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Abstract

An abundance of knowledge has been collected describing the involvement of

neuroendocrine parameters in major depression. The hypothalamic–pituitary–

adrenocortical (HPA) axis regulating cortisol release has been extensively studied;

however, attempts to target the HPA axis pharmacologically to treat major

depression have failed. This review focuses on the importance of the adrenocorti-

cal stress hormone aldosterone, which is released by adrenocorticotropic hor-

mone and angiotensin, and the mineralocorticoid receptor (MR) in depression.

Depressed patients, in particular those with atypical depression, have signs of

central hyperactivation of the aldosterone sensitive MR, potentially as a conse-

quence of a reactive aldosterone release induced by low blood pressure and as a

result of low sensitivity of peripheral MR. This is reflected in reduced heart rate

variability, increased salt appetite and sleep changes in this group of patients. In

addition, enlarged brain ventricles, compressed corpus callosum and changes of

the choroid plexus are associated with increased aldosterone (in relation to corti-

sol). Furthermore, subjects with these features often show obesity. These charac-

teristics are related to a worse antidepressant treatment outcome. Alterations in

choroid plexus function as a consequence of increased aldosterone levels, auto-

nomic dysregulation, metabolic changes and/or inflammation may be involved.

The characterization of this regulatory system is in its early days but may identify

new targets for therapeutic interventions.
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1 | COMPLEXITY OF MAJOR DEPRESSION

Depressive syndromes are common, severely debilitating and eco-

nomically very expensive. Depressive syndromes occur in various psy-

chiatric disorders, especially in affective disorders such as unipolar

depression, bipolar depression or dysthymia. Unipolar depression is

the most common affective disorder with a lifetime prevalence of

approximately 16% worldwide.1 Chronic depression is referred to

when the symptoms persist for a period of at least 2 years.2,3

For the treatment of depressive syndromes, partially effective
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pharmacological, psychotherapeutic and other somatic treatments are

available. However, often, the first chosen therapeutic approach does

not work. For example, a large American study (STAR-D) showed, that

when treated with a selective serotonin reuptake inhibitor, full remis-

sion is only achieved in approximately 30% of all patients.4 Good pre-

dictors for the selection of therapy are not established, and it is

therefore often necessary to test various therapeutic approaches one

after the other or to introduce combination therapies. A major reason

for this is the biological heterogeneity of depressive disorders. Param-

eters for differentiation have been collected in individual studies, but,

because of the technical complexity, often only low numbers of cases

and a limited number of parameters for a given study are available.

These include neuroendocrine factors, such as cortisol,5 inflammatory

mediators6 and sleep electroencephalogram parameters,7,8 as well as

parameters of the autonomic nervous system function,9,10 such as

heart rate variability.

2 | NEUROENDOCRINE CHANGES IN
DEPRESSION: QUESTIONING THE
PROMINENT ROLE OF CORTISOL

Neuroendocrine research in major depression has focused mainly on

the HPA axis and one of its final end-products, cortisol.11 The com-

plexity of the underlying hypothesis, comprising dysfunction of the

glucocorticoid receptor (GR) has been outlined, which indicated that

different types of GR in different tissues may explain the apparent

discrepancy between the assumed GR dysfunction and the potentially

detrimental role of hypercortisolism.12 One paradigm that was dis-

cussed as a target for glucocorticoid involvement is hippocampal

neurogenesis,13 based on the observation of a smaller hippocampal

volume in subjects with depression.14,15 Whether this phenomenon is

a cause or a consequence of depression and which potential modera-

tors, including inflammatory changes, are involved16 is an important

research question. From a clinical perspective, a somewhat confined

focus on the role of the HPA axis and GR function has left many ques-

tions open and has not yet led to an approved treatment option.17

However, the importance of the mineralocorticoid receptor (MR), has

been brought forward18 and a role of brain MR activation has been

recognized by the leaders in the field.19 Nevertheless, the main focus

remained the role of cortisol as an MR ligand. As a complement to this

view, the role of aldosterone is discussed in detail in the current

viewpoint.

3 | INVOLVEMENT OF THE RENIN–
ANGIOTENSIN-ALDOSTERONE SYSTEM
(RAAS) IN MAJOR DEPRESSION

Stress-induced increases in aldosterone release have been described

in humans20,21 and animal models.22–25 In patients with major depres-

sion, increased plasma or salivary aldosterone concentrations have

been observed in a number of independent studies.26–30 This can be

interpreted in the context of aldosterone as a stress hormone, which

is both activated via the HPA axis by adrenocorticotropic hormone

(ACTH) and the sympathetic nervous system via the release of renin

and angiotensin.31 It appears that the aldosterone concentrations

reflect the severity and chronicity of a depressive episode.30 This rela-

tionship may, however, depend on gender, reproductive stage and

subtype of depression. It was more pronounced in female postmeno-

pausal subjects compared to male patients in the study by Segeda

et al,30 whereas Emanuel et al.27 found no effect of gender. A poten-

tial gender difference is indeed not unexpected because the female

sex hormone progesterone also has MR activity. Aldosterone levels

fall with clinical improvement, which indicates that high aldosterone

may be a state marker of depression.29 In addition, a high aldoste-

rone/cortisol ratio is a predictor of worse treatment outcome,32 as

well as low, rather than high, blood pressure. The connection between

low blood pressure and poorer therapy response was confirmed in a

recent large study, in particular in female subjects.33 The pattern of

these markers indicates lower activity of peripheral MR in patients

who respond less well to antidepressant therapy. This is accompanied

by decreased heart rate variability, increased slow wave sleep, an

increased threshold for salty taste and an increased preference for

salt, all of which indicate increased central MR activation.

As mentioned before, aldosterone levels appear to decline with

clinical improvement,29 whereas blood pressure levels stay the same

or tend to increase.34,35 This may indicate an increase in peripheral

MR activity with clinical improvement. In accordance, an increase in

MR expression has been demonstrated with antidepressant treatment

in the brain of animals,36–38 although data on peripheral MR activity

with antidepressant treatment have not yet been reported. The

assumed increase in peripheral MR expression or function would lead

to the observed reduction in the RAAS in the absence of a blood pres-

sure reduction.

4 | THE NEED FOR DIFFERENTIATION OF
MAJOR DEPRESSIVE SUBTYPES

Is the association between depression and signs of hyperaldosteron-

ism true for all forms of depression? A possibility that the association

between RAAS and depressive symptoms characterizes a specific sub-

set of depressed patients emerges. For example, in patients with

Conn's syndrome (primary hyperaldosteronism), not only associations

between aldosterone levels and depression severity, but also high

levels of anxiety, somatic symptoms and irritability have been

observed.39–42 These symptoms share some features with atypical

depression rather than with the classic melancholic form of depres-

sion: somatic symptoms are related to one of four of the specific

symptoms of atypical depression, namely “leaden paralysis” and can

be linked to alterations in bodily perception, that is, interoception. Irri-

tability, which occurs in hyperaldosteronism, is related to the

observed “rejection sensitivity” that defines atypical depression.
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Finally, atypical depression is associated with a high body mass index

(BMI) and changes in lipid metabolism,5,43,44 which is also observed in

primary aldosteronism. Consistently, obesity, alterations in lipid

metabolism45,46 and clinical features of atypical depression47 are

linked to lesser responsiveness to standard antidepressant treatment.

However, contradictory findings regarding the influence of BMI have

also been reported.48 Interestingly, the association of obesity and

plasma lipid alterations with depression appears not to be overlapping,

but synergistic in a way such that more expressed plasma lipid abnor-

malities are associated with a higher level of depression, but the pres-

ence of adiposity adds to that.49

Furthermore, recent studies have found additional evidence for an

overlap between signs of hyperaldosteronism and atypical depression.

An increase in proteomic markers of RAAS activity (concentration of

angiotensin-converting enzyme) for atypical vs. melancholic depression43

was described. An additional feature of atypical versus melancholic

depression is an increase in inflammatory markers. We discuss the link

between aldosterone and inflammation further below. Overall, these

findings are consistent with the observation that inflammatory changes

are linked to lesser response to antidepressant treatment,50 as well as

the finding that obesity is related to inflammatory changes and may play

a role in this context.51–54 Patients with atypical depression also show a

lower level of plasma cortisol compared to melancholic depressed

subjects,5 in line with our finding of a higher aldosterone/cortisol ratio as

a sign of therapy refractoriness. Unfortunately, aldosterone has not been

determined in the mentioned studies. Overall, the preponderance of

atypical depressive symptoms with signs of hyperaldosteronism is consis-

tent with a similar underlying pathology.

5 | NETWORK MODEL OF ALDOSTERONE
EFFECT

The role of aldosterone as a behaviorally active compound has long

been dismissed based on the fact that most brain MR are fully occu-

pied by cortisol at relevant concentrations.55 However, as mentioned

above, specific brain areas have been identified in which aldosterone

can act at the MR. These are mainly areas that co-express both the

MR and the enzyme 11beta-hydroxysteroid-dehydrogenase type

2 (11betaHSD2). This enzyme metabolizes cortisol intracellularly and

F IGURE 1 A schematic overview of the regulation and action of aldosterone. Aldosterone (Aldo) is released by stress through the
hypothalamic–pituitary–adrenocortical (HPA) axis and through the renin–angiotensin aldosterone system (RAAS), which is activated by
sympathetic influences. Via an effect on the activity of the nucleus of the solitary tract (NTS) aldosterone affects higher cortical and subcortical
structures. Via projections to the sympathetic nervous system, the RAAS is activated, potentially leading to a feed forward cycle. The SNS is also
involved in the regulation of cerebral blood flow and the regulation of choroid plexus mediated cerebrospinal fluid (CSF) release. Increased CSF
release may increase ventricular volume and compress anatomical areas adjacent to the ventricles, in particular the corpus callosum. In addition,
both beneficial compounds, including trophic factors such as brain derived neurotrophic factor (BDNF), and deleterious substances, including
inflammatory mediators, are released by the choroid plexus and affect brain activity broadly via volume transmission. ACC, anterior cingulate;
DVN, dorsal vagal motor nucleus; HRV, heart rate variability; IL, interleukin; mPFC, medial prefrontal cortex; Ncl., nucleus; Sup. cerv. ganglion,
superior cervical ganglion; TNF, tumor necrosis factor
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allows aldosterone, which is present in much lower concentrations, to

bind to the classic intracellular receptors. This is the basis for the

specificity of aldosterone action not only in the periphery, but also in

certain brain areas. The clearest indication for such action was

described for the pontine nucleus of the solitary tract (NTS).56,57 This

nucleus not only has a role in the autonomic regulation, but also pro-

jects indirectly (via the locus coeruleus) to behaviorally relevant areas

in the prefrontal cortex, the nucleus accumbens, the insula and other

brain regions (Figure 1).58,59 It is tightly linked to the autonomic regu-

lation because of its connections with the nuclei of the parasympa-

thetic and sympathetic nervous system.60,61 Autonomic parameters,

including heart rate, heart rate variability and blood pressure, reflect

the activity of this system. It is the entry point of the vagus nerves

and therefore mediates the clinical effects of vagus nerve stimulation,

as well as the baroreceptor reflex. This has been described extensively

before and will not be covered in detail here.58,59

As we have described, the role of 11betaHSD2 is to provide aldo-

sterone uncompromised access to the MR. This leads to the specificity

of aldosterone to activate MR in the NTS. Of importance, the action of

this enzyme in the periphery, in particular at the level of the kidney, also

inhibits the access of cortisol to the MR, although this blockade is not

complete: genetic and biological influences can affect the activity of the

11betaHSD2.62–64 A lower activity allows cortisol to bind to MR, which

leads to an increase in MR activation and, as a consequence, high blood

pressure accompanied by low renin and aldosterone release. Increased

activity of the 11betaHSD2 is therefore linked to lower blood pressure

and higher aldosterone levels (i.e. resembling MR dysfunction). Whether

the 11betaHSD2 activity is causally involved in the earlier reported simi-

lar changes in patients with therapy refractory depression32 or whether

other reasons for a reduced peripheral MR function play a similar role

needs further investigation. Nevertheless, a role of peripheral MR dys-

function in increased aldosterone levels and, as a consequence, lesser

treatment response to antidepressants may exist in some forms of

depression. This is in accordance with the observation that the activation

of peripheral MR by the administration of the MR agonist fludrocorti-

sone leads to a reduction in RAAS activity and is associated with a faster

clinical improvement in patients with depression.65 The observed reduc-

tion of aldosterone is suggested to reduce the MR activity at specific

brain areas, including the NTS. The alternative explanation of a MR acti-

vating effect of fludrocortisone within the central nervous system (CNS)

appears to be conceivable but not very likely: in areas without

11betaHSD2, the MR is occupied by cortisol (see above). Unless fludro-

cortisone has a higher intrinsic activity than cortisol, this compound

should not have an effect in most brain areas. Also, it is unclear whether

fludrocortisone is able to cross the blood–brain barrier. The only available

study, carried out in rats, found low penetrance into the brain.66

Not to confuse but to complete the picture, it may be conceivable

that aldosterone has actions on the brain independent of the presence

of 11betaHSD2. Overall, the action of aldosterone is rather complex

and may involve non-genomic activation, which has also been demon-

strated at the NTS,67 as well as the hippocampus or amygdala,68 and

is involved in the initiation of rapid stress mechanisms69 and anxiety

induction.70 It has also been demonstrated that aldosterone

administration in humans has rapid effects on heart rate variability.71

The conclusion from these observations is that the reduction in aldo-

sterone has relevant CNS effects, primarily in regions, co-expressing

MR and 11betaHSD2, but possibly also outside of them.

Interestingly, neuroendocrine studies have provided evidence for

peripheral MR dysfunction in depressed subjects who experienced

childhood trauma72 and in antidepressant resistant subjects.73 In the

latter study, the aldosterone concentration itself was not determined,

but the sensitivity of the peripheral MR was examined. In addition,

genetic data support a role of peripheral MR activity. Polymorphisms

of the MR, rs2070951 and rs5522 have been characterized. The

G-allele of rs2070951 accounts for approximately 50% of subjects

(accounting primarily for the G-A haplotype, the G-G haplotype is very

rare) and the remainder is constituted of the C-A and C-G haplo-

type.74 The G-allele leads to a lower intrinsic activity and is associated

with higher plasma aldosterone levels,75 a lower cortisol awakening

response and, somewhat inconsistently, a higher blood pressure,

which is confined to males. The C-A haplotype, which is the second

most frequent (approximately 40%) is a gain of function haplotype

and is associated with higher optimism and a lower risk of depression

in females, but no effect in males.74 Interestingly, the G-allele contain-

ing haplotypes that are associated with higher aldosterone levels has

been associated with features of atypical depression.76 This is in line

with our observation of the overlap between hyperaldosteronism and

this subtype of depression. However, whether these differences are

causally related to aldosterone levels or whether aldosterone levels

are an epiphenomenon needs to be further explored. A role of cortisol

needs to be considered because MR activation regulates ACTH

release at the hippocampus and possibly the pituitary, both of which

are not protected by 11betaHSD2.77,78 With that in mind, the lower

activity G-allele should be associated with higher cortisol levels. Again,

the complex interaction of several regulatory influences78 is not yet

fully resolved.

A clear difference between subjects with hyperaldosteronism and

subjects with treatment-resistant depression is the difference in blood

pressure: it is high in Conn's syndrome and low in patients with the

characterized type of depression. This indicates that it is the high

aldosterone level that is the primary trigger for the psychiatric symp-

toms. Nevertheless, low blood pressure in patients with depression

appears to contribute to the pathology. A higher blood pressure via

activation of the baroreceptor reflex may actually have some protec-

tive effect.58,79,80 The complexity of the threefold interaction

between aldosterone levels, blood pressure and electrolyte concentra-

tions need to be considered in this context.58

6 | RAAS AND INFLAMMATION

In depressed patients, changes in inflammatory markers are frequently

found. A meta-analysis revealed a positive association between

depression and C-reactive protein, interleukin-1 and interleukin-6.81

Enhanced inflammatory responsiveness to psychosocial stress was

observed in major depression patients with increased early-life stress.
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Depression is closely related to coronary heart disease, in which an

inflammatory component is strongly assumed,82,83 which may be

mediated by aldosterone.

The role of mineralocorticoids as inflammatory factors was stated

a long time ago by Selye.84 This has been rediscovered and clarified in

recent years.51,85–87 Regarding CNS disorders, it is of particular impor-

tance that subchronic administration of aldosterone in animal models

leads not only to depression- and anxiety-like behavior, but also to an

increase in inflammation related gene expression in the hippocam-

pus.88,89 A potential molecular mechanism that links aldosterone to

inflammation, is its synergism with lipopolysaccharide (i.e. endotoxin)

to activate the Toll-like receptor 4 (TLR4).90 This molecular mecha-

nism may contribute to the increase in vulnerability with respect to

developing anxiety and depression-like behavior. In accordance with

this, a recent pilot study91 has suggested that administration of the

aldosterone release reducing92,93 and TLR4 inhibiting compound gly-

cyrrhizin (from an extract of glycyrrhiza glabra) improves outcome in

hospitalized patients with major depression.

7 | CONNECTION OF MORPHOLOGICAL
BRAIN ALTERATIONS TO
NEUROENDOCRINE SYSTEMS

Morphological changes have been described in major depression; one

example comprises the recently reported changes in cortical thickness

and subcortical structures.94,95 Changes in more easily accessible

structures, the ventricles, are often not considered. This is despite the

fact that an increased ventricular volume in patients with depression

compared to that in healthy controls96–98 was reported previously;

more importantly, ventricular volume appears to be related to treat-

ment outcome.99 We have recently demonstrated an association

between the increased ventricular volume and worse treatment out-

come in hospitalized patients with depression and identified media-

tors and moderators of this relationship,100 comprising BMI,

aldosterone/cortisol ratio and, potentially as a consequence of

increased ventricular pressure, a reduced volume of corpus callosum

segments. Because an increase in the BMI is predominantly a sign of

atypical depression,101 this observation is in line with the assumption

of a predominance of the ventricle volume increase in this population,

and is in line with the recently reported association between BMI and

ventricular volume in bipolar patients.102

The previously described constellation of high aldosterone levels

and low blood pressure could be an expression of traumatization in

childhood.103 Childhood trauma also appears to be associated with

atypical depression according to most,104–106 but not all studies.107

The connection between traumatization in childhood and patients

with a poorer treatment response is suggested by an overlap of struc-

tural changes: both conditions have increased volumes of the brain

ventricles and reduced volumes of the corpus callosum.100,108 As

might be expected, several,109,110 but not all111 studies support the

notion that patients with major depression and childhood trauma have

a greater risk of not responding well to antidepressant therapy,109,110

in accordance with the notion that these subjects may have larger

ventricle volumes.

In the broader context, it is worth noting that an increased BMI

and metabolic disturbances can be a consequence of childhood

trauma,112,113 although this does not appear to be a universal associa-

tion. It appears to dependent on the genetic background114 and auto-

nomic vulnerability, as expressed as high frequency heart rate

variability.113 It is nevertheless possible that these metabolic path-

ways mediate the increase in ventricular volume.

The link to endocrine data comes from both animal and human

data. Animal data show an increase in ventricular volume with chronic

unpredictable stress, comprising an animal model of depression.115 As

we described above, stress leads to a release of aldosterone, which

may provide a link. Support for the connection to neuroendocrine

mechanisms comes from the observation that cerebrospinal fluid

(CSF) secretion is associated with circadian rhythm116 and/or

sleep,117 phenomena that are associated with neuroendocrine control:

aldosterone secretion increases during sleep118,119 on the one hand,

but may also be dependent on the circadian rhythm of ACTH. Indeed,

an influence of aldosterone on the secretion of the CSF has been

reported.120,121

In humans with depression, the role of aldosterone on brain mor-

phology is suggested by the positive correlation (trend) between the

volume of the lateral ventricles and the significant inverse correlation

to corpus callosum volume vs. the salivary aldosterone/cortisol con-

centration ratio in patients with depression.100 Enlarged lateral ventri-

cles and a possible compression-related reduction in the adjacent

anterior portion of the corpus callosum were associated with non-

response. The association between increased ventricles and reduced

corpus callosum volume on the one hand and worse treatment out-

come on the other hand has recently been confirmed in a larger

study.122 From a therapeutic aspect, it may be considered that a

reduction in the release of aldosterone could thus also be associated

with a reduction in ventricle size, which recently was reported with

the use of selective serotonin reuptake inhibitors, and an improved

treatment outcome.123 Further precedence is provided by rapid acting

antidepressant manipulations: Sleep deprivation has a fast, but only

temporary antidepressant effect.124,125 During the recovery night

after sleep deprivation, an increase in nocturnal renin but not aldoste-

rone release occurs.124 This may highlight a reactive increase in RAAS

activity in the recovery night, which wipes out the antidepressant

effect. A change in ventricular volume would be expected based on

the findings of Bernardi et al.117 Other fast acting antidepressant

interventions, including ketamine administration126 and electrocon-

vulsive therapy,127 also reduce ventricular volume. Interestingly, in

the latter study, the volumes of the lateral ventricles correlated with

the clinical severity of depression. Potential mechanisms of the reduc-

tion in ventricular volume are further discussed below.

Because of the resemblance of these findings to those of normal

pressure hydrocephalus (NPH), it is interesting to note that the cardi-

nal signs of NPH, namely gait disorders, cognitive deficits128–130 and

bladder disorders, have also been described in a proportion of patients

with depression.131,132 Whether these patients had predominantly
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atypical features or increased ventricles has, however, not been

reported. Mechanistically interesting in this context are data from our

pilot study. Glycyrrhizin, an active component of the extract of glycyr-

rhiza glabra, which has previously been shown to reduce aldosterone

secretion, as an adjunct therapy to standard antidepressants,

improved clinical signs of the NPH and depressive symptoms, whereas

there was no improvement in NPH signs in a group treated only with

standard antidepressants (L. Lehr, unpublished data).

8 | CONSEQUENCES OF VENTRICLE
VOLUME CHANGES

The widening of the ventricles has consequences for the structure of

the surrounding brain regions, including the hippocampus,15,133,134

habenula135 and the caudate nucleus.136 These are, however, not uni-

versal, but may differentiate subtypes of depression. A reduced vol-

ume of the corpus callosum has, for example, been described as a risk

factor for developing late-life depression in female, but not male

subjects.137

Enlarged ventricles may also have consequences for brain metab-

olism and consequently for neurochemical regulation. In an animal

model, hydrocephalus appears to induce changes similar to

those described in depression. This includes a change in metabolic

markers in the spectroscopic examination of the brain, such as

N-acetlylasparate and glutamine,138,139 the precursor of both gluta-

mate and GABA, as well as the activity of the glutamine-generating

enzyme glutamine synthetase.140 With regard to N-acetlylasparate

and glutamate, similar findings were observed in humans. The associa-

tion between the activity of glutamine synthetase, GABA and gluta-

mate concentrations has been repeatedly described in patients with

depression.141–144 Whether these observations correlate with ventric-

ular volume has not yet been reported.

9 | CHOROID PLEXUS AS A MEDIATOR
OF DEPRESSIVE SYMPTOMS?

Until now, we have primarily described commonly reported character-

istics in imaging studies (i.e. ventricular volume and corpus callosum

volume). The mediator of these changes may be the choroid plexus

and its function to release CSF and therefore regulate ventricle vol-

ume. The increase in ventricular volume may be responsible for the

compression of the corpus callosum. In addition, molecular modera-

tors, released from the choroid plexus, may spread into brain tissue

via volume transmission145,146 (Figure 1). Those moderators may be

produced in the choroid plexus itself. These may include proinflamma-

tory molecules, which, for example, are also involved in sickness

behavior.147 These inflammation mediators,145,148 in addition to com-

pression, may lead to a change in white matter volume and/or integ-

rity. It has recently been demonstrated that the volume of the choroid

plexus in association with a reduction of cortical volume is a marker of

disease activity and is associated with higher cognitive impairment in

patients with multiple sclerosis.148 Accordingly, low grade inflamma-

tion affects the corpus callosum volume in elderly humans.149

Changes in oligodendrocyte function may lead to changes in myelina-

tion or changes in the volume regulation of axons within the corpus

callosum. Disturbance of white matter integrity may then secondarily

affect gray matter activity. Altered structures of the corpus callosum

have indeed been described in patients with depressive disorders,

mainly using diffusion tensor imaging methods.150–155

In support of the hypothesis of the involvement of the choroid

plexus in these mechanisms, the activity of the choroid plexus is

affected by neuroendocrine influences, which have been linked to

major depression, in particular vasopressin and aldosterone,100,120 as

well as markers related to metabolic syndrome and increased

BMI.100,156 Whether aldosterone has a direct effect on the function

of the choroid plexus is not clear. For that to occur, either a co-

expression of the classical MR with 11betaHSD2 should exist or,

alternatively, a high affinity membrane MR need to be present. The

latter has not been reported for the choroid plexus. A co-expression

of MR and 11beta HSD2 has been reported in the literature, but the

only study in animals (rabbits) did not find 11betaHSD2

expression.157

An alternative explanation could be the action of aldosterone on

the autonomic nervous system via NTS activity changes and projections

to the sympathetic nervous system. Indeed, the choroid plexus is inner-

vated by noradrenergic, serotoninergic and cholinergic fibers, and

expresses a number of peptidergic receptors, which may influence CSF

secretion.156 The sympathetic influence is mediated via the superior

cervical ganglion, which also regulates melatonin secretion from the

pineal gland,158 which is involved in sleep regulation. The exact regula-

tory mechanisms are, however, complex. For example, beta-adrenergic

blockade led to a reduction in CSF secretion159 despite the fact that

noradrenaline itself is also known to reduce CSF secretion.156 Alterna-

tively, this inconsistency may point to an indirect regulatory mechanism

via a reduction in renin release, which is stimulated by beta-adrenergic

activation. It may be suggested that a complex network involving the

superior cervical ganglion regulates brain perfusion and function

(Figure 1), although this needs to be further explored.

The role of the choroid plexus in neuropsychiatric disorders in the

context of increased inflammation has been highlighted previously.160

As discussed, the choroid plexus expresses MR161 and TLR4

receptors,162 which may act synergistically to increase inflammation.90

Furthermore, a number of depression relevant genes, several of them

related to inflammatory activity, are expressed at this structure and

are sensitive to stressors, including 5HT2c receptor, 5HT2a receptor,

GRs, tumor necrosis factor alpha, interleukin-6, interleukin-1beta and

brain derived neurotrophic factor (BDNF).163

Further evidence for an involvement of the choroid plexus in the

therapy of refractory depression comes from the observation that

compounds produced by the choroid plexus such as transthyretin, or

released by it such as total protein, are increased in the CSF of

treatment-resistant patients, whereas other markers are reduced,

including the BDNF.164 As already mentioned, the choroid plexus

expresses genes for growth factors, including neuroprotective
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BDNF.165,166 In this context, it is interesting to note that an increase

in neuronal BDNF does not translate into an increase in CSF or

plasma BDNF.167 If confirmed, this implies that the reported BDNF

level in the CSF, which is regarded as a marker for depression, appears

to have a different source than neurons, potentially the choroid

plexus. Indeed, the expression of BDNF in the choroid plexus is

increased with electroconvulsive therapy and may contribute to the

antidepressant effect of this treatment method.168

Finally, lipopolysaccharide treatment induced depression-like

behavior, which was accompanied by a reduction in BDNF in the hip-

pocampus.169 This was prevented by ketamine170 and is in accor-

dance with the observation that ketamine blocks TLR4 receptor

function.171 This blockade also appears to mediate the

antidepressant-like effect of ketamine in a chronic restraint animal

model of depression,172 which is associated with increased CNS

inflammation. In relation to the effect of mineralocorticoid function,

aldosterone unexpectedly appears to increase BDNF in neuronal

cells,173 which would indicate a potential beneficial effect, whereas, in

contrast, the MR antagonist eplerenone prevents the stress-induced

BDNF reduction in the hippocampus.174 A difference of short-term

and more chronic effects may play a role here. Notably, ketamine does

not appear to have a direct effect on the activity of the RAAS. Its

effect with respect to inhibiting the RAAS is rather indirect through

the ketamine-induced increase in blood pressure,175 as determined in

patients undergoing anesthesia. Together, this may point to a benefit

of reducing aldosterone in combination with inhibiting TLR4 activity.

10 | CONCLUSIONS

Hyperaldosteronism, more specifically an increase in the aldosterone/

cortisol ratio, appears to define a specific subtype of depression,

which is less responsive to standard monoamine-based antidepressant

therapy. Additional characteristics of this subtype are low systolic

blood pressure as a sign of peripheral MR dysfunction and, possibly, in

a gender specific way, reduced heart rate variability, increased salt

preference, increased slow wave sleep or sleep duration and an

increase in inflammatory markers. Clinically and biologically, this type

shows an overlap with atypical depression and depression in the con-

text of obesity. Mechanistically, these changes could be mediated via

two interdependent pathways. The first possible pathway is an activa-

tion of the nucleus of the solitary tract, which influences higher corti-

cal and subcortical structures, including prefrontal cortical areas, the

insula and the nucleus accumbens. The second possibility is an alter-

ation in the choroid plexus function, mediated either directly or indi-

rectly via a change in the autonomic activity, which goes along with

increased volumes of the choroid plexus, the lateral ventricles and a

compression of adjacent brain regions, in particular the corpus callo-

sum. Alterations of choroid plexus function could also involve the

release of mediators, which affect neuronal or white matter integrity,

including trophic substances, such as BDNF or inflammatory media-

tors. To address these targets specifically, the development of new

therapeutic approaches is required. One of these is the strengthening

of peripheral MR function via inhibition of 11betaHSD2 with glycyr-

rhizin, which also acts to reduce inflammation via inhibition of TLR4

related inflammatory pathways. Further work needs to be carried out

to explore the connection between the neuroendocrine and auto-

nomic pathways, as well as how these may mediate changes in brain

morphology and treatment outcome.
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