (zij) = 𝛿1I(zij ∈ S1) + · · · + 𝛿tI(zij ∈ St). (2)

All nodes are determined by a product of indicator functions. For example, if the splits were in the metric variables z1 and
z4 a node may be determined by I(zij ∈ S) = I(zij1 > 20) I(zij4 ≤ 10).

In all tree-based methods, one has to decide in particular how to split and how to determine the size of the trees.
In traditional approaches, one typically grows large trees and prunes them to an adequate size afterwards, see Breiman
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et al15 and Ripley.16 An alternative strategy, which was propagated within the conditional unbiased recursive partitioning
framework,17 is to directly control the size of the trees by early stopping. We also use this approach and control the
necessity of splits by using tests based on the conditional log-likelihood of the models.

To search for the best split among all the variables and the set of possible split points one examines all the null
hypotheses H0 ∶ 𝛿 = 0 and H1 ∶ 𝛿 ≠ 0 (of the newly added parameter) and selects the split with the maximal LR test statis-
tic (minus two times the difference in the conditional log-likelihood values). This corresponds to selecting the model with
minimal deviance, which is also equivalent to minimizing the entropy.

To decide whether the selected split should be performed, we apply a concept based on maximally selected statistics.
The basic idea is to investigate the dependence of the binary outcome and the selected variable at a global level that takes
the number of splits into account. For one fixed variable zk, one simultaneously considers all LR test statistics Tkck , where
ck are from the set of possible split points, and computes the maximal value statistic Tk = maxck Tkck . The P-value that
can be obtained from the distribution of Tk provides a measure for the relevance of variable zk. Importantly, the result is
not influenced by the number of split points, therefore the method explicitly accounts for the involved multiple testing
problem; for similar approaches, which inspired the proposed method, see Hothorn and Lausen,18 Shih,19 Shih and Tsai,20

Strobl et al.21 As the distribution of Tk is unknown we use a permutation test to obtain a decision on the null hypothesis.
The distribution of Tk is determined by computing the maximal value statistics based on random permutations of vari-
able zk. A random permutation of variable zk breaks the relation of the variable and the outcome in the original data. By
computing the maximal value statistics for a large number of permutations one obtains an approximation of the distribu-
tion under the null hypothesis and the corresponding P-value. Given an overall significance level 𝛼 the significance level
for the permutation test that tests splits in one variable is chosen by 𝛼∕p, where p denotes the number of covariates. To
determine the P-value with sufficient accuracy, the number of permutations should increase with the number of variables.

Altogether, the following steps are carried out during the fitting procedure:

1. (Initial model). Fit model M0.
2. (Tree building).

(a) For all variables zk, k = 1, … , p, fit all the candidate models with one additional split in one of the already built
nodes.

(b) Select the best model with the maximal LR test statistic.
(c) Carry out the permutation test for the selected node (defined by a combination of variable and split point) using the

maximal value statistic with significance level 𝛼∕p. If significant, fit the selected model and continue with Step 2(a),
else continue with Step 3.

3. (Selected model). Fit the final model with components 𝛼i, 𝛿1, … , 𝛿t.

It should be noted that an additional split also has an effect on all remaining terminal nodes because all parameter
estimates change if an additional split is performed. This is in contrast to the way trees are grown in traditional recursive
partitioning where the remaining terminal nodes are not affected by a new split.

The threshold 𝛼 for the permutation tests is the main tuning parameter for the proposed method. However, we found
the method to be rather robust for different choices of this parameter (see also Reference 22) and if not stated otherwise
we use a default value of 𝛼 = 0.05. To avoid the problem that 2K−1 − 1 possible splits need to be considered when splitting
in a nominal variable with K categories, we apply the sorting algorithm proposed by Wright and König.23 This means that
we order the categories once prior to tree building and subsequently treat the variable as ordinal.

An alternative to the use of permutation tests is to consider an information criterion, like the BIC, for early stopping.
In this case a large tree is grown first by repeating Steps 2(a) and (b) of the fitting procedure. Second the optimal sub-tree
is selected according to the minimal BIC. A comparison of the two pruning procedures is shown in the simulation section.

As shown in Equation (2), the tree structure is incorporated into the formula of CLR via indicator variables. The
parameters 𝛿1, … , 𝛿t accompanying these indicator variables are identifiable only up to a constant location shift. There-
fore, in estimation we have to apply a side constraint. We can either choose a reference node and restrict the corresponding
parameter to zero (eg, 𝛿t = 0) or we can impose the symmetric side constraint

∑t
o=1𝛿o = 0. In either case, the interpre-

tation of the node parameters 𝛿1, … , 𝛿t in absolute size is not meaningful. Interpretation should always solely be based
on pairwise differences between node parameters. For example, exp(𝛿1 − 𝛿2) represents the odds ratio when comparing
observations from node 1 compared to observations from node 2.

The tree algorithm may lead to partitions in the covariate space where perfect discrimination between cases and
controls is reached. This is desirable in general as it is the explicit goal of tree methods to separate the different classes.
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However, perfect separability is a problem for parameter stability within the estimation framework of CLR. Therefore, we
allow for an additional refitting step after the final tree has been determined. This refitting step employs regularization
using a small L2 penalty to stabilize the tree parameter estimates 𝛿1, … , 𝛿t. The penalty term contains the corresponding
squared parameter values. It is added to the regular conditional likelihood lc(⋅) and is controlled by the tuning parameter
𝜆. Optimization is then applied to the penalized likelihood

lp(⋅) = lc(⋅) + 𝜆
t∑

o=1
𝛿

2
o , (3)

instead of lc(⋅). As the penalty is only intended to stabilize estimation of the tree parameters, the tuning parameter 𝜆 can
simply be set to a small value and does not require a systematic tuning procedure. A standard value we used was 𝜆 = 10−20.

3.2 Illustrative example

For illustration, the method is applied to a simulated data set. It is taken from setting B of the simulation study presented
in Section 5. The data set contains 400 strata with 1 case and 3 controls each. It contains five confounding variables
Z1, … ,Z5 (where Z1 and Z2 are binary and Z3, … ,Z5 are continuous) and one binary exposure variable X . Figure 1
depicts the estimated tree structure for the illustrative data.

We use the symmetric side constraint where
∑5

o=1𝛿o = 0. We can see that the first split in the covariate space is in
Z5 with split point −0.03. The resulting node Z5 > −0.03 is split further with respect to the exposure variable Z3. The
node Z5 ≤ −0.03 is split further with respect to variable Z4, for Z4 > −0.04 with respect to variable Z1, and for Z1 = 0 in
the exposure variable X. Finally, the tree ends up in six terminal nodes, leading to six parameter estimates 𝛿1, … , 𝛿6.
Beside the estimated parameters 𝛿i, the various terminal nodes also contain information about how many cases (n1) and
how many controls (n0) fall into the respective node. As further additional information, + or − signs indicate for each
split point, which sub node leads to increased (+) or decreased (−) odds. The estimated parameters 𝛿i and the +∕− signs
associated with the first split indicate, that Z5 > 0.05 decreases the odds as the corresponding estimated parameters are
negative and smaller than the set of estimated parameters corresponding to Z5 ≤ −0.03. The highest odds appear among
observations where Z5 ≤ −0.03, Z4 > −0.04, Z1 = 0 and X = 1.

In this example, there is no special treatment (see Section 4) of the exposure effect. We can see, that in the estimated
tree the exposure status only makes a difference for a small subgroup. In this subgroup, being exposed clearly increases
the odds of having the disease.

3.3 Interval matching

The case of interval-matched variables requires special attention. A typical example of a matching variable, for which
interval matching is used, is age. Typically, the age of cases and their matched controls has to be from the same age
category (eg, 50-55 years). As mentioned before, in contrast to exactly matched variables interval-matched variables must
be adjusted for in the analysis. We suggest to use the so-called residual age2 as a covariate. Residual age can be calculated
in different ways, for example as the individual difference between a persons age and the mean of the corresponding age
category or the mean of the controls within each stratum. In each case, the same value is subtracted from all age values
within one stratum.

In CLR, using residual age or the original age variable gives equivalent results because the strata-specific intercepts 𝛼i
anyway capture the average age effect in a stratum. However, for our tree-based approach the results differ between both
approaches. For real age, the splits will assign all subjects to the same partition for almost all strata while for residual
age the splits will split within the strata in almost all cases. As an example, let us assume three strata I, II, and III with
arbitrary values of age and accompanying values of residual age as displayed in Table 1.

We can see, that splitting age at some specific value (eg, at 64 years) will automatically put all observations from
one stratum into the same partition for at least two of the three strata. Splitting in residual age (eg, at 0), will create a
split within the stratum for all three strata. Therefore, these two methods are clearly not equivalent here and it is essen-
tial to transform interval-matched variables into residual differences when they are supposed to be accounted for in
the model.
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T A B L E 1 Illustrative example for comparing the different effects of including age or residual age into the tree-based approach for
further age adjustment additional to age matching

Stratum I Stratum II Stratum III

Age Residual age Age Residual age Age Residual age

Case 24 1 45 2 63 0

Control 1 21 −2 44 1 62 −1

Control 2 25 2 42 −1 61 −2

Control 3 22 −1 43 0 65 2

4 SEPARATION OF THE EXPOSURE EFFECT

Most matched case-control studies aim at quantifying the effect of one particular of the covariates, the exposure variable
x. In this case, we are specifically interested in the association (or rather the causal effect) of an exposure x on the outcome.
The exposure variable is binary with x ∈ {0, 1}where x = 1 for exposed and x = 0 for non-exposed persons. All the other
variables that are supposed to be included in the analysis are collected in the vector z (which no longer contains x). In
the following, we will elaborate on how to separate the exposure effect from the remaining covariates in order to have a
separate global estimate of the exposure.

4.1 Algorithm

To clarify the special role of the exposure xij, we now denote model (1) as

log
(P(yij = 1)

P(yij = 0)

)
= 𝛼i + xij𝛽 + zT

ij𝜸 i = 1, … ,n, j = 1, … ,mi, (4)

where 𝛼i represents a stratum-specific intercept, 𝛽 is the regression coefficient (interpretable as the adjusted log odds-ratio)
of the exposure and 𝜸 denotes all further covariate effects. The conditional log-likelihood for model (4) has the form

lc(𝛽, 𝜸) =
n∑

i=1

(
xi1𝛽 + zT

i1𝜸 − log

( mi∑
j=1

exp(xij𝛽 + zT
ij𝜸)

))
.

In the proposed tree-based model the linear term zT
ij𝜸 again is replaced by a tree structure while at the same time the

parametric structure of the CLR model (4) is preserved, which keeps the exposure effect easily interpretable. For that
purpose, the starting model M0 is extended by a parametric exposure effect:

M0 ∶ log
(P(yij = 1)

P(yij = 0)

)
= 𝛼i + xij𝛽.

Given this model (ie, given the initial parameter estimate 𝛽), we search for binary splits in the variables contained in z.
Accordingly, the proposed model can be denoted as

log
(P(yij = 1)

P(yij = 0)

)
= 𝛼i + xij𝛽 + f (zij),

where f (zij) describes the effect of the covariates represented by a tree. With S1, … , St representing the terminal nodes of
the tree, f (zij) can again be denoted as

f (zij) = 𝛿1I(zij ∈ S1) + … + 𝛿tI(zij ∈ St).
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The main advantage of this model (from now on referred to as CLogitTree) over ordinary CLR (see Equation (4)) is its
flexibility. In particular, no linearity of effects is assumed and complex interaction effects between covariates are found
completely data-driven. Also in the model with a separate exposure effect we allow to use an L2 penalty term as described
in Equation (3). The exposure parameter 𝛽 is not included into the penalty term, but nevertheless may be affected
indirectly by the penalty.

The model described above can be seen as a hybrid between a classical regression model and a tree, where the linear
predictor of a regression model consists both of classical linear terms and a tree component. Similar attempts have been
made before in different settings. Among others, Su et al24 use hybrid models to check the assumptions in classical linear
regression while Su and Tsai25 proposed tree-augmented Cox regression. A somewhat related concept was proposed by
Zeileis et al26 where recursive partitioning is used to find subspaces in the covariate space, in which separate models
are fitted.

4.2 Confidence intervals

For the separated exposure effect it is desirable to have confidence intervals beside the point estimate. However, we cannot
directly use the confidence intervals provided by the underlying conditional logistic model as it will not take the selection
process into account when building the tree. Accordingly, these confidence intervals would underestimate the variability
of the point estimate. However, confidence intervals can be derived via a nonparametric bootstrap approach. For a total
of B bootstrap samples, the strata are treated as the observation units as we do not want to break up matched strata.
Therefore, a single bootstrap data set is constructed by sampling n strata with replacement from the original data, where n
is the total number of strata in the original data. For each bootstrap sample, we compute a CLogitTree model and save the
corresponding estimate for the exposure effect. This procedure provides an estimate of the empirical bootstrap distribution
of the exposure effect. From the B estimates we calculate the corresponding empirical quantiles as the boundaries of
the confidence interval. The bootstrap confidence intervals for the exposure effect are computationally demanding and,
therefore, rather time-consuming.

4.3 Illustrative example

We adapt the illustrative example from Section 3.2 to an analysis where the exposure variable x is treated separately.
Now, the estimated model consists both of an estimated log exposure effect and an estimated tree (see Figure 2). The
respective point estimate and 95% confidence interval of the exposure effect is exp(0.619) = 1.858 (95% CI 1.320 – 3.045)
for CLogitTree and exp(0.4833) = 1.621 (95% CI 1.155 – 2.275) for CLR. In the data generating process (DGP), the true log
exposure effect was log(2) = 0.693. Accordingly, we can see that the estimate from CLogitTree exp(𝛽) = 1.858 is slightly
closer to the true value of 2 than the CLR estimate exp(𝛽) = 1.621. Indeed, in the corresponding simulation scenario (ie,
scenario B in Section 5), we will see that, in contrast to the CLR estimates, the exposure effect estimates from CLogitTree
are unbiased. The confidence interval from CLogitTree is wider than the confidence interval from CLR, which may simply
be caused by the fact that for CLR the confidence interval is estimated via a closed formula while it is estimated via
bootstrap for CLogitTree.

The tree depicted in Figure 2 shows that (compared to the true tree depicted in Figure 3B) the first split is chosen
almost perfectly correct (Z5 > −0.03 instead of Z5 > 0).

The first three splits exactly equal the first splits in the model without a separate exposure effect (compare Figure 1).
The last split (for Z5 ≤ −0.03, Z4 > −0.04, Z1 = 0) is missing compared to Figure 1, which is not surprising as now the
exposure status x is not included in the algorithm to find split points but is modeled separately. Overall, almost all splits
are found correctly, but the last two splits in Z2 are missing compared to the DGP (compare Figure 3B).

5 SIMULATION STUDY

In a simulation study, we want to explore how the method works and how well it performs compared to CLR. We explore
five different settings for the DGP, which will be named setting A, setting B, setting C, setting D, and setting E. We first
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f(Z)

 1.668

n0=156  n1=195

 1.154

n0=105  n1=82

 0.324

n0=129  n1=53

−0.233
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−1.203
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−1.710

n0=501  n1=24

+ −

Z5<=−0.03 Z5>−0.03

+ −

Z4<=−0.04 Z4>−0.04

+ −

Z3<=−0.25 Z3>−0.25

+ −

Z1=0 Z1=1

+ −

Z1=0 Z1=1

F I G U R E 2 Estimated CLogitTree for illustrative data with a separated exposure effect estimate. For all terminal nodes, the respective
parameter estimates and the numbers of cases n1 and controls n0 are displayed

present the design of the simulation study describing the DGP in the different settings before we present the respective
results.

5.1 Simulation settings

For all settings, we first created a hypothetical population consisting of 500 000 persons, which were randomly dis-
tributed to 1000 districts. Also, five person-specific characteristics (Z1 to Z5) were generated as covariates. We use a
five-dimensional standard normal distribution and dichotomize variables Z1 and Z2 with a threshold of 0. For each per-
son we generated a personalized probability to be exposed as well as an individual probability to suffer from the respective
disease.

First, a binary exposure variable X was sampled. The probability of being exposed P(X = 1) was generated with the
same DGP for all five settings. For person i in district j we define the linear predictor

𝜂
X
ij = −2 + 𝜏X

j + 0.3 ⋅ Z1i − 0.3 ⋅ Z2i − 0.4 ⋅ Z3i + 0.3 ⋅ Z4i + 0.2 ⋅ Z5i,

where 𝜏X
j is a specific district effect (randomly drawn from a uniform distribution between −2 and 2). We use 𝜂X

ij to create
a person-specific probability of being exposed as

P(Xij = 1) =
exp(𝜂X

ij )

1 + exp(𝜂X
ij )
.

In the next step, for each person a probability of suffering from the disease was determined. This probability was defined as

P(Yij = 1) =
exp(𝜂ij)

1 + exp(𝜂ij)
,
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(A) (B)

(C)

F I G U R E 3 Functional terms f (Zi) used in data generating process of simulation settings A, B, and D. (A) f (Zi) in Setting A; (B) f (Zi) in
Setting B; (C) f (Zi) in Setting D

with the linear predictor

𝜂ij = −2 + 𝜏j + 𝛽 ⋅ Xi + 𝜙f (Zi).

Here, 𝜏j is again a district effect (randomly drawn from a uniform distribution between −2 and 2), 𝛽 is the exposure
effect and f (Zi) represents a functional term based on the vector Zi = (Z1i,Z2i,Z3i,Z4i,Z5i). This functional term f (Zi)
differed between the simulation settings. The exposure effect was set to 𝛽 = log(2) for all settings, which corresponds to
a true (adjusted) odds ratio of 2 as the exposure effect. The parameter 𝜙 is used to control the signal-to-noise ratio in the
respective simulation runs. For each setting, it will be set to three different values 𝜙 = 0.5 (low), 𝜙 = 1 (medium), and
𝜙 = 2 (high).

In settings A and B, the functional term f (Zi) represents a decision tree. Setting C is the so-called “null”-setting, where
variables Z1 to Z5 have no effect on the disease status. In setting D, the functional term consists of adding up linear terms
for Z1 and Z2 and smooth terms for variables Z3 to Z5. The functional terms used in settings A, B, and D are displayed in
Figure 3. In setting E, the functional term is defined via additive linear terms

f E(Zi) = −0.4 ⋅ Z1i + 0.2 ⋅ Z2i − 0.3 ⋅ Z3i − 0.2 ⋅ Z4i + 0.4 ⋅ Z5i.

To create the final matched case-control data, we randomly sampled n = 400 persons from the diseased persons as our
cases. For each case and restricted to the non-diseased persons from the same district as the case, we randomly sampled
three controls, leading to matched strata of size mi = 4. Accordingly, our final data set consisted of 400 strata and a total
of 1600 observations.
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5.2 Simulation results

In the simulation study, we apply the proposed method CLogitTree including a separate exposure effect. As the main
results of the simulations we present how well the exposure effect has been estimated and compare the results to conven-
tional CLR. Furthermore, the methods are compared via the predictive conditional likelihood. For that purpose, in each
run of each setting an additional validation data set is generated with the same size and structure as the training data. For
each method, the (predictive) conditional likelihood is computed per stratum and averaged across strata. CLogitTree is
used with three different significance levels (0.01, 0.05, and 0.1) as well as using BIC as pruning criterion for comparison.

For all settings, Figure 4 displays the parameter estimates of the log exposure effect. The dashed red line represents
the true log exposure effect. The corresponding squared errors can be found in Figure S1 (see supplementary materials).

Overall, we can see that CLogitTree is rather robust against the choice of the pruning strategy, the performance based
on permutation tests is very similar for all three values of 𝛼 and also comparable if the optimal tree is selected via BIC.
For setting A and setting B, we can see that for CLR the bias of the estimate increases with an increasing signal-to-noise
ratio while it is nearly unbiased for CLogitTree. Therefore, we see here that if the DGP follows a tree structure CLogitTree
outperforms CLR with respect to the estimation of the exposure effect. For setting C, as expected both methods work
equally well. As this is the null-setting, we cannot apply different signal-to-noise ratios. Also in setting D, where the DGP
contains additive nonlinear effects for the continuous variables and additive effects for the binary variables, no major
differences are observed. Only for a high signal-to-noise ratio CLR shows some bias. In setting E, where the assumptions of
CLR are fulfilled,CLogitTree is slightly biased, in particular for high increasing signal-to-noise ratio, while CLR is unbiased
in all cases.

Figure 5 displays boxplots of the predictive conditional likelihood averaged over all strata for all settings. For all meth-
ods, a higher signal-to-noise ratio leads to higher values of the likelihood. In settings A, B, and D, CLogitTree outperforms
CLR in terms of the conditional likelihood, whereas it performs equally well in setting C and worse in setting E. While
it could be expected that the methods which can exactly reproduce the GDP of the respective setting (see settings A,
B, and E) perform better, it is interesting to see that in setting D CLogitTree outperforms CLR. Thais indicates that the
non-linear GDP from setting D was recovered better by CLogitTree than by CLR. The different versions of CLogitTree
perform comparably well, with a slight advantage for the version with the BIC.

In terms of computation time (compare Figure S2 in the supplementary materials) CLogitTree is clearly more demand-
ing compared to regular CLR (which usually took less than 0.1 s). In the simulation study, the permutation tests were
parallelized over 20 cores which made the version based on permutation tests almost as fast as the BIC based version of
CLogitTree in some settings.

The objective of this simulation study was to analyze the precision of the estimation of the exposure effect, which is
usually the most important value when matched case-control data are analyzed. The exposure effect is estimated in an
unbiased manner only if the confounding effect of the remaining variables is modeled sufficiently accurate. The analysis
of the predictive conditional likelihood revealed that CLogitTree performed better or equal to CLR unless the GDP was
strictly linear and additive. Overall, this small simulation study showed, that for a truly tree-structured DGP CLogitTree
can outperform the classical approach of CLR in terms of bias and mean squared error of the respective exposure effect.
In the additive nonlinear setting, both methods performed similarly well, while CLR outperformed CLogitTree in the
additive linear setting. The differences mostly become visible for high signal-to-noise ratios while all methods perform
comparably well for low signal-to-noise ratios.

6 APPLICATION TO TEQAZ STUDY DATA

For further illustration, in this section the proposed method is applied to a real data example. The data originate from the
so-called TeQaZ study,27 a case-control study on cervical cancer. The main focus of the study was to examine the effect of
frequent participation in cervical cancer screening (CCS) on the risk of cervical cancer. The exposure variable CCS was
defined as frequent participation, if women had attended CCS at least every 3 years within the past 10 years, including at
least once in the 3 years preceding diagnosis. Frequent participation was coded as CCS = 0 (ie, used as reference category)
while infrequent participation was coded as CCS = 1. Matching was done using age and residence area where controls
where matched to cases only if they live in the same area and if their age was at maximum 2 years younger or older than
the age of the corresponding case. To account for residual age differences we calculated the variable Age.Diff defined as
the difference between each individuals age and the average age in the respective stratum.
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F I G U R E 4 Parameter estimates for log exposure effect in different simulation settings, separately for CLR and different versions of
CLogitTree and separately for different signal-to-noise ratios. Dashed red line represents the true log exposure effect

Table S1 (see supplementary materials) shows the list of variables contained in the corresponding data set. Tanaka
et al27 analyzed these data using CLR incorporated into a multiple imputation process. In contrast to this original analysis,
we use only complete observations without any missings in the variables listed in Table S1. Therefore, while Tanaka et al27

had used 217 cases and 649 controls our data set comprises 170 cases and 425 controls.
Tanaka et al27 mostly used dichotomized versions of the original variables, which are also described in Table S1.

In CLogitTree, dichotomization of variables in advance of the data analysis is not necessary as the variable levels are
automatically grouped within the tree-building process in a data-driven manner. We will compare the results from CLR
using the variables with coding scheme “Coding (CLR)” from Table S1 to the results from CLogitTree using the original
coding of the variables. The results from ordinary CLR can be found in Table S2 (see supplementary materials).
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F I G U R E 5 Average predictive conditional likelihood in different simulation settings, separately for CLR and different versions of
CLogitTree and separately for different signal-to-noise ratios

Before applying the methods to the complete data set, a 10-fold cross-validation was performed on the data in order to
compare the predictive performance of the models. Similar to the simulation study, we considered the predictive condi-
tional likelihood for the comparison of the methods. The average predictive conditional likelihood was 0.50 for CLogitTree
with 𝛼 = 0.05, 0.52 for CLogitTree using the BIC, 0.41 for a simple CLR using CCS as the only predictor, and 0.53 for ordi-
nary CLR. We can see that CLR and CLogitTree using the BIC perform comparably good, and that the version using the
BIC performs better than the version using permutation tests with threshold 𝛼 = 0.05. Therefore, in the following we will
only present the results for the version with BIC.

CLogitTree will be applied to the data both in its simple version (without a separate exposure effect) and with a separate
exposure effect for the exposure variable CCS. Both trees are displayed in Figure 6.
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(A)

(B)

F I G U R E 6 CLogitTrees for TeQaZ data for the model without (A) and with (B) a separate CCS exposure effect. For all terminal nodes,
the respective parameter estimates and the numbers of cases n1 and controls n0 are displayed. (A) No separate CCS exposure effect; (B)
separate CCS exposure effect

Interestingly, in Figure 6A the first chosen split is in the exposure variable CCS, where infrequent participation
(ie, CCS = 1) is associated to higher odds for cervical cancer than frequent participation. Further splits are done in the
variables Education (for CCS = 1) and Income (for CCS = 0). While the chosen split in Education is equal to the split
used to dichotomize this variable in Tanaka et al,27 this is not the case for Income. For CCS = 0 and Income > 2, we get
another split in Age.Diff > 1. This split leads to a perfect separation of cases and controls in the corresponding terminal
node with 35 controls and no cases. Therefore, the corresponding parameter estimate tends to −∞ and, due to the sym-
metric side constraint, leads to rather big parameter estimates in the other terminal nodes. However, as described above
we are mainly interested in the pairwise differences between the single estimates. These are very big for all differences
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where the terminal node with perfect discrimination is involved, but in a reasonable magnitude for all other comparisons.
Further splits are chosen in Age.Diff > 0 for CCS = 1 and Education > 4 and in Sex.Partners > 2 for CCS = 0, Income > 2
and Age.Diff ≤ 1.

Figure 6b shows the resulting tree of the model where CCS is incorporated in a separate exposure effect. Here, the first
split is done for Age.Diff > 1, again leading to a terminal node with perfect separation and a very small parameter estimate.
This split however is very hard to interpret as age was already a factor used for matching. Therefore, we simply see this
split as a further age adjustment additional to the effect of age-matching accounting for potential residual age differences.
For Age.Diff ≤ 1 (the node where most of the observations fall into), further splits are performed in Income, Education
and Sex.Partners, leading to an interaction between these variables. Similar to the results from CLR (�̂� Income = −0.856 and
�̂�Education = −0.935), we see in general that higher income and educational level seem to act as protective factors. However,
in CLogitTree we see an additional effect of Education only for lower incomes. The majority of the variables included in
CLR is not used for splitting in CLogitTree.

The parameter estimates presented in Figure 6B contain an extreme estimate due to the perfect separation in the
respective terminal node. Perfect separation is desirable for our method from a tree perspective while it can be problematic
in a regression setting where our tree-method is embedded. A simple solution to prevent parameter estimates tending
to ±∞ is to apply L2 penalization for the estimation of the tree parameters (as described in Section 3.1). Figure S3 (see
supplementary materials) shows the corresponding result where a very small L2 penalty (tuning parameter 𝜆 = 10−20)
has been applied in the estimation process.

In absolute size, the parameter estimate associated to the terminal node with perfect separation is much smaller now.
Accordingly, also all pairwise differences with this parameter have decreased drastically. All other pairwise differences
remain almost unchanged. For example, the difference in the estimates between Sex.Partners = 1 and Sex.Partners ≥ 1
in the subsample Age.Diff ≤ 1, Income ≤ 4 and Education ≤ 4 is 3.144 − 4.414 = −1.270 in Figure 6B while it is 0.311 −
1.584 = −1.273 in Figure S3.

Finally, Table S3 (see supplementary materials) contains the estimated exposure effects and the corresponding esti-
mates for 95% confidence intervals for CLogitTree, CLogitTree with L2 penalty, CLR and CLR0. CLR0 represents the CLR
model without adjustment for any confounders, only containing the exposure and the strata variable.

The estimated CCS effect in CLogitTree is slightly greater than the estimated effects from CLR and CLR0, but the truth
is unknown to us of course. The estimates for the exposure effect of CLogitTree with and without L2 penalization hardly
differ (1.835 vs 1.830). The confidence interval from CLogitTree is clearly wider than its counterparts, which is probably
mostly explainable by the fact that this interval is determined via bootstrap instead of a closed formula.

7 CONCLUDING REMARKS

The presented concept of CLR trees (CLogitTree) is an automated and data-driven machine learning approach for the
analysis of matched case-control studies. It is an interesting alternative to conventional CLR with several advantages.
First, it is more flexible as it uses less strict assumptions about the functional relationship between the covariates and the
outcome variable. In particular, no assumption of linearity is needed and interactions between covariates are found and
incorporated in a purely data-driven manner. In contrast, in CLR interactions have to be specified by the user in advance
of the data analysis, which is challenging and therefore not done regularly in applications. Of course, in real word data
also other kinds of association (like smooth non-linear effects) might appear. Yet, our tree-based approach offers a very
flexible solution to many situations. Second, it is common practice in CLR to dichotomize ordinal or metric variables (eg,
split age into young/old) in order to make them easier to handle and to avoid linearity assumptions. This is not necessary
for CLogitTree as the relevant groups/partitions are detected automatically and purely data-driven when looking for the
appropriate splits of the tree (yielding a much sparser predictor function). Third, the method performs automatic variable
selection because not all potential covariates will be used for splits and are, therefore, removed from the final model.

We have shown, that the proposed method can compete with or outperform the standard method of CLR in situations
where the DGP is non-linear. We do not claim the method to be superior to CLR in general, specifically in situations where
the DGP is linear. We see CLogitTree as a flexible alternative to CLR, in the same way as classification and regression trees
(CARTs) can be seen as a flexible alternative to linear or logistic regression.

This manuscript strongly focused on matched case-control studies. However, the proposed method is not restricted
solely to this application but can be used as an alternative to CLR also in other circumstances. CLR can be used for the
analyzes of clustered binary outcome variables as an alternative to mixed model approaches with random effects for the
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clusters. For example, Graubard and Korn28 proposed using CLR for the analysis of survey data. Accordingly, the method
has a much wider range of applicability than the setting of matched case-control studies which was referred to in this
manuscript.

All data analyzes in this manuscript have been done in R29 with R version 4.1.1, the simulation study from Section 5
has been done with R version 4.0.3. The proposed method is implemented in R in the add-on package CLogitTree and
publicly available from https://github.com/Schaubert/CLogitTree.

The package contains the method itself (including a pruning function for different values of the tuning parameter 𝛼
and a function for pruning by BIC), a function to plot the resulting trees and a function to calculate bootstrap confidence
intervals for the exposure effect. As common for tree methods, the user can further adapt the fitted trees via arguments
for the maximal depth of the trees, the minimal node size in order to be eligible for further splitting and the minimum
number of observations in any terminal node. Due to the internal use of permutation tests the method is computation-
ally much more demanding compared to ordinary CLR. In particular, the determination of confidence intervals for the
exposure effect via bootstrap is very time-consuming. For a considerable speed-up, the user has the option to run both
the permutation tests and the bootstrap analysis parallelly on several cores. Currently, the method is not able to handle
missing values and is restricted to a complete case analysis. However, the same holds for conventional routines for CLR.
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